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Abstract 

In continuous flash suppression (CFS), a rapidly changing Mondrian sequence 

is presented to one eye in order to suppress a static target presented to the other eye. 

Targets generally remain suppressed for several seconds at a time, contributing to the 

widespread use of CFS in studies of unconscious visual processes. Nevertheless, the 

mechanisms underlying CFS suppression remain unclear, complicating its use and the 

comprehension of results obtained with the technique. As a starting point, this thesis 

examined the role of temporal frequency in CFS suppression using carefully 

controlled stimuli generated by Fourier Transform techniques. A low-level stimulus 

attribute, the choice of temporal frequency allowed us to evaluate the contributions of 

early visual processes and test the general assumption that fast update rates drive CFS 

effectiveness. Three psychophysical studies are described in this thesis, starting with 

the temporal frequency tuning of CFS (Chapter 2), the relationship between the 

Mondrian pattern and temporal frequency content (Chapter 3), and finally the role of 

temporal frequency selectivity in CFS (Chapter 4). Contrary to conventional wisdom, 

the results showed that the suppression of static targets is largely driven by high 

spatial frequencies and low temporal frequencies. Faster masker rates, on the other 

hand, worked best with transient targets. Indicative of early, feature selective 

processes, these findings are reminiscent of binocular rivalry suppression, 

demonstrating the possible use of a unified framework.  

 

(1556 characters including spaces) 
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Chapter 1 

Introduction 

 Despite the rich incoming stimulation from the external environment, our 

daily conscious experience remains a subset of the information at any given time 

point. For example, numerous activities may occur in your surroundings as you walk 

down the street, but your attention and awareness may be limited to a few events. 

Since the unperceived stimuli may contain behaviourally relevant information, 

questions arise regarding the extent to which the unperceived stimuli are processed 

and whether or not do they influence behaviour. Over the past decades, scientists have 

adopted a wide variety of tools to address these questions, often resorting to methods 

that impair stimulus visibility. Methods include presenting stimuli of interest at far 

distances (Pillai, 1939), in close temporal arrangement with a masking stimulus 

(Fowler, Wolford, Slade and Tassinary, 1981) or using brief stimulus presentation 

times (Adams, 1957; Kunst-Wilson and Zajonc, 1980). Some studies tapped on the 

properties of visual neglect, presenting the stimulus of interest to neglected fields, 

where patients do not report awareness of the stimulus (Audet, Bub and Lecours, 

1991; Driver and Mattingley, 1998; Vuilleumier et al., 2002).  

Among the many methods employed to manipulate visual awareness is 

dichoptic stimulation. In this technique, a device such as a stereoscope (Carmel, 

Arcaro, Kastner and Hasson, 2010) is used to present dissimilar images to 

corresponding regions of the two eyes (Blake, 1995). Images are also typically 

presented to the central vision, though some studies have expanded the use of 

dichoptic stimulation into the visual periphery (Blake, O’Shea and Mueller, 1992; 

Ritchie, Bannerman and Sahraie, 2012). When dissimilar images such as orthogonally 

oriented gratings are viewed in this manner, one of them will be temporarily 
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suppressed from visual awareness (e.g., Blake and Logothetis, 2002). This 

characteristic of dichoptic stimulation has been used to examine the neural 

concomitants of visual awareness and unconscious visual processing (e.g., Haynes, 

Deichmann and Rees, 2005; Yuval-Greenberg and Heeger, 2013). Several variations 

of dichoptic stimulation have also been developed to prolong the period of 

suppression, one of them being continuous flash suppression (CFS).  

Independently discovered by two research groups (Fang and He, 2005; 

Tsuchiya and Koch, 2005), CFS involves the presentation of a 10 Hz dynamic pattern 

sequence to one eye and a low contrast, static target to the other eye. Individual 

patterns could be noise images (as in Fang and He, 2005), but studies typically adopt 

the patterns used by Tsuchiya and Koch (2005), which are composed of coloured 

squares organised in a random spatial layout (otherwise known as “Mondrians”). As 

targets could remain suppressed for several seconds in CFS (Tsuchiya and Koch, 

2005), it is no surprise that CFS is widely used in studies of unconscious visual 

processing (Yang, Brascamp, Kang and Blake, 2014). Using CFS, some studies found 

shorter suppression durations for native language alphabets, upright, fearful and 

familiar facial stimuli (Yang, Zald and Blake, 2007; Jiang, Costello and He, 2007; 

Stein, Sterzer and Peelen, 2012; Gobbini et al., 2013), leading them to conclude that 

these stimuli have preferential access to visual awareness. Others question the extent 

to which unperceived stimuli undergo semantic analysis, suggesting that low-level 

stimulus properties may offer an alternative explanation (Kang, Blake and Woodman, 

2012; Moors, Wagemans and de-Wit, 2016; Sakuraba, Sakai, Yamanaka, Yokosawa 

and Hirayama, 2012; Hedger, Gray, Garner and Adams, 2016). 

As with any newly developed technique, it is important to understand its 

limitations and refine its use. For instance, the strength of CFS suppression could be 
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comparable between upright and inverted facial stimuli, but the former might produce 

shorter suppression durations because it is more recognisable. To rule out this 

possibility, studies have used control tasks where the target stimulus was blended onto 

the Mondrian pattern sequence (Jiang et al., 2007). The assumption was that if certain 

target types were processed unconsciously, CFS would produce larger differences in 

reaction times than the control. This comparison was later found to be inadequate, as 

the two tasks appear to tap on different perceptual and cognitive processes (Stein, 

Hebart and Sterzer, 2011). Other outstanding methodological issues are the influence 

of participant decisional criteria in determining stimulus visibility (Yang et al., 2014), 

changes in perceptual sensitivity and response criteria over time (Purcell, Stewart and 

Stanovich, 1983; Yang et al., 2014), and individual differences in CFS effectiveness 

(e.g., up to 50% of participants were omitted from Sklar, et al. (2012) because of 

insufficient suppression strength). 

Studying the underlying mechanisms of CFS would be the most straightforward 

manner to improve its use. Previous studies attributed CFS’s effectiveness to the 

transient onsets and offsets of the dynamic pattern sequence (Tsuchiya and Koch, 

2005; Tsuchiya, Koch, Gilroy and Blake, 2006), but little attention has been paid to 

test this assumption. To fill this gap, this thesis investigates the role of temporal 

frequency in CFS, as varying the temporal frequency content of the Mondrian 

sequence is an easy way of manipulating the amount of transients presented. To 

begin, the following sections provide an overview of the CFS technique and two other 

forms of dichoptic stimulation, namely, binocular rivalry (BR) and flash suppression 

(FS). Both FS and BR are often compared to CFS (e.g., Tsuchiya et al., 2006), and as 

will be discussed later in Section 1.5, these comparisons will help define the 

framework used in this research.  
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1.1 Binocular rivalry (BR) and its underlying mechanisms 

In BR, each eye simultaneously receives an image sufficiently different from 

the other eye to prevent binocular fusion, e.g., dichoptically presenting a pair of 

orthogonally oriented gratings. As illustrated in Figure 1.1, both images are also 

presented in the corresponding spatial locations of each eye. Observations on BR go 

way back in history, starting from the 16th century when Porta (1953; as cited in Wade 

1998) made the first unambiguous demonstration of such interocular competition. 

Upon presenting separate pages of text to each eye, he made the observation that only 

a page could be perceived, showing how the input to one eye could dominate 

perception and suppress the other. However, it was not until the 19th century that 

systematic studies on binocular rivalry grew in popularity. Using the mirror 

stereoscope he invented, Sir Charles Wheatstone (1838; cited by Blake, 2005) 

presented different English letters to each eye, noting that the perception of the letters 

generally alternated stochastically, although sometimes appeared as a mixture. He 

found that neither image could be willed into visual awareness, though later studies 

showed that the exertion of willpower through eye movements could influence the 

dominance durations of each image (Blake, 2005).  

 

Figure 1.1: Schematic diagram of binocular rivalry (BR). In BR, each eye receives an image dissimilar 

from the other eye so that binocular fusion is prevented. Images are typically static and presented 



	 16	

continuously throughout the course of an experimental trial. The resulting percept involves an irregular 

alternation between the two images with occasional mixtures of both images.  

Competition between monocular neurons was thought to produce BR. For 

example, Blake (1989) argued that the primary goal of binocular vision is fusion, in 

which the slightly disparate images from the two eyes undergo a matching process to 

form the percept of a single object. Under this view, a successful binocular match 

results in the stable percept of a single binocular object, whereas mismatches result in 

reciprocal periods of dominance and suppression of dissimilar features. The 

competition was thought to depend on the eye of origin; neural activity elicited by the 

image presented to one eye competed with activity associated with the image 

presented in the other eye at early visual processing stages such as V1 (e.g., Polonsky, 

Blake, Braun and Heeger, 2000; Haynes et al., 2005), not between the concepts, 

identities or semantic meanings of the presented images. In support of this account, 

studies showed that when the images were swapped between the eyes, changes in the 

resulting percept tended to occur and were typically of the image presented to the 

dominant eye (Blake, Westendorf, and Overton, 1980; Lee and Blake, 2004). 

Suppression was also found to operate in local spatial zones; when radial gratings are 

presented to each eye, focal contrast increments give rise to a rapid perceptual 

dominance change at the locus of the increment that spreads gradually of perceptual 

dominance change (Wilson, Blake, Lee, 2001).  

Other studies demonstrated competition between two concepts or stimulus 

identities (i.e., stimulus rivalry). For example, Diaz-Caneja (1928; translated by Alais 

et al., 2000) divided an image of concentric circles and an image of parallel lines into 

halves and created composite images from the half of each form. These images were 

presented in opposite eyes to provoke BR. Instead of perceiving rivalry only between 

the two composite images, perceptual alternations sometimes occurred between the 
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whole forms of concentric circles and parallel lines. Similarly, Whittle, Bloor, and 

Pocock (1968) showed that matching contours could combine across the eyes in BR. 

These observations also applied to dichoptic patchwork stimuli. Instead of perceiving 

alternations between dichoptic patchwork stimuli, Kovács, Papathomas, Yang and 

Fehér (1996) found that perception alternated between coherent patterns. Further 

demonstrating that the occurrence of rivalry alternations was not limited by the eye of 

origin, swapping orthogonal gratings at 3 Hz between the eyes did not always lead to 

rapid perceived changes in orientation, sometimes producing instead similar 

perceptual alternations as static, fixed presentations of dichoptic stimuli (Logothetis, 

Leopold and Sheinberg, 1996). Furthermore, studies have found that form and motion 

were also able to rival or fuse independently of each other (Alais and Parker, 2006; 

Andrews and Blakemore, 2002).  

These observations of stimulus rivalry contradicted previous assumptions of 

an early, low-level mechanism in BR (Blake, 1989; Blake, 2001; Blake and Wilson, 

2011). However, Lee and Blake (1999) found that stimulus rivalry occurred within a 

limited parameter space. The authors found that swapping sinusoidal gratings between 

the eyes could only produce stimulus rivalry if the gratings were low contrast, high 

spatial frequency (> 5 cycles per degree), flickering and swapped between the eyes at 

rapid rates (e.g., 6 Hz). Later in a 2004 study, the same authors evaluated Kovács et 

al. (1996)’s findings. They discovered that rivalry between local, eye-based spatial 

zones occurred during interocular grouping between patchwork dichoptic stimuli. The 

authors also pointed out that because participants are typically asked to make a binary 

judgment on the perceptual dominance of rival stimuli, the incidence of reported 

interocular grouping in patchwork dichoptic stimuli might have depended on the 

proportion of local spatial zones favouring one image over the other. Thus, the 
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incidence of stimulus rivalry did not necessarily preclude of influence early visual 

processes. In fact, stimulus and eye rivalry have been shown to co-exist (Bonneh et 

al., 2001; Silver and Logothetis, 2007), and it is now agreed that rivalry suppression 

could involve neural events distributed across multiple levels of visual processing 

(Blake and Wilson, 2011).  

While other studies were focussed on the extent of eye-specific and stimulus-

specific influences in BR, some researchers busied themselves with the influence of 

stimulus properties on rivalry dynamics. As it turns out, this was a necessary line of 

investigation that would provide information pertinent to the visual pathways 

involved during rivalry suppression. The early visual system consists of two 

prominent subcortical parallel pathways, namely the magnocellular (M) and 

parvocellular (P) pathways, which then form the primary inputs to the cortical dorsal 

and ventral pathways respectively (Liu et al., 2006). The M/dorsal pathway has a 

higher contrast sensitivity (Purpura, Kaplan, and Shapley, 1988) and is more 

responsive to low spatial frequencies, dim illumination and higher temporal 

frequencies (Derrington and Lennie, 1984; Purpura et al., 1988). This contrasts with 

the Parvo/ventral pathway (P/ventral), which has a higher spatial resolution, is colour 

sensitive and more responsive to lower temporal frequencies (Derrington and Lennie, 

1984; Hicks, Lee, and Vidyasagar, 1983). As a result of these differences, the 

Magno/dorsal (M/dorsal) pathway is more suited for global motion perception 

(Chapman, Hoag, and Giaschi, 2004) whereas the P/ventral pathway is more suited 

for form, spatial detail and colour discrimination (Livingstone and Hubel, 1988). 

These differences have also led to the formulation of the dual-stream theory, which 

associates P/ventral stream with visual awareness and the M/dorsal stream with the 
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computation of consciously inaccessible information for action preparation (Milner 

and Goodale, 2008).  

Given that BR is frequently used to manipulate visual awareness, it seemed 

intuitive that the P/ventral pathway would be primarily involved in rivalry 

suppression. Consistent with this idea, previous research showed that transient 

dichoptic images (Bower and Haley, 1964) and images of low contrast (Burke, Alais, 

and Wenderoth, 1999; Liu, Tyler and Schor, 1992) were more likely to fuse. Higher 

contrast images, on the other hand, were likely to enhance suppression by promoting 

exclusive perceptual dominance (Hollins, 1980). Rivalry between motion stimuli was 

found to be due to spatial conflict in the motion stimuli rather than motion conflict per 

se; when each eye was adapted to opposing motion stimuli, no incidence of motion or 

motion rivalry was observed when both eyes were later presented with the same static 

grating (Ramachandran, 1991). Raising the temporal frequency of motion stimuli was 

also linked to a lower incidence of motion rivalry (Carlson and He, 2000), and this 

was yet again support for a P/ventral bias given the greater M responses to higher 

temporal frequencies (Derrington and Lennie, 1984). Support on spatial frequency 

content, however, was less conclusive. For example, Baker and Graf (2009a) found 

that images with naturalistic properties, e.g., 1/f spatial frequency spectrum and phase 

aligned high spatial frequencies, dominated over images with less naturalistic 

properties. These observations contradicted the idea of P/ventral bias in BR, as one 

would predict that images with greater higher spatial frequency content would 

dominate in BR. 

Another puzzling property of BR is its stochastic perceptual transitions, and 

several attempts have been made to explain the processes triggering these 

alternations. One popular theory identifies neural adaptation as the key-contributing 
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factor. By this view, neurons encoding each image are engaged in reciprocal 

inhibition, such that processes elicited by one image inhibits processes elicited by the 

other image. Over time, the neural activity associated with the perceptually dominant 

image wanes due to adaptation, eventually reversing the balance of activity associated 

with the other image and triggering a perceptual switch (e.g., Lehky, 1988; 

McDougall, 1901; Sugie, 1982). Indeed, adaptation has been implicated in several 

aspects of rivalry dynamics, such as the initial rivalry period (Carter and Cavanagh, 

2007) and the respective changes in the contrast sensitivity of rivalling images over 

time (Alais, Cass, O’Shea, and Blake, 2010). It even accords with both eye-based and 

stimulus-based accounts, as the adaptation process could arise anywhere along the 

visual processing hierarchy (Lago-Fernández and Deco, 2002). Nevertheless, despite 

the bulk of supporting evidence, the explanation does fall short in accounting for the 

influence of perceptual meaning on rivalry incidence (Andrews and Lotto, 2004) and 

the effect of emotional valence on perceptual dominance (Alpers and Gerdes, 2007; 

Alpers and Pauli, 2006; Alpers, Ruhleder, Walz, Muhlberger, and Pauli, 2005).  

A more recent idea proposed by Leopold and Logothetis (1999) draws from 

the notion that visual perception is an inference-like process (Helmholtz, 1924; Knill 

and Pouget, 2004). Under this theory, alternations in multi-stable stimuli such as BR 

are not a mere consequence of passive sensory responses such as neural adaptation 

and reciprocal inhibition. Instead, perceptual alternations result from evaluations and 

inferences made on the incoming sensory information conflict, also taking into 

account information from higher order and non-sensory influences. As the evaluation 

processes could span multiple-levels of the visual hierarchy (Tong, Meng and Blake, 

2006), this idea has been successful in accounting for the frontal cortical activations 

during BR (Knapen, Pearson, Brascamp, van Ee, and Blake, 2008; Lumer, Friston, 
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and Rees, 1998) and the correlation between mood disorders and perceptual 

alternations (Pettigrew and Miller, 1998). The idea also does not preclude the effects 

of neural adaptation (Blake and Wilson, 2011), showing promise as a model for 

interpreting BR dynamics.  

Another explanation attributes BR alternations to neural oscillations. Proposed 

by Pettigrew (2001), perceptual transitions in rivalry are viewed as a product of clock-

like, neural oscillators located in subcortical regions. These oscillators are believed to 

be susceptible to fluctuations in serotonin levels (Carter et al., 2005; Carter and 

Pettigrew, 2003) and may even underlie other forms of perceptual bi-stability (Carter 

and Pettigrew, 2003). For example, these oscillators may underlie bi-stability obtained 

with optically superimposed monocular stimuli (O’Shea, Parker, La Rooy and Alais, 

2009), ambiguous stimuli such as the Necker Cube (Necker, 1832) and so-called 

“motion-induced blindness”, where static stimuli are presented with a moving 

background (Bonneh, Cooperman, and Sagi, 2001). Suggestive evidence for this 

account includes positive correlations in alternation rates for various forms of 

perceptual multi-stability (Carter and Pettigrew, 2003), and behavioural oscillations in 

several aspects of visual perception (Drewes, Zhu, Wutz, and Melcher, 2015; 

Tomassini, Spinelli, Jacono, Sandini, and Morrone, 2015). However, more research is 

needed to confirm its validity and its relation to adaptation and perceptual inference 

models. 

1.2 The Laws of Rivalry 

As the research on rivalry mechanisms mushroomed, it became increasingly 

necessary to summarise the key characteristics of BR. In 1965, Levelt published a 

seminal monograph describing four governing tenets of BR, which would come to 

guide later developments and interpretations of empirical research. The goal of this 
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section is to introduce these propositions in their original characterisation and to 

provide an update on these key principles. I begin by defining some key terms used in 

the description of rivalry dynamics (e.g., alternation rate and predominance). 

Familiarity with these concepts is important, for they are not only frequently used as 

dependent measures in most empirical research, but also used in the formulation of 

BR principles. 

To reiterate the perceptual experience during BR, each image of a dissimilar 

dichoptic pair would be perceived exclusively for a temporary period of time, such as 

1-2 seconds, before the other image becomes visible, in an on-going and irregular 

perceptual alternation between the two images. One way of characterising the 

competition is to record the dominance duration, the period in which an image 

dominates exclusively (Brascamp, Klink, and Levelt, 2015). Over the course of the 

viewing time, the image percepts will alternate stochastically, and the histogram of 

individual dominance periods for a given image can be described by a gamma 

distribution (Blake and Logothetis, 2002; Logothetis et al., 1996). The average 

dominance duration can be used to represent the characteristics of the distribution 

(Kang, 2009; Brascamp et al., 2015), though some studies do report the median (e.g., 

Patel, Stuit, and Blake, 2015). Another way of representing the perceptual dominance 

of an image is to compute the total proportion of exclusive visibility over the total 

rivalry viewing time, that is, the predominance of an image (Brascamp et al., 2015). 

Finally, rivalry dynamics are also described by the rate at which the image percepts 

switch, i.e., the alternation rate (Brascamp et al., 2015).  

In his original work, Levelt (1965) sought to understand why non-

corresponding contours in the eyes produced BR. Defining stimulus strength in terms 

of the contrast and density of pattern contours, Levelt (1965) manipulated luminance 
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and pattern differences between the eyes and recorded equibrightness judgments. In 

the first set of experiments, participants were presented with a pair of white disks that 

contained a concentric circle in both or one of the images. They were asked to adjust 

the luminance of either the left or right disk, till both disks were of equal brightness. 

Using the best-fitting curves of the recorded data, Levelt (1965) then computed the 

relative weights or stimulus strengths of each eye.  The results showed that, when 

only one eye contained a concentric circle, there was a shift in weight or stimulus 

strength towards the eye. The total sum of weights, however, remained constant. In 

later experiments, Levelt (1965) presented a homogenous luminance field to one eye 

and a test disk to the other eye. He varied the size of the test disk and found that 

although smaller test disks increased in relative stimulus strength, the perceived 

brightness of the disk remained comparable across different disk sizes. Using these 

findings, Levelt (1965) then built an account of the perceptual conflict experienced in 

binocular rivalry, giving rise to the four propositions summarised below:    

Table 1: Levelt’s Original Propositions 

Proposition I When the stimulus strength is increased in one eye (i.e., increased relative 

luminance or presence of contour), the predominance of the corresponding image 

will increase. 

Proposition II Increased stimulus strength in one eye, however, does not affect the average 

dominance duration of the same eye. 

Proposition III Increasing the stimulus strength in one eye increases the rate of perceptual 

alternation between the two images. 

Proposition IV The perceptual alternation between the two images also occurs at a faster rate 

when the stimulus strengths in both eyes are increased. 

 

In a recent review, Brascamp et al. (2015) evaluated these four propositions 

were evaluated and suggested modifications. To give a brief overview, the first 
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proposition of Levelt’s (1965) monograph has remained largely unchallenged, though 

a proper conceptualisation of stimulus strength is required. This is because properties 

that appear to prolong the perceptual dominance in one study may not have the same 

effect in another. For example, Baker and Graf (2009a) found that images with 

naturalistic phase spectra dominated over images with randomised phase information. 

This would suggest that the naturalistic organisation of image contours contributed to 

stimulus strength, but randomised phase information was found to be more 

perceptually dominant in multi-Gabor arrangements (Bonneh and Sagi, 1999; Hunt, 

Mattingley, and Goodhill, 2012).  

Unlike the first proposition, the second proposition has been met with mixed 

results. In its original formulation, the second proposition assumed that only the 

contralateral stimulus could effect change in an image’s dominance duration. This 

counterintuitive proposal has found support in some studies, which showed no effect 

on dominance durations when the stimulus strength of the same eye is varied, but 

significant changes in dominance durations for the contralateral eye (Blake, 1977; 

Fox and Rasche, 1969; Leopold and Logothetis, 1996; Logothetis et al., 1996; Meng 

and Tong, 2004). Other studies disputed the claim, demonstrating modest but 

significant changes in dominance durations when the stimulus strength of the same 

eye is varied (Bossink et al., 1993; Shiraishi, 1977; Mueller and Blake, 1989; 

Brascamp et al., 2006). Kang (2009) showed that the discrepancy in results could be 

partly attributed to stimulus size, as larger stimulus pairs (i.e., 0.8° by 3.2° visual 

angle) tended to conform to the second proposition whereas smaller stimuli (i.e., 0.8° 

by 0.8° visual angle) generally increased in average dominance durations with 

stimulus strength. The reliance on stimulus size could be partly driven by interactions 

among local spatial zones, as rivalry alternations have been found to synchronise 
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between two separate spatial zones with similar orientations (Alais, Lorenceau, 

Arrighi, and Cass, 2006). Another limitation of the original formulation was that it did 

not consider pairings where one of the stimuli was fixed at a relatively low strength 

compared to the other. True enough, under these conditions, large changes in 

dominance durations were found when the strength of the stronger stimulus was 

varied (Brascamp et al., 2006; Moreno-Bote, Shpiro, Rinzel and Rubin, 2010; 

Platonov and Goossens, 2013).  This prompted the revision by Brascamp et al. (2015), 

who proposed that increasing the relative difference in strengths between the two eyes 

would primarily serve to increase the average dominance duration of the stronger 

stimulus.  

 According to Levelt’s third proposition, a larger difference in relative 

stimulus strength would result in faster perceptual alternations. Assuming that there 

would be more perceptual switches towards the stronger stimulus, the third 

proposition offered an explanation of how changes in the predominance of a stimulus 

(Proposition I) could co-exist with unaffected average dominance durations 

(Proposition II). However, in light of the revisions to the second proposition, i.e., the 

stronger stimulus would produce longer dominance durations, Brascamp et al. (2015) 

suggested that raising the difference in stimulus strength between the two eyes would 

slow down perceptual alternations. This modification to the third proposition would 

predict peak alternation rates when both stimuli are matched in strength, which has 

been corroborated empirically (Moreno-Bote et al., 2010). Note, however, that the 

incidence of mixed percepts may produce a deviation in results, producing no change 

in alternation rate despite larger interocular differences in stimulus strength. The same 

issue applies to the fourth proposition. Although it is currently well supported by 

many studies (e.g., Brascamp et al., 2006; Buckthought et al., 2008; Kang, 2009; 
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Meng and Tong, 2004; Platonov and Goossens, 2013), the neglect of mixed percepts 

is problematic, given its relevance to rivalry dynamics. Brascamp et al. (2015) thus 

recommends including the incidence of mixed percepts in future computations of 

alternation rates, and it is encouraging that investigative work on mixed percepts has 

already begun (e.g., see the effect of shared stimulus complexity on rivalry coherence 

in Alais and Melcher, 2007). Further study would only reveal better ways to evaluate 

alternation rates, and further improve the predictive power of the third and fourth 

propositions. Another potential limitation to the fourth proposition is the possibility of 

a reverse relationship at very low stimulus strengths. Predicted by computational 

models (Brascamp et al., 2015; Seely and Chow, 2011), there is some support for this 

prediction (e.g., Platonov and Goossens, 2013) that calls for further research. The 

following presents the four propositions again. Modifications by Brascamp et al. 

(2015) are indicated with an asterisk (*). 

Table 2: Modified Propositions 

Proposition I Remains the same as the Levelt (1965) formulation.   

Proposition II* Increasing the difference in stimulus strengths between the two eyes 

increases the average dominance duration of the stronger stimulus. 

Proposition III* Raising the difference in strengths between the two eyes slows the 

alternation rate. 

Proposition IV* Increasing the strength of stimuli in both eyes while keeping them equivalent 

to each other increases the alternation rate, but the trend may operate in a 

reverse direction at near-threshold stimulus strengths.  

1.3 FS and its underlying mechanisms 

Similar to BR, FS involves the presentation of dichoptic images. Discovered 

by McDougall in 1901, the FS procedure begins with the monocular presentation of 

one image in the pair of dichoptic images for a brief period of time e.g., 1 second 

(Wolfe, 1984), and is replaced by a short interval where no stimuli are presented to 
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both eyes. The first and second images are then abruptly introduced, leading to the 

forced dominance of the second image (Tsuchiya et al., 2006; Wolfe, 1984). This 

guarantees that the first percept experienced in the dichoptic period would be of the 

new image, allowing finer control over the perceived image than BR, in which the 

initially dominant image is usually unpredictable. However, the forced dominance 

does not last long; the stochastic alternations observed in BR resume over a second or 

so (Kreiman, Fried, and Koch, 2005).  

 

Figure 1.2: Schematic diagrams of flash suppression (FS) and forward dichoptic masking. (a) In FS, 

one eye receives an image for a brief period of time (e.g., 1 second) before the second image is abruptly 

introduced to the other eye in the test phase. This causes the pre-adapted image to be suppressed from visual 

awareness. In some instances, FS may be conducted with a blank interval between the pre-adaptation and 

test phase (as shown), but it is not necessary. Figure produced using the findings of Wolfe (1984). (b) Unlike 

FS, dichoptic masking does not require a pre-adaptation phase. This is illustrated in the sequence of events in 

forward dichoptic masking, where the masker briefly precedes and impairs the visibility of the target image. 

Short intervals between the masker and target are typically used to suppress the target effectively (Enns and 

Di Lollo, 2000). 

In dichoptic masking, the sensitivity to a transient, monocular image is 

impaired by briefly presenting an incompatible image to the contralateral eye (Legge, 

1979). Given the presentation schedule of FS, it is tempting to classify it as a form of 

dichoptic masking. However, three key differences between these two methods argue 

against this assumption. Firstly, FS requires at least 150 ms of monocular presentation 
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to be effective (Wolfe, 1984), but this is not required in dichoptic masking (Figure 

1.2). Secondly, although the effectiveness of dichoptic masking and FS both vary with 

temporal parameters such as target duration and inter-stimulus interval (Brussell and 

Favreau, 1977; Enns and Di Lollo, 2000; Hellige, Walsh, Lawrence, and Prasse, 

1979; Wolfe, 1984), there is more flexibility in FS. For example, prolonged target 

durations would impair masking effectiveness (Brussell and Favreau, 1977), but FS is 

still effective between 500 ms and 1000 ms dichoptic image presentations after the 

onset of the second image (Wolfe, 1984). Finally, FS is not dependent on the 

luminance, orientation, or spatial frequency of the monocular image (Wolfe, 1984), 

meaning that light adaptation and other forms of masking (e.g., forward masking, 

pattern masking) cannot solely account for FS. In contrast, the effect of masking is 

enhanced by spatial edges (Macknik, Martinez-conde, and Haglund, 2000). 

 Instead, some properties of FS are reminiscent of rivalry suppression. For 

example, Wolfe (1984) showed that the minimum monocular presentation period (i.e., 

150 ms) required for effective FS coincided with the minimum presentation duration 

required for a pair of dichoptic images to engage in BR. In addition, although FS has 

a greater depth of suppression than BR (Tsuchiya et al., 2006), its suppression 

effectiveness could be explained by BR observations. In FS, the monocular 

presentation of the first image needs to sufficiently long, which accords with neural 

adaptation accounts of BR (e.g., Lehky, 1988). Being presented for a substantial 

amount of time, activity corresponding to the first image might have started waning 

due to adaptation, allowing the second image to dominate perceptually. This 

advantage could be further bolstered by the subsequent brief presentations of the first 

and second images, as transients have been shown to promote perceptual dominance 

in BR (Blake, Westendorf, and Fox, 1980). The similarities between FS and BR have 
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also been observed at physiological and behavioural levels. Not only do both 

paradigms elicit similar patterns of neuronal responses in the inferotemporal visual 

cortex of the macaque brain (Sheinberg and Logothetis, 1997), but they also implicate 

early visual processing (e.g., Tong and Engel, 2001; Wilke, Logothetis and Leopold, 

2006). Psychophysically, Wilke, Logothetis and Leopold (2003) found an effect of 

target surround in a form of FS (i.e., generalised flash suppression), which accords 

with observations in BR (Paffen, Alais and Verstraten, 2006; Paffen, Alais and 

Verstraten, 2005; Paffen, te Pas, Kanai, van der Smagt and Verstraten, 2004).  

1.4 CFS and its underlying mechanisms 

As aforementioned, CFS is generally produced when a high contrast, dynamic 

Mondrian pattern sequence (the masker) and a static low contrast target are 

simultaneously presented to different eyes (Tsuchiya and Koch, 2005; see also Figure 

1.3). It is an effective form of interocular suppression that combines the benefits of 

both FS and BR. Like FS, CFS reduces the uncertainty of the first percept, but its 

effectiveness does not depend on the pre-adaptation of the image to-be-suppressed. 

Little is known about the underlying mechanisms of CFS, though previous studies 

often attribute its effectiveness to the rapid pattern changes in the Mondrian sequence 

(Tsuchiya and Koch, 2005; Tsuchiya et al., 2006; Yang and Blake, 2012). For 

example, Tsuchiya and Koch (2005) viewed CFS as a combination of BR and FS 

processes, proposing that each pattern change resets the Mondrian’s period of 

dominance. The authors also argued against the proposition that CFS is a form of 

potent BR, pointing out that CFS violates Levelt’s (1965) second proposition of BR. 

In a later study, Tsuchiya et al. (2006) thought that CFS is an accumulation of FS 

processes (Tsuchiya et al., 2006). The authors argued further against a pure BR 

account, citing the disproportionately large depth of suppression compared to BR, and 
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the correspondence between the peak Mondrian update rates (i.e., around 3-10 Hz; 

Tsuchiya and Koch, 2005) and required pre-adaptation period in FS (i.e., ~ 150 ms; 

Wolfe, 1984).  

 

Figure 1.3: Schematic diagram of Continuous Flash Suppression (CFS). In CFS, a static target of lower 

visual contrast is typically presented with a dynamic sequence of Mondrian patterns. This produces an 

effective and long lasting suppression where the target gradually increases in visibility over several seconds. 

Unlike BR, the first percept is always of the Mondrian sequence. CFS also contrasts from FS, as it does not 

require pre-adaptation of the target. 

Whilst there might be common processes between CFS and FS, the arguments 

against a BR account remain inadequate. First, the effectiveness of FS depends 

critically on the pre-adaptation phase (Wolfe, 1984), whereas CFS is typically 

conducted without pre-adaptation. It is therefore difficult to imagine how FS 

processes could be accumulated in CFS, and how optimal Mondrian refresh rates 

could relate to FS pre-adaptation periods. Second, the violation of Levelt’s (1965) 

second proposition does not serve as a strong argument against a BR account, as it has 

been challenged by recent studies (e.g., Brascamp et al., 2006; Kang, 2009; see also 

Section 2.3.1 for more details). The more recent, revised proposition is that the 

stronger stimulus of a dichoptic pair would produce longer average dominance 

durations as its strength increases (Brascamp et al., 2015). This has been observed in 
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CFS, where raising the visual contrast of the mask increased suppression durations 

(Tsuchiya and Koch, 2005). Lastly, given the similarities between FS and BR (e.g., 

Sheinberg and Logothetis, 1997; see also Section 2.4), it is difficult to justify the 

substantial involvement of FS processes while rejecting a BR account. In fact, recent 

evidence revealed several similarities between CFS and BR. Studies show that both 

paradigms are feature selective (Moors, Wagemans, and De-Wit, 2014; Stuit, Cass, 

Paffem and Alais, 2009; Yang and Blake, 2012), work better with spatial edges 

(Baker and Graf, 2009a; Maehara, Huang, and Hess, 2009) and higher visual contrast 

(Hollins, 1980; Tsuchiya and Koch, 2005), and have a small but significant serial 

dependency effect (van Ee, 2009; Moors, Stein, Wagemans, and van Ee, 2015a). 

1.5 The framework of this research 

Testing the importance of transients in CFS, as is the goal of this thesis, could 

provide insight into the relationship among CFS, BR and FS. However, due to the 

scope of this thesis, I will only focus on the mechanisms of CFS and how it relates to 

BR. This is because, compared to FS, BR has a longer and better-documented body of 

work that could provide a framework for evaluating CFS mechanisms. In addition, 

given the similarities between BR and CFS, it would be interesting to see if 

observations in CFS could be explained by BR mechanisms. Table 3 below 

summarises some stimulus properties that affect BR and CFS suppression. In sum, 

high spatial frequencies and high contrast appear to enhance CFS and BR 

suppression, suggesting a P/ventral pathway bias (Derrington and Lennie, 1984; 

Shapley, 1990; Green et al., 2009). However, this preference is less consistent in CFS, 

as the nominal 10 Hz Mondrian refresh rate is more likely to elicit responses from the 

M/dorsal pathway than the P/ventral pathway (Derrington and Lennie, 1984). I will 
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evaluate this discrepancy with our empirical findings on temporal frequency in the 

General Discussion (Chapter 5).  

Table 3: Some factors that influence BR and CFS suppression  

Factors  BR CFS 
Spatial frequency  
 
 
 
 
Temporal frequency 

Enhanced by phase-aligned high spatial 
frequency, e.g., images with naturalistic 
edges have a greater predominance (e.g., 
Baker and Graf, 2009). 

Image contours are capable of cross-
channel suppression (Maehara et al. 
2009). 

 
Lower incidence of rivalry at high 
frequencies (Wolfe, 1983), but transients 
reset perceptual dominance temporarily 
(Blake et al., 1990).  

 
10 Hz nominal refresh rate, but optimal 
rates do vary with target type (Kaunitz 
et al., 2014).  

 
Relative visual contrast 

 
Enhanced by higher contrast, e.g., average 
dominance durations increase with contrast 
when the stimuli are small (Kang, 2009). 

 
Not systematically studied, but 
suppression durations tend to increase 
with contrast (Tsuchiya and Koch, 
2005). 

 
Feature selectivity 

 
Enhanced when rivalling stimuli share 
similar features e.g., higher contrast 
thresholds when rivalling stimuli share 
similar orientations (Stuit et al., 2009). 

 
Stronger suppression with similar 
spatial frequencies (Yang and Blake, 
2012) and speeds (Moors et al., 2014).  

1.6 Manipulating temporal frequency 

Manipulating temporal frequency is a straightforward way to evaluate the 

importance of transients in CFS. Strictly speaking, temporal frequency is defined as 

the number of events occurring per second. I arrive at two possible methods of 

manipulating temporal frequency. The first has been examined by previous studies, 

and it involves varying the number of Mondrian patterns per second (Tsuchiya and 

Koch, 2005; Zhu, Drewes, and Melcher, 2016). The second method manipulates 

temporal frequency in terms of periodic luminance changes per second, and has not 

been systematically studied in the CFS literature. This is surprising, as varying the 

number of pattern changes could be a coarse method of varying retinal illumination. 

Since each pattern is randomly sampled, not all pixels will be subjected to the same 

magnitude of luminance change per pattern update and there may not even be 

luminance alternations from one image to the next. This makes it difficult to equate 

the same Mondrian refresh rate across studies and different pattern sampling methods. 
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Using temporal frequency affords much greater control, and therefore more accurate 

inference of underlying mechanisms. 

In this thesis I adopted the second method of manipulating of temporal 

frequency, as a periodic modulation. Although the magnitude of luminance change 

between patterns might not matter in a randomly sampled stimulus like the Mondrian 

masker, both methods cannot be equated without a proof of concept. Another 

motivation for adopting the second method was that it allowed us to understand 

refresh rate choices in CFS. As shown in Table 3, the nominal 10 Hz refresh rate in 

CFS contrasted with the low temporal frequency preference in BR, which was curious 

given the similarities between the two paradigms (e.g., Moors et al., 2014; Stuit et al., 

2009; Yang and Blake, 2012). Using a different method of temporal frequency 

manipulation was a straightforward way of verifying the existence of this discrepancy 

between CFS and BR.  

1.7 Thesis outline 

Three empirical studies are presented in this thesis, each presented in their 

published formats. To preview, Chapter 2 examined the temporal frequency tuning of 

CFS using temporally narrowband filtered noise maskers. This revealed a low 

temporal frequency peak in suppression durations, which was evaluated and 

replicated by Chapter 3 using temporally filtered Mondrian maskers. Since static 

targets were used in Chapters 2-3, Chapter 4 asked if the enhanced CFS suppression 

observed with lower temporal frequency maskers was a consequence of temporal 

frequency selectivity. This hypothesis was tested with temporally narrowband filtered 

noise targets and maskers and indeed, CFS suppression was found to be temporally 

selective. The implications of these results were discussed in the General Discussion 

(Chapter 5) and all Supplementary materials were presented in Chapter 6. 
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Chapter 2 

The temporal frequency tuning of continuous flash 

suppression reveals peak suppression at very low 

frequencies 
 

The work in this chapter is published as: 

Han, S, Lunghi, C., & Alais, D. (2016). The temporal frequency tuning of continuous 

flash suppression reveals peak suppression at very low frequencies. Scientific reports, 

6, 1-12, doi: 10.1038/srep35723. 

 

Individual data are accessible at: https://doi.org/10.17605/OSF.IO/R5JEV  
 

Abstract 

Continuous flash suppression (CFS) is a psychophysical technique where a 

rapidly changing Mondrian pattern viewed by one eye suppresses the target in the 

other eye for several seconds. Despite the widespread use of CFS to study 

unconscious visual processes, the temporal tuning of CFS suppression is currently 

unknown. In the present study we used spatiotemporally filtered dynamic noise as 

masking stimuli to probe the temporal characteristics of CFS. Surprisingly, we find 

that suppression in CFS peaks very prominently at approximately 1 Hz, well below 

the rates typically used in CFS studies (10 Hz or more). As well as a strong bias to 

low temporal frequencies, CFS suppression is greater for high spatial frequencies and 

increases with increasing masker contrast, indicating involvement of 

parvocellular/ventral mechanisms in the suppression process. These results are 

reminiscent of binocular rivalry, and unifies two phenomenon previously thought to 

require different explanations. 
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2.1 Introduction 

The recent couple of decades has seen a great deal of research activity aimed 

at elucidating the extent to which visual processing can occur outside of conscious 

awareness. Several approaches have been used including binocular rivalry (Alais and 

Blake, 2005; Arnold and Quinn, 2010) and various kinds of masking (Kim and Blake, 

2005). More recently a new approach known as continuous flash suppression (CFS) 

has become very popular since it first appeared (Tsuchiya and Koch, 2005; Yang and 

Blake, 2012; Yang et al., 2014). Like binocular rivalry, it involves presentation of 

irreconcilable images to each eye which prevents binocular fusion and triggers 

suppression of one eye’s image. In the case of CFS, one eye receives a sequence of 

dynamic ‘Mondrian’ images updated typically at a rate of 10 Hz which reliably 

suppresses a target image of low to moderate contrast in the other eye (Fig 1a). The 

main appeal of CFS is that it provides a very strong and long-lasting suppression and 

the initial percept is reliably the dynamic masker. In contrast, binocular rivalry 

typically involves two dichoptic static images, which perceptually alternate in a 

stochastic manner. This allows easy study of visual processing in the suppressed eye 

and has seen CFS rapidly become the standard tool for investigating visual processing 

outside of awareness (Tsuchiya et al., 2006; Yang et al., 2007; Yang and Blake, 

2012). 

The mechanisms underlying CFS are not well understood and it is not clear why 

the dynamic Mondrian pattern provides such strong masking. This has not stopped 

many CFS studies from publishing bold claims about what kinds of information are 

processed in the absence of conscious awareness, including: preferential access to 

awareness for alphabets from native languages, upright, fearful and familiar facial 

stimuli, and reduced aftereffects specific to early stimulus properties (Tsuchiya and 
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Koch, 2005; Yang et al., 2007; Jiang et al., 2007; Stein et al., 2012; Gobbini et al., 

2013). Nevertheless, these findings have not been found to be robust (Hedger, Adams 

and Garner, 2015; Hesselmann, Darcy, Sterzer and Knops, 2015; Moors, Wagemans 

and de-Wit, 2016) and differ from those obtained using binocular rivalry which 

generally show that images presented to the suppressed eye undergo very little 

processing (Zimba and Blake, 1983; Cave, Blake and McNamara, 1998; Blake and 

Logothetis, 2002; Kang et al., 2012). This difference is curious given that CFS is 

often presumed to be a form of interocular suppression, like binocular rivalry.  

A better understanding of the mechanisms of CFS suppression is needed to 

clarify the role of interocular suppression and possible links between CFS and 

binocular rivalry. This is all the more important because of the strong theoretical 

implications of claims about images that are imperceptible nonetheless undergoing 

visual processing and reaching awareness. A clear understanding of the suppressive 

mechanisms involved and appropriate stimulus control are critically important in 

validly drawing such conclusions. As a starting point, we investigate the temporal 

frequency tuning of CFS using temporally narrow-band maskers, a dimension that has 

not been systematically studied previously. Although previous studies have examined 

the effect of varying Mondrian refresh rates (Tsuchiya and Koch, 2005; Zhu et al., 

2016), frequency analyses show that the spectrum is consistently broadband and low-

pass (Figure 2.1 c-d). Consistent with these observations, we find that masker 

suppression – when tested with narrowband temporal modulations – peaks very 

prominently at approximately 1 Hz, well below the 10–15 Hz refresh rates typically 

used in CFS studies (Xu, Zhang and Geng, 2011; Kaunitz, Fracasso, Skujevskis and 

Melcher, 2014; Faivre and Koch, 2014). 
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Figure 2.1. (a) Traditional CFS involves a dynamic Mondrian composed of randomly positioned shapes 
varying in size and luminance presented usually to the dominant eye and a smaller target to the other. 
Targets may be natural images or simple stimuli. (b) Dynamic Mondrians are commonly updated at 10 Hz 
by presenting new patterns every 100 ms. Because the grey levels of the Mondrian shapes vary randomly, 
some undergo large luminance changes between patterns (brown squares) whereas others change little or not 
at all (blue and yellow squares, respectively). Statistically, over a sequence of frames, the latter is much 
more likely, and this lengthens the period of the modulation and thus lowers the frequency. (c) Even if 
strong alternations did occur between the extreme luminance values, a 10 Hz Mondrian update rate would 
produce a 5 Hz square-wave modulation (grey dashed line, left) with a peak at 5 Hz and lesser peaks at the 
odd harmonics (grey dashed line, right). The actual waveform, however, is inevitably complex with low 
frequency components due the presence of multiple grey levels (here, n = 5) and non-uniform changes over 
time (black solid line, left). Consequently, the temporal spectrum is broader with a concentration of energy 
at frequencies much lower than the intended update rate (black solid line, right). (d) To demonstrate the low-
frequency bias, we tracked the pixel timelines of 70 grayscale Mondrian patterns updated at 2, 5, 10 and 20 
Hz (randomly sampling from 5 grey levels, 200 pixels each refresh rate), then Fourier transformed the data. 
The resultant amplitude spectra for all refresh rates have a very strong low-pass profile. For the typical 10 
Hz Mondrian, only 1.3 % of total stimulus energy occurs at 10 Hz and the peak frequency occurs at 1 Hz, 
which has more than 20 times the energy (31 %) of the 10 Hz component. Raising the Mondrian update rate 
does little to boost high-frequency content and the strongly lowpass profile remains. Indeed, as the functions 
decline with frequency, they could be well described as temporal “pink noise”. 
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2.2 Results 

2.2.1 Experiment 1 

We examined the effect of temporal frequency in narrowband maskers (1 

octave full-width at half-height; see also Figure 2.2b) on CFS suppression duration. 

Temporal frequencies were centred at rates of 0, 0.375, 0.75, 1.5, 3, 6.25, 12.5 and 25 

Hz. Data were analysed in a one-way (masker temporal frequency) repeated-measures 

ANOVA. The effect of masker frequency was highly significant, with F(6, 72)=17.5, 

p< .0001, ηp
2=0.59, and results are plotted in Figure 2.3a as normalized suppression 

duration in a semilog plot. Consistent with the frequency spectrum of the Mondrian, 

suppression was much stronger at low than at high frequencies, yet the pattern follows 

a bandpass tuning that was well described by a Gaussian normal function. The 

Gaussian was fitted using a maximum likelihood routine with three free parameters: 

mean, standard deviation and vertical offset. Amplitude was not a free parameter and 

was defined as the maximum normalised suppression duration minus the baseline. 

The best-fitting Gaussians had the following parameters: mean = 0.97 Hz (SD = 

0.48), standard deviation = 1.42 octaves (SD = 0.63), baseline = 0.44 (SD= 0.20) and 

amplitude = 1.52 (SD = 0.59).  

To contrast the effect of masking temporal frequency with the static masker 

we binned the temporal frequency data into two categories of low and high frequency 

maskers. From Figure 2.3a, it is clear that 0.375, 0.75, 1.5 and 3 Hz fall within the 

same passband whereas the remaining frequencies, 6.25, 12.5 and 25 Hz, do not. This 

accords with previous research that estimated a broad, lowpass channel below 5 Hz 

and bandpass channel (>6 to 20 Hz) in human vision (Anderson and Burr, 1985; Cass 

and Alais, 2006). We therefore binned 0.375, 0.75, 1.5 and 3 Hz together as ‘low 

frequency’ and the remaining masker frequencies were defined as ‘high frequency’. 
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Figure 2.3b shows the mean normalised suppression durations for the low and high 

masker temporal frequencies and the static control. A two-tailed paired t-test revealed 

that slow modulating maskers produced significantly larger normalised suppression 

durations than the static control, t(12)= 3.38, p<.01, confirming what is clear from the 

tuning function plotted in Figure 2.3a. Interestingly, fast modulating maskers were 

less effective than a static mask, producing shorter suppression durations than the 

static control, t(12)= 3.53, p<.01.  

To validate the relevance of these trends to the CFS literature, we compared 

the peak raw suppression durations with that of a standard 10 Hz Mondrian masker 

(Stein et al., 2011). To obtain the peak suppression duration of each participant, a 

Gaussian normal function was first fitted to the raw data with amplitude as an 

additional free parameter. Peak suppression duration was then computed by 

summating the fitted amplitude and baseline. As depicted in Figure 2.3c, two tailed 

independent t-tests revealed that the most effective low frequency masker was 

comparable to the 10 Hz Mondrian masker, t(23)= -0.28, p =.78, d = 0.12. To further 

assess the performance of the filtered noise maskers, we computed the within-subject 

variability in raw suppression durations for low and high frequency bins and 

compared the results with that of the 10 Hz Mondrian. Two tailed independent t-tests 

revealed less variable raw durations for the low and high frequency noise maskers, 

t(23)= 2.26, p<.05, d = 0.94 and t(23) = 4.35, p<.001, d = 1.81 respectively, 

demonstrating a methodological advantage with filtered noise maskers.  

 

 

 



	 40	

 

Figure 2.2. (a) Amplitude spectrum of target images: For comparability with previous studies, we used four 
greyscale natural images in Experiment 1. To select an appropriate masker, these images were first analysed 
with a two-dimensional FFT.  The results reveal a 1/f spatial profile for each of the target images, thus 
maskers were given a 1/f amplitude spectrum. (b) Spatiotemporal filtering: A three-dimensional FFT was 
first computed for a stack of 205 randomly generated noise images. Filtering the z-axis with a log-Gaussian 
filter controlled masker temporal frequency, whereas individual noise images (x and y axes) were convolved 
with a circularly symmetric inverse frequency filter for spatial frequency. The resultant stimulus was 
temporally narrowband, continuously modulating pink noise. (c) Ramped onsets: To avoid abrupt transients, 
both masker and targets were ramped up to their maximum contrast over a period of 1000 ms and the masker 
preceded the target by 50 ms to allow cumulative suppressive effects. 
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Figure 2.3. (a) Data from Experiment 1 showing suppression duration as a function of masker temporal 
frequency, with frequency plotted on a base 2 logarithmic scale. Maskers were dynamic noise stimuli filtered 
in the time dimension into narrow temporal frequency passbands. The data show CFS suppression duration 
is strongly dependent on temporal frequency, with maximum suppression for low temporal frequency 
maskers. The data pattern is consistent across all observers (grey traces) and is distinctly bandpass, not 
lowpass. With temporal frequency plotted on an octave scale (i.e., base 2 logarithm), the pattern is very well 
described by a Gaussian normal function. The best fit to the group data (solid black line: R2 = 0.97) has a 
peak at 0.94 Hz and a standard deviation of 1.42 octaves. Peak suppression frequency for individual 
participants ranged from 0.30–1.85 Hz. (b) The data binned into low (0.375, 0.75, 1.5, 3 Hz) and high (6.25, 
12.5 25 Hz) temporal frequencies, contrasted against a static noise masker (dashed line with shaded error 
bar) shows faster maskers resulted in significantly lower suppression durations than the static condition. (c) 
Raw data analyses comparing group averages and standard deviations for filtered noise maskers with a 
standard 10 Hz Mondrian. Peak suppression durations estimated from fitted Gaussian functions (‘optimal 
noise masker’) were comparable to the Mondrian, with the added advantage of lower within-subject 
variability, as demonstrated by the significantly lower variance in low and high frequency maskers compared 
to the Mondrian. These results demonstrate the applicability of narrowband filtered noise maskers for 
studying CFS temporal frequency processes. Asterisks denote statistical significance (*: p< .05, **: p< .01, 
***: p< .001) after Holm-Bonferonni correction for multiple comparisons. Error bars represent ±1 standard 
error of the mean.  
 

2.2.2 Experiment 2 

We measured the temporal contrast sensitivity function for our temporally 

filtered masking stimuli to determine whether the peak suppression at low temporal 

frequencies was simply a manifestation of the tuning towards low temporal 

frequencies in human vision. Human contrast sensitivity to temporal frequency shows 
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a lowpass bias (Kelly, 1979) and is in general more sensitive to contrast changes at 

lower temporal frequencies with a corner frequency at around 8–10 Hz (Tolhurst and 

Movshon, 1975; Merigan and Maunsell, 1993). As these observations were made with 

narrow-band (sinusoidal) modulations of sinusoidal gratings, we wanted to establish 

the temporal contrast sensitivity function for our masker stimuli, which differ 

considerably to these classical stimuli in being spatially broadband noise patterns with 

an inverse frequency spectrum and having a temporal modulation bandwidth of one 

octave. 

Absolute and increment contrast thresholds were measured for our masker 

stimuli and performance was compared using a Wilcoxon Signed-Ranks test. This 

revealed the resulting temporal contrast sensitivities for the two measures did not 

differ significantly (Z= 1.26, p= .21) and thus the sensitivity curves were combined 

and averaged for each participant. The group-averaged temporal sensitivity function is 

plotted in Figure 2.4. A one-way, repeated-measures ANOVA and revealed a 

significant effect of temporal frequency, F(6, 54)= 37.4, p< .0001, ηp
2= 0.81. The 

data were further explored using trend analyses up to third order and were found to 

exhibit a strong quadratic and a significant cubic trend, F(1, 9)= 228.6, p< .0001, ηp
2= 

0.96, F(1, 9)= 45.7, p< .001, ηp
2= 0.84, respectively, but no significant linear trend, p 

> 0.05.  

 To compare the temporal contrast sensitivity function with the temporal 

frequency suppression tuning observed in Experiment 1, we conducted a two-way 

ANOVA with the factors being temporal frequency and task type (normalised 

suppression durations vs. normalised contrast sensitivity values). The main effect of 

temporal frequency was significant, F(6, 126)= 25.2, p< .0001, ηp
2= 0.55 as was the 

main effect of task type, F(1, 21)= 146, p< .0001, ηp
2= 0.87. The important result was 
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that temporal frequency interacted significantly with task, F(6, 126)=21, p< .001, 

ηp
2= 0.5, showing that temporal contrast sensitivity does not explain the temporal 

tuning in Experiment 1. As indicated in Figure 2.4, pairwise contrasts (Holm-

Bonferroni corrected) showed the significant interaction was due to lower CFS 

suppression durations at 6.25 and 12.5 Hz, average difference = -1.66, and -1.07, t =-

10.3 and -11 respectively, p < 0.001, and higher suppression durations at 0.375 and 

.75 Hz, average difference = .22, t= 1.55, p< .01 and average difference = .28, t= 

1.47, p< .05 respectively.  

 

Figure 2.4. Data from Experiment 2. The solid black line shows temporal frequency sensitivity as measured 
in Experiment 2 to modulating noise patterns with a 1/f spatial frequency spectrum. For comparison, the 
suppression duration data from Experiment 1 together with the best-fitting function are replotted (dashed 
line). Temporal frequency is plotted on a base 2 logarithmic scale. The two datasets exhibit very different 
patterns and indicate that temporal contrast sensitivity cannot explain the temporal tuning of CFS 
suppression. Asterisks denote statistically significant differences between contrast sensitivity and 
suppression duration trends using independent samples t-tests, after Holm-Bonferonni correction (* =  p< 
.05, **= p< .01, ***= p< .001). Error bars show ±1 standard errors of the mean. 
 
2.2.3 Experiment 3 

The confirmation that CFS suppression peaks at a very low temporal 

frequency is very informative as it suggests the involvement of the parvocellular 

pathway (Mishkin and Ungerleider and Macko, 1983; Ungerleider and Haxby, 1994) 
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in CFS suppression. Neurons in this pathway are most sensitive to low temporal 

frequencies (Derrington and Lennie, 1984; Livingstone and Hubel, 1988; Solomon, 

White and Martin, 1999) and high spatial frequencies, peaking around 6–10 cpd 

(Derrington and Lennie, 1984; Merigan and Maunsell, 1993). Interocular suppression 

in binocular rivalry is also thought to have a parvocellular basis (Livingstone and 

Hubel, 1988; Ramachandran, 1991; He, Carlson and Chen, 2005). Experiment 3 

tested whether CFS suppression exhibits a bias for high spatial frequencies by 

comparing suppression durations for targets of low (1 cpd) and high (10 cpd) spatial 

frequency using the same masking stimuli as in Experiment 1. As these maskers have 

a 1/f spatial frequency profile, they produce equivalent neural response to all spatial 

frequencies which ensures the two spatial frequency conditions are comparable. 

The results of Experiment 3 are plotted in Figure 2.5 and were analysed in a 

within-subjects, two-way (masker temporal frequency x spatial frequency) repeated-

measures ANOVA. There were significant main effects for masker temporal 

frequency, F(6, 66)=14.2, p< .0001, ηp
2= 0.56, and target spatial frequency, F(1, 

66)=39.3, p< .0001, ηp
2= 0.78. As expected, there was a significant interaction 

between masker temporal frequency and target spatial frequency, F(6, 66)=8.4, p< 

.01, ηp
2= 0.43. Pairwise comparisons with Holm-Bonferroni corrections demonstrated 

greater suppression durations for high spatial frequency targets at every level of 

temporal frequency (see Table 4 for statistical details).  

As in Experiment 1, Gaussian distributions were fitted to the group mean data 

(Figure 2.5a) and to individual subjects’ data. Two participants’ data were excluded 

because all suppression times were uniform for the low spatial frequency condition 

and the Gaussian could not be meaningfully fitted. For the 10 remaining participants 

the parameters for the best-fitting individual Gaussians were compared across the two 
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levels of spatial frequency using Holm-Bonferroni corrected paired t-tests (see Table 

2 for details). No significant differences were found for the Gaussian mean, standard 

deviation or baseline elevation, but a large and significant difference was obtained for 

amplitude, with high spatial frequency targets exhibiting longer suppression 

durations, t(9) = 4.57, p< .01, consistent with high spatial frequencies selectively 

activating CFS suppression mechanisms. 

To contrast temporally modulating and static maskers, we binned temporal 

frequency into low and high frequency groups (as in Experiment 1) and compared 

them against the static masker, for both levels of spatial frequency (Figure 2.5b). The 

data for high spatial frequencies replicated the pattern observed in Experiment 1 

(Figure 2.3b): slow modulating maskers produced significantly higher suppression 

durations than a static masker, t(11)= 2.88, p< .05 and fast modulating maskers 

produced significantly lower suppression durations, t(11)= 3.98, p< .01. For low 

spatial frequency targets, suppression duration was significantly lower with fast 

modulating maskers compared to static maskers, t(11)= 4.13, p<.01, but there was no 

significant difference between static and slow modulating maskers, t(11)=.03, p= .98. 

These comparisons are summarised in Figures 2.5b.  
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Table 4: Holm-Bonferroni corrected paired-sample tests in Experiment 3 

Masker 

frequency 

(Hz) 

1 cpd 10 cpd t-statistic df p value  

.375  0.66 (SD=0.28) 1.65 (SD=0.76) 3.63 11 < .05 

.75 .78 (SD=0.30) 2.27 (SD =0.80) 5.87 11 < .0001 

1.5 .70 (SD= 0.26) 2.29 (SD= 1.38) 3.61 11 < .01 

3 0.63 (SD=0.17) 1.51 (SD=0.65) 4.15 11 < .05 

6.25 0.54 (SD=0.26) 0.84 (SD= 0.30) 4.42 11 < .01 

12.5 0.47 (SD=0.20) 0.65 (SD=0.26) 3.87 11 < .05 

25 0.47 (SD=0.18) 0.55 (SD= 0.18) 3.20 11 < .01 

 

Table 5: Parameter estimates for Experiment 3 

Parameter 1 cpd 10 cpd t-statistic df p value 

Amplitude 0.38 (SD=0.19) 2.38 (SD=1.35) 4.46 9 < .01 

Peak frequency 

(Hz) 

.99 (SD=0.50) .95 (SD =0.42) .99 9 .86 

Width (octaves) 1.33 (SD= 0.90) 1.53 (SD= 0.54) .86 9 1.0 

Baseline 0.43 (SD=0.20) 0.50 (SD=0.25) 2.05 9 .67 

R2 0.85 (SD=0.18) 0.92 (SD= 0.09) 1.21 9 .40 
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Figure 2.5. Data from Experiment 3. (a) Suppression duration as a function of masker temporal frequency 
and target spatial frequency. The suppressed target was either high spatial frequency (10 cpd, black line) or 
low spatial frequency (1 cpd, grey dashed line). Targets of 10 cpd were very strongly suppressed and 
showed a clear bandpass relationship over masker temporal frequency. Targets of 1 cpd showed 
significantly less suppression and were almost uniform over temporal frequency. The best-fitting 
Gaussians had similar peak frequencies and standard deviations for both low and high spatial frequencies: 
mean = 0.77 and 1.08 Hz, and standard deviation = 1.16 and 1.17 octaves, respectively. (b) Results for 10 
and 1 cpd targets (upper and lower plots respectively), with low and high temporal frequencies contrasted 
against a static noise masker. Similar to Experiment 1, low frequency maskers suppressed 10 cpd targets 
for longer periods, and high frequency maskers for shorter periods, than the static condition. In contrast, 
low frequency maskers did not effectively suppress low spatial frequencies relative to a static masker, 
although faster maskers were found again to produce shorter suppression durations than the static 
condition. Asterisks denote statistical significance (*: p< .05, **: p< .01, ***: p< .001) after Holm-
Bonferroni correction. Error bars represent ±1 standard errors of the mean. 

 

2.2.4 Experiment 4 

As well as being tuned to low temporal and high spatial frequencies, another 

characteristic of parvocellular processes is their contrast sensitivity. While the 

magnocellular contrast response function rises steeply but saturates early at around 
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20–30 % contrast, the parvocellular contrast response function exhibits a steady and 

non-saturating increase (Shapley, 1990; Green et al., 2009). Experiment 4 tested the 

effect of masker contrast at three levels (30, 50 and 90 %) on suppression duration, 

for masker modulation rates of 2 and 10 Hz. If the low temporal frequency bias in 

suppression durations seen in Experiment 1 is due to the involvement of parvocellular 

mechanisms in CFS suppression, a slow modulating masker should produce gradually 

increasing suppression durations as masker contrast increases, with no saturating 

plateau. A two-way (masker temporal frequency x masker contrast), repeated-

measures ANOVA was run on the normalized data. Masker temporal frequency and 

masker contrast interacted significantly, F(2,22)= 7.06, p< .05 ηp
2= 0.39. The 

interaction was due to significantly greater suppression durations for the 2 Hz masker 

compared to 10 Hz across different contrast levels (Figure 2.6b). The differences 

between masker rates were compared with Holm-Bonferroni corrected t-tests and 

were significant across all contrast levels, t(11) = 7.05, p<.001, t(11) = 3.30, p<.01, 

t(11) = 3.71, p<.01, in ascending order of contrast. Separate analyses for each masker 

frequency showed a significant main effect of masker contrast for the 2 Hz masker, 

F(2,22) = 10.85, p<.001, ηp
2= 0.50, but not for the 10 Hz masker, F(2,22) = 0.81, p= 

.41, ηp
2= 0.07. For the slow modulating masker, suppression durations followed a 

significant increasing linear trend, F(1,11)=15.7, p<.01, ηp
2= 0.59.  
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Figure 2.6. Predictions of contrast effect and results from Experiment 4. (a) If CFS is parvocellular biased, 
we predict no increase in suppression duration across contrast for 10 Hz maskers as they elicit magnocellular 
responses which saturate by 30 % contrast. By contrast, suppression duration should rise gradually for 2 Hz 
maskers as parvocellular responses rise monotonically with contrast. A magnocellular bias will show no 
contrast effect, with 10 Hz consistently a more effective masker than 2 Hz.  If CFS suppression shows 
neither bias, increasing contrast should increase masker power and monotonically increase suppression 
durations for both masker rates, with low more effective than high frequency. (b) Suppression duration as a 
function of masker contrast and temporal frequency. Consistent with a parvocellular bias, increasing masker 
contrast increased suppression duration, but only for the 2 Hz maskers. Paired-samples t-tests show 
significantly greater suppression for 2 Hz relative to 10 Hz maskers across all contrast levels. Asterisks 
denote statistical significance (**: p< .01, ***: p< .001) after Holm-Bonferroni correction. Error bars 
represent  ±1 standard errors of the mean. 
 

2.3 Discussion 

CFS is widely used to study unconscious processing of visual images suppressed from 

awareness yet little is known about the suppression process and appropriate stimulus 

control is lacking. We used spatiotemporally filtered dynamic noise sequences to 

reveal the temporal frequency tuning of CFS. Surprisingly, given the widespread use 

of Mondrian flicker rates in the range of 10–15 Hz, the temporal tuning peaks at about 

1 Hz and is clearly bandpass, with suppression declining on either side of the peak – 

particularly on upper side. Indeed, maskers modulating at a typical CFS rate of 12.5 
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Hz provided very weak suppression and were less effective than a static noise image. 

Complementing the observed low-temporal-frequency bias, CFS suppression was 

stronger for high-spatial-frequency targets and increased monotonically with masker 

contrast. 

The key to our stimulus is that it is narrowband. Even though a modulation of 

1 Hz is quite slow, our stimulus modulated smoothly to provide uniform masking 

over time, in contrast to the discrete modulation of a dynamic Mondrian which is 

intermittently updated. Some studies have compared various Mondrian update rates 

(Tsuchiya and Koch, 2005; Zhu et al., 2016) but this is not equivalent to manipulating 

temporal frequency in a pattern that varies randomly in luminance between updates. 

The reason is simply that the typical presentation time of each Mondrian pattern i.e., 

100 ms lengthens the period of modulation, producing a slower alternating waveform 

than intended. Moreover, given that the probability of maximal luminance 

alternations between successive updates is very low (i.e., n-10 for ten successive 

patterns with n fixed grey levels), power inevitably concentrates at lower temporal 

frequencies. This is illustrated in Figure 2.1c-d, where several very different flicker 

rates produce very similar frequency profiles, all concentrated at very low 

frequencies, with only a small fraction of the temporal energy present at the nominal 

flicker frequency. Even in the unlikely case that the stimulus alternated between the 

extreme luminance values from frame to frame, for example at a typical Mondrian 

rate of 10 Hz, this would create a square-wave modulation with a peak frequency at 

half the nominal flicker rate, that is, at 5 Hz. Here, by using spatiotemporally filtered 

noise as maskers we gain full and independent control over the spatial and temporal 

dimensions, without significant loss of suppressive strength despite the loss of 

contours and edges (Maehara et al., 2009; Baker and Graf, 2009a) (Figure 2.3c). This 
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accords with evidence showing effective suppression in CFS by low-pass filtered 

Mondrians5, broad tuning functions for Mondrian refresh rates (Zhu et al., 2016) and 

robust suppression in binocular rivalry with filtered noise (Ling and Blake, 2010; 

Lunghi, Morrone and Alais, 2014). Moreover, our results advance previous work with 

broadband stimuli (Yang and Blake, 2012; Maehara et al., 2009) in characterising the 

nature of the mechanisms underlying CFS. 

 The stimulus tunings we report for CFS are consistent with a suppression 

process dominated by input from the parvocellular/ventral pathway. The parvocellular 

and the magnocelluar pathways are the two major paths from retina to cortex. They 

are well segregated up to V1 and after some interaction in early cortex, these 

subcortical paths project with a bias to the two major cortical pathways: parvo to the 

ventral stream and magno to the dorsal stream (DeYoe and Van Essen, 1988). 

Consistent with the selectivity we report for CFS suppression, parvo/ventral neurons 

are tuned to low temporal frequency, high spatial frequency (Merigan and Maunsell, 

1993; Derrington and Lennie, 1984) and the contrast response function has a steady 

and non-saturating increase with contrast (Shapely, 1990; Green et al., 2009). By 

contrast, magno/dorsal neurons are tuned to high temporal and low spatial frequency 

stimuli, rising steeply with contrast but saturating early at around 20–30 % contrast 

(Mishkin et al., 1983; Ungerleider and Haxby, 1994). The finding that CFS 

suppression has a bandpass temporal tuning centred at a very low frequency, tuned to 

high spatial frequency and gains steadily in strength with increasing contrast suggests 

the involvement of the parvocellular pathway. 

Our findings help clarify the CFS literature, which has been overly concerned 

with the rapid flicker in CFS maskers when seeking to explain CFS suppression. CFS 

suppression with flickering Mondrians has been described as driven by a continued 
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barrage of transients (Tsuchiya et al., 2006), which may also reduce the retinotopic 

neural adaptation in the masking eye (Tsuchiya and Koch, 2005; Yang and Blake, 

2012). According to this interpretation, higher Mondrian refresh rates are therefore 

required to generate more transients and to reduce retinotopic adaptation. While 

flicker will certainly generate transients, and might attenuate retinotopic adaptation, 

this is clearly secondary. By far the biggest component of CFS suppression comes 

from low temporal frequencies, which are overwhelmingly the largest components in 

the temporal frequency spectrum of a flickering Mondrian (Figure 2.1d). This analysis 

alone suggests that CFS suppression is likely driven most strongly by maskers 

modulating at low temporal frequency, a observation that tallies with evidence 

showing the dominance of natural stimulus properties in rivalry (Alais and Melcher, 

2007; Baker and Graf, 2009a). Our results confirm this, and together with the spatial 

frequency and contrast findings, suggest that the parvocellular/ventral pathway will be 

critical for an explanation of CFS suppression. 

The likely involvement of parvocellular/ventral mechanisms in CFS links 

suppression in CFS more closely with binocular rivalry suppression – which is also 

thought to have a parvocellular/ventral bias (Tolhurst and Movshon, 1975; Kelly, 

1979; Mishkin et al., 1983; Derrington and Lennie, 1984; Anderson and Burr, 1985; 

Livingstone and Hubel, 1988; Ramachandran, 1991; Merigan and Maunsell, 1993; 

Ungerleider and Haxby, 1994; Solomon et al., 1999). Binocular rivalry studies have 

shown that motion information can be integrated across two eyes even while they 

engage in colour and form rivalry (Carney, Shadlen and Switkes, 1987; Carlson and 

He, 2000; Andrews and Blakemore, 2002; Moors et al., 2014), suggesting no 

suppression of conflicting monocular motion signals. Thus both CFS and binocular 

rivalry suppression likely involve parvocellular/ventral mechanisms. This is 
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parsimonious at a theoretical level as both involve interocular suppression and unifies 

two phenomenon previously thought to require different explanations7. Moreover, it 

provides a possible framework for studying CFS, a proposition that is also supported 

by similar contributing factors (e.g., feature selectivity) (Maehara et al., 2009; Yang 

and Blake, 2012; Moors et al., 2014) to both types of suppression. The one obvious 

difference is that CFS and binocular rivalry produce vastly different perceptual 

experiences, as unlike binocular rivalry, perception in CFS does not alternate between 

the competing images4. A straightforward explanation of this could simply be that 

CFS involves a great imbalance of stimulus strength between the two eyes and 

perception follows the strongest image. This is true in binocular rivalry, where a 

contrast imbalance between the images will bias dominance to the stronger image 

and, notably, CFS studies invariably use a high-contrast masker and a target of low-

to-moderate contrast. Consistent with this idea, we showed in Experiment 4 that 

raising CFS masker contrast did prolong masker dominance (Figure 2.6).  

The current study mapped the temporal tuning of CFS suppression with 

temporally narrowband maskers. Our results revealed a low, bandpass temporal 

frequency tuning function that becomes more pronounced for high target spatial 

frequencies and increasing masker contrast. Similar to binocular rivalry (Livingstone 

and Hubel, 1988; Solomon et al., 1999; Ramachandran, 1991; He et al., 2005), these 

results indicate a parvocellular/ventral pathway involvement in CFS, opening up 

explanatory accounts of CFS to the more widely modelled phenomenon of binocular 

rivalry (Lehky, 1988; Blake, 1989; Mueller, 1990; Laing and Chow, 2002; Freeman, 

2005; Alais et al., 2010). Our results also show that CFS is not simply a convenient 

method for suppressing visual awareness. Instead, it is a paradigm highly sensitive to 

the spatiotemporal properties of a stimulus and inappropriate stimulus control could 
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weaken suppression, increase the impact of response biases and demand 

characteristics and complicates the type of conclusions that can be drawn from it 

(Blake, Brascamp and Heeger, 2014; Hesselmann and Moors, 2015; Hedger et al., 

2016). The use of spatiotemporally filtered noise is one way to provide proper 

stimulus control, and thus possesses a methodological advantage in uncovering the 

characteristics of CFS suppression. Future psychophysical and imaging studies using 

spatiotemporally filtered dynamic noise will further elucidate the neuronal processes 

underlying CFS.  

2.4 Methods 

2.4.1 Participants 

All participants were drawn from a pool of undergraduate students at the 

University of Sydney studying second or third year psychology courses and were 

reimbursed $AU20 per hour for their participation. All had normal or corrected-to-

normal eyesight. Participants also had normal stereovision, assessed using the Fly 

Stereo Acuity test. Experiments accorded with the Declaration of Helsinki and were 

approved by the University’s Human Research Ethics Committee. Informed consent 

was also obtained from all participants. Samples were as follows:- Experiment 1: 

Author SH plus twelve naive observers (age range: 18–30 years, SD=4.19 years, 10 

females) completed the task with filtered noise maskers whereas twelve naive 

observers (range: 19–30 years of age, SD= 4.33 years of age, 9 females) were 

presented with the Mondrian; Experiment 2: Author SH plus nine naive observers 

(range: 19–29 years of age, SD= 4.28 years of age, 8 females); Experiment 3: Twelve 

naive observers (range: 19–30 years of age, SD= 3.75 years of age, 8 females); 

Experiment 4: Twelve naive observers (range: 19–30 years of age, SD= 4.33 years of 

age, 9 females). 
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2.4.2 Experiment 1 

Masker stimuli: Masking stimuli were spatiotemporally narrowband, created 

by filtering 205 randomly generated noise images (each 128 x 128 pixels, 

approximately 5.4° by 5.4°). The stack of noise images was first converted to the 

frequency domain using a three-dimensional Fast Fourier Transform (FFT), before 

applying spatial and temporal filters. Spatially, each noise image was given a 1/f 

amplitude spectrum since our targets were natural images that have a 1/f amplitude 

spectrum57 (see also spatial spectrum of target images in Figure 2.2a). In the temporal 

dimension, a log-Gaussian filter with a full bandwidth of one octave was used to 

sample temporal frequency into narrow passbands. The peak frequency was varied to 

sample temporal passbands of 0.375, 0.75, 1.5, 3, 6.25, 12.5 and 25 Hz. The filtered 

three-dimensional spectrum was then inversed transformed, resulting in a temporally 

narrowband, continuously varying pink noise stimulus as opposed to the discrete 

presentation of the Mondrian. As a control, static maskers were also used (a single 

noise image with 1/f spatial spectrum, randomly sampled every trial from the stack of 

205 noise images). All noise images were normalised to maximum contrast (15 % 

RMS) and a mean luminance spatial average. As an additional validation control, a 

standard 10 Hz Mondrian masker38 was used. Each pattern contained 265 squares of 

0, 30, 50, 70 or 100 % luminance that also varied in size from 0.52° to 1.30° in length. 

The Mondrian masker was presented in a similar fashion as the noise maskers and had 

the same dimensions (i.e., 5.4° by 5.4°), with the exception that the patterns were 

updated every 100 ms. All maskers were presented at 95% of maximum contrast.  

Target stimuli: For compatibility with previous studies, we used static natural 

images as targets (a total of four, including two images of man-made objects). Image 

categories were chosen to be as inclusive as possible, only excluding categories that 
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are reportedly preferentially processed (e.g., faces) (Yang et al., 2007; Sakuraba et al., 

2012). Without deeper understanding of preferential processing in CFS, this approach 

allowed us to keep the categories simple and task difficulty at a reasonable level. 

Image boundaries were smoothed with a two-dimensional Gaussian kernel with a 

standard deviation of 1.5 pixels. Targets were 2° by 2° in size and were presented at 

30 % of maximum contrast in one of four quadrants within a 5.4° by 5.4° area to the 

suppressed area. Target location within each quadrant was jittered with 1° steps from 

trial to trial to reduce predictability and local adaptation.  

To ensure stable fusion of the left- and right-eye images, dichoptic targets and 

maskers were each surrounded by a checkerboard frame 0.5° thick measuring 5.9° by 

5.9° externally and 5.4° by 5.4° internally. To avoid abrupt transients, the contrast of 

the maskers and targets gradually ramped up to the specified magnitude during the 

initial 1000 ms of each trial (Fig. 2c). The masker was presented 50 ms before the 

target to allow for the accumulation of suppressive effects from successive flashes 

(Yang et al., 2014). All visual stimuli were presented via a DATAPixx video 

processor on a Mitsubishi Diamond Pro 2070SB CRT monitor with linearised 

luminance output at a screen refresh rate of 100 Hz and with 16-bit contrast 

resolution. 

Procedure: Participants viewed the dichoptic stimuli through a mirror 

stereoscope, which was individually adjusted to achieve stable fusion. During a trial, 

participants fixated a central cross while the target and masker ramped up over 1 s to 

their specified contrast and waited until the target emerged. Their task was to indicate, 

as accurate as possible, the quadrant where the target was located. After each trial, the 

time required for the target to reach visibility (suppression duration) was recorded, 

followed by 5 seconds of binocularly presented white noise to mitigate afterimages 
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and adaptation effects. Each participant completed an average of 20 trials (10 trials 

per eye) for each masker temporal frequency, the order of which was randomised 

across participants. Presentation of target and masker was also randomised across 

dominant and non-dominant eyes to mitigate adaptation effects. To familiarise 

participants with the task demands, targets were presented at 60 % of maximum 

contrast before the experimental task. For each masker frequency, suppression 

durations were computed by averaging the suppression durations for which the target 

quadrant was correctly identified. Any outliers larger than three times the median 

absolute deviation from the median were excluded. Each participant’s data were then 

normalised to their respective average durations across all masker temporal 

frequencies. The grand average per temporal frequency was then computed across all 

participants.  

2.4.3 Experiment 2 

Stimuli: Contrast detection and increment thresholds over temporal frequency 

were measured using the same masker patterns used in Experiment 1 except they were 

spatially windowed by a two-dimensional Gaussian function (SDxy= 10 pixels), 

reducing the patterns to approximately 2° by 2° in size. These were monocularly 

presented (counterbalanced across eyes) 1.3° to the left or right of a central fixation 

cross within the same checkerboard frame as in Experiment 1. Targets were presented 

for 1 second, followed by 300 ms of visual white noise.  

Procedure: Participants first completed the detection threshold task followed 

by incremental thresholds measured with the standard stimuli presented at 2.5 times 

the absolute threshold. Their task was to indicate target location (left or right of 

fixation) in the detection task or the target with the higher contrast in the 

discrimination task. Each participant completed 32 trials per masker temporal 
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frequency (16 per eye) with the order counterbalanced across participants. An 

adaptive staircase was used to vary contrast (QUEST) and thresholds were defined as 

the contrast at which responses were 75 % accurate. To obtain a detection sensitivity 

curve, each participant’s thresholds were normalised to the respective average and 

then converted to the reciprocal value. Sensitivity curves for the increment task were 

computed from the just noticeable difference (JND) for each temporal frequency 

which were normalised to each participant’s average and converted to the reciprocal.  

2.4.4 Experiment 3 

Stimuli: As for Experiment 1 except that target stimuli were filtered into low 

spatial frequency (1 cpd) and high spatial frequency (10 cpd) components by 

convolving the target images with a log-Gaussian spatial filter with a 1-octave 

bandwidth. 

 Procedure: As for Experiment 1 except that participants completed 16 trials 

per masker temporal frequency (8 trials per eye) in each spatial frequency condition, 

indicating the quadrant containing the target as soon as it became visible. 

2.4.5 Experiment 4 

Stimuli: Maskers were generated as in the previous experiments but only 2 

levels of temporal frequency were compared: 2 and 10 Hz. Target stimuli were as in 

Experiment 1, presented at 25 % of the maximum contrast while three levels of 

masker contrast were compared: 30, 50 and 90 % of the maximum.  

Procedure: Sixteen trials per masker temporal frequency (8 trials per eye) 

were presented, the frequency order and eye of presentation were counterbalanced 

across participants. Task and data analysis as in Experiments 1 and 3. 
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2.5 Chapter review 

The effectiveness of CFS is typically attributed to the rapid pattern changes in 

the Mondrian masker. This widespread opinion is surprising, as little attention has 

been paid to examine its validity. In Chapter 2, I evaluated the importance of 

transients in CFS by varying the temporal frequency of CFS maskers. Temporal 

frequency was defined as periodic changes in luminance per second, as opposed to the 

more common definition, the number of patterns per second. Narrowband filtered 

noise maskers were used to control for the spatiotemporal content, and the results 

revealed a low temporal frequency bias. In addition, the peak at low temporal 

frequencies was further enhanced when high spatial frequency targets were used, 

suggesting a parvocellular bias reminiscent of BR. Thus, the results argued against the 

overarching importance of transients in CFS and demonstrated that the two definitions 

of temporal frequency were not equivalent. However, as CFS is usually conducted 

with contour-rich Mondrian patterns, the noise maskers used in this study might not 

provide an accurate reflection of CFS’s temporal tuning. In the following study, I 

tested the hypothesis that a similar low temporal frequency bias could be observed in 

manipulations with intact Mondrian pattern structures.  
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Chapter 3 

Slow and steady, not fast and furious: slow modulations 

strengthen continuous flash suppression 
 

The work in this chapter is published as: 

Han, S, Randolph, B., & Alais, D. (2016). Slow and steady, not fast and furious: slow 

modulations strengthen continuous flash suppression. Consciousness and Cognition, 

58, 10-19, doi: 10.1016/j.concog.2017.12.007.   

 

Individual data are accessible at: https://data.mendeley.com/datasets/29ygc3jzw6/1 

 

Abstract 

Continuous flash suppression (CFS) involves the presentation of a rapidly 

changing Mondrian sequence to one eye and a static target in the other eye. Targets 

presented in this manner remain suppressed for several seconds at a time, and this has 

seen the prevalent use of CFS in studies of unconscious visual processes. However, 

the mechanisms behind CFS remain unclear, complicating its use and the 

comprehension of results obtained with the paradigm. For example, some studies 

report observations indicative of faster, visual masking processes whereas others 

suggest slower, rivalry processes. To reconcile this discrepancy, this study 

investigates the effect of temporal frequency content and Mondrian pattern structure 

on CFS suppression. Our results show predominant influences of spatial edges and 

low temporal-frequency content, which are similar to binocular rivalry, affording a 

parsimonious alternative in unifying the two paradigms.  

 

3.1 Introduction 
 

Understanding the extent to which visual stimuli falling outside of conscious 

awareness remain effective in visual processing constitutes a key theme in psychology 
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and neuroscience research. Among the wide variety of tools used to suppress images 

from visual awareness (Alais and Blake, 2005; Breitmeyer, 2014; Kim and Blake, 

2005), continuous flash suppression (CFS) has emerged as one of the most effective. 

In CFS, a dynamic sequence of complex, geometric images presented to one eye at a 

typical rate of 10 Hz can suppress a static target viewed by the other eye for many 

seconds at a time (Tsuchiya and Koch, 2005; Tsuchiya et al., 2006). Similar to 

binocular rivalry, CFS relies on neural inhibition, triggered when irreconcilable 

monocular images are viewed dichoptically. Yet, unlike rivalry, the dissimilar 

monocular images employed to create CFS tend not to alternate frequently, and the 

initial percept is reliably the dynamic masking pattern which can remain exclusively 

dominant for remarkably long durations. The reliability and potency of CFS enable 

easy study of unconscious visual processes, resulting in the frequent use of these 

Mondrian masking patterns in evaluating the potency of cross-modal and higher-order 

influences on processing of unconscious stimuli (Fang and He, 2005; Jiang et al., 

2007; Kido and Makioka, 2013; Lunghi et al., 2017; Moors et al., 2015b). 

Whilst these developments in unconscious perception research are intriguing, 

the stimulus factors governing the Mondrian masker’s potency remain poorly 

understood. This is concerning, because conclusions drawn from CFS may be driven 

by factors such as insufficiently rigorous awareness measures and poorly masked 

stimulus features (Hedger et al., 2016). Indeed, studies report that the reliability of 

CFS suppression varies with feature similarity between the dichoptic images, 

increasing in strength when similar spatial frequencies and speeds are used (Moors et 

al., 2014; Yang and Blake, 2012). Han, Lunghi and Alais (2016) recently measured 

the temporal frequency tuning of CFS using temporally narrowband, filtered noise 

maskers. To control for spatial frequency differences, their noise maskers were 

spatially filtered to have a 1/f profile to resemble the spatial frequency profile of the 

target stimuli which, themselves, were natural images. Results from that study 

revealed a low temporal frequency peak in CFS suppression, which not only 

corresponded to the low-biased temporal frequency spectrum of the Mondrian 
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masker, but also became more pronounced with high spatial frequency and high 

contrast. These observations are reminiscent of a parvocellular bias in binocular 

rivalry (Bossink et al., 1993; Carlson and He, 2000; Mueller and Blake, 1989), 

suggesting a parsimonious interpretation of rivalry and CFS in terms of common 

interocular suppression mechanisms. 

Whilst the temporally filtered noise maskers used in Han et al. (2016) are ideal 

for examining the temporal frequency tuning of CFS, and the low frequency bias 

corresponded to the Mondrian’s temporal frequency spectrum (see Fig. 1d of Han et 

al., 2016), noise maskers are spatially random in phase. Consequently, they do not 

contain coherent spatial patterns and lack the rapidly changing shapes and contours 

that are the hallmark of dynamic Mondrian maskers. This may be an important 

difference as coherent spatial phase is known to enhance rivalry suppression (Alais 

and Melcher, 2007; Baker and Graf, 2009a) and the repeating pattern of transient 

onsets and offsets of shapes and contours in CFS does appear to enhance suppression 

(Tsuchiya et al., 2006). It is also not uncommon for studies to adapt the spatial form 

of Mondrian patterns to enhance suppressive strength, e.g., using ellipses instead of 

rectangles when suppression of face images is required (Stein et al., 2011; Sweeny et 

al., 2011). Akin to forms of masking such as the “standing wave of invisibility” 

(Macknik and Livingstone, 1998) and pattern structure masking (Breitmeyer, 1984; 

Enns and Di Lollo, 2000), these characteristics pose a paradox in which faster, visual 

masking processes and slower, rivalry processes both appear to play significant roles 

in CFS suppression. Thus, the goal of this study is to investigate more closely the 

low-frequency bias reported by Han et al. (2016) examining how the spatial integrity 

of the Mondrian pattern interacts with temporal frequency content. 
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Figure 3.1. (a) The effect of varying Mondrian refresh rates on the proportions of  by varying the number of 
pattern changes per second, but this approach also produces changes in temporal frequency content. The 
relationship between temporal frequency content and pattern update rate was quantified by computing the 
power spectral densities of low (< 4 Hz) and high (≥ 4 Hz) temporal frequencies, and then calculating the 
ratios of low-to-high energy for refresh rates of 5, 10 and 20 Hz. Overall, increasing the number of pattern 
changes per second results in decreasing ratios. (b) Temporal and spatial amplitude spectra for different 
stimulus manipulations. The amplitude spectra for spatial frequency were highly correlated among intact 
patterns, phase-scrambled patterns, and temporally high- and low-pass filtered Mondrian maskers. These 
stimuli also produced similar temporal frequency amplitude spectrum, demonstrating the feasibility of 
Fourier Transform techniques in stimulus control. Amplitude spectra shown were obtained by conducting 
two-dimensional Fourier Transforms (FFTs) on patterns measuring 12.4° by 12.4° (256 by 256 pixels), twice 
the size of that used in this study for a finer FFT frequency resolution. (c) Stimulus presentation and 
description. To reduce retinotopic neural adaptation and the predictability of the eye to which the target was 
presented, targets and maskers were randomized between eyes across trials. Examples of spatially 
manipulated Mondrian pattern types are presented along with the intact Mondrian pattern. Similar to the 
standard Mondrian, these patterns had a stepped temporal profile, with the exception of temporally filtered 
patterns. Targets were grey scale natural images windowed by a soft-edged circular mask. During the 
experiment, participants were asked to locate the quadrant containing the target or identify the type of target 
presented (‘man-made or natural’). (d) Spatial frequency and orientation power spectrum of circular, phase-
scrambled and standard Mondrian patterns. The top panel provides examples for each type of pattern, 
whereas the bottom panel describes the two-level contour plots of the two-dimensional FFTs of the 
respective patterns. Circular and phase-scrambled patterns have an isotropic spatial frequency spectrum, 
whereas the standard Mondrian pattern shows spectral energy peaks at the cardinal orientations. 
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In a bid to thoroughly understand the relationship between the Mondrian pattern 

and temporal frequency, we first addressed the roles of the Mondrian pattern and its 

components in Experiments 1–2. In Experiment 1, we asked if the Mondrian pattern 

acts on the level of target recognition. This was because studies frequently adapt the 

spatial form of the Mondrian pattern to resemble that of the target (Stein et al., 2011), 

raising the possibility that any resulting enhancement may be driven by impaired 

target recognition. Spatially phase-scrambled Mondrian sequences were compared to 

intact Mondrian patterns, and two judgment types (i.e., location and identity) were 

collected. Following that, we examined the effects of pattern edges and solid areas in 

Experiment 2. Spatial edges are known to influence both binocular rivalry (Levelt, 

1965; Baker and Graf, 2009; Hunt et al., 2012) and masking (Macknik and Martinez-

Conde, 2007; Macknik et al., 2000; Schiller and Smith, 1966), and it would be 

interesting to see if these features have a significant contribution to CFS suppression. 

We assessed the contributions of the individual pattern components by selectively 

preserving edges and solid areas, and then studied the relationship between these 

components by varying the extent to which each component was preserved. 

Having revealed keynote features of the Mondrian pattern and its components, 

we then examined the effects of temporal frequency content and spatial pattern 

integrity in Experiment 3. We compared temporally low- and high-pass filtered 

maskers (i.e. <4 Hz and >4 Hz respectively), and then evaluated these maskers against 

unfiltered maskers in Experiment 3. Here is the reasoning behind this approach: 

matched in RMS contrast, the high-pass filtered masker reveals the suppressive 

strength of predominant masking influences whereas the low-pass filtered masker 

would reveal the importance of transients in CFS. Conducting these comparisons 

would demonstrate the suppressive strength of each of these processes and give us an 

idea of the dominant process in CFS. We also conducted these comparisons with 

phase-scrambled and intact Mondrian patterns, thereby allowing us to compare the 

size of pattern effects for each type of temporal frequency content. To ensure that the 

low-pass filtered and high-pass filtered maskers fall on either side of the crossover 
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point between low and high temporal frequency channels (~4 Hz), respectively (Cass 

and Alais, 2006), we used a cut-off temporal frequency of 4 Hz. This approach 

extended the work of Yang and Blake (2012), and provided a suitable comparison to 

Han et al. (2016). Our results corroborated and extended the findings of Han et al. 

(2016): we found that suppression was mainly driven by pattern edges and low 

temporal frequency content. High temporal frequency maskers, on the other hand, 

provided weak suppression regardless of pattern structure. 

3.2 Materials and Methods 

3.2.1 Participants  

All participants were drawn from a pool of second or third year undergraduate 

students studying psychology courses at the University of Sydney. All had normal or 

corrected-to-normal eyesight, and tested normal for stereovision with the Fly Stereo 

Acuity test. Experiments accorded with the Declaration of Helsinki and were 

approved by the University’s Human Research Ethics Committee. Informed consent 

was also obtained from all participants, and participants were reimbursed $AU20 per 

hour for their participation. Samples were as follows:- Experiment 1: Eleven naïve 

participants (age range: 19-30 years, SD = 3.67 years, 7 females); Experiment 2: 

Eleven naïve participants (age range: 20-29 years, SD = 3.11 years, 6 females) were 

presented with Mondrian patterns with intact, phase-scrambled  structures, preserved 

edges and solid areas. An additional ten naïve participants (age range: 19 –30 years, 

SD = 4.29 years, 5 females) completed the interaction task; Experiment 3: Twelve 

naïve participants (age range: 20-38 years, SD = 5.47 years, 8 females).  

3.2.2 Masker stimuli  

Dynamic Mondrian patterns used in this study were updated at a rate of 10 Hz 

and randomly sampled for each and every trial from a set of ten such sequences. Each 

sequence lasted for 2.8s (280 frames in total) and contained twenty 5.5° visual angle 
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by 5.5° visual angle (114 by 114 pixels: 20.7 pixels per degree) Mondrian patterns 

composed of 265 circles measuring 0.26° visual angle to 0.65° visual angle in radius.  

A three-dimensional Fourier Transform was first performed on each of the ten 

dynamic Mondrian sequences, yielding amplitude and phase spectra that could be 

independently manipulated spatially and temporally. To generate phase-scrambled 

patterns (used in Experiment 1-3), random values, sampled from a uniform 

distribution between -2π to 2π, were summed with phase spectrum elements along the 

same timeline (z-dimension). The phase and amplitude spectra were then convolved 

and back-transformed (i.e., 2D inverse Fourier transform).  

To selectively preserve solid areas and edges (Experiment 2), spectral amplitudes 

associated with lower spatial frequencies (< 3 cpd) were first separated from higher 

frequencies with low- and high-pass filters. Solid areas were then preserved by phase 

scrambling high spatial frequencies and edges were preserved by phase scrambling 

low frequencies. To vary the degree of phase scrambling, we multiplied a factor (.20 

or .60) to random values before summating the result with the phase spectrum 

elements. Finally, the manipulated phase spectra were convolved with the 

corresponding amplitude spectra, and both low and high spatial frequency 

components were summed and back-transformed. To manipulate the temporal 

frequency content in Experiment 3, high- and low-pass temporal filters (> 4 Hz and < 

4 Hz respectively) were also applied to the 3D spectra in addition to the spatial 

manipulations. All Mondrian sequences were set to 15 % RMS contrast and 

normalised to mean luminance.  

3.2.3 Target stimuli 

Target stimuli were eight grey scale, natural images (four man-made objects). 

Each image was extracted from the background using a soft-edged circular mask, 
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generated by computing a two-dimensional raised cosine measuring approximately 

2.6° visual angle wide with .5° thick edges. As the Mondrian pattern consisted of 

circular shapes, this served to increase target/masker similarity. During the 

experiment, each target image was sampled randomly for each trial and jittered with 

1° steps from trial to trial to reduce predictability. All target stimuli were normalised 

to mean luminance and presented at 5 % RMS contrast. 

3.2.4 Apparatus 

All visual stimuli were presented via a DATAPixx video processor on a 100 Hz 

Mitsubishi Diamond Pro 2070SB CRT monitor with linearised luminance output and 

16-bit contrast resolution. The spatial resolution of the monitor was approximately 21 

pixels per visual degree angle. Participants viewed the stimuli with a mirror 

stereoscope, which was adjusted to achieve stable fusion for each participant. 

3.2.5 Procedure 

During each trial, participants maintained fixation on a central cross and reported 

the quadrant containing the target, guessing if necessary (Experiments 1-3), or 

reported the category of the object (i.e. ‘man-made or natural’, Experiment 1). In 

total, 32 trials (16 trials for each eye) were collected for each masker type in 

Experiment 1, and a total of 24 trials (12 trials per eye) were completed for each 

masker type in Experiments 2-3. In all of these experiments, the time to visibility 

(suppression duration) was recorded for each trial. To avoid abrupt transients, targets 

were ramped up in contrast for the initial 800 ms whereas maskers were always 

presented immediately at full contrast. Presentation of target and masker was 

randomised across dominant and non-dominant eyes to mitigate retinotopic neural 

adaptation. Presenting two seconds of visual white noise to both eyes at the end of 

each trial precluded the experience of afterimages.  
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3.2.6. Data analysis 

Each participant’s data were first screened for inaccurate responses, which were 

excluded from the analysis. We then computed the median suppression duration of 

each masker type for each participant. Trials with durations that were longer than 

three times the median absolute deviation from the median duration were regarded as 

outlier trials and excluded from the analysis. Each participant had, on average, 38% of 

the trials (SD = 9%) excluded from each condition in Experiment 1, 23.2% (SD = 

10%) in Experiment 2 and 33% (SD = 11%) in Experiment 3. Outliers made up 16% 

(SD = 9%) of the trials of each condition in Experiment 1, 17% (SD =6.6%) in 

Experiment 2 and 8.3% (SD = 3.4%) in Experiment 3. The suppression duration for 

each masker type was then estimated by averaging the remaining trials. As the b-CFS 

paradigm requires participants to make responses based on the visibility of the target, 

the magnitude of the time to visibility is affected by factors such as individual 

differences in interocular suppression durations, response times and subjective criteria 

(Gayet, Van der Stigchel and Paffen, 2014; Yang et al. 2014). Normalizing 

suppression duration data is therefore recommended for the b-CFS paradigm, as it 

reduces between-subject variability and increases statistical power (Gayet et al., 

2014). To do so, we isolated individual data trends by normalizing the estimated 

durations for each masker type to the respective average across all masker types.  

To preclude concern about the sample size used in this study, we assessed all 

effects of interest with the permutation test, a nonparametric method that evaluates a 

test statistic against an empirical distribution obtained by all of its possible 

permutations (Chong, 2008). The p-value would then be equivalent to the proportion 

of permutated values greater than the test statistic. Using this approach, mean 

differences between conditions were tested against empirical distributions computed 
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with 10 000 permutations. To ensure that the observed trends and resultant p-values 

were not driven by a particular individual’s data, we evaluated our results by 

performing the jackknife procedure on the permutation test. This involved performing 

the permutation test repeatedly with one participant’s data removed each time, thus 

reflecting the effect of individual data. Thus, if our results were driven by a single 

participant’s data, then the removal of that participant from the dataset should yield a 

very different result with the permutation test. To quantify this information, we 

calculated the bias of the jackknife-estimated p-values using the following formula: 

𝐵𝑖𝑎𝑠 = 𝑛 − 1 × (𝜃 . −  𝜃) 

where 𝜃 .  was the average jackknife-estimated p-value and 𝜃 the p-value obtained 

with the complete dataset. The bias reflected how well the jackknife results 

corresponded to that obtained without removing participants, and a relatively large 

number would suggest biases in the data. These computed values were used to 

evaluate the results obtained with the permutation test. 

3.3. Results 

3.3.1 Experiment 1 

 Given that Mondrian patterns are often tailored to maximise target/masker 

similarity (Stein et al., 2011), we asked if the Mondrian pattern acts at the level of 

target recognition. We measured suppression durations for two types of masker (intact 

versus phase-scrambled Mondrian patterns) with separate measurements for location 

and identity judgments. To assess the effect of masker pattern structure, we collapsed 

normalised durations across judgment type and then computed the mean differences 

between the pattern types. The data was collapsed across pattern types for the effect 

of judgment type. To test for the interaction between both factors, we computed the 
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difference in durations between intact and phase-scrambled patterns for each level of 

judgment type, and then compared the resultant differences.  

Using the permutation test, we found a significant effect of masker pattern 

structure, Bias = 0.02, p = .001. Specifically, phase scrambling resulted in a two-fold 

reduction in normalised suppression durations (Figure 3.2; see also S1 for individual 

data), consistent with reduced rivalry suppression when one image was phase-

scrambled (Alais and Melcher, 2007). Collapsed across pattern types, identity 

judgments required significantly longer durations than location judgments, Bias = 

0.002, p = .002. Judgment type, however, did not interact significantly with pattern 

type, Bias = 0.18, p = .51. Holm-Bonferroni corrected, pairwise comparisons showed 

that the participants generally took longer to make identity judgments regardless of 

pattern type, but the differences were only significant in phase-scrambled patterns, 

Bias = 0.12, p = .048, and not intact patterns, Bias = 0.33, p = .20.  

 

 

Figure 3.2.  Data from Experiment 1 demonstrating the effect of Mondrian pattern structure on normalised 

suppression durations. To assess the role of the Mondrian pattern in CFS, participants were instructed to 

either identify the target or report the location of the target (‘which quadrant?’) for each trial. Suppression 

durations were measured and correct responses were then normalised to each individual’s average. Overall, 

the presence of coherent pattern structure resulted in longer suppression, and this was true for identity and 

location judgments. Participants also took longer to make accurate identity judgments, but this was only 
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applicable to phase-scrambled patterns. Hence the coherent spatial form of the Mondrian pattern does not 

selectively impair target recognition. Instead, these patterns contribute to suppression strength. Asterisks 

denote statistical significance (*: p< .05, **: p< .01) after Holm-Bonferroni correction. Error bars represent 

95 % confidence intervals of the mean. 

 

3.3.2. Experiment 2 

 Having demonstrated that the pattern structure of the masker enhances 

suppression, we decomposed the sources of influence in Experiment 2. Edges and 

solid areas were preserved by phase scrambling high (≥ 3 cpd) and low (< 3 cpd) 

spatial frequencies, respectively, and the performance of these masks was evaluated 

against intact and phase-scrambled patterns using Holm-Bonferroni corrected 

pairwise comparisons. As pattern structure clearly contributed to suppression and did 

not have a significant interaction with judgment type in Experiment 1, location 

judgments were recorded in this experiment. Figure 3.3a illustrated the normalised 

durations produced by each pattern component (see also S2a for individual data). The 

performance of phase-scrambled patterns was statistically comparable to solid areas, 

Bias= 0.11, p = .30, but was weaker than edges, Bias = 0.01, p = .005. And although 

edges were more effective than solid areas, Bias = 0.03, p = .004, these were still 

weaker than intact patterns, which produced significantly longer suppression than 

solid areas and edges, Bias = -0.004, p = .006 and Bias = -0.08, p =  .028 respectively. 

The suppressive advantage of intact patterns remained even after the effects of edges 

and solid areas were considered collectively (computed by summating the respective 

normalised durations before subtracting that of phase-scrambled patterns), Bias = 

0.10, p = .006. This pattern of results was further supported by Bayes factors (see 

details in the Supplementary material). 

This difference could be explained by an interaction between low and high spatial 

frequency pattern components, which we tested by varying the degree of phase 
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scrambling applied to each feature (i.e., 20 % or 60 %) in a separate task. Collapsed 

across the different levels of structural integrity in solid areas, patterns with more 

intact edge information produced longer suppression, Bias < .001, p = .001. Similarly, 

patterns with more intact solid areas produced longer normalised durations than 

patterns without, Bias = -0.01, p = .002.  The structural integrity of solid areas and 

edges also interacted significantly, Bias = 0.13, p = .01. As described in Figure 3.3b, 

reducing the structural integrity of solid areas significantly reduced normalised 

durations when pattern edges were relatively intact, Bias = 0.004, p = .012, but not 

when the edges were phase-scrambled to a larger extent, Bias = 0.21, p = .39. 

Individual data were presented in S2b.  
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Figure 3.3 (a) Data from Experiment 2 showing the effect of individual Mondrian pattern components on 

normalised suppression durations. We evaluated the effect of individual pattern components by selectively 

phase scrambling low (< 3 cpd) and high (≥ 3 cpd) spatial frequency components, giving rise to patterns 

with preserved edges or solid areas, respectively. This allowed us to vary the structural components of the 

Mondrian pattern while preserving spatial frequency content. The efficacy of these patterns was evaluated 

against intact and phase-scrambled patterns, and the results showed that edges had the largest contribution to 

CFS suppression strength. On the other hand, solid areas were comparable to phase-scrambled patterns. 

Intact patterns remained the strongest suppressor, producing longer normalised suppression durations than 

edges. This disparity remained even after considering the collective effect of pattern components (estimated 

by summing the respective normalised durations and then subtracting that of phase-scrambled patterns). (b) 

Data from Experiment 2 demonstrating an interaction between pattern edges and solid areas in CFS. Edge 

and solid-area content were selectively phase-scrambled to a larger or smaller degree (i.e., 60 % or 20 %, 

respectively) and the effects on normalised suppression durations were examined. Phase scrambling solid 

areas to a smaller degree resulted in longer normalised suppression durations, but the effect was only 
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observed when edges were relatively intact. Asterisks denote statistical significance (*: p< .05, **: p< .01) 

after Holm-Bonferroni correction. Error bars represent 95 % confidence intervals of the mean. 

 

3.3.3 Experiment 3  

Experiments 1-2 demonstrated that the effectiveness of dynamic Mondrians as 

masking patterns was predominantly driven by the abundance of spatial edges in the 

Mondrian masker. As spatial edges are known to influence both binocular rivalry 

(Levelt, 1965; Baker and Graf, 2009a; Hunt et al., 2012) and masking (Macknik et al., 

2000; Macknik and Martinez-Conde, 2007; Schiller and Smith, 1966), Experiment 3 

examined the role of masking in CFS suppression. It is known that masking 

effectiveness is greater for shorter temporal intervals (Enns and Di Lollo, 2000; 

Hellige et al., 1979) and for sharp temporal onsets (Macknik et al., 2000). We thus 

reasoned that if masking were to make a substantial contribution to CFS it would 

predict longer suppression durations and a greater effect of pattern with increasingly 

transient maskers. So, we compared the efficacy of temporally low- and high-pass 

filtered maskers, and then evaluated these maskers against unfiltered maskers, which 

served as a baseline condition. These measurements were recorded with intact and 

phase-scrambled patterns because it allowed us to compare the size of pattern effects, 

defined as the percentage difference in normalised durations between intact and 

phase-scrambled patterns at each level of temporal frequency content. 

Results are illustrated in Figure 3.4 (see also S3a-c). All planned comparisons 

were conducted with Holm-Bonferroni corrections. Compared to temporally high-

pass maskers, we obtained significantly stronger suppression with low-pass maskers, 

Bias = 0.002, p = .01 for intact patterns, but not for phase-scrambled patterns, Bias = 

0.20, p = .11. When evaluated against unfiltered maskers, low-pass maskers produced 

comparable normalised durations, and this was true for intact patterns and phase-
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scrambled patterns, Bias = 0.21, p = .14 and Bias = 0.49, p = .26 respectively. In 

contrast, high-pass filtered maskers were consistently weaker than unfiltered maskers, 

Bias = -0.006, p = .012 for intact patterns and Bias = 0.13, p = .02 for phase-

scrambled patterns. We then compared the size of pattern effects for each type of 

masker. Our results showed a significantly smaller pattern effect in temporally high-

pass filtered maskers than unfiltered maskers, Bias = 0.05, p = .009. In contrast, 

temporally low-pass filtered maskers had a comparable pattern effect to unfiltered 

maskers, Bias = 0.92, p = .29, and were more dependent on the presence of coherent 

pattern structures than high-pass maskers, Bias = 0.02, p  = .014. Thus, contrary to 

intuition, transients did not appear to have a major contributory role to the potency of 

CFS. In fact, they produced less suppression than did low temporal frequencies, and 

were less reliant on the presence of coherent pattern structures. Similar to Experiment 

2, these findings were substantiated by Bayes factors (see Supplementary material for 

details). 
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Figure 3.4. (a) Predictions (left panel) and observations (right panel) for temporally unfiltered, low-pass (< 4 

Hz) and high-pass (≥ 4 Hz) maskers with intact pattern structures. Because sharp temporal onsets are typical 

of effective masking stimuli (Macknik et al., 2000), a dominant masking mechanism would produce smaller 

differences in durations between unfiltered and high-pass maskers (as both contain transients), and 

significantly weaker suppression for low-pass maskers. The results revealed comparable performances 

between low-pass and unfiltered maskers, whereas high-pass filtered maskers were significantly weaker than 

unfiltered maskers. (b) Predictions and observations for phase-scrambled patterns (left and right panels, 

respectively). Similar predictions were made for phase-scrambled patterns, although lower durations were 

expected for all masker types. As with intact patterns, we found low-pass filtered maskers to be comparable 

to unfiltered maskers, whereas high-pass filtered maskers were weaker than unfiltered maskers. (c) 

Predictions and observations for sizes of pattern effects. We computed the percentage change in normalised 
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durations between intact and phase-scrambled patterns for each type of temporal frequency content. A 

dominant masking mechanism would predict smaller percentage changes between high-pass filtered and 

unfiltered maskers. Against predictions, there were significantly smaller pattern effect sizes in high-pass 

maskers, and comparable pattern effects between low-pass and unfiltered maskers.  Asterisks denote 

statistical significance (*: p< .05, **: p< .01) after Holm-Bonferroni correction. Error bars represent 95 % 

confidence intervals of the mean. 

 

3.4 Discussion 

This study was motivated by a simple but important question: why are 

monocularly viewed, dynamic Mondrian patterns unusually potent at erasing from 

conscious awareness an otherwise complex monocular image presented to the other 

eye? Learning the answer to this question is important, because differential effects on 

suppressed stimuli have been associated with differences in low-level properties such 

as orientation (Moors et al., 2014; Yang and Blake, 2012) and color (Hong and Blake, 

2009). Measuring the temporal frequency tuning of CFS using spatiotemporally 

controlled noise maskers, Han et al. (2016) obtained a low-temporal-frequency bias in 

suppression durations, which corresponded with the low-biased temporal frequency 

spectrum of the typically-used Mondrian masker (C.f. Figure 2.3). Nevertheless, 

because their filtered-noise maskers were spatially random, they were devoid of the 

transiently changing coherent form characteristic of the Mondrian masker. Our goal in 

the present study, then, was to examine the role of Mondrian pattern structure and its 

relationship with temporal frequency. We were able to replicate and confirm the 

aforementioned low-frequency bias and to assess the use of filtered noise maskers in 

CFS studies. Moreover, these manipulations offered a way to separate possible rivalry 

and masking influences, both of which have been proposed to underlie the 

effectiveness of CFS suppression (Han et al., 2016; Tsuchiya and Koch, 2005; 

Tsuchiya et al., 2006).  
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Spatially intact Mondrian pattern structures produced longer suppression 

durations for identity and location judgments, showing that coherent pattern structures 

contributed to suppression and did not selectively impair target recognition. 

Interestingly, assessments of pattern components showed that the enhancement in 

suppression strength was predominantly driven by spatial edges. Not only did intact 

spatial edges produce longer suppression durations than intact solid areas, but varying 

the structural integrity of solid areas also had no significant influence on suppression 

durations when spatial edges were scrambled to a larger degree. Since spatial edges 

influence the effectiveness of rivalry suppression (Alais and Melcher, 2007; Baker 

and Graf, 2009a) and visual masking (Macknik et al., 2000; Macknik and Martinez-

Conde, 2007; Schiller and Smith, 1966), these findings do not differentiate between 

the two alternatives. To differentiate the putative contributions of these two processes, 

we extended our investigation to the temporal domain and compared the efficacy of 

temporally unfiltered, low- and high-pass filtered maskers. Comparable performances 

were obtained for unfiltered and low-pass filtered maskers, whereas high-pass filtered 

maskers were significantly weaker. These trends were observed regardless of spatial 

pattern structures, and there was also a significantly larger effect of pattern structure 

on low-pass maskers compared to high-pass maskers. Thus, our results point to 

rivalry being the dominant process in CFS, as a mechanism dominated by masking 

would likely have been more effective with smaller temporal intervals and transients 

(Enns and Di Lollo, 2000; Hellige et al., 1979). 

There are several important implications of these findings, the most notable 

relating to the sharp pattern onsets and offsets of the Mondrian masker. Rapid pattern 

changes could minimize neural adaptation associated with CFS and, thereby, promote 

longer periods of exclusive dominance (Tsuchiya et al., 2006; Yang and Blake, 2012). 
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Whilst some CFS studies do report enhanced interocular suppression with very high 

Mondrian refresh rates, i.e., 85 Hz (Xu et al., 2011), the reasons behind the enhanced 

effectiveness are unlikely to be straightforward. We say this because interocular 

suppression peaks at Mondrian refresh rates around 6 Hz (Zhu et al., 2015; Zhu et al., 

2016), and computational simulations reveal that reduced neural adaptation does not 

constitute a major contribution to suppression strength (Moors et al., 2014). 

Moreover, past research using comparable temporal spectra have consistently found 

weaker suppression with higher temporal frequency content (Han et al., 2016; Yang 

and Blake, 2012). Thus, at least for static targets, the poor performance of temporally 

high-pass maskers accords with previous research and argues against the importance 

placed on the transients in the dynamic Mondrian masker. 

This leaves us with a perplexing observation. If transients do not constitute a 

large proportion of the Mondrian’s temporal frequency spectrum (and they do not: 

Figure 3.1b and C.f. Figure 2.3) and do not have a major contribution to suppression, 

then why do these filtered Mondrian maskers appear to be flickering so saliently? A 

simple explanation would be the over-representation of transient input in the visual 

system. Termed temporal whitening, this over-representation was studied by Cass, 

Alais, Spehar and Bex (2009) who found that participants tend to overestimate the 

proportion of high temporal frequency energy, and at a magnitude that equalises the 

1/f temporal amplitude spectrum typical of natural images and flickering Mondrians. 

This bias results from an asymmetrical inhibition in temporal frequency processing 

whereby high frequencies (> 4 Hz) inhibit low frequencies (< 4 Hz), but low 

frequencies do not inhibit high frequencies (Cass and Alais, 2006; Cass et al., 2009). 

Thus the impression of a rapid flickering Mondrian masker may be an artefact of such 

biases. High temporal frequencies still appear to contribute to CFS. In fact, given the 



	 80	

evidence demonstrating feature selectivity in CFS suppression (Hong and Blake, 

2009; Moors et al., 2014; Yang and Blake, 2012), higher temporal frequencies are 

likely to be become more important when high frequency targets are used. Indeed, 

Kaunitz et al. (2014) found stronger masking effects and higher optimal refresh rates 

(i.e., 28.5 Hz) were obtained when transient targets were used. 

Interestingly, Experiment 2 revealed a significant interaction between pattern 

components with low and high spatial frequencies. Interactions between low and high 

spatial frequencies have been observed in scene perception studies, and these 

typically involve feedback signals from late to early visual processing regions 

(Kveraga, Boshyan and Bar; Peyrin et al., 2010). We speculate that a similar process 

may occur in CFS, and such a mechanism would accord with multi-level theories of 

binocular rivalry (Freeman, 2005; Nguyen, Freeman and Alais, 2003; Tong et al., 

2006; Wilson, 2003), providing further support for a unified framework between these 

two paradigms. This parsimonious approach would be instrumental in the study of 

CFS mechanisms and in the design of CFS experiments. For instance, future research 

could explore the effects of stimulus size (Kang, 2009) and the perceptual meaning of 

visual stimuli (Andrews and Lotto, 2004). These have been shown to influence rivalry 

suppression and it would be interesting to see if similar effects could be observed in 

CFS. Lastly, the correspondence in results between the current study and Han et al. 

(2016) not only confirms the low temporal-frequency tuning of CFS, it demonstrates 

the utility of Fourier filtering techniques and the use of spatiotemporally filtered noise 

stimuli in CFS studies. Not only is this approach useful in elucidating CFS 

mechanisms, it is also useful for conducting controlled investigations into 

unconscious visual processing. 
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3.5 Conclusion 

Until recently, the rapid pattern changes in the Mondrian masker have been 

widely assumed to drive CFS suppression. Using temporally narrowband filtered 

noise maskers, Han et al. (2016) demonstrated a strong, low-frequency bias in CFS 

suppression. Their results corresponded well with the low-biased temporal frequency 

spectrum of dynamic Mondrian maskers, but the use of filtered noise meant their 

stimuli modulated smoothly at a given frequency rather than refreshing 

instantaneously, complicating comparisons with dynamic Mondrians. Here, we used 

dynamic Mondrians and manipulated their temporal structure and spatial pattern to 

reveal predominant contributions of spatial edges and low temporal-frequency content 

in CFS. These findings point to the dominant suppression processes in CFS being 

very similar to those in binocular rivalry, affording a parsimonious alternative in 

unifying the two paradigms.  
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3.6 Chapter review 

In Chapter 2, I tested the assumption that CFS is largely driven by the rapid 

pattern changes in the Mondrian masker. Using narrowband filtered noise maskers, I 

measured the temporal tuning of CFS suppression and discovered that CFS 

effectiveness peaked at low temporal frequencies. Given that the noise maskers were 

void of the contour-rich information present in Mondrian maskers, my goal in Chapter 

3 was to verify the low temporal frequency bias with Mondrian pattern structures. As 

predicted, I observed stronger suppression for temporally low-pass filtered Mondrian 

maskers than high-pass filtered maskers. Similar to Chapter 2, CFS was also 

enhanced by high spatial frequency content, producing longer suppression durations 

when low temporal frequency maskers contained coherent pattern edges. Thus, the 

collective findings of Chapters 2-3 demonstrated three important points. Firstly, 

transients do not contribute to the bulk CFS’s effectiveness and experimenters should 

avoid relying on transients to provide effective CFS suppression. Secondly, varying 

the number of patterns per second is not equivalent to the periodic change in pixel 

luminance over time, and I would argue that the latter provides a better control of 

temporal frequency content. Thirdly, in contrast to earlier theories (e.g., Tsuchiya et 

al., 2006), CFS seems to have a parvocellular bias that is akin to BR. In the following 

chapter, I tested the extent of the low temporal frequency bias in CFS with slow and 

rapid modulating targets. Given that static targets were used in Chapters 2-3, it was 

unclear if the results reflected a general bias towards low temporal frequencies, or a 

consequence of temporal frequency selectivity.  
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Chapter 4 

Strength of continuous flash suppression is optimal when 

target and masker modulation rates are matched. 

 
The work in this chapter is published as: 

Han, S, & Alais, D. (2017). Strength of continuous flash suppression is optimal when 

target and masker modulation rates are matched. Journal of Vision, 18(3), 1-14. 

 

Individual data are accessible at: https://doi.org/10.17605/OSF.IO/DPWSE    
 

Abstract 

Continuous flash suppression (CFS) is a popular technique whereby a dynamic 

sequence of Mondrian patterns is presented to one eye in order to suppress a static 

target presented to the other eye. Although the effectiveness of CFS is generally 

assumed to increase with the flicker rate of the Mondrian masker, a recent study 

shows that suppression is optimal at very low masker rates for sustained targets but 

higher rates may be necessary for transient targets. Here we vary the modulation rates 

of the masker and target using temporally filtered dynamic noise, which allowed us to 

examine the relationship between target and masker frequency and its effect on 

suppression strength. Using these carefully controlled, temporally narrowband 

stimuli, we demonstrate a pattern of results showing that suppression is greatest when 

target and masker modulate at similar frequencies. This finding indicates the 

involvement of early temporal-frequency-tuned filters underlying CFS and is 

consistent with many existing findings in the CFS literature. We also find these 

temporally-selective processes are orientation selective, which points to an early 

cortical substrate such as neurons in primary visual cortex. Overall, our study reveals 

that CFS suppression can be maximised by carefully matching the masker and target 
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in temporal frequency and orientation. More generally, we show the importance of 

using carefully controlled stimuli for elucidating the underlying mechanisms of CFS. 

This approach is important at a theoretical level as it will enable comparison of CFS 

with existing models of binocular rivalry and interocular suppression and facilitate a 

unified explanatory framework. 

4.1 Introduction	

Our sensory system is flooded with information from the external environment, 

yet only a small proportion constitutes our conscious experience. Several techniques 

have been developed to render visual images invisible to allow investigation of the 

functional and processing status of nonperceived input (Breitmeyer, Ogmen, and 

Chen, 2004; Kim and Blake, 2005; Tsuchiya and Koch, 2005). Continuous flash 

suppression (CFS) is one of the most widely used of these techniques. In the CFS 

paradigm, a dynamic sequence of random Mondrian patterns is viewed in one eye 

while a static target is presented to the other eye. This generally produces effective 

and long-lasting suppression, especially when low-contrast targets are used—which is 

generally the case (Tsuchiya and Koch, 2005; Tsuchiya, et al., 2006). Unlike in 

binocular rivalry, the first visual percept in CFS is reliably that of the dynamic 

Mondrian sequence, meaning the suppressed target can be conveniently studied from 

the outset (Yang et al., 2014). This, coupled with long suppression times, has seen 

CFS become a widely adopted technique (e.g., Fang and He, 2005; Moors, 

Wagemans, van Ee, de-Wit, 2015c; Yang et al., 2007).  

Mondrian refresh rates of 10 Hz or higher are typically adopted in CFS studies 

(e.g., Xu et al., 2011; Yuval-Greenberg and Heeger, 2013), as it is widely assumed 

that one of the keys to CFS's strong suppression is the rapid pattern changes in the 

masking eye (Tsuchiya et al., 2006; Tsuchiya and Koch, 2005). Existing evidence, 
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however, suggests that the optimal refresh rate for the masker may differ depending 

on the nature of the target to be suppressed. One study using brief static targets found 

that the optimal masker required a flicker rate of up to 28.5 Hz (Kaunitz et al., 2014), 

while another using prolonged static targets found that suppression peaked at around 

6 Hz (Zhu et al., 2015; Zhu et al., 2016). Both of these studies varied the update rate 

of independent static images, meaning the luminance changes were abrupt and the 

temporal frequency content was therefore broadband.  

A recent study was the first to control the temporal frequency of the masking 

stimulus in narrow passbands (Han et al., 2016). In this study, where the image 

undergoes smooth and continuous modulation rather than discrete transient changes, 

the masking frequency giving greatest suppression of prolonged static targets was 

very low, at ~1 Hz. Although it may not be obvious at first glance, using the image 

update rate to manipulate temporal frequency produces broadband temporal content 

with a strong bias to very low temporal frequencies. This is best exemplified by the 

pixel timeline, where the 100-ms presentation time of each pattern and the central 

tendency of luminance changes jointly produce a slow-modulating, stepped waveform 

(for more details, see Supplementary Text S1, Supplementary Figure S1 and Han et 

al., 2016). Increasing the update rate does not change the low temporal bias; however, 

the proportion of high temporal-frequency energy increases (Figure 4.1a). Therefore, 

one consistent interpretation of these studies, despite their different temporal 

manipulations, is that prolonged static targets are best produced by very low temporal 

frequencies.  
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Figure 4.1. (a) Effect of Mondrian refresh rate on temporal-frequency content. Two-dimensional Fourier 
analyses show that the Mondrian masker has a strongly low-biased temporal-frequency amplitude spectrum 
across different refresh rates. Although the trend becomes more broadband with faster flicker rates, the low-
frequency bias remains. These differences were quantified by comparing the power spectral densities of low 
(<4 Hz) and high (≥4 Hz) temporal frequencies for Mondrian maskers at 5, 10, 15, and 20 Hz (inset). Five 
maskers were independently generated for each masker refresh rate. Twenty-five pixels were then randomly 
sampled from each of these five maskers and their timelines analyzed. (b) Stimuli used in the current 
experiments. To generate masker and target stimuli, a three-dimensional Fourier transform was first 
performed on a stack of 205 randomly generated noise images, before narrowband log-Gaussian filters were 
applied to the temporal (2, 3, 5, 7.5, and 10 Hz) and spatial dimensions (3 c/°). Targets were also spatially 
windowed with an elliptical Gaussian mask in Experiment 1 and a circular Gaussian mask in Experiment 2. 
To reduce retinotopic adaptation, the presentation of maskers and targets were randomized between the eyes 
across trials. Checkerboard frames were used to enclose both maskers and targets to ensure stable fusion. 
Participants were instructed to report the target's orientation in Experiment 1 (tilted left or right) and its 
location (which quadrant) and orientation (horizontal or vertical) in Experiment 2. 
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Psychophysical studies of temporal processing conclude that the entire temporal 

dimension in vision is encoded by a broad low-pass channel with a cutoff around 4 Hz 

(Anderson and Burr, 1985; Cass and Alais, 2006; Snowden, Hess, and Waught, 1995) 

and one or perhaps two higher, bandpass channels (Cass and Alais, 2006; Hess and 

Snowden, 1992; Johnston and Clifford, 1995). By this account, stimuli that are static 

or slowly modulating will activate the low-pass temporal-frequency channel, whereas 

rapidly modulating, transient stimuli would stimulate the high-frequency, bandpass 

channel. Detection of a static target thus becomes more difficult with low masker 

modulation or update rates (Han et al., 2016; Zhu et al., 2016), as target and masker 

will both activate the same channel. Likewise, higher Mondrian update rates are better 

suppressors of transient targets (Kaunitz et al., 2014) because the increased high-

temporal-frequency content drives the same channel as the transient target. 

Physiologically, these channels may correspond to parvocellular and magnocellular 

neurons, which are, respectively, more responsive to slower modulating and transient 

visual stimuli (Derrington and Lennie, 1984).  

Several studies have shown that CFS is feature selective. For instance, 

similarities in target and masker spatial frequency (Maehara et al., 2009; Yang and 

Blake, 2012) and speeds (Moors et al., 2014) have been shown to enhance 

suppression. It is therefore likely that CFS would involve suppression processes that 

are selective in the temporal dimension. However, because Mondrian maskers are 

temporally broadband and CFS studies typically use static targets (but see Ananyev, 

Penney, and Hsieh, 2017; Kaunitz et al., 2014; Moors et al., 2014), the proposition 

has not been specifically addressed. In this study, we measured the temporal 

selectivity of CFS by comparing 2- and 10-Hz narrowband noise maskers on targets 

modulating at a range of temporal frequencies. We predict that, regardless of masker 
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temporal frequency, enhanced suppression will be observed when target and masker 

frequencies are similar. In contrast, suppression will be reduced for any target–masker 

combination that activates different channels. We quantify this using two dependent 

measures: suppression duration and contrast sensitivity threshold. Measured using the 

commonly used breaking-CFS (b-CFS) paradigm, suppression durations reflect the 

time to visibility and are more susceptible to nonperceptual factors such as participant 

decisional criteria in determining target visibility (Yang et al., 2014). Including a 

more objective measure such as contrast sensitivity threshold allows us to compare 

both measures and better understand the general trend. In addition, measuring contrast 

sensitivity will facilitate comparisons with binocular-rivalry studies, which often 

measure contrast sensitivity in suppression (Alais, 2012; Stuit et al., 2009).  

 

4.2 Experiment 1 

4.2.1 Materials and methods 

4.2.1.1 Masker stimuli	

Spatiotemporally narrowband maskers were generated by filtering 205 

randomly generated noise images (each 128 × 128 pixels, approximately 5.4° × 5.4°, 

15% RMS contrast and normalized to mean luminance). These noise images were 

first converted to the frequency domain using a three-dimensional fast Fourier 

transform and then filtered spatially and temporally using narrowband, log-Gaussian 

filters. The spatial filter had a center frequency of 3 c/° and the temporal filter had a 

center frequency of 2 or 10 Hz. All filters had a full bandwidth at half height of one 

octave. Masker images were then back-transformed and normalized to maximum 

contrast (15% RMS) and to space-averaged mean luminance. Maskers were then 
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presented at 95% of maximum contrast (see examples of masker stimuli in Figure 

4.1b and Supplementary Movies S1 and S2).  

4.2.1.2 Target stimuli 

Targets were dynamic filtered noise images made from the same spatiotemporal 

filtering process as the masker images but using independent noise images. They were 

generated with the same RMS contrast and center spatial frequency, could take a 

range of temporal frequencies (2, 3, 5, 7.5, or 10 Hz), and were windowed in the 

space domain by a small Gaussian mask of either SDxy = 10 pixels for monocular 

threshold measurements or SDx = 4.5 pixels and SDy = 7.5 pixels for all CFS tasks. 

Targets thus measured approximately 1° × 1° at half height for monocular threshold 

measurements and 0.5° × 1° at half height for all CFS tasks.  

Both targets and maskers were enclosed by a 0.5°-thick checkerboard frame 

(5.9° × 5.9° externally and 5.4° × 5.4° internally; see Figure 4.1) to encourage stable 

fusion. All visual stimuli were presented on a Mitsubishi Diamond Pro 2070SB CRT 

monitor (screen refresh rate of 100 Hz) connected to a DATAPixx data-acquisition 

system (Vpixx Technologies, Saint-Bruno, Canada), which allowed millisecond 

precision and a 16-bit contrast resolution. The presentation order of the target and 

masker between the eyes was randomized between dominant and nondominant eyes 

to mitigate adaptation effects.  

4.2.1.3 Participants 

In Experiment 1, suppression durations and visual contrast thresholds were 

recorded for five participants who were unaware of the purposes of the experiment 

(four women, one man; age range: 19–24 years, SD = 1.82). Another three 

participants who were unaware of the purposes of the experiment (two women, one 

man; age range: 21–30 years, SD = 5.2) completed only the b-CFS task, whereas 
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threshold measurements were conducted for author SH and four participants (four 

women; age range: 20–29 years, SD = 4.93). All participants had normal or corrected-

to-normal visual acuity. Participants also had normal stereovision, assessed using the 

Fly Stereo Acuity test. All experiments were performed with the approval of the 

institutional review board at the University of Sydney and according to the principles 

of the Declaration of Helsinki. Informed consent was obtained for all participants and 

participants were reimbursed 20 AUD per hour for their participation.  

4.2.1.4 Eye-dominance assessment 

Eye dominance was determined using the “hole in the hand” test, a variation on 

the Miles test (Miles, 1930). Participants were first seated a distance away (~150 cm) 

from an object placed at eye level. They were instructed to view the object through a 

small hole created by both hands, first with both eyes and then alternately with each 

eye. The eye with less displacement in perceived object location was designated as 

the dominant eye.  

4.2.1.5 Procedure for b-CFS 

Targets were first subjectively equated by measuring contrast detection 

thresholds for each target frequency. To do this, a two-alternative forced-choice 

(2AFC) QUEST adaptive procedure was adopted for each target frequency, and each 

staircase consisted of 24 trials. No maskers were presented in the threshold-

determination task. Participants judged the location of the target, situated 1.3° to the 

left or right of a central fixation cross. Each trial lasted for 2 s, followed by 300 ms of 

dynamic visual white noise. Thresholds were defined at 75% accuracy and were 

estimated by fitting a cumulative Gaussian psychometric function with the maximum-

likelihood estimation procedure. Targets were then presented five times above the 

respective thresholds for the b-CFS task. To avoid abrupt onsets, maskers and targets 
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were also ramped in contrast during the initial 1,000 ms of each trial, with the masker 

leading 50 ms (five frames) before the target to accumulate suppressive effects 

(Tsuchiya et al., 2006). Predictability and local adaptation were reduced by randomly 

presenting targets at different points from trial to trial chosen from a circle with a 

radius of ~1.2° around the fixation cross. Targets were oriented ±45° and participants 

indicated the orientation of the target (tilted left or right) as soon as it became visible. 

The time required for each response was recorded, followed by 5 s of dynamic visual 

white noise. Ten trials per target frequency were collected, the order of which was 

presented in randomized blocks for each participant. Only trials with correctly located 

targets and suppression durations that were not more than three times the median 

absolute deviation were included for analysis. These trials were then sorted according 

to the dominant eye and averaged for each target temporal frequency. Each 

participant's data were then normalized to their respective average suppression 

durations across the 2- and 10-Hz conditions.  

4.2.1.6 Procedure for CFS threshold measurements 

Separate 2AFC QUEST adaptive staircases were adopted for each target 

frequency and each eye. Similar to the b-CFS task, participants were asked to judge 

the orientation of targets, which were oriented ±45° at random positions along a circle 

of radius ~1.2° centered on the fixation cross. Each trial lasted for 2 s, followed by 

300 ms of dynamic visual white noise. Similar to the b-CFS task, target temporal 

frequencies were blocked in a randomized order, whereas the order of masker 

frequency was presented in counterbalanced blocks. Similar to Experiment 1, the eye 

of origin was randomized within each block. Each staircase consisted of 22 trials, 

resulting in a total of 220 trials per masker frequency. Thresholds were estimated by 

fitting a cumulative Gaussian psychometric with the maximum-likelihood estimation 
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procedure. Each participant's estimated thresholds were then normalized to the 

participant's individual average threshold across the 2- and 10-Hz conditions.  

4.2.2 Results 

4.2.2.1 Normalized suppression durations 

The effects of masker and target temporal frequencies on suppression durations 

are summarized in Figure 4.2a. We first tested the effect of eye dominance on 

suppression durations using separate 2 × 5 (eye dominance × target temporal 

frequency) repeated-measures ANOVAs for each masker temporal frequency. There 

was no evidence of eye-dominance effects for either masker frequency—2 Hz: F(1, 7) 

< 1; 10 Hz: F(1, 7) = 1.53, p = 0.26, ηp2 = 0.18. Eye dominance also did not interact 

with target temporal frequency—2 Hz: F(4, 28) < 1; 10 Hz: F(4, 28) = 1.46, p = 0.27 

(Greenhouse–Geisser corrected), ηp2 = 0.17. In contrast, target temporal frequency 

had a significant main effect with both types of maskers—2 Hz: F(1, 7) = 9.55, p < 

0.001, ηp2 = 0.57; 10 Hz: F(1, 7) = 2.72, p < 0.05, ηp2 = 0.28. Having established that 

there were no eye-dominance effects, we pooled the raw suppression-duration data 

and recompiled a normalized data set without sorting the data according to the 

dominant eye. This increased the number of data points per target temporal frequency, 

and allowed us to better estimate individual means for each target frequency. 

Responses that were inaccurate or more than three times the median absolute 

deviation were excluded.  
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Figure 4.2. (a) Data from Experiment 1 showing the effect of masker and target rates on normalized 
suppression durations, with target frequency plotted as a logarithmic scale. The data show that CFS 
suppression duration is strongly dependent on masker–target similarity, increasing with target temporal 
frequency when the 10-Hz masker was presented and showing a reverse trend when the 2-Hz masker was 
presented. Group means were described by normal Gaussian functions centered at 1.27 octaves for the 2-Hz 
masker and 3.25 octaves for the 10-Hz masker. (b) Data from Experiment 1 showing the effect of masker 
and target rates on contrast thresholds, with target frequency plotted on a logarithmic scale. Gaussian 
functions were fitted to the group averages and revealed a very similar pattern to the suppression-duration 
data: a mean frequency of 1.25 octaves for the 2-Hz masker and 3.39 octaves for the 10-Hz masker. All error 
bars represent 95% confidence intervals, and asterisks indicate significant pairwise comparisons after Holm–
Bonferroni correction. Black asterisks indicate that the 2-Hz masker performed better than the 10-Hz 
masker, and gray asterisks indicate that the 10-Hz masker performed better than the 2-Hz masker. 
 

Using the pooled data, we conducted a 2 × 5 (masker × target temporal 

frequency) repeated-measures ANOVA. Due to violations of sphericity, statistical 

significance was assessed with Greenhouse–Geisser correction. Neither masker 

frequency, F(1, 7) < 1, nor target frequency, F(4, 28) < 1, had a significant effect on 

suppression duration, but they interacted significantly, F(4, 28) = 9.32, p < 0.01, ηp
2 = 

0.57. Shorter normalized durations were produced at higher target frequencies when 

the 2-Hz masker was presented, and the reverse was true when the masker modulated 

at 10 Hz. These differences between the two masker frequencies were verified by 

Holm–Bonferroni-corrected paired-samples t tests. Specifically, as plotted in Figure 

4.2a, the 2-Hz masker produced significantly longer normalized durations than the 10-

Hz masker when the targets modulated at 2 Hz, t(7) = 3.65, p < 0.05, and 3 Hz, t(7) = 

4.13, p < 0.05. In contrast, the 10-Hz masker produced significantly longer 
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normalized durations than the 2-Hz masker when the target modulated at 10 Hz, t(7) = 

3.56, p < 0.05.  

To further characterize the trends observed, we fitted normal Gaussian functions 

to each individual's data, with target temporal frequency plotted on a binary 

logarithmic scale as in Figure 4.2. Using Holm–Bonferroni-corrected paired-

samples t tests to compare the group mean fit parameters, we determined that 

normalized durations peaked at 1.41 octaves (SD= 0.48) when the 2-Hz masker was 

presented—significantly lower than the peak duration obtained with the 10-Hz 

masker, which was located at 2.96 octaves (SD = 0.35), t(7) = 7.56, p< 0.001. 

Although estimated standard deviations were on average wider with the 10-Hz masker 

than the 2-Hz masker—1.79 octaves (SD = 0.82) and 1.46 octaves (SD = 0.238), 

respectively—this difference did not reach statistical significance, t(7) = 1.25, p = 

0.25. There was no significant difference between the amplitudes of the 2- and 10-Hz 

maskers, t(7) = 0.12 p = 0.91. These results for the estimated parameters were not 

driven by the quality of function fits, as R2 values were comparable between the two 

masker frequencies, R2
2 = 0.78 (SD = 0.07) and R10

2 = 0.74 (SD = 0.17).  

4.2.2.2 Normalized contrast thresholds 

The threshold results for Experiment 1 are summarized in Figure 4.2b. The 

effect of eye dominance on thresholds was first examined using separate 2 × 5 

repeated-measures ANOVAs (eye dominance × target temporal frequency) for each 

masker frequency. Target temporal frequency had a significant main effect in both 

instances—2 Hz: F(4, 36) = 12.16, p< 0.01 (Greenhouse–Geisser corrected), ηp
2 = 

0.58; 10 Hz: F(4, 36) = 8.03, p < 0.001, ηp
2 = 0.47. These results were not influenced 

by eye-specific trends, as eye dominance had no significant effect on thresholds—2 

Hz: F(1, 9) = 3.10, p = 0.11, ηp
2 = 0.26; 10 Hz: F(1, 9) < 1—and did not interact 
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significantly with target temporal frequency—2 Hz: F(4, 36) < 1; 10 Hz: F(4, 36) = 

1.87, p = 0.14, ηp
2 = 0.17. The data were therefore collapsed across both eyes and 

reanalyzed with a 2 × 5 repeated-measures ANOVA (masker × target temporal 

frequency). Our results showed that target temporal frequency had a significant effect 

on thresholds, F(4, 36) = 8.22, p < 0.001, ηp
2 = 0.48, but masker frequency did 

not, F(1, 9) < 1. Similar to the suppression-duration data, both factors interacted 

strongly, F(4, 36) = 14.32, p < 0.001, ηp
2 = 0.61, increasing in magnitude as the 

difference between target and masker frequencies decreases. These differences were 

verified by Holm–Bonferroni-corrected paired-samples ttests. This showed that the 2-

Hz masker produced significantly higher thresholds than the 10-Hz masker when the 

target modulated at 2 and 3 Hz—t(9) = 3.60, p < 0.05, and t(9) = 3.23, p < 0.05, 

respectively—and that the 10-Hz masker produced significantly higher thresholds 

when the target modulated at 5 and 10 Hz—t(9) = 3.93, p < 0.05, and t(9) = 3.07, p < 

0.05, respectively.  

As with normalized durations, normal Gaussian functions were fitted to each 

individual's threshold data. Fits for two participants were excluded from the group 

analysis due to poor-quality fits (e.g., R2 value of 0.15). Estimated parameters from 

the remaining individual's fits were compared using Holm–Bonferroni-corrected 

paired-samples t tests. Similar to normalized durations, peak threshold elevation 

produced by the 2-Hz masker occurred at 1.36 octaves (SD = 0.74), significantly 

lower than the 10-Hz masker's 3.02 octaves (SD = 0.74), t(7) = 22.1, p < 0.001. There 

were no significant differences in estimated amplitude, t(7) = 2.20, p = 0.19, or 

standard deviation, t(7) = 0.06, p = 0.95. Similar to normalized durations, both the 2- 

and 10-Hz masker frequencies had comparable quality of fit, R2
2 = 0.70 (SD = 0.18) 

and R10
2 = 0.71 (SD = 0.10), t(7) = 0.22, p = 0.83.  
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4.2.3 Discussion 

Experiment 1 asked if CFS suppression strength depended on the temporal-

frequency difference between target and masker. Using temporally narrowband 

filtered-noise maskers, we measured the effect of masker temporal frequency at 2 and 

10 Hz on the suppression durations and contrast sensitivity thresholds of targets 

modulating at 2, 3, 5, 7.5, and 10 Hz. Although the suppression-duration data were 

more variable than contrast thresholds (see confidence intervals in Figure 

4.2a and 4.2b), in general, greater suppression durations and contrast thresholds were 

obtained with increasingly similar target and masker temporal frequencies. This was 

true regardless of masker frequency, and suggested a strong effect of temporal-

frequency selectivity in CFS suppression for both dependent measures. Similar 

conclusions are supported by analyses of data from individual participants. 

Specifically, normal Gaussian functions fitted to individual data showed significantly 

lower estimated means for the 2-Hz masker, but there were no differences in 

estimated standard deviations and amplitudes. Thus, neither masker frequency was 

more sensitive to differences in target temporal frequency than the other, nor had a 

suppressive advantage as has been previously suggested from studies using static 

targets (Han et al., 2016; Kaunitz et al., 2014; Zhu et al., 2016). What counted in the 

present experiment, regardless of masker frequency, was the relative difference 

between target and masker temporal frequency, with maximum suppression occurring 

for small frequency differences. These results were also not linked to eye dominance, 

as it neither had an effect on contrast thresholds nor interacted significantly with 

target temporal frequency.  

These observations offer an explanation of the different optimal Mondrian 

update rates reported in the literature. Nevertheless, the findings are not entirely 
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surprising. As mentioned earlier, high and low temporal frequencies have been shown 

to elicit responses in different neuronal populations. Specifically, greater 

parvocellular responses are recorded at low temporal frequencies and greater 

magnocellular responses are recorded at higher frequencies (Alitto, Moore, Rathbun, 

and Usrey, 2011; Derrington and Lennie, 1984; Livingstone and Hubel, 1988). 

Although the magnocellular and parvocellular pathways are reported to interact 

(Ferrera, Nealey and Maunsell, 1994; Nealey and Maunsell, 1994; Sawatari and 

Callaway, 1996), we would expect greater interference, and thereby longer 

suppression of the target, when targets and maskers engage similar neuronal 

populations, as the masker is effectively noise in the same channel as the target, with 

the masker dominating the output because of its much higher contrast.  

Neurophysiological studies have shown that activity triggered by higher 

temporal frequencies is capable of suppressing lower frequencies in the lateral 

geniculate nucleus, whereas lower frequencies have not been found to inhibit higher 

frequencies (Fawcett, Barnes, Hillebrand, and Singh, 2004; Freeman, Durand, Kiper, 

and Carandini, 2002; Hawken, Shapley, and Grosof, 1996; Reid and Alonso, 1996; 

Shou and Leventhal, 1989; Yen, Fukuda, and Kim, 2012). Similar asymmetrical 

observations have been reported in a human psychophysical study, with binocularly 

viewed high-temporal-frequency stimuli (>4 Hz) found to mask low frequencies but 

not vice versa (Cass and Alais, 2006). These trends were not observed in our data, 

suggesting that the underlying mechanisms might be cortical in origin. Nevertheless, 

we did not view the lack of asymmetry as precluding precortical contributions, as 

interocular competition could occur at multiple levels (Pearson and Clifford, 2006). 

For instance, although monocular inputs to the lateral geniculate nucleus are largely 

segregated in separate layers (Meissirel, Wikler, Chalupa, and Rakic, 1997), feedback 
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signals from V1 may produce fluctuations in lateral geniculate nucleus activity that 

correlate with rivalry alternations (Haynes et al., 2005; Wunderlich, Schneider, and 

Kastner, 2006).  

4.3 Experiment 2 

In Experiment 1, normalized suppression durations and target contrast 

thresholds increased as target and masker temporal frequencies became similar. 

Neither masker frequency had a suppressive advantage over the other, producing 

comparable amplitudes and spreads of normalized durations and thresholds. These 

results suggested dominant cortical influences, and the goal of Experiment 2 was to 

evaluate this idea. To do so, we asked if the effect of target orientation on suppression 

durations and contrast thresholds differs between 2- and 10-Hz maskers. The 

reasoning behind this approach is as follows. Precortical regions are poorly tuned to 

orientation (Reid and Alonso, 1996; Shou and Leventhal, 1989) and are more 

responsive to higher temporal frequencies (Hawken et al., 1996). These properties 

have been linked to cross-oriented masking in V1 (Freeman et al., 2002), where 

effective target suppression is produced by fast-modulating, orthogonally oriented 

maskers (Alitto et al., 2011; Cass and Alais, 2006). Comparing the effect of 

orientation between 2- and 10-Hz maskers thus allows us to infer the relative 

contributions of precortical and cortical influences. If CFS suppression were 

underpinned by substantial precortical influences, the 10-Hz masker would produce a 

less orientation-specific effect than the 2-Hz masker. In contrast, a more dominant 

cortical influence in CFS would produce comparable orientation effects on target 

suppression for both masker frequencies and suppression.  
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4.3.1 Materials and methods 

4.3.1.1 Visual stimuli	

All targets and masker stimuli were generated with the same spatiotemporal 

filtering technique as in Experiment 1 (3 c/° spatially and 2 or 10 Hz temporally), 

with the addition that these stimuli were also spatially filtered in frequency space 

using a Gaussian orientation filter with an orientation bandwidth of ±10°. See 

examples of masker stimuli in Figure 4.1b and Supplementary Movies S3 and S4. 

Targets and maskers always had the same temporal frequency in this experiment—

either both 2 Hz or both 10 Hz—and were either iso- or cross-oriented, making a 2 × 

2 factorial combination. Targets and maskers were normalized to maximum contrast 

(15% RMS) and set to mean luminance. Maskers were approximately 5.4° × 5.4° in 

dimensions (128 × 128 pixels), whereas targets, measuring 1.5° × 1.5° in diameter, 

were generated by windowing the spatiotemporally filtered noise images with a small 

Gaussian mask (SDxy = 8.8 pixels). Both targets and maskers were enclosed in a 0.5°-

thick checkerboard frame (5.9° × 5.9° externally and 5.4° × 5.4° internally). Maskers 

were presented at 95% of maximum contrast and spanned the entire 5.4° × 5.4° area.  

4.3.1.2 Participants	

Suppression durations and thresholds were measured for two participants (both 

female; age range: 19–20 years). Another eight participants (six women, two men; 

age range: 19–24 years, SD = 1.64) completed the b-CFS task, and threshold 

measurements were recorded for another six participants (two women, four men; age 

range: 19–30 years, SD = 3.9). All participants had normal or corrected-to-normal 

visual acuity. Participants also had normal stereovision, assessed using the Fly Stereo 

Acuity test. All experiments were performed with the approval of the institutional 

review board of the University of Sydney, and according to the principles of the 
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Declaration of Helsinki. Informed consent was obtained from all participants. 

Participants were reimbursed 20 AUD per hour for their participation.  

4.3.1.3 Eye-dominance assessment 

Eye dominance was assessed with the same test from Experiment 1.  

4.3.1.4 Procedure for b-CFS 

Targets were presented at a fixed contrast of 5% RMS, modulating at the same 

rate as the masker temporal frequency. The order of temporal frequency was blocked 

in a counterbalanced manner. Orientation was also randomized within each block, 

such that the difference in orientation between targets and maskers in a given trial was 

either 0° or 90°. This gave rise to a total of four conditions per eye: 2 Hz iso-oriented, 

2 Hz cross-oriented, 10 Hz iso-oriented, and 10 Hz cross-oriented. Participants were 

asked to report, as accurately as possible, the location (which quadrant) and 

orientation (horizontal or vertical) of the target as soon as it became visible. As in 

Experiment 1, maskers and targets were ramped in contrast during the initial 1,000 ms 

of each trial, with the masker presented 50 ms (five frames) before the target. Local 

adaptation was also reduced by presenting each target in one of four quadrants, with 

its location randomly chosen from a circle with a radius of 1° around the fixation 

cross. After each response, 5 s of dynamic white noise was presented to both eyes and 

the time required for the target to reach visibility was recorded. Twenty trials were 

recorded for each condition, giving rise to 10 trials per eye and a total of 80 trials per 

participant. Accurate trials were sorted according to eye dominance, and durations 

longer than three times the median absolute deviation from the median were identified 

and removed from each condition. Suppression durations were then normalized to the 

average duration for each subject across all conditions.  
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4.3.1.5 Procedure for CFS threshold measurements 

For each participant, masker temporal frequencies were presented in 

counterbalanced blocks, whereas target orientation and eye of origin were randomized 

within each block. The stimuli were presented on the screen for a total of 2,000 ms, 

immediately followed by 1,000 ms of dynamic visual white noise. Participants then 

judged the location of the target, which was presented in one of the four quadrants. 

The target contrast was varied with a 4AFC QUEST adaptive staircase procedure, and 

separate staircases were used for each eye and each orientation. These were 

interleaved within each block and consisted of 25 trials each. Thresholds were 

estimated by fitting the resulting experimental data with a cumulative Gaussian 

psychometric function using the maximum-likelihood estimation procedure. As this 

was a 4AFC task, thresholds were defined as the level of RMS contrast at which 

accuracy was 62.5%. The estimated thresholds for each participant were then 

normalized to the participant's average threshold across all conditions (i.e., masker 

temporal frequency, eye of origin, and orientation).  

4.3.2 Results 

4.3.2.1 Normalized suppression durations 

Prior to comparing the size of orientation effects between the 2- and 10-Hz 

maskers, we determined whether there were eye-dominance effects by conducting 

separate 2 × 5 repeated-measures ANOVAs (eye dominance × orientation) for each 

masker frequency. Orientation had a strong effect on normalized durations produced 

by 2- and 10-Hz maskers—F(1, 9) = 30.2, p < 0.001, ηp
2 = 0.77, and F(1, 9) = 

28.8, p < 0.001, ηp
2 = 0.76, respectively. Performance of neither masker was affected 

by eye dominance—2 Hz: F(1, 9) = 1.56, p = 0.24, ηp
2 = 0.15; 10 Hz: F(1, 9) < 1. 
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Similarly, the effect of orientation was not dependent on eye dominance—2 Hz: F(1, 

9) = 1.50, p = 0.25, ηp
2 = 0.14; 10 Hz: F(1, 9) < 1.  

Having established that there was no effect of eye dominance, we pooled across 

both eyes and processed raw suppression-duration data with the same exclusion 

criteria (i.e., accurate trial, no more than three times the median absolute deviation). 

We then conducted a 2 × 2 (masker temporal frequency × orientation) repeated-

measures ANOVA. The results are plotted in Figure 4.3a. There were significant main 

effects of masker temporal frequency, F(1, 9) = 9.91, p < 0.05, ηp
2 = 0.52, and target 

orientation, F(1, 9) = 53.86, p < 0.0001, ηp
2 = 0.86. These factors interacted 

significantly, F(1, 9) = 8.08, p < 0.05, ηp
2 = 0.47, and we examined this interaction 

more closely with Holm–Bonferroni-corrected paired-samples t tests. In general, iso-

oriented target–masker combinations produced significantly longer normalized 

durations—2 Hz: t(9) = 5.24, p < 0.01; 10 Hz: t(9) = 5.32, p < 0.01. As shown 

in Figure 4.3b, this difference was significantly larger for the 2-Hz masker, t(9) = 

2.84, p< 0.05, and was driven by the significantly longer durations for the 2-Hz iso-

orientation condition, t(9) = 3.01, p < 0.05.  
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Figure 4.3. (a) Data from Experiment 2 showing the effect of orientation and masker rates on target 
suppression durations. Suppressed targets were narrowband spatially filtered noise temporally modulating at 
either 2 or 10 Hz and were orientationally filtered to have the same or orthogonal orientation as the masker 
(i.e., iso-oriented and cross-oriented). Iso-oriented targets remained suppressed for longer durations, and this 
increase was larger with the 2-Hz masker than the 10-Hz masker. (b) Data from the same experiment 
showing the effect of masker rates on the size of orientation effects in normalized durations. Changes in 
normalized durations were larger for the 2-Hz masker compared to the 10-Hz masker, demonstrating a 
stronger orientation selectivity in the 2-Hz maskers. (c) Data from the same experiment showing the effect of 
orientation and masker rates on target contrast sensitivity thresholds. Similar to target suppression durations, 
thresholds were raised when the target and masker shared the same orientation, and this was true regardless 
of masker temporal frequency. However, we do not observe the same suppressive advantage in the 2-Hz iso-
orientation condition. (d) Data from the same experiment showing the effect of masker rates on the size of 
orientation effects in normalized thresholds. Unlike suppression durations, orientation had a comparable 
effect on normalized thresholds for 2- and 10-Hz maskers. Asterisks denote statistical significance after 
Holm–Bonferroni-corrected paired-samples t tests (*p < 0.05, **p < 0.01, ***p < 0.001), and all error bars 
represent 95% confidence intervals. 
 

4.3.2.2 Normalized contrast thresholds 

To examine the effect of eye dominance, the data were first analyzed with 

separate 2 × 2 repeated-measures ANOVAs (eye dominance × orientation) for each 

masker temporal frequency. Similar to Experiment 1, eye dominance did not 
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influence thresholds—2 Hz: F(1, 7) < 1; 10 Hz: F(1, 7) = 1.2, p = 0.31, ηp
2 = 0.15—

nor interact significantly with orientation at either frequency—2 Hz: F(1, 7) < 1; 10 

Hz: F(1, 7) = 2.08, p = 0.19, ηp
2 = 0.23. In contrast, orientation strongly affected 

thresholds—2 Hz: F(1, 7) = 47.4, p < 0.001, ηp
2 = 0.87; 10 Hz: F(1, 7) = 13.8, p < 

0.01, ηp
2 = 0.66. The data were therefore collapsed across both eyes and analyzed in a 

2 × 2 repeated-measures ANOVA, with masker frequency and orientation as 

independent variables. The results are summarized in Figure 4.3c. Holm–Bonferroni-

corrected paired-samples t tests were also conducted to evaluate the results of the 

ANOVA. Similar to the b-CFS results, there was a strong effect of orientation, F(1, 7) 

= 36, p < 0.001, ηp
2 = 0.84. There was, however, no effect of masker frequency, F(1, 

7) = 1.75, p = 0.23, ηp
2 = 0.20, and no significant interaction between masker 

frequency and orientation, F(1, 7) < 1. As with suppression durations, we found 

significantly higher thresholds for the 2- and 10-Hz iso-orientation conditions—t(7) = 

6.89, p < 0.001, and t(7) = 3.71, p < 0.05, respectively. However, there was no 

significant difference between the change in normalized thresholds for 2 and 10 

Hz, t(7) = 0.91, p = 0.40.  

4.4 General Discussion 

Despite the widespread use of CFS in studies of unconscious processing and 

awareness, work elucidating its underlying mechanisms is still incomplete. For 

example, faster masker refresh rates have generally been associated with greater 

interocular suppression (e.g., Xu et al., 2011), but recent studies show that this view is 

simplistic. Prolonged, static target presentations are more effectively suppressed by 

slower Mondrian update rates, for example, ∼6 Hz (Zhu et al., 2015; Zhu et al., 2016), 

whereas rates up to 28.5 Hz are required for brief target presentation times (Kaunitz et 

al., 2014). The disparity in trends could be attributed to temporal-frequency 
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selectivity, as the Mondrian masker contains more low-frequency energy at slow 

refresh rates and more high-frequency energy at faster update rates (Figure 4.1a). To 

test this idea, we presented a range of combinations of target and masker temporal 

frequency (i.e., 2- and 10-Hz maskers; targets at 2, 3, 5, 7.5, and 10 Hz). Two 

dependent measures were recorded—suppression duration and target contrast 

thresholds—as this allowed us to verify results obtained with the b-CFS paradigm. 

Since the b-CFS paradigm relies on subjective reports of visibility, measuring contrast 

thresholds provides a second, more objective dependent measure that allows us to rule 

out nonperceptual effects such as differences in participant criteria (Yang et 

al., 2014).  

Consistent with our hypothesis, Experiment 1	showed that suppression in CFS 

is temporal-frequency selective. Normalized durations and thresholds increased as the 

difference between target and masker temporal frequencies decreased, regardless of 

masker frequency. Gaussian approximations of the tuning functions also revealed 

that, apart from differences in estimated mean frequency, no significant differences in 

the estimated amplitudes and bandwidth were obtained for either dependent measure. 

In Experiment 2, clear increases were obtained in both dependent measures when iso-

oriented targets and maskers were presented, regardless of masker frequency. We also 

compared the sizes of orientation effects between the 2- and 10-Hz maskers, and 

found a significantly larger orientation effect with the 2-Hz masker when suppression 

durations were recorded, although this effect was not replicated with contrast 

thresholds. Presenting the masker in the dominant eye has been shown to produce 

greater interocular suppression (Yang, Blake, and McDonald, 2010), but this was not 

observed in our study. No significant effect of eye dominance was obtained, 

regardless of dependent measure. This might be related to the use of sighting 
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dominance as an eye-dominance assessment, as the current evidence linking sighting 

dominance and interocular suppression is mixed (Bosten et al., 2015; Dieter, Sy, and 

Blake, 2017). Nevertheless, the results did consistently reveal strong selectivity for 

orientation and temporal frequency in both dependent measures, suggesting that any 

effect of eye dominance would not have resulted in a drastic change in trend.  

We discuss the implications of the findings as follows. First, the b-CFS 

paradigm is often criticized for its susceptibility to non-perceptual effects such as 

participant decisional criteria (Yang et al., 2014). To account for these influences, a 

control where the target stimulus is presented in the masking eye is typically included 

and compared with the CFS condition (e.g., Jiang et al., 2007). Unfortunately, this 

comparison has been shown to be inappropriate (Stein et al., 2011), leading to the 

proposal that results obtained from this comparison method are better interpreted as 

evidence for differences in mere stimulus detectability (Stein and Sterzer, 2014). 

Similar trends between suppression durations and contrast thresholds were obtained in 

this study, suggesting that normalized duration could provide an excellent proxy for 

the more objective measure of contrast elevation, at least for investigations into CFS 

mechanisms. One exception was the size of orientation effects for the 2- and 10-Hz 

conditions; the suppression-duration data revealed a significantly larger effect of 

orientation in the 2-Hz condition, but this was not replicated with contrast thresholds. 

We do not have a firm understanding of this result, though given the inconsistent 

results and variability in the data (Figure 4.3b through 4.3d), it might be driven by 

differences in stimulus detectability and participant decisional criteria in the b-CFS 

task. The longer exposure period in b-CFS might also have a stronger adaptation 

effect on the 10-Hz masker (see Solomon, Peirce, Dhruv, and Lennie, 2004), thereby 

weakening its orientation effect. Note that these results contrast with those of Cass 



	 107	

and Alais (2006), who observed clear asymmetric inhibition of low frequencies and 

cross-oriented masking by high temporal frequencies. Obtaining these differences 

might be dependent on the type of visual presentation, as Cass and Alais (2006) used 

binocularly viewed maskers and targets.  

Second, by demonstrating that the suppression of temporal information is 

frequency selective and sensitive to orientation, we extend the work of previous CFS 

studies (Moors et al., 2014; Yang and Blake, 2012), contributing to an emerging 

theme that CFS suppression may be inherently feature specific. Contradictory 

evidence does exist in the literature, but our view is that in the absence of 

spatiotemporal control with narrowband stimuli, it is difficult to determine the extent 

to which feature selectivity influences CFS suppression. For example, Ananyev et al. 

(2017) found that regardless of target speed, slow-moving Mondrian patterns (1°/s–

2°/s) were most effective in suppressing a moving circular disk. Barring more 

complicated processes, basic spatiotemporal attributes of the stimuli could offer an 

explanation. As both the target and the masker patterns were composed of shapes with 

sharp spatial edges and uniform luminance, the spatial profiles would be broadband 

and 1/fn. Mathematically, temporal frequency is the product of spatial frequency and 

velocity, meaning that the stimuli would be biased toward low temporal frequencies. 

It therefore seems probable that the low-pass tuning observed in the study by 

Ananyev et al. might be a consequence of temporal-frequency selectivity. Such 

specificity is reminiscent of early visual cortical regions such as V1, where neurons 

exhibit narrow tuning functions to stimulus dimensions such as orientation, spatial 

frequency, and temporal frequency. Indeed, studies interested in the neural substrates 

of CFS suppression have implicated early visual areas (Maier et al., 2008; Watanabe 

et al., 2011; Yuval-Greenberg and Heeger, 2013). Robust activity reduction in higher 
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visual areas has also been reported (Fang and He, 2005; Hesselmann and 

Malach, 2011; Jiang and He, 2006), and it is possible that the use of spatiotemporally 

controlled stimuli like the ones used in the current study might shed some light on 

how these areas influence each other during CFS suppression.  

Third, temporal-frequency selectivity could offer possible explanations for 

phenomena such as stimulus fractionation in CFS (Moors, Hesselmann, Wagemans, 

and van Ee, 2017; Zadbood, Lee, and Blake, 2011). Bearing resemblance to 

independent form- and motion-suppressive processes in rivalry (Alais and 

Parker, 2006), CFS suppression was reportedly more effective on the form of the 

target than its temporal information. Visibility of temporal modulations increases with 

temporal rate but not target form, which remained suppressed (Zadbood et al., 2011). 

Since the Mondrian masker is biased toward low frequencies (Figure 4.1), temporally 

selective processes cannot exert substantial suppression on higher target frequencies. 

This is important, as it explains the increased dissociation between form and temporal 

information at higher target-modulation rates. Similarly, the low temporal dominance 

of the Mondrian masker could explain the preservation of dorsal-stream activity in 

CFS (Fang and He, 2005). Low temporal frequencies are more likely to elicit 

parvocellular responses (Derrington and Lennie, 1984) that feed into the ventral 

stream (Merigan and Maunsell, 1993). As a result, dorsal activity that is elicited by 

target attributes such as high temporal frequencies (Derrington and Lennie, 1984; 

Merigan and Maunsell, 1993) and elongated shapes (Sakuraba et al., 2012) is 

inevitably spared. As pointed out by Ludwig and Hesselmann (2015), differences in 

the extent of dorsal preservation (see Fogelson, Kohler, Miller, Granger, and 

Tse, 2014; Hesselmann and Malach, 2011) would then depend on the low-level 
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characteristics of the target and masker presented and the method of presentation 

used.  

Last, our findings can be distinguished from those of Alais and Parker (2012), 

who used spatiotemporally filtered stimuli similar to ours in a binocular-rivalry 

paradigm. Their competing stimuli were matched for size, contrast, spatial frequency, 

and orientation content, so that the only difference between them was temporal 

frequency, which was carefully manipulated. Rivalry alternations were only reliably 

reported when modulation rates differed by about two octaves (a fourfold difference), 

proving that interocular suppression can arise from temporal-frequency differences 

alone. This result differs from the temporally selective suppression observed in the 

present CFS study, but so too do the stimulus conditions. Here, spatially similar 

stimuli differ interocularly in size and contrast, whereas in the rivalry example only 

the temporal frequency differed (without which the images would fuse). Therefore, 

the two studies and their conclusions are not directly comparable. However, because 

rivalry and CFS paradigms both involve interocular suppression, we speculate that 

differences between the two studies may be related to the size disparity between 

masker and target in CFS. It is known in binocular rivalry that surrounding one rival 

image with a spatially similar annulus (e.g., same orientation) enhances suppression 

of the competing image—regardless of which eye receives the surround (Paffen et 

al., 2006; Paffen et al., 2004)—and thus the use of the large maskers and spatially 

similar targets in our study may contribute additional suppression in CFS.  

The feature-selective nature of CFS suppression has very important 

consequences. In particular, care should be taken when pairing targets and maskers to 

ensure that their stimulus properties overlap, to make sure the stimulus attributes of 

the target are appropriately suppressed by the masker. Spatiotemporally controlled 
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stimuli like the ones we have used here and elsewhere (Han et al., 2016) afford a high 

degree of stimulus control so that targets and maskers can be well matched. This is 

difficult with the commonly used dynamic Mondrian masker, as its amplitude 

spectrum, both temporally and spatially, is pink—that is, low frequencies dominate 

and high frequencies are only weakly present (Han et al., 2016; Yang and 

Blake, 2012). This means that there is the potential for some target attributes to 

escape interocular suppression, and this may lead to misleading reports of targets 

being processed in the absence of awareness. Our view is that careful matching of 

masker and target properties is very important in CFS research, both for elucidating 

the specific underlying mechanisms and for providing a more rigorous test for claims 

of processing without awareness.  

4.6 Conclusions 

This study mapped the temporal tuning of CFS suppression with temporally 

narrowband maskers and targets and found strong evidence of feature selectivity for 

temporal frequency. Two dependent measures, target suppression duration and target 

contrast threshold, both increased as the temporal-frequency difference between target 

and masker decreased. This pattern held for low- and high-frequency maskers, with 

consistent patterns for both measures showing that the two dependent variables are 

highly correlated. These findings add to evidence demonstrating feature selectivity in 

both binocular rivalry and CFS (Maehara et al., 2009; Moors et al., 2014; Yang and 

Blake, 2012) and suggest that a single model of interocular suppression could explain 

both paradigms. Finally, feature specificity has important implications for choosing 

CFS stimuli, as poorly matched maskers and targets may lead to particular target 

attributes escaping significant suppression and leading to spurious claims of 

processing without awareness.  
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Chapter 5 

General Discussion 
In CFS, a dynamic Mondrian sequence is presented to one eye while a static 

target is being presented to the other eye. It is widely used in studies of unconscious 

visual processing (e.g., Faivre et al., 2012), but investigations into its underlying 

mechanisms remain underway. Comparisons between CFS and more well 

documented dichoptic stimulation techniques such as BR and FS are common (e.g., 

Tsuchiya and Koch, 2005; Tsuchiya et al., 2006; Yang and Blake, 2012), but the 

extent of shared processes among these paradigms remains unclear. Nevertheless, 

studies generally attribute the effectiveness of CFS to the rapid pattern changes (or 

transients) in the dynamic Mondrian (e.g., Tsuchiya and Koch, 2005; Tsuchiya et al., 

2006; Yang and Blake, 2012). This assumption has not been properly tested, and my 

goal in this work was to evaluate the importance of transients in CFS. To do so, I 

examined the role of temporal frequency in CFS, as it was a straightforward approach 

of varying the amount of transients presented. 

Temporal frequency was also studied because the seeming importance of 

transients in CFS contrasted with BR, which did not appear to rely strongly on 

temporal modulations. For example, motion stimuli were typically used to introduce 

temporal modulations in BR, but rivalry was only possible between dichoptically 

presented motion if there were also some form of spatial conflict, such as a difference 

in motion direction or speed (Nguyen et al., 2003; Alais and Parker, 2006). In 

addition, BR has been shown to occur less with higher temporal frequencies (Carlson 

and He, 2000). Hence, studying the role of temporal frequency in CFS would provide 

further insight on the relationship between CFS and BR. In the following section, I 

present the main findings of this thesis and discuss their implications in Section 6.3. 



	 112	

The future directions of this research are presented in Section 6.4, and the thesis 

concludes in Section 6.5.  

5.1 Summary of main findings 

I studied the role of temporal frequency by measuring the temporal frequency 

tuning function of CFS (Chapter 2). This approach tested two main assumptions of 

CFS research, namely, the method of manipulating temporal frequency by varying the 

number of patterns per second and the importance of transients in CFS suppression. I 

opted for the more precise manipulation of periodic changes in pixel luminance over 

time (cycles per second), because the more common method of manipulation (i.e., 

patterns per second) neglects the pixel luminance changes between each pattern 

update (see Figure 2.1 in Chapter 2). A Fourier transform analysis was first conducted 

on the Mondrian masker, revealing a low-pass temporal frequency spectrum. If the 

two methods of manipulating temporal frequency were equivalent, I would replicate 

the broad tuning functions obtained by previous studies (Tsuchiya and Koch, 2005; 

Zhu et al., 2016). Using temporally narrowband maskers, I measured a narrow, low 

frequency peak around 1 Hz that became more pronounced with higher spatial 

frequency and visual contrast. These observations argued against the importance of 

transients in CFS and were in favour of low temporal frequencies. However, as the 

temporally narrowband noise maskers were devoid of spatial edges and contours, it 

was possible that relevant mechanisms such as pattern masking were not considered. 

It was also possible that the tuning observed with noise maskers was not reflective of 

that in CFS, which is typically conducted with dynamic Mondrian sequences. 

The second study (Chapter 3) addressed these issues. I re-assessed the low 

frequency bias and examined the relationship between temporal frequency and the 

Mondrian pattern. Consistent with Study 1, slower maskers (< 4 Hz) were more 
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effective than faster maskers, but they also worked better with coherent edge 

structure. Since pattern masking is more likely to be effective with shorter temporal 

intervals (Enns and Di Lollo, 2000), this suggests that the results of the first study 

were not a consequence of excluding spatial edges and contours. The second study 

also revealed an interaction between low and high spatial frequency pattern 

components (i.e., solid areas and pattern edges respectively). Specifically, reducing 

the structural integrity of solid areas weakened suppression strength when pattern 

edges were relatively intact, but not when the edges were phase-scrambled to a larger 

extent. These results may have an underlying mechanism similar to that of scene 

perception, where interactions between low and high spatial frequency image 

components were attributed to interactions between early and late visual processing 

regions (e.g., Peyrin et al., 2010).  

The final study of this thesis (Chapter 4) addressed the conflicting tuning 

functions obtained in the CFS literature. For example, tuning functions measured with 

static targets tended to peak broadly around pattern update rates of 3-10 Hz (Tsuchiya 

and Koch, 2005; Zhu et al., 2015; but see Xu et al., 2011), whereas rapid update rates 

were likely to be more effective when masking transient targets (Kaunitz et al., 2014). 

Since increasing the number of patterns presented per second broadens the temporal 

frequency spectrum (Figure 4.1), the low temporal frequency tuning observed in the 

first two studies might be a consequence of temporal selectivity. Thus, I tested the 

hypothesis that CFS is temporal-frequency selective in the final study of this thesis. 

As in the first study, temporally narrowband filtered-noise maskers were used, as 

these provide finer spatiotemporal control. As expected, the results showed that CFS 

was more effective when targets were of a similar frequency as the masker. 

Interestingly, the strength of the temporal frequency selectivity did not differ between 
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low (2 Hz) and high (10 Hz) frequency maskers, and there was no conclusive 

evidence that the magnitude of orientation selectivity varied between the two types of 

maskers. Binocularly viewed, high and low temporal frequency stimuli have been 

shown to have an asymmetrical relationship, with high frequencies (> 4 Hz) being 

capable of masking lower frequencies but not vice versa (Cass and Alais, 2006). This 

asymmetrical relationship resembles interactions between high and low frequencies in 

the LGN (e.g., Fawcett et al., 2004), which is also less orientation selective than 

cortical regions. Thus the comparable magnitudes of temporal frequency and 

orientation selectivity obtained with the low and high frequency maskers in the final 

study suggest predominant cortical influences in CFS. 

5.2 Implications 

The results of this thesis have three main implications, to be discussed in detail 

in the sections below. The first is the need to consider an alternative method of 

manipulating temporal frequency when assessing CFS. That is, instead of construing 

temporal frequency as the number of pattern changes per second, cycles per second 

could be a useful alternative. The second is the relationship between BR and CFS. 

The third implication pertains to the effective use of CFS and the factors to be 

considered.  

5.2.1 Manipulating temporal frequency 

I adopted an alternative method of manipulating temporal frequency, varying 

the number of periodic changes in pixel luminance per second instead of number of 

pattern updates per second. The results showed that the two methods of manipulation 

were not functionally equivalent, and they also argued against the importance placed 

on transients (e.g., Tsuchiya and Koch, 2005). A contrarian sceptic might contend 

that, instead of providing insight into CFS mechanisms, my findings reveal an 
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alternative dichoptic stimulation method. Given that the low frequency narrowband 

noise maskers were as effective as the standard Mondrian masker (Chapter 2, Figure 

2.3c), this new dichoptic stimulation technique also has the advantage of better 

spatiotemporal control than the regular Mondrian sequence. However, as there was no 

evidence pointing to a different mechanism, I defaulted to a simpler position: 

manipulate temporal frequency with more precision.  

Apart from simplicity, the main benefit of the parsimonious approach lies in 

its explanatory power. For example, studies found that CFS suppression peaked 

broadly around pattern refresh rates of 3-10 Hz when static targets were used 

(Tsuchiya and Koch, 2005; Zhu et al., 2016), but increased with refresh rates when 

transients targets were presented (Kaunitz et al., 2014). By manipulating temporal 

frequency with more precision, I found that the broad tuning function obtained with 

static targets was an inevitable consequence of the temporal content of the traditional 

flickering masker, which remained low-biased across refresh rates (Figure 2.1d of 

Chapter 2). As described by Figure 2.1c of Chapter 2, I learnt that pixel luminance 

timelines tended to modulate approximately three times slower than the nominal rate, 

at ~3 Hz for a 10 Hz refresh rate. Refresh rates of 3 to 10 Hz should produce 

luminance modulations of around 1 to 3 Hz, which are frequencies that fall within the 

same frequency channel as the 1 Hz peak (Anderson and Burr, 1985; Cass and Alais, 

2006; Snowden et al., 1995). Since the peak refresh rates of 3 to 10 Hz were observed 

with static targets (e.g., Tsuchiya and Koch, 2005), the correspondence to the low 

temporal frequency channel suggested that CFS suppression was temporal frequency 

selective. This could explain the positive relationship observed between pattern 

refresh rates and CFS suppression strength when transient targets were used in 

previous research (Kaunitz et al., 2014). Consistent with this idea, I found evidence of 
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temporal frequency selectivity in CFS in the final study (see trends in Figure 4.2 of 

Chapter 4).  

Manipulating temporal frequency by varying the number of periodic changes 

in pixel luminance per second also provides a better explanation for stimulus 

fractionation. As discussed in Chapter 4, stimulus fractionation is a phenomenon 

where CFS is more effective on some low-level properties of a target than others. For 

example, CFS was found to be more effective on the spatial form of a target than its 

temporal information, and this dissociation increased when the temporal rate of the 

target increased (Zadbood et al., 2011). Assuming that the number of pattern changes 

were a valid measure of temporal content, then based on the feature-selective nature 

of CFS (e.g., Moors et al., 2014; Yang and Blake, 2012), we would predict greater 

dissociation between form and temporal information at low target-modulation rates. 

Empirically, however, greater dissociation was reported for higher target rates 

(Zadbood et al., 2011). These observations could be explained by the Mondrian’s 1/f 

distribution of temporal luminance modulations (Figure 2.1d of Chapter 2) and the 

temporal-selective nature of CFS (Figure 4.2 of Chapter 4), which were observations 

obtained with a more precise manipulation of temporal frequency.  

A second benefit is the provision of new predictions and new insights. The 

finding of a 1/f temporal frequency spectrum for the Mondrian masker demonstrated 

how temporal whitening could be involved in our perception of CFS. As 

aforementioned in Chapter 3, temporal whitening is a phenomenon where participants 

consistently overestimate the proportion of high spatial and temporal frequency 

energy across different spatiotemporal profiles of broadband noise stimuli (Cass et al., 

2009). This overestimation could explain the salience of transients in the Mondrian 

masker, even though the stimulus is biased towards low temporal frequencies. With 
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regard to the mechanism underlying temporal whitening, previous studies have 

suggested that it could involve asymmetrical inhibition in temporal frequency 

processing, i.e., high frequencies (> 4 Hz) inhibit low frequencies but not vice versa 

(Cass and Alais, 2006; Cass et al., 2009). Such asymmetrical interactions have been 

observed in pre-cortical regions (Fawcett et al., 2004), raising questions regarding the 

involvement of these regions in CFS.  

The Mondrian’s 1/f distribution of temporal luminance modulations (Figure 

2.1d of Chapter 2) also showed that Mondrian masker was more temporally 

predictable than its stochastic impression. This contrasted with the spatial layout of 

the Mondrian’s pattern edges, which was randomly sampled per pattern update and 

was not strongly correlated among the different pattern updates (Figures 5.1a-b). If 

the predictability of Mondrian sequences were to have any effect on CFS 

effectiveness, one would expect spatial uncertainty to have a larger contribution than 

temporal uncertainty. Indeed, in work conducted outside the scope of this thesis, I 

found a modest effect of spatial entropy on the predominance of the Mondrian masker 

and no convincing effect of temporal entropy on the Mondrian’s predominance 

(Figure 5.1c). As illustrated in Figure 5.1d, this trend remained when two Mondrians 

of varying spatiotemporal predictability but equal RMS contrast were pitted against 

each other.  
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Figure 5.1 Effect of spatiotemporal predictability. (a) Spatial correlations among different pattern updates of the 

Mondrian sequence. Spatial edges of each pattern (128 by 128 pixels) were first extracted using the Canny method 

(Canny, 1986). Then, using a reference template (30 by 30 pixels) extracted from the first pattern of the sequence, 

I performed a two-dimensional cross-correlation on the pattern edges of the remaining patterns. The resultant 

histogram of the normalised cross-correlation coefficients peaked around zero, revealing a weak correlation among 

spatial patterns. (b) Manipulations of spatiotemporal predictability of the Mondrian sequence. The Standard 

Mondrian masker had the highest spatiotemporal unpredictability. It was updated with a random pattern every 100 

ms, resulting in random changes in luminance and spatial pattern profiles. Generating single pattern sequences 

increased spatial predictability, and two generated sequences were the Fixed and Sine maskers. The Fixed masker 

had the same temporal timeline as the Standard masker whereas the Sine masker modulated regularly (and more 
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predictably than the Fixed masker) at 2 Hz. The temporal frequency content was comparable across all three 

maskers as the Standard and Fixed Mondrian sequences were temporally 1/f (Cf. Figure 2.1d of Chapter 2). (c) 

The effectiveness of the three sequences as CFS maskers were assessed in a tracking paradigm, in which 

participants tracked the visibility of a 0.125 Hz contrast-modulating bullseye target. The violin plots represent the 

distributions of data points, the median and the median absolute deviation (denoted by error bars). Each data point 

represented the percentage of viewing time in which the Mondrian sequence was dominant (predominance). 

Demonstrating the importance of spatial unpredictability, Fixed maskers had a significantly lower predominance 

than Standard maskers. However, this effect was limited to the stepped timeline of the Fixed maskers, as Sine 

maskers were as effective as Standard maskers and performed better than Fixed maskers. (d) Matched in RMS 

contrast, the different Mondrian sequences were pitted against each other in a rivalry paradigm. To compare their 

respective effectiveness, I computed the subtracted the predominance of the Sine masker from the Standard and 

Fixed masker respectively. The results showed that spatial unpredictability (Standard–Sine) produced a larger 

effect on Mondrian predominance than temporal unpredictability. All pairwise comparisons were conducted with 

the Wilcoxon signed-rank test in R (R Core Team, 2017) and subjected to Holm-Bonferroni corrections where 

applicable. Error bars represent the median absolute deviation of individual data points. 

 

Finally, a third benefit of manipulating temporal frequency more precisely is 

that it is now possible to conduct CFS studies with more spatiotemporal control. 

Given the inconsistent conclusions on the unconscious processing of threat-related 

stimuli (Hedger et al., 2016), greater spatiotemporal control can only provide more 

clarity about observed effects and allay doubts that an observed effect is a mere 

product of confounding spatiotemporal factors. Moreover, adopting a different 

method of manipulation does not mean that the stepped transients of the Mondrian 

have no role in CFS suppression. They probably do, though my findings would 

suggest that they play a smaller role than previously assumed (Chapters 3-5). One 

speculation is that the transients provide dichoptic masking, and having a stepped 

presentation schedule in the Mondrian masker is a convenient way to simultaneously 

generate transients with a preponderance of a low temporal frequencies.  

Understanding how transients contribute to CFS would therefore be a question for 

future investigation, as it would inform us how to best generate CFS, and when to use 

the Mondrian masker. 

 



	 120	

5.2.2 Relationship to BR 

As discussed in the Introduction, the similarities between CFS and BR 

provided an opportunity to evaluate my empirical findings against a BR framework. 

Both paradigms exhibit qualities that resemble a P/ventral pathway bias, such as the 

suppressive advantage provided by edges and high visual contrast (Maehara et al., 

2009; Tsuchiya and Koch, 2005; Baker and Graf, 2009a; see also Table 3 in Section 

1.6 of Chapter 1). However, temporal frequency appeared to affect each paradigm 

differently, as the nominal 10 Hz Mondrian refresh rate in CFS was too high for a 

P/ventral pathway biased mechanism (Derrington and Lennie, 1984). By re-defining 

temporal frequency in terms of luminance, I showed that the nominal refresh rate was 

actually characterised by slow rates of luminance changes in the temporal frequency 

spectrum (Chapter 3). The low-biased temporal frequency content was also related to 

suppression strength, which was further enhanced by spatial edges (Chapters 3-4). 

Consistent with previous research (Tsuchiya and Koch, 2005), suppression was 

enhanced by higher masker contrasts. Raising masker contrast also did not plateau 

beyond the saturation of M neurons, i.e., 30 % and above (Green et al., 2009; Chapter 

3). These properties were reminiscent of the P/ventral pathway bias in BR, resolving 

the discrepancy observed with the conventional method of manipulating temporal 

frequency. Table 6 presents the updated comparisons between BR and CFS, and 

shows how similar they are on several relevant stimulus dimensions. 
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Table 6: Some factors that influence BR and CFS suppression (updated) 

Factors  BR CFS 
Spatial frequency  
 
 
 
 
 
Temporal frequency 

Enhanced by phase-aligned high spatial 
frequency, e.g., images with naturalistic 
edges have a greater predominance (e.g., 
Baker and Graf, 2009a). 

Image contours are capable of cross-
channel suppression (Maehara et al. 
2009). Longer suppression durations 
when maskers contain intact pattern 
edges (Han et al., 2018; Chapter 3) 

 
Lower incidence of rivalry at high 
frequencies (Wolfe, 1983), but transients 
reset perceptual dominance temporarily 
(Blake et al., 1990).  

 
Longer suppression durations with 
lower temporal frequencies (Han et al., 
2016; Chapter 2).  
Faster rates are required for transient 
targets (Kaunitz et al., 2014; Han and 
Alais, 2018; Chapter 4).  

 
Relative visual contrast 

 
Enhanced by higher contrast, e.g., average 
dominance durations increase with contrast 
when the stimuli are small (Kang, 2009). 

 
Suppressions durations tend to increase 
with contrast (Tsuchiya and Koch, 
2005), especially when maskers are of 
lower temporal frequency content  
(Han et al., 2016; Chapter 2) 

 
Feature selectivity 

 
Enhanced when rivalling stimuli share 
similar features e.g., higher contrast 
thresholds when rivalling stimuli share 
similar orientations (Stuit et al., 2009). 

 
Stronger suppression with similar 
spatial frequencies (Yang and Blake, 
2012) and speeds (Moors et al., 2014).  

 

Understanding that CFS may have a P/ventral pathway bias and is very similar 

to BR opens up the possibility of using BR as a reference for understanding the 

differences between the two paradigms. For example in Chapter 4, I found evidence 

of temporal frequency selectivity in CFS, but reliable BR alternations were only 

reported for frequencies that were about two octaves apart (Alais and Parker, 2012). 

Since the targets used in Chapter 4 were spatially matched to the larger-sized masker, 

the difference might be explained by surround suppression. In surround suppression, 

the suppression of a rival image could be enhanced by adding a spatially similar 

annulus (Paffen et al., 2006), and this effect can operate in interocular (dichoptic 

surrounds), monocular or binocular presentations (Chubb, Sperling and Solomon, 

1989; Paffen et al., 2004; Paffen et al., 2005). Consistent with this idea, I found 

evidence of surround suppression in another collaborative study conducted beyond 

the scope of this thesis. In that study, I measured the effectiveness of Mondrian 
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maskers made of 1-dimensional spatial noise and compared the effects of collinear 

and non-collinear surrounds. As expected, when the maskers were enlarged with 

collinear surrounds, suppression was less effective than maskers with non-collinear 

surrounds and maskers without surrounds (see Figure 5.2 below). Given that the 

Mondrian patterns are randomly sampled and are less likely to have a high degree of 

collinearity between the central and surrounding portions of the masker, it made sense 

why CFS seems to immune to changes in masker size. Larger BR stimuli tend to have 

more incidences of piecemeal rivalry (Blake et al., 1992) and tend to conform to 

Levelt’s original second proposition (Kang, 2009), presumably because the stimulus 

contours are not stochastically updated like CFS. 

 

Figure 5.2 Effect of level of masker contour collinearity on CFS suppression. The performance of a central 

masker (radius of 1.29°) was recorded in the presence or absence of surrounds (external radius of 3.2° and 

internal radius of 1.38°, 9° gap between surround and central mask) that were either collinear to the central 

mask or orthogonal to the central mask. All maskers were presented at high contrast (RMS = 20 %) and were 

used to suppress a 3 cpd sinusoidal grating (radius of 1°) tilted 5° to the left or right. Performance was 

measured using the b-CFS paradigm. In general, suppression durations were significantly lower when the 
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central mask is enlarged by a collinear surround, and significantly higher when a non-collinear surround is 

used. 

Another advantage of using BR as a reference is that it provides alternative 

insights into why CFS suppression durations peak around 1 Hz in Chapter 3. Studies 

posit that rivalry alternations are dependent on the balance of neural activity between 

the two eyes, switching to the less dominant image once neural activity associated 

with the contralateral eye adapts and falls below a certain level (e.g., McDougall, 

1901; Carter and Cavanagh, 2007; Alais et al., 2010; see also Chapter 2 for details). 

Assuming that a similar mechanism underlies CFS target breakthroughs, we would 

expect any masker that adapts slowly to provide a greater amount of suppression. 

Having a preponderance of low temporal frequencies in the Mondrian masker fits the 

bill, since these stimuli are more likely to elicit P neural responses (Merigan and 

Maunsell, 1993). As P neural responses are more sustained than M neural responses, 

they are more likely to maintain the difference in neural activity between the two 

eyes, enhancing CFS suppression as a result. Note, however, that any advantage from 

the Mondrian’s low temporal frequency content is contingent on the temporal rate of 

the target. As shown in Chapter 4, high frequency targets (≥ 4 Hz) are best paired 

with high frequency maskers.  

The lack of eye-specific effects in Chapter 4 is another discrepancy between 

BR and CFS. If BR is used as a reference, it quickly becomes clear that a reason is the 

weak relationship between sighting dominance and interocular suppression (Bosten et 

al., 2015; Dieter et al., 2017). In fact, studies do report eye-specific effects in CFS 

(Yang et al., 2010). One possible reason for the lack of eye specific effects in Chapter 

5 is that the eye of origin was randomised across trials. Moors et al. (2015a) 

previously reported that serial correlations observed with variable-eye presentations 

were weaker and reversed in sign compared to fixed-eye presentations in CFS. 
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Similar correlations have also been reported in BR (Mamassian and Goutcher, 2005; 

Pastukhov and Braun, 2011; van Ee, 2009). Thus, while randomising the eye of origin 

across trials may be useful in reducing the effects of neural adaptation, the procedure 

might have inadvertently reduced the magnitude of any eye-specific effects.  

Perceptually, the Mondrian masker is characterised by rapid pattern onsets and 

offsets. It thus follows that these features are expected to contribute to suppression in 

a significant way. Studies have proposed alternative explanations such as the 

accumulation of FS processes (Tsuchiya et al., 2006) and dichoptic masking (Maehara 

et al., 2009), both which placed emphasis on the presence of transients. The empirical 

evidence presented in this thesis did not support the dominance of transient-driven 

mechanisms, suggesting instead a P-bias for static targets and temporal frequency 

selectivity for contrast-modulating targets. I postulate, however, that the pattern 

changes in the Mondrian might serve other purposes in CFS. For example, the sharp 

luminance onsets and offsets generate broadband temporal frequency content. This 

could allow the Mondrian to remain effective for a larger range of targets compared to 

narrowband maskers. In addition, the pattern changes produce unpredictable spatial 

information that could reduce adaptation incurred from the stepped presentation 

schedule of the Mondrian (Alais et al., 2010). The unpredictable pattern changes 

could also raise noise levels through dichoptic pattern masking (Agaoglu, Agaoglu, 

Breitmeyer, and Ogmen, 2015). Studies have suggested similar mechanisms between 

BR and dichoptic masking (Baker and Graf, 2009b; Boxtel et al., 2008), thus there is 

no reason to assume that these two processes cannot act in tandem.   
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5.2.3. Some guidelines on choosing a CFS masker 

An effective CFS masker must be able to accomplish two main goals. Firstly, 

it must be able to provide sufficiently long suppression durations that can last for 

more than a couple of block of trials in an experiment. This is a genuine concern as 

Kim, Kim and Blake (2017) showed that suppression with the regular, 10 Hz 

Mondrian masker decreases in effectiveness after extended periods of exposure to 

CFS. As illustrated in Figures 4.2 and 5.1c, one way to prolong the effectiveness of 

the masker is to use continuously varying maskers that match the temporal frequency 

content of the target. Maskers with stepped pixel timelines would suffice, but only if 

the spatial patterns are updated unpredictably to compensate for the neural adaptation 

incurred from periods of constant luminance (Figure 5.1 c-d; see also Alais et al., 

2010). Secondly, an effective CFS masker must be able to able to suppress the 

target’s contents. Partial suppression of neural activity elicited by the physical 

properties of the target would produce highly inconsistent results, such as findings 

obtained with threat-related stimuli (Hedger et al., 2016). Based on the results 

presented thus far, it is apparent that the low-level properties of the CFS masker have 

to be compatible with the target for optimal suppression. I have thus summarised a 

few principles regarding the effective use of CFS as a flowchart in Figure 5.3 below. 

Given the scope of this thesis, these pointers are focused on the temporal aspects of 

CFS, but future and ongoing research will only refine and add to these preliminary 

guidelines. 
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Figure 5.3. Temporal factors in choosing a CFS masker. To avoid partial suppression and to maintain CFS 

effectiveness, continuously varying targets are best paired with continuously varying maskers, and targets 

with contours are best paired with maskers with contours. Note that recommended maskers are predicted to 

provide optimal suppression; maskers not in the list may provide sufficient suppression, but perhaps with 

less effectiveness over time. For example, the contour-free, 1 Hz narrowband noise maskers in Chapter 2 

were effective suppressors of low contrast, natural image targets. 
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5.3 Future directions  

In Chapter 3, suppression was enhanced when high spatial frequency, static 

targets were used. Although a preference for higher spatial frequency content was also 

found in Chapter 4, the reverse has been reported by previous studies (e.g., Yang and 

Blake, 2012; Tsuchiya and Koch, 2005). Citing the 1/f spatial frequency profile of the 

Mondrian, Yang and Blake (2012) attributed the greater suppressive efficacy of lower 

spatial frequency content to spatial frequency selectivity. This does not necessarily 

preclude the possibility of a P-bias in CFS, but the inconsistency in findings warrants 

further thought and investigation. The maskers used in Chapters 3-4 had similar 

spatial frequency profiles to those used in previous studies, differing only in the phase 

structure of the masker (i.e., patterns composed of circles instead of squares in 

Chapter 4 and completely random phase structures in Chapter 3). In addition, the 

targets used in Chapters 3-4 were natural images instead of Gabors, meaning that the 

degree of similarity between the phase structures of the target and masker was also 

different from previous studies. Given that binocular fusion tends to take precedence 

over rivalry (Blake and Boothroyd, 1985), and that rivalry dynamics are influenced by 

the perceptual meaning of dichoptic stimuli (Andrews and Lotto, 2004), it is plausible 

that the difference in results might be contributed by the differences in target/masker 

pattern similarity. It would be interesting to see if we could still observe a preference 

for high spatial frequencies after ruling out the effect of pattern similarity. Another 

way to test the idea of a P-bias in CFS would be to present isoluminant, chromatic 

stimuli. Unlike the P/ventral pathway, the M/dorsal pathway is colour blind and is 

more sensitive to differences in luminance (Howard and Rogers, 1995). Comparing 

the suppressive performance of isoluminant, chromatic stimuli and grey-scale stimuli 

could give us a clearer idea of the extent of P-biased processes in CFS. 
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Another possible future direction is to measure the time course of CFS. Despite 

the similarities between CFS and BR, it remains unclear if target sensitivity varies in a 

similar manner in CFS. Given the imbalance in stimulus strength between the two 

eyes, the rate of growth in target sensitivity is likely to be slower. Alternatively, target 

sensitivity might remain constant for the initial suppression period, growing rapidly in 

the later phases of suppression. In addition, it would be interesting to compare the 

time courses obtained with target identity and target location judgments. As 

aforementioned, the rapid pattern onsets and offsets may serve as a form of pattern 

masking. In pattern masking, target visibility might be impaired by confusion or 

‘misbinding’ of the masker’s features with that of the target (Agaoglu et al., 2015). 

Assuming that CFS does involve pattern masking processes, then we would expect to 

see a dissociation between identity and location judgments, particularly at the later 

phases of the time course. If so, pattern masking might explain some of the 

inconsistencies regarding unconscious processing of threat-related stimuli (Hedger et 

al., 2016). For example, fearful faces tend to have wide-open mouths and/or eyes 

(Yang et al., 2007). These features create regions of high contrast that are salient and 

more recognizable than the features of neutral faces. These salient features would 

affect participant decisional criteria, an inevitable issue in the b-CFS paradigm (Yang 

et al., 2014).  

Lastly, apart from BR, other forms of bi-stable phenomena have been used to 

render a target invisible (e.g., Bonneh et al., 2001; Wilke, Logothetis, and Leopold, 

2003; O’Shea et al., 2009). A common oscillator has been proposed to underlie the 

different forms of perceptual rivalries (Carter and Pettigrew, 2003; see also Chapter 

1), and it would be interesting to test this proposition by evaluating CFS against other 

forms of perceptual bi-stability. For example, monocular rivalry (MR) was produced 
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when orthogonally oriented red and green gratings were optically superimposed and 

presented to one eye (Breese, 1899; O’Shea et al., 2009). Similar to BR, the 

dominance durations in MR were stochastic and followed a gamma distribution 

(O’Shea et al., 2009). Supplementary analyses on this thesis’ dataset showed that the 

distribution of CFS suppression durations was skewed to the right (see Figure S8), 

indicating the possible involvement of similar mechanisms. As suggested in this 

thesis, similarities among the different paradigms could be useful in refining CFS use.  

5.4 Conclusions 

CFS is form of visual presentation where a rapidly changing Mondrian 

sequence presented to one eye suppresses a static target in the other eye for several 

seconds at a time. Although closely related to other dichoptic stimulation techniques 

like BR and FS, the evidence linking CFS to either paradigm is mixed. As a start, this 

thesis examined the role of temporal frequency in CFS. This is because CFS’s 

effectiveness is typically attributed to the rapid pattern onsets and offsets of the 

Mondrian. Here, I adopted an alternative method of varying temporal frequency, 

interpreting more conventionally as the number of periodic changes in pixel 

luminance instead of number of pattern changes per second. The results revealed that 

the Mondrian had a low-biased temporal frequency spectrum, and this bias was 

corroborated in suppression durations (Chapters 3-4). There was also a preference for 

high spatial frequency and high contrast stimuli, demonstrating a P/ventral pathway 

bias that is reminiscent of BR. Further investigation in Chapter 5 revealed temporal 

frequency and orientation selectivity in CFS, suggesting an early locus of suppression 

and drawing closer links between BR and CFS. These similarities pointed to a unified 

framework, which was found to be instrumental in interpreting documented CFS 

findings and guiding future work with the technique.  
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Chapter 6 

Supplementary  

The following provides supplementary information and analyses for Chapters 2-4. 

6.1 Chapter 2 

6.1.1 Figure S1 

 

Figure S1. Boxplot describing the distributions of raw suppression durations obtained for each level of 
masker temporal frequency in Experiment 1. Median suppression durations were represented by dotted 
lines, and the interquartile ranges were represented by the box limits. Whiskers represented the 
maximum and minimum suppression durations and outliers were represented by the plus sign (+). The 
0.75 Hz to 1.5 Hz maskers were the most effective, producing maximum suppression durations of 
around 15 to 25s in those conditions. The least effective suppressors were 12.5 and 25 Hz maskers, as 
these produced maximum suppression durations of 4-5s, a 3 to 5-fold decrease from that obtained with 
the lower temporal frequency maskers.  
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6.1.2 Figure S2 

 

Figure S2. Gaussian functions were fitted to individual data. Consistent with the raw 
suppression duration data, normalised suppression durations were consistently higher at lower 
masker temporal frequencies, peaking around 0.75 Hz to 3 Hz across participants. 
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6.2 Chapter 3 

6.2.1 Figure S3 

 
Figure S3. Distributions of average normalised suppression durations for Experiment 1, demonstrating 
the effect of judgment type at each level of pattern structure type. Dotted lines represent mean 
normalised durations whereas solid error bars are 95 % confidence intervals. In general, longer 
normalised durations were required for identity judgments when phase-scrambled patterns were 
presented. In contrast, individual trends for location and identity judgments were more variable when 
intact patterns were used. 
 

 

 

 

 

 

 

 

 

 

 

 



	 133	

6.2.2 Figure S4 

 
Figure S4. Normalised individual data for Experiment 2. Dotted lines denote mean durations whereas 
solid error bars represent 95 % confidence intervals. The effect of individual pattern components is 
described in (a). In general, patterns were most effective in the order: intact, edges and solid areas. 
Individual data were comparable between solid areas and phase-scrambled patterns, and the sum of 
components remained less effective than intact patterns. As described in (b), normalised durations were 
longer when solid areas were intact, however this effect was more pronounced when edges were 
relatively more intact.   
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6.2.3 Figure S5 

        

 
 
Figure S5. Normalised individual data for Experiment 3, demonstrating the effect of pattern structure 
and temporal frequency content. In (a), participant responses were consistently faster when intact 
Mondrian patterns were temporally high-pass filtered. In contrast, temporally unfiltered intact patterns 
were comparable with low-pass filtered patterns. As described in (b), similar observations were made 
for phase-scrambled patterns. Although phase-scrambled patterns were in general weaker than intact 
patterns, normalised durations were slightly but consistently lower when high-pass filtered patterns 
were used. (c) Effect of temporal frequency on the effect of pattern structure: Percentage changes in 
normalised durations between intact and phase-scrambled patterns were lower when the patterns were 
temporally high-pass. In contrast, percentage changes were comparable between temporally unfiltered 
and low-pass filtered patterns. 
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6.2.4 Figure S6 

 

Figure S6. Boxplots described the distributions of raw suppression durations for Experiments 1 (a), 2a 
(b, Cf. Figure S4a), 2b (c, Cf. Figure S4b) and 3 (d) of Chapter 3. The median suppression durations 
were represented by dotted lines, and the interquartile ranges were represented by the box limits. 
Whiskers represented the maximum and minimum suppression durations and outliers were represented 
by the plus sign (+). 
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6.2.5 Text S1 

In Experiment 2, we decomposed the Mondrian pattern and found a 

predominant effect of pattern edges. Since edges have been implicated in both rivalry 

and masking, obtaining a predominant edge effect allowed us to compare the roles of 

either process in Experiment 3. These results are especially relevant to the 

understanding and effective use of CFS, and it would be helpful to have a measure of 

the evidence supporting these conclusions. However, given the nature of the 

permutation test and hypothesis testing (Morey, Romeijin, and Rouder, 2016), this 

was not possible. We thus conducted two-sided Bayesian t-tests (with a default 

Cauchy prior width of r =0.707) for each key finding using the web-based program 

developed by Rouder, Speckman, Sun, Morey and Iverson (2009). The Bayes factors 

reported in the following express the relative likelihood of the data being in favour of 

the alternative hypothesis (H1). Using suggested conventional cut-offs suggested by 

Jeffreys (1961, as cited in Dienes, 2014), factors greater than 3 represent substantial 

evidence for H1 whereas a factor less than 0.33 provides substantial support for the 

null hypothesis (H0). Any value that fell between 0.33 and 3 was regarded as 

providing weak evidence. Bayes factors for the key findings in Experiments 2 and 3 

are provided in the following sections (7.1.5 and 7.1.6), and they mirrored the 

conclusions of the permutation test.  

6.2.6 Table S1 

Bayes Factors were computed for the key findings of Experiment 2: 

1. Pattern edges were more effective than solid areas. 

2. Solid areas are comparable to phase-scrambled (PS) patterns.  

3. Relatively intact edges performed better when solid areas were more 

intact. 

4. Phase-scrambling edges to a larger extent eliminated the effect of solid 

areas. 
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Conditions compared 

(C1, C2) 

Mean 

(M1, M2) 

SD 

(SD1, SD2) 

Bayes Factor 

favouring H1 

Corrected 

p values 

Strength of 

evidence 

Edges, Solid areas 1.09, 0.62 0.29, 0.26 159.81 .005 Substantial 

Solid areas, PS 0.63, 0.49 0.26, 0.26 1.26 .30 Weak 

Edges, PS 1.09, 0.49 0.29, 0.26 167.48 .004 Substantial 

20%, 60% edges  

(at 20% solid areas)  

1.56,1.00 0.33, 0.25 10.58 .012 Substantial 

20%, 60% solid areas  

(at 60% edges) 

0.77, 0.67 0.18, 0.27 0.47 .39 Weak 

 

6.2.7 Table S2 

Bayes Factors were computed for the key findings of Experiment 3: 

1. Comparisons involving intact (I) patterns 

a. Low-pass maskers were more effective than high-pass maskers. 

b. High-pass maskers were weaker than unfiltered maskers. 

c. Low-pass maskers were comparable to unfiltered maskers. 

2. Comparisons involving phase-scrambled patterns (PS) 

a. Low-pass maskers were comparable to high-pass maskers. 

b. High-pass maskers were weaker than unfiltered maskers. 

c. Low-pass maskers were comparable to unfiltered maskers. 

3. Comparison examining the magnitude of the effect of the pattern structure (P) 

a. Low-pass maskers had a larger pattern effect than high-pass maskers. 

b. High-pass maskers had a smaller pattern effect than unfiltered maskers. 

c. High-pass maskers had a comparable pattern effect with unfiltered 

maskers 
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Conditions compared 

(C1, C2) 

Mean 

(M1, M2) 

SD 

(SD1, SD2)	

Bayes Factor 

favouring H1 

Corrected p 

values 

Strength of 

evidence 

Low- and high-pass (I) 1.73, 0.54 0.63, 0.26 127.58 .01 Substantial 

Low-pass, unfiltered (I) 1.73, 2.19 0.63, 0.77 0.56 .14 Weak 

High-pass, unfiltered (I) 0.54, 2.19 0.26, 0.77 708.12 .012 Substantial 

Low- and high-pass (PS) 0.60, 0.35 0.38, 0.11 2.2 .11 Weak 

Low-pass, unfiltered (PS) 0.59, 0.60 0.38, 0.19 0.29 .26 Weak 

High-pass,unfiltered (PS) 0.35, 0.60 0.11, 0.19 56.95 .02 Substantial 

Low- and high-pass (P) 63.3, 28.8 18.8, 24.3 51.06 .014 Substantial 

Low-pass, unfiltered (P) 63.3, 66.9 18.8, 22.2 0.38 .29 Weak 

High-pass, unfiltered (P) 28.8, 66.9 24.3, 18.8 76.06 .009 Substantial 

 

6.3 Chapter 4 

6.3.1 Figure S7 

 

Figure S7. Boxplots described the distributions of raw suppression durations for Experiments 1-2 of 
Chapter 4. Median suppression durations were represented by dotted lines, and the interquartile ranges 
were represented by the box limits. Whiskers represented the maximum and minimum suppression 
durations and outliers were represented by the plus sign (+). (a) The distributions of suppression 
durations obtained with a 2 Hz masker. When a 2 Hz masker was presented, higher suppression 
durations were obtained at lower target temporal frequencies. (b) The distributions of suppression 
durations obtained with a 2 Hz masker. Unlike the 2 Hz masker, presenting a 10 Hz masker produced 
higher suppression durations at higher target temporal frequencies. (c) The effect of orientation and 
temporal frequency on CFS suppression durations. Higher raw durations were obtained for both 2 and 
10 Hz maskers when the target was of the same orientation as the masker. However, the difference 
between iso-orientation and cross-orientation was larger for the 2 Hz masker than the 10 Hz masker.  
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6.3.2 Text S2 

We describe the factors that contribute to the low temporal dominancy of the 

Mondrian masker. By convention, the masker is composed of a series of patterns 

sampled at a rate of 10 Hz. For a monitor refresh rate of 100 Hz, this would mean that 

each pattern would be presented for 100 ms, thereby producing 10 consecutive values 

of the same pixel luminance. Assuming that each pattern change would produce 

maximum change in luminance, we would obtain a 5 Hz square wave (see Figure S4 

in the next section). This is considerably lower than the nominal 10 Hz, and is the first 

clue that there is a low temporal dominancy in the Mondrian masker. The second clue 

is apparent when we consider the way in which pixel luminance is distributed for each 

pattern. Pattern elements are generally assigned a random grey level and a random 

spatial location. Hence, the resulting pixel time line is rarely a 5 Hz square due to 

central tendency. Between patterns, the change in pixel luminance could range from 

maximum (black to white) to zero (static pixel). This would slow down luminance 

transitions further, contributing to a low temporal dominancy in the Mondrian masker.  
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6.3.3 Figure S8 

	
	

Figure S8. Changes in the pixel luminance of the Mondrian masker plotted against the number of 
frames. Due to the stepped presentation schedule of the Mondrian masker, a 5 Hz square wave would 
be obtained if all pixels alternated between black and white with each pattern change (see left panel). 
However, due to the random sampling of grey levels and central tendency, extracted pixel time lines 
typically modulate at a lower temporal rate (see right panel).   
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6.4 Chapter 5 

6.4.1 Figure S9 

 

 

Figure S9. The distribution of CFS suppression durations compiled from Experiment 1 of Chapter 2, 
averaged across participants. To provide an accurate representation of the distribution of suppression 
durations, outliers were not removed in this analysis. Similar to binocular rivalry, the distribution of 
suppression durations in CFS was skewed to the right. 
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