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Abstract We investigate a method to test whether a numerically computed
model coronal magnetic field B departs from the divergence-free condition (also
known as the solenoidality condition). The test requires a potential field B0 to
be calculated, subject to Neumann boundary conditions, given by the normal
components of the model field B at the boundaries. The free energy of the model
field may be calculated using 1

2µ0

∫
(B −B0)2dV , where the integral is over the

computational volume of the model field. A second estimate of the free energy is
provided by calculating 1

2µ0

∫
B2 dV − 1

2µ0

∫
B2

0 dV. If B is divergence-free, the
two estimates of the free energy should be the same. A difference between the
two estimates indicates a departure from ∇ ·B = 0 in the volume. The test is
an implementation of a procedure proposed by Moraitis et al. (Sol. Phys. 289,
4453, 2014) and is a simpler version of the Helmholtz decomposition procedure
presented by Valori et al. (Astron. Astrophys. 553, A38, 2013). We demonstrate
the test in application to previously published nonlinear force-free model fields,
and also investigate the influence on the results of the test of a departure from
flux balance over the boundaries of the model field. Our results underline the fact
that, to make meaningful statements about magnetic free energy in the corona,
it is necessary to have model magnetic fields which satisfy the divergence-free
condition to a good approximation.

Keywords: Active Regions, Magnetic Fields; Magnetic Fields, Corona; Mag-
netic Fields, Models

B A. Mastrano
alpha.mastrano@sydney.edu.au

M. S. Wheatland
michael.wheatland@sydney.edu.au

S. A. Gilchrist
sgilchrist@nwra.com

1 Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006,
Australia

2 NorthWest Research Associates, Boulder, CO 80301-2245, USA

SOLA: main-20180818.tex; 19 February 2019; 9:57; p. 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sydney eScholarship

https://core.ac.uk/display/212696761?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-3693-8709
http://orcid.org/0000-0001-5100-2354
http://orcid.org/0000-0002-7368-3733
mailto:alpha.mastrano@sydney.edu.au
mailto:michael.wheatland@sydney.edu.au
mailto:sgilchrist@nwra.com


A. Mastrano et al.

1. Introduction

Accurate knowledge of coronal magnetic field structure is important for un-
derstanding the physics and energetics of solar flares. Knowledge of magnetic
free energy (the energy of the non-potential field component of the magnetic
field) may be useful for predicting solar flares (Barnes et al., 2016). The coronal
magnetic field, unfortunately, cannot be measured directly. A popular approach
to modelling the coronal field is the nonlinear force-free field (NLFFF) recon-
struction. In this approach, the coronal field B is assumed to be force-free i.e.
the Lorentz force, (∇×B)×B, vanishes. The nonlinear force-free equations are
solved numerically using vector magnetogram data as the boundary conditions.
The equations to be solved are:

∇×B = αB, (1)

where α is the force-free parameter, together with the divergence-free condition1

∇ ·B = 0. (2)

There are many possible methods to solve the NLFFF equations. DeRosa
et al. (2015) compared the results of five codes, using three different methods
(optimization, magnetofrictional, and Grad-Rubin), in reconstructing the coro-
nal field of Active Region (AR) 10978 on 13 December 2007. The codes differ in
their methods of solution of Equations 1 and 2, and also in how they treat the
vector magnetogram data. Accurate numerical solutions to the NLFFF equations
should satisfy the divergence-free condition, but inconsistency between boundary
data and the model can lead to departures from this condition. Also, the models
are constructed on a discrete grid, and truncation error (discretisation error) in
the numerical evaluation of the derivatives gives non-zero values of ∇·B. Valori
et al. (2013) presented a method for testing departures of NLFFF solutions from
∇·B = 0 based on Thomson’s theorem. In this method, the field is decomposed
into a potential component B0 and a current-carrying component Bc, which
are then further decomposed into solenoidal and non-solenoidal components.
The energies of the components are then compared (Valori et al., 2013; DeRosa
et al., 2015). Ideally, the energies of the non-solenoidal components, which are
unphysical, should vanish, but in practice, these energies are non-zero. DeRosa
et al. (2015) showed that in the worst cases, the unphysical contributions to the
energy may be as large as the free energy of the field, i.e. the energy of the
solenoidal component of Bc.

Although the Valori et al. (2013) method is an informative test of the re-
liability of NLFFF reconstructions, it has not been much used. That is likely
because it requires Helmholtz decomposition of the fields B0 and Bc, which is
a non-trivial procedure.

In this article, we investigate a simple test on the validity of NLFFF models.
This test is a re-implementation of a procedure used by Moraitis et al. (2014)

1Also known as the solenoidality condition.
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to benchmark their method of calculating free energy and magnetic helicity. Su
et al. (2014) and Moraitis et al. (2016) later used the test to gauge the accuracy
of energy calculations of solar active regions. The test compares the magnetic
free energy obtained directly from volume-integrating the square of the current-
carrying (i.e. non-potential) field component and that obtained by subtracting
the energy of the potential field from the total magnetic field energy. If the total
field divergence vanishes (as it ideally should), the two methods of calculating
free energy give the same result. The version of this test that we present here is
conceptually similar to the method of Valori et al. (2013), but is much simpler
to apply.

The article is structured as follows. In Section 2, we describe the two different
methods of calculating free energy and show how they give the same result if
the field is divergence-free. In Section 3, we apply our test to a published set of
results from different NLFFF codes, the same data analyzed by DeRosa et al.
(2015). In Section 4 we discuss the effects of flux-imbalanced boundaries on our
calculations. In Section 5, we summarize our results.

2. Method

Consider a given magnetic field B. Following Moraitis et al. (2014), we de-
compose the field B into a potential component B0 and a current-carrying
component Bc:

B = B0 + Bc. (3)

We construct

B0 = ∇φ (4)

from B by solving

∇2φ = 0, (5)

subject to the Neumann boundary condition

n̂ · ∇φ = n̂ ·B0 = n̂ ·B (6)

on the boundary surface S. The total magnetic field energy is

WB =
1

2µ0

∫
B2 dV, (7)

and the energy of the potential field is

W0 =
1

2µ0

∫
B2

0 dV. (8)

The magnetic free energy Wf1 is the energy of the field Bc:

Wf1 =
1

2µ0

∫
B2

c dV =
1

2µ0

∫
(B −B0)2 dV. (9)
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Using Equations 3 and 4, we can show that

Wf1 = WB −W0 −
1

µ0

∫
∂V

φBc · dS +
1

µ0

∫
φ∇ ·Bc dV, (10)

where dS = n̂dS and dS is the infinitesimal area element on S. The third term
on the right-hand side of Equation 10 vanishes because

n̂ ·Bc = 0 (11)

on S. The integrand in the last term can be written as φ∇ · B, assuming an
accurate solution to Equation 5 (Laplace’s equation) has been obtained, so that
∇ ·B0 = 0. Therefore, we have

Wf1 = Wf2 +
1

µ0

∫
φ∇ ·B dV, (12)

with

Wf2 = WB −W0. (13)

Equation 12 tells us that, if ∇ ·B = 0 in the volume, then the free energy

Wf1 =
1

2µ0

∫
(B −B0)2 dV (14)

is the same as

Wf2 =
1

2µ0

∫
B2 dV − 1

2µ0

∫
B2

0 dV. (15)

If the divergence is non-zero, then these two “free energies” may differ. Thus, to
check whether a model field is divergence-free or not, one simply compares Wf2

to Wf1. Note, however, that Wf1 = Wf2 is a necessary but not sufficient condition
for a divergence-free field. If ∇ ·B = 0, then Wf1 = Wf2, but Wf1 = Wf2 does
not necessarily imply that ∇ ·B = 0.

The first step in our method is the construction of the potential field. To
do this, we use the Checkerboard Relaxation Method Used for Potential field
reconstruction (CRUMP) code. CRUMP solves Laplace’s equation for the scalar
potential φ in a Cartesian domain with Neumann boundary conditions (defined
by the normal components of B at the six boundary surfaces), using a successive
over-relaxation scheme with checkerboard updating (Press et al., 1992).2 We note
that, in principle, the B0 component can be calculated using any method, as
long as the end result satisfies the conditions given by Equations 3–6.

After B0 has been calculated, we calculate WB , W0, Wf1 and Wf2, defined
by Equations 7, 8, 9, and 13. We use the trapezoidal method [see e.g. Press

2Further details of the CRUMP code are discussed in the Appendix.
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et al. (1992)] to perform the volume integrals. To compare the two free-energy
estimates, we calculate the fractional difference

ε =

∣∣∣∣Wf2 −Wf1

Wf2

∣∣∣∣ . (16)

This quantity is similar to the relative energy error r defined by Su et al. (2014)
and Moraitis et al. (2016).

In Section 3, we apply this test to the results obtained with five differ-
ent NLFFF codes in modelling the coronal magnetic field of AR 10978 on 13
December 2007.

3. Application

In this section, we apply our divergence-free test to the five NLFFF codes
previously compared and analyzed by DeRosa et al. (2015).

3.1. A Summary of the NLFFF Codes

The five codes that we examine, using the test described in Section 2, implement
three different methods of solving the NLFFF equations (on a uniform, three-
dimensional Cartesian grid with equal spacing in all dimensions), namely the
optimization, magnetofrictional, and three Grad-Rubin methods. The codes and
methods are as follows (DeRosa et al., 2015)3.

i) Optimization, which uses a relaxation scheme that seeks to minimize a
volume integral combining the Lorentz force and the divergence of B. If
this volume integral is successfully reduced to zero, the field is guaranteed
to be force-free and divergence-free (Wheatland, Sturrock, and Roumelio-
tis, 2000; Wiegelmann and Inhester, 2010; Wiegelmann et al., 2012). The
optimization method involves evolution of a field B which explicitly departs
from ∇ ·B = 0 at intermediate evolution times.

ii) Magnetofrictional, which advances the magnetic field in time through the
magnetic induction equation, with the velocity field given by the momentum
equation (Valori, Kliem, and Fuhrmann, 2007; Valori et al., 2010).

iii) Grad-Rubin, which solves for and updates B and the force-free parameter α
iteratively, using the normal component of the field at the boundary and the
value of the force-free parameter α over one polarity of the field as boundary
conditions. Grad-Rubin codes may obtain different results depending on
which polarity is chosen for the boundary conditions on α. We include
both the P solutions (where α values are taken from the positive magnetic

3The solution volumes are available for download from
http://dx.doi.org/10.7910/DVN/7ZGD9P.
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polarity points) and N solutions (where α values are taken from points of
negative magnetic polarity) of the Grad-Rubin codes in our comparison
below. The Grad-Rubin method is implemented by three different codes
analyzed in this article:

• CFIT, which works with a vector potential B = ∇×A (and so should
preserve∇·B = 0 to truncation, i.e. discretisation error). The method
iteratively solves the Poisson equation by a two-dimensional Fourier
method using currents in the volume obtained by field line tracing of
values of α at each iteration. If the iterations achieve a fixed point,
the result is force-free [see Wheatland (2007) for full details],

• XTRAPOL, which solves a mixed boundary value problem for α and
B using a finite-difference approach on the vector potential A on a
staggered mesh, ensuring ∇ · B = 0 to rounding errors [see Amari,
Boulmezaoud, and Aly (2006) for full details], and

• FEMQ, which solves the same boundary value problem as XTRAPOL
using a finite-element approach directly on B, minimizing ∇ ·B by a
least-squares approach [see Amari, Boulmezaoud, and Aly (2006) for
full details].

3.2. Results of the Divergence-free Test

DeRosa et al. (2015) presented the results of applying the five codes to vec-
tor magnetograms constructed from Hinode Solar Optical Telescope Spectro-
Polarimeter data for AR 10978 on 13 December 2007. The magnetograms were
constructed for different spatial resolutions by rebinning the spectral data by
factors 2, 3, 4, 6, 8, 10, 12, 14, and 16. The data are referred to by the bin size,
e.g. bin 2 is the highest resolution magnetogram, involving rebinning by a factor
of 2. The actual sizes of the original and binned data are summarized in Table
1 of DeRosa et al. (2015).4

We apply the divergence-free test described in Section 2 to each NLFFF
solution data cube. Figure 1 shows the fractional difference ε between the two free
energies as a function of bin size for each NLFFF solution. For the Grad-Rubin
codes (CFIT, XTRAPOL, and FEMQ), we show both the P and N solutions.
The results broadly agree with those of DeRosa et al. (2015). In general, we find
that Wf2 > Wf1, but the two energies are comparable, except for the optimization
code, where Wf2 ≈ 2Wf1. This corresponds to the observation of DeRosa et al.
(2015), that, in the optimization solutions, the magnitudes of the energies of the
mixed non-solenoidal component are of the same order as the free energy. Like
DeRosa et al. (2015), we find that, except for optimization, the results for the
larger bin-size (i.e. lower spatial resolution) calculations generally depart further
from the divergence-free condition. The results for the optimization code seem

4To make a meaningful comparison between the models, the analysis volume is chosen to be
the largest common volume for all codes and resolutions. The volume does not include the
entire available AR 10978 data.
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Figure 1. Comparison of the fractional difference between Wf1 and Wf2, expressed as
ε = |(Wf2 −Wf1)/Wf2|, for the five different codes [optimization (OPTI), magnetofrictional
(MAGF), and the three Grad-Rubin codes CFIT, XTRAPOL, FEMQ] at different bin sizes.
For the three Grad-Rubin codes (CFIT, XTRAPOL, FEMQ), we show the results of the P
(blue solid curves) and N (red dashed curves) calculations, where the values of α are taken
from points of positive magnetic polarity and negative magnetic polarity, respectively.

largely independent of bin size: the values of ε for the optimization method are

the largest of the values for the five codes compared in this article, regardless of

bin size.

The Grad-Rubin codes seem to follow the general trend that ε increases as bin

size increases. We find that the CFIT solutions (both P and N) have a sudden

jump in ε at bin 4, which does not follow this trend. The reason for this, as

noted by DeRosa et al. (2015), is unknown. This particular solution from the

code appears to be less accurate than the other solutions from CFIT. The other

two Grad-Rubin codes (XTRAPOL and FEMQ) give solutions that follow the

general trend closely (although FEMQ has higher ε at bin 6 than 8). XTRAPOL

tends to have lower ε than FEMQ as bin size increases. At the highest and lowest

resolutions we examine, CFIT (specifically, its P solution) has the lowest ε of

the five codes.

The magnetofrictional code tracks the trend followed by the Grad-Rubin

codes, although it has lower ε than all the other codes at bins 4 and 14, and

higher ε than the others (except optimization) at bin 10. At bin 16, the ε of the

magnetofrictional code is only slightly higher than that of CFIT (P solution).

In general, we conclude that the magnetofrictional and Grad-Rubin codes pro-

duce results consistent with ∇·B = 0 to a comparable degree. The optimization

code does not achieve ∇ ·B = 0 to the same degree.
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4. Flux Balance

It is important to recognise that, if the model magnetic field in the volume of in-
terest has a net incoming or outgoing flux over the surfaces of the computational
volume, it is not possible to generate a corresponding divergence-free potential
field by solving Laplace’s equation subject to Neumann boundary conditions,
e.g. using CRUMP. The net flux is given by

Φnet =

∫
B · dS =

∫
B0 · dS, (17)

so if B0 = ∇φ then using Gauss’s law we have∫
∇2φdV = Φnet. (18)

Equation 18 implies that if Φnet 6= 0 it is not possible to satisfy ∇2φ = 0
everywhere in the volume.

Hence it is also necessary to check for flux balance. In Figure 2 we compare the
ratio of outgoing fluxes to unsigned fluxes over the surface of the computational
volume, for each of the NLFFF model fields. All of the model fields analyzed
here are flux-imbalanced to a very small degree, ≈ 1%. The integrand in the
last term on the right-hand side of Equation 10 can be written φ∇ · (B −B0).
The departure from solenoidality can therefore be due to a contribution from
a non-zero divergence of B0 as well as a non-zero divergence of B. While our
method cannot distinguish between the sources of non-solenoidality, comparison
between the Helmholtz decompositions of the model fields shows that the mixed
non-solenoidal component (containing contributions from both the potential field
and the current-carrying field) is energetically important in a number of the
solutions (DeRosa et al., 2015).

Furthermore, for all the NLFFF reconstructions discussed here, DeRosa et al.
(2015) found that the energy of the non-solenoidal part of the potential field
is smaller than the energy of the solenoidal part of the potential field by at
least three orders of magnitude. They also found that all the model fields have
comparable non-solenoidal potential field energies, even the magnetofrictional
field (whose bin 8 result has the largest flux imbalance, ≈ 2%). This indicates
that flux imbalance of ≈ 1% leads to negligible error in the field energies and that
the relation between flux imbalance and non-solenoidality is not straightforward,
i.e. flux imbalance does not necessarily lead to a proportional increase in the
energy of the non-solenoidal part of the potential field or, consequently, ε.

We investigate the effect of flux imbalance on solenoidality further by applying
the solenoidality test to an artificially constructed nonlinear force-free magnetic
bipole field. The boundary field Bz(x, y, z = 0) is constructed in the region
0 6 x 6 1, 0 6 y 6 1. In dimensionless units, Bz at the bottom boundary of the
volume is

Bz(x, y, z = 0) = Bmax exp[−c1(x− 0.5)2 − c1(y − 0.6)2]

−Bmax exp[−c2(x− 0.5)2 − c2(y − 0.4)2],
(19)
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where we set Bmax such that the maximum absolute field strength is 1, and
c1 = c2 = 50. The boundary condition on the force-free parameter α is

α(x, y, z = 0) =

{
6, if Bz(x, y, z = 0) > 0.8,

0, otherwise,
(20)

in dimensionless units.5 The plot of Bz(x, y, z = 0) is shown in Figure 3. We use
the Grad-Rubin code CFIT (Wheatland, 2007) to calculate a NLFFF solution
in the region 0 6 x 6 1, 0 6 y 6 1, 0 6 z 6 0.5, with the calculation performed
on a 200 × 200 × 100 grid, then we use CRUMP to calculate a potential field
satisfying Equation 6.

Flux imbalance is introduced by adding a background vertical field at z = 0,
where Bz(x, y, z = 0) < 0.01. We consider a constant background field and
a randomly-distributed field with a non-zero mean. Additionally, we enforce
Bz = 0 at the top of the computational volume. The NLFFF solution calculated
by CFIT is periodic in x and y, so that any unbalanced flux introduced at the
bottom of the volume must exit through the top of the volume. Closing the top
of the volume (i.e. enforcing Bz = 0 at the top) ensures that the solution is
flux-imbalanced for our test purposes.

To check the solenoidality of the solutions, we plot ε as a function of flux
imbalance in Figure 4. We find similar values of ε for the uniform background
and the randomly-distributed background. We also find that a flux imbalance of
≈ 2% (equal to that of the bin 8 result of the magnetofrictional code discussed
in Section 3) indeed has no noticeable effect on ε. We find, however, that a flux
imbalance of & 6% potentially leads to a large effect on ε, e.g. |ε| = 0.35 for a 10%
flux imbalance. Our results may be dependent on the method of construction
of the nonlinear force-free field with flux-imbalanced boundaries. However, they
suggest that, if one finds large ε, one needs to check the solution volume for flux
imbalance before drawing conclusions on the solenoidality of the solution.

Figure 5 shows W0 and WB plotted versus the flux imbalance, with the
energies normalized to the flux-balanced value. The changes in energy are very
small: for the potential field energy (top panel) the maximum change is about
1%, whereas for the total field energy (bottom panel) the maximum change is
about 0.07%. Figure 6 shows the free energy estimates Wf1 and Wf2 versus flux
imbalance. The values of Wf1 show an overall increase with flux imbalance (top
panel), whereas Wf2 decreases uniformly with flux imbalance (bottom panel).

Note that, strictly speaking, if there is a flux imbalance over the surface of the
computational volume, then the reference field B0 is not a solution to Equation
5. In that case, the energy of B0 cannot be used as the reference energy to
calculate the free energy of the field B.

We have used as a reference potential field B0 the solution to Laplace’s
equation with Neumann boundary condition defined by the normal component
of the field B on the boundaries of the computational domain. In practice other

5The parameter α must be non-zero, so that the final field configuration has non-zero Bc, Wf1,
and Wf2.
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Figure 2. Ratio of the outgoing flux to unsigned flux over the surface of the computational
volume for the model fields from the five different codes [optimization (OPTI), magnetofric-
tional (MAGF), and the three Grad-Rubin codes CFIT, XTRAPOL, FEMQ]. For the three
Grad-Rubin codes (CFIT, XTRAPOL, FEMQ), we show the fluxes of the P (blue solid curves)
and N (red dashed curves) calculations, where the values of α are taken from points of positive
magnetic polarity and negative magnetic polarity, respectively.

Figure 3. The boundary conditions for the vertical component of the magnetic field,
Bz(x, y, z = 0), and the force-free parameter, α(x, y, z = 0), for the bipole test case in the
absence of flux imbalance. The left-hand panel shows a top-down view, with white (black)
contours for positive (negative) Bz , the right-hand panel shows a top-down view of the region
where α 6= 0.
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Figure 4. The fractional difference between Wf1 and Wf2, expressed as ε = |(Wf2−Wf1)/Wf2|
as a function of the ratio of flux to unsigned flux for a bipole test case. The empty circle is
the flux-balanced case, the filled circles are the uniform background case, and the diamonds
are the random background case.

reference potential fields are also used by researchers modeling magnetic fields.
For example, it is common to construct potential fields using just the boundary
conditions on the lower boundary of the computational domain, using e.g. a
Fourier (Alissandrakis, 1981), or a Green’s function solution (Chiu and Hilton,
1977) to Laplace’s equation. If the reference potential field does not satisfy
Equation 6 on all boundaries, then the potential field does not satisfy Thomson’s
theorem, and does not represent the state with the minimum energy for a given
distribution of magnetic field on the boundaries. In this case, the energy of the
potential field cannot be used as a physically meaningful reference energy for
calculating the free energy of the field.

5. Conclusions

In this article, we re-implement a test proposed by Moraitis et al. (2014) to
check whether a constructed NLFFF model field B is divergence-free or not.
We applied the test to the results for the five codes analyzed by DeRosa et al.
(2015) and our conclusions on the solenoidality of the results of the codes and the
effects of spatial resolution agree with the results obtained in that paper using
the method of Valori et al. (2013). Unlike the Valori et al. (2013) procedure, the
test does not require a Helmholtz decomposition of B and analysis of the energies
of the different components of a field. This test requires only the calculation of
the potential field component, subject to Neumann boundary conditions, given
by the normal components of B at the boundaries. Then we simply compare
Wf1 = (1/2µ0)

∫
(B2−B2

0) dV and Wf2 = (1/2µ0)
∫
B2 dV − (1/2µ0)

∫
B2

0 dV .
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Figure 5. The energy of the potential field W0 and that of the total field WB as functions
of the ratio of flux to unsigned flux for a bipole test case. The vertical axes are normalised to
the values of the quantities for the flux-balanced case (the empty circle). The filled circles are
the uniform background case, and the diamonds are the random background case.

Different results for these two values indicate departure from the divergence-free

condition in the volume. It must be noted, however, thatWf1 = Wf2 is a necessary

but not sufficient condition for a divergence-free field. One can have Wf1 = Wf2

but ∇ ·B 6= 0. A necessary and sufficient condition for a divergence-free field is

provided by the Helmholtz decomposition.

Our analysis shows that care must be taken when calculating and stating the

“free energy” of a model field, as the two ways of calculating free energy, Wf1

and Wf2, can give different answers.

SOLA: main-20180818.tex; 19 February 2019; 9:57; p. 12



Check on Validity of Magnetic Field Reconstructions

Figure 6. The energies Wf1 and Wf2 as functions of the ratio of flux to unsigned flux for
a bipole test case. The vertical axes are normalised to the values of the quantities for the
flux-balanced case (the empty circle). The filled circles are the uniform background case, and
the diamonds are the random background case.

The test presented here can, in principle, be applied to any model field B in
a regular volume. For example, it can be applied to the results of magnetohy-
drodynamics codes. The test requires only the normal components of B at the
boundaries, used to construct B0, after which the calculations and comparisons
of energies readily follow.
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Appendix

In this appendix we describe the Checkerboard Relaxation Method Used for
Potential field reconstruction code (CRUMP) and its application to a simple
test case. We show that the numerical error for this case is consistent with the
truncation error of the second-order scheme employed by the code.

A. Details of the CRUMP Code

The CRUMP code solves the scalar Laplace equation in a Cartesian box using
a second-order finite difference method. Specifically, second-order centered dif-
ferences are used to approximate the Laplacian at interior points (Press et al.,
1992). At the boundary, ghost points are used to enforce Neumann boundary
conditions to second order. The code is implemented in the Fortran2003 language
(Metcalf, Reid, and Cohen, 2011) and is parallelized for shared-memory parallel
computers using the OpenMP standard (Chandra et al., 2001).

The discrete system is solved using the checkerboard (red-black) Gauss-Sidel
relaxation method (Press et al., 1992; Briggs, Henson, and McCormick, 2000).
Successive over-relaxation with Chebyshev acceleration is used to speed up con-
vergence of the scheme (Press et al., 1992). In principle, to achieve convergence
for a mesh with N mesh points in each dimension, over-relaxation takes of order
N iterations to converge (Press et al., 1992). It is difficult to compute the exact
number required a priori, so in practice, the calculation is halted when the
difference between successive iterations is below a user-defined threshold. The
code computes the scalar potential, and the magnetic field is found numerically
using the second-order centered difference approximation to the gradient.

Since the code uses Neumann boundary conditions on all six boundaries of the
Cartesian domain, there is no unique solution to the linear system: a constant
can be added to any solution to produce another one that both solves Laplace’s
equation and satisfies the boundary conditions (Briggs, Henson, and McCormick,
2000). To break this degeneracy, we pick the particular solution whose mean over
the domain is zero. This condition is enforced at each iteration by making the
replacement

u→ u− 〈u〉, (21)

where 〈u〉 is the mean of u over all mesh points.

B. Numerical Error Scaling for the CRUMP Code

To demonstrate the accuracy of the code we apply it to a simple analytic test
case and measure the numerical error for different mesh resolutions. We show
that the code achieves the expected second-order accuracy.
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We measure the numerical error using two metrics. The first metric is the
component-wise maximum difference between the numerical and analytic solu-
tions, i.e.

Ediff = max (B −Bex) , (22)

where Bex is the exact analytic field. The second metric is the maximum value
of the divergence over the domain, i.e.

Ediv(B) = max (∇ ·B) . (23)

The divergence is computed numerically using a second-order centered difference
scheme. As a result, additional truncation error is introduced by this approxi-
mation. To measure this error, it is instructive to compute Ediv for the the exact
solution too.

To test CRUMP, we apply it to the simple analytic magnetic field with
components

Bx = − k
A

sin (kx) cos (ky) cosh[l(z − Lz)], (24)

By = − k
A

cos (kx) sin (ky) cosh[l(z − Lz)], (25)

and

Bz = +
l

A
cos (kx) cos (ky) sinh[l(z − Lz)]. (26)

We set A = sinh(l)l, k = 2π, and Lz = 1. The variable l must take the value
l =
√

2k to ensure that ∇ ·B = 0.
We construct Neumann boundary conditions for CRUMP from Equations

24–26. We compute the solution in a domain that has a length of unity in each
dimension and the same number of mesh points in each dimension. We perform
tests at different resolutions by increasing the number of mesh points.

Figure 7 shows the values of the metrics defined by Equations 22 and 23
computed from the numerical solutions produced by CRUMP for different values
of the mesh spacing h. For each test, we terminate the relaxation when the dif-
ference between iterations is below 10−15, which is close to the double-precision
machine epsilon.

Figure 7 also shows the value of the metric Ediv computed for the analytic
solution. For all resolutions, the value of Ediv for the numerical solution is smaller
than that obtained by applying the second-order centered difference scheme
directly on the analytic solution, implying that we achieve a small error in the
actual divergence for this particular test case.

Figure 7 shows power-law fits to each of the data sets (straight lines). We
find that the power-law indices are close to a value of two. This indicates that
the numerical error for CRUMP is consistent with the truncation error of the
second-order difference scheme used.
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Figure 7. Numerical error metrics for the CRUMP code at different resolutions. The metrics
measure the maximum difference between the numerical and analytic solutions (Ediff) and the
maximum value of the divergence (Ediv(B)). The data set Ediv(Bex) shows the divergence
metric computed for the analytic magnetic field. Because the evaluation of this metric involves
numerically derivatives, its value is non-zero even for the exact solution. The straight lines show
power-law fits to the data. The power-law indices are close to two in each case, indicating the
code achieves second-order scaling, as expected for a second-order scheme.
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