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A Generalized Equatorial Model for the Accelerating Solar Wind
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Abstract A new theoretical model for the solar wind is developed that includes the wind’s acceleration,
conservation of angular momentum, deviations from corotation, and nonradial velocity and magnetic
field components from an inner boundary (corresponding to the onset of the solar wind) to beyond 1 AU.
The model uses a solution of the time-steady isothermal equation of motion to describe the acceleration
and analytically predicts the Alfvénic critical radius. We fit the model to near-Earth observations of the
Wind spacecraft during the solar rotation period of 1–27 August 2010. The resulting data-driven model
demonstrates the existence of noncorotating, nonradial flows and fields from the inner boundary (r = rs)
outward and predicts the magnetic field B = (Br, B𝜙), velocity v = (vr, v𝜙), and density n(r, 𝜙, t), which
vary with heliocentric distance r, heliolatitude 𝜙, and time t in a Sun-centered standard inertial plane. The
description applies formally only in the equatorial plane. In a frame corotating with the Sun, the transformed
velocity v′ and a field B′ are not parallel, resulting in an electric field with a component E′

z along the z axis.
The resulting E′ × B′ = E′ × B drift lies in the equatorial plane, while the 𝛁B and curvature drifts are out of
the plane. Together these may lead to enhanced scattering/heating of sufficiently energetic particles. The
model predicts that deviations 𝛿v𝜙 from corotation at the inner boundary are common, with 𝛿v𝜙(rs, 𝜙s, ts)
comparable to the transverse velocities due to granulation and supergranulation motions. Abrupt changes
in 𝛿v𝜙(rs, 𝜙s, ts) are interpreted in terms of converging and diverging flows at the cell boundaries and
centers, respectively. Large-scale variations in the predicted angular momentum demonstrate that the solar
wind can drive vorticity and turbulence from near the Sun to 1 AU and beyond.

1. Introduction

The outflow of heated ions and electrons from the expanding outer atmosphere of the Sun is referred to as
the solar wind. The solar wind originates from an effective “inner boundary,” with properties that vary with
heliolatitude and heliolongitude but are often assumed to be constant over a solar rotation period. This causes
the wind to rotate as a spatially varying but time-constant pattern across an observer as the Sun rotates. The
solar wind plasma is highly conducting and the magnetic field is frozen-in to the plasma. Rotation of the Sun
then leads naturally to spiral-like magnetic field lines (Parker, 1958). Recent work shows, though, that the
usual Parker spiral is often not a good approximation (Borovsky, 2010; Forsyth et al., 1996; Li, Cairns, Gosling,
Malaspina, et al., 2016; Li, Cairns, Gosling, Steward, et al., 2016; Schulte in den Bäumen et al., 2011, 2012).

Over the past few decades, a great effort has been made to better understand the physical processes respon-
sible for solar wind properties, along with their qualitative and quantitative interpretations. Important solar
wind characteristics that have gained the most interest include: (1) the acceleration and heating of the solar
wind close to the Sun (from 2 to 10 solar radii) (Coles, 1995; Cranmer, 2002a, 2002b; Hakamada & Kojima,
1994; Kohl et al., 1997; Tu et al., 2005), (2) deviations from the Parker spiral orientation at different spatial
and temporal scales in most observations (Borovsky, 2010; Forsyth et al., 1996; Schulte in den Bäumen et al.,
2011, 2012; Tasnim & Cairns, 2016), even though the Parker spiral agrees well with observations when aver-
aged over many rotations (Forsyth et al., 1996; Smith, 1979; Thomas & Smith, 1980), (3) the existence of
nonradial intrinsic magnetic fields (De Pontieu et al., 2011; Petrie & Patrikeeva, 2010) and velocities (Fisk,
1996; Richardson et al., 1996; Tasnim & Cairns, 2016; Weber & Davis, 1967) at the inner boundary, where
the word “intrinsic” means that these velocities and fields exist in the plasma at the inner boundary due to
unspecified physical processes at smaller radial distances, (4) magnetohydrodynamic (MHD) turbulence in the
corona and solar wind (Bruno & Carbone, 2005; Goldstein & Roberts, 1995; Usmanov et al., 2000; Usmanov &
Goldstein, 2003; Zank & Matthaeus, 1991, 1992, 1993), and (5) the location of the Alfvénic critical surface (rA)
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(DeForest et al., 2014; Tasnim & Cairns, 2016). Note that the Alfvénic critical surface rA is defined as a locus of
Alfvénic critical radius where the flow speed is equal to the Alfvén speed VA.

Models for the solar wind generally assume that magnetic field lines are parallel to flow stream lines in the
frame corotating with the Sun (Parker, 1958; Weber & Davis, 1967). However, this assumption requires the
electric field in the rotating reference frame to be zero (E′ = 0 in the equatorial plane). Later, the mod-
els for the solar wind by Keppens and Goedbloed (1999) and Hu et al. (2003) improved the Parker (1958)
and Weber and Davis (1967) models and provided a more detailed picture of the solar wind by including
azimuthal and poloidal components for the velocity and magnetic field. In addition, the Hu et al. (2003) model
focused on including colatitudinal variations while Keppens and Goedbloed (1999) introduced spatial vari-
ations described by polytropic indices. However, both of the Keppens and Goedbloed (1999) and Hu et al.
(2003) models require a zero polar electric field in the rotating frame (E′

𝜃
= 0 which implies E′

z = 0 in the equa-
torial plane) and parallel flow streamlines and magnetic field lines in the meridional plane. Further, the Hu
et al. (2003) model assumed the initial condition of a nonzero radial electric field component in the corotating
frame (E′

r = 0).

Research on three-dimensional numerical models and global MHD simulations increasingly provide more
realistic coronal and solar wind descriptions. These simulations enable us to address space weather condi-
tions in a sophisticated way (Cohen, 2015; Cohen et al., 2007, 2008; Downs et al., 2010; Groth et al., 2000;
Linker et al., 1999; Mikiċ et al., 1999; Oran et al., 2013; Roussev et al., 2003, 2004; Suess et al., 1999; Usmanov,
1993; Usmanov et al., 2000; van der Holst et al., 2010; Wu et al., 1999). Some of these simulations are fully
three dimensional and successfully describe various solar wind, coronal, and space weather phenomena by
including increasingly complex coronal and solar wind physics. Examples include an empirical heating source
term (Groth et al., 2000; Mikiċ et al., 1999; Usmanov, 1993; Suess et al., 1999), Alfvén wave turbulence in the
Wentzel-Kramers-Brillouin approximation (Usmanov et al., 2000; Usmanov & Goldstein, 2003), solar magne-
togram data (Linker et al., 1999; Roussev et al., 2003, 2004) to model the solar wind’s magnetic structures,
and energy gains due to changes in polytropic index (Roussev et al., 2003) to describe the acceleration and
heating of the solar wind. However, many of these numerical simulation results are not yet supported by ana-
lytic models. Additionally, development of analytic predictions will help to explain the underlying physics of
numerical results and will also provide more accurate and physical ways to initialize the codes.

This paper develops a new equatorial, data-driven analytic model that generalizes the previous works of
Parker (1958), Weber and Davis (1967), Jokipii and Kóta (1998), Schulte in den Bäumen et al. (2011, 2012), and
Tasnim and Cairns (2016) by including the radial acceleration of the wind, conservation of angular momentum,
intrinsic nonzero azimuthal velocities and magnetic fields from the inner boundary outward, and a deviation
from corotation at the inner boundary. The deviation 𝛿v𝜙(rs, 𝜙s) can be due to motions associated with gran-
ulation and supergranulation cells (Schulte in den Bäumen et al., 2011, 2012; Jokipii & Kóta, 1998; Jokipii &
Parker, 1968), where rs is the radius of the inner boundary and 𝜙s is the corresponding phase angle. We find
that the predicted deviations are sometimes strong enough to cancel the corotation effects or to change the
flow patterns. The model also predicts the Alfvénic critical radius rA(𝜙a), where rA(𝜙a) is defined as the locus of
the Alfvénic critical radii as a function of phase angle𝜙a (where𝜙a presents the phase angle corresponding to
the Alfvénic critical radius). The model fits show that the velocity v′ is not always parallel to the magnetic field
B′ in the corotating frame, leading to nonzero predicted electric fields E′

z in the z direction in the corotating
frame at all r, and so effects on energetic particle motion are expected.

The new data-driven analytic model provides a more complete description of the solar wind and should
enable a better understanding of solar wind properties via theory-data and simulation-data comparisons.
This model is the first analytic theoretical attempt to simultaneously treat the acceleration of the solar wind,
permit a deviation from corotation at the inner boundary, include intrinsic nonradial velocity and magnetic
field from the inner boundary to 1 AU and beyond, and enforce conservation of angular momentum. It gen-
eralizes the existing theoretical solar wind models (Jokipii & Kóta, 1998; Parker, 1958; Schulte in den Bäumen
et al., 2011, 2012; Tasnim & Cairns, 2016; Weber & Davis, 1967) by relaxing the assumptions of constant radial
speed, strong corotation, zero electric field in the corotating frame, and so on. Therefore, this model improves
the preceding models, specifically, the new model relaxes the assumptions of purely radial magnetic field
(Hu et al., 2003; Jokipii & Kóta, 1998; Keppens & Goedbloed, 1999; Parker, 1958; Weber & Davis, 1967) and
velocity (Jokipii & Kóta, 1998; Parker, 1958; Schulte in den Bäumen et al., 2011, 2012) at the inner boundary,
constant radial speed (Jokipii & Kóta, 1998; Schulte in den Bäumen et al., 2011, 2012; Tasnim & Cairns, 2016;
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Weber & Davis, 1967), E′ = 0 (Parker, 1958; Weber & Davis, 1967), neglect of conservation of angular momen-
tum (Parker, 1958; Schulte in den Bäumen et al., 2011, 2012), and an azimuthal flow, which is only due to
the corotation of the solar wind (Tasnim & Cairns, 2016). The model’s predictions are relatively insensitive to
different choices of rs, from the photosphere R⊙ to any reasonable value of r. Therefore, the extracted acceler-
ating radial wind speed, intrinsic nonradial velocities and magnetic fields should provide more realistic initial
boundary conditions at R⊙ for future simulations, cf. van der Holst et al. (2010), Oran et al. (2013), and Feng
et al. (2015). Moreover, the model will test the simulation results and explore the physical mechanisms under-
lying them. Finally, the upcoming Solar Probe Plus (SPP) and Solar Orbiter space missions will provide an
opportunity to test the accelerating wind model’s predictions with direct observations.

The paper is structured as follows. Section 2 discusses the basic equations and assumptions of the accelerat-
ing solar wind model. Section 3 develops the new theoretical model by applying Parker’s accelerating wind
solution in a MHD description that conserves angular momentum and satisfies the frozen-in field condition.
Section 4 solves the equations for the new solar wind model to find the analytic and numerical solutions
for the plasma and field quantities from rs to all r. Section 5 fits the model to data at 1 AU over a solar rota-
tion in order to investigate the predictions for rA(𝜙a, ta), the electric field in the corotating frame (E′

z), the
intrinsic v𝜙(rs, 𝜙s, ts) and B𝜙(rs, 𝜙s, ts), and the variations of radial and longitudinal velocity and magnetic field.
Section 5.1 shows that the predictions for rA agree well with the observations of DeForest et al. (2014) and
are semiquantitatively consistent with Tasnim & Cairns’s (2016) model. Section 5.2 shows that deviations
𝛿v𝜙(rs, 𝜙s) from corotation are generally present and have significant implications. It also shows that the
predictions for B𝜙(rs, 𝜙s, ts) are different from but semiquantitatively consistent with the predictions from pre-
vious solar wind models (Schulte in den Bäumen et al., 2011, 2012; Tasnim & Cairns, 2016), and it demonstrates
that sometimes the predicted values of 𝛿v𝜙(rs, 𝜙s, ts) cancel out the azimuthal speed due to corotation. The
sudden changes in 𝛿v𝜙 are interpreted in terms of converging and diverging flows associated with granula-
tion and supergranulation cells. Section 5.3 describes the radial profiles of v𝜙(r, 𝜙, t) and B𝜙(r, 𝜙, t). Section 5.4
predicts that the angular momentum per unit mass L varies greatly with longitude but agrees semiquan-
titively with the predictions of Weber and Davis (1967) and can act as a source of turbulence. Section 5.5
demonstrates that the model predicts nonzero E′

z , in general, in contrast to the widely used assumption of
E′ = 0. This means that magnetic field lines are not velocity streamlines in general. Subsection 5.6 calculates
the power law index 𝛾(𝜙) of the temperature profile for a selected solar rotation period, fitting a mean value
very close to the standard empirical value, showing the differences from the constant speed solar wind model
and the longitudinal (𝜙) variations in E′

z , Lz , B𝜙, ni , vr(r), and Ti(r). Section 5.7 illustrates the global plasma and
field environment. Section 6 discusses the results and concludes the paper.

2. Basic Equations and Assumptions for the Accelerating Solar Wind Model
2.1. Basic Equations in Inertial and Rotating Frames
This model combines an accelerating vr profile for an isothermal wind with the magnetohydrodynamic
(MHD) equations for conservation of mass and angular momentum, frozen-in magnetic fields, Gauss’s Law for
magnetism 𝛁 ⋅ B = 0, and Faraday’s Law 𝛁 × E = −𝜕B∕𝜕t, where E is the electric field.

Starting from a spherical coordinate system in which r, 𝜙, and 𝜃 represent radial, azimuthal (longitudinal), and
polar (latitudinal) components, respectively, we restrict attention to the equatorial plane (r, 𝜙) in an inertial
frame. Assuming that the 𝜃 components are negligible in the (r,𝜙) plane, the fluid motion v and magnetic field
B only have nonzero components vr , v𝜙, Br , and B𝜙, all of which depend on r and𝜙 in general. This neglect may
not be always justified; for example, the B𝜃 or north-south component of B is known to be important for space
weather and is often large in coronal mass ejection (CME) events. Similarly, v𝜃 is comparable to v𝜙 during CME
and corotating interaction region events. However, neglecting B𝜃 and v𝜃 in the equatorial or ecliptic plane is
typical in analytic solar wind models (Parker, 1958; Schulte in den Bäumen et al., 2011, 2012; Tasnim & Cairns,
2016; Weber & Davis, 1967).

We now transform the above equations in a 2-D equatorial inertial frame (unprimed variables) into equiva-
lent equations for (primed) variables in a 2-D equatorial frame rotating with the Sun. The standard relations
between the inertial and rotating frame are 𝜙′ = 𝜙 − Ωt and r = r′. Note that Ω = 2𝜋∕T denotes the Sun’s
rotation frequency where T is the Sun’s synodic rotation period (we assume T = 27 days). In addition, in the
nonrelativistic regime the assumption B = B′ is justified. Below in section 2.2, we justify our assumption
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that time variations in the inertial frame variables correspond to variations 𝜙′ of a fixed spatial pattern in the
rotating frame. Quantities in the rotating inertial frames are related according to

vr(r, 𝜙, t) = v′
r (r, 𝜙 − Ωt) = v′

r (r
′, 𝜙′), (1)

v𝜙(r, 𝜙, t) = v′
𝜙
(r, 𝜙 − Ωt) + rΩ = v′

𝜙
(r′, 𝜙′) + Ωr, (2)

𝜌(r, 𝜙, t) = 𝜌′(r, 𝜙 − Ωt) = 𝜌′(r′, 𝜙′), (3)

Br(r, 𝜙, t) = B′
r(r, 𝜙 − Ωt) = B′

r(r
′, 𝜙′), (4)

B𝜙(r, 𝜙, t) = B′
𝜙
(r, 𝜙 − Ωt) = B′

𝜙
(r′, 𝜙′), (5)

B(r, 𝜙, t) = B′
r(r, 𝜙 − Ωt)er + B′

𝜙
(r, 𝜙 − Ωt)e𝝓 = B′(r′, 𝜙′), (6)

v(r, 𝜙, t) = v′
r (r, 𝜙 − Ωt)er + v′

𝜙
(r, 𝜙 − Ωt)e𝝓 + rΩe𝝓 = v(r′, 𝜙′) + Ωre𝝓, (7)

where 𝜌 is the mass density and v is the velocity. Using the relation 𝜙′ = 𝜙 − Ωt, derivatives of an arbitrary
function f in the inertial frame are related to the derivatives in the corotating frame by

𝜕

𝜕t
f (r, 𝜙, t) = −Ω 𝜕

𝜕𝜙′ f ′(r′, 𝜙′), (8)

𝜕

𝜕r
f (r, 𝜙, t) = 𝜕

𝜕r′
f ′(r′, 𝜙′), (9)

𝜕

𝜕𝜙
f (r, 𝜙, t) = 𝜕

𝜕𝜙′ f ′(r′, 𝜙′). (10)

With the variables and transformations defined, we start with the MHD equation for mass conservation:

d𝜌
dt

+ 𝛁 ⋅ (𝜌v) = 0. (11)

In a spherical polar coordinate system this can be written as

d𝜌
dt

+
[

1
r2

𝜕

𝜕r
(𝜌r2vr) +

1
r sin 𝜃

𝜕

𝜕𝜃
(𝜌v𝜃 sin 𝜃) + 1

r sin 𝜃

𝜕(𝜌v𝜙)
𝜕𝜙

]
= 0. (12)

The assumption that v𝜃 = 0 in the solar equatorial plane (𝜃 = 90∘) simplifies (12) to

d𝜌
dt

+
[

1
r2

𝜕

𝜕r
(𝜌r2vr) +

1
r

𝜕𝜌v𝜙
𝜕𝜙

]
= 0. (13)

To write the mass conservation equation in the rotating frame in the equatorial plane, we use (1)–(7) and
(8)–(10), whence (13) reduces to

1
r′2

𝜕

𝜕r′
(r′2𝜌′v′

r ) +
1
r′
𝜕(𝜌′v′

𝜙
)

𝜕𝜙′ = 0. (14)

In spherical polar coordinates with v𝜃 = 0 and B𝜃 = 0, Gauss’s Law of magnetism (𝛁 ⋅ B = 0) in the equatorial
plane, can be written as

1
r2

𝜕

𝜕r
(r2Br) +

1
r

𝜕B𝜙

𝜕𝜙
= 0. (15)

In a rotating frame, (15) becomes
1

r′2
𝜕

𝜕r′
(r′2B′

r) +
1
r′
𝜕B′

𝜙

𝜕𝜙′ = 0. (16)

We use the generalized form of Ohm’s Law to write the electric field E. Using this expression, Faraday’s Law in
the inertial frame reduces to

𝜕B
𝜕t

= 𝛁 × (v × B) + DB∇2B. (17)
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In (17), we assume that the Hall effect, electron inertial term, and pressure gradient term have negligible
effects on curl E. Here DB is the magnetic diffusion coefficient, E = −v×B, 𝛁× (v×B) is the magnetic convec-
tive term, and DB∇2B is the diffusive term, respectively. This plasma is assumed to be highly conductive, so
the conductive term dominates the diffusive term. This results in the magnetic field moving with the plasma,
that is,

𝜕B
𝜕t

= 𝛁 × (v × B). (18)

From (18), the frozen-in field condition in the inertial frame is

E = −v × B. (19)

We can write (19) as

E = −(v × B),
= −vp × B𝜙e𝜙 − v𝜙e𝜙 × Bp − vp × Bp,

(20)

where vp = vrer + v𝜃e` (in spherical coordinates) = vrer + vzez (in cylindrical coordinates) is the poloidal
component of the flow velocity and Bp = Brer + B𝜃e` = Brer + Bzez is the poloidal magnetic field. Here e𝜙,
er , e𝜃 , and ez denote unit vectors in the relevant directions. Again, assuming B𝜃 = 0 and v𝜃 = 0 in the solar
equatorial plane (𝜃 = 90∘), and that the solar equatorial plane is a cylindrical disk with h → 0 (where h repre-
sents the height of a cylinder), the frozen-in field condition in cylindrical coordinate for the magnetized wind
reduces to

E = (−vrB𝜙 + v𝜙Br)ez = (−vrB𝜙 + v𝜙Br)e𝜃. (21)

Similarly, the electric field in the corotating frame is

E′ = (−v′
r B′

𝜙
+ v′

𝜙
B′

r)ez = (−v′
r B′

𝜙
+ v′

𝜙
B′

r)e𝜃. (22)

Therefore, (21) and (22) allow us to relate the electric field Ez in the inertial frame with the field E′
z in the

corotating frame:
Ez

′ = Ez − Ωr sin 𝜃Br. (23)

Note that in the equatorial plane 𝜃 = 90∘, which allows us to write E′
𝜃
= E′

z . Equation (23) agrees with the
standard relation,

E′ = E + vrel × B, (24)

or

E′
zez = Ezez + Ωr sin 𝜃e𝜙 × Brer. (25)

Combining (18) and (21), we write

𝜕Br

𝜕t
er +

𝜕B𝜙

𝜕t
e𝜙 = −1

r
𝜕

𝜕𝜙

[
−vrB𝜙 + v𝜙Br

]
er +

1
r
𝜕

𝜕r

[
r(vrB𝜙 + v𝜙Br)

]
e𝜙. (26)

Then, transforming (26) into the rotating frame yields

− Ω
𝜕B′

𝜙

𝜕𝜙′ e𝜙 = −1
r

𝜕

𝜕𝜙′

[
−v′

r B′
𝜙
+ v′

𝜙
B′

r

]
er +

1
r′

𝜕

𝜕r′

[
r′(v′

r B′
𝜙
+ v′

𝜙
B′

r + Ωr′B′
r)
]

e𝜙, (27)

where the 𝜕Br∕𝜕t term becomes −Ω𝜕Br∕𝜕𝜙′ and cancels with a term from the right-hand side of (27).

The MHD equation for the conservation of angular momentum including gravity (Tasnim & Cairns, 2016) in
an inertial frame is

𝜕L⋆

𝜕t
+ r × 𝛁

(
P + B2

2𝜇0

)
+ 𝜌r × (v ⋅ 𝛁)v = 1

𝜇0
r × (B ⋅ 𝛁)B, (28)

where 𝜕L⋆∕𝜕t is the time derivative of the angular momentum L⋆ = 𝜌(r × v), and B2∕2𝜇0 is the mag-
netic pressure in the corotating frame. We assume that the distribution of particles is sufficiently random
that the pressure tensor can be approximated as a scalar pressure P. A more detailed derivation is available
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in Tasnim and Cairns (2016). Note that the gravitational acceleration g and the acceleration due to the reaction
of the centripetal force have only radial dependence and are radially symmetric, so that their contributions to
the torque in (28) are zero.

Assuming radially symmetric thermal and magnetic pressures (Tasnim & Cairns, 2016), (28) becomes

𝜕L⋆

𝜕t
+ 𝜌r × (v ⋅ 𝛁)v = 1

𝜇0
r × (B ⋅ 𝛁)B. (29)

The 𝜃 component of (29) is

−
𝜕L⋆𝜃
𝜕t

− 𝜌r

[
vr

𝜕v𝜙
𝜕r

+
v𝜙
r

𝜕v𝜙
𝜕𝜙

+
v𝜙vr

r

]
= − 1

𝜇0
r

[
Br

B𝜙

𝜕r
+

B𝜙

r

𝜕B𝜙

𝜕𝜙
+

B𝜙Br

r

]
. (30)

Transforming (30) to the rotating frame and associated variables lead to

− Ωv′
𝜙

r′
𝜕𝜌′

𝜕𝜙′ − Ωr′2
𝜕𝜌′

𝜕𝜙′ + 𝜌′r′v′
r + 𝜌′r′v′

r

𝜕v′
𝜙

𝜕r′
+ 2𝜌′r′v′

rΩ

+ 𝜌′v′
𝜙

𝜕v′
𝜙

𝜕𝜙′ + 𝜌′v′
𝜙

v′
r =

1
𝜇0

r′
(

B′
r

B′
𝜙

𝜕r′
+

B′
𝜙

r′
𝜕B′

𝜙

𝜕𝜙′ +
B′
𝜙

B′
r

r′

)
.

(31)

The time-independent equation of motion chosen for the fluid (Parker, 1958) is

(v2
r − c2

s )
vr

dvr

dr
=

2c2
s

r
−

GM⊙

r2
, (32)

where vr = vr(r, 𝜙, t), cs = cs(𝜙, t) is the sound speed, and the final term describes gravitational effects. Note
that (32) assumes magnetic terms are unimportant for acceleration of the solar wind. Assuming the plasma
is approximately isothermal (Parker, 1958) for each 𝜙, the transonic solution has vr(r, 𝜙, t) = cs(𝜙, t) at the
sonic radius

rso(𝜙, t) =
GM⊙

2c2
s (𝜙, t)

. (33)

Integrating (32) yields the Bernoulli integral for an isothermal wind (Parker, 1958):

v2
r

c2
s

− ln

(
v2

r

c2
s

)
= 4 ln

(
r

rso

)
+ 4

rso

r
+ C4, (34)

where C4 is the integration constant. This equation defines the wind velocity vr as a function of r.

In the equatorial plane model, (34) can be written as

v2
r (r, 𝜙, t)
c2

s (𝜙, t)
− ln

(
v2

r (r, 𝜙, t)
c2

s (𝜙, t)

)
= 4 ln

(
r

rso

)
+ 4

rso

r
+ C4(𝜙). (35)

In the corotating frame, (35) corresponds to

v′2
r (r′, 𝜙′)
c′2s (𝜙′)

− ln

(
v2

r (r
′, 𝜙′)

c′2s (𝜙′)

)
= 4 ln

(
r′

r′so

)
+ 4

r′so

r′
+ C5(𝜙′), (36)

where c′s(𝜙
′) = cs(𝜙, t), and C5(𝜙′) is a function of 𝜙′.

2.2. Assumptions
Synoptic magnetograms change slowly from one solar rotation to the next (Neugebauer et al., 2002), so we
assume that sources of the solar wind are constant over a solar rotation, thereby producing a spatially variable
but time-stationary pattern that rotates with the Sun. In such a system there is no intrinsic time variation for
an observer rotating with the Sun. However, this fixed pattern moves across a noncorotating observer, such
as the Earth or the Wind spacecraft. The apparent time variations in the rotating frame seen then correspond
to 𝜙′ variations of the time-stationary pattern, as in (8). Accordingly, the time when a particular part of the
pattern reaches the observer corresponds to a particular phase angle𝜙′ or longitude of the solar wind pattern.
Put in other way, while the plasma quantities and magnetic fields are time-stationary in the rotating frame,
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Figure 1. Illustration of the physical model for the solar wind over one solar rotation, showing magnetic field lines in
the solar equatorial plane from the inner boundary (rs, 𝜙s) to the observation locations (rob, 𝜙ob) and the location
corresponding to the origin in time (t). Figure 1a shows the view from above the North Pole of the Sun, with the wiggly
field lines emphasizing that azimuthal symmetry is not assumed, while Figure 1b shows the relative positions of the Sun,
the Earth, and the solar equatorial disk (with a height h → 0). Shaded portions of the figure show two stream tubes that
correspond to a particular source region for the wind.

they are time-dependent quantities for an observer in an inertial frame. Specifically, the coordinates in the
corotating and inertial frames are related by r′ = r and 𝜙′ = 𝜙 − Ωt.

Figure 1a illustrates magnetic field lines in the equatorial plane that start at the inner boundary and end at
1 AU. The figure also illustrates the relation between the longitude 𝜙 and the start time t = t0 when 𝜙 = 0.
Figure 1b shows the Sun-Earth orientation in the solar equatorial plane. The magnetic field lines in Figure 1a
have azimuthal asymmetries, which are allowed by the models developed below and by Schulte in den
Bäumen et al. (2011), Schulte in den Bäumen et al. (2012), Tasnim and Cairns (2016), and Li, Cairns, Gosling,
Steward, et al. (2016). From the point of view of the (r, 𝜙, t) and (r′, 𝜙′) coordinate systems for the inertial and
corotating frames, the variables (r, 𝜙, t) are mutually independent variables, as are r′ and 𝜙′.

In order to relate the various 𝜙 and variables, the observation at time tob is assumed to be related to inner
boundary (rs) at the time ts when the plasma left the model inner boundary rs near the Sun, by the relation

ts = tob − (1 AU − rs)∕vav. (37)

Here vav is the rotation-averaged radial speed, which is used instead of vr(r, 𝜙) to prevent the streamlines from
crossing. The solar wind quantities at the inner boundary rs at phase angle 𝜙s are related to the observation
distance rob = 1 AU, longitude 𝜙ob(tob) = 𝜙AU = Ω(tob − t0), and to the start time t0 of the rotation interval
[t0, t0 + 27 days] by

𝜙s(ts) = 𝜙(1 AU) −
(1 AU − rs)Ω

vav
= Ω(tob − t0) −

(1 AU − rs)Ω
vav

, (38)

and at any other r from rs to 1 AU by

𝜙(r, t) = 𝜙s(ts) +
(r − rs)Ω

vav
. (39)

Equations (38) and (39) assume that the longitudinal meridian 𝜙s = 0 faces the Earth at time t = t0. In terms
of rotating variables, the longitude at (r′, 𝜙′) in the rotating frame obey

𝜙′(r′) = 𝜙′
s +

(r′ − r′s)Ω
v′

av

− Ωt, (40)

where 𝜙′
s = 𝜙s(ts) − Ωts.

This model allows us to follow approximate (velocity) streamtubes that correspond to a particular source
region for the wind in which the mass, magnetic flux, and angular momentum are conserved. The electric field
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in the corotating frame is also constant in the streamtube. Magnetic field lines do not always follow stream-
tubes. Note that a streamtube is a region of plasma surrounded by streamlines where streamlines do not
intersect with each other and the same streamlines pass through a streamtube at all points along its length.
Shaded areas on Figure 1 are showing two streamtubes.

3. Accelerating Solar Wind Model

We now develop a detailed model for the accelerating solar wind using the equations and assumptions in
sections 2.1 and 2.2, respectively.

We assume 𝜕(𝜌′v′
𝜙
)∕𝜕𝜙′ = 0 in (14) in the corotating frame (Schulte in den Bäumen et al., 2011, 2012; Tasnim &

Cairns, 2016), either for all𝜙′ or locally, for a limited range of𝜙′. Put in other words, we assume 𝜌′v′
𝜙

is constant
along 𝜙′ within a streamtube (Figure 1). Hence, mass conservation for approximately radial flow with radial
speed v′

r (r
′, 𝜙′) requires that the mass density 𝜌′ = m n′(r′, 𝜙′), where m is the mean particle mass and n′ is

the number density, together with the radial component of the flow v′
r (r

′, 𝜙′) in the corotating frame obey

𝜌′ r′2v′
r (r

′, 𝜙′) = m n′(r′, 𝜙′) r′2 v′
r (r

′, 𝜙′) = C1(𝜙′). (41)

for r ≫ rs. Here C1(𝜙′) is a function of 𝜙′ which comes out due to the integration over r′.

We assume B′
𝜙

is constant along longitudinal (𝜙′) direction within a streamtube (Figure 1), that is, 𝜕B′
𝜙
∕𝜕𝜙′ = 0

either for all 𝜙′ or locally, for a limited range of 𝜙′ (Tasnim & Cairns, 2016). This assumption allows us to reduce
(16) to the form (1∕r′2)d(r′2B′

r)∕dr′ = 0. Integrating Gauss’s Law over r′ yields

r′2B′
r(r

′, 𝜙′) = C2(𝜙′), (42)

where C2(𝜙′) is a function of 𝜙′.

Similarly, Faraday’s Law (27) with the assumption 𝜕B′
𝜙
∕𝜕𝜙′ in the corotating frame reduces to

1
r′

𝜕

𝜕r′

[
r′(−v′

r B′
𝜙
+ v′

𝜙
B′

r + Ωr′B′
r)
]
= 0. (43)

Integrating (43) over r′ results in

r′[v′
r (r

′, 𝜙′)B′
𝜙
(r′, 𝜙′) − v′

𝜙
(r′, 𝜙)B′

r(r
′, 𝜙′)] = C3(𝜙′), (44)

where C3(𝜙′) is a function of 𝜙′. Since C3(𝜙′) can be nonzero in principle, (44) is more general than the
assumption C3(𝜙′) = 0 that corresponds to v′ and B′ being parallel in the rotating frame.

We assume that 𝜌′, v′
𝜙

, and B′
𝜙

are constant either for all 𝜙′ or locally, for a limited range of 𝜙′ where 𝜕𝜌′∕𝜕𝜙′,
𝜕v′

𝜙
∕𝜕𝜙′, and 𝜕B′

𝜙
∕𝜕𝜙′ can be neglected. After integrating over r′ and using the above assumptions, the 𝜃

component of (31) gives

r′v′
𝜙
(r′, 𝜙′) + r′Ω −

r′B′
r(r

′, 𝜙′)B′
𝜙
(r′, 𝜙′)

𝜇0𝜌
′(r′, 𝜙′)v′

r (r′, 𝜙′)
= L′

𝜃
(𝜙′), (45)

where for 𝜃 = 90∘, L′
𝜃
(𝜙′) = L′z(𝜙

′), assuming v′
𝜃
= 0 and B𝜃 = 0. The first term of (45) represents the stan-

dard unmagnetized fluid angular momentum per unit mass density, the second term r′Ω presents angular
momentum due to torque associated with the coriolis force in the rotating frame, and the third term repre-
sents the magnetic field contribution. The sum of these terms must be a function of 𝜙′, and be equal to the
total out-of-plane angular momentum (L′ = L′z(r

′, 𝜙′)ez) carried away from the Sun per unit mass density.
Note that the 𝜙′ component of L′ (i.e., L′

𝜙
e𝜙) analogous to (45) depends on v′

𝜃
and the product B′

rB′
𝜃
, both of

which are zero by assumption, so that L′
𝜙
= 0. Likewise L′r = 0.

In the inertial frame, after integrating over r, the 𝜃 component of (30) with the assumption 𝜕L⋆𝜃∕𝜕t =
𝜕L⋆z∕𝜕t = 0 becomes

rv𝜙(r, 𝜙, t) −
rBr(r, 𝜙, t)B𝜙(r, 𝜙, t)
𝜇0𝜌(r, 𝜙, t)vr(r, 𝜙, t)

= L𝜃(𝜙, t) = Lz(𝜙, t), (46)

The integration constants in (41), (42), (44), and (45) are found by applying boundary conditions at the inner
boundary (r′s, 𝜙

′
s) of the solar wind, where the magnetic field components are B′

r(r
′
s, 𝜙

′
s) and B′

𝜙
(r′s, 𝜙

′
s), and the

velocity components are v′
r (r

′
s, 𝜙

′
s) and v′

𝜙
(r′s, 𝜙

′
s). The total azimuthal velocity at the inner boundary is written

TASNIM ET AL. GENERALIZED SOLAR WIND THEORY 1068



Journal of Geophysical Research: Space Physics 10.1002/2017JA024532

as v′
𝜙
(r′s, 𝜙

′
s) = 𝛿v′

𝜙
(rs, 𝜙s), where 𝛿v′

𝜙
(r′s, 𝜙

′
s) represents a deviation from corotation [𝛿v′

𝜙
(r′s, 𝜙

′
s) = 𝛿v𝜙(r, 𝜙, t)].

Equations (41), (42), (44), and (45) then become

r′
[

v′
r (r

′, 𝜙′)B′
𝜙
(r′, 𝜙′) − (v′

𝜙
(r′, 𝜙′) + Ωr′)B′

r(r
′, 𝜙′)

]
= r′s

[
v′

r (r
′
s, 𝜙

′
s)B

′
𝜙
(r′s, 𝜙

′
s) − 𝛿v′

𝜙
(r′s, 𝜙

′
s)B

′
r(r

′
s, 𝜙

′
s) − Ωr′sB′

r(r
′
s, 𝜙

′
s)
]
,

(47)

and

r′2B′
r(r

′, 𝜙′) = rs
′2B′

r(r
′
s, 𝜙

′
s), (48)

𝜌′(r′, 𝜙′)r′2v′
r (r

′, 𝜙′) = 𝜌′(r′s, 𝜙
′
s)r

′2
s v′

r (r
′
s, 𝜙

′
s), (49)

r′v′
𝜙
(r′, 𝜙′)+r′2Ω −

r′B′
r(r

′, 𝜙′)B′
𝜙
(r′, 𝜙′)

𝜇0𝜌
′(r′, 𝜙′)v′

r (r′, 𝜙′)

= r′s[r
′
sΩ + 𝛿v′

𝜙
(r′s, 𝜙

′
s)] −

r′sB′
r(r

′
s, 𝜙

′
s)B

′
𝜙
(r′s, 𝜙

′
s)

𝜇0𝜌
′(r′s, 𝜙′

s)v′
r (r′s, 𝜙′

s)
.

(50)

An expression for v𝜙(r, 𝜙) is found by solving (50) and (47) simultaneously:

v′
𝜙
(r′, 𝜙′) =

d1

[1 − M′2
A (r′, 𝜙′)]

×
[

1 − M′2
A (r

′, 𝜙′)
d2

d1

]
, (51)

where M′2
A (r

′, 𝜙′) = 𝜇0𝜌
′(r′, 𝜙′)v′2

r (r′, 𝜙′)∕B′2
r (r

′, 𝜙′) = v′
r (r

′, 𝜙′)r′2∕[v′
a(r

′
A)r

′2
A (𝜙′

a)], and

d1 = r′Ω −
r′sv′

r (r
′
s, 𝜙

′
s)B

′
𝜙
(r′s, 𝜙

′
s)

r′Br(′, 𝜙′)
+

r′s𝛿v′
𝜙
(𝜙′

s)Br(r′s, 𝜙
′
s)

r′B′
r(r′, 𝜙′)

,

d2 =
r′2s Ω

r′
+

r′s𝛿v′
𝜙
(𝜙′

s)
r′

−
r′sB′

r(r
′
s, 𝜙

′
s)B

′
𝜙
(r′s, 𝜙

′
s)

𝜇0𝜌
′
s(𝜙′

s)v′
r (r′s, 𝜙′

s)r′
− r′Ω.

This is similar to the approach of Weber and Davis (1967). In section 4 below, we use this expression for
v′
𝜙
(r′, 𝜙′) to derive B′

𝜙
(r′, 𝜙′) as a function of r′.

A singularity problem arises in (51) at the Alfvénic critical radius where the radial Alfvénic Mach number
M′

A(r
′
A, 𝜙

′
a) = 1. To remove the singularity at the Alfvénic critical radius r′A(𝜙

′
a) the denominator and numerator

must both vanish at r′ = r′A and 𝜙′ = 𝜙′
a (Weber & Davis, 1967), requiring

r′2s Ω
r′A(𝜙′

a)
+

r′s𝛿v′
𝜙
(r′s, 𝜙

′
s)

r′A(𝜙′
s)

−
r′sB′

r(r
′
s, 𝜙

′
s)B

′
𝜙
(r′s, 𝜙

′
s)

𝜇0𝜌
′(r′s, 𝜙′

s)v′
r (r′s, 𝜙′

s)r
′
A(𝜙′

a)
− r′AΩ

= r′A(𝜙
′
a)Ω −

r′s
r′A(𝜙′

a)B′
r(r

′
A, 𝜙

′
a)

[
v′

r (r
′
s, 𝜙

′
s)B

′
𝜙
(r′s, 𝜙

′
s) − 𝛿v′

𝜙
(r′s, 𝜙

′
s)B

′
r(r

′
s, 𝜙

′
s)
]
.

(52)

4. Analytic Results

This section presents analytic solutions to the equations in section 3 that are amenable to fitting with space-
craft data. We start with predictions for the inner boundary, then proceed to the radial profile v′

r (r
′, 𝜙′

ob), and
then present results for all (r′, 𝜙′). Note that we use (1)–(7) to relate the spacecraft observations in an inertial
frame to the variables in the rotating frame. For example, 𝜌′(r′, 𝜙′

ob) = 𝜌(r, 𝜙ob, tob), v′
r (r

′, 𝜙′
ob) = vr(r, 𝜙ob, tob),

v′
𝜙
(r′ob, 𝜙

′
ob) = v𝜙(r, 𝜙ob, tob) + Ωrob, B′

r(r
′, 𝜙′

ob) = Br(r, 𝜙ob, tob), and B′
𝜙
(r′, 𝜙′

ob) = B𝜙(r, 𝜙ob, tob).

4.1. Extraction of the Intrinsic B𝝓(rs, 𝝓s) and v𝝓(rs, 𝝓s)
We allow intrinsic magnetic field components B′

r(r
′
s, 𝜙

′
s) and B′

𝜙
(r′s, 𝜙

′
s) at the inner boundary (r′s, 𝜙

′
s). Simulta-

neous use of (52)–(47) with the application of observations at specific locations r = rob and 𝜙 = 𝜙ob allow us
to derive the following expressions for B′

r(r
′
s, 𝜙

′
s), v′

𝜙
(r′s, 𝜙

′
s), 𝛿v′

𝜙
(r′s, 𝜙

′
s), and B′

𝜙
(r′s, 𝜙

′
s):

Br(rs, 𝜙s, ts) = B′
r(r

′
s, 𝜙

′
s) =

r′2ob

r′2s

B′
r(r

′
ob, 𝜙

′
ob), (53)
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𝛿v𝜙(rs, 𝜙s, ts) =𝛿v′
𝜙
(r′s, 𝜙

′
s) =

[
r′sΩ −

r′2A (𝜙′
a)Ω

r′s

][
1

MA
′2(r′s, 𝜙′

s) − 1

]−1

+ d3

[
r′v′

r (r
′
ob, 𝜙

′
ob)B

′
𝜙
(r′ob, 𝜙

′
ob)

r′sB′
r(r

′
ob, 𝜙

′
ob)

−
r′v′

𝜙
(r′ob, 𝜙

′
ob)

r′s
+ Ωr′

r′s

]
,

(54)

v′
𝜙
(r′s, 𝜙

′
s) = 𝛿v′

𝜙
(r′s, 𝜙

′
s), (55)

v𝜙(rs, 𝜙s, ts) = v′
𝜙
(r′s, 𝜙

′
s) + rsΩ = 𝛿v′

𝜙
(r′s, 𝜙

′
s) + rsΩ, (56)

B𝜙(rs, 𝜙s, ts) =B′
𝜙
(r′s, 𝜙

′
s) =

r′v′
r (r

′
ob, 𝜙

′
ob)B

′
𝜙
(r′ob, 𝜙

′
ob)

r′sv′
r (r′s, 𝜙′

s)
−

r′obv′
𝜙
(r′ob, 𝜙

′
ob)B

′
r(r

′
ob, 𝜙

′
ob)

r′sv′
r (r′s, 𝜙′

s)

+
𝛿v′

𝜙
(r′s, 𝜙

′
s)B

′
r(r

′
s, 𝜙

′
s)

v′
r (r′s, 𝜙′

s)
+

Ωr′2s Br(r′s, 𝜙
′
s)

r′sv′
r (rs, 𝜙s)

,

(57)

where

d3 =
r′2A (𝜙a)

r′2

[
M′2

A (r
′
s, 𝜙

′
s) −

r′2s

r′2A

] [
1 − M′2

A (r
′
s, 𝜙

′
s)
]−1

,

and

MA(rs, 𝜙s, ts) = M′
A(r

′
s, 𝜙s′ ) =

𝜇0𝜌
′(r′s, 𝜙

′
s)v

′2
r (r′s, 𝜙

′
s)

B′2
r (r′s, 𝜙′

s)
. (58)

The corresponding prediction for v𝜙(r′ob, 𝜙
′
ob) from (51) is

v𝜙(r′ob, 𝜙
′
ob) =

[
1 −

r′2A

r′2

]−1 [
2Ωr′2A

r′
− 2Ωr′

]

+

[
r′2ob

r′2A (𝜙′
a)

− 1

]−1 [
r′2ob

M′2
A (r

′
ob, 𝜙

′
ob)r

′2
A (𝜙′

a)
− 1

][
v′

r (r
′
ob, 𝜙

′
ob)

B′
r(r

′
ob, 𝜙

′
ob)

]
B′
𝜙
(r′, 𝜙′).

(59)

where

MA(rob, 𝜙ob, tob) = M′
A(r

′
ob, 𝜙

′
ob) =

𝜇0𝜌(r′ob, 𝜙
′
ob)v

′2
r (r′ob, 𝜙

′
ob)

B′2
r (r

′
ob, 𝜙

′
ob)

. (60)

4.2. Solution for v′
r (r

′, 𝝓′
ob
) = vr(r, 𝝓ob, tob)

We solve Parker’s isothermal wind model using an implicit method. The boundary restriction v′
r (r

′, 𝜙′
ob) =

vr(r, 𝜙ob, tob) = c′s(𝜙
′
ob) = cs(𝜙ob, tob) at r = rso yields the appropriate integration constant of (36) as C5(𝜙′

ob) =
−3. We assume a reasonable value for the sonic critical radius, r′so(𝜙

′
ob) = 5R⊙, where the radial flow speed

v′
r (r

′
so, 𝜙

′
ob) = c′s(𝜙

′
ob). An isothermal wind of ionized hydrogen has constant sound speed,

c′s(𝜙
′
ob) = cs(𝜙ob, tob) =

[
2kBT ′

iso(𝜙
′
ob)

mi

]1∕2

, (61)

or alternatively

T ′
iso(𝜙

′
ob) = Tiso(𝜙ob, tob) =

c′2s (𝜙)mi

2kB
. (62)

Similarly, we solve for v′
r (r

′, 𝜙ob) for a particular 𝜙ob, where C5(𝜙′
ob) = C5(𝜙ob, tob) = −3. Figure 2 (black

line) shows the radial variation of v′
r (r

′, 𝜙′
ob) = vr(r, 𝜙ob, tob) and the right-hand axis shows the value of

vr(r, 𝜙ob, tob)∕cs(𝜙ob, tob). The heliocentric distance 1 AU can be written as r ≈ 215R⊙ ≈ 43rso = 43rso

(rso = r′so). Figure 2 shows that the predicted radial solar wind speed at 1 AU is

vr(r, 𝜙ob, tob) = v′
r (r

′, 𝜙′) = vr(1 AU, 𝜙ob, tob) = 3.85 cs(𝜙ob, tob) = 3.85 c′s(𝜙
′
ob). (63)

In section 5 below we fit the predicted solution (63) to the observed v′
r (1 AU′, 𝜙′

ob) data from the Wind
spacecraft and so obtain c′s(𝜙

′) = cs(𝜙, t) and T ′
iso(𝜙

′) = Tiso(𝜙, t) as a function 𝜙′
ob for the period 1 to

27 August 2010.
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Figure 2. Radial velocity vr(r, 𝜙ob, tob) = v′r (r
′, 𝜙′

ob
) solution for an

isothermal accelerating solar wind (black) and radial variation of the radial
Alfvén speed VAr(r) = VAr′ (r′) (red). The left y axis shows speeds in km s−1,
obtained using 1 AU data for a given phase angle 𝜙 [𝜙ob = 𝜙ob(tob = 1 h)]
and corresponding values of vr(1 AU). The curves intersect at the Alfvén
critical radius (rA

′ = rA). The right y axis represents vr(r, 𝜙ob, tob)∕cs as a
function of r∕R⊙, where cs is the sound speed.

4.3. Radial Profiles of n′(r′, 𝝓′), B′
r(r

′, 𝝓′), v′
𝝓
(r′, 𝝓′), and B′

𝝓
(r′, 𝝓′)

The mass conservation equation (41) yields

n(r, 𝜙ob, tob) = n′(r′, 𝜙′
ob) =

n′(r′ob, 𝜙
′
ob)v

′
r (r

′
ob, 𝜙

′
ob)r

′2
ob

r′2v′
r (r′, 𝜙′)

. (64)

Similarly, the flux conservation equation (42) gives

Br(r, 𝜙ob, tob) = B′
r(r

′, 𝜙′
ob) =

rob
′2B′

r(r
′
ob, 𝜙

′
ob)

r′2
. (65)

We obtain an analytic expression for v′
𝜙
(r′, 𝜙′

ob) as a function of r′ by
combining (48)–(50), yielding

v𝜙(r, 𝜙ob, tob)−Ωr = v′
𝜙
(r′, 𝜙′

ob) =
q1

[1 − M′2
A (r′, 𝜙

′
ob)]

[
1 − M′2

A (r
′, 𝜙′

ob)
q2

q1

]
,

(66)

where

q1 = r′Ω −
r′r′s

r′2obB′
r(r

′
ob, 𝜙

′
ob)

[
v′

r (r
′
s, 𝜙

′
s)B

′
𝜙
(r′s, 𝜙

′
s) − 𝛿v′

𝜙
(r′s, 𝜙

′
s)B

′
r(r

′
s, 𝜙

′
s)
]
,

q2 =
r′2s Ω

r′
− r′Ω +

r′s𝛿v′
𝜙
(r′s, 𝜙

′
s)

r′
−

r′sB′
r(r

′
s, 𝜙

′
s)B

′
𝜙
(r′s, 𝜙

′
s)

𝜇0𝜌
′(r′s, 𝜙′

s)v′
r (r′s, 𝜙′

s)r′
.

By using (48), (49), (47), and the results from (66), we obtain the radial variation of B′
𝜙
(r′, 𝜙′

ob):

B𝜙(r, 𝜙ob, tob) = B′
𝜙
(r′, 𝜙′

ob) =
r′sv′

r (r
′
s, 𝜙

′
s)B

′
𝜙
(r′s, 𝜙

′
s)

r′v′
r (r′, 𝜙

′
ob)

−
r′s𝛿v′

𝜙
(r′s, 𝜙

′
s)B

′
r(r

′
s, 𝜙

′
s)

r′v′
r (r′, 𝜙

′
ob)

+
v′
𝜙
(r′, 𝜙′)r′2obB′

r(r
′
ob, 𝜙

′
ob)

r′3v′
r (r′, 𝜙

′
ob)

−
Ωr′2s B′

r(r
′
s, 𝜙

′
s)

r′v′
r (r′, 𝜙

′
ob)

.

(67)

5. Applications of the Data-Driven Model

We demonstrate the new accelerating solar wind model for the solar rotation from 1 to 27 August 2010. The
corresponding hourly data from the Wind spacecraft (Farrell et al., 1995; Leinweber et al., 2008; Lepping et al.,
1995) are shown in Appendix A (Figure A1) for the period of interest—more details are provided in Tasnim
and Cairns (2016). We combine these 1 AU data from the Wind spacecraft for Br(rob, 𝜙ob, tob), B𝜙(rob, 𝜙ob, tob),
vr(rob, 𝜙ob, tob), ni(rob, 𝜙ob, tob), and Ti(rob, 𝜙ob, tob) at each specific (rob, 𝜙ob, tob) with the radial solution for
v′

r (r
′, 𝜙′) and (53)–(59) to find c′s, r′A(𝜙

′
a), B′

r(r
′
s, 𝜙

′
s), 𝛿v′

𝜙
(r′s, 𝜙

′
s), v′

𝜙
(r′s, 𝜙

′
s), B′

𝜙
(r′s, 𝜙

′
s), and v′

𝜙
(1 AU′), as described

in section 4. Then we apply (64)–(66), and (67) to predict the radial profiles of v′
𝜙
(r′, 𝜙′) and B′

𝜙
(r′, 𝜙′). Subse-

quently, we predict L′ (i.e., L′z(𝜙
′) = L′

𝜃
(𝜙′)), E′

z = E′
𝜃
, and the power law index 𝛾 of the temperature profile (we

explain later in section 5.6) from the 1 AU data. We reduce the variabilities in the observations using a cen-
tered boxcar average of the 1 h data over 11 h. Since most of the turbulence is usually on timescales of less
than 10 h, the 11 h averaging smooths out turbulence in the observations.

5.1. Alfvénic Radius rA and the Alfvén Surface
The radial Alfvén speed VAr = VAr′ is defined as a function of r′ and 𝜙′ by

VAr(r, 𝜙, t) = V ′
Ar(r

′, 𝜙′) =
r′B′

r(r
′, 𝜙′)

√
v′

r (r′, 𝜙′)

r′ob

√
𝜇0𝜌

′(r′ob, 𝜙
′
ob)v′

r (r
′
ob, 𝜙

′
ob)

, (68)

which is calculated using the previous equations (64) and (65), the observed values of B′
r(r

′
ob, 𝜙

′
ob) =

Br(rob, 𝜙ob, tob), v′
r (r

′
ob, 𝜙

′
ob) = vr(rob, 𝜙ob, tob), and 𝜌′(r′ob, 𝜙

′
ob) = 𝜌(rob, 𝜙ob, tob), the assumed sonic radius

r′so = rso, and the corresponding acoustic speed cs(𝜙so, tso) = c′s(𝜙
′
so) at rso = r′so for a solar period. Figure 2

shows results for vr(r, 𝜙ob, tob) = v′
r (r

′, 𝜙′
ob) and VAr(r, 𝜙ob, tob) = V ′

Ar(r
′, 𝜙′

ob) based on the data for the period
of 1 to 27 August 2010. The intersection of the radial profiles yields ra(𝜙a, ta) = r′A(𝜙

′
a) for a given phase
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Figure 3. Time variations of rA = r′A along the Earth-Sun line for the period
1–27 August 2010. The red line shows rA for the accelerating wind model
(rs = r′s = R⊙), whereas the blue line is for the constant speed model (Tasnim
& Cairns, 2016). Green solid lines show the lower limits for the Alfvén surface
(more properly the fast mode surface): 15 R⊙ over the steamer belt and
12 R⊙ over a coronal hole (DeForest et al., 2014). The broken red line shows
the mean of rA predicted using the accelerating wind model.

angle 𝜙′
ob = 𝜙ob − Ωt. Consequently, predictions for rA(𝜙a, ta) = r′A(𝜙

′
a)

are made from the intersections of VAr(r, 𝜙, t) = V ′
Ar(r

′, 𝜙′) and vr(r, 𝜙, t) =
v′

r (r
′, 𝜙′) for the full solar period (Figure 3) of 1 to 27 August 2010. Figure 3

(red line) shows that the predicted values of rA(𝜙a, ta) = r′A(𝜙
′
a) for the

accelerating wind model vary between 5R⊙ and 35R⊙ with an average of
≈ 12R⊙. This average value is very close to the estimated values of rA above
coronal holes (DeForest et al., 2014).

Strong time, hence variations as a function of 𝜙′ = 𝜙 −Ωt, variations in rA

are evident in Figure 3. These variations are driven by the solar wind data at
1 AU and so are due physically to intrinsic changes in the coronal parame-
ters at the inner boundary on both short and long scales. The variations in
𝜙′ = 𝜙−Ωt are not unexpected since most SDO, SOHO, STEREO, and other
solar images show strong longitudinal variations in coronal and disk struc-
tures and features, such as active regions and magnetic loops. Figure 3 also
shows that very small values of rA ≤ 5R⊙ typically correspond to sector
crossings at 1 AU (vertical black lines) where B′

r(r
′
ob, 𝜙

′
ob) = Br(rob, 𝜙ob, tob)

has a small magnitude. The new predictions for r′A(𝜙
′
a) = rA(𝜙a, tob)are sim-

ilar to the values of r′A(𝜙
′
a) predicted for the constant vr = v′

r wind model
(blue line) of Tasnim and Cairns (2016), being displaced outward to larger
r by an approximately constant distance of ≳1 R⊙. This is consistent with

r′A(𝜙
′
a) = rA(𝜙a, ta)being driven primarily by the values of B′

r and n′ at 1 AU and not by v′
r = vr . An interpretation

is that the accelerating solar wind is slow at small r and so has to travel further out than to meet the condition
that vr(r, 𝜙, t) = v′

r (r
′, 𝜙′) = V ′

Ar(r
′, 𝜙′) = VAr(r, 𝜙, t) in the case the wind speed is constant at all r = r′.

5.2. Extraction of Intrinsic B𝝓(rs, 𝝓s, ts) and v𝝓(rs, 𝝓s, ts)
The new model allows a deviation 𝛿v𝜙 from corotation in the azimuthal velocity v𝜙(rs, 𝜙s, ts) at the inner
boundary. Figure 4 shows the predictions for 𝛿v𝜙(rs, 𝜙s, ts) for the period studied.

The predicted values of 𝛿v𝜙(rs, 𝜙s, ts) typically vary between −20 km s−1 and 20 km s−1 with a mean of
−0.8 km s−1 for rs = R⊙. Figure 4 shows that very large values of |𝛿v𝜙(rs, 𝜙s, ts)| (≳20 km s−1) are mostly appar-
ent at the sector crossings of Br(1 AU, 𝜙ob, tob), where Br(1 AU, 𝜙ob, tob) is small in magnitude. Note that sector
crossings are shown by the vertical black lines. The analytic expression (54) also shows that small values of
Br(rob, 𝜙ob, tob) lead to 𝛿v𝜙(rs, 𝜙s, ts) being large. We consider now times when |𝛿v𝜙(rs, 𝜙s, ts)| ≤ 20 kms−1, so
as to avoid very large values of 𝛿v𝜙(rs, 𝜙s, ts), corresponding to the sector crossings of Br(1AU, 𝜙ob, ts).
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Figure 4. Variation of 𝛿v𝜙(rs, 𝜙s, ts) = 𝛿v′
𝜙
(r′s, 𝜙

′
s) with time t for the period 1–27 August 2010 for rs = r′s = R⊙ . Positive

𝛿v𝜙 means the deviation from corotation is in the corotation direction, while negative 𝛿v𝜙 means a direction opposite
to corotation. Changes from positive to negative 𝛿v𝜙 represent converging flows, whereas changes from negative to
positive represent diverging flows. Here green lines show the thresholds (±1 km s−1) used to identify changes in the
flow pattern.
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Figure 5. Variation of v𝜙(rs, 𝜙s, ts) = v′
𝜙
(r′s, 𝜙

′
s) + rsΩ with time t for the period 1–27 August 2010 for rs = r′s = R⊙ . Red

(circles) markers display the points where v𝜙(rs, 𝜙s, t) ≃ 0. The values of v𝜙(rs, 𝜙s, ts) have two contributions: one due to
the corotation (rsΩ) and the other due to the deviation from corotation (𝛿v𝜙). Green lines show the limits (±0.5 km s−1)
within which v𝜙(rs, 𝜙s, ts) is considered small enough to be approximately zero in comparison with the radial speed.
Values v𝜙(rs, 𝜙s, ts) ≃ 0 occur when the effects of corotation (rsΩ) are canceled by the effects of 𝛿v𝜙 ; that is, where
𝛿v𝜙 ≃ −rsΩ.

Sign changes of 𝛿v𝜙(rs, 𝜙s, ts) are evident at the sector crossings of Br(1 AU, 𝜙ob, tob). Positive 𝛿v𝜙(rs, 𝜙s, tob)
corresponds to the corotation direction, with negative 𝛿v𝜙(rs, 𝜙s, tob) values directed oppositely. Inspecting
the data, 𝛿v𝜙(rs, 𝜙s, ts) changes sign on average of every 10 h, with a maximum timescale of 40 h and minimum
timescale of 1 h. Pairs of inward directed arrows in Figure 4 represent two azimuthal flows heading toward
each other. Ideally, these converging flows will compress the plasma and so increase the local plasma density.
On the other hand, pairs of outward directed arrows show where the azimuthal flows are departing from
each other, forming a diverging flow region and so on. These diverging flows ideally form a rarefaction in the
plasma and a decrease in the local plasma density. Turbulence can affect the interpretation. Hence, we define
a threshold velocity of ±1 km s−1 to robustly identify flow patterns. Figure 4b shows such regions.

Granulation and supergranulation convection cells naturally have converging and diverging flow patterns
in the azimuthal and polar directions. Therefore, we interpret the model predictions for converging and
diverging flow patterns in 𝛿v𝜙(rs, 𝜙s, tob) in terms of the boundaries and centers, respectively, of these con-
vective cells. These flows thus are signatures in the wind plasma of the convective cells and should have the
spatiotemporal characteristics (Jokipii & Parker, 1968). These association are discussed in section 6.

Figure 5 shows another aspect of the v𝜙(rs, 𝜙s, ts) predictions, focusing on where the deviation from corota-
tion is strong enough to overcome the corotation, leading to an approximately radial outflow from the inner
boundary, that is, v𝜙(rs, 𝜙s, ts) ≃ 0. The red (o) markers denote the points when 𝛿v𝜙(rs, 𝜙s, ts) ≃ −rsΩ. At these
points, the intrinsic nonradial velocity 𝛿v𝜙(rs, 𝜙s, ts) is significant relative to the corotation velocity and can
even dominate corotation. Put another way, at these locations the predicted deviations 𝛿v𝜙 from corotation
are significant.

Figure 6 displays how the predicted values of v𝜙(rs, 𝜙s, ts) change for different choices of rs. Clearly the varia-
tions with 𝜙 are similar for the different values of rs, with only the magnitude changing: the magnitudes rise
from rs = R⊙ to 5R⊙ but then decrease to much lower values at 1 AU. For rs = R⊙ the mean value of v𝜙(rs, 𝜙s, ts)
is very close to the corotation speed, but at 5R⊙ the mean value of v𝜙 is well below the corotation speed,
decreasing even more at large r. Thus, the model fits show that the assumption of mean corotation is viable
only if rs is close to R⊙.

The large values of v𝜙(rs, 𝜙s, ts) in Figure 6 tend to occur at sector crossings (vertical black lines) where
Br(rob, 𝜙ob, tob) is small. The analytic expression (55) shows that for each assumed rs, the value of v𝜙(rs, 𝜙s, ts)
varies with 𝛿v𝜙(rs, 𝜙s, ts). Since 𝛿v𝜙(rs, 𝜙s, ts) has large magnitudes compared with the corotation velocity
at the sector crossings, small values of Br(rob, 𝜙ob, tob) lead to v𝜙(rs, 𝜙s, ts) becoming large. Small values
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Figure 6. Time (𝜙) variations of predictions for v𝜙(rs, 𝜙s, ts) = v𝜙(r′s, 𝜙
′
s) + rsΩ with (a) rs = R⊙, (b) rs = 5R⊙ , and (c) the

predictions for v𝜙(1 AU, 𝜙ob, tob) with rs = 5R⊙ . Horizontal green lines show the corotation speed rsΩ, whereas red lines
show the mean of the new model’s predictions (excluding samples with |v𝜙(rs, 𝜙s, ts)|> 20 km s−1). Vertical black lines
represent the sector crossings of Br(1 AU, 𝜙AU, tAU). Note that positive values correspond to v𝜙 being directed in the
corotation direction and negative values correspond to v𝜙 being oppositely directed.

of Br(rob, 𝜙ob) also significantly change other predicted quantities near sector crossings, for example, rA(𝜙a),
𝛿v𝜙(rs, 𝜙s, ts), and B𝜙(rs, 𝜙s, ts). These abrupt changes in the predicted solar wind quantities near sector bound-
aries in Br correspond to where the model breaks down, since 𝜕∕𝜕𝜙 variations should not be neglected in (44),
(42), and (45).

Figure 6c displays the predicted variations in v𝜙 at 1 AU when rs = R⊙. The statistical mean is≃0.5 km s−1 which
is much smaller than the predicted mean of v𝜙(1 AU) ≃ 7.1 kms−1 from the Tasnim and Cairns (2016) model,
and the new predicted values of v𝜙(1 AU) are sometimes antiparallel to corotation, not only in the corotation
direction. These differences at the inner boundary are primarily due to the new model permitting a deviation
from corotation at the inner boundary, which is clearly a quantitatively important generalization. The smaller
value of v𝜙(1 AU) in comparison with the radial speed vr(1 AU) demonstrates that the solar wind comes out
almost radially, similar to Parker’s model (Parker, 1958).

Figure 7 compares the azimuthal field predicted at (rs, 𝜙s, ts) by the new model, |B𝜙1(rs, 𝜙s, tob)|, with the field
B𝜙2(rs, 𝜙s, ts) predicted for the constant speed wind model (Schulte in den Bäumen et al., 2011, 2012). Quan-
titatively important differences are evident. The values of B𝜙1(rs, 𝜙s, ts) for the accelerating wind model are in
the range 10−7T − 10−5 T , whereas the values of B𝜙2(rs, 𝜙s, ts) for the constant speed wind model lie in the
range 10−8T − 10−6 T . The averages of the ratio between the intrinsic azimuthal field components for the two
models are ⟨B𝜙1∕B𝜙2⟩ ≃ −3.6 and ⟨|B𝜙1∕B𝜙2|⟩ ≃ 42.5. Note that B𝜙(rs, 𝜙s, ts) from the Schulte in den Bäumen
et al. (2011, 2012) model is

B𝜙(rs, 𝜙s, ts) =
[

B𝜙(rob, 𝜙ob, tob) + Br(rob, 𝜙ob, tob)
(rob − rs)Ωs sin 𝜃ob

vs

]
rob

rs
, (69)

where vs is the constant radial wind speed. An interpretation for B𝜙1 typically exceeding B𝜙2 in magnitude
involves vs in the replacement of vr(r, 𝜙ob, tob) in the denominator of (57) and (69). Note that vr(r, 𝜙ob, tob)
increases with r in the accelerating wind model to the 1 AU value, whereas the constant speed model uses
vr(r, 𝜙ob, tob) = vs = vr(1 AU) for all radial distance r. Thus, at small r where vr(r, 𝜙ob, tob) is small, |B𝜙1| should
be larger than |B𝜙2|. Indeed, typically |B𝜙1| ≥ |B𝜙2|, although both B𝜙1 and B𝜙2 vary with time by more than
an order of magnitude.

In the constant vr model of Schulte in den Bäumen et al. (2011, 2012), the intrinsic B𝜙(rs, 𝜙s, ts) values are
interpreted in terms of granulation and supergranulation cells moving the field lines, despite assuming
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Figure 7. Variations of the predicted fields |B𝜙1(rs, 𝜙s, ts)| = |B′
𝜙1(r

′
s, 𝜙

′
s)| and |B𝜙2(rs, 𝜙s, ts)| = |B′

𝜙2(r
′
s, 𝜙

′
s)| with time (𝜙)

for the period 1–27 August 2010, obtained with the new data-driven accelerating solar wind model and with the
constant vr solar wind model of Schulte in den Bäumen et al. (2011, 2012), respectively. (a) Red (blue) and black (green)
dots show the magnitudes of B𝜙1(rs, 𝜙s, ts) and B𝜙2(rs, 𝜙s, ts) in the direction parallel (antiparallel) to the corotation
direction, respectively. (b) Time variation of the ratio |B𝜙1(rs, 𝜙s, ts)∕B𝜙2(rs, 𝜙s, ts)| using red (blue) dots to show the
components parallel (antiparallel) to the corotation direction. The average values of the ratios of the results from the
two models are ⟨|B𝜙1∕B𝜙2|⟩ ≃ 42.5 and ⟨B𝜙1∕B𝜙2⟩ ≃ −3.6.

𝛿v𝜙(rs, 𝜙s, ts) = 0. The new accelerating solar wind model explains the predicted values of both the intrinsic
𝛿v𝜙(rs, 𝜙s, ts) and the intrinsic B𝜙(rs, 𝜙s, ts) in terms of the granulation and supergranulation cells predicting
both the azimuthal flow and field components at the inner boundary.

Figure 8 compares the structural changes in B𝜙(rs, 𝜙s, ts) for the accelerating wind model with the results for
the models of Schulte in den Bäumen et al. (2011, 2012), which assumed constant solar wind speed and did
not conserve the angular momentum. The figure shows that the predictions differ not only in magnitude
but also in direction. Accordingly, the differences in Figure 8 demonstrate that including angular momentum
conservation, assuming an accelerating wind profile v𝜙(r, 𝜙, t), and allowing a deviation 𝛿v𝜙(rs, 𝜙s, ts) from
corotation, have important quantitative implications.
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Figure 8. Extracted values of B𝜙(rs, 𝜙s, ts) = B′
𝜙
(r′s, 𝜙

′
s) for the constant (black) and accelerating (red) solar wind models

for 1–27 August 2010 with 11 h boxcar smoothing, obtained by applying the data-driven solar wind models to Wind
spacecraft data for rs = R⊙. We use the Schulte in den Bäumen et al. (2012) model for the constant solar wind. The
vertical scale is −𝛿 log10 |B𝜙|, with the field B𝜙 measured in tesla, and 𝛿 = +1 for B𝜙 > 0 and 𝛿 = −1 for B𝜙 < 0.
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Figure 9. Extracted B𝜙(rs, 𝜙s, ts) = B𝜙(r′s, 𝜙
′
s) variations with time for different values of rs obtained by applying the new

data-driven accelerating solar wind model for the period 1–27 August 2010.

Figure 9 shows that changing the inner boundary distance rs in the accelerating wind model does not cause
structural changes in the predicted values of |B𝜙(rs, 𝜙s, ts)|, only magnitude changes. Therefore, the model
is robust with respect to reasonable choices of rs. As expected from (67), the predicted magnitudes change
with rs since B𝜙(r, 𝜙, t) ∝ r−1. There is no consensus in the literature for the location of the inner bound-
ary. Importantly, though, the new accelerating solar wind model is more flexible and viable for predicting
the wind’s properties than other models (e.g., Schulte in den Bäumen et al., 2011, 2012; Tasnim & Cairns, 2016)
which constrain rs to a certain distance. Note that Schulte in den Bäumen et al.’s (2011, 2012) models assumed
rs > R⊙ whereas Tasnim & Cairns’s (2016) model considered rs > rA.

5.3. Analytic Radial Variations of B𝝓(r, 𝝓, t) and v𝝓(r, 𝝓, t)
The expressions (66) and (67) for v𝜙(r, 𝜙, t) and B𝜙(r, 𝜙, t) show that they are interrelated. In addition, v𝜙(r, 𝜙, t)
and B𝜙(r, 𝜙, t) depend on Br(r, 𝜙, t) and on the intrinsic quantities B𝜙(rs, 𝜙s, ts), Br(rs, 𝜙s, ts), and v𝜙(rs, 𝜙s, ts).
Figure 10 shows the radial variations of v𝜙(r, 𝜙ob, tob) and B𝜙(r, 𝜙ob, tob) for various values of 𝜙ob during the
period 1 to 27 August 2010, predicted using (66) and (67). Significant changes in both v𝜙(r, 𝜙ob, tob) and
B𝜙(r, 𝜙ob, tob) occur for radii less than rA(𝜙ob, tob), with 𝜙ob parameterized by time, while both v𝜙(r, 𝜙ob, tob)
and B𝜙(r, 𝜙ob, tob) fall off as r−1 at large r (r ≫ rA(𝜙ob)). Note that the gaps in the curves in Figures 9 and 10
correspond to the singularities at rA(𝜙ob) expected from (66) and (67).
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Figure 10. Radial variations of (a) B𝜙(r, 𝜙, t) and (b) v𝜙(r, 𝜙, t) using (67), (66), and 1 AU data for different phase angles
𝜙(t) for the new accelerating solar wind model. Figure 10c shows the variations of log |B𝜙(r, 𝜙, t)| with log(r∕R⊙) and
Figure 10d shows the variation of log |v𝜙(r, 𝜙, t)| with log[r∕R⊙], for the same phase angles.
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Figure 11. Variations of the predicted values of B𝜙(r, 𝜙, t) with v𝜙(r, 𝜙, t) for the new accelerating solar wind model for
certain times during the period 1–27 August 2010. (a) Chosen phase angles [𝜙ob = 𝜙ob(t)] when B𝜙(r, 𝜙, t) and v𝜙(r, 𝜙, t)
are in the same direction and (b) some chosen phase angles when B𝜙(r, 𝜙, t) and v𝜙(r, 𝜙, t) are oppositely directed.

Although v𝜙(r, 𝜙ob, tob) and B𝜙(r, 𝜙ob, tob) are coupled, (67) shows that B𝜙(r, 𝜙ob, tob) can be oppositely
directed to v𝜙(r, 𝜙ob, tob)depending on the directions of B𝜙(rs, 𝜙s, ts), 𝛿v𝜙(rs, 𝜙s, tob)or Br(rs, 𝜙s, tob). Figure 11a
shows several values of 𝜙ob = 𝜙ob(t) when v𝜙 and B𝜙 are in the same direction, whereas Figure 11b shows
cases when v𝜙 and B𝜙 are oppositely directed to each other. As found by Weber and Davis (1967), v𝜙(r, 𝜙)
increases from v𝜙(rs, 𝜙s, ts) to a peak in the range 5 R⊙ –20 R⊙ before decreasing at large r, always retaining
the same sign at all r for a given 𝜙ob.

5.4. Angular Momentum per Unit Mass Variation With t(𝝓)
Figure 12 shows that the time (𝜙) variations of the angular momentum per unit mass (Lz) predicted from (46)
vary in the wide range of 1012 m2 s−1 to 1015 m2 s−1. The average magnitude of Lz is ⟨Lz⟩ ≃ 5 × 1014 m2 s−1,
which is larger than Weber and Davis’s (1967) prediction of LWD = Ωr2

A ≃ 1.5 × 1014 m2 s−1. Note that Weber
and Davis (1967) predicted LWD = Ωr2

A using rA = 10 R⊙, whereas the new model predicts ⟨rA⟩ ≃ 12 R⊙.
Importantly, using the expression Lz = Ωr2

A with the new model’s prediction for rA(𝜙a) yields values of Lz that
are typically of very similar magnitudes to the new model’s predictions, varying in the same range (1012 m2 s−1

to 1015 m2 s−1) with the same average as the accelerating solar wind, but sometimes with structural changes
in longitude. This implies that the magnitude of Lz mainly depends on rA(𝜙a) and that larger rA provides the
larger values of Lz , and vice versa. Notably, changes in sign of Lz are also evident in the new model, driven
primarily by changes in the sign of v𝜙(rs, 𝜙s, ts) in (46).
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Figure 12. Predicted angular momentum per unit mass Lz carried away from the Sun for the period 1–27 August 2010
from the new accelerating solar wind model (black solid line). The black broken line shows the mean of Lz . Weber and
Davis (1967) predicted Lz = r2

AΩ where rA = 10R⊙ (green line). The red line shows the value of Lz = r2
AΩ using the new

model’s prediction for rA(𝜙ob), and the red broken line shows the corresponding mean.
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An important quantitative result from Figure 12 is that Lz varies significantly in magnitude and direction with
time/longitude. Physically, these significant variations should drive waves and turbulence in the solar wind,
starting near the Sun but extending to 1 AU and beyond. Note that MHD waves and turbulent motions are
known to be present from the low solar atmosphere out into the solar wind at 1 AU and beyond (Cranmer & van
Ballegooijen, 2005; Tu & Marsch, 1995). In other words, the wind properties at the inner boundary predicted
by the new accelerating wind model are highly variable and the large-scale variations in Lz(𝜙ob, tob) that are
predicted should drive solar wind variability and turbulence from the Sun to 1 AU. This turbulence driver does
not appear to be included in most turbulence models. Similarly, the predicted variability in Lz is not included
in estimates of angular momentum loss from the Sun.

5.5. Electric Field in the Corotating Frame, E′
z

The new model allows intrinsic nonradial velocity, and magnetic field components at the inner boundary does
not require a zero electric field E′

z in the corotating frame and also relaxes the assumption of corotation at the
inner boundary. Noting that B = B′ in the nonrelativistic regime, the model yields v′ and B′ and so E′ via (22).
Fitting the model to the 1 AU data therefore allows us to test whether E′

z = 0 and so v′ ∥ B′ (where B′ = B).
Note that the standard theoretical assumption (e.g., Parker, 1958; Weber & Davis, 1967) is that E′ = 0.

Before fitting the new model to data, we revisit the alignment condition and the fields E′ in the corotating
frame in the models of Parker (1958), Weber and Davis (1967), Keppens and Goedbloed (1999), and Hu et al.
(2003). We assume first that E′

𝜙
e𝜙 + E′

p ≠ 0, cf. (20). In the frozen-in approximation, the 𝜙 component yields

E′
𝜙

e𝜙 = v′
p × B′

p = vp × Bp = 0. (70)

Equation (70) demonstrates that the toroidal or azimuthal electric field vanishes in the corotating frame when
vp and Bp are aligned, and vice versa. Thus, the assumption of Keppens and Goedbloed (1999) and Hu et al.
(2003) that the flow streamlines and magnetic field lines are aligned in the meridional plane requires E′

𝜙 = 0.
Note that in the present model v𝜃 = B𝜃 = 0, so that E′

𝜙
= 0.

Rewriting (20), using (24) in the corotating frame

E′
p = −vp × B𝜙e𝜙 − (v𝜙 − Ωr)e𝜙 × Bp = 0. (71)

Taking magnitudes and assuming vp ⋅ Bp > 0, (71) reduces to

B𝜙vp = v𝜙Bp − ΩrBp = 0, (72)

and we can then rearrange (72) in terms of the function Ω related to the electric field in Keppens and
Goedbloed (1999)’s model, with

Ω =
(

v𝜙 −
B𝜙vp

Bp

)
∕r. (73)

Thus, (73) implies the assumption E′
p = 0. Therefore, the combination of (71) and (73) together with E𝜙 = 0

assumed by Keppens and Goedbloed (1999) are equivalent to the assumption E′ = E′
p + E′

𝜙
e𝜙 = 0.

Now, we can also rewrite (71) as

E′
p = E′

r er + E′
𝜃

e` = (v𝜙 − Ωr)Bre` − vrB𝜙e` − (v𝜙 − Ωr)B𝜃er + v𝜃B𝜙er , (74)

where er × e𝜙 = −e𝜃 , e𝜙 × e𝜃 = −er , and e𝜃 × er = −e𝜙. The 𝜃 and r components of (71) and (74) can be
written as

E′
𝜃
=
(
−vrB𝜙 + (v𝜙 − Ωr sin 𝜃)Br

)
, (75)

and

E′
r =

(
vrB𝜙 − (v𝜙 − Ωr sin 𝜃)Br

)
, (76)

respectively.

The assumption E′
𝜃
= 0 allows us to rewrite (75) as

v𝜙 − vrB𝜙∕Br = Ωr sin 𝜃. (77)
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Figure 13. Radial variations of the electric field E′z ‚z in the corotating frame in the new accelerating solar wind model
based on (22) and the Wind spacecraft’s 1 AU data for six values of t = t(𝜙).

Equation (77) enforces the requirement that the 𝜃 component of the electric field in the corotating frame
is zero. Hu et al. (2003) obtained (77) by analyzing the angular momentum conservation and implemented
(77) in their analysis. Thus, Hu et al.’s (2003) analysis requires E′

𝜃
= 0. However, (76) suggests that a nonzero

electric field component (E′
r ) can still exist in the corotating frame in the Hu et al. (2003) model. In the model

developed here, E′
r = E′

𝜙
= 0, but E′

z ≠ 0.

Figure 13 shows the radial variation of E′
z predicted by (21) for several values of 𝜙ob, with E′

z along the ±z axes.
Clearly, E′

z is high close to the Sun and decreases with increasing r as |E′
z| ∝ r−1. It is clear that E′

z ≠ 0 at any
r for this model; put another way, v′ and B are not aligned in the corotating frame, contrary to the standard
theoretical assumption (e.g., Jokipii & Kóta, 1998; Keppens & Goedbloed, 1999; Parker, 1958; Weber & Davis,
1967) or the assumption E′

𝜃
= 0 (this becomes the z axis component E′

z = 0 for our setup) of Hu et al. (2003).

The new model’s predictions for E′
z at the inner boundary (rs = R⊙) are shown in Figure 14 for the period

1–27 August 2010. The figure shows that E′
z is often large at the inner boundary, with magnitudes that vary

between 10−3 and 0.5 V. The consequences of high electric fields are explored in section 6.

5.6. Power Law Index, 𝜸
In the model developed analytically in sections 3 and 4, an isothermal system is assumed so as to predict the
accelerating wind profile vr(r, 𝜙, t). However, in reality the ion temperature close to the Sun is of the order
of 1 × 106 K to 2 × 106 K, much higher than the range of temperatures’ order of 2–20 × 104 K observed
near 1 AU. We also assume a sonic point radius at 5 R⊙, which is very close to the corona. Importantly,
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Figure 14. Time variation of E′z(r
′
s, 𝜙

′
s) for r′s = rs = R⊙ in the corotating frame for the period 1–27 August 2010. Here the

cross symbols show values of E′z parallel to the z axis, while the dashed line shows values of E′z antiparallel to the z axis.
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Figure 15. Time variations of the (a) sonic point temperature and (b) power
law index 𝛾 predicted using (62) and (80), respectively, for the period 1–27
August 2010. In Figure 15b the dashed green line shows that the statistical
mean of 𝛾 (0.64) is very close to the independent empirical value of 0.67
(Maksimovic et al., 1997b; Richardson & Paularena, 1997; Robinson &
Cairns, 1998).

numerical solutions of (32) for power law temperature profiles Ti(r) show
relatively small changes in vr(r, 𝜙ob, tob) from the isothermal predictions
(not shown).

Accordingly, for the purposes of better modeling the plasma, we now
consider a power law model for Ti(r) but retain the isothermal approxi-
mation for vr(r, 𝜙ob, tob). The power law model allows us to write the ion
temperature as a function of r and 𝜙:

Ti(r, 𝜙, t) = Ti(rob, 𝜙ob, tob)
( rob

r

)𝛾

. (78)

We can then find the power law index 𝛾 using the observed ion tempera-
ture at 1 AU, Ti(rob, 𝜙ob, tob) = Tiob and the prediction Ti(rso, 𝜙so, tob) = Tiso

at the sonic point rso obtained from (63) using the observed values of
vr(rob, 𝜙ob, tob), via

Tiob

Tiso
=
(

rso

rob

)𝛾

, (79)

𝛾 =
log

(
Tiob

Tiso

)
log

(
rso

rob

) . (80)

Figure 15 shows the variations with phase angle 𝜙′
ob = 𝜙ob − Ωtob predicted for variations of the predicted

(a) Tiso and (b) 𝛾 by fitting the model to the observed 1 AU data, using (62)–(80). The predicted values of Tiso

are of the order of 0.5 × 106 K to 2 × 106 K, as expected for coronal temperatures. Moreover, the predicted
values of 𝛾 vary between 0.25 and 1.25 with a statistical mean of 0.64. This mean is very close to the empirical
power law index 𝛾 ≈ 0.67 obtained in independent analyses of observational data (Maksimovic et al., 1997b;
Richardson & Paularena, 1997; Robinson & Cairns, 1998).

Figure 16. Predictions of the new model with an accelerating solar wind
and comparison with the constant speed model of Schulte in den
Bäumen et al. (2012). Shown are the (a, c) vr(r, 𝜙, t) = v′r (r

′, 𝜙′),
(e, g) ni(r, 𝜙, t) = n′i (r

′, 𝜙′), (i, k) Ti(r, 𝜙, t) = Ti(r′, 𝜙′), and (m, o)
B𝜙(rs, 𝜙s, ts) = B′

𝜙
(r′s, 𝜙

′
s) for the accelerating solar wind model, whereas

(b, d) vr(r, 𝜙, t), (f, h) ni(r, 𝜙, t), (j, l) Ti(r, 𝜙, t) = Ti(r′, 𝜙′), and (n, p)
B𝜙(r, 𝜙, t) = B𝜙(r′, 𝜙′) are displayed for the constant speed solar wind
using Schulte in den Bäumen et al.’s (2011, 2012) model. The two
left-hand columns are for the domain r = 1 R⊙ to 1 AU, whereas the two
right-hand columns are for |X| ≤ 0.1 AU and |Y| ≤ 0.1 AU. The solar wind
models are driven by Wind spacecraft data for the period 1–27 August
2010. The Sun is at (X, Y) = (r cos𝜙, r sin𝜙) = (0, 0), and the Earth is at
r = 1AU.

5.7. Illustration of Global Plasma and Field Quantities
Predictions for solar wind quantities as functions of r and𝜙 for both the accel-
erating and constant (Schulte in den Bäumen et al., 2012) solar wind models
in the equatorial plane are shown in Figure 16 for the period 1 to 27 August
2010. Figures 16a, 16e, 16i, and 16m show how the extracted vr , ni , Ti , and
B𝜙 vary with r and 𝜙 for the accelerating solar wind model from the Sun to
1 AU, while Figures 16c, 16g, 16k, and 16o zoom in the color plots for the
preceding quantities to bring out the changes close to the Sun. Figures 16b,
16f, 16j, and 16n show the variations of vr , ni , Ti(r), and B𝜙, respectively, for
Schulte in den Bäumen et al.’s (2011, 2012) model with a constant vr , and
Figures 16d, 16h, 16l, and 16p zoom in these quantities close to the Sun.
Figure 16 shows clear evidence for the existence of corotating interaction
region-like structures in the plasma quantities. For instance, in zones with high
speeds (≳550 km s−1), densities (≳108 m−3), and temperatures (≳0.5 × 106 K)
are clearly visible near (X, Y) ≃ (1, 0), and (X, Y) ≃ (0.8, 0.6). Comparing
Figures 16c, 16g, 16k, and 16o, with Figures 16d, 16h, 16l, and 16p shows
that the differences between the two models are significant near the inner
boundary (rs = R⊙) where the solar wind is accelerating. Figures 16o and 16p
show that the predictions for B𝜙(rs, 𝜙s) from the two models not only have dif-
ferent magnitudes but also have slightly different magnetic sector changes
(different sector structures are also clearly visible in Figure 8 when r = rs).

Figure 17 displays the predicted (a) v𝜙(r, 𝜙, t), (b) L(r, 𝜙, t), and (c) E′
z(r

′, 𝜙′) val-
ues for the new model, which allows a deviation from corotation. Figure 17a
shows that v𝜙(r, 𝜙, t) has notable variations with r and 𝜙, and that the new
model’s predictions for v𝜙(r, 𝜙, t) have significantly different structures than
B𝜙(r, 𝜙, t). These structural variations between the azimuthal flows and mag-
netic fields are manifestations of the existence of intrinsic, nonzero quantities
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Figure 17. Predictions of the data-driven two-dimensional solar wind model for the period 1–27 August 2010:
(a) v𝜙(r, 𝜙, t), (b) Lz(r, 𝜙, t), and (c) E′z(r

′, 𝜙′), obtained using (66), (46), (22), respectively, and using the Wind spacecraft
data. The Sun is at (X, Y) = (r cos𝜙, r sin𝜙) = (0, 0), and the Earth is at r = 1AU. Note that positive values of v𝜙(r, 𝜙, t)
correspond to being directed in the corotation direction, and negative values correspond to v𝜙(r, 𝜙, t) being oppositely
directed. However, positive values of Lz(r, 𝜙, t) and E′z(r

′, 𝜙′) correspond to components directed upward along the z
axis whereas the negative values represent downward components.

𝛿v𝜙 and B𝜙(rs, 𝜙s, ts) at the inner boundary. Figure 17b shows that the predicted angular momentum is con-
stant along a streamline but has strong variability with 𝜙=𝜙(t), which may provide a driver for solar wind
turbulence, waves, and other disturbances from the inner boundary to 1 AU and beyond. Figure 17c shows the
presence of E′(r′, 𝜙′) ≠ 0 at all r′ and 𝜙′ in the corotating frame and that the predictions for E′

z vary strongly
with r and 𝜙 = 𝜙(t). Note that the predicted E′

z field is along the ±z axes, that is, perpendicular to the solar
equatorial plane.

6. Discussion and Conclusions

In the new model, the velocity v′ in the corotating frame is allowed to have a component perpendicular to B′,
so that E′ = v′×B′ ≠ 0 in general, but𝛁 × E′ = 0 is required (dashed variables are in the frame corotating with
the Sun). However, the standard assumption (Weber & Davis, 1967) is that v′ and B′ are aligned, so that E′

z = 0.
Similarly, as described in section 5, the solar wind model of Keppens and Goedbloed (1999) assumes E′ = 0
in the rotating frame, since the model assumes (73). However, the model of Hu et al. (2003) has a nonzero
E′

r component in the rotating frame (as in equation (76)). It is appropriate to emphasize that the assumption
E′ = 0 is stronger than the new model’s assumption 𝛁×E′= 0. A result of fitting the new model to data is that
E′

z ≠ 0 in general (Figures 13, 14, and 17), instead being significant at all r and 𝜙. A consequence of finding
E′ ≠ 0 is that the field E = E′ − (v − v′) × B and the quantity E × B in the inertial frame is changed compared
with the case E′ = 0. Hence, the E×B particle drifts are changed, with consequences for particle energization
and scattering. Note that the field E′ in the new model is along z axis, that is, perpendicular to the equatorial
plane, leading to standard charge-independent E′ × B drifts in the equatorial plane.

Clearly, Figures 7–11 and 16 show strong r and 𝜙 variations of B, so that nonzero gradients 𝛁B and curvatures
of field lines exist. Thus, significant 𝛁B and curvature drifts are expected for particles with sufficient v⟂ and v∥,
respectively. Crucially, these drifts are out of the plane and so either parallel or anti-parallel to E′ in the present
2-D model. The drifting particles will then gain or lose energy due to the E′ field (as they will for the standard
assumed field E = −vsw × B), with the gain/loss depending on the drift distance and the values of v⟂ and v∥
for the particles.

The changes in energy associated with these drifts can be large, depending on the directions of E′
z (and Ez),

the drift distance (vector), v⟂, and v∥. For instance, with |E′
z| ≃ 0.1 V/m near rs in Figure 14, if the 𝛁B or cur-

vature drift moves the particle a distance d along E′ then the energy charge qE′
zd is of the order of 1 MeV for

d = 107 ≃ 0.01 R⊙ ≃ 10−5 AU. Such distances and energy changes appear plausible, with both smaller and
larger values also possible. However, noting that E′

z , B, and 𝛁B vary significantly with 𝜙 and r (Figures 13, 14,
and 17c), this effect may manifest itself mostly as heating and scattering processes due to particles having
multiple episodes of energy gain and loss and having different drift velocities.
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The new model assumes a constant spatial pattern of the solar wind for one solar rotation. If a space-
craft travels a distance ΔS1 AU in a time Δt along the Earth’s orbit, forming an arc of angle Δ𝜃 at
the center of the Sun, then Δ𝜃 = ΔS⊙∕R⊙ = ΔS1 AU∕(1 AU), where ΔS⊙ is the distance at the Sun’s sur-
face subtending the same angle. A spacecraft with an orbital speed equal to the Earth’s (VEarth = 3 ×
104 m s−1) moves a distance, ΔS1 AU = VEarthΔt in a time Δt. Thus, we can write ΔS⊙ = VEarthΔtR⊙∕1 AU =
3 × 104m s−1Δthr × 3600 × 6.9 × 108∕1.5 × 1011 ≃ 5 × 105Δthr,1AU m at the Sun. The average timescale of
𝛿v𝜙’s sign changing is 10 h, which corresponds to a displacement of ΔS⊙ ≈ 5 × 106 m ≃ 5 Mm. This displace-
ment is comparable to the characteristic size of granules. The minimum timescale for the sign changing is
1 h, which results in a displacement of 0.5 Mm, and the maximum timescale is 40 h, which corresponds to a
displacement of 20 Mm. These displacements for the maximum and minimum sign changing timescales are
analogous to the cell sizes of supergranulation and granulation cells, respectively.

Granulation cells have a characteristic cell size of Sgran ≃ 2 Mm with a lifetime of the order of Tgran ≃ 8–10 min,
and supergranulation cells have a cell size of Ssupergran ≃ 30 Mm with a lifetime of Tsupergran ≃ 24–48 h. The
time and distance scales of granulation correspond to azimuthal speeds of the order of v𝜙gran ≃ Sgran∕Tgran ≃
3 kms−1 (Jokipii & Parker, 1968; Jokipii & Kóta, 1998), whereas supergranulation cells have azimuthal speed
v𝜙 supergran ≃ Ssupergran∕Tsupergran ≃ 0.2 km s−1. The values of v𝜙(rs, 𝜙s) predicted by fitting Wind spacecraft data
to the accelerating solar wind model are thus comparable to the azimuthal velocities expected for granulation
and supergranulation motions.

Note that the spacecraft is in an inertial frame in which the plasma quantities and the magnetic field com-
ponents are time-dependent. Sections 2 and 3 relate variables in the inertial frame to the variables in the
corotating frame in the text, and provide detailed transformations from one frame to the other. We also
explain in section 2.2 that the time variations at 1 AU are only due to the rotation of a constant spatial pattern
across the observer, which allows us to identify the time variations of 𝛿v𝜙(rs, 𝜙s, ts), with time and 𝜙 related by
𝜙 = 𝜙s +Ω(t − ts). In addition, application of the model to spacecraft data leads to predict intrinsic azimuthal
velocities that are comparable to the magnitudes of the nonradial/azimuthal velocities of granulation and
supergranulation cells. Put in other words, the time and distance scales of convective cells and the predicted
variations 𝛿v𝜙(rs, 𝜙s, ts) are not inconsistent, suggesting that convective photospheric cells are responsible
for the azimuthal photospheric velocities obtained by applying the solar wind model to the Wind spacecraft
data at 1 AU.

The effect of deviations from corotation at the inner boundary can be quantified using ⟨|Δv𝜙dev(1 AU)|⟩ =⟨|v𝜙(1 AU)− v𝜙TC(1 AU)|⟩. This is the average of the differences in azimuthal velocity at 1 AU between the new
model, which allows a deviation from corotation and includes an accelerating wind profile and a modified
version of the Tasnim and Cairns (2016) model, which assumes corotation at the inner boundary (but now
with an accelerating wind). For the period 1–27 August 2010, we have ⟨|Δv𝜙dev(1 AU)|⟩ ≃ 1.6 km s−1 with a
standard deviation of 1.6 km s−1. Another quantity to consider is the difference at 1 AU between the predicted
v𝜙(1AU) and the angular velocity r2

s Ω∕1 AU predicted for r = 1 AU assuming corotation at the inner boundary
and conservation of fluid angular momentum (Jokipii & Kóta, 1998; Schulte in den Bäumen et al., 2011, 2012).
For this period ⟨|v𝜙,L(1 AU)|⟩ = ⟨|v𝜙(1 AU) − r2

s Ω∕1 AU|⟩ ≃ 0.7 km s−1 with a standard deviation of 0.5 km s−1.
The quantity ⟨|v𝜙,L(1 AU)|⟩ ignores the peak of v𝜙(r) at r = rA, cf. Weber and Davis (1967) and Figures 10b
and 10d. The results for ⟨Δv𝜙,dev(1 AU)⟩ ≠ 0 and ⟨Δv𝜙,L(1 AU)⟩ ≠ 0 support the interpretation that deviations
from corotation are important, with observable consequences at 1 AU, although their statistical significance
is relatively weak. The results are also inconsistent with the usual approximation of corotation at small r (e.g.,
Parker, 1958; Schulte in den Bäumen et al., 2011, 2012; Tasnim & Cairns, 2016; Weber & Davis, 1967).

The average absolute deviation of the observed azimuthal magnetic field at 1 AU from the Parker spiral is⟨|ΔB𝜙dev(1 AU)|⟩ = ⟨|B𝜙(1 AU) + Br(1 AU)(1 AU − rs)Ω∕vr(1 AU)|⟩ ≃ 1.5 nT ≃ ⟨|Br(1 AU)|⟩ for the period
1–27 August 2010. This result shows that the azimuthal deviation from the Parker spiral is substantial at
1 AU and has the same magnitude as the radial magnetic field. Interestingly, the average absolute devia-
tion of the observed B𝜙 acc(r, 𝜙, t) using (67) at 1 AU from the Parker spiral, ⟨|ΔB𝜙(1 AU)|⟩ ≃ ⟨|B𝜙 acc(r, 𝜙, t) +
Br(1 AU)(1 AU − rs)Ω∕vr(1 AU)|⟩ ≃ 1.4 nT ≃ ⟨|ΔB𝜙div(1 AU)|⟩. Note that (67) shows that ΔB𝜙(1 AU) at 1 AU is
mainly due to the intrinsic velocities and that the magnetic fields at the inner boundary and magnitude of
ΔB𝜙(1 AU) at 1 AU also depend on the accelerating radial speed profile. Thus, it is not inconsistent to infer that
the intrinsic nonradial magnetic fields and velocities at the inner boundary should lead to nonradial magnetic
fields at 1 AU. A related inference is that B𝜙(rs, 𝜙s, ts) has significant effects on the azimuthal magnetic field
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of the solar wind at any r. In other words, the new accelerating solar wind model relaxes the widely used
assumptions of ⟨Δ𝛿v𝜙(rs, 𝜙s, ts)⟩ ≃ 0 (Parker, 1958; Schulte in den Bäumen et al., 2011, 2012; Tasnim & Cairns,
2016), and ⟨ΔB𝜙(rs, 𝜙s, ts)⟩ ≃ 0 (Parker, 1958; Weber & Davis, 1967), and finds important effects due to the
intrinsic azimuthal field and flow velocity.

The extracted v𝜙(rs, 𝜙s, ts) values vary significantly with r and 𝜙 (Figures 4–6, 10b, and 17). They demonstrate
that a significant deviation from corotation is present. These deviations are close to zero when averaged over
a solar rotation but have sufficient magnitude and sometimes cause the solar wind net azimuthal velocity to
be directed opposite to the corotation direction. Put another way, the deviations from corotation significantly
change the flow pattern and often prevent the solar wind from corotating.

Another result of this model is that Lz changes with 𝜙(t). The substantial variability in Lz with 𝜙, both in mag-
nitude (a factor of 100) and direction suggest that the solar wind drives turbulence from near the Sun to 1 AU.
Put another way, variabilities in photospheric and coronal sources of the solar wind should act as a source of
vorticity and turbulence from the inner boundary outward.

In this new model, we assume plausible and general boundary conditions at the inner boundary, includ-
ing acceleration of the solar wind, nonzero intrinsic azimuthal components of velocity and magnetic field,
and a deviation from corotation. However, this remains a two-dimensional equatorial model, so it does not
account for the latitudinal (𝜃) variation of the solar wind. The proposed SPP trajectory is nearly elliptical, only
3.4∘ from the ecliptic plane, and will approach to a perihelion distance of 8.5 R⊙. Observations from SPP will
thus be well suited to testing the model’s predictions at the SPP’s location, driven by 1 AU data. Similarly,
observations from Solar Orbiter, Messenger, and BepiColombo can be used to test the model when near the
equatorial plane.

Several three-dimensional global and numerical simulations (Cohen, 2015; Feng et al., 2015; Oran et al., 2013;
Roussev et al., 2004; Schmidt et al., 2014; van der Holst et al., 2010) provide detailed models and predictions
for the corona and the solar wind. However, these simulations assume purely radial solar wind at the inner
boundary to initiate the simulations. One possible application of this paper’s new data-driven accelerating
solar wind model is to provide more realistic nonradial boundary values for the plasma velocity and magnetic
field to initiate MHD simulations. Furthermore, the new model’s predictions will enable us to test simulation
results against theory, and vice versa.

In conclusion, a new accelerating solar wind model is presented that considers nonradial intrinsic veloci-
ties and magnetic fields from an inner boundary outward, relaxes the strong assumptions of corotation and
zero electric field in the corotating frame, and imposes angular momentum conservation. Fitting the model
to solar wind data for the period 1–27 August 2010 from the Wind spacecraft, we demonstrate that the
new model predicts reasonable and consistent values of the Alfvénic critical radius (rA), which are consistent
with observations and shows global radial and longitudinal phase angle variations of the plasma and mag-
netic field quantities in the equatorial plane. The results depart significantly from the predictions of constant
radial speed models (Schulte in den Bäumen et al., 2011, 2012; Tasnim & Cairns, 2016). This demonstrates
that the accelerating profile for vr(r, 𝜙ob, tob), and the nonzero intrinsic 𝛿v𝜙(rs, 𝜙s, ts) do have quantitative and
qualitative effects on solar wind properties, especially close to the Sun. The new model predicts that the wind
typically does not corotate at the inner boundary (or large radii), the electric field in the corotating frame
has significant magnitudes at all r, and the field and angular momentum both vary, in sign and magnitude,
with longitude.

Future work will compare the new model’s predictions with MHD simulation results for the equatorial
plane. Future improvements of the model will address the latitudinal variation of the wind, to provide a
more complete three-dimensional picture of the solar wind, and to enable detailed comparison with 3-D
simulation results.

Appendix A: Observations From the Wind Spacecraft

Figure A1 displays the observations of wind flow speed vr , ion temperature Ti , ion number density ni , B, and
the r, 𝜃, and 𝜙 components of B at 1 AU for the solar period of 1–27 August 2010 from the Wind spacecraft
(Tasnim & Cairns, 2016). Note that the CME list “Near-Earth Interplanetary Coronal Mass Ejections since January
1996” compiled by Richardson and Cane (2015) shows a CME around hour 72.
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Figure A1. One hour averages of vr(1 AU), Ti(1 AU), ni(1 AU), B(1 AU), Br(1 AU), B𝜙(1 AU), and B𝜃(1 AU), observed at
1 AU for the period 1–27 August 2010. The data are Wind spacecraft data accessed from CDAWeb with the magnetic
components in HS (Heliocentric Solar) coordinates. The red bar above the top panel indicates the time when a CME
is present.
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