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Abstract 
 

Purpose  

The development of the full potential of diffusion-weighted imaging (DWI) methods for 

lymph node cancer assessment depends on understanding how water diffusion is affected by 

the changes in tissue structure that characterise the presence of cancer. However, the 

biophysical basis of diffusion contrast in lymph node tissue is not well understood. The 

present study aims to define the biophysical basis of contrast in DWI of the lymph node. It 

investigates the hypothesis that the clinically observed decreased apparent diffusion 

coefficient (ADC) of cancerous lymph nodes can be attributed to increased cellularity. The 

study characterises the microscopic structures of nodes and investigates the correlation 

between mean diffusivity (MD) and cellularity metrics using DWI from high-resolution 16.4 

Tesla MRI. The contrast in DWI images in the present study are based on T2 weighting of the 

MR signal. It also investigates the theoretical information content of single and multi-

biophysical  models that include combinations of isotropic, anisotropic, and restricted 

components in lymph node tissues.  

Materials and Methods  

Lymph node tissue samples were obtained from humans and animals with institutional ethical 

approval and written consent from all participating patients. The samples were immersed in 

10% neutral buffered formalin post-surgery. A 3 mm diameter core sample was extracted 

from the tissue using a core punch. The cores were glued to a plastic strip, inserted into a 2 

mL screw-top plastic vial and immersed in phosphate-buffered saline (PBS) solution.  

For MD measurement, imaging was performed on a Bruker AV700 magnetic resonance 

microimaging system of a 16.4 T vertical bore magnet with spectrometer running Paravision 

4 and a 5 mm bird cage radiofrequency coil. The scanner was equipped with a Micro 2.5 

Gradient Set with gradients strength of  2.5 mT/m. For diffusion modelling, the imaging was 

performed on a 9.4T Bruker system equipped with 72 mm quadrature RF coil and BGA-12S 

HP gradients with maximum strength of 660 mT/m and slew rate of 4570 T/m/s.  A 3D spin 

echo sequence was employed  for diffusion  modelling and a 3D spin echo diffusion tensor 
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imaging (DTI) sequence was employed for microimaging. Both imaging were performed at a 

monitored room temperature (22 oC). 

Samples were sectioned and stained with haematoxylin and eosin (H&E). Sample slides were 

digitally scanned at 40× magnification with a spatial resolution of 0.25 microns per pixel 

using a digital brightfield microscope (Aperio Scan Scope). Diffusion  tensor model was 

fitted voxelwise and MD values were computed using Matlab  as:  𝑀𝐷 = ( 𝜆1 + 𝜆2 + 𝜆3)/3 , 

where 𝜆1 , 𝜆2 and 𝜆3 are the eigenvalues of the diffusion tensor matrix. Then regions of 

interest (ROIs) were drawn over the sub-structures of interest of the region most 

representative of the sub-structure of interest on MD images. The sub-structures and 

histopathological status of the tissue on the selected ROIs were confirmed by an expert 

pathologist and drawn on the color printed images of H&E slices. The ROIs on MD images 

was defined to avoid any error due to chemical shift artefact. A MATLAB code was used to  

views multiples MD  images at separation depth from (50 - 200 µm) and subjectively 

assesses to a  satisfied match between MD  images with the histological sections. Adjacent 

MR slices were also checked for discrepancy and to minimize partial volume effects. 

Measurement of cellularity metrics, including nuclear count and nuclear area, was performed 

using Image Pro Premier software with semi-automatic segmentation.  

For diffusion modelling a total of eleven models, including different combinations of 

isotropic, anisotropic, and restricted components were tested. Each model was fitted to the 

data using the Levenberg-Marquardt minimisation algorithm in the open source Camino 

toolkit. Models were ranked using the Akaike information criterion (AIC), which compared 

models in terms of theoretical information content (1). SPSS, version 21.0 was used for 

statistical analysis.  

Results 

The sub-structures present in DWI images corresponded closely to the histological features 

seen on light microscopy of stained sections. The findings showed distinct diffusivities of 

lymph node sub-structures (capsule, parenchyma, and artery). This is consistent with recent 

reports of distinct diffusivities in prostate and breast tissue sub-structures (2,3). Parenchyma 

in normal lymph node tissues had higher MD (0.71 ± 0.17 µm2/ms) than metastatic 

parenchyma (0.52 ± 0.08 µm2/ms) and lymphoma (0.47 ± 0.19 µm2/ms). Capsule in normal 

node tissues showed a higher MD (1.15 ± 0.16 µm2/ms) than capsule in metastatic tissues 
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(1.07 ± 0.17 µm2/ms). The Kruskal-Wallis test indicated a statistically significant difference 

of MD values in parenchyma in the three tissue types, χ2(2) = 6.129, (p = 0.047).alignment 

No correlation was observed between the two independent variables, MD and nuclear count 

with r = 0.368, n =69 at 95 % confidence intervals. For MD and nuclear area there was no 

correlation with r = 0.231, n =69 at 95 % confidence intervals. Pearson’s correlation test 

showed no correlation between MD and cellularity metrics. 

In the diffusion modelling of lymph node tissue, the single-component models (ADC and 

DTI) were ranked the lowest by AIC in all lymph node tissue samples. Three multi-

component models, which consist of anisotropic and restricted diffusion (Zeppelin-sphere, 

Ball-stick-sphere, and Ball-sphere) were ranked highest in the majority of voxels of the tissue 

samples. The multi-component models that included anisotropic components ranked higher 

than isotropic models. Multi-component models that account for diffusion restriction ranked 

higher than unrestricted models. These findings are consistent with those from a recent ex 

vivo study of prostate (4) and lymph node tissue (5).  

Conclusion 

Investigation of the biophysical basis of contrast in DWI of the lymph node demonstrated 

distinct diffusion differences between lymph node sub-structures with no correlation to 

cellularity. Multi-biophysical models were ranked highest by AIC in the majority of voxels  

and found to extract more information from the measurement data than simple single 

biophysical models (ADC and DTI). These findings represent an important first step in 

enhancing our understanding of the biophysical basis of diffusion changes in lymph node 

tissue.  
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1. Introduction 
 

MRI has long been recognised as an important clinical diagnostic tool in cancer assessment 

because of its excellent contrast ability for distinguishing soft tissues. Diffusion-weighted 

MRI (hereafter DWI) is a protocol in MRI that has shown potential in the detection and 

characterization of cancer. In DWI imaging, diffusion of water molecules were used  to 

generate contrast in MR images. One of the most well-established and main clinical 

applications of DWI is in neuronal diseases, where DWI has shown high sensitivity in both 

detection and characterization of neuronal diseases (6,7). DWI is also found to be important  

for detection and discrimination of non-neurological diseases for example cancer imaging 

associated with the prostate (8,9) , breast (2,10), liver (11,12), and renal (13,14), but it has 

had limited application in assessing lymph node diseases (15,16).  

One of the main causes of death among cancer patients is the spread of cancer cells to 

surrounding tissues. The earliest stage of this process occurs within the regional lymph nodes 

(17). There is a potential role for DWI in detection and characterization of lymph node 

involvement in the diagnosis of cancer patients. This chapter briefly describes the anatomy 

and physiology of the lymph node and elaborates on nodal disease, nodal imaging, and the 

basic theory of DWI. 

1.1 Cancer and Lymph Nodes 

Cancer is a major health concern around the world. One in every four deaths in the United 

States is reportedly caused by cancer. According to the American Cancer Society, prostate 

cancer and breast cancer are the two most common cancers among both men and women in 

the United States. In 2018, an estimated 3,735,350 new cancer cases were diagnosed and 

resulted in a total of 609,640 cases of cancer-related deaths (18). The aetiology of cancer is 

complex, however several factors include use of tobacco, overweight or obesity, and lack of 

physical activity were identified may increase the risk of developing cancer(19). Lifestyle 

was found to account for about 134, 000 cases or more than 40 % of cancers in the UK in 

2010 (20). The Australian Institute of Health and Welfare (AIHW) has suggested that the 

increase observed in the absolute number of cancer cases in Australia is partly associated 

with the growth of the ageing population (21). Genetic factors have also been found to be a 

risk factor for cancer in later years (22). 
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One of the main causes of cancer-related death is the spread of cancer cells, or metastasis to 

the surrounding tissues in the body (23). As they spread, the cancer cells disturb the 

surrounding cells and eventually prevent the tissues from functioning normally. Metastases 

from a solid tumour account for 90% of cancer-related deaths (24).  

Although the spread of cancer cells to the lymph nodes is not well understood, distinct organ-

specific patterns of metastasis have been reported in different types of cancer (17,23,25,26). 

The spread of cancer cells to the regional lymph nodes is one of the earliest events in the 

metastatic process, and the enlargement of the lymph node is a common feature of many solid 

tumours (17,26). The cancer cells from the primary tumour may spread to the nearby tissue 

through both blood and lymphatic vessels. In this context, the lymphatic vessel may actively 

promote the spread of cancer cells to other tissue (23).   

Patients with node-positive cancer (i.e., cancer detected in the lymph nodes) are almost five 

times more likely to develop regional and distant cancer recurrence than those with no nodal 

involvement (27). The five-year survival rate also decreases from 90 % to less than 40 % for 

patients with node-positive cancer compared to those with no nodal involvement (28,29). In 

other words, the survival rates appear to decline for cancer patients with positive nodes. The 

higher likelihood of cancer spreading to the nodes points to the significance of including 

nodal assessment in the course of diagnosing cancer patients. 

In summary, since cancer has high potential to spread to the node and eventually result in 

death, there is an urgent need to include nodal assessment at an early stage in cancer 

management. By providing comprehensive treatment to control or reduce the likelihood of 

cancer metastasis, patients could potentially experience a higher survival rate. 

Anatomy of the human lymph node 

The lymph node is the major organ within the lymphatic system. It plays a vital role in 

protecting the human body from harmful foreign agents. The normal lymph node is ovoid or 

bean-shaped, ranging in size from 2 to 20 mm in length and 3 to 15 mm in diameter (30-32). 

Lymph nodes are usually clustered in small groups and chained at various locations 

throughout the lymph vessels (Figure 1.1). Each cluster contains a minimum of three lymph 

nodes. The lymph nodes contain denser numbers of B- and T-lymphocytes. The lymphocytes 

serve as the primary site for immune system interactions between the body’s host cells and 

foreign elements such as bacteria, viruses, antigens, and toxins.  
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The lymph node is surrounded by white adipose tissue. The main components of a node are 

stroma and parenchyma. The stroma consists of a dense layer of connective tissue that forms 

a mesh-type network in the capsule of the node. The parenchyma is divided into two regions, 

the cortex and the medulla. Within the cortex region, follicles are peripherally distributed, 

evenly spaced and variable in size, and indicate the activation of normal lymph nodes to 

varying degrees. The follicles in the cortex are the primary site of production of B- and T-

lymphocytes (30-33).  

Although the nodes are small, reactive and enlarged nodes that are close to the skin surface 

are occasionally palpable. Reactive and enlarged nodes are usually the result of intense 

immune response or tumour metastasis. Palpable lymph nodes are more likely to be due to 

infection from viruses such as the common flu than to tumour metastasis. In many cases, 

tumour metastasis to the nodes is not palpable as these nodes lie deep inside the human body.  

Diagnosis of nodal metastasis often requires clinical imaging to localise the node’s exact 

position within the body. Additionally, a more rigorous clinical assessment, such as biopsy 

and microscopic viewing of the tissue, is required to accurately determine the nodal 

pathological condition. Haematoxylin and Eosin (H&E) is used to stain a thin (5 µm) slice of 

nodal tissue. Haematoxylin stains the nucleus in dark blue or violet, while eosin stains the 

cytoplasm and stroma in light red or dull pink. H&E stained slides are normally used to study 

lymph node microstructure. Any microstructural changes are carefully viewed under a 

microscope to determine the pathological status of the nodal tissue.  

The involvement of metastatic disease in lymph nodes often indicates cancer progression. It 

shows that, through a succession of molecular changes, the cancer cells have the ability to 

invade, colonise, and disseminate into nodal organs. Although a range of diseases have been 

found in nodal tissue, only three pathological conditions of nodes are considered in the 

present study: lymphoma, metastatic, and normal nodes. The pathological conditions of the 

lymph node are briefly discussed in the following sections. 
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Figure 1.1 Distribution of lymph nodes in the human lymphatic system 

  
Location of major regional lymph nodes in the lymphatic system of women: axillary node, 

cervical node, mesenteric node, iliac node, inguinal node (reproduced with permission from 

(34), Springer, London). 
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1.2 Lymph Node Histology 

The lymphocytes dominate the histological appearance of lymph nodes and obscure the 

stromal supportive framework. Under microscopic viewing, the lymphocytes appear dense 

and structureless and the cytoplasm is just a thin, perinuclear rim (Figure 1.2). 

 

Figure 1.2 Morphology of healthy node tissue  

The morphology of healthy node tissue shows densely-packed lymphocytes, sparse 

distribution of dendritic cell and macrophages in parenchyma of the lymphatic nodule. 

Image from this study. 

 

The differentiation between metastatic carcinoma, lymphoma, and reactive lymphadenopathy 

in histology is possible because each nodal disease has distinct cytologic features. More 

importantly, the histologic features in metastatic carcinoma are more consistent than in 

lymphoma tissue. In cancerous nodal tissue, the tumour cells are present in a nested island 

with evidence of cords either inside or outside the parenchyma. The histologic appearance of 

nodal metastasis often points to the presence of a primary tumour (17,23,25,26). Nodal 

metastatis in adenocarcinomas often appears as a small gland cluster, such as in invasive 

prostate and ductal mammary carcinoma. Particularly in invasive lobular mammary 

carcinoma, a signet ring pattern can often be seen in the nodes. A distinctive histologic 

feature has also been observed in lymphoma, where the parenchyma shows a monotonous 
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population of lymphoid cells, as shown in Figure 1.3. In some cases, nodal disease shows 

distinct histology criteria and can be used as a final measure for disease identification (31,35).  

 

Figure 1.3 Lymph node histology and pathology 

Histology of lymph node tissue in three different tissue types: (a) normal, (b) lymphoma, 

and (c) metastatic cases. Classification of cancer is based on variations observed in nuclear 

architecture. Images from this study.  

 

1.3 Route of Node Metastasis 

An overview of the major route of cancer metastasis can provide a better understanding of the 

unique challenge faced in clinical nodal assessment. Cancer dissemination starts when cells 

gain entry into nodes through afferent lymphatic vessels (32,36). The initial metastasis 

commonly appears in the subcapsular sinus of the lymph node tissue. The cancerous cells 

then invade and cause partial desmoplastic replacement in the supcapsular sinus. Some may 

cause further invasive extracapsular extension to the adipose tissue layer or parenchyma 

region of the lymph node tissue. From the sinus, the malignant cells may travel to the 

medullary sinus and the parenchyma of the nodes. 

In this context, the malignant cells may invade either as isolated tumour cells or as a group of 

nested malignant cells in the parenchyma region. In the case of an intense desmoplasia, the 

neoplasm replaces most of the lymph node microstructure and a small island of residual 

normal lymphocytes is found in between the tumour masses (Figure 1.4). Often a reactive 

lymph node occurs as a response to metastasis, for example in follicular hyperplasia 
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(32,34,36). Follicular hyperplasia is characterised by an increased number of secondary 

follicles. The follicles vary in shape and size, ranging from spherical to oval. 

In the present study the biophysical basis of contrast in DWI of the lymph node was explored 

via microstructural changes observed within the parenchyma region only (37). The 

parenchyma region was particularly well suited for this purpose because it is where the main 

microcellular interaction takes place in the lymph node tissue. Microstructural changes in the 

parenchyma region are particularly important in histopathology analysis in comparison with 

the other sub-structures in the node. 

 

 

Figure 1.4 Metastasis route in node 

Primary locations of nodal metastasis. Metastasis can cause isolated, partial or total 

replacement of the architectural microstructure of the node. (Reproduced from (36) with 

permission from Radiographics Inc, North America). 
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1.4 Nodal Staging 

The stage of the disease at the time of diagnosis can reflect not only the growth rate but also 

the extension of the neoplasm in the tissue. Cancer treatment is usually based on the type of 

cancer and its stage. The most common system used to assign cancer stage is the tumour-

nodal-metastasis (TNM) system, which was developed by the Union for International Cancer 

Control (UICC) and the American Joint Committee on Cancer (AJCC)(38). 

The TNM classification is based on the extent of the primary tumor (T), the spread of cancer 

to the regional lymph nodes (N), and the presence of metastasis (M) to distant nodes. It is 

used to define the severity and progression of cancer in patients. If no cancer cells are found 

in the lymph nodes, N is assigned a value of 0. If cancer cells are found in nearby or distant 

nodes, N is assigned a number (1, 2 or 3) in line with the progression pattern. Cancer with 

lower TNM numbers is usually considered easier to treat, therefore having better survival 

chances. For example, T1N0M0 would be cancer found at an early stage before it has spread. 

T1 means a small tumor; N0 means no node involved, and M0 means no metastasis is present 

(38).  

The letters and numbers allocated to TNM stages are unique to different types of cancer, as 

each disease has distinct morphological characteristics. TNM staging for the digestive system 

is based on the number of regional lymph nodes containing metastases (i.e., positive nodes). 

In classifying N, the number of positive nodes is grouped into 0, 1–2, 3–6, and 7 or more, as 

shown in Figure 1.5. In contrast, for the breast region, the TNM staging is based on the 

presence of isolated tumour cell (ITC) clusters in the nodes. This refers to the presence of 

small clusters of cells not greater than 0.2 mm, or cells not exceeding 200 cells in a single 

histologic lymph node cross section, as shown in Figure 1.6(38).  
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Figure 1.5 TNM staging for the digestive system in the large intestine 

TNM staging for mesenteric cancer is indicated by the number of nodes affected by cancer 

(black coloured node). For example, if cancerous cells are found in 4 to 6 lymph nodes, the 

TNM stage is N2a. If 7 or more lymph nodes are found to be cancerous, the stage is N2b. 

(Reproduced with permission from (34) Springer, London).  

 

Figure 1.6 TNM staging for breast cancer 

The TNM staging for breast cancer depends on the number of nodes affected by cancer cells 

and the presence of isolated tumour cells (ITC). If metastases occur in 1-3 axillary lymph 

nodes, the stage is pN1a. If metastases occur in 4-9 axillary lymph nodes, the stage is pN2a. 

If metastases occur in ten or more axillary lymph nodes, the stage is pN3a. (Reproduced 

with permission from [10] , Springer, London). 
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In clinical practice, the TNM staging is commonly determined based on measurement of the 

nodal size. However, related studies have consistently reported that measurement of the nodal 

size is often an inaccurate and unreliable method of determining nodal disease (39-41). 

Although histology sectioning is regarded as the gold standard, microscopic identification of 

pathological disease in the node remains a challenge (34). Clinical imaging has shown 

potential in not only detecting nodal diseases but also distinguishing between normal and 

cancerous nodal tissue (42). In the following sections, the advantages and disadvantages of 

clinical imaging and histology sectioning methods are discussed. 

1.5 Clinical Screening and Diagnosis of Nodal Disease 

A wide range of approaches — invasive, non-invasive, or a combination of both — is 

available to assist clinical assessment of nodal disease. Imaging prior to invasive approaches 

can help to identify the exact location of nodes and improve diagnostic accuracy.  

Conventionally, two types of invasive procedures are used to assess nodal status: sentinel 

lymph node biopsy (SLNB), and axillary lymph node dissection (ALND). An invasive 

procedure involves surgical removal of the nodal tissue. The tissue is then sent to a histology 

lab to determine its histopathological condition. The histopathological assessment requires 

the tissue samples to be sectioned into 5 µm thickness and then viewed under a microscope. 

Microstructural changes, such as the presence of neoplasia and reactive lymph nodes, are the 

main criteria used by the histopathologist to determine the pathological condition of the 

tissue.  

The sentinel nodes are the first few lymph nodes into which the tumour cells will drain from 

the primary tumour. It is therefore hypothesised that the sentinel lymph node is the primary 

target organ of the cancer cells metastasising from the tumour. SLNB was developed as an 

alternative procedure to the traditional ALND (34). Axillary dissection, which involves 

extracting a group of lymph nodes, requires hospitalisation, general anaesthetic and one to 

two weeks of postoperative care. The SLNB procedure on the other hand involves taking one 

or two targeted lymph nodes and does not require hospitalisation or general anaesthetic, 

although it can be time-consuming to identify the exact location of the lymph nodes. SLNB is 

capable of replacing ALND since more than 70% of patients with no positive nodes (N0) 

undergoing ALND are found to be free from metastatic disease (43).  
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The accuracy of SLNB is, however, limited. False negative results can occur if the wrong 

node is removed and nodes containing metastases remain unrecognised. False negatives can 

also be due to sampling errors on the part of pathologists and inexperienced surgeons, which 

may in turn result in blockage or alteration of the normal flow of the lymph [22]. A related 

study has shown that sentinel node biopsy following injection of the radiotracer Technetium-

99m had nearly 98% accuracy in predicting the lymph node’s status in 160 patients (44). In 

contrast, another study reported lower values for sensitivity, specificity and accuracy of 

SLNB (92%, 88%, and 91% respectively), compared to ALND using Technetium-99m (45). 

This suggests that SLNB might be insufficient to evaluate lymph node metastases. SLNB has 

also demonstrated low sensitivity in differentiating macrometastases and micrometastases of 

lymph nodes in breast carcinoma, with 88% and 72%, respectively (46). The effectiveness of 

lymph node dissection and biopsy, however, remains controversial due to the morbidity 

associated with the surgical procedures involved and poor imaging assessment prior to 

surgery. Therefore, a reliable and accurate imaging assessment of the lymph nodes before a 

surgical procedure is considered essential (47).  

Improved sensitivity and specificity in imaging has potential to replace invasive nodal 

assessment of cancer patients. Magnetic resonance imaging (MRI), for instance, is valuable 

for identification of nodal diseases as it is considered a safe and reliable method of soft tissue 

assessment and avoids the morbidity effects of the surgical approaches.  

1.6 Role of Imaging in Lymph Node Assessment 

Although histopathological analysis remains the gold standard for diagnosing lymph node 

invasion, the accuracy of this approach has been questioned, as noted above. Therefore, 

several imaging modalities have been investigated as an alternative. Computed tomography 

(CT) enables the assessment of small internal body organs and structures, including the 

lymph node. However, CT has limited applications in nodal cancer imaging due to its low 

sensitivity and poor contrast resolution for soft tissue (42). Fluoro-deoxyglucose positron 

emission tomography (FDG-PET), which has the ability to show cancerous regions as areas 

with increased glucose uptake, is also used. FDG uptake can be non-specific since most of 

the cell types in the body, other than the tumour cells, actively use glucose. FDG also 

accumulates in the bladder and may obscure the detection of lymph nodes in the pelvic area 

(42). 
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MRI has become a powerful, widely used tool for non-invasive clinical diagnosis owing to its  

fair spatial resolution (at lower field strength), higher degree of soft tissue contrastand depth 

of penetration. The evaluation of nodal status by means of traditional MRI techniques has 

concentrated mainly on assessment of nodal anatomicalfeatures. Unfortunately, these 

physical features have not been able to reliably distinguish benign from metastatic nodes, 

even at high spatial resolution imaging (39,48,49).  

MRI has the ability to provide images with excellent anatomical detail and soft tissue contrast 

but it is currently relatively insensitive for detection of lymph node diseases. Accordingly, a 

range of techniques has been developed in MRI to improve its sensitivity and specificity in 

relation to nodal disease assessment. These include the introduction of dynamic contrast-

enhanced MRI (DCE), the development of a MR contrast agent known as ultrasmall 

superparamagnetic iron oxide (USPIO), and the development of DWI. The advantages and 

limitations of each technique are discussed below.  

Dynamic contrast-enhanced MRI (DCE-MRI) 

Dynamic contrast-enhanced MRI is an imaging technique that requires multiple  T2 or T1 

weighted images before and after injection of the contrast agent. The most commonly used 

contrast agents are based on gadolium  and  most of the contrast agents are paramagnetic (or 

super-paramagnetic, or ferromagnetic); as a result they shorten both T1 and T2 of water 

protons, which in turn would result in negative contrast on T2-weighted images. (50,51). The 

presence of a contrast agent within blood vessels and tissues affects the signal intensity of 

MRI. The physiologic state of tumor vascularity can be assessed in the images as a result of 

distinct contrast enhancement of malignant and normal tissue that gradually decreases over 

time (52). At present, DCE-MRI is widely used to distinguish primary benign from malignant 

tissue but has limited application in evaluating secondary disease in the lymph nodes (53,54).  

Both suspicious and non-specific enhancement of lymph nodes can lead to misleading 

interpretations as a result of the higher sensitivity and lower specificity of DCE-MRI 

compared with conventional MRI (41). A homogeneous signal intensity was found in both 

normal and malignant lymphoma. This makes it more challenging to determine the pathology 

of nodes based on contrast enhancement (55). Furthermore, DCE-MRI has not been shown to 

be superior to T1W or T2W in detecting malignancy in nodes (54,56).  
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Ultrasmall superparamagnetic iron oxide (USPIO) 

Another advance in MR imaging is the development of a MR contrast known as ultrasmall 

superparamagnetic iron oxide (USPIO), which major potential application  in  imaging 

lymphatic system, bone marrow, brain, heart and other organ-targeted imaging(57).   

Improved detection of lymph node metastases with USPIO-enhanced MR imaging was 

reported in both clinical applications (58-60) and preclinical studies on animals (61) allows 

the identification of malignant nodal infiltration independent of lymph node size. However, 

there continues to be an overlap between benign and malignant lesions, and the specificity of 

T2 weighted images  collected before and 24 hours after the contrast injection continues to be 

low, ranging from 67% to 72%. Another limitation is that USPIO has not yet been clinically 

approved for human beings. Hence there is need for a diagnostic imaging that offers similar 

or higher sensitivity and specificity than contrast-enhanced MRI. DWI has produced 

promising results in assessing both primary and secondary cancer and is a potential tool for 

assessing nodal disease, as it shows similar tissue contrast accuracy to DCE (62).  

Diffusion and multiparametric MRI 

The recently introduced “diffusion-weighted with whole body suppression” technique 

(DWIBS) has the potential to improve the detection of malignancy in lymph nodes (63). 

DWIBS uses a grayscale inverted reformatted image reconstruction to identify and visualise 

any pathological  abnormalities in the tissue (64,65). 

A multiparametric in vivo imaging combining T2W with  DWI and DCE on prostate cancer 

appears to indicate a relatively higher accuracy in combination of T2W with DWI compared 

to DCE-(66). Another study of multiparametric imaging on  the prostate also shows that DWI 

had the highest sensitivity for tumour localisation (31.1 % vs. 27.4 % vs. 44.5 % for T2W, 

DCE and DWI, respectively; p < .05), with more aggressive or more advanced tumours being 

more easily detected with this imaging modality (67). Until recently, no multiparametric 

imaging had been carried out on node tissue. The investigation of multiparametric studies on 

nodal tissue can help to determine which method (T2W/DCE/DWI) yields optimum nodal 

tissue contrast.  The following section elaborates on DWI as the emerging MR imaging 

technique that has shown potential in detection and characterisation of lymph node diseases. 
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1.7 Basic Diffusion-weighted Imaging (DWI) 

As previously noted, the current gold standard in clinical techniques for nodal disease 

assessment require invasive tissue sampling. Non-invasive techniques such as DWI have 

potential not only in cancer detection but also in providing additional information on 

microstructural changes that can be used to better predict disease progression. These 

advantages can help clinicians to optimise treatment planning and monitor treatment 

responses in cancer patients.  

Diffusion MRI is sensitive to the random motion of water molecules in the tissue. Cancer is 

broadly characterised by changes in tissue microstructure. Therefore, any microstructural 

changes that occur in cancer, and which eventually affect the motion of water molecules, can 

potentially be detected and characterised by DWI.  

In the absence of obstacles, a water molecule can move freely in a given space. The motion 

of freely diffusing water molecules is referred to as free diffusion or self-diffusion, in which 

molecular displacement follows a Gaussian distribution. The mean squared displacement 

<r2> of the freely diffusing water molecules over a specified time is defined in the equation:  

                                                              < 𝑟2 > = 6𝐷𝑡                                                   [ 1.1] 

where D is the diffusion coefficient and t is the time interval. The SI unit for the diffusion 

coefficient is  m/s, instead that the values of D are usually given in mm2/s (68,69). The 

diffusion coefficient of freely diffusing water molecules is temperature dependent. At a 

temperature of 200C the diffusion coefficient is approximately 2 × 10-3 mm2/s was measured 

in bulk water, which represents a mean displacement of about 25 µm  in a diffusion time of 

50 ms (69). At a body temperature of 370C the diffusion coefficient is 3 × 10-3 mm2/s 

(68,70),with a mean displacement range of 17-25 µm over the typical diffusion time range of 

50-100 ms used in clinical DWI (68).  
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1.7.1 Restricted and hindered diffusion  

Diffusion properties observed in bulk  water are more straightforward than the diffusion 

properties in tissue. Water diffusivity in tissue is influenced by the presence of cell 

membranes, macromolecules, and other cell microstructures that cause restricted and 

hindered diffusion.  

Restricted diffusion refers to the trapping of water molecules inside a closed compartment. 

The freely-diffusing molecules experience restricted diffusion when they interact with the 

boundaries of cell membranes. The effects of restricted diffusion on freely diffusing 

molecules are highly dependent on the shape of the restricting volume (eg., spherical, 

cylindrical or parallel walls) (71). There is no single equation that can describe all possible 

configurations of diffusion in water (72).  

Hindered diffusion is a term used to describe the delay in the passage of water molecules that 

results from the presence of obstacles. In contrast to restricted diffusion, water molecules in 

hindered diffusion are able to diffuse over a long distance, although more slowly than they 

would in the absence of hindering structures. Therefore, the mean diffusion distance remains 

linear with the square root of diffusion time but the diffusion coefficient is reduced. 

1.7.2 Apparent diffusion coefficient (ADC) 

The typical diffusion coefficient of water measured in in-vivo experiments falls within the 

range 2-3 × 10-3 mm2/s (69). The observed diffusion coefficients of water in tissue are 

relatively lower than the typical free water diffusion due to restricted and hindered diffusion. 

Diffusion coefficients value may be affected by  processes other than brownian motion 

typical for free diffusion (e.g. slow capillary flow and other types of molecular incoherent 

motion), thereforecan be described simply as an ‘apparent’ diffusion coefficient (ADC). The 

ADC is calculated from  two or more images with different diffusion weightings or b-values 

(68,70). Specifically, the ADC can be calculated as: 

                                               𝐴𝐷𝐶 = ln  ( 𝑆1/𝑆0 )
𝑏1−𝑏0

                                                 [1.2] 

where S1 is the signal intensity at 𝑏1, and S0 is the signal intensity at b0, and 𝑏1 and 𝑏0 are the 

diffusion weighting values. S0 is usually the non-diffusion weighted signal, although for 

cancer the consensus is to use a b0 larger than 100 to avoid perfusion effects  (73). Typical b-
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values used for in-vivo imaging are within the range of 50 to 1000 s/mm2. However, for ex 

vivo imaging, the b-values can be extended to 5000 s/mm2 or higher (74). b-values are 

expressed as: 

                                            𝑏 = (γ. gD.δ)2. (∆ −δ/3 )                                         [1.3] 

where 𝛾 is the nuclear gyromagnetic ratio, gD is gradient amplitude, δ is gradient duration, 

and ∆ is the interval between the onset of two consecutive gradient pulses. It should be noted 

that the b-values equation above is true for specific pulse sequence. The complex interactions 

identified between water and tissue microstructures leading to the observed ADC are not 

completely understood. However, various studies report that cellularity, extracellular volume 

fraction (ECVF) (75), membrane permeability (76), and tortuosity (77)  play an important 

role in determining diffusion behaviour in tissue (68).  

A single ADC is insufficient to characterise the diffusion process in anisotropic tissue at the 

voxel scale. This is because ADC does not account for differences in water mobility in 

different spatial directions. A variant of DWI known as diffusion tensor imaging (DTI) is 

used instead of ADC to obtain information on diffusion in different spatial directions. 

Measurement in DTI requires a minimum of six distinct diffusion directions. Here, the ADC 

is replaced by a symmetric 3 × 3 matrix (69,70). 

                                                         D = �
𝐷𝑥𝑥  𝐷𝑥𝑦  𝐷𝑥𝑧
𝐷𝑦𝑥  𝐷𝑦𝑦  𝐷𝑦𝑧
𝐷𝑧𝑦  𝐷𝑧𝑦  𝐷𝑧𝑧

�                                               [1.4] 

where, 

 𝐷𝑥𝑦  = 𝐷𝑦𝑥 ,  𝐷𝑦𝑧  = 𝐷𝑧𝑦 ,  𝐷𝑥𝑧  = 𝐷𝑧𝑥    

The diffusion tensor has six independent variables that are described by eigenvalues and 

eigenvectors which characterise the magnitude and direction of 3D diffusion in a voxel. Of 

all the diffusion metrics derived from the tensor, mean diffusivity (MD) is the most 

frequently used parameter forcancer imaging studies . MD is an average of eigenvalues, λ . 

MD is comparable to ADC in DWI. Instead of ADC values, mean diffusivity values were 

used in this study because this has the advantage of averaging the diffusivity measurement 

over six gradient directions. 
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                                                    𝑀𝐷 = (λ1 + λ2 + λ3)/3                                     [1.5] 

Multiple independent diffusion measurements are obtained by applying diffusion encoding 

gradients in a different spatial direction (69,70).  

Anisotropic diffusion 

Anisotropy is a measure of how much diffusion deviates from being isotropic. In anisotropic 

diffusion, the diffusion coefficient is not the same in all directions. The presence of obstacles 

and structure geometry can contribute to diffusion anisotropy. Fractional anisotropy (FA) is 

the most frequently used parameter derived from the distribution of eigenvalues to 

characterise the presence of a preferred diffusion direction (68,70,78). FA describes the 

variation of diffusion over measurement directions and characterises the shape of the 

diffusion ellipsoid: 

                         𝐹𝐴 =  �3
2
�( 𝜆1− 𝜆�)2+ ( 𝜆2− 𝜆�)2+ ( 𝜆3− 𝜆�)2

�𝜆1
2+ 𝜆2

2+ 𝜆3
2

                            [1.6] 

FA values range from 0 for isotropic diffusion to 1 for completely anisotropic diffusion (68-

70). A highly anisotropic human tissue, white matter in the brain, for example has a FA value 

of between 0.7 to 0.8 (69,70).  

1.8 Image Acquisition in DWI 

The pulsed gradient spin echo (PGSE) MRI sequence developed by Stejskal and Tanner in 

1965 is commonly used in image acquisition for DWI because of its sensitivity to molecular 

motion (79). Specifically, a diffusion-weighted pulse sequence was constructed by adding a 

pair of diffusion-sensitising gradients, also known as motion-probing gradients, to a T2 

weighted spin echo sequence. Molecular motion results in a loss of signal intensity due to an 

incomplete rephasing of water proton spins which are capable of changing positions between 

and during the application of the two diffusion sensitising gradients. The three most common 

types of spin echo acquisition used for DWI are basic PGSE, fast spin echo (FSE), and echo 

planar imaging (EPI). FSE and EPI are used as read-out part of the sequence. FSE is also 

rather rarely used for imaging diffusion; EPI is by far most common for in vivo applications, 

whereas the spin-echo is often used for ex vivo applications due to its long acquisition time. 
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The advantages and limitations of each diffusion sensitive spin echo method are described in 

this sub-section (68,80). 

 

 

Figure 1.7 Pulsed gradient spin echo (PGSE) sequence used for diffusion MR imaging  

Two diffusion-encoding gradient (Gdiff) pulses are added to the standard spin echo sequence 

of MR imaging in order to introduce a phase shift. Phase shift  is a change in the phase of a 

waveform.  The phase shift in diffusing spin is proportional to molecular displacement along 

the gradient direction. δ = duration of the diffusion-encoding gradient, Δ =interval between 

the onset of the diffusion gradients , Gphase = phase-encoding gradient, Gslice = section-

selective gradient, Gread = readout gradient, RF = radiofrequency pulse, t = acquisition time. 

(Reproduced with permission from (81)with permission from RadioGraphics, USA). 
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The standard PGSE is the most straightforward implementation of the pulse sequence in 

acquisitioning  MR data. In this pulsed gradient sequence, two gradient pulses are applied. 

An excitation pulse, typically of 900, is applied, followed by the first diffusion weighting 

gradient. Next, the 1800 RF refocusing pulse is applied, followed by the second diffusion 

weighting gradient, as shown in Figure 1.7. A  gradient magnetic field in a magnetic spin 

echo experiment cause a signal attenuation due to the molecular diffusion to the spins. The 

diffusion gradient (Gdiff) pulse cause a spatially varying additional magnetic field, and thus 

spatially varying Larmor frequencies. The first diffusion at 900 pulse gradient dephase the 

spins. If the spin are stationary (no diffusion), the second diffusion gradient at 1800 RF 

refocusing pulse in opposite sign exactly rephrase the spins. In the case of diffusion spins, 

however , rephrasing is incomplete since the spins have moved  between the first and second 

diffusion gradient; thus , a diffusion –dependent signal attenuation is iobserved as “vector 

sum”(69). In the standard PGSE, each line in k-space is acquired in a different repetition 

which requires longer data acquisition for the whole k-space and are prone to motion 

artifacts.. PGSE is especially suitable for preclinical imaging applications and animal studies, 

where the subjects can be immobilised for extended time scanning (68,81). 

Another pulse sequence used in diffusion MRI is the fast spin echo (FSE) method. This is a 

modified version of the traditional spin echo sequence that allows significantly faster scan 

times with less sensitivity to subject motion. A single RF excitation pulse is introduced, 

followed by a series of RF refocusing pulses that produces one spin echo per  each refocusing 

pulse. qqqqqq The possible disadvantages of FSE are blurring effect, edge enhancement and 

ghosting effect. It should be noted that a significant amount of RF power might need to be 

delivered to the patient in order to activate the multiple refocusing RF (68). 

Echo planar imaging (EPI) is the most commonly used pulse sequence for acquiring images 

in DWI. The entire diffusion image is acquired after one RF excitation has been completed. 

The sequence is designed to acquire the entire k-space but usually with lower number of 

points, which can significantly reduce the data acquisition time. Although EPI is insensitive 

to motion, it is prone to severe image artefact and is sensitive to eddy current effects 

(68,69,78). 
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1.9 Thesis Structure  

Chapter 1 provides the background to the study by describing the anatomy and physiology of 

the lymph node and explaining nodal disease, nodal imaging, and concepts of DWI. 

Chapter 2 presents a comprehensive review of literature on diffusion–weighted MRI in the 

lymph node and modelling techniques for non-neural tissue. The findings of studies reviewed 

in this chapter informed the theory and methods of the present study.  

Chapter 3 deals with the characterisation of microscopic structures of nodes by means of 

DWI. The correlation between mean diffusivity (MD) and cellularity metrics of nodal tissue 

is described. 

Chapter 4 presents the results of the study investigating the relative information content of 

biophysical models, including the combination of isotropic, anisotropic and restricted 

components in node tissue. 

Chapter 5 summarises the research findings, draws conclusions, and offers suggestions for 

future work in the area. 
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2. Literature Review 
 

2.1 Diffusion-weighted MRI of Lymph Nodes  

DWI was initially used for neurological imaging but has in recent years been increasingly 

used in non-neurological imaging, including the detection of prostate and breast diseases. 

Recent reviews have recommended the inclusion of nodal assessment as part of routine 

primary tumour assessment (73). The application of ex vivo DWI imaging to the detection of 

solid cancer shows great promise in differentiating cancerous from non-cancerous tissue 

(2,8,9). Based on these findings, several studies were carried out to assess the performance of 

in vivo DWI imaging in secondary disease in nodal tissue(15,16,41,48)  

The findings from studies using DWI to distinguish nodal diseases have been inconsistent 

(Table 2.1). Some DWI studies of in-vivo nodal disease have found lower ADC values in 

metastatic nodes than in benign nodes, indicating reduced water mobility in the cancer tissues 

(41,82-86). On the other hand, several studies have found relatively higher ADC values in 

metastatic nodes than in benign nodes, indicating increased water mobility in the cancer 

tissues(15,16), while a few other studies have found no significant differences in ADC values 

between malignant and benign nodes (39,48,49). Such inconsistent findings underscore the 

lack of understanding of the biophysical basis of tissue diffusion contrast in DWI imaging of 

nodal tissue.  
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Table 2.1 DWI Studies of Nodal Disease 

Study 
Field 

strength 
(T) 

b - values 
(s/mm2) 

Nodal 
Source 

Nodal 
Pathology 

ADC Mean ± SD 
(x 10-3 mm2/s) p - value 

Sumi et al. 
(15) 1.5 

0, 500, 

1000 
Head and 

Neck 

Metastatic 0.41±0.11 

<0.001 Lymphoma 0.22±0.06 

Benign 0.30±0.06 

Kamitani, 
et al.(16) 1.5 0, 1000 Axillary 

Metastatic 1.08±0.18 0.004 

 Benign 0.92 ±0.22 

Chung et 
al. (41) 1.5 0, 1000 Axillary 

Metastatic 0.69a (0.60–0.80) 
<0.001 

Benign 1.04a (0.9–1.20) 

Nakai et al. 
(48) 1.5 0, 800 Pelvic 

Metastatic 1.4±0.40 
0.28 

Normal 1.3±0.24 

Fornasa et 
al. (82) 1.5 0, 800 Axillary 

Metastatic 0.88a (0.30–1.20) 
<0.001 

Benign 1.5a (0.60–2.50) 

Scaranelo  
et al. (83) 1.5 

50, 300,  

700, 1000 
Axillary 

Benign 0.39-1.50b 
<0.05 

Malignant 0.33 - 2.843b 

Luo et al. 
(84) 1.5 0, 800 Axillary 

Metastatic 0.986±0.17 
<0.05 

Benign 1.375±0.147 

Rechichi et 
al. (85) 1.5 0, 1000 Pelvic 

Metastatic 0.87±0.15 
0.010 

NonMetastatic 1.07±0.20 

Abdel 
Razek et al. 

(86) 
1.5 0, 1000 Head and 

Neck 

Metastatic 1.09±0.11 

<0.05 Lymphoma 0.97±0.27 

Benign 1.64±0.16 

Heijnen et 
al. (49) 1.5 

0, 500, 

1000 
Rectal 

Malignant 1.0±0.22 
0.10 

Benign 1.2±0.24 

Roy et al. 
(39) 1.5 0, 1000 Pelvic 

Malignant 0.9±0.2 
0.44 

Benign 0.9±0.2 
a Study does not include standard deviation  
b Study does not show mean ADC and standard deviation  
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For the characterisation of nodal diseases in-vivo, DWI relies heavily on measurement of 

nodal anatomical features that appear on conventional MR images, including T1 and T2 

weighted images. The characterisation of nodal diseases based on nodal anatomical features 

should be interpreted with caution, however, as these may not reflect the diffusion property of 

the tissue. Related studies report that distinguishing metastatic from normal nodes based on 

physical features appearing on MR images remains challenging (41,47,51). The measurement 

of physical features on MR images includes assessment of nodal size, presence of fatty hilum, 

and the length-width ratio of lymph nodes (53). It has been suggested that irregular contour 

and cortical thickness provide better physical features from which to identify metastatic 

nodes (87). Based on the physical feature of nodal size on DWI images, studies have reported 

up to 60% reduced sensitivity in detection of metastatic nodes(16,48). Therefore, caution 

needs to be exercised in characterising nodal disease based on physical features appearing on 

DWI imaging.  

The characterisation of nodal diseases in DWI based on measurement of nodal anatomical 

features has continued to prove challenging. Studies have been conducted to investigate the 

ability of nodal anatomical features, specifically lymph node size, on DWI images to 

characterise nodal disease (40,88,89). Two main criteria of lymph node size have been 

identified: uncertainty of nodal volume and selection of region of interest (ROI). Small ROI 

samples were reported to be most likely to exclude the necrosis while including most of a 

viable solid tumour and, therefore, yielding a lower ADC value (88). On the other hand, large 

ROI suffered from larger variance and higher standard deviation, which were likely to reflect 

heterogeneity in the tumour due to evidence of solid foci, necrosis, and fibrosis in the tumour 

volume. Although the nodal volume measurement was reproducible, the ADC measurements 

showed a higher dependency on the ROI selected. This may lead to inaccurate ADC 

measurement, which increases uncertainty about the ability of nodal physical features 

underlying the tissue property. A recent study reported that small lymph nodes may harbour 

malignancy whereas enlarged nodes may be reactive (39). The enlarged lymph nodes are 

likely to be identified as malignant and are therefore responsible for false positives in the 

overall lymph node assessment (51). A low Pearson correlation coefficient showed that less 

than 40 % of the ADC values in metastatic nodes were explained by their volume (40). No 

correlation was reported between lymph node size and the presence of metastases (41). 

Further, the nodal physical features such as roundness and regional grouping of lymph nodes, 

extracapsular tumour spread or the presence of necrosis are equally indicative of nodal 
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malignancy (41,47,51,53,90). Although the presence of necrosis is found to be the strongest 

indicator for metastatic disease, surprisingly necrosis has been shown to occur in benign 

nodes as well (91). 

A related in vivo study showed a low Pearson correlation for ADC values and metastatic and 

hyperplastic lymph node volume, with correlation values of 0.38 and 0.46, respectively (40). 

Increased tumour growth and the presence of necrosis were found to cause a increased in 

ADC values. At the end of the experiment, however, only two out of 24 lymph nodes were 

identified as having necrosis. Therefore, it is questionable whether the increased ADC values 

at the later period were due to necrosis as only about 30 - 40% of lymph node volumes were 

used to determine the ADC values (40). 

Characterisation of nodal diseases using nodal anatomical features appearing on DWI images 

(i.e., lymph node size) failed to differentiate metastatic from normal nodes (89). Metastatic 

lymph nodes were found in each size category. Using the short-axis diameter, the results were 

as follows: less than 3 mm (68 metastatic lymph nodes); 3-5 mm (13), 5-8 mm (5) and more 

than 8 mm (2). The study also found insignificant differences between histopathologically 

malignant and benign lymph nodes with p = 0.167 (89). The study concluded that the size of 

the lymph node is a weak determinant for DWI in differentiating malignant from benign 

lymph nodes.  

Compared to physical features, analysis of microstructural changes in the tissue has provided 

more reliable and consistent results for detection and discrimination of solid cancer in DWI. 

Related studies on prostate and breast tissue have shown a distinct diffusivity value in 

cancerous and normal tissue microstructures (2,8). However, no such studies have been 

reported in the literature for nodal tissue. This suggests that microstructural changes in the 

tissues do show distinct diffusivities in different tissue types. Findings on prostate and breast 

tissue indicate the need for a similar study on lymph node tissue to broaden our 

understanding of biophysical changes and their relationship to DWI tissue contrast. 

‘Cellularity’ is often cited as the major cause of the variation in diffusivity reported in the 

literature. However, no previous study has measured cellularity in nodal diseases. It is 

important to note that an important gap in our understanding of DWI imaging is better 

understanding in the relationship between the diffusion signal and the underlying biophysical 

propertiesof the tissue. Yet the relationship between microstructural changes of known 
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histopathology using microscopic examination  and the diffusion tissue contrast in DWI 

signal isnot well understood. One possible approach is to identify the microstructural change 

in nodal disease and determine its correlation with the diffusivity value using microimaging. 

Alternatively, a multi biophysical  model of the diffusion could be developed exclusively for 

nodal disease. The monoexponential model, however, was reported as inaccurate in 

determining the diffusivity behaviour of water molecules in tissue. The following sections 

elaborate the correlation of ADC with cellularity and the development of a diffusion imaging 

model.  

2.2 ADC and Cellularity 

Most previous studies have reported that ADC changes observed in lymph node tissue were 

related to tissue cellularity, apart from the presence of necrosis and fibrosis (47,51,82,84,92). 

Cellularity is a measure of the total number of nuclei over a square unit of tissue area. Lower 

ADC values were consistently reported in malignant tissue because of its hypercellularity: the 

increased number of cells reduce the extracellular space, thus restricting the water diffusivity 

in malignant tissue. Benign lesions were associated with higher ADC values as the result of 

their hypocellularity, in which the number of shrunk nuclei is reduced, thus increasing the 

extracellular space resulting in higher diffusivity. 

 

Relevant findings, however, have been inconsistent and contradictory. In several studies, 

relatively higher ADC values were observed in malignant nodal tissue in comparison with 

benign tissue, and it was presumed that cellularity was the main cause of this differentiation. 

Such a conclusion points to a lack of understanding of cellularity, since cellularity alone is 

considered insufficient to explain the variation in diffusivities from in-vivo imaging (93). 

Several studies were carried out to determine the correlation between ADC changes and the 

cellularity of the tissue being examined, as listed in Table 2.2. 
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Table 2.2 Reported Correlations between ADC and ‘Cellularity’ in DWI Studies 

Disease Study 
Correlation coefficient 

( r a) 
p 

Brain Cancer Sugahara et al. 1998 (94) r = -0.77 0.007 

Brain Cancer Gupta et al. 2000 (95) r = -0.67 0.07 

Brain Cancer Gauvain et al. 2001 (96) r = - 0.68 0.014 

Breast Cancer Guo et al. 2002 (97) r = -0.53 <0.001 

Renal Cancer Manenti et al. 2008 (13) r = -0.73 <0.01 

Breast Cancer Yoshikawa et al. 2008 (98) r = 0.05 0.8121 

Breast Cancer Hatakenaka et al. 2008 (99) r = -0.45 <0.01 

Prostate Cancer Zelhof et al. 2009 (100) r = -0.50 <0.0001 

Prostate Cancer Gibbs et al. 2009 (101) r = -0.70 <0.0001 

Prostate Cancer Wang et al. 2009 (102) r = -0.65 <0.05 

Lymphoma Wu et al. 2013 (103) r = 0.10 0.58 

Brain Cancer Surov et al. 2015 (104) r = -0.70 0.001 

Breast Cancer Onishi et Al. 2015 (105) r = -0.80 <0.001 

a Pearson product-moment correlation coefficient ( r ) 

 

A number of studies on brain diseases have reported correlation between cellularity and ADC 

changes (94-96,104). However, histopathological criteria in neuronal diseases are known to 

differ from those in non-neuronal diseases as they are anatomically and physiologically 

different in the human body. It would be inaccurate to draw inferences from DWI imaging of 

neuronal cases for non-neuronal cases. Further research is therefore warranted on the 

application of DWI, particularly in non-neuronal diseases. In line with this, several studies 

have investigated non-neuronal diseases. Studies on adenocarcinoma (a type of cancer 

formed in glandular structures like the prostate and the breast) to determine the correlation 

between tissue cellularity and ADC values were only able to produce inconclusive findings 
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(97-102,105). Nevertheless, their results have provided a better understanding of diffusivity 

behaviour, which has implications for other non-neuronal diseases such as nodal disease. 

Most cellularity measurements on solid cancer have reported a significant negative 

correlation between ADC values and tissue cellularity (97-102,105). Microstructural changes 

observed in cancerous tissue have been found to show a significant correlation with ADC 

variation, as reported in prostate studies (101,102,106). One study reported a significantly 

lower cell density in the normal peripheral zone than in the prostatic carcinoma, which was 

nearly double the cellularity in normal prostate tissue (101). The study suggested that the 

ADC reduction in prostatic carcinoma was due to the replacement of the normal acinar 

structure with more tightly packed cancer cells. Another recent study revealed that the cell 

density of normal prostate tissue is highly heterogeneous (106). Another study with similar 

findings reported that the loose stroma in prostate cancer is replaced with densely packed 

malignant epithelial cells (102). These studies indicate that, apart from cellularity, the 

microstructural changes in cancerous tissue cause variations in ADC values as reported in 

DWI imaging. 

Besides cellularity and the microstructural changes in tissue, the amount of stromal and 

epithelial in the tissue was also found cause variations in ADC values.   Therefore, further 

analysis of prostate tissue components in ADC was conducted (107,108). According to a 

related study, the amount of stromal and epithelial contribution was more significant than that 

of cellularity in distinguishing cancer from healthy tissue (107).  

Specifically, the study argued that, although solid tumour growth was the most predictive 

histological feature on MRI, the prognostic significance of this feature remains unknown 

(107). A similar study also reported  an evidence of the presence of desmoplastic stroma and 

solid tumour growth in each tumour (108). The later study also suggested that epithelium and 

loose stroma can be used as an alternative to nuclear cell counting. The proportions of 

cellular components in prostatic cancer in comparison with normal prostate tissue were 24 % 

and 14 % of nuclei and 23 % and 16 % of cytoplasm, respectively. A significantly lower 

percentage of luminal space (14 %) was reported in cancer as compared to normal prostate 

tissue (30 %) (108). Each of the components pointed to significant differences in proportion 

and percentage in normal and cancerous tissues, which might help to explain the reported 

variation of ADC values. 
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In addition to the component analysis of prostate tissue, several studies have reported 

insignificant differences between ADC values and cellularity of prostate tissue (40,89,103). 

For nodal disease, a study on 32 patients with diffuse large B-cell lymphoma (DLBCL) found 

that the ADC of DLBCL was quite similar to that of lobular lymphoma (103). The study 

suggested that histological features such as cell size, cellular organisation and extracellular 

matrix may contribute equally to the tissues’ diffusivities. These are other possible 

explanations for the variation in ADC values which indicate that it is not solely due to 

cellularity. 

Brain tumour specifically in gliomas  tissue, however, reported a higher cellularity value than 

prostate tissue (94). Such a difference suggests that each tissue’s histological characteristics 

possess unique cellularity values. On the other hand, no study to date has investigated the 

cellularity of the lymph node and its association with ADC values.  

As previously mentioned, other than cellularity, the presence of necrosis and fibrosis does 

affect the measurement of ADC values. A study involving 21 patients with varying 

percentages of necrosis in hepatocellular lesions reported significant differences between 

ADC and necrotic tumours with p < .05(12). The study argued that the increased ADC values 

in necrotic tissue were due to tissue damage or disruption of the cellular membrane that 

allowed water to diffuse more freely than in the tumour tissue without necrosis.  

Another study involving 23 chronic hepatitis patients and seven healthy volunteers 

demonstrated a negative correlation between ADC and the stage of fibrosis (109). Although 

these studies reported that the presence of necrosis and fibrosis in the tumour tissue correlated 

with  the ADC values, the underlying biophysical change in the diffusion tissue contrast is 

still not well understood. Further, these studies assumed that necrosis and fibrosis were 

altering the cellularity of the tumour tissue and damaging the cell membrane, increasing 

water diffusivity and apparently reducing the detected diffusion signal. Therefore, there is an 

urgent need to determine the specific cellularity properties of lymph node tissue. 
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Cellularity measurement 

The idea that ‘cellularity’ is the biophysical basis of ADC variation is an extrapolation from 

studies of brain imaging, but this appears to lack a sound biophysical foundation. The 

cellularity metrics that are most commonly used are nuclear count and nuclear area(93,110). 

Nuclear count is the total number of nuclei per unit area in a histological section while 

nuclear area is a percentage of total nuclei per unit area of the histological section. Nuclear 

area can be given either as absolute value or as a percentage. 

The methods most commonly used to measure cellularity in the literature on DWI are shown 

in Table 2.3. Two main methods are employed: manual counting and auto segmentation. 

Manual counting depends on the visibility of the nuclei under the microscope and is limited 

to the current field of view. Auto segmentation is a software-based counting method with a 

relatively larger field of view. As listed in Table 2.3most of the methods  were lack in details. 

The need for a more specific and detailed method has led to a shift from manual nuclei 

counting to automated nuclei segmentation. Manual counting is time-consuming, prone to 

error and highly dependent on the operator’s skills. The introduction of auto nuclei 

segmentation has provided a more accurate and reliable method of cellularity measurement. 

The most important aspect of cellularity measurement is nuclei detection. Different types of 

nuclei exist in human tissue; lymphocytes are particularly important for lymph node tissue. 

Therefore, the ability to identify small lymphocytes from the mixture of cells in nodal tissue 

is crucial for automated nuclei segmentation. 

Automated nuclei segmentation has gained wide acceptance among pathologists for 

quantitative analysis of pathological images because it is more efficient and provides 

enhanced accuracy. However, the detection and segmentation of nuclei is more challenging 

for clustered and overlapping nuclei. An optimum visualization of the nuclei at the 

microscopic level can be obtained by using an appropriate staining method. The use of 

hematoxylin and eosin (H&E) staining protocol has been widely accepted for quantitative 

assessment, since it has proven to provide better visualisation and differentiation of the nuclei 

from other -microcomponents in the tissue.  
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 Table 2.3 Reported Methods of Cellularity Measurement in DWI Studies 

Study Disease Method/Tool Cellularity Metric 

Sugahara et al. 1998 
(94)  Brain Cancer Manual Counts Nuclear Area 

Gupta et al. 2000 
(95)  Brain Cancer Manual Counts Nuclear Count 

Gauvain et al. 2001 
(96) Brain Cancer Manual Counts Nuclear Count 

Guo et al. 2002 (97) Breast Cancer Manual Counts /Adobe Photoshop Nuclear Area 

Manenti et al. 2008 
(13) Renal Cancer Auto Segmentation Nuclear Count 

Yoshikawa et al. 
2008 (98) Breast Cancer Auto Segmentation /Scion Image 

Beta Software Nuclear Count 

Hatakenaka et al. 
2008 (99) Breast Cancer Manual Counts / microscope Nuclear Area 

Zelhof et al. 2009 
(100) 

Prostate 
Cancer 

Auto Segmentation / Matlab 
Software Nuclear Area 

Gibbs et al. 2009 
(101) 

Prostate 
Cancer 

Auto Segmentation / Matlab 
Software Nuclear Area 

Wang et al. 2009 
(102) 

Prostate 
Cancer Manual Counts / microscope Nuclear Area 

Wu et al. 2013 (103) Lymphoma Auto Segmentation/ BioImage XD 
Software Nuclear Count 

Surov et al. 2015 
(104) Meningioma Auto Segmentation/Analyze 

Particle Tool 
Nuclear Area, Nuclear 

Count 

Onishi et al. 2015 
(105) Breast Cancer Manual Counts / microscope Nuclear Area 

 

A range of auto-segmentation software is presently available in advanced image processing 

programs, which are capable of segmenting the overlapping and clustered nuclei (111). A 

machine learning technique employed in the software, for example, represents an important 

advance in quantitative histology assessment. The machine learning  technique is considered 

user-friendly and can generate a more accurate quantitative measurement for both clinical 

cancer assessment and research purposes. The profile obtained from the quantitative 

histology assessment at microscopic level has huge potential to explain the underlying 

microscopic changes in cancerous and non-cancerous tissue. In future,a digital histopathology 

might be - part of routine cancer assessment with  shorter time of analysis compared to the 
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manual histopathology. However, the translation of this research into clinical practice 

requires more time and rigorous research. 

Besides measurement of tissue cellularity, the underlying biophysical changes affecting the 

diffusion tissue contrast can be examined using multi biophysical modelling. The 

development of diffusion imaging modelling is discussed in the following section. 

2.3  Modelling of DWI Signal Attenuation 

In free diffusion, displacement of the water molecules follows a normal distribution with a 

time dependent standard deviation.. In the tissue, the displacement of water molecules is 

affected by the densely packed cells. Therefore, DWI signals in the tissue are sensitive to 

microstructural changes at the cellular level and the displacement deviates from the normal 

distribution. The analysis of DWI signal behaviour is of utmost importance for both 

preclinical and clinical studies. Analytical models have been proposed to describe the 

behaviour of DWI signals in the tissue to provide quantitative information on the underlying 

tissue microstructures.  

The analytical models are divided into two categories: signal and biophysical. Signal models 

aim to provide reliable mathematical descriptions of DWI signals but they offer only limited 

biophysical insights. Biophysical  models are based on the diffusion properties of each 

structural biophysical within a tissue and aim to provide parameters directly linked to the 

specific tissue structures. Biophysical  models have been proven successful in brain imaging 

and have recently gained increased attention for non-neuro imaging. In the following section, 

models of water diffusion in the tissue are reviewed. 

Signal models  

The DWI signal for bulk water molecules is described using monoexponential function 

analysis. Monoexponential function analysis is based on a normal Gaussian distribution of 

molecular displacement, in which the signal intensity of diffusing water molecules decays 

exponentiallywith increasing b-values. Simple monoexponential function analysis, also 

known as the ADC model, was discussed in Chapter 1:  

                                                    𝑆 =  𝑆0 exp(−𝑏.𝐴𝐷𝐶)                                               [2.1] 
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Monoexponential function analysis is widely accepted for DWI in clinical studies, including 

studies on node tissue. Some studies have highlighted the potential usefulness of DWI in the 

assessment of lymph node aggressiveness, with b-values ranging from 800–1500 s/mm2 

(15,16,82) 

However, water molecules are not able to diffuse freely in space owing partly to the presence 

of multicomponents in a tissue. Water diffusivity is restricted due to the interaction between 

water molecules and the multiple components in the tissue, which causes deviation of the 

DWI signal from monoexponential behaviours. Some studies have suggested using non-

monoexponential function analysis to characterise water diffusivity in the tissue, particularly 

biexponential function analysis (112,113), stretched exponential function analysis (114) and 

diffusion kurtosis function analysis (115), to further investigate the water diffusion behaviour 

of tissue in DWI imaging. 

Biexponential function analysis shows a better fit to the data for in-vivo studies on prostate 

tissue, with biexponential function analysis on extended b-values quantifying  the diffusion 

signal intensities into fast and slow components of water diffusivity for prostate tissue 

(112,113). Biexponential function analysis is depicted in the equation: 

                                         𝑆 =  𝑆0 [(1 − 𝑓) 𝑒−𝑏 𝐷𝑠 + 𝑓𝑒−𝑏𝐷𝑓  ]                                            [2.2] 

where 𝐷𝑠 and 𝐷𝑓 are the slow and fast diffusion coefficients, respectively, and f is the fraction 

of the fast component. Biexponential function analysis can be used to determine the slow and 

fast diffusivities  components by using  a range of b-values going up to high b-values with a 

maximum of at least 2000 s/mm2, as well as for modelling perfusion/tissue fractions, in 

which case small b-values are also required in the measurements.The fast component is used 

to describe biophysical components of extracellular spaces (ECS), whereas the slow 

component is used to describe intracellular spaces (ICS) in the tissue (112,113). According to 

the literature, however, the origin of the fast and slow diffusion coefficient pools is not well 

understood (116). 

In-vitro experiments on single cells in a range of b-values going up to high b-values  with a 

maximum of 6500 s/mm2, show an over-simplistic use of biexponential function analysis to 

determine intracellular and extracellular space in the cells (117-119). The biexponential 

fitting of DWI signals in erythrocyte cells demonstrated inaccurate counts because the fitting 

model was unable to account for significant water exchange between ICS and ECS 
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compartments in diffusion times of 7-35 ms (117). The nucleus of neuronal cells 

demonstrated predominantly monoexponential signal decay with only a slightly biexponential 

nature, whereas the cytoplasm appeared to have a predominantly biexponential signal decay 

with increasing b-values. It is believed that the slowly diffusing component originated from 

the intracellular space. The nucleus had reduced structural complexity in comparison with the 

cytoplasm, making the nucleus more favourable for monoexponential decay (118). Another 

study in heart tissue (i.e., myocardial cells) showed a decline in signal intensity when plotted 

as a function of diffusion gradient b-values and is considered best fitted to biexponential 

function analysis. This is partly because heart tissue has a larger volume of vascular tissue 

than the brain (14-22 % vs. 5 %). The signal from heart tissue consist of perfusion and 

diffusion components and  contribute to the fast diffusion coefficient. The fast diffusion 

component accounted for 82 % of the total signal of the myocardial cells (119). 

Single cell studies using biexponential function analysis have revealed a significantly 

different proportion of the slow diffusion coefficient, 𝐷𝑠, and the fast diffusion coefficient,𝐷𝑓, 

in range of b-values going up to high b-values  with a maximum of 6500 s/mm2 experiments 

(117-119). Most importantly, these studies have produced evidence of deviation from 

monoexponential diffusion signal behaviour at the cellular level, which may contribute to a 

better understanding of the non-monoexponential diffusion decay reported in both normal 

and cancerous tissue. Therefore, there is a need to investigate diffusion signal behaviour at 

the microscopic level using biexponential functional analysis of the microimaging MR unit as 

well as other models, including stretched function analysis and kurtosis function analysis. 

Stretched function analysis was initially developed to account for the possibilities of 

continuous distribution of the diffusion coefficient arising from multiple compartments. An 

experiment involving eight rats in a 3T MR scanner with extended b-values (range 0-6500 

s/mm2) reported a better fit of the diffusion signal in the rat brain with stretched decay 

function analysis than with biexponential function analysis (114). The stretched model is 

depicted in the following equation: 

                                                𝑆 =  𝑆0  exp(−(𝑏.𝐷𝐷𝐶)α)                                                   [2.3] 

In stretched models, unlike biexponential function analysis. no assumptions are made in 

relation to the number of intravoxel proton pools. Two parameters, the alpha (α) and 

distributed diffusion coefficient (DDC), are usually used to characterise the diffusion process. 
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The study demonstrated heterogeneity in water diffusion through an experiment using a 

phantom solution of 1.5 ml 10% ethanol measured by parameter α. In particular, a low α was 

reported in the central cortex and a high α in the upper portion of the cortex. The parametric 

map of DDC and α of stretched function analysis also identified a significant contrast 

between the white matter and the cortex region (114). The results from this experiment shows 

that diffusion contrast can be observed using  stretched function analysis. 

Then,diffusion kurtosis function analysis was introduced to characterise high b-value DWI 

signal attenuation behaviours (120). The deviation of measured signal intensity from 

Gaussian distribution was calculated using two parameters: the kurtosis diffusion coefficient 

(Dk) and the kurtosis coefficient (K).  

                            𝑆 =  𝑆0 exp(−𝑏 𝐷𝑘 + 1
6

 𝑏2 𝐷2 𝐾)                                               [2.4] 

Unlike biexponential function analysis, kurtosis and stretched function analysis  does not 

include any components element in characterising diffusion signal behaviour. A study 

involving 6 healthy adult volunteers scanned with a 3T MR unit using extended b-vales 

(range 0-2500 s/mm2) reported a substantial deviation of the signal from Gaussian diffusion 

in gray matter and white matter of the brain using kurtosis diffusion analysis. In particular, 

the apparent diffusion kurtosis in the frontal white matter was about 70 % higher than in the 

cortical grey matter, reflecting a higher degree of structure in white matter than in grey 

matter. Similar findings were reported in the same study using a phantom made of sucrose 

solution and asparagus puree. Besides the tissue structure, there was other evidence to 

suggest that macromolecule concentration does have an important role to play in relation to 

the diffusion behaviour in tissue (115,120).  

In a simple experiment on the phantom in stretched function analysis  (114) and kurtosis  

function analysis (115) , substantial evidence was found; K and α values demonstrated the 

heterogeneity property of the tissue that may result in non-monoexponential behaviour of the 

diffusion signal. Clinical imaging studies also had reported potential of differentiating  non-

cancerous from cancerous prostate using biexponential function analysis (113), stretched 

function analysis (121) and  kurtosis  function analysis (122).   
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Biophysical models  

Biophysical  models aim to provide sensitivity to microstructural changes in tissue. The 

parameters in biophysical models are directly related to properties of the tissue structure. One 

of the early attempts to model DWI signals in tissue in-vivo using this approach was called 

intravoxel incoherent motion (IVIM). The IVIM model, which was proposed by LeBihan et 

al. (123), divides the tissue into vascular and nonvascular components and is represented by a 

biexponential function analysis: 

                                           𝑆 =  𝑆0 (1 − 𝑓)𝑒−𝑏𝐷 + 𝑓𝑒−𝑏𝐷∗                                 [2.5] 

where 𝐷∗ is the perfusion coefficient that describes incoherent movement of blood in 

microvasculature, 𝑓 is the perfusion fraction signifying the fraction of signal from perfusion, 

and 𝐷 is the true molecular diffusion. Biexponential function analysis were used to determine 

the slow and fast diffusivities  components  only and  IVIM used the same basic equation  of 

biexponential function alaysis  to further determine vascular components in the tissue. IVIM 

modelling requires measurements with small b values to estimate the perfusion fraction. 

Three recent studies have demonstrated that the IVIM model is useful for discrimination of 

nodal diseases (124,125) and prediction of treatment response in nodes (126). Significantly 

lower D (diffusion coefficient) and D* (perfusion coefficient) were reported in metastatic 

lymph nodes in comparison with non-metastatic lymph nodes. In contrast, in the study using 

extended b-values (range 0-800 s/mm2) no significant differences were reported in f 

(perfusion fraction) (124). Interestingly, another related study using extended b-values (range 

0-2000 s/mm2) reported significantly higher D and f values in metastatic lymph nodes than 

those of normal lymph nodes and significantly lower D* in metastatic lymph nodes (125). 

IVIM analysis has also shown that the f in lymph nodes might be helpful for prediction of 

treatment response in head and neck carcinomas (126). 

Recently, the VERDICT (Vascular, Extracellular and Restricted Diffusion for Cytometry in 

Tumors) model was proposed to model DWI signals in tissue in-vivo using three 

compartments (127). Beside VERDICT, there are other multi-compartment models for cancer 

imaging such as  IMPULSED (imaging microstructural parameters using limited spectrally 

edited diffusion ) model and POMACE (Pulsed and oscillating gradient MRI for assessment 

of cell size and extracellular space) model (128). VERDICT is a framework which combines 

an optimised acquisition protocol with multiple b-values and diffusion times and a multi-
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biophysical tissue model. VERDICT characterises diffusion signals in three distinct 

microstructural environments: restricted diffusion inside cells, hindered diffusion outside 

cells and blood vessels, and isotropic restricted pseudo-diffusion inside blood vessels. The 

model estimates parameters such as cell diameter, intracellular diffusivity, intracellular 

volume fraction, extracellular extravascular volume fraction, extracellular extravascular 

diffusivity, pseudo diffusivity and vascular volume fraction. The signal is the sum of 

contributions from the three individual compartments, denoted by: 

                                               𝑆 =  ∑ 𝑓𝑖𝑆𝑖3
𝑖=1                                                  [2.6] 

where 𝑆𝑖 is the signal from each parameter and 𝑓𝑖 is the fraction of signal of that component. 

The VERDICT model has recently been used to model colorectal (127,129) and prostate 

cancer (129). The model is capable of differentiating cancerous from normal tissue. It also 

provides parameter estimation, which corresponds to specific tissue histology of the prostate 

(129). These pioneer biophysical model studies have demonstrated their superiority to signal 

models in cancer detection and ability to infer tissue microstructure.  

The present study used fixed tissue samples without perfusion effect. Therefore, two 

important effects may have to be taken into consideration in modelling water diffusion in 

non-neural tissue: 

1) Restricted diffusion of water molecules inside cells. 

2) Hindered diffusion of water molecules in the extracellular space. 

During DWI imaging, cells might have experienced water exchange through the cell 

membranes. The exchange of water through the membrane of the cells depends on the cell 

type. No water exchange between compartments was assumed in the present ex vivo imaging 

study as samples  used were fixed tissue. Five single biophysical models from white matter 

(130) were implemented in the present study in order to model restricted and hindered 

diffusion in lymph node tissue. The single biophysical models were as listed in Table 2.4, 

where : 
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1.  ‘Ball’, an isotropic tensor. The model has only one parameter, diffusivity D.  

2.  ‘Zeppelin’, a cylindrically symmetric tensor. The model has the principle 

eigenvectors, parallel diffusivity D||,and perpendicular diffusivity D⊥. 

3.  ‘Tensor’, a conventional single-component DTI model. The model provides the 

following parameters: parallel diffusivity D||, two perpendicular diffusivities D⊥1, D⊥2, 

and three orthogonal eigenvectors 𝜀, 𝜀⊥1, 𝜀⊥2 . 
4.  ‘Stick’, which assumes diffusion within an idealised cylinder of zero radius. The 

model has a direction n and diffusivity D as parameters. 

5.  ‘Sphere’, which describes restricted diffusion inside an impermeable spherical pore 

with a non-zero radius Rs. 
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Table 2.4 Biophysical Models for Non-neural Tissue 

  
Model 

 
Forma 

 
Degrees of freedom 

 

 

 

𝐷 = 𝐷𝐼 𝐷 

 

 

 

𝐷 =  𝛼𝜀𝜀 𝑇 + 𝛽𝐼,𝐷𝐼𝐼  =  𝛼 +  𝛽,𝐷⊥ 𝐷𝐼𝐼 ,𝐷⊥1,𝜃,ф 

 

 

 

𝐷 = 𝐷𝐼𝐼𝜀𝜀𝑇 + 𝐷⊥1𝜀⊥1𝜀⊥1𝑇 + 𝐷⊥2𝜀⊥2𝜀⊥2𝑇  𝐷𝐼𝐼,𝐷⊥1,𝐷⊥2,𝜃,ф ,𝛼 

 

 

 

𝑆 = 𝑒−𝑏𝐷(𝑛𝐺)2     𝐷, 𝜃, 𝜙 

 

 

 

GPD approximation. 𝑅s > 0 𝐷, 𝑅s 

a) D is the diffusion tensor. I is the identity tensor. 𝜃, 𝜙, 𝛼 are tensor angles. 
 

Reproduced from (130) with permission from Elsevier, UK.   
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2.4 Diffusion Microimaging  

Obtaining a good correlation between in vivo diffusion signal and histopathological status of 

the tissue is extremely difficult. The accuracy of in-vivo imaging is hampered by low signal-

to-noise ratio (SNR) and low spatial resolution due low field strength. However, these 

problems can be reduced using ex vivo diffusion imaging at a high field which offers better 

signal-to-noise ratio (SNR) and higher spatial resolution. In other words, the 

comparisonbetween biophysical features of tissue and the diffusion signal can be improved 

and better explained by using ex vivo imaging. Although ex vivo imaging is very important 

and useful, it is only an estimate of what one can expect in vivo, so caution is needed when 

extrapolating ex vivo results into in vivo situation. 

As mentioned earlier, a related study on diffusion microimaging showed a good correlation 

between in-vivo and ex vivo DTI of prostate tissue and its histopathological status. 

Specifically, the study reported distinguishable ADC values in cancerous and noncancerous 

tissue in the peripheral zone (PZ) region of the prostate (131). The reported ADC values were 

lower in the ex vivo experiment than the in-vivo experiments. The study observed no 

significant diffusion anisotropy differences between cancerous and non-cancerous prostate 

tissue in both ex vivo and in-vivo imaging. The network of fibromuscular connective tissue 

leads to the observed diffusion anisotropy. Interestingly, the study  also reported of no 

histological evidence  of increased  density of fibromuscular tissue in cancerous tissue (131). 

The distinguishable ADC values reported in prostate tissue in this study shows that 

diffusivity values is better than using diffusion anisotropy to differentiate cancerous and 

noncancerous tissue.  

A recent ex vivo DTI study reported a distinct mean diffusivity (MD) of the ducts/lumen, 

stroma, and epithelia in normal prostate tissue (8). In that study, mean diffusivity was used 

instead of ADC values to accommodate the contribution of diffusion signals resulting from 

six gradient directions (78). The study also showed low diffusivity in the epithelial layer, 

moderate diffusivity in the stroma, and fast diffusion in ducts. The ultra-highspatial resolution 

that was achieved by using a 16T MRI scanner (40 µm isotropic) provided the advantage of 

reduced partial volume effects. The diffusion anisotropy appeared higher in the stromal tissue 

than in the epithelia. These results are consistent with previous work (8).  
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Although the study on diffusion microimaging has shown distinct mean diffusivity in sub-

structures of prostate tissue using ex vivo DTI imaging at a higher field, no similar work has 

been reported for lymph node tissue to date. A recent study of ex vivo DWI on lymph node 

tissue using a 7T MRI unit reported distinguishable ADC values in benign and metastatic 

nodes. The study suggested that the discrimination of metastatic from nonmetastatic nodes 

based on assessment of nodal anatomical features was challenging (90). Nevertheless, ADC 

values were not reported in the microstructures of the lymph node. In this regard, it is more 

likely that the study was not able to report the specific ADC values on the microstructure of 

the lymph nodes owing to the poor tissue contrast on ADC maps from the DWI imaging. 

Therefore, ex vivo DTI imaging of the lymph nodes tissue is needed to better understand the 

biophysical bases of the diffusion contrast and determine the correlation between the 

diffusion signal and the histopathological status of the lymph node. 

2.5 Problem Statement 

The underlying biophysical origin of diffusion contrast in cancerous and normal tissue 

remains poorly understood. The development of DWI for lymph node assessment depends on 

understanding how water diffusion is affected by the changes in tissue structure that 

characterise the presence of cancer. An improved understanding of the biophysical basis of 

diffusion contrast on the tissue can help to guide the development of available MRI methods 

to provide more reliable insights into, for instance, cancer localisation and differentiation of 

nodal disease. This in turn will facilitate patient management via a more precise and effective 

treatment. 
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2.6 Hypothesis and Aims 

This study aims to define the biophysical basis of contrast in DWI of the lymph node. 

Specifically, it investigates the hypothesis that the clinically observed decreased ADC of 

cancerous lymph nodes can be explained by increased cellularity. It also investigates the 

theoretical information content of single and multi-biophysical models that include 

combinations of isotropic, anisotropic and restricted components in lymph node tissues. 

Models were ranked using the Akaike information criterion (AIC), which compared models 

based on its theoretical information. The modelling will identify compartments that are 

considered necessary for accurately describing DWI signals in lymph node tissues. 

The objectives of the study are to: 

1. Characterise the microscopic structure of nodes and investigate the correlation 

between mean diffusivity (MD) and cellularity metrics using DWI on high-resolution 

16.4 Tesla MRI 

2. Investigate the theoretical information content of single- and multi- biophysical 

models of DWI signal attenuation measured over an extended range of b-values and 

multiple diffusion times with the combination of isotropic, anisotropic and restricted 

components. 
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3. Correlation of Cellularity Metrics 
with Mean Diffusivity 

 

3.1 Introduction 

The development of the full potential of DWI methods for lymph node cancer assessment 

depends on better understanding how water diffusion is affected by the changes in tissue 

structure that characterise the presence of cancer. Recent reviews of related literature have 

highlighted the importance of  nodal assessment and thus suggested the inclusion of nodal 

assessment as part of routine primary tumour assessment (73). The major cause of cancer-

related death was reported to be the spread of cancer cells, or metastasis, to nearby tissues 

inside the body, including the lymph node tissue (23). The application of DWI in the 

detection of solid cancer shows potential for differentiating cancerous from non-cancerous 

tissue (2,8,9). Previous studies carried out on breast and prostate tissue demonstrated distinct 

diffusivities of the gland tissue microstructures (2,8). A similar study on lymph node tissue 

would represent the first step toward understanding the biophysical characteristics of the 

tissue underlying the variations in diffusivity of cancerous lymph node tissue reported in the 

literature. 

Cellularity is commonly assumed in the literature to be the main factor responsible for 

variation in water diffusivity. The generalisation of much published research on DWI based 

on this assumption is problematic. Moreover, recent studies have demonstrated that 

microstructures in glands of prostate tissue, including epithelium, stroma and lumen space, 

show a stronger correlation with the ADC than the commonly cited ‘cellularity’ does with 

ADC (93). To the best of our knowledge, no previous study has been conducted to investigate 

ADC and cellularity in lymph node tissue. Instead of ADC values, mean diffusivity (MD) 

values were used in this study because this has the advantage of averaging the diffusivity 

measurement over six gradient directions. MD is comparable to ADC in DWI. 

This chapter reports on a study in which formalin fixed lymph node tissue was imaged using 

a 16.4T MR system to measure the MD and determine the correlation of measured 

diffusivities with cellularity metrics. Formalin-fixed tissue in ex vivo imaging experiment has 

been demonstrated to be a stable model for investigating microscopic diffusion properties of 
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tissue (132). The study quantified the cellularity metrics and tissue composition changes 

associated with pathological conditions of the lymph node tissue, including metastatic, 

normal, and lymphoma cases. It also investigated the hypothesis that the clinically observed 

decrease in ADC values in lymph node cancer can be attributed to increased cell density. 

3.2 Methods 

3.2.1 Materials 

Lymph node tissue samples were collected from humans and animals, as shown in Table 3.1. 

Human tissue samples 

The study was conducted with institutional ethical approval from Strathfield Private Hospital 

(Sydney, New South Wales)   and Concord Hospital (Sydney, New South Wales) and written 

consent from all participating patients. A copy of the institutional ethical approval can be 

found in the Appendix.The lymph node tissue was collected from breast cancer and 

inflammatory bowel disease surgery. The lymph nodes were immersed in 10% neutral 

buffered formalin post-surgery to preserve the specimens. 

Axillary node tissue was collected from breast cancer patients aged 50-60 years (mean 55 

years). A total of six lymph node tissue samples were collected between April 2014 and April 

2016 from five patients as part of routine surgery. A minimum of one lymph node was 

resected from each patient. The mean short axis diameter of the specimens was 5 mm (range 

3-8 mm) and the mean long axis diameter was 5 mm (range 3-10 mm).  

Mesenteric node tissue was collected from patients aged 50-60 years (mean 55 years). 

Between August 2015 and April 2016 a total of eight lymph node tissue samples were 

collected from five patients. A minimum of one and maximum of five nodes were obtained 

from each patient. The mean short axis diameter was 5 mm (range 3-8 mm). The mean long 

axis diameter was 5 mm (range 3-10 mm). 

 

Animal tissue samples 

Dog lymph node tissue was collected from Vetnostics  (Sydney, New South Wales)   

Australia. A copy of ethics approval for tissue collection from the institution was attached in 
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“Appendix” of this thesis. The lymph nodes were immersed in 10% neutral buffered formalin 

post-surgery. Between August 2015 and April 2016 a total of six lymph node samples were 

collected from six dogs. The mean short axis diameter was 5 mm (range 3-10 mm). The mean 

long axis diameter was 8 mm (range 3-15 mm). 

Table 3.1 Lymph Node Specimen Summary 

No Subject Pathology  
Number 

of  
nodes  

Number of  
cores 

imaged 

Number of  
Histolgy 

slices 

MR images 
with histo 

match 
1 Human Metastatic Axillary 2 3 23 11 

2 Human Metastatic Axillary 1 1 6 3 

3 Human Metastatic Axillary 1 1 5 7 

4 Dog Metastatic 1 1 5 5 

5 Human Normal Axillary 1 2 14 7 

6 Human Normal Axillary 1 2 8 7 

7 Human Normal Mesenteric 1 1 6 2 

8 Human Normal Mesenteric 1 1 5 2 

9 Human Normal Mesenteric 1 1 6 2 

10 Human Normal Mesenteric 2 2 14 4 

11 Human Normal Mesenteric 2 2 13 7 

12 Dog Lymphoma 1 1 6 5 

13 Dog Lymphoma 1 1 3 3 

14 Dog Lymphoma 1 1 4 4 

15 Dog Lymphoma 1 1 3 2 

16 Dog Lymphoma 1 1 3 2 

Total 19 22 124 73 
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3.2.2 Tissue preparation 

Excess fat around the node was carefully removed using a surgical scalpel blade. For each 

node, a 3 mm diameter core sample was extracted from the tissue using a core punch. For 

smaller nodes, the resulting sample was not a neat cylinder. For larger nodes; two core 

samples were obtained, if possible. The cores were glued to a plastic strip (cut from a 

laboratory chemical weigh boat) using cyanoacrylate “superglue” to fix the position of the 

core during imaging and histology sectioning. Tissue cores of not more than 15 mm in total 

length were fitted inside the sensitive region of the MRI RF coil. A minimum of three tissue 

cores were placed on a plastic strip (Figure 3.1). 

 

 

Figure 3.1 Tissue cores glued to plastic strip for imaging  

The glued samples were inserted into a 2 mL screw-top plastic vial and immersed in 

phosphate-buffered saline (PBS) containing 0.2% v/v Magnevist (Bayer Healthcare 

Pharmaceuticals, Berlin, Germany) and stored at least overnight at room temperature to 

wash out the formaldehyde. The PBS solution provides a known diffusivity background and 

the contrast agent reduces T1 to ~0.5 s, which enables a shorter TR and, thus, faster 

imaging. Samples in the vials filled with PBS solution were then mailed overnight to the 

Centre for Advanced Imaging, University of Queensland (CAI-UQ), for 16.4 T imaging.  

3.2.3 MR imaging 

The following MRI setup was performed by either Dr Gary Cowin or Dr Nyoman Kurniawan 

at CAI-UQ. 

The tissue cores on the plastic strip were transferred into a 5 mm diameter NMR tube filled 

with PBS-Magnevist solution for imaging. The sample was degassed under vacuum to 

remove any air bubbles which would create magnetic susceptibility artefacts. Imaging was 
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performed on a Bruker (Kalsruhe, Germany) AV700 magnetic resonance microimaging 

system, which consists of a 16.4 T vertical bore magnet with a spectrometer running 

Paravision 4 and a 5 mm bird cage radiofrequency coil. The scanner was equipped with a 

Micro 2.5 Gradient Set (2.5 mT/m). Imaging was performed at a monitored room temperature 

(22oC). For diffusion-weighted imaging, a 3D spin echo diffusion tensor imaging (DTI) 

sequence was employed with the parameters listed in Table 3.2. The typical imaging time 

was 36 hr (range: 25-72 hr). 

Table 3.2 DWI Acquisition Parameters  

FOV (mm3) 20.5 × 5.1 × 5.1 

Matrix size 512 × 128 × 128 

Voxel size (µm3) 40 × 40 × 40 

SNR 23 – 28 

TR (ms) 
400, 

500 

TE (ms) 20 

δ (ms) 2 

Δ (ms) 12 

b-value (s/mm2) 

6 directions 
1000 

a) Nominal b-value. Effective b-values were used for measurement of mean 
diffusivities. 

 

The signal-to-noise ratio (SNR) was measured from reference images at b = 0 and it was 23- 

28 in the parenchyma of the lymph node tissue. The SNR was measured  from the ratio of the 

signal S,  relative to the noise level N. The signal was taken as the mean DWI pixel intensity 

in a ‘tissue only’ region of interest (ROI) and noise as the standard deviation of the difference 

between the two reference images in the same region. 

3.2.4 Histopathology: Morphology segmentation 

Following the MR microimaging, the tissue cores were prepared for light microscopy. The 

tissue sectioning was guided by a visual assessment of the likely tissue type as seen in the 

MR images. The two dimensional (2D) DWI images and the 2D mean diffusivity images 

were used to guide the tissue sectioning, as presented in Figure 3.2 The samples were 
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sectioned and stained with haematoxylin and eosin (H&E) at the Lowy Cancer Research 

Institute, University of New South Wales, with the kind assistance of Dr Carl Power. 

 

Figure 3.2 Lymph node tissue images on sagittal plane 

DWI images on sagittal plane was used as pre-defined guide in the histo-sectioning process. 

Histopathology examination of the H&E stained slides was carried out by a histopathologist 

(Dr Geoff Watson) at the Department of Tissue Pathology and Diagnostic Oncology, Royal 

Prince Alfred Hospital (RPAH)  in Sydney, New South Wales. The sub-structures, border of 

each sub-structure, and the cancer type of the tissue were identified and marked on colour 

prints of tissue sections. 

H&E stained slides were digitally scanned at 40× magnification with a spatial resolution of 

0.25 microns per pixel using a digital brightfield microscope (Aperio Scan Scope, Leica 

Biosystems Imaging Inc., Wetzlar, Germany). Images from the digital scanner were stored 

online via Aperio eSlide Manager (version 12.2) software in scope virtual slide (SVS) format. 

The SVS image files were viewed offline using Aperio Image Scope software (v12.10.5029). 

The “Zoom Navigation” and “Extract Image Region” tools were utilised to select subimages 

containing only the 3 mm core tissue. Typically, the scanned 3 mm diameter tissue sections 

were 11000 × 14000 pixels. The subimages were saved in lossless Portable Network 

Graphics (PNG) format for cellularity measurement.  

3.2.5 MRI and Histology Image Alignment 

A digital photograph of the specimen on the plastic strip was taken prior to MR imaging to 

aid the alignment of MR images with corresponding histopathology sections. Photographs 

were taken in two different views: perpendicular and parallel to the tissue cores. Any 

distinguishable physical characteristics of the tissue cores were noted. The qualitative 

assessment of the MR images was based on the identification of microstructures on DWI. A 
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region with homogeneous signal intensity on the MD map was categorised as a sub-structure 

of the tissue. The MR images were processed in MeVisLab (Mevislab Medical Solutions, 

Bremen, Germany) to perform 3D volume rendering, which assisted the tissue sectioning. 

Single and multiple image views were assessed using custom Matlab code (Mathworks, 

Natick, Massachusetts, USA) to assist the alignment between the MR image and its 

corresponding histological section.  

Diffusion-weighted images transverse to the tissue core axis (same as MR axis) were aligned 

with histology slices from approximately the same planes (Figure 3.3). In most cases, the MR 

imaging planes were not matched to the histopathology section planes. To account for modest 

histological slicing and mounting distortions, a code was written in MATLAB R2012b 

(MathWorks, MA) to obtain an oblique slice in MR images. This can be done by firstly 

determined which of MR imaging plane that need to be rotated ( x, y or z planes), then 

defined the degree of  rotation angle and next used the rotated MR images to matched with 

the H&E section images. Once the angle of rotation is determined, multiples DWI images 

were displayed at certain separation depth to match with histopathology images. For example  

15 pieces of MR  images with (50 - 200 µm) separation depth were viewed at an angle of 5 

degree of rotation. Adjacent MR slices were also checked for discrepancy and to minimize 

partial volume effects. Then, visual inspection of the rotated images were repeated for next 

consecutive MR images sequences  until  a satisfied closeness of match between MR images 

and H&E stained slices match were determined. The closeness of match was of MR images 

with H&E stained slices were used in the analysis. 

ROIs were defined inside extensive well-defined lymph node microstructures in normal and 

cancerous regions mapped on the corresponding histological sections. A total of 73 MR 

images were considered to be sufficiently closely matched to the histological sections of the 

tissue samples from 16 subjects to enable reliable assessment of MR-histology correlations. 

The matched MR images included normal lymph node (n=31), metastatic lymph node 

(n=26), and Non-Hodgkin lymphoma (n=16). 
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Figure 3.3 ROI selection in histology slices and MD map  

Representative examples of ROI selection in H&E sections (a,c,e) and corresponding MD 

map (b,d,f) for lymph node tissue. A typical approximate ROI is defined in the parenchyma 

region as normal (a), metastatic (c) or lymphoma (e) node tissue. The ROIs drawn on MD 
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images in areas most representative of underlying tissue structures parenchyma region. The 

boundary of ROIs were defined to avoid any error due to chemical shift artifact. 

3.2.6 Measurement of mean diffusivity (MD)  

Mean diffusivity (MD) was measured using Matlab (Mathworks, Natick, Massachusetts, 

USA). Details of the Matlab coding can be found in the Appendix ). Diffusion tensor model 

was fitted voxelwise and calculation of  MD was performed in ROIs drawn manually in MR 

slices.  MD in sub-structures of the tissue was measured as: 

                                         𝑀𝐷 = (λ1 + λ2 + λ3)/3                                                [3.1] 

where 𝜆1 , 𝜆2 and 𝜆3 are the eigenvalues of the diffusion tensor matrix. ROIs for MD 

calculation were defined based on MR slices that showed distinct anatomical features and 

closely matched the corresponding histological sections. ROIs were manually drawn on MD 

images around tissue sub-structures. A color printed images of H&E stained tissue under light 

microscopy view from Aperio Image Scope software were used as reference. ROI voxel 

calculations were based on selection of imaging slices that most clearly permitted 

unequivocal manual selection of a large area of voxels composed primarily tissue sub-

structures (parenchyma and capsule). The boundary of tissue sub-structure and 

histopathological status of the tissue on the selected ROIs were confirmed by an expert 

pathologist (Dr Geoff Watson) and drawn on the color printed images of H&E slices. Each 

sub-structure was visually matched to the appropriate ROI in MD images using the drawn 

map on histology images as guides. The ROI boundary on MD images was defined to avoid 

any error due to chemical shift artefact. This ensured region correspondence between 

pathologic and MRI analysis. Adjacent MR slices were checked to minimize partial volume 

effects. ROIs in both MD images and  histology section were align at the approximately same 

image plane and slices as described in Section 3.2.5. An example of ROI selection on MD 

image is shown in Figure 3.3. 
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For each MRI-histology image pair the same ROI selection method was repeated on the 

adjacent MR slices. MD was measured as an averaged diffusivity value of the same ROI from 

three adjacent MR slices. For ROIs adjacent to fat, the boundary was defined to avoid any 

chemical shift artefact. Normal tissue ROIs were selected to exclude inflammation and 

hyperplastic tissue. Metastatic lymph node ROIs were defined to exclude reactive and normal 

tissue. 
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3.2.7 Measurement of cellularity metrics  

Slide scan images (n=303) were obtained from 16 subjects. A region containing exclusively 

microstructures of lymph node, capsule, or parenchyma were identified and selected in each 

scanned slide image. A total of 117 slide scan images were identified as normal lymph node, 

138 as metastatic lymph node, and 48 as Non-Hodgkin lymphoma. Measured cellularity 

metrics included nuclear count and nuclear area. The measurements were performed using 

Image Pro Premier (Media Cybernetic, Rockville, MD) with semi-automatic segmentation. 

The ‘Smart Segment’ tool was utilised to segment the nuclei based on colour intensity, 

morphology and background. The ‘Split’ function, which is based on a circular boundary 

condition, was employed to distinguish nuclei that appeared joined. Nuclear counting was 

then performed with the ‘Count’ tool. A minimum nucleus area of 10 pixels (nuclear 

diameter ~7 μm) was selected to exclude the counting of spurious small objects. The ‘Create 

mask’ tool was used to create a mask with nuclei in yellow against a black background. The 

subimages as explained in section 3.2.4 saved in PNG format and were imported to Image 

Pro Premier software for cellularity metric measurements. The measurement of cellularity 

metrics on each defined ROI on subimages was repeated three times and the averaged value 

was reported. An example of the automated segmentation results is shown in Figure 3.4. 
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Figure 3.4 Semi-automated nuclear segmentation 

Nuclei were segmented for estimation of cellularity metrics using semi-automated 

segmentation software. The LEFT column shows H&E stained section images for normal 

node (a), metastatic node (c), and Non-Hodgkin lymphoma (e). The RIGHT column shows 

corresponding nuclei segmentation (b), (d), (f) for each section. 
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3.2.8 Statistical analysis 

SPSS, version 21.0 (IBM Corporation, Armonk, New York, USA), was used for statistical 

analysis. Data normality was confirmed by Shapiro-Wilks test with p > .05. The differences 

between means were assessed by Kruskal-Wallis with post hoc Dunn-Bonferroni test for 

multiple groups. To adjust the clustering effect due to repeated measures, the mean value of 

the measured metric for each tissue type was used in the analysis.  

Pearson’s correlation coefficient was used to measure the correlation between MD and 

cellularity metrics. Spearman’s rank was used to assess the correlation between MD with the 

cellularity metric in three different tissue types (metastasis, normal, lymphoma). Fisher r-z 

transformation (z-score) was used to determine significant (p < .05) difference between 

correlations. 

3.3 Results 

3.3.1 Lymph Node Microstructures 

DWI displayed tissue contrast corresponding to distinct sub-structures in lymph node tissue 

including capsule, parenchyma, and artery (Figure 3.5). Microstructures that were present in 

DWI images corresponded closely to histology features seen on light microscopy of the same 

tissue slices. In the DWI images of normal and metastatic lymph node tissue (Figure 3.5b and 

3.5e), the parenchyma biophysical was hyperintense relative to the surrounding tissue 

microstructures. In the corresponding MD images (Figure 3.5c and 3.5f), the parenchyma 

biophysical showed distinctly lower diffusivity than the adjacent capsule. 
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Figure 3.5 Diffusion properties of lymph node microstructures  

Representative H&E-stained sections, DWI images, and MD maps of lymph node tissues. a–i: 

H&E histology section of normal lymph node tissue (a) shows the capsule (C), parenchyma 

(P), and fat (F). d–f: H&E histology section of metastatic lymph node tissue (d) depicts 

capsule (C), parenchyma (P), and artery (A). g–i: H&E histology section of lymphoma (g) 

shows parenchyma (P). In d, e, f there were fat (F) present in the nodal tissue. The features 

seen in the tissue in the H&E histology section corresponded directly with those seen on the 

DWI images (b, e, f) and MD maps (c, f, i) in approximately the same plane. 
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Figure 3.6 Normal lymph node with folicular hyperplasia  

Normal tissue sample in Figure 3.6 shows hyperplasia of lymphoid follicles (LF) in DW images 

(a) and the approximate tissue sectioning in H&E stained slide (b). The rim of the lymphoid 

follicles as seen in the H&E stained slide contains a higher density of cells and closely 

corresponded to distinct hyperintense signal on DWI images. 

3.3.2 Image alignment accuracy 

The MRI-histology image alignment accuracy was not quantified. ROIs in both MD images 

and  histology section were align at the approximately same image plane and slices as 

described in section 3.2.5. Multiples MD images were subjectively assessed at depth 

separation from  50 - 200µm to match with one histological section. Adjacent MR slices were 

checked for discrepancy and to minimize partial volume effects. ROIs in both images are 

inapproximate as in 16.4T diffusion-weighted MR images had a voxel size used (40 μm 

isotropic) while the thickness of the histology section is 5 μm. However, the method used 

allowed the matching of MRI to lymph node sub-structure details and histopathology with 

sufficient confidence for an ROI-based analysis.  



57 

 

3.3.3 Mean diffusivity (MD) analysis 

Twenty samples of lymph node tissue were collected from 16 subjects. In this study, 107 

histology sections were analysed, of which 21 sections were excluded due to poor staining 

and folding of tissue on the slide. Diffusion parameters were analysed and measured using 

Matlab. The MR images were displayed using MIPAV for 3D volume rendering and Matlab 

for 2D images. 

Shapiro-Wilks test showed that MD for metastatic and normal tissue deviated from normal 

distribution with p > .05. For lymphoma, the MD showed normal distribution with p <.05. 

The results of Shapiro-Wilks test showed a non-normal distribution of the overall data in this 

study. Therefore, the subsequent statistical analysis was based on non-parametric testing. 

In this study, the two main sub-structures of lymph node tissue, parenchyma and capsule, 

were included for measurement of mean diffusivities. The difference of MD in sub-structures 

of the three pathological lymph node tissue types was assessed using a Kruskal–Wallis test. 

Any significant differences of MD among the tissue types were then assessed using post hoc 

Mann–Whitney analysis. Results of the Kruskal–Wallis test and post hoc Mann–Whitney 

analysis are presented in  Table 3.3. Distinct diffusivity was found in node sub-structures, 

while higher diffusivity was found in the capsule region than in parenchyma. 

A summary of the MD in each identified lymph node sub-structure is presented in Table 3.3. 

The MD was significantly lower (p <.05) in cancerous tissues in comparison to normal 

tissues. Distinct diffusivities were also found in lymph node sub-structures. Higher diffusivity 

was found in the capsule in comparison to parenchyma in normal and metastatic lymph node 

tissues. Parenchyma in normal lymph node tissues had higher MD (0.71 ± 0.17 µm2/ms) than 

metastatic parenchyma (0.52 ± 0.08 µm2/ms) and lymphoma (0.47 ± 0.19 µm2/ms). Capsule 

in normal node tissues showed a higher MD (1.15 ± 0.16 µm2/ms) than capsule in metastatic 

tissues (1.07 ± 0.17 µm2/ms). 

A significant difference was seen in MD values of lymph node sub-structures in the three 

different tissue types using Kruskal–Wallis test with p <.05. The Kruskal-Wallis test 

indicated a statistically significant difference of MD values in parenchyma in the three tissue 

types, χ2(2) = 6.129, (p = 0.047) with a mean rank of MD 34.44 for metasta sis, 40.96 for 

normal and 25.44 for lymphoma. The post hoc Mann–Whitney analysis showed differences 

in MD of sub-structures in normal and lymphoma tissue types (p >.05).  
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The bar graph in Figure 3.7 shows the summary of MD measured for lymph node sub-

structures for all subjects. It has to be noted that not all subjects showed the presence of 

lymph node sub-structures in this study. Only five subjects had both measurements on 

parenchyma and capsule. The bar graph shows that the capsule of the lymph nodes generally 

appears to show higher MD compared to parenchyma in all subjects. Parenchyma of normal 

lymph node shows higher MD compared to normal and lymphoma tissues. An exceptionally 

high MD in parenchyma of normal tissue was identified in two subjects (5&6). 
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Table 3.3 Summary of Mean Diffusivity (MD) in Lymph Node Sub-structures 

Microstructure Tissue type MD  (µm2/ms) a ROI (voxels) b 

Parenchyma 

Normal 
Tissue 0.71 ± 0.17 78 ( 46,218 ) 

Metastatic 
Tissue 0.52 ± 0.08 75 ( 26,412 ) 

Lymphoma 
Tissue 0.47 ± 0.19 54 ( 24,245 ) 

Capsule 

Normal 
Tissue 1.15 ± 0.16 6 ( 686 ) 

Metastatic 
Tissue 1.07 ± 0.17 54 ( 10,953 ) 

Kruskal Wallis test  
(significant difference between MD in lymph node microstructures) 

  Chi-
Square 

Degrees 
of 

freedom 
p  

Mean rankc 

Normal  
Tissue 

Metastatic  
Tissue 

Lymphoma 
Tissue 

Parenchyma 6.129 2 0.047 40.96 34.44 25.44 

ROI 25 28 16 

Capsule 0 1 1 10.5 10.5 - 

ROI 2 18 - 

Post hoc Mann- Whitney test  
(significant difference between measurad MD in lymph node microstructures) 

95% confidence intervals 

Microstructure Tissue type pairwise U p  

Parenchyma 

Metastasis - Normal 282 0.226 

Metastasis - Lymphoma 146 0.149 

Normal - Lymphoma 125 0.016 

Capsule Metastasis-Normal 18 1 

a. mean ± standard deviation reported 
b. number of voxels used in the data set after adjusting for clustering effect due to repeated measures. Total 
number of voxels analysed in brackets. 
p < .05 for all cases. 
c. Mean rank is the group with the greatest number of the score (highest or lowest). Scores in the test  are 
ranked from lowest to highest (133).  
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Figure 3.7 Summary of mean diffusivities measured from ROIs shown in each 
subject.  

 
Mean diffusivities for parenchyma and capsule of lymph nodes were measured on a total of 

16 subjects. The error bar represents the standard deviation of each measurement. 
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3.3.4 Cellularity metrics analysis 

Kruskal-Wallis H-test with post hoc Dunn-Bonferroni revealed a significant difference  

between cellularity metric and types of lymph node tissue.  The results shows that nuclear 

count had χ2(2) = 42.488 with a p < .05 and a mean rank of 52.54 for normal, 16.64 for 

metastatic and 33 for lymphoma tissue. The results for shows nuclear area had χ2(2) = 

42.799with a p < .05 and a mean rank of 53.61 for normal, 18.52 for metastatic and 28.19 for 

lymphoma tissue. 

It should be noted that aligning MR images with the corresponding histology tissue slices can 

be challenging, especially when the tissue has not been cut perpendicular to the MRI axis. 

Misalignment may still occur even though pre-cut tissue slices with equivalent depth had 

been provided as a guide to the operator. There were some uncertainties in aligning the ROIs 

used for measurement of MD with the corresponding ROIs defined in the histological 

sections. This problem is not unique to the method described here, and such uncertainties 

would have been greater in earlier studies comparing ADC measured in-vivo with cellularity 

metrics (100,108,134). The alignment method  in the present study was done qualitatively,  it 

would be desirable to use a spatial transformation in Matlab code using 3D rotation and linear 

interpolation to obtain oblique MR slices to match more closely with the histology tissue 

slices for future work. 

3.3.5 Correlation of cellularity metrics with mean diffusivity  

Table 3.4 summarises the measurements of mean diffusivity (MD) and cellularity metrics, 

which included measurements of nuclear count and nuclear area. The Shapiro–Wilks test was 

used to test the data for normality, and outliers in the data were identified through inspection 

of the boxplots. The Shapiro–Wilks test showed a MD distribution with a p < .05 for 

metastatic and normal tissues, and p = 0.293 for lymphoma tissue. Nuclear counts for all 

tissue types showed distribution with  p < .05. Nuclear area  distribution for  normal tissue 

had a p < .05,  while for metastatic and lymphoma tissue p < .05. The study concluded that 

MD and cellularity metrics in the three types of tissue nodes were not normally distributed. 

Therefore, the assumption of normality was voided and the statistical tests that followed were 

based on non-parametric tests.  
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A Kruskal-Wallis test was performed to determine if there were any differences of MD and 

cellularity metrics in the three types of lymph node tissue (normal, metastatic, lymphoma). 

Kruskal-Wallis H-test with post hoc Dunn-Bonferroni revealed a significant difference in the 

MD between these three tissue types χ2(2) = 6.129, p = 0.047, with a mean rank of 40.96 for 

normal, 34.44 for metastatic and 25.44 for lymphoma tissue. 

Figure 3.8 shows the scatter graphs of cellularity metrics with MD for ex vivo lymph node 

tissue for b-value of 1000 μm2/ms. A Pearson’s correlation was used to assess the correlation 

between cellularity metrics and MD; the results are summarised in Table 3.4. Nocorrelation 

was observed between the two independent variables, MD and nuclear count, with r = 0.368, 

n =69 at 95 % confidence intervals. As regards the MD and nuclear area, there was a weak 

positive correlation, with r = 0.231, n =69 at 95 % confidence intervals .  

Pearson’s correlation test was used instead of Spearman’s correlation test to determine if 

there any correlation between measured mean diffusivity values with cellularity metric in 

general over ROIs (n=69). Then, a Spearman’s correlation test was used to assess a more 

specific correlation if present between cellularity metrics and MD in the three different tissue 

types.. The results are summarised inTable 3.5, which shows the significance of difference in 

Spearman’s correlation coefficient with MD (pairwise comparison). All pairwise 

comparisons showed poor or weak correlation in the normal, metastatic and lymphoma tissue, 

with p > .05. Therefore it was concluded that MD and cellularity metrics were not correlated 

in the three different tissue types.  
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Table 3.4 Summary of DWI and Cellularity Metrics from Selected ROIs and 
Measured Correlations 

  

MD 
(µm2/ms) 

a 
ROI (n) 

Nuclear Count  
(per mm2) a 

Nuclear 
Area  (%) 

a 
ROI (n) 

     Normal 
Tissue 

0.71 ± 
0.17 28 (84) 11,071 ± 442 22.6 ± 

1.4 28 (117) 

Metastatic 
Tissue 

0.52 ± 
0.08 25 (75) 5021 ± 447 9.5 ± 0.7 25 (138) 

Lymphoma 
Tissue 

0.47 ± 
0.19 16 (48) 7637 ± 724 11.9 ± 

1.0 16 (48) 

Kruskal-Wallis with post hoc Dunn-Bonferroni test  
(significant difference between MD and cellularity metrics in three types of lymph node tissue) 

  Chi-
Square 

Degrees 
of 

freedom 
p 

Mean rankc 

Normal  
Tissue 

Metastatic  
Tissue 

Lymphom
a Tissue 

MD  6.129 2 0.047 40.96 34.44 25.44 
Nuclear 
Count 42.88 2 0 52.54 16.64 33 

Nuclear 
Area 42.8 2 0 53.61 18.52 28.19 

ROI       28 25 16 
Pearson’s correlation (r) with MDb  

(95% confidence intervals) 
  Nuclear Count Nuclear Area 

ROIs 69 
0.368 0.231 

(0.107, 0.553) (0.018, 0.422, ) 
a. mean ± standard deviation reported  
b. p < .05 for all cases. 
 Spearman’s correlation (r) between MDb and cellularity metrics in tissue type  

(normal, metastatic, lymphoma )  
(95% confidence intervals) 

  Normal  
Tissue Metastatic Tissue Lymphoma Tissue 

Nuclear 
Count 

0.098 0.145 0.171 
(-0.327,0.556) (-0.334,0.518) (-0.449,0.640) 

Nuclear 
Area 

-0.349 0.256 0.476 
(-0.638,0.051) (-0.210,0.617) (-0.065,0.816) 

ROIs 28 25 16 
a. mean ± standard deviation reported 
b. p > .05 for all cases. 
c. Mean rank values are used to compare MD and cellularity metrics values  in  differernt  types of 
lymph node tissue. 
d.The highest mean rank value is highlighted (grey cells). 
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Table 3.5 Significance of Difference between Spearman’s 
Correlation Coefficient (r) and MD 

Fisher r-z transformation 
Non-significant differences shaded 

    Normal  
Tissue 

Metastatic 
Tissue 

Lymphoma 
Tissue 

Nuclear Count 

Normal  
 Tissue 

- z = -0.16 z = -0.22 

 
p = 0.873 p = 0.826 

Metastatic Tissue 
- - z = -0.08 

  
p = 0.936 

Lymphoma Tissue 
- - - 

 
    

Nuclear Area 

Normal  
 Tissue 

- z = -2.25 z = -2.58 

 
p = 0.024 p = 0.010 

Metastatic Tissue 
- - z = -0.64 

  
p = 0.522 

Lymphoma Tissue 
- - - 
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Figure 3.8 Correlation of cellularity and MD in lymph node tissue  

Correlation of cellularity metrics (A) nuclear count and (B) nuclear area with MD for ex vivo 

lymph node tissue. Dotted lines represent 95% confidence interval. 
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3.4 Discussion 

3.4.1 Diffusion compartmentation 

This study aimed to investigate the microscopic diffusion properties of lymph node tissue and 

determine the correlation between diffusivities and cellularity. To the best of our knowledge, 

it is the first DWI study of lymph node tissue using a spatial resolution approaching cellular 

scale. The high resolution DWI employed here permits the identification of distinct diffusion 

properties of lymph node sub-structures. The microstructural changes that alter the relative 

partial volumes of distinct diffusion components, whether in normal or cancerous lymph node 

tissue, would be expected to cause significant diffusivity differences when observed in 

clinical DWI with large voxel volume scale. 

Distinct glandular microstructures that are seen in prostate and breast tissues, such as 

epithelium and lumen, are not present in the lymph node. This is expected as, unlike prostate 

and breast tissue, lymph node tissue is not a gland tissue. The lymph node is an organ that 

filters foreign bodies. The microstructures present in the lymph node are unique, differing 

from those in glandular tissue. The main component of lymph node tissue is parenchyma, 

which is mainly comprised of small lymphocyte cells supported by a fine stromal meshwork. 

The capsule is a small portion of stroma that protects the parenchyma from external harm of 

foreign agents.  

The lymph node microstructures that were seen in the DWI and MD images closely matched 

the structures of histological sections of the same samples seen under light microscopy. There 

was evidence of distinct diffusivity differences in microstructures of normal and cancerous 

lymph node tissues. Findings from the present study were consistent with the recent report of 

distinct diffusivities in prostate and breast tissue sub-structures (2,9).  

With regard to the normal parenchyma, the DWI of lymph node tissues revealed variation in 

MD values although the tissues are normal. It is noteworthy that during tissue preparation, 

tissue samples showed differences in their physical appearance. Differences in the hardness 

of the tissues were noted. A soft tissue showed low diffusivity values between 0.4 - 0.6 

µm2/ms, whereas the diffusivities of a dense normal tissue could reach up to 1.2 µm2/ms. A 

high MD was found in normal lymph node tissue from two subjects. Histopathological 
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assessment of these two normal lymph node tissues showed the presence of multiple 

hyperplasia of lymphoid follicles (LF) in the normal tissue, as presented in Figure 3.6. The 

rim of the follicles in the normal tissue, which shows as a hyperintense area in DW images, 

indicates highly restricted or hindered water diffusion in this region. The hyperintense DWI 

region corresponds directly to the rim of the folicles in the normal tissue  seen under light 

microscopy. Under microscopic view, the rim of the follicles in the normal tissue was found 

to contain a higher number of nuclei. Tissue histopathological analysis have shown evidence 

of distinctive MD values in two types of normal tissue. Therefore, the differentiation of nodal 

disease based on DWI at clinical spatial resolution without histopathological analysis should 

be intrepreted with more caution to avoid mis-diagnose. 

The characterisation of lymph node diseases using DWI at clinical spatial resolution ranging 

from 0.5 mm3 to 3.0 mm3 is of radiologic interest. The present study has demonstrated that 

differentiation of metastatic from nonmetastatic lymph node tissues that solely based on 

diffusivity values is challenging, although the study was conducted at spatial resolution 

approaching cellular level. At the current level of understanding, the translation of diffusion 

imaging at cellular level to the clinical spatial resolution requires more vigorous and intense 

research.   

Qualitatively, the alignment method used in the present study  showed a sufficient confidence 

for an ROI-based analysis to satisfactorily fulfill the purposes of the study. The alignment 

between MR images and corresponding histology sections was in only approximately the 

same plane due to tissue geometrical distortions. It was particularly challenging to align the 

histology sectioning images with the corresponding MRI images in the same plane when the 

tissue samples were not neat solid cylinders. It would be desirable to quantitatively measure 

the alignment between MR images and corresponding histology sections. 

3.4.2 Cellularity metrics 

Cellularity metrics were measured in 107 histological images from 16 subjects. The number 

of histological images being analysed was three times greater than in a previous study on 

cellularity in lymph node tissue (103), which only focused on one type of lymph node tissue. 

The present study, by contrast, explored diffusivity in three types of lymph node tissue—

normal, metastatic and lymphoma. In this study, the nuclear count for lymphoma tissue was 
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three times higher than that found in the previous study (103). The lower number of nuclear 

count in the previous study might explained by definition of cellularity used in the studies. 

Cellularity was measured as number of cells per images view (×20 objective) in previous 

study , while in the present study cellularity was measured  number of cells per unit of area of 

maximum of 3 mm in diameter in each histological slices. To date, no study has investigated 

the nuclear area in lymph node tissue.  

The measurement of cellularity metrics in this study focused on the parenchyma of the lymph 

node tissue. This is because most of the cell interactions take place in the parenchyma, which 

contains a higher concentration of lymphocyte cells (32,33). Therefore, the measurement of 

cellularity in the parenchyma is likely to provide a better representation of biophysical 

activity in the lymph node tissues compared to other sub-structures.  

Using the Spearman’s correlation test, this study found correlation between measured MD  

and cellularity metrics in each types of nodal tissue including  normal, metastatic and 

lymphoma. The results clearly indicated no correlation between cellularity metrics and mean 

diffusivities in the three lymph node tissue types. The no correlation between cellularity 

metrics and mean diffusivities is in agreement with a previous study (103). The results are 

similar to the findings from recent ex vivo study on prostate tissue, which showed that 

diffusivity correlated better with gland components than with cellularity (93).  

The results from this study are also in agreement with those from a previous study on prostate 

tissue, in which normal tissue had a lower nuclear count than cancerous tissue (93). 

Nonetheless, this study found that the measured cellularity was higher in lymphoma 

compared to the previous study. A similar number of measured cellularity was also found in 

both normal and lymphoma tissues. Although lymphoma is a disease, the nuclear count per 

unit of area was higher than in the metastatic tissue. A possible explanation is that lymphoma 

has distinct clinicopathological criteria; it contains cells that are morphologically and 

immunologically similar to the nuclei in normal tissue. The neoplastic cells in the lymphoma 

predominantly consist of small- to medium-sized cells of B-lymphocyte origin (135). On the 

other hand, metastatic tissue is composed of large-sized neoplastic cells that are confined in a 

nested cluster (31). Therefore, the nuclear count was higher in lymphoma than in metastatic 

tissue, as shown in Table 3.4.  
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In general, the nuclear count for lymph node tissue is twice the count in prostate tissue (93). 

Consequently, segmentation for nuclear counting is challenging and should be conducted 

more carefully for lymph node tissue. In other words, a greater number of cells should be 

measured on the 3mm diameter tissue. The software tended to take a longer time to complete 

the segmentation of the entire area. Due to the higher numbers of pixels to be measured, 

further modification of the segmentation would likely result in failure of the analysis 

procedure . Future work should assess the entire histological tissue slice to minimise 

preparation error or staining error. The absence of these errors in the region of interest would 

increase the efficiency of the nuclei segmentation procedure for cellularity measurement. 

It is recommended that a high-resolution widescreen monitor be used to provide high contrast 

image viewing for cellularity measurement. Viewing conditions are important to a successful 

segmentation process. Better viewing conditions may fascilitate and simplify the selection of 

high contrast nuclei from the background in the histology tissue section.  

In the present study, the alignment between MR images and corresponding histology sections 

was crucial. Better alignment is necessary to ensure that the diffusion contrast corresponds 

closely to the microstructures of the tissue sample. Alignment can be improved by providing 

a depth histology section (pre-determine location to guide sectioning process)  before the 

tissue cores are cut. The depth given prior to sectioning will provide an indicator for 

improving alignment of the MR images with the diffusion contrast of the tissue. It is 

noteworthy that some of the tissues were not sectioned perpendicular to the image planes. 

This created significant challenges in aligning the histology sections to the MR images. 

 

3.4.3 Correlation of cellularity metrics with mean diffusivity in pathologic lymph node 

tissue 

The results show that, in both cancerous and normal lymph node tissue, correlations between 

cellularity and MD were non-existent. In this context, it is worth mentioning that the 

histological grading system is based on tissue architecture rather than cell density per se. 

Thus, the common attribution of reduced MD to ‘higher cellularity’ is not inherently 
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consistent with the histological grading system although MD tends to decrease with 

metastatic nodes.  

Increased cellularity is regularly cited in the literature as the main cause of reduced ADC 

values. Recently, however, the assumptions used to support this argument have been 

challenged because they lack biophysical evidence that increased cell density causes the 

decrease in ADC values in prostate tissue(93). In histology,  cellularity  is defined as the 

number of cells counted per unit of area (with the assumption of fixed low intracellular 

diffusivity and membrane permeability). The cells are assumed to displace and reduce the 

signal contribution of a pool of freely diffusing extracellular water. It should be noted that the 

earlier assumptions are more complex for biological tissue. Biological tissues contain 

heterogeneous microcomponents, which will eventually affect the overall water diffusivity in 

the tissue. It is worth noting that for metastatic nodes, the cells are much larger than the 

nucleus, so the nuclear area is not a good proxy for cellular area.  

3.5 Conclusion 

Distinct diffusivity tissue components were seen in lymph node sub-structures and no 

significant difference was shown in cellularity metrics (nuclear area and nuclear count). The 

correlations of mean diffusivity with cellularity metrics in the three types of lymph node 

tissues were non-existent. This study represents the first step in understanding the biophysical 

characteristics of the tissue biophysical properties underlying the variation in diffusivity 

values reported in the literature for lymph node tissue. 
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4. Diffusion Modelling and Model 
Ranking with Information Criteria  

 

4.1 Introduction 

The ADC is commonly used in clinical DWI studies to compare non-cancerous and 

cancerous lymph node tissue. The ADC approach assumes a Gaussian water displacement 

probability but this assumption is invalid in the heterogeneous environment of biological 

tissue. Previous literature shows a wide variation in reported ADC values between cancerous 

and non-cancerous tissue (15,83,84). This highlights the limitation of the simple ADC model 

in describing tissue changes based on its histological features. Recently, a three- biophysical 

model called VERDICT (Vascular, Extracellular, and Restricted Diffusion for Cytometry in 

Tumours) has been used to model tissue components based on their histological features 

(127). To describe the non-vascular water pools, VERDICT modelling of prostate tissue 

includes unrestricted and restricted isotropic components (129), but diffusion anisotropy has 

been neglected. Recently, VERDICT was also successfully used to distinguish benign from 

malignant tissue in colorectal (127) and prostate tissue (129).  

A recent ex vivo study on prostate tissue using VERDICT demonstrated higher information 

content using Akaike Information Criterion (AIC) ranking of anisotropic and restricted multi-

component models in comparison to the ADC model and other unrestricted models (4). This 

finding suggests that the application of more sophisticated models may improve the 

performance of DWI in clinical studies. Motivated by the successful implementation of 

biophysical models in prostate tissue, this chapter describes a similar investigation in lymph 

node tissue. Biophysical modelling is not yet widely employed instudies of non-neural tissue. 

This study investigated the non-perfusion components of the VERDICT model by comparing 

the theoretical information content of biophysical models that include anisotropic 

components. The objective was to compare the theoretical information content of single and 

multi -biophysical models of DWI signal attenuation, measured over an extended range of b-
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values and multiple diffusion times in lymph node tissue. In the present study, it is assumed 

that there is no water exchange between the compartments. 

4.2 Methods 

4.2.1 Materials 

Lymph node tissue samples were collected from humans and animals. 

Human tissue samples 

The study was conducted with ethical approval from Concord Hospital (Sydney, New South 

Wales), and written consent from all participating patients. A copy of the institutional ethical 

approval can be found in the Appendix. The lymph node tissue was collected from 

inflammatory bowel disease surgery and the specimens were immersed in 10% neutral 

buffered formalin post-surgery to preserve the specimens. Mesenteric node tissue was 

collected from patients aged 50-60 (mean 55) years. Between April 2014 and April 2016, a 

total of two normal lymph node tissues were collected from two patients; a minimum of one 

and maximum of five lymph nodes were resected from each patient. The mean short axis 

diameter of the specimens was 5 mm (range 3-8 mm). The mean long axis diameter was 5 

mm (range 3-10 mm). 

Animal tissue samples 

Dog lymph node tissue was collected from Vetnostics(Sydney, New South Wales)  and the 

specimens were immersed in 10 % neutral buffered formalin post-surgery. A copy of the 

institutional ethical approval can be found in the Appendix Between August 2015 and April 

2016, one metastatic lymph node sample were collected from a dog. The mean short axis 

diameter was 5 mm (range 3-10 mm). The mean long axis diameter was 8 mm (range 3-15 

mm). 
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4.2.2 Tissue preparation 

Excess fat around the lymph node was carefully trimmed using a surgical scalpel blade. The 

tissue samples were glued to a plastic strip, as shown in Figure 4.1. The glued samples were 

inserted into a screw-top plastic vial and immersed in phosphate-buffered saline (PBS) 

containing 0.2 % v/v Magnevist (Bayer Healthcare Pharmaceuticals, Berlin, Germany). They 

were then stored at least overnight at room temperature to wash out the formaldehyde. The 

PBS solution provides a known diffusivity background and the contrast agent reduces T1 to 

~0.5 s, which enables a shorter TR and, thus, faster imaging. The samples were then taken to 

the Lowy Cancer Research Institute, University of New South Wales, for imaging at 9.4T.  

 

 

Figure 4.1 Tissue samples on plastic strip for imaging at 9.4T  

Three lymph node tissue samples collected from three subjects were set for imaging at 9.4T: 

top is metastatic node (blue dyed), middle and bottom are normal nodes. 
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4.2.3 MR imaging 

The following specimen preparation and MRI setup was performed by Dr. Andre Bongers at 

Lowy Cancer Research Institute, UNSW. 

The imaging was performed on a 9.4T Bruker Biospec system (Karlsruhe, Germany), which 

is equipped with 72 mm quadrature RF coils and BGA-12S HP gradients with maximum 

strength of 660 mT/m and slew rate of 4570 T/m/s. For diffusion-weighted imaging, a 3D 

spin echo sequence was employed and imaging was performed at a monitored room 

temperature (22oC). Parameters are listed in Table 4.1. 

The diffusion signal attenuation was measured in three orthogonal directions. The 6-direction 

data with single b-value and single δ/Δ value were acquired to enable the fitting of 

anisotropic components. All the diffusion-weighted measurements were preceded by the 

acquisition of two reference ‘b = 0’ images. The intrinsic signal-to-noise ratio (SNR)  was 

measured  from the ratio of the signal S, which is the mean signal intensity in a large region 

of interest (ROI) manually drawn inside a the nodal slice, relative to the noise level N, which 

is the standard deviation of the difference between the ROI voxel values in the two reference 

‘b = 0’ images(136).  
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Table 4.1 DWI Acquisition Parameters  
 

FOV (mm2) 35×35 

Matrix size 64×64 

Voxel size (mm3) 0.5×0.5×0.5 

SNR 70 

TR (ms) 2000 

TE (ms) 

22, 

29, 

49, 

89 

δ (ms) 5 

Δ (ms) 

10, 

20, 

40, 

80 

b-value (s/mm2) 6 directions 
800a, 

1600a 

b-value (s/mm2) 3 directions 

100, 

311, 

603, 

965, 

1391, 

1873, 

2411, 

3000 

a) Nominal b-value. Effective b-values were used for model fitting. 
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4.2.4 Histopathology: Morphology segmentation 

Following MR microimaging, the tissue cores were prepared for light microscopy. The tissue 

samples were sectioned and stained with haematoxylin and eosin (H&E) at the Lowy Cancer 

Research Institute, University of New South Wales, with the kind assistance of Dr Carl 

Power. Histopathology examination of the H&E stained slides was performed by a 

histopathologist (Dr Geoff Watson) at the Department of Tissue Pathology and Diagnostic 

Oncology, Royal Prince Alfred Hospital (RPAH). The sub-structures, border of each sub-

structure and the cancer type of tissue were then identified and recorded on A4 paper colour 

prints of tissue sections. 

H&E stained slides were digitally scanned at 40× magnification with a spatial resolution of 

0.25 microns per pixel using a digital brightfield microscope (Aperio Scan Scope, Leica 

Biosystems Imaging Inc., Wetzlar, Germany). Images from the digital scanner were stored 

online via Aperio eSlide Manager (version 12.2) software in scope virtual slide (SVS) format. 

SVS image files were viewed offline using Aperio Image Scope software (v12.10.5029). The 

“Zoom Navigation” and “Extract Image Region” tools were utilised to select subimages 

containing only the 3 mm core tissue. Typically, the scanned 3 mm diameter lymph node 

tissue sections were 11000 × 14000 pixels. The subimages were saved in lossless Portable 

Network Graphics (PNG) format for cellularity measurement.  

 

4.2.5 Model description 

The eleven models used in this study were combinations of isotropic, anisotropic and 

restricted components. The models were tested on three lymph node samples comprising 

normal and metastatic lymph node tissue.  

The lymph node tissue was modelled with a combination of up to three components, which 

were described according to the taxonomy used for brain tissue DWI in [23]. Five candidate 

components were identified (see Table 2.4 in Section 2.3): 1) a Tensor, which is a 

conventional DTI model providing two commonly used parameters, FA and MD (137); 2) a 

Zeppelin, which is a cylindrically symmetric tensor that also provides FA and MD; 3) a Ball, 

which is an isotropic tensor and equivalent to the ADC model; 4) a Sphere, which describes 
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water molecules diffusing inside an impermeable pore with a non-zero radius; and 5) a Stick, 

which assumes that water diffusion is in an idealised cylinder with zero radius. In total, 

eleven models were considered, as listed in Table 4.2. Single component models were used to 

describe ADC( Ball), biexponential ( Bi-Ball) and DTI (Tensor). DTI can be used to measure 

parameters that refer to  experimental but not a model. For instance, Zeppelin models appears 

to look like a DTI model but with cylindrical symmetric . A mixture or multi-components 

models were used to describe  biophysical properties underlying diffusion contrast of the 

tissue which includes hindered and restriction components.  Multi-components models with  

anisotropic and unrestricted (with the Zeppelin components), while isotropic and restricted 

(with the Sphere components).  

Table 4.2 Fitted Models  

Name Components Fitted parametersa No. 
parameters 

Ball (ADC) Ball D 1 

Bi-ball Ball + Ball f1 D1 D2 3 

Ball-sphere Ball + Sphere f1 D1 D2 R 4 

DTI Tensor D|| D⊥1 D⊥2 𝜃 𝜙 𝛼 6 

Ball-zeppelin Ball + Zeppelin f1 D|| D⊥ 𝜃 𝜙 D 6 

Zeppelin-sphere Zeppelin + Sphere f1 D R D|| D⊥ 𝜃 𝜙 7 

Ball-tensor Ball + Tensor f1 D|| D⊥1 D⊥2 𝜃 𝜙 𝛼 D 8 

Bi-ball-zeppelin Ball + Ball + Zeppelin f1 f2 D1 D2 D|| D⊥ 𝜃 𝜙 8 

Bi-zeppelin Zeppelin + Zeppelin f1 D||1 D⊥1 𝜃1 𝜙1 D||2 D⊥2𝜃2 𝜙2 9 

Tensor-sphere Tensor + Sphere f1 D|| D⊥1 D⊥2 𝜃 𝜙 𝛼D R 9 

Ball-stick-sphere Ball + Stick + Sphere f1 f2 D1 D2 𝜃 𝜙 D3 R 8 

a) Signal normalised before fitting (S0 = 1). Sum of signal fractions f1 + f2 + fn = 1. D is diffusivity, 
D|| is tensor parallel diffusivity, and D⊥is tensor perpendicular diffusivity. 𝜃, 𝜙 and 𝛼 are tensor 
angles. R is sphere radius. 
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4.2.6 Model fitting and ranking 

The fitting and ranking of the models was performed by a Dr. Sisi Liang at Victoria 

University, Melbourne (138). 

The study used multiple b-values and multiple diffusion times to produce a rich MR data set, 

as well as to ensure stable fitting (127). Multiple diffusion times were applied to the 3-

direction MR data to allow the estimation of a restriction radius. Single b-value and single 

δ/Δ were applied to the 6-direction MR data to allow the fitting of anisotropic components. 

Each of the models listed in Table 4.2was fitted to the 3- and 6-directions MR data using a 

Levenberg-Marquard minimisation algorithm in the open source software CAMINO (139). 

Fitting of the models was carried out based on the minimisation of an objective function. 

Minimisation of an objective function uses an offset-Gaussian noise model to account for the 

inherent Rician distributed noise in the magnitude MRI data. (127). The objective function is 

measured as the sum of squared errors: 

                              𝑆𝑆𝐸 = � �𝑆𝑛(δ,Δ, G) − 𝑆𝑛� (δ,Δ, G)�
2𝑀

𝑛=1
                            [4.1] 

where M is the number of measurements, 𝑆𝑛(δ,Δ, G) is the signal predicted by the model and 

𝑆𝑛� (δ,Δ, G) is the signal of the nth measurement. For the sphere component, radius R was 

constrained so that 0.1≤ R ≤ 20 μm. The radius was constrained to biophysically meaningful 

values.  

The Akaike Information Criterion (AIC) was employed to rank the models and provide 

objective quantitative estimation of the models’ relative information content. AIC is an 

estimation of the expected or relative distance between the candidate model and the unknown 

true system. For hypothesis testing, AIC ranking does not require arbitrary selection of 

measurement cut-offs. The best model is selected based on the estimation that is closest to the 

unknown reality. A lower AIC ranking indicates higher model information, that is, less 

information loss and expected superior performance in model prediction. In DWI of tissue the 

general definition of the AIC (1): 

                                                 𝐴𝐼𝐶 =  �𝑆𝑆𝐸
𝜎2
� + 2𝑝                                                [4.2] 
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where SSE is the sum of squared errors, σ is the noise standard deviation estimated from a 

pair of reference images and p is the number of model parameters. AIC has a trade-off 

between bias and variance. AICc is the second-order variant derived from AIC. AICc is 

recommended when the number of measurements, n, is comparable to the number of model 

parameters, p. 

                                         𝐴𝐼𝐶𝑐 = �𝐴𝐼𝐶 + 2𝑝 (𝑝+1)
𝑛−𝑝−1

 �                                             [4.3] 

A model is used as an inference for empirical data that are generated from the unknown full 

reality (1). In this sense, the data helps to determine the proper complexity of the model and  

justify the effects of estimated parameters  for each modelling. It should be noted that small 

data sets favour simpler models, while large data sets tend to support more complex models. 

Since the inference is restricted to the specified data set, model comparison across different 

data sets using AIC is not recommended. Moreover, data sometimes do not support only one 

‘best’ model.  

It is worth noting that model selection informs us of inferences from the observed data 

support, not what full reality might be. Therefore, in some cases several models might show 

as almost equally best for analysis of the empirical data. The inability to select a single best 

model is not a weakness of AIC. Rather, it reflects the fact that the data used for modelling 

are indecisive due to the effect of including estimated parameters in the overall data (1). 

 

4.2.7 ROI selection 

A total of 1203 voxels from three lymph node samples were selected for the model ranking 

analysis. The voxels were obtained from  a single slice of MR image that represent the 

biggest area for ROI of three lymph nodes. The voxels were from manual definition of a 

mask which excluded non-tissue background data.  

4.3  Results 

The histopathological examination of the tissue samples showed that samples were metastatic 

and normal lymph node tissue (Figure 4.2). The normal lymph node tissues were composed 
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of typical small cells, while metastatic lymph node tissue was composed of distinctive large 

neoplastic cells. 

 

Figure 4.2 Histopathological analysis of lymph node tissue samples 

Histology assessment of the three tissue samples shows a metastatic lymph node for top 

sample (blue dye) and normal lymph node for middle and bottom tissue samples. 

 

Figure 4.3 presents the colour-coded anatomical distribution of the highest ranked models in 

three lymph node samples and positional variation using AIC rankings for the 11 models. The 

single- biophysical models, ADC and DTI, were ranked the lowest in all lymph node tissue 

samples. On the other hand, three multi- biophysical models, which consist of anisotropic and 

restricted diffusion (Zeppelin-sphere, Ball-stick-sphere and Ball-sphere models) were ranked 

highest in the majority of voxels of the tissue samples. Ball-sphere model, a model that 

combines isotropic and restricted diffusion, was ranked close to the three multi- biophysical 

anisotropic and restricted models. The multi- biophysical models that include anisotropic 

components were found to contain more information than isotropic models. In addition, multi 
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-biophysical models that account for diffusion restriction contained a greater amount of 

information than unrestricted models.  

In addition, the results demonstrate that multi-biophysical anisotropic and restricted (Ball-

stick-sphere, Zeppelin-sphere and Tensor-sphere) models extract more information from rich 

data than single- biophysical (ADC and DTI) models and multi-biophysical models that do 

not account for diffusion restriction. Rich data employed for model ranking were acquired 

from imaging of tissue samples with multiple b-values and multiple diffusion time. The 

results  are consistent with those from a recent ex vivo study of prostate (4) and lymph node 

tissue (5). 
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Figure 4.3 Variation of model rankings in three lymph node samples 

A) The anatomical distribution of the highest ranked model in a single slice of three lymph 

nodes. Voxel colour indicates model according to the single and multi- biophysical models. 

Zeppelin-sphere (yellow) and Ball-stick-sphere (brown) models ranked highest in most 

voxels in lymphoma and normal lymph nodes. B) Variation in model rank positions. The grey 

scale indicates the number of times each model ranked at each position. The model is based 

on subjective assessment of the trends. Data are from 1203 voxels in a single slice of lymph 

node.  
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4.4 Discussion 

This study provides further information about the non-vascular diffusion environment in ex 

vivo lymph nodes imaging by comparing 11 different biophysical  models. As shown in the 

fitting models based on AIC, signal diffusion decay in lymph node tissue is non-Gaussian due 

to tissue complexity. 

In clinical DWI studies of lymph nodes for cancer detection, the ADC model has been the 

most commonly used approach (15,83,84). The inconsistent ADC values reported in the 

literature highlighted the limitation of the ADC model for DWI imaging of the lymph node. 

Recently, two studies investigated the feasibility of using the intravoxel incoherent motion 

(IVIM) model to diffferentiate normal from cancerous lymph node tissue (124,125). These 

studies showed inconsistent differences between some IVIM model parameters (diffusion 

coefficient and perfusion fraction) of normal and cancerous lymph nodes. Moreover, the 

findings revealed the inadequacy of the ADC and IVIM models for diffusion modelling of 

complex biological tissue. Neither the ADC model nor the IVIM model account for a 

restricted diffusion component.  

The results of the present study showed that multi-component models that account for 

diffusion restriction provide more information-rich descriptions of multi diffusion times and 

multi-b values in DWI measurements in lymph node tissue than ADC and other unrestricted 

models. The relatively poor performance of the ADC model and the superior performance of 

multi-component models in this study suggest that more sophisticated DWI protocols and 

models may improve lymph node disease imaging. Findings from the present study were 

consistent with the recent report of multi-component models  in in colorectal (127), prostate 

tissue (4,129)  and  nodal tissue(5). 

The overall AIC ranking in lymph node tissue revealed that single component models, Ball 

(ADC) and DTI models, had the lowest AIC score. Notwithstanding, the combination of 

single component model or Bi-ball (biexponential function analysis) also shows the lowest 

AIC score. Findings from the present study suggest that a more sophisticated model, such as 

VERDICT, may be more accurate and reliable for DWI- based imaging of lymph node 

disease. The model ranking of multi-component models that included anisotropy and 

restricted components using VERDICT demonstrated superior performance to the single 



 

84 

 

component models. The inclusion of restricted components in this study supported earlier 

findings on the dependency of molecular diffusion in biological tissues on various restrictions 

and hindrances (140,141).  

Cellularity for the lymph node tissue samples was measured as described in Chapter 3. The 

mean nuclear count for metastatic lymph node was 3860 ± 568 cells/mm2, while the normal 

lymph node was 10,697± 366 cells/mm2. The mean nuclear count for normal nodes was twice 

that of metastatic nodes. Histologically, the metastatic lymph node is composed of a 

relatively homogenenous population of atypical large cells. Therefore, fewer cells were 

measured per unit of area in metastatic lymph node tissue than in normal node tissue. The 

correlation of cellularity with the multi-component analysis could not be assessed because the 

analysis was based on a small number of samples for each type of node tissue.  

A recent related study that investigated the correlation of cellularity with multi-component 

analysis revealed similar trends in histology and VERDICT cellularity maps of prostate 

tissue. High cellularity corresponded to cancerous prostate tissue, while lower cellularity was 

found in benign prostate tissue. The cancerous tissue identified in histology corresponded to 

regions of high cellularity in VERDICT cellularity maps, while lower cellularity was found in 

normal prostate tissue (142). It should be noted that the measurement of cellular metrics in 

lymph node tissue, as seen in Chapter 3, showed contradictory results with those measured in 

prostate tissue. The cellularity measured in normal lymph node tissue was higher than that in 

cancerous lymph node tissue. However, the study did not specify the number of samples 

used. Future work should assess this relationship to understand the changes in diffusion and 

multi-component analysis with a large number of samples. It is also  recommended for future 

work to include the actual DWI images to allow assessment of the data quality.  

The results from the present study showed that the inclusion of restricted and anistropic 

elements is important in describing the diffusion properties of the tissue. These provide basic 

scientific evidence that can inform the future development of clinical imaging methods. 
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4.5 Limitations 

This study has several limitations. The results were obtained from a small number of samples 

for each type of node tissue. Future research should assess the performance of biophysical 

models in a large number of samples for each type of node tissue.  

This study was based on ex vivo diffusion imaging of formalin-fixed tissue that was obtained 

from a surgical procedure. Formalin was needed to preserve the tissue and stabilise it by 

protein cross-linking thus permitting long imaging time for ex vivo higher spatial resolutions 

imaging. Formalin-fixed tissue in ex vivo imaging experiment has been demonstrated to be a 

stable model for investigating microscopic diffusion properties of prostate  tissue (132). DWI 

using formalin-fixed tissue has shown significant reduction of  ADC in all tissue types as 

compared to results from in-vivo studies (131,132). Nevertheless, the relative diffusion 

properties  of cancerous and normal tissue in ex vivo imaging are similar to those seen in 

clinical in-vivo prostate imaging. 

The analysis of multicomponent modelling in this study was based on diffusion 

microimaging measurements of formalin-fixed normal and diseased lymph node tissue at 

22oC with a shorter diffusion time than is typically used in-vivo. At present, there is only one 

study investigating multicomponent modelling of fixed tissue in ex-vivo imaging at 37oC(5). 

Due to the temperature differences for in-vivo imaging, it is important to note that the results 

of diffusion imaging of fixed tissue should be interpreted with extra caution and also there 

may be perfusion effect that need to be specified. 

The 11 models used in this study assumed that there is no water exchange between the 

compartments as samples were formalin-fixed tissues . Previous experiments on cultured 

cells demonstrated that cell membrane permeability may have a significant effect on the 

model parameters, depending on the diffusion time (143). Hence, future work should include 

the permeability parameter to account for water exchange between compartments. 
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4.6 Conclusion 

DWI of lymph node tissue in an extended range of b-values and multiple diffusion times 

demonstrated that multi-component restricted models extract more information than single-

component models and multi-component models that do not include diffusion restriction. 

These findings highlight the importance of including restricted diffusion compartments in 

modelling diffusion for lymph node tissue. 
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5. Conclusions 
 

5.1 Summary  

In 2018, nearly 3,735,350 new cancer cases were diagnosed in the United States, and there 

were 609,640 cancer-related deaths (18). Metastasis — the spread of cancer cells to nearby 

tissue — is the leading cause of cancer-related death (23). One of the earliest events in this 

process is metastasis to the regional lymph node, and enlargement of the lymph node is a 

common feature of many solid tumours (17,26). Histopathological analysis, which involves 

biopsy and invasive tissue sampling, remains the gold standard for diagnosing lymph node 

disease. However a non-invasive technique, DWI has shown potential for cancer detection 

and differentiation of cancerous from non-cancerous tissue (2,8,9). The signal from DWI 

imaging is quantitatively measured using the apparent diffusion coefficient (ADC) value. 

Considerable overlap of ADC values has been reported in studies using DWI imaging to 

distinguish nodal diseases (15,16,39,41,48,49,82-86). These findings highlight the lack of 

understanding of the biophysical basis of tissue diffusion contrast in DWI imaging of nodal 

tissue.  

The present study aimed to define the biophysical basis of contrast in DWI imaging of the 

lymph node. To the best of our knowledge, this is the first investigation of DWI imaging of 

lymph node tissue using resolution approaching cellular scales. The first study, presented in 

Chapter 3, examined the hypothesis that the clinically observed decreased ADC in cancerous 

lymph nodes could be attributed to increased cellularity. Three types of lymph node tissue — 

lymphoma, normal, and metastatic — were employed in the study. It was found that the sub-

structures seen in DWI images corresponded closely to the histological features seen on the 

light microscopy of the same tissue slices. The findings also showed distinct diffusivities 

values of lymph node sub-structures (capsule, parenchyma, and artery). This is consistent 

with the recent reports of distinct diffusivities in prostate and breast tissue sub-structures 

(2,9). The present study also found a no correlation between mean diffusivity and cellularity 

metrics in the three types of lymph node tissue. 
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The inconsistency of ADC values reported in literature also highlights the limitations of the 

ADC model for DWI imaging of the lymph node. Recently, a three component model, 

VERDICT, which characterises water diffusion in intracellular, vascular and extracellular-

extravascular compartments, has shown success in distinguishing benign from malignant 

colorectal (127) and prostate (129) tissue. Interestingly, a recent ex vivo study on prostate 

tissue using VERDICT demonstrated higher information from anisotropic and restricted 

multi-components models than from ADC and other unrestricted biophysical models (4). This 

suggests that the application of more sophisticated models may improve the performance of 

DWI in clinical studies. Motivated by the successful implementation of biophysical models in 

prostate tissue, we conducted a similar investigation for lymph node tissue. 

This second study, presented in Chapter 4, investigated the theoretical information from 

single and multi- biophysical models of diffusion in lymph node tissue to identify which 

model extracted the most information from the measurement data. AIC was employed to rank 

the models and provide objective quantitative estimation of the models’ information (1). The 

study used high SNR data, which were obtained by imaging three lymph node tissue samples 

on a 9.4T MRI system. Multiple b-values and multiple diffusion times were utilised in image 

acquisition to produce a rich MR data set. Eleven models were tested with combinations of 

isotropic, anisotropic and restricted components. The study revealed that single component 

models, Ball (ADC) and DTI models, were lowest in overall AIC ranking of lymph node 

tissue.The multi-component models that combined anisotropic and restricted diffusion, 

namely, Zeppelin-sphere, Ball-stick-sphere and Ball-sphere, ranked highest in the majority of 

the voxels of tissue samples. The multi-component models that included anisotropic 

components contained more information than isotropic models. Multi-component models that 

accounted for diffusion restriction demonstrated higher information than unrestricted models. 

These findings are consistent with those from a recent ex vivo study on prostate tissue using 

VERDICT (4) as well as a recent study on multi- biophysical models in lymph nodes(5). It 

was concluded that a multi- biophysical model which includes both anisotropic and restricted 

components may provide more accurate and reliable DWI-based imaging of lymph node 

disease.  

In summary, investigation of the biophysical basis of contrast in DWI of the lymph node 

demonstrated a distinct diffusion in lymph node sub-structure with no correlation to 
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cellularity. In addition, multi- biophysical models were found to extract more information 

from the measurement data in lymph node tissue than simple single biophysical models 

(ADC and DTI). These findings represent an important first step in enhancing our 

understanding of the biophysical basis underlying diffusion changes in the tissue.  

 

5.2 Advances in Knowledge 

The main advances in knowledge resulting from this study can be summarised as follows:  

• DWI images displayed tissue contrast corresponding to distinct sub-structures in the three 

types of lymph node tissue tested (normal, metastatic, and lymphoma cases).  

• Two distinct sub-structures (parenchyma and capsule) were found in DWI of lymph node 

tissue. These sub-structures, which are present in DWI images on the three types of 

lymph node tissue, corresponded closely to histology features seen on the light 

microscopy of the same tissue slices. 

• Presence of multiple hyperplasia of lymphoid follicles (LF) in the normal tissue shows a 

prominent follicular hyperintense area in DW images, indicating highly restricted or 

hindered water diffusion in the follicles components. 

• Higher diffusivity was found in the capsule region in comparison to parenchyma in 

normal and metastatic lymph node tissues. 

• Parenchyma in normal lymph node tissue had the highest mean diffusivity (0.71 ± 0.17 

µm2/ms) compared to cancerous lymph node tissue, metastatic (0.52 ± 0.08 µm2/ms) and 

lymphoma (0.47 ± 0.19 µm2/ms). Higher mean diffusivity was also found in capsule sub-

structure in normal tissue (1.15 ± 0.16 µm2/ms) compared to metastatic lymph node tissue 

(1.07 ± 0.17 µm2/ms). 

• Kruskal-Wallis test indicated that there was a statistically significant difference in the MD 

of parenchyma in the three different tissue types, χ2(2) = 6.129 , ( p = 0.047) with a mean 

rank of MD 34.44 for metasta sis, 40.96 for normal and 25.44 for lymphoma.  

• Post hoc Mann–Whitney analysis showed  differences  in MD of sub-structures  in all 

tissue types (p > .05). 
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• There was fair positive correlation between the two independent variables, MD and 

nuclear count with r = 0.368, n =69at 95 % confidence interval. As regards MD and 

nuclear area, no correlation with r = 0.231, n =69, p > .05 was observed. Overall, the 

result of Pearson’s correlation showed no correlation between MD and cellularity metrics. 

• Multi-component models that included anisotropic components demonstrated relatively 

higher information than isotropic models from multi diffusion times and multi-b values 

DWI measurement data in lymph node tissue ex vivo. 

• Multi-component models that accounted for restricted diffusion extracted more 

information from multi diffusion times, multi-b values and DWI measurement data in 

lymph nodes ex vivo than single-component (ADC and DTI) models and multi-

component unrestricted models. 

In summary, a distinct diffusion contrast was found in sub-structures of normal and diseased 

lymph node tissue. Further, cellularity metric measurement on sub-structures of normal and 

diseased node tissue revealed nocorrelation between MD value and cellularity metric. Hence, 

it was concluded that the application of a more sophisticated model, which includes both 

anisotropic and restricted components, is important for describing the presence of 

microstructure complexity in node tissue. This is because such a model appears capable of 

providing greater accuracy and reliability for DWI based imaging of lymph node disease. It 

should be noted that caution should be exercised in generalising the findings on DWI imaging 

to other tissue types as differences in tissue morphology and physiology may affect water 

diffusivity. 
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5.3 Implications 

The results from this ex-vivo study cannot be directly extrapolated for in-vivo imaging. 

However, findings from ex-vivo diffusion imaging in our study show clear evidence of 

distinct tissue structure features in modelling with distinct diffusivities values. This 

distinction is unique in lymph node tissue as well as in prostate and breast tissue. The 

findings from our current study could provide an evidence base for future improvements in 

DWI methods in distinguishing diseases particularly in clinical imaging of lymph nodes.  

Findings from the present study could also be used as a reference in verifying biophysical 

properties underlying diffusion contrast for other types of non-neuronal tissue such as renal 

and liver diseases. A profile data of diffusion contrast can then be created by undergoing 

similar study to other types of tissue and diseases.The results of this study can also inform 

future improvements in DWI methods to allow optimum utilization of clinical DWI for 

cancer imaging. An optimization to the current DWI clinical method can be tailored with 

respect to the new clinical base evidence of distinct diffusion contrast specific to the types of 

tissue being imaged.  

 

5.4 Limitations 

This study has several limitations. Although it was based on analysis of a large number of 

regions of interest, the samples were small in number. For each type of node tissue, results 

were obtained from a small number of samples. However, results for the combined data 

indicated that inter-subject differences were small relative to the differences between the 

normal and diseased tissue being examined. Due to small number of samples used in the 

present study, it is recommended for future work to assess the correlation of diffusivities with 

cellularity and the performance of biophysical models in a large number of samples for each 

type of node tissue.  

This study is based on ex-vivo diffusion imaging of formalin-fixed tissue obtained from post-

surgical procedure. Formalin is needed to preserve the tissue.. Formalin-fixed tissue has 

proven to be a stable model for investigating microscopic diffusion properties of the prostate 

(132). In addition, significant reduction in ADC values was revealed in DWI imaging using 
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formalin-fixed tissue compared to in-vivo tissue (131,132). However, the results of the 

present study demonstrated similar diffusion properties in in-vivo imaging of normal and 

cancerous tissue to those seen in ex-vivo imaging. Ex-vivo imaging was also advantageous in 

this study due to its high spatial resolution, lower operation cost and long time image 

acquisition. Rich MRI data can be acquired from ex-vivo imaging, thus allowing more in-

depth exploration of biophysical changes at microscopic level of the tissue.  

The analysis of distinct diffusivity and multi-component modelling in this study was based on 

diffusion microimaging measurements of formalin-fixed normal and diseased lymph tissue at 

22oC with a shorter diffusion time than is typically used in-vivo. At present, no data are 

available to confirm the analysis of distinct diffusivity and multicomponent modelling of 

fixed tissue in-vivo imaging at 37oC. Therefore, the interpretation of diffusion imaging of 

fixed tissue should be treated with extra caution with respect to temperature differences for 

in-vivo imaging. 

Cellularity metric measurements for lymph node were on average twice those seen on 

prostate tissue (93). The morphometric analysis was carried out using a semi-automatic 

segmentation method, which includes a subjective assessment. Hence, a huge amount of time 

was needed to identify and count the number of nuclei from the background images. While a 

comparison with manual segmentation suggested the resultant bias was minor, it would be 

desirable to utilise an automated segmentation technique in the future to minimise reliance on 

subjective assessment. 

Overall, the analysis in this study is crucially dependent on the alignment between MR 

images and corresponding histology sections. Better alignment is important to ensure that the 

diffusion behaviour precisely corresponds to the microstructures of the tissue sample. This 

can be achieved by proposing the depth for the histology sectioning before cutting the tissue 

cores. The depth given prior to sectioning will provide a marker to aid alignment of the MR 

images at a similar plane to the tissue sections. It is noteworthy that some of the tissues were 

not sectioned perpendicular to the image planes. This created a significant challenge in 

alignment between the histology section and the MR images.  

Alignment between MR images and the corresponding histology tissue slices is challenging 

when the tissue is not cut perpendicular to the tissue plane. Although we had proposed pre-
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cutting tissue slices with equivalent depth as guidance to the operator, there was some 

uncertainty in the alignment between the ROIs used for measurement of diffusivity and the 

corresponding ROIs defined in the histological sections in Chapter 3. This problem is not 

unique to this particular method, and such uncertainties would have been greater in previous 

studies carried out to compare ADC measured in-vivo with cellularity metrics (100,108,134). 

The alignment method  in the present study was done qualitatively,   it would be desirable to 

use a spatial transformation in Matlab code using 3D rotation and linear interpolation in order 

to obtain an oblique MR slice to match the histology tissue slice for future work.  

This study employed the simple and clinically ubiquitous mono-exponential diffusion model 

that assumes Gaussian dynamics. However, it should be noted that the diffusion in tissue is 

not free and signal attenuation is not well-modelled as a mono-exponential (72,144,145). 

Non-Gaussian models, such as the biexponential and kurtosis models, fit the signal decay 

better but the parameters derived from these models do not relate to specific tissue structures 

or compartments (146). Instead of ADC values, mean diffusivity values were used in this 

study because this has the advantage of averaging the diffusivity measurement over six 

gradient directions. 

The 11 models that were employed for multi-component models analysis in this study 

assumed that there was no water exchange between compartments. Investigation on cultured 

cells, however, has demonstrated that cell membrane permeability affects the model 

parameters at varying diffusion times (117,147). Consequently, future work may need to 

develop multi-component models that account for water exchange between compartments.
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5.5 Future Work 

As highlighted in the previous section, analysis in this study was based on a small number of 

samples for each type of node tissue. It is recommended that large numbers of samples for 

each type of node tissue be used in future work to assess the correlation of diffusivities with 

cellularity and the performance of biophysical models. 

It is also important to extend this study by comparing diffusivities in lymph node tissue with 

clinical in-vivo results. It should be noted that the analysis of distinct diffusivity and 

multicomponent modelling in this study was based on ex vivo diffusion microimaging 

measurements of formalin-fixed normal and diseased lymph node tissue at 22oC. At present, 

no data are available to confirm the analysis of distinct diffusivity in similar MR magnitude  

in-vivo at 37oC. It would be of interest to investigate the difference that may arise from ex 

vivo imaging at room temperature in fixed tissue. 

Before proceeding with cellularity measurement, segmentation requires subjective 

assessment. Subjective assessment is dependent on good image viewing conditions. Use of a 

monitor screen with wide panel and high resolution is therefore recommended. Viewing 

conditions should facilitate the selection of small nuclei size and background in the histology 

tissue section, which is crucial in measurement of cellularity metrics.  

Maintaining a better alignment between MR images and the corresponding histology tissue 

slices is challenging, especially when the tissue is not cut perpendicular to the tissue plane. 

For future work, it would be desirable to use a spatial transformation in Matlab code using 

3D rotation and linear interpolation to obtain oblique MR slices to match with the histology 

tissue slices.  

The eleven models employed for the multi-component model analysis assumed no water 

exchange between compartments where fixed tissues samples were used in the present study. 

Multicomponent models that account for water exchange between compartments need to be 

developed in future work. It is recommended for future work to plot a graph to determine the 

relationship between  of diffusion signal and  b-value showing the measurements and the 

model fit for the worst (ADC) and best model (Zeppelin-Sphere). It is also recommended for 

future work to examine the cause of variation of the model parameters in the best model 
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between cancerous and non-cancerous tissue. . It is also  recommended for future work to 

include the actual DWI images to allow assessment of the data quality.The development of 

reliable and accurate DWI depends on solid understanding of the biophysical basis 

underlying diffusion contrast in tissue. It is equally important for providing reliable 

information – for example, on cancer localisation and volume estimation - that is crucial in 

cancer patient management. Better cancer imaging will eventually lead to effective cancer 

detection and, ultimately, more effective treatment with less harmful side effects to patients.
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MATLAB Code 

The Matlab code was written by Dr Roger Bourne from University of Sydney for prostate 

tissue. Modifications were by Mariaulpa Sahalan for application in lymph node tissue. 

1. MATLAB Code for Monoexponential Analysis 
 
 
% This function loads the voxel array, as well as the b-values, then goes 
through 
% and calculates the specific fit for the data 
% For multiprocessing, run "matplotlib local <# of processors on machine>" 
 
% Load in the Analyze Data Cube.  Loads as a SpatialImage object. 
%NiiImageCube = load_nii('N22.img'); % This loads correctly 
 
% -------------------------------------------------------------------------
------------------- 
  
close all 
 
addpath(fullfile('\Users\msah3230\Documents\Nodes_DataReading_Analysis\N23'
))  
NiiImageCube = load_nii('N22.nii'); % This loads correctly 
NiiImageData_org = NiiImageCube.img; 
NiiImageData = permute(NiiImageData_org,[2 3 1 4]); 
[XDim,YDim,ZDim,BDim] = size(NiiImageData); % Get the dimensions of the 
data cube 
AxisDim = 6 % Number of directional axes in this cube 
RefBImages = 2 
SignalImagesPerAxis = (BDim-RefBImages)/AxisDim 
RefBValue = 16.; 
BValueArray = [1098. 1065. 1098. 1065. 1097. 1065.]; % For all axis 
measurements b1000 
ImageDataArray = zeros(XDim,YDim,ZDim,AxisDim,SignalImagesPerAxis); 
 
% Before running a monoexponential analysis, a cube of tissue data needs to 
be analyzed for the noise values 
%NoiseSTD = AnalyzeImageCubeSNR(); 
NoiseSTD = 0.00; 
RefDataArray = double(NiiImageData(:,:,:,1:RefBImages)) - NoiseSTD; 
 
% Separate out the axis measurements into the axis dimension 
for a = 1:AxisDim 
    StartSlice = RefBImages+1+((a-1)*SignalImagesPerAxis); 
    EndSlice = RefBImages+(a*SignalImagesPerAxis); 
    ImageDataArray(:,:,:,a,:) = 
double(NiiImageData(:,:,:,StartSlice:EndSlice)) - NoiseSTD; % use only one 
b0 value and subtract the noise 
end 
 
% The array will be the same size as the data cube with additional 
dimensions for fitted parameters and residuals. 
% MonoexpFitArray = zeros(XDim,YDim,ZDim,AxisDim,3); % A0,ADC,RSS 
PolyDTIFitArray = zeros(XDim,YDim,ZDim,AxisDim); % ADC 
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fit_options = optimset('Display', 'off', 'Algorithm', 'trust-region-
reflective','TolX', 1.e-8); 
 
% Setup progress bar 
numprofiles = AxisDim*XDim*YDim % exclude inner loop (axisdim) 
profilecount = 0; 
tic; 
h_wb1 = waitbar(0, 'Progress bar'); 
 
% Rejig order of looping to put longest loop in parfor 
for a = 1:AxisDim 
    BValues = [RefBValue, BValueArray(a)]; % Set the b values for this axis 
    for i = 1:XDim 
        for j = 1:YDim  
            % These arrays must be declared to use the parfor 
%             FittedA0  = zeros(1,ZDim); 
            FittedADC = zeros(1,ZDim); 
%             FittedRSS = zeros(1,ZDim); 
            profilecount = profilecount + 1; 
            for k=1:ZDim    
% To fit the signal, merge the reference array with the image array 
% Also take the mean of the signal at the b-values before adding to array 
                FitSignal = [mean(RefDataArray(i,j,k,:)), 
ImageDataArray(i,j,k,a,:)]; 
                if max(FitSignal) > 1000. 
                    % Slope calculation - safeguard against zero 
denominator 
                    if FitSignal(2) > 0. 
                        FittedADC(k) = 
log(FitSignal(1)/FitSignal(2))/(BValues(2)-BValues(1)); 
                    end 
                    %Linear/poly 
%                     LogData = log(FitSignal); 
%                     [fitdata, S] = polyfit(BValues,LogData,1); 
%                     FittedADC(k) = -fitdata(1); 
                end 
            end 
            % Now copy to the main fit array outside of the parfor 
%             MonoexpFitArray(i,j,:,a,1) = FittedA0; 
%             MonoexpFitArray(i,j,:,a,2) = FittedADC; 
            PolyDTIFitArray(i,j,:,a) = FittedADC; 
%             MonoexpFitArray(i,j,:,a,3) = FittedRSS; 
 
            % Update progress bar 
            inner_loop_time = toc/profilecount; 
            time_remaining = (numprofiles-profilecount)*inner_loop_time; 
            d=datestr(clock); 
            if time_remaining/60 > 180 
                waitbar(profilecount/numprofiles, h_wb1,['Estimated finish 
time = ',d(13:17),' plus ', num2str(time_remaining/3600),' hours']); 
            else 
                waitbar(profilecount/numprofiles, h_wb1,['Estimated finish 
time = ',d(13:17),' plus ', num2str(time_remaining/60),' minutes']); 
            end 
        end 
    end 
    sprintf('Outer Loop: %d ',  a) 
end 
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% Save data array 
NewDirName = sprintf('%s', datestr(now, 'yyyyddmm_HHMMSS')); 
mkdir(NewDirName); 
cd(NewDirName); 
 
% For Nifti data cube save 
% NiiFitCube = make_nii(MonoexpFitArray); 
NiiFitCube = make_nii(PolyDTIFitArray); 
 
% save_nii(NiiFitCube,'E7b1000MonoexpFitCube.nii') 
save_nii(NiiFitCube,'N22b1000PolyFitCube.nii') 
cd('..'); 
close(h_wb1); 
toc 
 
%-------------------------------------------------------------------------- 
 
function MeasuredNoiseSTD = AnalyzeImageCubeSNR() 
NiiNoiseCube = load_nii('N22.img'); % This loads correctly 
NoiseDataCube = NiiNoiseCube.img; 
[NoiseXDim,NoiseYDim,NoiseZDim,NoiseBDim] = size(NoiseDataCube); % Get the 
dimensions of the data cube 
% For E7, 40x60x40 are the dimensions 
% Check for at least two b0 values 
if NoiseBDim < 2 
    disp('ERROR: Less than 2 b0 values in reference image cube') 
end 
     
% Load in data and analyze 
BRefImage1 = NoiseDataCube(:,:,:,1); 
BRefImage2 = NoiseDataCube(:,:,:,2); % if there are more images add after 
this point and adjust mean/std 
NoiseData = double(BRefImage1 - BRefImage2); 
MeasuredNoiseSTD = std(NoiseData(:)) 
 
% MeasuredSignal = (mean(BRefImage1(:)) + mean(BRefImage2(:)))/2.; 
% NoiseMean = mean(BRefImage1(:) - BRefImage2(:)) 
% SNR = MeasuredSignal/MeasuredNoiseSTD 
 
%-------------------------------------------------------------------------- 
 
function signal = MonoexpDecay(x, xdata) 
%model function for lsqcurvefit 
a0  = x(1); 
adc = x(2); 
signal = a0*exp(-adc*xdata); 
 
% -------------------------------------------------------------------------
------------------- 
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2. MATLAB Code for Diffusion Tensor Analysis 
 
% -------------------------------------------------------------------------
------------------- 
  
close all 
 
% Calculate Diffusion Tensor for D1 and D2 values 
TensorImageCube = load_nii('N16b1000PolyFitCube.nii');  
TensorImageCube = TensorImageCube.img; 
[XDim,YDim,ZDim,AxisDim] = size(TensorImageCube); % Get the dimensions of 
the data cube with only D fit parameter 
 
% Now loop through and combine the different parameters into the various 
components 
TensorCube = zeros(XDim,YDim,ZDim,4,3); 
FACube = zeros(XDim,YDim,ZDim); 
MDCube = zeros(XDim,YDim,ZDim); 
 
% Enter the gradient matrix from the scan 
%ScanDirectionMatrix = [1. 0.5 1.; 1. -0.5 1.; 0.5 1. 1.; -0.5 1. 1.; 1. 1. 
0.5; 1. 1. -0.5;]; 
ScanDirectionMatrix = [0.7 0.3 0.7; 0.7 -0.3 0.7; 0.3 0.7 0.7;-0.3 0.7 0.7; 
0.7 0.7 0.3; 0.7 0.7 -0.3;]; 
GradientMatrix = (1/2.25)*[ScanDirectionMatrix(:,1).^2 
ScanDirectionMatrix(:,2).^2 ScanDirectionMatrix(:,3).^2 ... 
    2*ScanDirectionMatrix(:,1).*ScanDirectionMatrix(:,2) 
2*ScanDirectionMatrix(:,1).*ScanDirectionMatrix(:,3) ... 
    2*ScanDirectionMatrix(:,2).*ScanDirectionMatrix(:,3)] 
 
% Now loop through and calculate all values for each voxel 
for i = 1:XDim 
    for j = 1:YDim     
        for k = 1:ZDim 
            % Create both the fast and slow values. 
            CurrentVoxelADC = 1000.*[TensorImageCube(i,j,k,1); 
TensorImageCube(i,j,k,2); TensorImageCube(i,j,k,3); ... 
                TensorImageCube(i,j,k,4); TensorImageCube(i,j,k,5); 
TensorImageCube(i,j,k,6)]; 
 
            % Exclude if any of diffusion values are zero 
            if all(CurrentVoxelADC) 
                DTValues = GradientMatrix\CurrentVoxelADC; 
                % Use values to calculate the diffusion tensor matrix 
                DTMatrix = [DTValues(1) DTValues(4) DTValues(5);... 
                         DTValues(4) DTValues(2) DTValues(6);... 
                         DTValues(5) DTValues(6) DTValues(3)]; 
 
                % Calculate eigenvalues 
                [VMatrix,EigMatrix] = eig(DTMatrix); 
                Lambda = diag(EigMatrix); 
 
                % Save tensor data 
                TensorCube(i,j,k,1,:) = Lambda'; 
                TensorCube(i,j,k,2:4,:) = VMatrix; 
 
%      Save nifti data 
%      NiftiTensorCube(i,j,k,:) = [DTValues(1) DTValues(4) DTValues(5) ... 
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%      DTValues(4) DTValues(2) DTValues(6) ... 
%      DTValues(5) DTValues(6) DTValues(3)]; 
 
                % ANISOTROPY AND MEAN DIFFUSIVITY CALCULATIONS 
                Numerator = sqrt((Lambda(1)-Lambda(2))^2 + (Lambda(1)-
Lambda(3))^2 + (Lambda(3)-Lambda(2))^2); 
                Denominator = sqrt(2*(Lambda(1)^2 + Lambda(2)^2 + 
Lambda(3)^2)); 
                FACube(i,j,k) = Numerator./Denominator; % Fractional 
Anisotropy 
                MDCube(i,j,k) = mean(Lambda); % Mean Diffusivity 
 
            end 
        end 
    end 
end 
 
% Histogram of Mean Diffusivity 
MDValues = reshape(MDCube,XDim*YDim*ZDim,1); 
 
% ReducedMDCube = ReducedMDCube(ReducedMDCube < 5.1); % If you want to 
restrict the range, use this 
% ReducedMDCube = ReducedMDCube(ReducedMDCube > 0.); % If you want to 
restrict the range, use this 
figure;hist(MDValues,200);title('Histogram of MD values'); 
 
% Histogram of FA 
FAValues = reshape(FACube,XDim*YDim*ZDim,1); 
figure;hist(FAValues,200);title('Histogram of FA values'); 
 
% 2D Histogram of FA vs MD for ADC 
MDValues = reshape(MDCube,XDim*YDim*ZDim,1); 
FAValues = reshape(FACube,XDim*YDim*ZDim,1); 
FAMDHistValues = [MDValues FAValues]; 
MDBinWidth = 0.025; 
MDBins = 0:MDBinWidth:2.5; 
FABinWidth = 0.025; 
FABins = 0:FABinWidth:1.25; 
figure;hist3(FAMDHistValues, 'edges', (73)); 
set(gcf, 'renderer', 'opengl'); 
set(get(gca,'child'), 'FaceColor', 'interp', 'CDataMode', 'auto'); 
view(2) 
caxis([0 250]); % scale the histogram colorbar range 
title('2D Histogram of FA vs. MD for ADC values'); 
 
% Display an image slice 
figure;h1 = imagesc(FACube(:,:,15)); 
figure;h2 = imagesc(MDCube(:,:,15)); 
 
stophere = 1; 
return 
 
% -------------------------------------------------------------------------
------------------- 
 


	Supervisor’s statement
	Candidate’s statement
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	1. Introduction
	1.1 Cancer and Lymph Nodes
	1.2 Lymph Node Histology
	1.3 Route of Node Metastasis
	1.4 Nodal Staging
	1.5 Clinical Screening and Diagnosis of Nodal Disease
	1.6 Role of Imaging in Lymph Node Assessment
	1.7 Basic Diffusion-weighted Imaging (DWI)
	1.7.1 Restricted and hindered diffusion
	1.7.2 Apparent diffusion coefficient (ADC)

	1.8 Image Acquisition in DWI
	1.9 Thesis Structure

	2. Literature Review
	2
	2.1 Diffusion-weighted MRI of Lymph Nodes
	2.2 ADC and Cellularity
	Cellularity measurement

	2.3  Modelling of DWI Signal Attenuation
	Signal models
	Biophysical models

	2.4 Diffusion Microimaging
	2.5 Problem Statement
	2.6 Hypothesis and Aims

	3. Correlation of Cellularity Metrics with Mean Diffusivity
	3
	3.1 Introduction
	3.2 Methods
	3.2.1 Materials
	3.2.2 Tissue preparation
	3.2.3 MR imaging
	3.2.4 Histopathology: Morphology segmentation
	3.2.5 MRI and Histology Image Alignment
	3.2.6 Measurement of mean diffusivity (MD)
	3.2.7 Measurement of cellularity metrics
	3.2.8 Statistical analysis

	3.3 Results
	3.3.1 Lymph Node Microstructures
	3.3.2 Image alignment accuracy
	3.3.3 Mean diffusivity (MD) analysis
	3.3.4 Cellularity metrics analysis
	3.3.5 Correlation of cellularity metrics with mean diffusivity

	3.4 Discussion
	3.4.1 Diffusion compartmentation
	3.4.2 Cellularity metrics
	3.4.3 Correlation of cellularity metrics with mean diffusivity in pathologic lymph node tissue

	3.5 Conclusion

	4. Diffusion Modelling and Model Ranking with Information Criteria
	4
	4.1 Introduction
	4.2 Methods
	4.2.1 Materials
	4.2.2 Tissue preparation
	4.2.3 MR imaging
	4.2.4 Histopathology: Morphology segmentation
	4.2.5 Model description
	4.2.6 Model fitting and ranking
	4.2.7 ROI selection

	4.3  Results
	4.4 Discussion
	4.5 Limitations
	4.6 Conclusion

	5. Conclusions
	5
	5.1 Summary
	5.2 Advances in Knowledge
	5.3 Implications
	5.4 Limitations
	5.5 Future Work

	Bibliography
	Research Output
	Appendix

