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Abstract

The tremendous growth of wireless services on hand-held devices has led to an

explosive demand for high data rate transmissions. Future cellular networks will

make use of higher frequency bands, i.e., millimeter wave (MMW), for enabling

extremely high data rates to support content-rich applications. Although the

MMW bands potentially offer numerous significant performance improvements in

wireless networks, they still face many technical challenges related to the unique

propagation characteristics and hardware constraints.

MMW communications exhibit severe path loss, vulnerability to blockages,

and sparse multipath environments. Furthermore, the small wavelengths at

MMW frequencies allow the incorporation of massive number of antennas into the

MMW transceivers. These antennas can provide narrow beams with high gains

to compensate the severe path loss and boost the received signal power. The

fundamental differences between MMW and conventional microwave frequencies

require revisiting the prior channel modeling to properly assess the networks per-

formance. For that, in this thesis, we focus on the channel modeling, system

design, and performance evaluation by incorporating the distinguishing features

of MMW communication in the analysis.

In the first contribution, we develop a geometry-based stochastic channel

model to characterize the effect of multipath propagation, i.e., the first-order

reflection path between the transmitter and receiver. By considering random

locations, sizes and orientations of buildings, we derive a closed-form analytical
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expression for the power delay profile (PDP) contributed by all the first-order

reflection paths. We show that wireless networks can benefit from buildings in

the surrounding area of MMW communications, as the external surfaces of build-

ings render reflection paths whose signal powers are comparable to that of the

line-of-sight (LoS) path.

Two critical features of the MMW cellular networks will be dense base stations

(BSs) deployment and highly directional transmissions at both BS and mobile.

The dense deployment of the MMW BSs leads to a higher user data rate, but

it also introduces more interference to the receiver. In the second contribution,

we propose a BS coordination scheme via disjoint clustering to provide satisfac-

tory user performance in the dense MMW cellular networks. Leveraging concepts

from stochastic geometry, we derive expressions for the signal-to-interference and

noise ratio (SINR) coverage probability and area spectral efficiency (ASE) in the

downlink MMW cellular networks by incorporating the peculiarity characteris-

tics of MMW communications. Our results show a significant improvement in

performance in terms of SINR coverage probability and ASE. The results also

demonstrate the performance superiority of BS coordination via disjoint cluster-

ing over the non-coordinated case.

As the third contribution, we investigate the uplink performance of the MMW

cellular networks with clustered users. By modeling the locations of users as of

a Poisson cluster process (PCP), we derive tractable expressions to evaluate the

SINR coverage probability in the uplink MMW cellular networks. We study

the performances of a reference BS for two association strategies. First, the

closest-selection (CS), where the nearest LoS BS serves the user. Second, the

strongest-selection (SS), where the user communicates with the BS that provides

the most significant received signal among all BSs. We investigate the impact

of system parameters, such as blockage, the density of BSs, cluster radius and

fractional power control (FPC) factor on the SINR coverage. Our results show
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that regarding SINR coverage probability, the SS strategy outperforms the CS

strategy in the environment with dense blockages.
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Chapter 1

Introduction

This chapter presents an introduction to the thesis. It provides an overview of the

research background and motivation, before summarizing the principle research

problems and the main contributions of this thesis.

1.1 Background and Motivation

1.1.1 The Scarcity of Wireless Bandwidth

Wireless services become increasingly important not only for communications,

but also for education, entertainment, location tracking, and healthcare. There-

fore, demands for reliable transmission with high data rates and low latency con-

nections have escalated worldwide. The remarkable evolution of smart-phones

along with new wireless applications such as uncompressed high definition video

streaming, online gaming and cloud computing, has coincided with the explosive

growth of mobile data traffic. Recently, Cisco reported that the global mobile

data traffic grew approximately 60 percent in 2016 and will continue to increase

at a compounded annual growth rate (CAGR) of 47 percent from 2016 to 2021,

where 78 percent of the contents will be video by 2021 [5]. In addition to the

exponential increase in the data traffic volume, the explosion of wireless devices
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1.1. Background and Motivation

is expected, chiefly smart-phones that will increase to 43 percent by 2021 [5].

These significant demands have driven both industry and academia to develop

the next generation wireless cellular networks, referred to as the fifth-generation

(5G) networks, to increase the data rate drastically.

How to cope with the substantial mobile traffic volume and data rate demands

while offering an excellent quality of experience to users, is a challenging question

for the network operators. Theoretically, the Shannon formula represents the

channel capacity as [6]

C = BW log2

(
1 + S

N

)
, (1.1)

where C is the maximum channel capacity in bits/second, BW is the channel

bandwidth, S is the received signal power, and N is the noise power. From (1.1),

it demonstrates one possible way to increase the channel capacity is by enlarging

the bandwidth of the channel, increasing the received signal or decreasing the

noise power at the receiver.

The current fourth generation (4G) systems have already implemented ad-

vanced technologies such as orthogonal frequency division multiplexing (OFDM),

channel coding, multiple inputs multiple outputs (MIMO), cell splitting and het-

erogeneous networks, to achieve link capacity close to the theoretical limit. How-

ever, with only incremental improvements to the cellular systems, expect them

to be inadequate to fulfill the projected capacity required in the upcoming 5G

networks. Thus, it is evident that the potential solution to improve the system ca-

pacity is by increasing the channel bandwidth. The existing microwave spectrum,

however, has been fully utilized and becoming increasingly congested. For this

reason, the millimeter wave (MMW) band has received significant attention in

the past few years as a promising and attractive option for supporting extremely

high data rate wireless communication [1, 3, 7, 8].
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1.1. Background and Motivation

1.1.2 The Use of Millimeter Wave Bandwidth

MMW generally refers to the electromagnetic spectrum in the range from 30

GHz to 300 GHz, where the wavelengths are from 1 mm to 10 mm. Follow-

ing the existing spectrum allocation in Fig. 1.1, the current microwave cellular

networks had only utilized a tiny portion of the full electromagnetic spectrum

and thus there are massively unused spectrum blocks, especially at MMW bands.

A fraction of the MMW spectrum has been used for several services such as

military applications, satellite communications [9] and local multipoint distribu-

tion services (LMDS) [10], leaving more available. More recently, many countries

including the USA, Europe, Australia, Japan and Korea have designated frequen-

cies from 57 GHz to 66 GHz for unlicensed wireless applications such as wireless

personal area networks (WPAN) and wireless local area networks (WLAN). As a

result from these applications, several industrial standards have been developed,

such as IEEE 802.15c, which is a standard for wireless personal area networks

(WPAN) [11], IEEE 802.11ad (WiGig) at 60 GHz for short range applications [12],

WirelessHD consortium [13], and IEEE 802.11ay [14].

Figure 1.1. Operating range of existing wireless applications [1, 2].

Later the use of slightly higher frequencies in MMW spectrum has attracted

growing attention among researchers as announced by the Federal Communi-

cations Commission (FCC) [15] and the European Conference of Postal and

3



1.1. Background and Motivation

Telecommunications Administrations (CEPT) [16] that 71-76 GHz, 81-86 GHz,

and 92-95 GHz frequency bands had become available for point-to-point WLAN

and cellular backhaul. Unlike 60 GHz frequency spectrum, these bands are on a

lightly-licensed basis that will be used for cellular networks as the licensed spec-

trum better guarantees the quality of service. In particular, the higher frequencies

in MMW spectrum became a critical topic of discussion concerning spectrum for

5G wireless cellular networks. Despite the potential capability to deliver ex-

tremely high data rates, wireless systems operating at MMW frequencies have

several unique characteristics compared to their microwave counterparts, which

introduce new challenges in the system design, modeling and analysis.

1.1.3 The Challenges in Millimeter Wave Cellular System

Design

In this section, we describe several key disruptions in the MMW cellular system

design related to unique propagation characteristics and hardware constraints.

Environmental factors such as oxygen molecules, water vapor, and rain effect

MMW signals. Specifically, atmospheric absorption occurs when the electromag-

netic waves are traveling through the atmosphere absorbed by oxygen, water

vapor, and other gasses. Atmospheric absorption of electromagnetic waves varies

significantly with frequency, as illustrated in Fig. 1.2. The severe atmospheric

absorption at certain frequencies, e.g., 60 GHz and 180 GHz, which contribute

about 17 dB/km and 7 dB/km, respectively, makes these particular frequencies

mainly suitable for short-range application with a distance of a few meters. On

top of the atmospheric absorption, raindrops render a further loss on the MMW

signals where for the high intensity of rain, e.g., 100 mm/hr, the attenuation can

contribute up to 30 dB/km, as depicted in Fig. 1.3, which may require a backup

connection for countering the link failures in the heavy rain season.

Penetration losses due to blockages, e.g., building and tree, are much more
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Figure 1.2. Atmospheric absorption of electromagnetic waves [3].

Figure 1.3. Rain attenuation across frequency at various rainfall intensities [3].

severe at MMW frequencies than lower frequency signals. These blockages result

in entirely different path loss characteristics between line-of-sight (LoS) and non-

LoS propagation [3, 17, 18]. Furthermore, sharp shadow zones occur due to the

significantly larger sizes of blockages relative to the signal wavelength at MMW

frequencies, which lead to insignificant diffraction mechanism [19]. Thus, MMW

channels are expected to exhibit a sparse multipath nature, instead of the rich-

scattering one demonstrated in conventional microwave channels. As a result,
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1.1. Background and Motivation

it is not possible to directly use microwave propagation models for MMW sys-

tems. There are several works on the MMW channel model [20, 21, 22, 23], which

have been mainly focusing on the shadowing effects due to blockages. However,

as verified by the channel measurements in [19, 24], the reflection paths gener-

ated by buildings can also provide a non-negligible multipath propagation, which

highlights the importance of considering the reflection paths in MMW channel

modeling. So far, there has been only a few discussions regarding the multi-

path propagation in the MMW bands, including [25, 26, 27, 28]. The common

limitation of these works is that the channel statistics are based on empirical

or site-specific approaches, making these models not applicable to general envi-

ronments. Therefore, an in-depth characterization of MMW channels with more

general settings is of both theoretical and practical interest and still presents

challenging open problems.

Another key feature of the MMW system is that the MMW signals encounter

high near-field path loss as this loss increases with the carrier frequency. Large-

scale antenna arrays that provide highly directional beamforms are envisioned

to be one of the critical enablers for cellular communication at MMW bands in

order to compensate the increased near-field path loss [29]. However, the use

of a highly directional antenna poses challenges in the initial cell search where

both base stations and mobiles may need to scan different angles to find the

suitable propagation path, which could incur a significant delay in initial access

and handovers [30, 31]. Furthermore, for a substantial number of antenna, equip-

ping a single radio frequency (RF) chain per antenna may significantly increase

cost, complexity and power consumption [32]. The MMW cellular system can

employ analog or hybrid beamforming, which potentially reduces the number of

RF chains [33]. MMW cellular networks may also apply low resolution analog-to-

digital converters (ADCs) at receivers to reduce the power consumption [34, 35].

It is clear from the discussions mentioned above that designing cellular net-
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1.2. Research Problems and Contributions

works at higher frequency is not a direct extension from the prior system archi-

tectures for the conventional cellular system. Many technical challenges in the

system design need to be addressed and resolved before the full deployment of

MMW networks. For that, in this thesis, we focus on the channel modeling,

system design, and performance evaluation by incorporating the distinguishing

features of MMW communication in the analysis.

1.2 Research Problems and Contributions

In this thesis, the challenges in MMW system design are considered by analyti-

cally study important system design issues to enable the use of higher frequency

bands for cellular networks. The focus of this thesis is on the channel modeling,

system design and performance analysis of MMW cellular networks. The out-

comes of this thesis will provide fundamental and important insights into the de-

sign and analysis of future MMW cellular networks. In the sequel of this section,

we elaborate the thesis research problems and the corresponding contributions.

The first research problem we tackle in this thesis (Chapter 3) is to develop

the MMW propagation channel model by considering the reflection components

of the MMW signals in an urban area. Motivated by the discussed shortcomings

in the MMW channel modeling, we consider the first-order reflection path in

the analysis. In the MMW bands, the higher-order reflections suffer from more

severe path losses and attenuation. Therefore, we ignore the expected power

contributed by these reflections as they are insignificant. Hence it is reasonable

to only consider the first-order reflection paths in the analysis as these paths

provide the strongest received power among all the reflection components [36].

The main contributions regarding this research problem are summarized as

follows:

• Leveraging concepts of random shape theory [37], we first model buildings
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in an urban area by incorporating the randomness of locations, sizes, and

orientations. By the proposed propagation environment model, we derive

a closed-form expression for the power delay profile (PDP) contributed by

all the first-order reflection paths, which gives the intensity of the energy

at the receiver relative to the propagation delay.

• Based on the PDP, we analyze the average path loss and the number of

first-order reflection paths under various channel parameter settings.

• Finally, we compare the average path loss of the first-order reflection to

that of the LoS path in [20]. Numerical results are provided to validate the

accuracy of the proposed model under various channel parameter settings.

Our analytical results show that the richness of the first-order reflection

paths relies on the propagation environments such as the sizes and density of

buildings. The contribution of the first-order reflection paths is comparable

to the LoS path, especially in dense building areas.

A straightforward solution to overcome heavy penetration losses due to the

blockages is to deploy dense MMW base stations (BSs). As highlighted in [4,

20, 38, 39], the dense deployment of the MMW cellular networks is required to

improve the coverage and rate experienced by a user. However, the dense cellular

networks will certainly cause high interference and affect the system performance.

As is evident in [20, 22] that the MMW networks may change from noise-limited

to interference-limited regime depending on several system parameters such as

the density of transmitters and blockages, operating beamwidth and transmis-

sion power. Extensive research work on interference mitigation techniques have

been explored in the past, e.g., BS cooperation [40, 41], coordinated schedul-

ing/beamforming [42, 43, 44] and interference cancellation [45, 46]. However,

these works focus primarily on microwave cellular systems where the analysis

does not incorporate the unique channel characteristics and antenna features for
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the MMW networks. Hence, the second research problem we tackle in this thesis

(Chapter 4) is to propose and evaluate an interference mitigation scheme for im-

proving the coverage and rate experienced by a user in the dense MMW cellular

networks.

The main contributions regarding this research problem are summarized as

follows:

• We develop a new mathematical framework to quantify the performance of

BS coordination via disjoint clustering in dense MMW cellular networks.

We derive the coverage probability and area spectral efficiency (ASE) using

tools from stochastic geometry and by incorporating the key features of the

MMW systems, i.e., blockage and directional antennas.

• We propose cluster-based intercell scheduling to coordinate the inference

within a cluster and evaluate the performance of such a BS coordination

under various system parameter settings.

• Numerical results show that the proposed BS coordination scheme offers a

linear signal-to-interference and noise ratio (SINR) coverage gain and there

is an optimum cluster size to achieve the maximum ASE. This optimal value

increases as the blockage factor, which is determined by the density and the

average size of the buildings, decreases.

In the context of system-level performance analysis, the point process is em-

ployed to capture topological randomness in the network geometry. It is com-

mon practice to use the uniform Poisson point process (PPP) if the distance

between the transmitter and receiver is invariant to geographic location. How-

ever, non-uniformly distributed user may exist in highly populated or hotspot

regions. Considering an urban outdoor area, the cluster of users may appear at

the outside subway stations, on the bench of cafe terrace or traveling along the

sidewalks during peak hours. Therefore, modeling user locations by uniform PPP
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is not entirely accurate in these conditions. Thus, in the following chapter of this

thesis (Chapter 5), we turn our attention to the different spatial distribution of

transmitters, namely Poisson cluster process (PCP) to model the locations of

clustered users. The third research problem is to develop an analytical frame-

work for characterizing the performance of uplink MMW cellular networks in the

clustered user scenario.

The main contributions regarding this research problem are summarized as

follows:

• We present a mathematical framework for evaluating the performance of

the uplink MMW cellular networks. Unlike typical stochastic frameworks

where the locations of users follow the uniform PPP, we leverage PCP to

model the locations of clustered users. Derivation of the Laplace transform

of interference in the clustered users scenario leads to a new and more

involved analysis compared to uniform PPP based assumption.

• We consider two types of association strategies, i.e., the closest-selection

(CS) and the strongest-selection (SS). For each association strategy, we

characterize the Laplace transform of the interferences and the SINR cov-

erage probability of a reference BS. The key steps for the analysis are the

derivation of distance distribution from the receiver to its serving BS and

the distance distribution from the receiver to intra-cluster and inter-cluster

interfering nodes.

• Numerical results show the accuracy of the analytical model under a wide

range of SINR thresholds and user intensities. We investigate the impact

of system parameters, such as blockage, the density of BSs, cluster radius

and fractional power control (FPC) factor on the coverage probability. Our

results show that regarding the SINR coverage probability, the SS strat-

egy outperforms the CS strategy in the environment with dense blockages.
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The results also demonstrate that moderate FPC factor should be used

at the low SINR thresholds, while full FPC is optimal for the high SINR

thresholds.

1.3 Thesis Outline

The remainder of the thesis is organized as follows.

Chapter 2 starts with the theoretical background related to the MMW cellular

systems and point processes for stochastic geometry analysis. Then, chapters 3-5

present the main contributions of this thesis. Each chapter provides notations

at the beginning for the reader’s convenience. Chapter 3 formulates the channel

model for MMW propagation by incorporating the non-line of sight component,

i.e., the first-order reflection. In Chapter 4, we develop an analytical model to

quantify the performance of BS coordination via disjoint clustering in the dense

MMW cellular networks. Chapter 5 presents the analytical model for evaluat-

ing the uplink performance of clustered users. Finally, Chapter 6 concludes the

thesis by summarizing the main results and discussing potential future research

directions.
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Chapter 2

Theoretical Background

This chapter provides the necessary theoretical background for our research work.

First, we present a general system model and overview the essential properties

of MMW communications that are important for developing analytical models

to predict the performance of MMW cellular systems. Then, we briefly review

some preliminaries for stochastic geometry, which are employed in the analysis in

Chapters 3-5.

2.1 Fundamentals of MMW cellular systems

In this section, we present a general system model that considers a downlink

transmission for a MMW cellular network operating at frequency fc and band-

width BW . Due to the sparsity of MMW channel, clustered channel model with

a limited number of propagation paths has been used to model the MMW chan-

nel between BS and user [47, 48, 49]. In this thesis, we consider a single path

channel model [21, 50], where the channel matrix between BS at x and user at y

is expressed as

Hx,y =
√
NBSNUE

L(x,y) hx,yaUE(φx,y)a∗BS(θx,y), (2.1)
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where NBS and NUE are the number of antennas for the BS and user. L(·) is the

path loss, h(·) is the small scale fading. The angle φ(·) and θ(·) denote the angles of

arrival (AoA) and departure (AoD) at the user and BS, respectively. (·)∗ denotes

the conjugate transpose. Finally, aUE(φ(·)) and aBS(θ(·)) are the spatial array

responses for the user and BS, respectively.

2.1.1 Large-Scale Path Loss

The path loss L(x,y) in (2.1) can be modeled as

L(d) = δ(d0) + 10α log10

(
d

d0

)
+ S, (2.2)

where d = |x−y| is the distance from BS at x and user at y, δ(d0) is the close-in

path loss model, α is the path loss exponent and S is a random variable that

represents a log-normal shadowing coefficient. The close-in path loss model can

be given by the Friis’s equation as [51]

δ(d0) = 20 log10

(
2πdfc
c

)
, (2.3)

where fc represents the carrier frequency, c is the speed of light and d0 is the

close-in distance of 1 meter.

Following the measurements in [3, 17, 18, 24], the presence of blockage in the

direct path results in very different path loss laws for the LoS and non-LoS links.

Extensive measurements of MMW channel by using directional antennas in [3]

found that the path loss of a LoS link is αL = 2. In the non-LoS transmission,

the path loss exponent is larger than that in LoS and varies depending on the

surrounding environments. From the measurements in the New York and Austin

city [18], the non-LoS path loss exponent was found to be αN = 4.5, αN = 3.3

and αN = 4.7 at operating frequency 28 GHz, 38 GHz and 73 GHz, respectively.

13



2.1. Fundamentals of MMW cellular systems

Table 2.1. Penetration losses for different materials and frequencies [4].

2.1.2 Effects of blockage

Vulnerability of MMW signals towards blockage results in two consequences: pen-

etration loss and multi-path. The penetration losses due to building materials

were measured at 28 GHz [24], 40 GHz [24, 52] and 60 GHz [53, 54]. Accord-

ing to these measurements, the penetration loss depends on the materials of the

building wall. Table. 2.1 illustrates the penetration losses for different materials

[4, 55]. For example, the 10 cm-thick brick and concrete exhibit losses of 178

dB and 175 dB, respectively, which result in the isolation of MMW outdoor BSs

from indoor users. For inner building materials, the penetration loss through a

2.5 cm dry wall at 2.5 GHz is similar to that at 60 GHz [53], which motivates the

deployment of indoor MMW femtocells or Wi-Fi systems.

Besides buildings, MMW signals also cannot penetrate through trees and the

human body. At MMW frequencies, the presence of trees between transmitter

and receiver can result in an additional loss of about 20 dB [56, 57], which can be

an important issue in the link budget. Penetration loss due to the human body is

as much as 20-35 dB [58], which significantly decreases the coverage probability of

the MMW networks. Because of the sensitivity of the MMW signals to blockage,

proper positioning of the BS is much needed to avoid large-scale blocking by
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obstacles.

Measurements performed in frequency bands centered at 28 GHz, 38 GHz,

60 GHz, and 73 GHz [18, 38] show that an MMW channel has fewer multi-path

component than a microwave channel. For instance, the average number of multi-

path components was found to be approximately five at 28 GHz and three at 73

GHz in the Manhattan area [18]. Note that the multi-path component depends on

the scattering environment. Also, the results in [38] indicate that the signal energy

arrives in the form of clusters, mainly generated by reflections from the building

walls. We found similar evidence in the ray tracing simulations conducted for the

28 GHz [59] and 73 GHz [60] bands, which supports the theory that the signal

propagation mechanism in outdoor MMW channels can be accurately modeled

based on reflection paths.

2.1.3 Beamforming

From (2.3), it documents the close in path loss increases with the carrier fre-

quency. With the small wavelengths inherent in the MMW frequency range,

massive arrays of steerable antenna that provide narrow beams with high gains

can be deployed to compensate the severe path losses at MMW bands.

In the single path beamforming, the BS and user use the antenna arrays to

transmit and receive via one data stream. When the LoS path dominates the

communication channel or when there is a sufficiently small number of scatterers,

it is possible to direct the beamforming vector to a specific desired direction in

order to maximize the beamforming gain. Consequently, we have a beam with

its main lobe pointing to the desired direction. For analytical tractability, in

this thesis, we consider a sectored antenna model as initially proposed in [61] to

approximate the actual array beam patterns. A sectored antenna model as shown

in Fig. 2.1 is characterized by M , m, θ and ψ, which refer to as the main lobe

gain, back lobe gain, the beam width of the main lobe gain and the angle from
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the boresight direction, respectively.

Mm q

Figure 2.1. An example of the sectored antenna model.

2.2 Fundamentals of Stochastic Geometry

Stochastic geometry is a useful mathematical and statistical tool to characterize

random spatial patterns of wireless networks [62, 63, 64, 65]. This tool has been

widely used to analyze the system-level performance of cellular networks due to

the tractability of the mathematical analysis. In stochastic geometry analysis,

the network topology is modeled following a specific point process to capture the

spatial randomness of the network. In this thesis, we employ the most popular

point process namely the Poisson point process (PPP) [41, 62, 64] and Poisson

cluster process (PCP) [65, 66, 67].

2.2.1 Poisson Point Process

Definition 2.1. (Poisson Point Process [62]):

A point process Φ = {x1, x2, · · · } ⊂ Rd is a PPP if and only if the number of

points inside any compact set B ⊂ Rd is a Poisson random variable, and the

number of points in disjoint sets are independent.

Interference at a receiver is the sum of all interfering signals from random

locations of undesired transmitters. The statistics of the interference can be
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characterized using the stochastic geometry analysis.

Consider the following simple scenario: assume that the transmitters are ran-

domly distributed in a two-dimensional Euclidean space R2 according to a ho-

mogeneous PPP Φ with intensity λ. From the view of a receiver at the location

x, all signals from the transmitters are regarded as interfering signals. In this

case, because the locations of the transmitters follow a random point process, the

overall interference, denoted by I, is a random variable. The distribution of I can

be obtained by using the Laplace transform L(s) = E[exp(−sI)]. Since I can be

computed as the summation of the interfering signal from each transmitter, we

have I = ∑
x∈Φ L(x,y), where its Laplace transform is given by

L(s) = E[exp(−s
∑
x∈Φ

L(x,y))] = E

∏
x∈Φ

exp(−sL(x,y))
 . (2.4)

The probability generating functional (PGFL) of PPP is defined as

G(v) = E

∏
x∈Φ

v(x)
 = exp

(
−λ

∫
R2

(1− v(x)) dx
)
. (2.5)

Thus, the Laplace transform in (2.4) is given by

L(s) = exp
(
−λ

∫
R2

(1− exp(−sL(x,y)) dx
)
. (2.6)

2.2.2 Poisson Cluster Process

Definition 2.2. (Poisson Cluster Process [65]):

A PCP results from applying homogeneous independent clustering to a stationary

PPP. Specifically, the parent points form a stationary PPP Φp with intensity λp.

The daughter point process, denoted by κx, for a given parent x is a family

of independent and identically distributed (i.i.d.) finite points with distribution
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independent of the parent process. The complete PCP can be given as

Φc =
⋃

x∈Φp
κx. (2.7)

Definition 2.3. If the number of points per cluster follows a Poisson distribution

with intensity λd, such a PCP is referred to as a Neyman-Scott Process [65, Def.

3.4].

Denote by G(v), Gp(v) and Gc(v) the generating functionals of Φc, Φp and κ0

processes, respectively. The generating functional is given by

G(v) (a)= Gp(G(·)(v)) (b)= Gp(G(y)(v))

(c)= Gp(Gc(v(y + ·))) (d)= E

 ∏
y∈Φp

Gc(v(y + ·)


(e)= exp
(
−
∫
R2

(1−Gc(v(y + ·))) Λ(dy)
)
, (2.8)

where (a)-(d) are from [62] and (e) is due to the generating functional of PPP.

The generating functional of the representative cluster in (2.8) is given by

Gc(v(y + ·)) = E

 ∏
x∈κ0

v(y + x)
 . (2.9)

where κ0 is the daughter process of the representative cluster.
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Chapter 3

Analytical Model for Outdoor

Millimeter Wave Channels Using

Geometry-Based Stochastic

Approach

In this chapter, we develop a geometry-based stochastic channel model to sta-

tistically characterize the effect of all the first-order reflection paths between the

transmitter and receiver. These first-order reflections are generated by the single-

bounce of signals reflected from the walls of randomly distributed buildings. Based

on this geometric model, a closed-form expression for the PDP contributed by all

the first-order reflection paths is obtained and then used to evaluate their impact

on the MMW outdoor propagation characteristics. Numerical results are provided

to validate the accuracy of the proposed model under various channel parame-

ter settings. The findings in this chapter provide a promising step towards more

complex and practical MMW propagation channel modeling.
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3.1 Chapter Introduction

Over the past decades, there has been a considerable amount of research on mod-

eling the MMW propagation channel [68, 28, 3, 19, 38, 69, 70, 25]. Extensive

propagation measurements have been conducted in [28, 3, 19], which revealed

the unique characteristics of wireless propagation at MMW bands. Motivated by

these characteristics, several attempts have been done on modeling the MMW

channels, including deterministic and stochastic models. Deterministic models

are typically based on ray tracing simulations [25, 71], which aim to produce ac-

curate results via a detailed description of propagation environments. So they are

costly and time-consuming especially when a large investigation area is consid-

ered. In addition, such results would be valid only for the particular propagation

setting under investigation and may not be applicable to general propagation

environments.

On the other hand, the stochastic approach that characterizes the channel

behaviour using the probability distribution functions of the channel parameters

is becoming a popular way to develop general yet sufficiently accurate channel

models. Stochastic channel models can be further classified into two approaches,

which are non-geometrical[28] and geometry-based [38, 69]. In [28], the authors

proposed a non-geometrical channel model to statistically characterize the chan-

nel parameters, such as the number of scatterers, delay spread, path loss and

shadowing, without any geometric assumptions. In contrast, the geometry-based

channel models in [38, 69] were developed based on the predefined distributions

of the channel parameters and distribution of effective scatterers with their ge-

ometric information such as angles of departure and arrival, and delay. All the

parameters in [28, 38, 69] were obtained from an extensive set of channel measure-

ments. However, parameterizations of these models are currently lacking because

of the limited MMW channel measurement data.

The geometry-based stochastic approach has also been adopted in analytical
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channel models. Examples are in [72, 73, 20]. Specifically, the authors in [72]

modeled all the buildings in an urban area as random lattices with a constant

occupancy probability. A closed-form expression for the propagation depth, i.e.,

the probability that a ray undergoes the successive reflection steps at a certain

level of lattices, has been proposed based on the assumption that the ray enters

the lattice area at a prescribed incident angle. In [73], the lattice environment

in [72] was extended by removing the restriction of the incident angle. Such

refinement was achieved by modeling the propagation depth for the source of

ray that was placed inside the lattice. With such a system model, the authors

considered the possibility of the successive reflections at all propagation angles.

However, the existing models in [72, 73] have been mostly designed for the rich

scattering environment, which will not be valid for the sparse MMW channels.

Motivated by the previously discussed limitations, in this chapter we develop

a stochastic MMW channel model by considering all the first-order reflection

components of MMW signals in an urban area.

3.2 System Model

Consider an MMW communication link with a separation distance D between

the transmitter Tx and receiver Rx, both of which are equipped with omnidi-

rectional antennas with unit gains1. As illustrated in Fig. 3.1, the transmitter

and receiver are located at (−D/2, 0) and (D/2, 0), respectively, and the com-

munication link is surrounded by buildings that are randomly distributed in the

communication area. For simplicity, we ignore the heights of all buildings and so

a two-dimensional coordinate system as used in Fig. 3.1 is sufficient to describe
1Although directional antenna arrays are typically equipped in practical MMW cellular

systems, we only consider an omnidirectional antenna system here to provide an antenna-
independent channel model, which is desirable for the purpose of system analysis. A similar
treatment has also been adopted in [20, 27, 38]. One would obtain the PDP with directional
antenna by computing the convolution of the PDP with omni-directional antenna and the
antenna geometries.
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Table 3.1. Notation Summary
Notation Description
λ Point process of building centers
D Distance between the transmitter and receiver
C Center of building
l Length of building
w Length of building
θ Orientation of building
Lr The propagation distance of a first order reflection
τ Propagation delay
c The speed of light
f The carrier frequency
λf The signal wavelength of frequency f
ρ(τ) The path loss of a reflection path with propagation

delay τ
Φ The covered ratio
σ The mean value of the reflection loss

the system. In addition, the following assumptions are made for all the buildings

throughout this chapter.

1. Each building is of a rectangular shape specified by its center location C,

length l, width w and orientation θ, where θ is defined as the anti-clockwise

angle between the x-axis and the l-side of the building as shown in Fig. 3.1.

2. All the building centers {C} form a homogeneous PPP with density λ.

3. The lengths and widths of all buildings follow, respectively, independent

and identical distributions fL(l) and fW (w).

4. In each channel realization, the orientations of all buildings are the same,

following a uniform distribution2 over (0, π].

5. The surfaces of all buildings are sufficiently smooth such that all the non-

LoS paths follow the specular reflection law and the diffraction paths are
2This assumption is reasonable for modern cities where the buildings are normally aligned

at the same angle, but may not be accurate in old cities. A further investigation for the area
with different building orientations is left as a future work.
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Rx
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x
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(-D/2,0) (D/2,0)

Tx

Figure 3.1. System model for outdoor communications.

negligible as this propagation mechanism contributes to insignificant signal

strength at MMW bands [19, 70].

Table 3.1 contains the summary of notations used in this chapter. In this chapter,

our main focus is on the characterization of the channel PDP contributed by all

the first-order reflection paths.

3.3 Power Delay Profile Characterization

3.3.1 Derivation of PDP

In the above-considered system, the signal emitted from the transmitter may ar-

rive at the receiver via multiple propagation paths. Besides a direct LoS path, any

building in the communication area may potentially generate a reflection path,

depending on its location and orientation. Meanwhile, each potential reflection

path may also be blocked by some other buildings. Denote by Lr the propagation

distance of a first-order reflection path, which corresponds to a propagation delay
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of τ = Lr/c with c being the speed of light. The path loss along a reflection path

with propagation delay τ is obtained by the Friss free space equation as [74]

ρ(τ) =
(

λf
4πLr

)2

· 1
σ

= 1
(4πfτ)2 σ

(3.1)

where λf = c/f is the signal wavelength corresponding to the operating frequency

f , and σ denotes the mean value of the reflection loss. The reflection loss needs

to be considered here because in reality, when a signal is reflected, there must

be some power loss due to the absorption by the medium. Note that in principle

the value of the reflection loss depends on the incident angle, the properties of

the building material, (i.e., the dielectric constant and the conductivity), the

polarization of the incident wave, and the carrier frequency. However, taking

all these effects into consideration will significantly complicate the analysis. For

simplicity, in this chapter we use a constant mean value of the reflection loss σ

and leave the detailed treatment of the reflection loss for future work. The mean

value of σ is determined by exploiting the empirical model as in [75, 76]. A similar

treatment has also been adopted in [77, 78, 26].

Denote by E(NRF |τ1 ≤ τ ≤ τ2) the average number of the first-order reflection

paths with delays that are between τ1 and τ2. The density of the first-order

reflection paths with time delay τ can be obtained by

fSR(τ) = lim
|τ2−τ1|→0

E(NRF |τ1 ≤ τ ≤ τ2)
|τ2 − τ1|

. (3.2)

Then the average path loss of all the first-order reflection paths with a specific

common propagation delay τ can be modeled as

P (τ) = ρ(τ) · fSR(τ). (3.3)

In this chapter, we will derive an analytical expression for fSR(τ) by considering
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Tx Rx

D

x

y

R1R2

R3 R4

m

n

Figure 3.2. Examples of the reflection points on an ellipse with path length cτ . All buildings
in dashed and solid lines are, respectively, at the orientation of buildings θ ∈ (0, π/2] and
θ ∈ (π/2, π].

the random locations, sizes, and orientations of buildings, as detailed below.

In real communication environments, a first-order reflection path with delay

τ may be generated by a building with an arbitrary orientation θ. Thus, we can

express the function fSR(τ) as

fSR(τ) =
∫ π

0
fSR(τ |θ) · fθ(θ) dθ (3.4)

where fSR(τ |θ) is the density of the first-order reflection paths with time delay τ

when the building orientation is θ, and fθ(θ) is the probability density function

(PDF) of orientation θ. From assumption 4, we have fθ(θ) = 1/π.

Given the positions of the transmitter and receiver, a first-order reflection

path can be completely determined by its reflection point. Since all the first-

order reflection components with the same delay τ have the same path length Lr,

their reflection points can be elegantly characterized by using an ellipse model

as depicted in Fig. 3.2. The foci of this ellipse are chosen to be, respectively,
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the transmitter Tx and receiver Rx located at (−D/2, 0) and (D/2, 0). Then the

reflection points corresponding to the first-order reflection paths with the same

delay τ all lie on this ellipse with proper major radius m and minor radius n,

as illustrated in Fig. 3.2. Based on this ellipse model, we can readily conclude

that, for a given value of building orientation θ, there are four possible locations

of reflection points on the ellipse, which are denoted by R1, R2, R3 and R4 in

Fig. 3.2, respectively. Consequently, we have four exclusive events of the first-

order reflection paths with given τ and θ. Thus the function fSR(τ |θ) in (3.4)

can be rewritten as

fSR(τ |θ) =
4∑
i=1

fSRi(τ |θ) (3.5)

where fSRi(τ |θ) is the counterpart of fSR(τ |θ) contributed by the event when the

reflection point is located at Ri. Note that since the derivations of these four

terms in (3.5) are very similar to each other, our subsequent discussion will be

mainly focused on the first term, fSR1(τ |θ). In addition, we assume θ ∈ (π/2, π]

in what follows, as the related derivations, though the same as those for the case

of θ ∈ (0, π/2], involve slightly different notations.

Intuitively, a first-order reflection path that contributes to fSR1(τ |θ) can be

guaranteed if and only if the following two independent sub-events hold simultane-

ously: (a) there is a building with a proper location to generate such a first-order

reflection path with its reflection point located at R1, and (b) this reflection path

is not blocked by any other buildings. Mathematically, we can further decompose

the function fSR1(τ |θ) as

fSR1(τ |θ) = fRF1(τ |θ) · fNB1(τ |θ) (3.6)

where fRF1(τ |θ) is the density of sub-event (a) and fNB1(τ |θ) refers to the prob-

ability of sub-event (b). The detailed derivations of them are presented in, re-
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reflection path with R1 being its reflection point. (b) Reflection paths with path lengths cτ and
c(τ + ∆τ).(c) Geometry of the parallelogram FF ′I ′I.
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spectively, subsections 3.3.2 and 3.3.3 below.

3.3.2 Derivation of fRF1(τ |θ)

To facilitate the derivation of fRF1(τ |θ) in (3.6), we exploit the ellipse model as

in Fig. 3.3(a) to describe the coordinates of the reflection point R1, denoted by

(x, y). Mathematically we have

x2

m2 + y2

n2 = 1 (3.7)

where m and n are, respectively, the major radius and minor radius of the consid-

ered ellipse. Given the coordinates of the two foci, i.e., (−D/2, 0) and (D/2, 0),

and the fact that the sum of the distances between any point on the ellipse and

its two foci is the same and equals to Lr = cτ , we have

m = cτ

2 , (3.8)

and

n = 1
2
√
c2τ 2 −D2. (3.9)

Recalling the assumption that θ ∈ (π/2, π], we can see that the tangent line

of the ellipse across point R1 is coincident with the l-side wall of the building

that generates this first-order reflection path. Denote by ϕ the angle between

the x-axis and this tangent line and recall that θ represents the orientation of

all buildings. From Fig. 3.3 (a), we can express the slope of this tangent line by

implicitly differentiating (3.7) with respect to x as

tanϕ = tan θ = dy

dx
= −n

2x

m2y
, (3.10)
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or equivalently

y = −n2x

m2 tan θ . (3.11)

Combining (3.7), (3.8), (3.9) and (3.11), we can write the coordinates of point

R1 as

x = −c2τ 2 tan θ
2
√
c2τ 2 sec2 θ −D2

, (3.12)

y = c2τ 2 −D2

2
√
c2τ 2 sec2 θ −D2

. (3.13)

Now, let us assume that the above-considered reflection path is generated by

a building specified by the quadruple (C, l, w, θ). As illustrated in Fig. 3.3 (a),

the reflection point R1 may be at any point on the l-side wall of this building.

As a consequence, the center of the building C may also have numerous possible

locations, and all these locations form a line segment FI, where the two end

points F and I correspond to the critical cases when R1 falls on the two corners

of the building.

In practice, the probability of the sub-event that there is a building capable of

generating a first-order reflection path with its reflection point located at a specific

point, e.g., R1, is always zero. Therefore, in (3.6), we have defined fRF1(τ |θ) as the

density, instead of the probability, of such a sub-event. To derive the expression

of fRF1(τ |θ), we need to introduce a neighbourhood of R1, which is denoted by

NR1 . Consider the following event E1: conditioned on that all buildings have

orientation θ, there is at least one3 properly located building that is capable of

generating a first-order reflection path. Denote by P(E1|NR1) the probability of
3In practice, buildings should not be overlapped, which is not guaranteed in the homogeneous

PPP model in assumption 2. However, as the measure of the neighborhood NR1 vanishes to
zero, the overlapping probability will also converge to zero and thus the ignorance of overlapping
will not cause any error in our model. A similar treatment has also been adopted in [20].
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3.3. Power Delay Profile Characterization

such a reflection path with its reflection point falling within the neighbourhood

of R1, NR1 . Then we can express fRF1(τ |θ) as

fRF1(τ |θ) = lim
|NR1 |→0

P(E1|NR1)
|NR1|

(3.14)

where |NR1| is the measure of NR1 .

In this chapter, we choose NR1 to be the trajectory of R1 when the path length

varies from cτ to c(τ + ∆τ). Therefore, we have

|NR1| = c(τ + ∆τ)− cτ = c∆τ. (3.15)

It can be expected that, as the path length increases from cτ to c(τ + ∆τ), the

reflection point R1 will gradually move outwards to another position denoted by

R′1 in Fig. 3.3 (b). Consequently, the line segment FI will also gradually move

outwards to another line segment denoted by F ′I ′ in Fig. 3.3 (c). In other words,

P(E1|NR1) in (3.14) is equal to the probability of the event that the center of the

building falls in the region swept by the line segment FI during the movement.

Note that this area may not be of a regular parallelogram shape, as the trajectory

of the reflection point from R1 to R′1 may not be a straightforward line segment.

However, when ∆τ → 0, we can asymptotically regard the trajectory of R1R
′
1 as

a line segment, and in turn regard the region FF ′I ′I as a parallelogram, whose

area is calculated in the following lemma.

Lemma 3.1. When ∆τ is sufficiently small, the area of the parallelogram FF ′I ′I

illustrated in Fig. 3.3 (c), which is denoted by SFF ′I′I , is given by

SFF ′I′I = lc2τ∆τ
2
√
c2τ 2 −D2 cos2 θ

. (3.16)

The detailed derivation of (3.16) can be found in Appendix A.1.

Next, let Φ(l, w) be a point process for the centers of buildings with the same
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length l and width w. Since Φ(l, w) is a subset of the point process of the centers

of all buildings {C}, it is thus a PPP with density λl,w = λfL(l)dlfW (w)dw [20].

Denote by KRF1(l, w) the number of buildings falling in SFF ′I′I with their cen-

ters belonging to Φ(l, w). Consequently, KRF1(l, w) is a Poisson variable with

expectation

E[KRF1(l, w)] = λl,w · SFF ′I′I

= λl,w
lc2τ∆τ

2
√
c2τ 2 −D2 cos2 θ

. (3.17)

Note that KRF1(l, w) is an independent Poisson random variable for different

values of l and w. Thus, by the superposition property of Poisson random

variables [62], the total number of buildings falling within SFF ′I′I is KRF1 =∑
l,wKRF1(l, w). The expectation of KRF1 is given by

E[KRF1 ] =
∫
L

∫
W

λlc2τ∆τ
2
√
c2τ 2 −D2 cos2 θ

fW (w) fL(l) dwdl

= λ
E[l]c2τ∆τ

2
√
c2τ 2 −D2 cos2 θ

. (3.18)

Finally, on the basis of (3.18) and by recalling the definition of fRF1(τ |θ) in

(3.14), we have the following theorem.

Theorem 3.1. The density of the sub-event that there is a building with orienta-

tion θ to generate a first-order reflection path with delay τ and its reflection point

located at R1, is given by

fRF1(τ |θ) = λ
E[l]cτ

2
√
c2τ 2 −D2 cos2 θ

. (3.19)

The proof of Theorem 3.1 can be found in Appendix A.2.
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3.3.3 Derivation of fNB1(τ |θ)

Next, let us move our focus to the derivation of fNB1(τ |θ) in (3.6). Suppose that

there is a properly located building that can potentially generate a first-order

reflection path with its reflection point being at R1. As illustrated in Fig. 3.4,

this potential reflection path consists of two line segments, i.e., TxR1 and R1Rx.

It is therefore easy to see that this reflection path can practically exist only if

neither of the two line segments, TxR1 and R1Rx, is blocked by other buildings.

Following a similar argument as the blockage analysis of a LoS link in [20], we

can conclude that, the probability that the line segment TxR1 is not blocked by

buildings with length l and width w is equal to the probability that there is no

such buildings whose centers lie within the region JKQTSM as illustrated in

Fig. 3.4. Similarly, the blockage region for the line segment R1Rx is the region

UPQTZW . In summary, the probability fNB1(τ |θ) contributed by buildings with

length l and width w is equal to the probability that there are no such buildings

whose centers lie within the blockage region JKQTZWUEM . This blockage
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region is of a non-convex and irregular shape, whose area is given in the following

lemma.

Lemma 3.2. A simple yet accurate approximation for the area of the blockage

region JKQTZWUEM , as illustrated in Fig. 3.4, is given by

SJKQTZWUEM ≈ l
√
c2τ 2 −D2 cos2 θ + wD |cosθ|+ lw

− l(cτ −D)
4 − l2

√
c2τ 2 −D2

8D . (3.20)

The detailed derivation of (3.20) can be found in Appendix A.3.

Denote by KNB1(l, w) the number of buildings with length l and width w

whose centers fall in the blockage region JKQTZWUEM . Again, we can see

that KNB1(l, w) is a Poisson random variable with expectation

E[KNB1(l, w)] ≈ λl,w · SJKQTZWUEM

= λl,w

(
l
√
c2τ 2 −D2 cos2 θ + wD |cosθ|+ lw − l(cτ −D)

4 − l2
√
c2τ 2 −D2

8D

)
.

(3.21)

With KNB1(l, w) being an independent Poisson random variable for a specific

value of l and w, the total number of buildings falling within the blockage region

SJKQTZWUEM is KNB1 = ∑
l,wKNB1(l, w), whose mean value can be calculated

as

E[KNB1 ] ≈
∫
L

∫
W
E[KNB1(l, w)]fW (w) fL(l) dwdl

= λ

(
E[l]
√
c2τ 2 −D2 cos2 θ + E[w]D |cosθ|+ E[l]E[w]− E[l](cτ −D)

4

− E[l]2
√
c2τ 2 −D2

8D

)
. (3.22)

Consequently, on the basis of (3.22), we have the following theorem.
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Theorem 3.2. Conditioned on that all buildings have orientation θ, the probabil-

ity that a first-order reflection path with propagation delay τ and reflection point

located at R1, is not blocked by other buildings is given by

fNB1(τ |θ) ≈ exp
(
−λ

(
E[l]
√
c2τ 2 −D2 cos2 θ + E[w]D |cosθ|+ E[l]E[w]

− E[l](cτ −D)
4 − E[l]2

√
c2τ 2 −D2

8D

))
. (3.23)

The proof of Theorem 3.2 is given in Appendix A.4.

3.3.4 Derivation of fSR(τ)

Combining the results derived in the previous two subsections, we are now ready

to present the closed-form expression for fSR(τ). Recalling the definition of a first-

order reflection path in (3.6), we can rewrite the function fSR1(τ |θ) by substituting

(3.19) and (3.23) into (3.6) as

fSR1(τ |θ) ≈ λE[l]cτ
2
√
c2τ 2 −D2 cos2 θ

· exp
(
−λ

(
E[l]
√
c2τ 2 −D2 cos2 θ + E[w]D |cosθ|

+ E[l]E[w]− E[l](cτ −D)
4 − E[l]2

√
c2τ 2 −D2

8D

))
. (3.24)

After similar derivations as those for (3.24), we can obtain

fSR2(τ |θ) ≈ λE[w]cτ
2
√
c2τ 2 −D2 cos2 θ

· exp
(
−λ

(
E[w]
√
c2τ 2 −D2 cos2 θ + E[l]D |cosθ|

+ E[w]E[l]− E[w](cτ −D)
4 − E[w]2

√
c2τ 2 −D2

8D

))
, (3.25)

fSR3(τ |θ) = fSR1(τ |θ), (3.26)
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and

fSR4(τ |θ) = fSR2(τ |θ). (3.27)

Therefore, we have

fSR(τ |θ) =
4∑
i=1

fSRi(τ |θ)

≈ λE[l]cτ√
c2τ 2 −D2 cos2 θ

· exp
(
−λ

(
E[l]
√
c2τ 2 −D2 cos2 θ + E[w]D |cosθ|

+ E[l]E[w]− E[l](cτ −D)
4 − E[l]2

√
c2τ 2 −D2

8D

))

+ λE[w]cτ√
c2τ 2 −D2 cos2 θ

· exp
(
−λ

(
E[w]
√
c2τ 2 −D2 cos2 θ + E[l]D |cosθ|

+ E[w]E[l]− E[w](cτ −D)
4 − E[w]2

√
c2τ 2 −D2

8D

))
. (3.28)

Note that the expression (3.28) is derived based on the assumption of θ ∈

(π/2, π] defined in Section 3.3.1. For the case when θ ∈ (0, π/2], as illustrated

in Fig. 3.2, we can see that the angle between the x-axis and the tangent line of

the ellipse across point R1 is ϕ = θ + π
2 . Hence following a similar derivation as

(3.10), the slope of the tangent line across point R1 in this case is given by

tanϕ = tan
(
θ + π

2

)
= dy

dx
= −n

2x

m2y
. (3.29)

Next, to obtain the function fSR(τ |θ) for the case when θ ∈ (0, π/2], we can follow

the similar derivations as those from (3.5) to (3.28), except that we replace the

expression for the slope of the tangent line in (3.10) with (3.29) and exchange the
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building parameter l and w. Thus, we have

fSR(τ |θ) =
4∑
i=1

fSRi(τ |θ)

≈ λE[w]cτ√
c2τ 2 −D2 cos2 ϕ

· exp
(
−λ

(
E[w]

√
c2τ 2 −D2 cos2 ϕ+ E[l]D |cosϕ|

+ E[w]E[l]− E[w](cτ −D)
4 − E[w]2

√
c2τ 2 −D2

8D

))

+ λE[l]cτ√
c2τ 2 −D2 cos2 ϕ

· exp
(
−λ

(
E[l]

√
c2τ 2 −D2 cos2 ϕ+ E[w]D |cosϕ|

+ E[l]E[w]− E[l](cτ −D)
4 − E[l]2

√
c2τ 2 −D2

8D

))
(3.30)

where ϕ = θ + π
2 .

Finally, by substituting (3.28) and (3.30) into (3.4), we can obtain the closed-

form expression for fSR(τ) as

fSR(τ) ≈ ζ1

(
8η
π

(1 + ηβ1)tanh−1
(
π

8η2

)
− β1

)

+ ζ2

(
8η
π

(1 + ηβ2)tanh−1
(
π

8η2

)
− β2

)
(3.31)
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where

ζ1 = λE[l]a exp
(
λE[l]

(
D(a− 1)

4 −Dη − E[w]
)

+ λE[l]2
√
a2 − 1

8

)

× exp
(
λE[w]D(a− η)√

a2 − 1− a

)

ζ2 = λE[w]a exp
(
λE[w]

(
D(a− 1)

4 −Dη − E[l]
)

+ λE[w]2
√
a2 − 1

8

)

× exp
(

+λE[l]D(a− η)√
a2 − 1− a

)

β1 = λD

(
E[l] + E[w]√

a2 − 1− a

)

β2 = λD

(
E[w] + E[l]√

a2 − 1− a

)

η =
√
a2 − (1/2)

a = Lr
D

= cτ

D
.

The detailed derivation of (3.31) can be found in Appendix A.5.

3.3.5 PDP and Average Number of the First-Order Re-

flection Paths

We now return to the PDP contributed by all the first-order reflection paths as

defined in (3.3). Substituting (3.31) into (3.3), we have

P (τ) ≈ρ(τ) ·
ζ1

(
8η
π

(1 + ηβ1)tanh−1
(
π

8η2

)
− β1

)

+ ζ2

(
8η
π

(1 + ηβ2)tanh−1
(
π

8η2

)
− β2

). (3.32)

In brief, the values of ζ1, ζ2, β1 and β2 in (3.32) all depend on the average dimen-

sions of the buildings E[l] and E[w], and the density of the buildings λ. Thus we

can conclude that the behavior of PDP contributed by all the first order reflec-

tion paths varies with these environment parameters. We will further discuss the
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effect of these parameters in the next section.

Note that, although the resultant expression (3.32) is a bit complicated, it

is much more efficient to be used for analyzing the PDP compared to numerical

simulations. Therefore, the derived expression can effectively facilitate the system

modeling and greatly reduce the time for numerical simulations, which is the key

contribution of our work.

On top of (3.32), we can obtain the total path loss of a link by combining

the average path loss of an LoS component and the average path loss of the first-

order reflection paths, which are denoted by E[PLoS] and E[PRef ], respectively.

The total path loss of a link is given by

E[Pt] = E[PLoS] + E[PRef ]. (3.33)

In (3.33), the average path loss of the LoS component is given by [20]

E[PLoS] = 1
(4πfτ0)2 ·

exp
(
−2λ(E[L] + E[W ])D

π
− λE[L]E[W ]

)
(3.34)

and the average path loss of the first-order reflection paths can be obtained by

E[PRef ] =
∫ τmax

τ0
P (τ) dτ. (3.35)

In (3.35), τ0 is the minimum propagation delay of all the first-order reflection

paths, which is lower bounded by the propagation delay of the LoS path, i.e.,

we can set τ0 = D/c. Similarly, τmax is the maximum propagation delay of all

first-order reflection paths, which should be set as τmax = +∞ theoretically.

As a by-product, the average number of the first-order reflection paths, which
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Figure 3.5. Comparison between the exact and approximated total blockage area for the orien-
tation of buildings θ ∈ (0, π).

is denoted by E[fSR], can be derived from (3.31) as

E[fSR] =
∫ τmax

τ0
fSR(τ) dτ. (3.36)

3.4 Numerical Results and Discussions

In this section, we will present some numerical examples to validate the accuracy

of the proposed analytical model and discuss the impact of environment features,

e.g., building dimensions and density, on the PDP and the average number of the

first-order reflection paths.

3.4.1 Validation of the Blockage Area Approximation (3.20)

First, let us verify the accuracy of the blockage area approximation in (3.20).

In Fig. 3.5, both the exact total blockage area and the approximation (3.20) are

plotted as functions of the building orientation θ when D = 100 m, l = 55 m

and w = 50 m. After comparison, we observe that the approximation involved
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Figure 3.6. An example of a point-to-point link with distance D = 100 m. This link is
surrounded by randomly located buildings with l ∈ [54, 56] and w ∈ [49, 51].

in (3.20) is very accurate for small values of the path length Lr in the whole

interval θ ∈ (0, π]. Though the gap between the exact and approximation curves

becomes visible as the value of Lr increases, we observe that by using (3.20),

we will underestimate the blockage area when the value of θ is close to 0 or π,

and overestimate the blockage area when the value of θ is close to π/2. Recall

from (3.4) that the function fSR(τ) involves the integration with respect to θ

from 0 to π. Intuitively, after performing the integration, we can expect that the

overestimated and underestimated areas will cancel each other to a certain extent

and reduce the approximation error. We will further verify the accuracy of this

approximation in the next subsection.

3.4.2 Effects of Environment Parameters on PDP

We now set about validating our analytical results and discussing the effect of en-

vironment features on the PDP contributed by all the first-order reflection paths.

We consider a point-to-point link with distance D = 100 m and operating fre-

quency f = 73 GHz. Both the transmitter and receiver are equipped with a single
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omnidirectional antenna with unit gain. Such a link is surrounded by randomly

distributed and identically orientated buildings. The lengths and widths of the

buildings are uniformly distributed in certain intervals. The center locations of

all the buildings in this area form a homogeneous PPP with density λ. For the

ease of subsequent discussions, we denote Φ as the fraction of land covered by

buildings in the investigated area, i.e., Φ = 1 − exp(−λE[l]E[w])[20], which we

refer to as the covered ratio.

Given the detailed parameter setting in the above system, the PDP con-

tributed by all the first-order reflection paths can be analytically obtained by

(3.32). Besides, we also provide the simulation results of the PDP contributed by

all the first-order reflection paths in the following way. We consider a square area4

of 500× 500 m2 as illustrated in Fig. 3.6, where the transmitter and receiver are

located at (200m, 250m) and (300m, 250m), respectively. In each channel realiza-

tion, we first randomly generate buildings within this square area based on the

given building parameters. Then we follow the ray-tracing principle and the law

of reflection to check if every single side wall of each building is able to generate

a first-order reflection path between the transmitter and receiver. The blockage

status of the potential first-order reflection paths is then further verified. We

set the reflection loss σ = 3 dB. Each first-order reflection path is specified by

its time delay, and the corresponding path loss can be calculated consequently.

After simulating a sufficiently large number of channel realizations, we sort all

the collected first-order reflection paths by their time delays and classify them

into pre-partitioned time delay intervals. Finally, the sum path loss of all the

first-order reflection paths in each interval is divided by the product of the in-

terval width and the total number of channel realizations. The resultant ratios
4An infinite area should be considered here theoretically, but this is impossible in simulations.

However, we argue that only considering such a finite square area is sufficient, as the PDP is
mainly contributed by short reflection paths and the received power through those long reflection
paths is very insignificant after much severer propagation loss. We have numerically verified
this via varying the size of this square area.
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are referred to as the simulated PDP contributed by all the first-order reflection

paths.

Fig. 3.7 compares the analytical and simulated PDPs under various building

environments. In each sub-figure of Fig. 3.7, three values of the covered ratio,

i.e., Φ = 0.05, 0.2 and 0.4, are considered, which represent sparse, medium and

dense building environments, respectively. In addition, three different pairs of

length and width distributions are considered in Figs. 3.7(a), 3.7(b) and 3.7(c) to

observe the effect of the building dimensions on PDP. Specifically, we assume the

uniform distributions of l ∈ [9 m,11 m] and w ∈ [9 m,11 m] in Fig. 3.7(a); those of

l ∈ [54 m,56 m] and w ∈ [49 m,51 m] in Fig. 3.7(b), and those of l ∈ [149 m,151 m]

and w ∈ [149 m,151 m] in Fig. 3.7(c), which represent small, medium and large

sizes of buildings, respectively. From these figures5, we can make the following

observations.

• The analytical PDP derived in (3.32) is numerically very accurate in all

scenarios, which indicates that the error incurred by the blockage area ap-

proximation in (3.20) is negligible. Note that the calculation of equation

(3.32) only takes less than a second, whereas the time of obtaining those

simulation curves in Fig. 3.7 is measured in days. Therefore, though the

expression in equation (3.32) looks complex, it provides a very efficient way

to analyze the PDP.

• Given the distributions of building dimensions, there exists the most prefer-

able value of covered ratio between 0 to 1 that leads to the maximum PDP

curve. This is straightforward as in one extreme of Φ = 0, there is no

building to generate reflections, whereas in another extreme of Φ = 1, the

land is all covered by buildings and so all potential reflection paths will be

blocked. Therefore, the value of Φ that leads to the maximum PDP curve
5Note that the simulated PDP for the case of Φ = 0.4 is not presented in Fig. 3.7(a), because

the related simulation is measured in months and very time-consuming.
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Figure 3.7. Comparison between analytical and simulated PDP. The dimensions of buildings
are (a) l ∈ [9 m,11 m] and w ∈ [9 m,11 m], (b) l ∈ [54 m,56 m] and w ∈ [49 m,51 m], (c)
l ∈ [149 m,151 m] and w ∈ [149 m,151 m].
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must fall between 0 and 1.

• The most preferable value of Φ increases with the sizes of buildings, i.e.,

the length and width. For example, with small buildings in Fig. 3.7(a), the

PDP curve for Φ = 0.05 is the highest among the three PDP curves. As

the building sizes increase, in Fig. 3.7(b) and Fig. 3.7(c), the highest ones

are achieved when Φ = 0.2 and 0.4, respectively. Thus we can have this

observation qualitatively.

• The PDP curves decrease faster with the time delay τ when the building

size is smaller or the covered ratio is larger. For example, by comparing the

PDP curves for the case of Φ = 0.05 in all subfigures, it is seen that the slope

of the PDP curve in Fig. 3.7(a), i.e., for small buildings, is sharper than

the other PDP curves. In addition, it is also seen from Fig. 3.7(a) that the

PDP curve for Φ = 0.4 has the sharpest slope among other PDP curves.

This is because the existence of dense buildings in small dimensions will

significantly increase the blockage probability of the first-order reflection

paths.

Next, we compare the average path loss contributed by the first-order reflec-

tion paths in (3.35) with the average path loss contributed by the LoS path in

(3.34). We use the same system setting and building parameters as in Fig. 3.7.

Thus, we have the lower bound of the time delay in (3.35) τ0 = D/c = 0.33µs. To

facilitate the numerical integration in (3.35), we set the upper bound in (3.35) to

be a sufficiently large but finite value6. Fig. 3.8 plots the average path loss con-

tributed by the first-order reflection paths and LoS path as functions of covered

ratio Φ. From this figure, we can make the following observations.
6Theoretically, τmax should be +∞, but it is impossible in the numerical integration. How-

ever, the finite value of τmax is a reasonable setting because in practice, the reflected waves
with long delays contribute to insignificant received powers, which can be ignored. A similar
treatment has also been adopted in [79, 80].
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Figure 3.8. Effect of the covered ratio on the average path loss.

• Different from the monotonously decreasing LoS curves, the average path

loss contributed by the first-order reflection paths exhibits as a concave

function of the covered ratio. The optimal scenario that leads to the min-

imum absolute value of the average path loss occurs when Φ is between 0

and 1.

• In systems with Φ higher than this optimal scenario, the average path loss

contributed by all the first-order reflection paths becomes comparable with

that contributed by the LoS path, indicating that the reflection paths are

not ignorable in these cases.

• The value of Φ corresponding to this optimal scenario increases as the size

of buildings increases. For example, it is seen from Fig. 3.8 that the most

preferable value of covered ratio for the small, medium and large buildings,

are respectively around, Φ = 0.05, Φ = 0.2 and Φ = 0.4.

Then, in Fig. 3.9, we plot the total path loss, the average path loss of the LoS

and the average path loss of the first-order reflection paths, which are respectively
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Figure 3.9. Effect of Tx-Rx distance on the average path loss.

obtained by (3.33), (3.34) and (3.35), as functions of Tx-Rx distance D. We use

the average sizes of building E[L] = E[W ] = 10 m, which represent small sizes of

buildings. Two values of covered ratio Φ are considered, i.e., Φ = 0.05 and 0.4.

From this figure, we can make the following observations.

• In the system with a low value of Φ, the total path loss is dominated by

the contribution of the LoS path, especially at the short Tx-Rx distance.

• Given the average sizes of buildings, there exist an optimum value of D at

which both the LoS and the first-order reflection paths contribute to the

same average path loss.

• The value of the optimal D decreases as the covered ratio Φ increases.

From Fig. 3.9, it is seen that the value of the optimal D for the covered

ratio Φ = 0.05 and Φ = 0.4, are respectively, 390 m and 30 m.

The same observations are found for the cases of medium and large sizes of

buildings.
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Figure 3.10. Effect of the covered ratio on the average number of the first-order reflection paths.

3.4.3 Average Number of the First-Order Reflection Paths

Finally, we discuss the effect of the environment features on the average number

of the first-order reflection paths E[fSR]. Fig. 3.10 plots both the semi-analytical

and simulated E[fSR] as functions of covered ratio Φ, where the solid curves are

calculated based on (3.36) and numerical integration, and the black circles are

simulation results obtained by the same simulation process as in Section 3.4.2.

The following observations are made from Fig. 3.10.

• The semi-analytical E[fSR] in (3.36) is accurate in all scenarios. Although

we are unable to derive the closed expression for E[fSR], the semi-analytical

expression in (3.36) provides an efficient way to analyze the contribution of

the first-order reflection paths.

• All E[fSR] curves exhibit a unimodal property in the range Φ ∈ [0, 1]. These

curves first increase monotonically as Φ increases from zero. After achieving

their maximum points, these curves decrease with the increasing value of

Φ.
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• There exists a peak point for each E[fSR] curve, which indicates the most

preferable value of the covered ratio that leads to the maximum E[fSR].

The most preferable value of the covered ratio Φ increases with the size

of buildings. This observation is consistent with the behavior of PDP in

Section 3.4.2.

3.5 Chapter Summary

In this chapter, we proposed a novel geometry based channel model to evaluate

the PDP contributed by all the first-order reflection paths. From the developed

model, we investigated the effects of building density and sizes on the PDP and

the average number of the first-order reflection components. The results show

that the behavior of the PDP depends on the building sizes and density. Small

building size and large covered ratio may lead to a significant decrease in PDP.

Also, the results demonstrate that there exits an optimal communication distance

that render the comparable power between the reflection paths and the LoS path.

The findings in this chapter can provide useful insights to develop more complex

channel models applicable to future MMW systems.

48



Chapter 4

Multi-cell Coordination via

Disjoint Clustering in Dense

Millimeter Wave Cellular

Networks

This chapter investigates the performance of base station (BS) coordination via

disjoint clustering in dense MMW cellular networks. Using tools from stochastic

geometry, we derive the coverage probability and area spectral efficiency (ASE) by

incorporating the key features of MMW systems, i.e., blockage and directional an-

tennas. Simulation results are provided to validate the accuracy of the analytical

results under various system parameters and demonstrate the performance supe-

riority of BS coordination via disjoint clustering over the non-coordinated case.

The results also suggest that the optimal cluster size to achieve the maximum

ASE increases as the blockage factor, which is determined by the density and the

average size of the buildings, decreases.
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4.1 Chapter Introduction

The concept of BS cooperation for inter-cell interference mitigation has been ex-

tensively studied in the past decades, see, e.g., [40, 41, 42, 43, 44]. Specifically,

numerical simulations with the assumption that the network follows a hexagonal

grid model has been conducted in [40] to evaluate the performance of large-scale

cellular networks. The simulation-based approach is often time-consuming and

may require a massive set of data to provide insights into the effect of system

parameters. Alternatively, stochastic geometry approach, which can provide ac-

curate and tractable analytical results, has been widely used in recent years to

analyze the coverage and rate of cellular networks. By using stochastic geome-

try, the works in [41, 42, 43, 44] assume that the locations of BSs are randomly

distributed following a Poisson point process (PPP). An exact expression of the

coverage probability for a typical user with pairwise BS cooperation has been

derived in [41]. In [42] and [43], benefits of beam-forming coordination in multi-

cell networks are analyzed. With the use of appropriate precoding, interference

signals from base-stations within the same cluster can be canceled out. On the

other hand, inter-cell scheduling among BSs within a cluster has been proposed

in [44]. It was assumed that only one BS in a cluster transmits at each schedul-

ing instance. Such a scheduling scheme has been proven to successfully eliminate

the intercell interference and provides higher spectral efficiency than the full fre-

quency reuse scheme. However, the works in [42, 43, 44] focus primarily on

microwave cellular systems where the analysis does not incorporate the unique

channel characteristics and antenna features for the MMW networks.

More recently, cooperative multipoint transmission at MMW frequencies has

been analyzed based on the stochastic geometry approach in [81]. The effects of

non-fading and fading environments on the SINR coverage were analyzed under

the assumption that each user is served by a user-centric cluster of BSs. Al-

though the user-centric clustering scheme has been shown to improve the user
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performance especially for the cluster edge user, it still face many technical chal-

lenges including plenty of channel state information (CSI) acquisition overhead,

high computational complexity and limited backhaul networks [82].

Different from the work in [81], we consider a disjoint clustering approach

where a finite number of BSs is grouped to form multiple cooperation clusters.

The disjoint clustering is considered as a practical clustering method because it

only requires the CSI between all BSs and users to be shared among BSs in the

same cluster. Thus, the amount of CSI overhead is much smaller than in the user-

centric method [42]. We propose cluster-based intercell scheduling to mitigate the

intra-cluster interference signals. Characterizing the system performance in such

a multi-cell coordination strategy is a non-trivial problem, due to the location-

dependent of the resulting active BSs in each cluster. In this chapter, we present

analytical frameworks to analyze the coverage probability at the receiver and ASE

of the MMW system. The findings in this chapter provide useful insights into

the mitigation of inter-cell interference with BS clustering in the MMW cellular

systems.

4.2 System Model

4.2.1 Network Model

As shown in Fig. 4.1, we consider a MMW cellular network with randomly dis-

tributed BSs in a two-dimensional Euclidean space R2 according to a homoge-

neous PPP Φ with intensity λ. All BSs are assumed to have a constant transmit

power Pt. The entire network is divided into non-overlapping clusters, where each

cluster consists of a finite number of collocated BSs. Following the conventional

assumption on BS clusters [43, 83, 42], we generate the clusters by placing a

uniform square lattice with sides of length W on R2.

The locations of users are modeled following another homogeneous PPP Φu

51



4.2. System Model

Table 4.1. Notation Summary
Notation Description
Φ,λ Point process and intensity of BSs.
Φu,λu Point process and intensity of UEs.
pL,pN Probability of LoS and non-LoS.
aL,aN Path loss exponents for LoS and non-LoS.
β Blockage factor.
δ Path loss intercept.
BW MMW bandwidth.
σ2 Noise.
Mb, mb, ωb Main lobe gain, back lobe gain and main lobe

beamwidth of the BS.
Mu Antenna gain of the user
G(θ) Antenna gain as a function of steering angle.
θ The steering angle.
Pt The transmit power.
W The side of a square.

0

W

W

C1 C2 C3

C4 C0 C5

C8C6 C7

Figure 4.1. System model for MMW cellular networks with random buildings. The blue rect-
angles represents the random buildings. The red circle represents the typical user. The shaded
triangles are the active nodes and the clear triangles are the inactive nodes.
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with intensity λu. The communications between users and their associated BSs

are surrounded by randomly distributed buildings in the communication area.

Due to the presence of these buildings, the BS can be either line-of-sight (LoS)

or non-LoS to its associated user. We adopt the blockage model in [20, 84] to

characterize the blockage effects on the system performance. By incorporating

such a model, the probabilities of LoS and non-LoS links, are respectively given

by, pL(x,y) = e−β|x−y| and pN(x,y) = 1− e−β|x−y|, where |x− y| represents the

distance from x to y and β is the blockage factor, which is determined by the

density and the average size of the buildings. Larger beta indicates higher building

density so that the MMW signal is more likely to be blocked. Following [20], we

assume that the blockage effects for different links are independent since the error

of ignoring the correlation of blockage effects between links is marginal. The path

loss exponent of a link, which is denoted by α, is modeled as a discrete random

variable, where it takes on values α = αL with probability pL(x,y) for LoS, and

α = αN with probability pN(x,y) for non-LoS, respectively.

We assume that each user is equipped with an omnidirectional antenna1 with

antenna gain Mu. All BSs are assumed to have steerable antennas. We use a

sectored antenna model as in [61, 50, 21] to model the actual antenna pattern.

The sectored antenna model is characterized by three parameters, i.e., main lobe

gain Mb, back lobe gain mb, and main lobe beamwidth ωb. The BS antenna gain

as a function of the steering angle θb is given by

G(θ) =


Mb |θb| ≤ ωb

mb elsewhere.

We assume a perfect beam aligment between the user and its serving BS,

where the total directivity gain of the desired link is MbMu. The beams for all
1Directional antennas can also be used at the user terminals. The derived formula can be

easily extended for the case when the users have directional antennas. A similar treatment has
been adopted in [21, 81, 84].
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the interfering BSs are assumed to be randomly oriented with respect to each

other. Thus, the steering angle of all interfering BSs is modeled as a uniform

random variable over (0, 2π]. Correspondingly, the total directivity gain from a

BS at x to a user at y, denoted by Dx,y, can be modeled as a discrete random

variable, where it takes on values a1 = MbMu with probability b1 = ωb
2π , and

a2 = mbMu with probability b2 = 1− ωb
2π .

Each user is assumed to be associated with the BS that has the smallest

path loss among all BSs in the cooperating cluster. We also assume that the

serving BS is located in the same cluster at which the user is located. Note

that there is a possibility that the serving BS lies outside the cluster at which

the user is located. However, such an event occurs with negligible probability,

especially when the density of the BSs is high [83]. For the intercell interference

coordination, we consider a cluster-based intercell scheduling, in which BSs in a

cluster cooperatively schedule their transmissions and choose a user to be served

based on the scheduling scheme. To provide fairness among all the users in the

cluster, we assume that the user takes a turn to be served in a round-robin

manner.

Table 4.1 contains the summary of notations used in this chapter.

4.2.2 SINR

Based on the stationarity of the PPP, we consider the average performance of a

reference user (termed the typical user) located at the origin 0 inside a reference

cluster (termed the typical cluster), which is denoted by C0, as shown in Fig. 4.1.

Such an average performance is equivalent to the average user performance in the

system [63]. Correspondingly, the location of the typical cluster center, which is

denoted by C, follows a uniform distribution over [−W
2 ,

W
2 ]. Denote by C0(c) the

square region of the typical cluster C0 centered at C = c with sides W . Note that

we define C , (Cx, Cy) and c , (cx, cy) throughout this chapter. The typical
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user is served by the BS in the typical cluster that has the smallest path loss and

located at x0. Thus, the SINR received by the typical user can be written as

SINR = hx0,0MbMuL(x0)
σ2

Pt
+∑

x∈Φb hx,0Dx,0L(x)
, (4.1)

where, h(·) is the small-scale fading term. Similar to those in [81], we assume

independent Rayleigh fading for each link, where h(·) is exponentially distributed

with unit mean. L(x) = δ|x|−α is the propagation loss where α equals to αL

with probability pL(x) for LoS link, and αN with probability pN(x) if the link

is non-LoS. δ represents the near-field path loss2, σ2 is the noise power, and Φb

denotes the subset of the point process Φ consisting of points in R2 \ C0(c).

4.3 Stochastic Geometry Analysis

In this section, we analyze the coverage probability of the typical user and the

ASE of the MMW cellular network.

4.3.1 SINR Coverage Probability

We define the SINR coverage probability as the probability that the instantaneous

SINR of a user is greater than a threshold t, which can be written as

Pc(t) = P (SINR > t) . (4.2)

In other words, expression (4.2) also implies the complementary cumulative dis-

tribution function (CCDF) of the SINR[21, 85, 84].

Conditioned on the typical user is located inside the typical cluster C0(c)

and this user is served by a BS that has the smallest path loss l, the coverage
2In the close-in path loss model[38, 3, 84], δ can be regarded as the path loss at distance of 1

meter, which is given by δ = 20 log10

(
2πd
λc

)
with d = 1 meter and λc represents the wavelength

of the carrier frequency.
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probability of such a user can be computed as

P
(
hx0,0MbMuδl

−1

σ2 + I
> t

∣∣∣∣∣C = c, L = l

)
(a)= exp

(
tσ2l

δMbMu

)
E
[
exp

(
− tlI

δMbMu

)∣∣∣∣∣C = c, L = l

]

= exp
(

tσ2l

δMbMu

)
LI|C=c,L=l

(
tl

δMbMu

)
, (4.3)

where I = ∑
x∈Φb hx,0Dx,0L(x), (a) is based on the assumption that hx0,0 is an

exponential random variable with unit mean and LI|C=c,L=l (s) is the Laplace

transform of the random variable I evaluated at s = tl
δMbMu

, conditioned on the

typical user is located inside the typical cluster C0(c) and this user is served by a

BS that has the smallest path loss l.

To evaluate the conditional coverage probability in (4.3), we first compute the

conditional Laplace transform of I. In practice, the interfering signal is mainly

contributed by nearby BSs and the received power through those at far distance

from the typical user is marginal after much severer propagation loss. To maintain

the analytical tractability and result accuracy, we separate the overall interference

into two terms, i.e., the interference from adjacent clusters (denoted by Ii for

i = 1, 2, · · · , 8) and the interference from BSs located outside the adjacent clusters

(denoted by Iout). Thus, the conditional Laplace transform in (4.3) can be written

as

LI|C=c,L=l (s) =
8∏
i=1

E [exp(−sIi)|C = c, L = l]E [exp(−sIout)|C = c, L = l] ,

(4.4)

where each expectation is derived individually as follows.

When the cluster-based intercell scheduling is applied in the considered sys-

tem, it follows that only one BS in each cluster can be activated at a time. We ap-

proximate the location of the active BSs in the eight adjacent clusters of the typi-
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cal cluster, denoted by Ci with i = {1, 2, · · · , 8} in Fig. 4.1, as independently and

uniformly distributed over a square of sides W . Denote by C1(c), C2(c), · · · , C8(c)

the regions corresponding to the eight adjacent clusters of the typical cluster.

Then, to facilitate the derivation of E [exp(−sI1)|C = c, L = l], we denote X1 as

the location of the interfering BS from cluster C1(c). We define X1 , (X1, Y1)

and x1 , (x1, y1). Given that the interfering BS from cluster C1(c) is located at

X1 = x1, the conditional Laplace transform of I1 can be computed as

E [exp(−sI1)|C = c, L = l,X1 = x1]
(a)= E[exp(−shx1,0Dx1,0δ|x1|−αL)] exp (−β|x1|)

+ E[exp(−shx1,0Dx1,0δ|x1|−αN )] (1− exp (−β|x1|))

(b)=
2∑

k=1
bk

exp (−β|x1|)
1 + sakδ|x1|−αL

+
2∑

k=1
bk

(1− exp (−β|x1|))
1 + sakδ|x1|−αN

, (4.5)

where (a) follows from the fact that α = αL and α = αN with probability

pL(x1) and pN(x1), respectively. (b) uses the moment generating function of the

exponential random variable hx1,0 and the assumption that Dx1,0 is a discrete

random variable where a1 = MbMu and a2 = mbMu with probability b1 = θ
2π and

b2 = 1− θ
2π , respectively. Then, through unconditioning on X1, we have

E [exp(−sI1)|C = c, L = l] =

2∑
k=1

∫ cy−W2

cy− 3W
2

∫ cx−W2

cx− 3W
2

bk exp
(
−β

√
x2

1 + y2
1

)
1 + sakδ

√
x2

1 + y2
1
−αL fX1,Y1(x1, y1)dx1dy1

+
2∑

k=1

∫ cy−W2

cy− 3W
2

∫ cx−W2

cx− 3W
2

bk

(
1− exp

(
−β

√
x2

1 + y2
1

))
1 + sakδ

√
x2

1 + y2
1
−αN fX1,Y1(x1, y1)dx1dy1, (4.6)

where fX1,Y1(x1, y1) is the joint probability density function (PDF) of X1 and Y1.
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Since X1 and Y1 are uniformly distributed within a square of sides W , we have

fX1,Y1(x1, y1) =



1
W 2 cx − 3W

2 < x1 < cx − W
2 ,

cy − 3W
2 < y1 < cy − W

2

0 elsewhere.

(4.7)

By substituting (4.7) into (4.6), we attain an analytical expression for the condi-

tional Laplace transform of I1.

We can follow the similar procedures as in (4.5)-(4.6) to obtain the Laplace

transform of other Ii for i = 2, 3, · · · , 8, and replace the joint PDF in (4.7) for

each interference term. Let Xi , (Xi, Yi), for i = 2, 3, · · · , 8. The joint PDFs for

each Xi are given by

fX2,Y2(x2, y2) =



1
W 2 cx − W

2 < x2 < cx + W
2 ,

cy − 3W
2 < y2 < cy − W

2

0 elsewhere,

fX3,Y3(x3, y3) =



1
W 2 cx + W

2 < x3 < cx + 3W
2 ,

cy − 3W
2 < y3 < cy − W

2

0 elsewhere,

fX4,Y4(x4, y4) =



1
W 2 cx − 3W

2 < x4 < cx − W
2 ,

cy − W
2 < y4 < cy + W

2

0 elsewhere,
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fX5,Y5(x5, y5) =



1
W 2 cx + W

2 < x5 < cx + 3W
2 ,

cy − W
2 < y5 < cy + W

2

0 elsewhere,

fX6,Y6(x6, y6) =



1
W 2 cx − 3W

2 < x6 < cx − W
2 ,

cy + W
2 < y6 < cy + 3W

2

0 elsewhere,

fX7,Y7(x7, y7) =



1
W 2 cx − W

2 < x7 < cx + W
2 ,

cy + W
2 < y7 < cy + 3W

2

0 elsewhere,

fX8,Y8(x8, y8) =



1
W 2 cx + W

2 < x8 < cx + 3W
2 ,

cy + W
2 < y8 < cy + 3W

2

0 elsewhere.

Now, we derive the Laplace transform of Iout. The set of active BSs outside

the adjacent clusters is approximated by a PPP Φa with intensity λa = 1
W 2 . To

facilitate the derivation, we define

CT (c) ,


(x, y) ∈ R2 :

(
cx − 3W

2

)
≤ x ≤

(
cx + 3W

2

)
,(

cy − 3W
2

)
≤ y ≤

(
cy + 3W

2

)
 ,

which is the union of C0(c), C1(c), · · · , C8(c). The Laplace transform of Iout is
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given by

E [exp(−sIout)|C = c, L = l] (a)= exp
(
−λa

2∑
k=1

∫
R2\CT (c)

bk exp(−β|x|)
1 + sakδ|x|−aL

dx
)
×

exp
(
−λa

2∑
k=1

∫
R2\CT (c)

bk(1− exp(−β|x|))
1 + sakδ|x|−aN

dx
)
,

(4.8)

where (a) follows the definition of the probability generating functional (PGFL)

of PPP [63] and follows the same steps as (4.5).

Finally, from (4.3), we can obtain the unconditional coverage probability as

Pc(t) =
∫ ∞

0

∫ W
2

−W2

∫ W
2

−W2
exp

(
− tlσ2

δMbMu

)
×

LI|C=c,L=l

(
tl

δMbMu

)
fCx,Cy(cx, cy)fL(l)dldcxdcy, (4.9)

where fCx,Cy(cx, cy) is the joint PDF of Cx and Cy, which is given by

fCx,Cy(cx, cy) =


1
W 2 −W

2 < cx, cy <
W
2

0 elsewhere.
(4.10)

fL(l) is the PDF of L, which is given by [86]

fL(l) = Λ′(l) exp(−Λ(l)) (4.11)

with

Λ′(l) = 2πλ
αL

l
2
αL
−1
e−βl

1/αL + 2πλ
αN

l
2
αN
−1 (1− e−βl1/αN ) ,

and

Λ(l) =2πλ
β2

(
1− e−βl1/αL

(
1 + βl1/αL

))
+ πλl2/αN − 2πλ

β2

(
1− e−βl1/αN

(
1 + βl1/αN

))
.
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4.3.2 Area Spectral Efficiency

Another performance metric of interest is the area spectral efficiency (ASE),

which is defined as the maximum data rate per unit area normalized by the

bandwidth. The ASE in bps/Hz/km2 is given by [85]

ASE = λ
∫ Tmax

0
log2(1 + t)fT (t)dt (4.12)

where Tmax is the maximum working SINR and fT (t) is the PDF of the SINR

received by the typical user. Since Pc(t) is equal to the CCDF of the SINR, the

cumulative distribution function (CDF) of the SINR can be written as

FT (t) = 1− Pc(t). (4.13)

Then, the PDF of T can be expressed as the derivative of its CDF, which is

written as

fT (t) = ∂FT (t)
∂t

. (4.14)

By substituting (4.14) into (4.12), we can obtain the analytical expression for the

ASE.

4.4 Numerical Results

In this section, we provide numerical simulations to validate our analytical results.

We also demonstrate the effect of BS coordination on the coverage probability

Pc(t) and ASE. We consider an MMW cellular network operating at a frequency

f = 73 GHz with bandwidth of 100 MHz allocated to each user. In order to study

the effectiveness of the proposed interference mitigation, we consider the BS in-

tensity λ = 400/km2, which represents an interference-limited MMW cellular
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Figure 4.2. Comparison between the analytical and simulated coverage probability for W =
50, 100, 200.

network [87]. Besides, we set the intensity of user λu = 1000/km2 to ensure that

all BSs have at least one user to serve. The path LoS and non-LoS path loss ex-

ponents are set to αL = 2.5 and αN = 4, respectively. The parameters for the sec-

tored antenna model at the BSs are set toMb =18 dBi, mb =-2 dBi, ωb =10o [88].

The noise power is given by σ2(dBm)= −174 dBm/Hz+10 log10(BW ) + 10 dB.

With the given system parameters, the system coverage probability can be

analytically obtained by using (4.9). Besides, we also provide the simulation

results that are obtained from Monte Carlo simulations with 2000 random channel

realizations in the following ways. We consider a square area of 3000x3000 m2. In

each channel realization, we first randomly generate BSs according to a PPP with

intensity λ. Then, the entire area is divided into non-overlapping squares with

sides W . Users are randomly generated following another PPP with intensity λu.

In each cluster, an active user is randomly chosen and this user is served by a BS

that provide the strongest received power.

Fig. 4.2 compares the analytical and simulated coverage probabilities of the

typical user for various value of W . Here, we assume that the blockage factor
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β = 0.005 to represent a dense building environment. In this figure, three values

of W are considered, i.e., W = 50, W = 100 and W = 200. In addition, we also

plot the coverage probability for the non-coordinated case, where all the BSs in

the network are assumed to transmit at the same time. From this figure, we can

make the following observations.

• The analytical expression derived in (4.9) is numerically accurate in all sce-

narios, which validates our theoretical analysis for the coverage probability.

• The coverage probability increases with the size of the clusters. For exam-

ple, for the same threshold T = 15 dB, the coverage probability for the

cluster sizeW = 50 is 0.48, while forW = 200 is 0.94. Intuitively, the num-

ber of coordinating BS increases with the cluster size. With a larger cluster

size, the distance from the typical user to the interfering BS increases and

thus the interfering signal can be reduced.

• The coverage probability of the proposed model is higher than that of the

non-coordinated case. This can be explained by the fact that, as the num-

ber of transmitting BSs increases, the interfering signals enlarge, which

potentially deteriorates the received signal at the typical user. By using the

cluster-based intercell scheduling, the number of simultaneously active BSs

in the network can be reduced, which consequently decreases the overall

interfering signals.

Next, in Fig. 4.3, we plot the analytical ASE, which is obtained by (4.12).

We use the same system setting as in Fig. 4.2 and Tmax = 20 dB. Three values

of building parameter β are considered, i.e., β = 0.005, 0.001, 0.0005, which rep-

resent dense, medium and sparse building environment, respectively. From this

figure, we can make the following observations.

• All ASE curves exhibit a unimodal property in the range W ∈ [20, 200].

More specifically, these curves first increase monotonically as W increases.
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Figure 4.3. ASE of MMW cellular networks as a function of cluster size W .

After achieving their maximum points, these curves decrease with the fur-

ther increasing value of W . By allowing the formation of larger clusters,

the number of simultaneously active BSs reduces. On one hand, more in-

terference signals can be removed and thus the coverage probability can be

improved. On the other hand, such a large cluster will significantly decrease

the ASE of the system.

• There exits a peak point for each ASE curve, which indicates that for a

given network setup, there is an optimum W that leads to the maximum

ASE. The value of the optimal W increases as the blockage factor β de-

creases. The intuitive reason is that in the sparse blockage environment,

the non-LoS interference paths are converted to LoS interference paths and

so the interfering signals at the receiver becomes stronger. As the size of

the cooperating cluster increases, the distance between the user and the

interfering BSs also increases, which consequently reduces the interfering

signal. Thus, the sufficiently large size of cooperating cluster leads to the

higher ASE.
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4.5 Chapter Summary

In this chapter, we proposed an inter-cell interference coordination strategy for the

dense MMW cellular networks. We modeled the locations of BS and user follow-

ing independent and homogeneous PPPs. By using the concepts from stochastic

geometry and incorporating the distinguishing features of MMW communica-

tions, we derived numerically tractable expressions for the coverage probability

and ASE for the downlink MMW cellular networks. The results showed that

the proposed BS coordination strategy outperformed the non-coordinated case in

terms of coverage probability. Also, the results demonstrated that there exists an

optimum cluster size that leads to the maximum ASE depending on the value of

the blockage parameter.
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Chapter 5

Uplink Performance Analysis for

Millimeter Wave Cellular

Networks with Clustered Users

This chapter investigates the uplink performance of the MMW cellular networks

with clustered users. By modeling the locations of users as of a PCP, we de-

rive tractable expressions to evaluate the SINR coverage probability for two user

association strategies. First, the closest selection (CS), where the nearest LoS

BS serves the user. Second, the strongest-selection (SS), where the user com-

municates with the BS that provides the strongest received signal among all BSs.

Numerical results are provided to validate the accuracy of the analytical model

under various system parameters. The results show that regarding SINR coverage

probability, the SS strategy outperforms the CS strategy in the environment with

dense blockages. The results also demonstrate that moderate FPC factors should

be used at the low SINR thresholds, while full FPC is optimal for the high SINR

thresholds.
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5.1 Chapter Introduction

Recently, PCPs are actively studied for modeling and analyzing heterogeneous

networks [66, 67, 89, 90, 91] and the device-to-device (D2D) [92] in microwave-

based communications. Specifically, the works in[66, 89] used the point process

formalism, which consists of multiple integrations leading to a complex analyt-

ical model and would increase the numerical computation time. An alterna-

tive way for any PCP based analysis is to incorporate the distance statistics as

in [92, 67, 90, 91]. However, as a result of the blockage effect and the unique

propagation characteristics, the results obtained for microwave networks are not

applicable to MMW networks. So far, there are limited discussions regarding the

PCP for MMW based communication except those in [93, 94]. While downlink

performance of ad hoc networks has been investigated in [93] using the Matern

cluster process (MCP) [65, Def. 3.6], the work in [94] presents the analysis for

evaluating the uplink performance of clustered D2D using Thomas cluster process

(TCP) [65, Def. 3.5]. However, the works in [93, 94] do not consider the power

control at the user equipment (UE), which is a critical system design feature in

the uplink transmission.

In this chapter, we analyze the performance of the uplink MMW cellular

networks in the clustered users scenario by incorporating the peculiarity charac-

teristics of MMW communications, power control, and user association strategies.

5.2 System Model

In this section, we introduce our system model for evaluating the performance

of uplink MMW cellular networks. We begin with the spatial distribution of

the transmitters and receivers. Then, we describe the channel model, the an-

tenna model, the user association strategies, and the FPC. Table 5.1 contains the

summary of notations used in this chapter.

67



5.2. System Model

Table 5.1. Notation Summary
Notation Description
Φb,λb Point process and intensity of BSs
Φu,λu Point process and intensity of UEs before association
Φ′u,λ′u Point process and intensity of UEs after association
Φp,λp Parent process of cluster centers and intensity of clusters
ΦL
p , ΦN

p Parent process of LoS and non-LoS clusters
κy,λd Daughter process of a cluster centered at y and intensity

of UEs in the cluster
κ0 The typical cluster centered at the origin
n The average number of simultaneously active UEs in a

cluster
Dc Radius of cluster
aL,aN LoS and non-LoS path loss exponents
c link status with c ∈ (L,N) for LoS and non-LoS
β Blockage factor
δ Path loss intercept
BW MMW bandwidth
σ2 Noise power
Mb, mb, ωb Main lobe gain, back lobe gain and main lobe

beamwidth of the BS
Mu,mu, ωu Main lobe gain, back lobe gain and main lobe

beamwidth of the UE
Gb(θb),
Gu(θu)

Antenna gain as a function of steering angle of the BS
and the UE, respectively

Gx,z The total directivity gain between x and z
ak, bk PMF parameter of the random variable Gx,z, bk is the

probability that Gx,z = ak for k ∈ {1, 2, 3, 4}
Rs Distance of the typical BS and its serving UE
Ra
x Distance of the typical BS and the intra-cluster interfer-

ing UE located at x
Re
x Distance of the typical BS and the inter-cluster interfer-

ing UE located at x
Ry Distance of the typical BS and the cluster center located

at y
Rt Distance of an interfering UE to its serving BS

5.2.1 Spatial Cellular Network Model

We consider the uplink of an outdoor MMW cellular network and focus on the

performance of outdoor users served by outdoor BSs, as depicted in Fig. 5.1. The

outdoor BSs are randomly distributed in a two-dimensional Euclidean space R2
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according to a homogeneous PPP Φb with intensity λb. The locations of UEs

are modeled following the PCP Φu with intensity λu. We consider a special case

of the Neyman-Scott PCP, i.e., MCP [65, Def. 3.6], where the parent points

(cluster centers) are modeled by an independent PPP Φp with intensity λp. The

locations of UEs for each cluster center are represented by a finite point process

κy following a uniform distribution in a circle-shaped cluster B(y, Dc) with radius

Dc and centered at y ∈ Φp. The PDF of UEs in the cluster is given by

f(x,y) =


1

πR2
c
, d = |x− y| ≤ Rc,

0, elsewhere,
(5.1)

where d is the distance of any arbitrary UE located at x relative to its cluster

center located at y. Specifically, the complete PCP, Φu, is given by

Φu =
⋃

y∈Φp
κy, (5.2)

where κy ∈ B(y, Dc) denotes the UEs point process with intensity λd.

We assume that each BS serves a single user per channel, where each user

takes a turn to be served in a round-robin manner [95, 96, 89, 94]. Therefore, we

model the location of active UEs by thinning theorem as in [89, 94], where the

location of all active UEs is modeled by PCP Φ′u with intensity λ′u = λb. Since

λ′u can also be represented as λ′u = λpλdπD
2
c , we have the average number of

simultaneously active UEs in the cluster as n = λdπDc
2 = λb

λp
, where λd is the

intensity of active UEs in a cluster.

The communications between UEs and their associated BSs are surrounded

by randomly distributed buildings in the communication area. Due to the severe

penetration loss encountered by the MMW signals when passing through these

buildings, a UE can be either LoS or non-LoS to its associated BS. We adopt

the blockage model in [50] to characterize the blockage effects on the system
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Figure 5.1. Examples of user distribution based on PCP with λp = 20/km2 and n = 5

performance. By incorporating such a model, the probability of LoS and non-

LoS links, are respectively given by, pL(r) = e−βr and pN(r) = 1 − e−βr, where

r represents the distance between a UE and BS, and β is the blockage factor,

which is determined by the density and the average size of the buildings.

For simplicity, we assume that all users in the finite point process cluster κy

have the same link status, denoted by c ∈ {L,N}1, where L is for LoS and N

for non-LoS. Consequently, from the perspective of the BS, the center of clusters

can be divided into two sub-processes: ΦL
p with intensity λppL(r) and ΦN

p with

intensity λppN(r) for LoS clusters and non-LoS clusters, respectively. Also, full

frequency reuse is assumed in the uplink transmission and all BSs have the same

available bandwidth BW , which is equally allocated across all users.
1In practice, users in the same cluster may appear as LoS or non-LoS status to the BS.

However, our simulation results show that assuming the same link status for all user in the
same cluster causes a minor error. The similar assumption is also made in [93].
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5.2.2 Antenna Model

All the MMW BSs and UEs are assumed to have directional antennas. We use a

sectored antenna model as in [50] to model the actual antenna pattern. The BS

antenna gain as a function of the steering angle θb, is given by

Gb(θb) =


Mb, |θb| ≤ ωb,

mb, elsewhere,
(5.3)

where Mb, mb and ωb are respectively, the main lobe gain, back lobe gain and

main lobe beamwidth of the BS antenna. The UE antenna gain as a function of

the steering angle θu is modeled in the similar manner such that

Gu(θu) =


Mu, |θu| ≤ ωu,

mu, elsewhere,
(5.4)

where Mu, mu and ωu are respectively, the main lobe gain, back lobe gain and

main lobe beamwidth of the UE antenna.

We assume a perfect beam aligment between the UE and its serving BS,

where the total directivity gain of the desired link is MbMu. Furthermore, for the

interfering link, we model the steering angle of UEs and BSs as independently and

uniformly distributed over (0, 2π]. For a given interfering UE located at x and

a BS at z, their total directivity gain is Gx,z = Gb(θb)Gu(θu). Correspondingly,

the total directivity gain Gx,z can be modeled as a discrete random variable [50]
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, which is given as

Gx,z =



a1 = MbMu, w.p. b1 = ωbωu
4π2 ,

a2 = Mbmu, w.p. b2 = ωb
2π

(
1− ωu

2π

)
,

a3 = mbMu, w.p. b3 =
(
1− ωb

2π

)
ωu
2π ,

a4 = mbmu, w.p. b4 =
(
1− ωb

2π

) (
1− ωu

2π

)
,

(5.5)

where ak is the probability distribution with probability (w.p.) bk and k ∈

{1, 2, 3, 4}.

5.2.3 User Association Strategies

We consider two user association strategies as in the following:

• Closest-selection (CS) : In this case, we only consider the LoS clusters,

where we assume that a user associates with the closest BS via LoS link

and the selection of a serving BS is based on distance.

• Strongest-selection (SS) : In this case, we consider both the LoS and non-

LoS clusters and assume that a user is served by the BS that provides the

maximum long-term averaged received power, i.e., the effect of fading is

ignored2.

5.2.4 User Fractional Power Control

Fractional power control (FPC) is employed at the UE to overcome the effects of

path loss and reshape the interference power [95]. In this work, we assume that

each UE utilizes a distance-proportional FPC, where the transmit power is given
2In this work, we follow the convention of stochastic geometric analysis (e.g., [97, 86, 96])

where fading is ignored. As stated in [97] cell association based on long-term averaged power is
used to avoid the ping-pong effect of handover due to the the fast fluctuation of the instantaneous
channel gain.
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by

PT (x, z) = |x− z|αε, (5.6)

where |x − z| is the distance between a UE located at x and its serving BS

located at z. ε ∈ [0, 1] is the FPC factor. Therefore, when a UE moves closer

to the serving BS, the transmit power required to maintain the feasible received

SINR decreases. This power control is important for limited battery-operated

devices such as mobile devices. The transmit power is static when ε = 0 and

FPC with full path loss compensation when ε = 1.

5.2.5 Signal-to-interference and noise ratio (SINR)

Based on the stationarity of the BS, cluster center and UE point processes, we

assume that a reference UE (termed the typical UE) is located at the origin in

the reference cluster (termed the typical cluster) and served by a BS located at

z (termed the typical BS). Without loss of generality, we consider the typical

cluster centered at the origin, which is denoted by κ0, by conditioning on the

event that the origin exits in Φp. Note that the distribution of Φu is unaffected

by conditioning on the typical cluster or the typical UE based on Slivnyak’s

Theorem [65, Theorem 8.10]. Thus, based on the assumptions mentioned above,

the SINR received by the typical BS at z can be written as

SINRz = hzPT (z)MbMuL(z)
σ2 +∑

x∈Φu hx,zPT (x, z)Gx,zL(x, z) , (5.7)

where h(·) is the small-scale fading term. We assume that the small fading term

is independently exponentially distributed with unit mean (i.e., Rayleigh fading).

σ2 is the noise power. L(x, z) = δ|x− z|−α is the path loss where α equals to αL

with probability pL(r) for LoS link, and αN with probability pN(r) if the link is
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non-LoS. δ represents the near-field path loss3.

From (5.7), we define two types of interference as follows:

• Intra-cluster interference is the interference received by the typical BS from

all interfering UEs located within the typical cluster except from the typical

UE, which can be modeled as

Ia =
∑

x∈κ0

hx,zPT (x, z)Gx,zL(x, z). (5.8)

• Inter-cluster interference is the interference received by the typical BS from

all interfering UEs located outside the typical cluster, which can be modeled

as

Ie =
∑

y∈Φp

∑
x∈κy

hx,zPT (x, z)Gx,zL(x, z). (5.9)

5.2.6 Mathematical Preliminaries

Denote by G(v), Gp(v) and Gc(v) the generating functionals of Φc, κ0 and Φp

processes, respectively. The generating functional is given by

G(v) (a)= Gp(G(·)(v)) (b)= Gp(G(y)(v))

(c)= Gp(Gc(v(y + ·))) (d)= E

 ∏
y∈Φp

Gc(v(y + ·)


(e)= exp
(
−
∫
R2

(1−Gc(v(y + ·))) Λ(dy)
)

(f)= exp
−λp ∑

c∈{L,N}

∫
R2

(1−Gc(v(y + ·))) pc(y)dy
 , (5.10)

where (a)-(d) are from [62], (e) is due to the generating functional of PPP and

(f) is from the fact that ΦL and ΦN are independent. The generating function
3In the close-in path loss model[84], δ can be regarded as the path loss at distance of 1

meter, which is given by δ = 20 log10

(
2πd
fc

)
with d = 1 meter and fc represents the wavelength

of the carrier frequency.
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of the representative cluster in (5.10) is given by

Gc(v(y + ·)) = E

 ∏
x∈κ0

v(y + x)


= exp
(
−n
πD2

c

∫
B(0,Dc)

v(y + x)dx
)
. (5.11)

where B(0, Dc) represents a circle centered at the origin with radius Dc.

5.3 Stochastic Geometry Analysis

In this section, we first provide the distance distributions and then analyze the

interference and SINR coverage probability.

5.3.1 Distance Distribution Analysis

The distribution of distance between nodes is of great importance for evaluating

the performance metrics in the random network. In this subsection, we provide

all the relevant distance distributions that will be used in the interference and

SINR coverage analysis.

Let Rs be the distance from the typical BS to the typical UE. The following

lemmas provide the distributions of Rs for the CS and SS strategies.

Lemma 5.1. When the CS strategy is employed, the PDF of Rs is given by

fCSRs (r|L) =2πλbr exp (−βr) exp
(
−2πλb

β2

(
1− (1 + βr)

exp (βr)

))
. (5.12)

Proof. The proof of Lemma 5.1 is provided in Appendix B.1.

Lemma 5.2. Given that the typical UE is connected to a LoS BS. When the SS

strategy is employed, the PDF of Rs is given by

fSSRs (r|L) = 2πλbr exp(−βr)
AL

exp (−ΛL(r)) , (5.13)
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where

ΛL(r) = 2πλb
(

1 + βrvl

exp(βrvl)β2 −
(1 + βr)

exp(βr)β2 + r2vl

2

)
, (5.14)

vl = αL
αN

, and AL is the probability that the typical UE is associated with a LoS

BS, which is given by

AL = 2πλb
∫ ∞

0
r exp(−βr) exp (−ΛL(r)) dr. (5.15)

Proof. The proof of Lemma 5.2 is similar to that in [86] and provided in Ap-

pendix B.2 for completeness.

Lemma 5.3. Given that the typical UE is connected to a non-LoS BS. When the

SS strategy is employed, the PDF of Rs is given by

fSSRs (r|N) = 2πλbr (1− exp(−βr))
AN

exp (−ΛN(r)) , (5.16)

where

ΛN(r) = 2πλb
(

(1 + βr)
exp(βr)β2 −

1 + βrvn

exp(βrvn)β2 + r2

2

)
, (5.17)

vn = αN
αL

and AN is the probability that the typical UE is associated with a non-LoS

BS, which is given by

AN = 1−AL. (5.18)

Proof. The proof of Lemma 5.3 follows a similar method as that of Lemma 5.2

and is omitted here.

Next, we denote Rt as the distance of an interfering UE to its serving BS.

Recall that we have assumed a single active UE per BS in the uplink transmission.
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Thus, the random variable Rt is identically distributed but not independent.

However, it was found in [95, 96] that this dependence is weak. To maintain the

analytical tractability, we assume that the random variable Rt is independent

and identically distributed (i.i.d), where the PDF of Rt is given in the following

lemma.

Lemma 5.4. Given that the interfering UE has LoS or non-LoS status to its

serving BS, the PDF of Rt for LoS and non-LoS can be approximated as

f ξRt(r|L) ≈ f ξRs(r|L), (5.19)

and

f ξRt(r|N) ≈ f ξRs(r|N), (5.20)

where ξ ∈ (CS, SS).

Proof. The proof of Lemma 5.4 follows directly from Lemma 5.2 and Lemma 5.3.

Recall from (5.8) and (5.9) that we have two types of interference, i.e., intra-

cluster interference and inter-cluster interference. Denote by Ra
x and Ri

x the

distance from the typical BS to the intra-cluster interfering UE and the distance

from the typical BS to the inter-cluster interfering UE, respectively. Also, there

are two cases of receiver, i.e.,

• Case 1: when the typical BS is located inside the typical cluster, where

0 ≤ Rs < Dc, as shown in Fig. 5.2.

• Case 2: when the typical BS is located outside the typical cluster, Rs ≥ Dc,

as shown in Fig. 5.3.

The PDF of Ra
x for Case 1 and Case 2 can be derived as in the following lemma.

77



5.3. Stochastic Geometry Analysis

Figure 5.2. An example of interfering UE for Case 1.

Figure 5.3. An example of interfering UE for Case 2.

Lemma 5.5. Conditioned on Rs, the PDF of Ra
x is given by

fRax(r|Rs) =


A(r)
πD2

c
, if 0 ≤ Rs < Dc,

B(r)
πD2

c
, if Rs ≥ Dc,

(5.21)
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where

A(r) =



4r
(

arccos
(

r
2Dc

)
− r

2Dc

√
1−

(
r

2Dc

)2
)
,

if Rs ≤ r ≤ Rs +Dc,

0, otherwise,

(5.22)

and

B(r) =


2r arccos

(
R2
s+r2−D2

c

2Rsr

)
, if Rs ≤ r ≤ Rs +Dc,

0, otherwise.
(5.23)

Proof. The proof is provided in Appendix B.3.

Next, we derive the distribution of the distance from the typical BS to the

inter-cluster interfering UE, which is denoted by Re
x. We also denote Ry as the

distance from the typical BS to the cluster center. The PDF of Re
x can be derived

as in the following lemma.

Lemma 5.6. Conditioned on Rs, the PDF of Re
x is given by

fRex(r|Rs) =


C(r)
πD2

c
, if 0 ≤ Ry < Dc,

D(r)
πD2

c
, if Ry ≥ Dc,

(5.24)

where

C(r) =



2πr, Rs ≤ r ≤ Dc −Ry,

2πr − y(r), Dc −Ry < r ≤
√
D2
c −R2

y,

y(r),
√
D2
c −R2

y < r ≤ Dc +Ry,

0, otherwise,

(5.25)
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D(r) =


y(r), Ry −Dc ≤ r ≤ Ry +Dc,

0, otherwise,
(5.26)

such that,

y(r) = 2r arccos
(
R2
y + r2 −D2

c

2Ryr

)
. (5.27)

Proof. The proof is provided in Appendix B.4.

5.3.2 Interference Analysis

Based on (5.8) and (5.9), there are two types of interfering UEs, i.e., intra-cluster

interfering UEs and inter-cluster interfering UEs. Let i ∈ {a, e} represent the

intra-cluster and inter-cluster UEs. Due to the presence of blockages, the in-

terfering UEs can be further partitioned into four cases, which are (i) LoS UEs

with LoS links to their serving BSs (denoted by I iLL), (ii) LoS UEs with non-LoS

links to their serving BSs (denoted by I iLN), (iii) non-LoS UEs with LoS links to

their serving BSs (denoted by I iNL) and (iv) non-LoS UEs with non-LoS links to

their serving BSs (denoted by I iNN). Consequently, the overall intra-cluster and

inter-cluster interference are respectively given by

Ia = IaLL + IaLN + IaNL + IaNN , (5.28)

and

Ie = IeLL + IeLN + IeNL + IeNN , (5.29)

where the Laplace transforms of each terms are given in the following theorem.

80



5.3. Stochastic Geometry Analysis

Theorem 5.1. Conditioned on Rs, The Laplace transform of Ia is given by

LIa(s|Rs) =
∏
C

exp
(
−n

4∑
k=1

bk

∫ Dc+Rs

Rs
FC(s, r)fRax(r|Rs)dr

)
, (5.30)

where C ∈ {LL,LN,NL,NN},

FLL(s, r) = AL
∫ ∞

0

(
1− 1

1 + sakδt
αLε

rαL

)
f ξRt(t|L)dt, (5.31)

FLN(s, r) = AN
∫ ∞

0

(
1− 1

1 + sakδt
αLε

rαN

)
f ξRt(t|N)dt, (5.32)

FNL(s, r) = AL
∫ ∞

0

(
1− 1

1 + sakδt
αNε

rαL

)
f ξRt(t|L)dt, (5.33)

FNN(s, r) = AN
∫ ∞

0

(
1− 1

1 + sakδt
αNε

rαN

)
f ξRt(t|N)dt, (5.34)

ak and bk are antenna directivity parameters as defined in Section 5.2.2, f ξRt(t|c)

and fRax(r|Rs) are given in Lemma 5.4 and Lemma 5.5, respectively.

Proof. The proof is provided in Appendix B.5.

Theorem 5.2. Conditioned on Rs, The Laplace transform of Ie is given by

LIe(s|Rs) =
∏
C

exp
(
−2πλp

∫ ∞
Rs

(1− βC(y, s))ypc(y)dy
)
, (5.35)

where

βC(y, s) = exp
(
−n

4∑
k=1

bk

∫
R
FC(s, r)fRex(r|Rs)dr

)
, (5.36)

such that FC(s, r) for C ∈ {LL,LN,NL,NN} are given in (5.31)-(5.34). fRex(r|Rs)
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is given in Lemma 5.6. Based on Lemma 5.6, R refers to the domain of the

random variable Re
x subject to different cases in (5.24).

Proof. The proof is provided in Appendix B.6.

It can be observed from Theorem 5.1 andTheorem 5.2 that the conditional

Laplace transforms of the interference depend on the location of the typical BS

|z| = Rs. This indicates that the distribution of the interference depends on the

location at which we observe it. Conversely, when the transmitter is modeled

following the PPP as in [64, 95, 98, 99, 88, 96], the interference distribution is

independent of the receiver location.

5.3.3 SINR coverage probability

We define the coverage probability as the probability that the instantaneous SINR

received by a BS at z is greater than a threshold γ, which can be written as

Pcov(γ) = P (SINRz > γ) . (5.37)

Now, based on the Laplace transforms derived in Section 5.3.2, we present the

SINR coverage probability of the typical BS for the CS and SS strategies in the

following theorems.

Theorem 5.3. The SINR coverage probability in the uplink MMW cellular net-

works for the CS strategy can be expressed as

PCScov(γ) =
∫ ∞

0
exp

(
−sσ2

)
LIaLL(s|v)LIeLL(s|v)fCSRs (v|L)dv (5.38)

where s = γvαL(1−ε)

δMbMu
, LIaLL(s|v) and LIeLL(s|v) are given in (B.13) and (B.14),

respectively, and fCSRs (v|L) is given in Lemma 5.1.

Proof. The proof is provided in Appendix B.7.
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Theorem 5.4. The SINR coverage probability in the uplink MMW cellular net-

works for the SS strategy can be expressed as

PSScov(γ) = ALP(γ|L) +ANP(γ|N), (5.39)

where P(γ|c) is the conditional coverage probability given the status of the com-

munication link is c ∈ {L,N}, AL and AN are given in (5.15) and (5.18), re-

spectively. Further, P(γ|c) can be evaluated as

P(γ|L) =
∫ ∞

0
exp

(
−sLσ2

)
LIa(sL|v)LIe(sL|v)fSSRs (v|L)dv, (5.40)

and

P(γ|N) =
∫ ∞

0
exp

(
−sNσ2

)
LIa(sN |v)LIe(sN |v)fSSRs (v|N)dv, (5.41)

where sL = γvαL(1−ε)

δMbMu
, sN = γvαN (1−ε)

δMbMu
. For sc = {sL, sN}, LIa(sc|v) and LIe(sc|v)

are given in Theorem 5.1 and Theorem 5.2, respectively. fSSRs (v|L) and

fSSRs (v|N) are given in Lemma 5.2 and Lemma 5.3, respectively .

Proof. The proof follows the similar procedures for obtaining the coverage prob-

ability in Theorem 5.3 and using the Laplace transforms in Theorem 5.1 and

Theorem 5.2.

The expressions in Theorem 5.3 and Theorem 5.4 provide general results

for the coverage probabilities with the CS and SS strategies, respectively. Essen-

tially, we write the interference as the summation of two independent terms, i.e.,

intra-cluster and inter-cluster interference. In PCP, these two terms are indepen-

dent. Thus, the Laplace transform of the sum of independent random variables

can be written as the product of the individual Laplace transform as given in

Theorem 5.3 and Theorem 5.4.

We notice that every component of Theorem 5.3 depends on (5.12). To
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obtain some analytical insights into the network’s performance, we focus on the

analytical expression in (5.12). Specifically, (5.12) is a multiplication function

between two terms, both of which consist of BS intensity parameter, λb. The

first term is a linear function, i.e., 2πλbr, and the remaining term comprises of

a negative exponential function. As λb increases, the former term is dominant

in initial state, which leads to the increase of the coverage probability in Theo-

rem 5.3. By further increasing λb, the later term is more dominant and hence

the overall function in (5.12) decays exponentially to zero. Thus, the coverage

probability converges to zero. In Section 5.4, we will demonstrate the existence

of an optimal BS intensity that maximizes the coverage probability for both CS

and SS strategies.

The SINR coverage probability in Theorem 5.3 can be simplified for the

fixed power transmit case, i.e., ε = 0 as in the following corollary.

Corollary 5.1. The SINR coverage probability in the uplink of MMW cellular

networks for the CS strategy with fixed user transmit power is given by

PCScov(γ) =
∫ ∞

0
exp

(
−sσ2

)
LIa(s|v)LIe(s|v)fCSRs (v|L)dv, (5.42)

where

LIa(s|v) = exp
(
−n

4∑
k=1

bk

∫ Dc+v

v

(
1− 1

1 + sakδ
rαL

)
fRax(r|v)dr

)
, (5.43)

LIe(s|v) = exp
(
−2πλp

∫ ∞
v

(1− βL(y, s))ypL(y)dy
)
, (5.44)

βL(y, s) = exp
(
−n

4∑
k=1

bk

∫
R

(
1− 1

1 + sakδ
rαL

)
fRex(r|v)dr

)
, (5.45)

s = γvαL

δMbMu
, fCSRs (v|L) is given in Lemma 5.1, ak and bk are antenna direc-
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tivity parameters as defined in Section 5.2.2, fRax(r|v) and fRex(r|v) are given in

Lemma 5.5 and Lemma 5.6, respectively.

Proof. The proof follows directly from Theorem 5.3 and the fact that tαLε = 1

when ε = 0.

Note that the Laplace transforms of intra-cluster and inter-cluster interference

in (5.43) and (5.44) are similar to that in [93, Theorem 3]. Specifically, in [93,

Theorem 3], the computations of these Laplace transforms require double inte-

grals. However, by using the distance distributions as derived in Lemma 5.5

and Lemma 5.6, we simplify the Laplace transforms in [93, Theorem 3] to a

single integration as given in (5.43) and (5.44). Thus, the computation complex-

ity in Corollary 5.1 is O(R), unlike [93, Theorem 3] with O(R2). Moreover,

the derivation approach in Corollary 5.1 are more tractable and much easier to

numerically evaluate.

5.4 Performance Evaluation and Trends

In this section, we provide numerical results to validate the accuracy of our anal-

ysis. We consider Monte Carlo simulations for the system in a square area of 5

km x 5 km. The simulation results are obtained by averaging over 10 000 realiza-

tions. In each simulation run, BSs, UEs and cluster centers are randomly dropped

according to the corresponding intensities. We assume that the MMW network is

operated at 73 GHz with bandwidth of 100 MHz allocated to each user. The path

LoS and non-LoS path loss exponents are set to αL = 2 and αN = 4, respectively.

The noise power is given by σ2(dBm)= −174 dBm/Hz+10 log10(BW ) + 10 dB.

The parameters for the sectored antenna model at the BSs are set toMb =18 dBi,

mb =-2 dBi, ωb =10o [88], while the parameters for the sectored antenna model

at the UEs are set to Mu =10 dBi, mb =-10 dBi, ωb =30o [96].
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Figure 5.4. SINR coverage probability in the uplink MMW. The solid lines are results obtained
from the analytical expressions. The markers are results from the simulations.
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1) Accuracy of the analytical model: In Fig. 5.4, we compare the SINR cov-

erage probabilities obtained from Theorem 5.3 and Theorem 5.4 with the

simulation results for ε = 0, 0.5, 1, and cluster radius Dc = 10, 100, 200. The

results in Fig. 5.4 (a) show a very close match which indicates that the approxi-

mations made in the analytical derivation, result in a negligible error. We note in

Fig. 5.4 (b) that the gap of the SINR distributions become visible especially for

high SINR threshold. This gap is reasonable due to the independent assumption

of the distance from the interfering UE to its serving BS in (5.19) and (5.20).

We also see from Fig. 5.4 (a) that the large size of the cluster gives better SINR

coverage in both CS and SS association strategies. This is because the distance

between the typical BS and the interfering UE increases with the cluster size,

which therefore reduces the interfering signals. Another important observation

is that the results in Fig. 5.4 (a) show that there is a difference between the

SINR coverage probabilities achieved by CS and SS strategies. We refer to this

difference as coverage gain for the rest of the chapter. It is clear from Fig. 5.4 (a)

that the coverage gains reduce with the decrease of blockage parameter β. The

following section investigates the impact of β.

2) Effect of blockage: Fig. 5.5 illustrates the SINR coverage probability as a

function of blockage parameter for CS and SS strategies when the power control

ε = 0. We can see that the SS strategy has greater SINR coverage probability

at the dense building environment, e.g., β > 10−2 for both target thresholds

γ = 5 dB and γ = 15 dB, compared with CS strategy. The coverage gain increases

as the blockage parameter rises, which indicates the importance of the non-LoS

propagation in an urban environment with dense buildings. Intuitively, in the

area with sparse buildings, the likelihood of a UE communicating with a LoS

BS is higher than areas surrounded by dense buildings. Therefore, considering

only the LoS cluster is sufficient to characterize the SINR performance. On the

other hand, the MMW communications mainly rely on non-LoS propagation as
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Figure 5.5. Effect of blockage on the SINR coverage probability for CS and SS strategies.

the density of buildings increases. Thus, SS strategy is preferable for the MMW

networks in the urban area with dense buildings.

3) Effect of FPC factor ε: Next, we study the impact of the FPC factor on

the SINR coverage. As mentioned in Section 5.2.4, the fundamental motivations

of the FPC in the cellular uplink are to provide performance improvements for

the lowest-percentile UEs and manage the power consumption of UEs. We plot in

Fig. 5.6 the SINR coverage probability for various FPC factors. Here we assume

that the blockage parameter β = 1/50, 1/100, and the average number of UEs

per cluster n = 10. To observe the impact of the FPC, we also plot the baseline

case, which refers to ε = 0. We observe from both Fig. 5.6 (a) and Fig. 5.6 (b)

that the baseline case does not provide the lowest SINR coverage probability in

both CS and SS strategies. Regarding the CS strategy, for the case of β = 1/50

in Fig. 5.6 (a), the largest SINR coverage probability for UEs in the lower 50

percentile is given by ε = 0.25, followed by ε = 0.5, having gained over the baseline

case for overall coverage probability. However, for the SINR thresholds γ < 10

dB, the full path loss compensation ε = 1 causes the coverage probability to drop
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Figure 5.6. SINR coverage probability in the uplink MMW for various FPC factors. The solid
lines are the coverage probabilities for the case β = 1/50. The dash lines are the coverage
probabilities for the case β = 1/100.
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below the baseline case. Meanwhile, for the case of β = 1/50 in Fig. 5.6 (b), the

highest SINR coverage probability achieved by ε = 0.25. As the FPC factor ε

rises, the coverage probability shifts below the baseline case before crossing above

the baseline curve at γ = 12 dB. We also note that for the case β = 1/100 in both

CS and SS strategies, the difference in coverage probability for the baseline and

ε = 0.25 is negligible, which indicates that the FPC does not provide a significant

improvement in the SINR coverage probability in the environment with sparse

blockages. Although transmitting at full path loss compensation ε = 1 gives some

improvement especially at thresholds γ > 15 dB, it causes even more reduction

in the coverage probability, especially in the low SINR thresholds.

4) Effect of BS Intensity: Fig. 5.7 plots the SINR coverage probability as a

function of the BS intensity for the case without FPC, i.e., ε = 0. We can see from

Fig. 5.7 that all curves first increase monotonically with the BS intensity. After

achieving their maximum points, these curves decrease with the increasing BS

intensity. This is because having more BS will generally improve the coverage in

the noise-limited regime. However, in the interference-limited regime, increasing

BS intensity will lead to more interference and consequently reduce the received

SINR. For a given SINR threshold and for a given FPC factor, there exists an

optimal BS intensity that maximizes the SINR coverage probability. For example,

at γ = 5 dB and ε = 0, the SINR coverage probabilities are maximized at

λb = 100/km2 and λb = 180/km2 for CS and SS strategies, respectively. We

also see that the SS strategy outperforms the CS strategy at the low BS density

and converges to the CS strategy at the high BS density. This result is expected

since by increasing BS intensity, more links between the UEs and their associated

BSs are in LoS. Therefore, the probability that the UE connected to the LoS BS

increases, so the SS strategy converges to the CS strategy when the association

probability in (5.15), AL → 1.
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Figure 5.7. Effect of BS intensity on the SINR coverage probability for CS and SS strategies.

5.5 Chapter Summary

In this chapter, we proposed a general analytical framework to compute the SINR

coverage probability in the uplink MMW cellular networks. We modeled the loca-

tions of BS as a PPP, whereas the locations of user following a PCP to represent

the clustered users scenario. We assumed that the users and BSs are equipped

with sectorized antennas. For this framework, we derived the SINR coverage in

the uplink MMW cellular network that incorporates the effect of MMW prop-

erties, FPC and UE association strategies. The presented results showed that

the large size of the cluster could significantly improve the SINR coverage prob-

ability due to the increasing distance from the interfering UEs to the typical BS.

Furthermore, by considering the FPC at the UE, we demonstrated that a proper

selection of the FPC factor is required to provide acceptable performance for the

majority of UEs and maintain high overall system capacity.
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Chapter 6

Conclusion

This thesis presented stochastic geometry frameworks for MMW channel model-

ing and performance analysis to evaluate the system level performances of outdoor

MMW cellular networks. In the following, we summarize the key results and in-

sights of this thesis and then provide some potential avenues for future research.

6.1 Summary of results and insights

In chapter 3, we proposed a stochastic channel model for point-to-point MMW

systems in outdoor environments. In this channel model, we incorporated the

environment features to capture the effects of the first-order reflection paths gen-

erated by randomly distributed buildings. We developed an approximate but

accurate closed-form expression for the PDP contributed by all the first-order

reflection paths and derived a semi-analytical result for the average number of

the first-order reflection paths. Numerical results demonstrated that these ap-

proximate expressions are very tight under all the considered system settings.

The presented results demonstrated that wireless networks might benefit from

buildings in the area of MMW communication links since the external surfaces

of these buildings render reflection paths that can provide a comparable signal

power to that of the LoS path. Furthermore, the proposed channel model also
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6.1. Summary of results and insights

revealed that there exists an optimal system setting that can contribute to the

maximum power of the first-order reflection paths. The findings in this chapter

can provide useful insights to develop more complex channel models applicable

to future MMW systems.

In chapter 4, we developed a mathematical framework to analyze the perfor-

mance of inter-cell interference coordination in the dense MMW cellular networks.

By leveraging the concepts from stochastic geometry and incorporating the dis-

tinguishing features of MMW communications, we derived numerically tractable

expressions for the coverage probability and ASE for the downlink MMW cellu-

lar networks. The simulation results matched very well and confirmed that the

proposed BS coordination significantly outperformed the non-coordinated case

in terms of coverage probability. Also, the results showed that there exists an

optimum cluster size that leads to the maximum ASE depending on the value of

the blockage parameter.

Finally, in chapter 5, we turned our attention to study the performance of

the uplink MMW cellular network by considering the clustered UEs scenario. To

analyze the SINR coverage in the uplink MMW cellular network, we proposed a

stochastic geometry framework that incorporates the effect of MMW properties,

FPC and UE association strategies. The presented results showed that the large

size of the cluster could significantly improve the SINR coverage probability due to

the increasing distance from the interfering UEs to the typical BS. Furthermore,

by considering the FPC at the UE, we demonstrated that a proper selection of

the FPC factor is required to provide acceptable performance for the majority of

UEs and maintain high overall system capacity.
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6.2 Future work

In addition to the key results and findings summarized above, there are still

some new directions and extensions of the work developed in this thesis to be

investigated in the future.

In chapter 3, the channel modeling for the first-order reflection paths was

studied considering the two-dimensional propagation environment and system

parameters. A natural extension would be to develop a three-dimensional ana-

lytical channel model for outdoor MMW multipath propagation. The model will

help to understand the impact of high rise buildings and antenna height on the re-

ceived signal power, angle spread and delay spread of the multipath components.

It would also be interesting to include the directional antenna properties in the

channel model since the vision is to equip future wireless networks operating at

MMW bands with massively high directional antennas.

In chapter 4, we focus on the downlink performance of the MMW cellular

networks. In particular, the BSs were assumed to be equipped with directional

antenna while the typical UE employs a single omnidirectional antenna. In the

future, all MMW cellular networks will deploy directional antenna arrays at both

BSs and UEs. It is natural to consider the directional antennas at both BSs and

UEs, and use the similar analytical approach as that in Chapter 4 for analyzing

the downlink SINR performance. Also, it would be interesting to include the

effect of beam alignment in the analysis. In [100, 93], it was demonstrated that the

performance loss varied depending on the antenna model and system parameters.

The contribution in Chapter 5 focuses on the uplink SINR performance of

the MMW cellular networks. In the future cellular networks, the MMW will

coexist with conventional microwave cellular networks as a potential solution to

overcome the coverage hole due to blockages. Although the interference of these

two frequencies are independent, the SINR distributions are correlated in reality.

For example, some of the microwave and MMW transmitters may be co-located
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depending on hotspot regions. Thus, ignoring the correlation of transmitters

distributions can lead to incorrect conclusions. Also, the different propagation

characteristics of the MMW and microwave bands and the bandwidth disparity

would result in significant load imbalance as it may be desirable to get access from

the MMW BSs that provide much lower SINR than the conventional microwave

BSs. As a future work, it would be interesting to study the correlations of BSs

locations and load balancing, which can help to understand the performance gains

of hybrid MMW and microwave band systems.
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Appendix A

Proofs for Chapter 3

A.1 Derivation of (3.16)

To formulate SFF ′I′I in (3.16), let us return to (3.15). After the similar derivations

to those for (3.12) and (3.13), except that we replace τ with τ + ∆τ , we have the

coordinates of the reflection point R′1, denoted by (x′, y′), as

x′ = −c2(τ + ∆τ)2 tan θ
2
√
c2(τ + ∆τ)2 sec2 θ −D2

= x+ c2τ∆τ tan θ(2D2 − c2τ 2 sec2 θ)
2(c2τ 2 sec2 θ −D2)3/2 , (A.1)

and

y′ = c2(τ + ∆τ)2 −D2

2
√
c2(τ + ∆τ)2 sec2 θ −D2

= y + c2τ∆τ(c2τ 2 sec2−2D2 +D2 sec2 θ)
2(c2τ 2 sec2 θ −D2)3/2 .

(A.2)

Note that the second equalities of (A.1) and (A.2) are obtained by ignoring all

terms that contain (∆τ)2, which is reasonable when ∆τ is sufficiently small.

Given the coordinates of the points R1 and R′1, we can easily find the expres-
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sion of the vector −−→RR′, which is identical to the vector −−→FF ′. Hence we have

−−→
FF ′ = −−→RR′1 =

 x′ − x

y′ − y

 =


c2τ∆τ tan θ(2D2−c2τ2 sec2 θ)

2(c2τ2 sec2 θ−D2)3/2

c2τ∆τ(c2τ2 sec2−2D2+D2 sec2 θ)
2(c2τ2 sec2 θ−D2)3/2

 , (A.3)

and its norm can be written as

|
−−→
FF ′| =

√
(x′ − x)2 + (y′ − y)2 = c2τ∆τ

√
c4τ 4 sec6 θ +D4 sec4 θ − 2D2c2τ 2 sec4 θ

2(c2τ 2 sec2 θ −D2)3/2 .

(A.4)

Meanwhile, the vector −→FI can be expressed as

−→
FI =

 −l cos â·θ

−l sin â·θ

 , (A.5)

with its norm being

|−→FI| =
√
l2 cos2 θ + l2 sin2 θ = l. (A.6)

Denote by ψ the angle between vectors −−→FF ′ and −→FI. Then, we have

cosψ =
−−→
FF ′ · −→FI
|−−→FF ′||−→FI|

. (A.7)

Mathematically, the area of the parallelogram FF ′I ′I can be written as

SFF ′I′I = |−−→FF ′||−→FI| sinψ = |−−→FF ′||−→FI|
√

1− cos2 ψ

=
√
|
−−→
FF ′|2|−→FI|2 − (|−−→FF ′||−→FI| cosψ)2. (A.8)

Thus, by substituting (A.4),(A.6) and (A.7) into (A.8), we obtain the expression

for SFF ′I′I as written in (3.16).
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A.2 Proof of Theorem 1

The first-order reflection path with its reflection point at R1 will occur when there

is at least one building whose center falls within the FF ′I ′I region. Thus we have

P(E1|NR1) = P(KRF1 > 0) = 1− P(KRF1 = 0) (A.9)

where1

P(KRF1 = 0) = (E[KRF1 ])0

0! e−E[KRF1 ] = e
−λ E[l]c2τ∆τ

2
√
c2τ2−D2 cos2 θ . (A.10)

Substituting (3.15) and (A.9) into (3.14), we have

fRF1(τ |θ) = lim
c∆τ→0

1− e−λ
E[l]c2τ∆τ

2
√
c2τ2−D2 cos2 θ

c∆τ . (A.11)

Finally, using the L’Hospital rule [102], we can rewrite (A.11) as

fRF1(τ |θ) = lim
c∆τ→0

λ E[l]cτ
2
√
c2τ2−D2 cos2 θ

e
−λ E[l]c2τ∆τ

2
√
c2τ2−D2 cos2 θ

1 = λ
E[l]cτ

2
√
c2τ 2 −D2 cos2 θ

.

(A.12)

which completes the proof.

A.3 Derivation of (3.20)

From Fig. 3.4, the area of the blockage region JKQTZWUEM can be express

as

SJKQTZWUEM = SJKQTSM + SUPQTZW − SPQTS − SPSE, (A.13)

1For a Poisson distributed random variable x with expectation E[x], we have P(x = n) =
E[x]ne−E[x]

n! [101].
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where each term on the right hand-side is interpreted individually as follows.

Specifically, the region JKQTSM consists of two right-angled triangles JKM

and QTS, and a parallelogram KQSM with height denoted by h1 and base

|TxR1|, which is the length of the line segment TxR1. This area is given by

SJKQTSM = lw

2 + lw

2 + |TxR1| · h1 = lw + |TxR1| · h1. (A.14)

Let us first return to Fig. 3.4 and introduce some notations to facilitate the

derivation of h1. Denote by γ1 the angle between the l-side wall of building and

the line segment TxR1. As illustrated in Fig. 3.4, the value of h1 can be obtained

by the trigonometric formula as

h1 = sin(φ1 + φ′1)
√
l2 + w2, (A.15)

where φ1 is the angle between the l-side wall of building and the line segment

KM and φ′1 = γ1. Then, by using the trigonometric identity, we have

h1 = (sin γ1 cosφ1 + cos γ1 sinφ1)
√
l2 + w2

=
(

sin γ1
l√

l2 + w2
+ cos γ1

w√
l2 + w2

)√
l2 + w2. (A.16)

Next, let us derive the expression for sin γ1 and cos γ1. Denote by θa the angle

between the x-axis and the line segment TxR1 as illustrated in Fig. 3.4. The

slope of the line segment TxR1 is given by

tan θa = y

x+D/2 . (A.17)

By recalling the definition of θ in assumption 4, we have

γ1 = π − (θ − θa). (A.18)
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Applying the trigonometric function on both sides of (A.18), we have

tan γ1 = tan(π − (θ − θa)) = − tan(θ − θa) = − tan θ − tan θa
1 + tan θ tan θa

. (A.19)

Then, substituting (3.10) and (A.17) into (A.19), we obtain

tan γ1 =
√
c2τ 2 −D2 cos2 θ

D| cos θ| (A.20)

or equivalently

γ1 = arctan
(√

c2τ 2 −D2 cos2 θ

D| cos θ|

)
. (A.21)

From (A.21) and by using some trigonometric identities, we can express the sim-

plified sin γ1 and cos γ1 as, respectively,

sin γ1 = sin
(

arctan
(√

c2τ 2 −D2 cos2 θ

D| cos θ|

))
=
√
c2τ 2 −D2 cos2 θ

cτ
, (A.22)

and

cos γ1 = cos
(

arctan
(√

c2τ 2 −D2 cos2 θ

D| cos θ|

))
= D| cos θ|

cτ
. (A.23)

Finally, by substituting (A.22) and (A.23) into (A.16), we obtain

h1 = l
√
c2τ 2 −D2 cos2 θ

cτ
+ wD| cos θ|

cτ
. (A.24)

Similarly, the region UPQTZW is the combined area of two right-angled

triangles PQT and UZW , and a parallelogram UPTZ with height denoted by

h2 and base |R1Rx|, which is the length of the line segment R1Rx. This area is
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given by

SUPQTZW = lw

2 + lw

2 + |R1Rx| · h2 = lw + |R1Rx| · h2 (A.25)

where after the similar derivation as (A.24), we have h2 = h1. Meanwhile, the

region PQTS is a rectangle, whose area can be calculated as

SPQTS = lw. (A.26)

Next, we calculate the area of the region PSE. Intuitively, it can be seen

that the area and shape of this region depend on the building orientation θ. In

one extreme case when θ = π/2, this region is of a rectangle shape whose area is

given by

SPSE = l(cτ −D)
2 . (A.27)

In the other extreme case when θ = π, the shape of the region PSE is a triangle,

which is given by

SPSE = tl

2 (A.28)

where t is the height of the triangle. Note that ∠EPS in Fig. 3.4 is equal to γ1.

Thus we have

t = l tan γ1

2 . (A.29)

From (A.20), for the case of θ = π, we have

tan γ1 =
√
c2τ 2 −D2 cos2 θ

D| cos θ| =
√
c2τ 2 −D2

D
. (A.30)
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Substituting (A.29) and (A.30) into (A.28), we have

SPSE = l2
√
c2τ 2 −D2

4D . (A.31)

Meanwhile, for the general case of π/2 < θ < π, the region PSE is a trapez-

ium. Though we can analytically derive the exact area of such a region as a

function of θ, we find that the resultant expression is much complicated, which

makes the subsequent derivation very complex. Thus, we present an approximate

but sufficiently accurate expression for the area of the region PSE by only taking

average between the aforementioned two extreme cases, i.e.,

SPSE ≈
l(cτ −D)

4 + l2
√
c2τ 2 −D2

8D . (A.32)

Finally, by substituting (A.14), (A.25), (A.26) and (A.32) into (A.13), we

obtain the area of the blockage region JKQTZWUEM as

SJKQTZWUEM ≈ (|TxR1|+ |R1Rx|)h1 + lw − l(cτ −D)
4 − l2

√
c2τ 2 −D2

8D
(a)= cτh1 + lw − l(cτ −D)

4 − l2
√
c2τ 2 −D2

8D (A.33)

where the equality (a) holds because the total length of |TxR1| and |R1Rx| is

equal to the path length of the considered first-order reflection path Lr = cτ .

This completes the proof.

A.4 Proof of Theorem 2

Since the first-order reflection path will occur when there is no building whose

center falls within the blockage region JKQTZWUEM , we have

fNB1(τ |θ) = P(KNB1 = 0) = (E[KNB1 ])0

0! e−E[KNB1 ]. (A.34)
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Substituting (3.22) into (A.34), we can directly obtain the fNB1(τ |θ) as in the

Theorem 2.

A.5 Derivation of (3.31)

We first substitute (3.28) and (3.30) into (3.4) and obtain

fSR(τ) = 1
π

(∫ π/2

0
fSR(τ |θ) dθ +

∫ π

π/2
fSR(τ |θ) dθ

)
. (A.35)

We notice that when the value of ϕ in the first term on the right hand side of

(A.35) is ϕ = π − θ, the resulting fSR(τ |θ) and the fSR(τ |θ) in the second term

on the right hand side of (A.35) are symmetric about π/2. Thus, we can further

simplify (A.35) as

fSR(τ) = 2
π

∫ π

π/2
fSR(τ |θ) dθ

≈ 2
π

∫ π

π/2

λE[l]cτ√
c2τ 2 −D2 cos2 θ

· exp
(
−λ

(
E[l]
√
c2τ 2 −D2 cos2 θ + E[w]D |cosθ|

+ E[l]E[w]− E[l](cτ −D)
4 − E[l]2

√
c2τ 2 −D2

8D

))
dθ

+ 2
π

∫ π

π/2

λE[w]cτ√
c2τ 2 −D2 cos2 θ

· exp
(
−λ

(
E[w]
√
c2τ 2 −D2 cos2 θ + E[l]D |cosθ|

+ E[w]E[l]− E[w](cτ −D)
4 − E[w]2

√
c2τ 2 −D2

8D

))
dθ. (A.36)

Next, we let a = cτ/D. For simplicity, we perform an approximation of |cos θ| in

the exponential function of (A.36). The approximated expression can be written

as

|cos θ| = (
√
a2 − 1− a) cos θ + a√

a2 − 1− a
− a√

a2 − 1− a

≈
√
a2 − cos2 θ√
a2 − 1− a

− a√
a2 − 1− a

. (A.37)
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A.5. Derivation of (3.31)

Therefore, by replacing (A.37) into (A.36), we have

fSR(τ) ≈
∫ π

π/2

ζ ′1 exp(−b1
√
a2 − cos2 θ)√

a2 − cos2 θ
+
∫ π

π/2

ζ ′2 exp(−b2
√
a2 − cos2 θ)√

a2 − cos2 θ
(A.38)

where

ζ ′1 = λE[l]a exp
(
−λE[l]E[w] + λE[l]D(a− 1)

4 + λE[l]2
√
a2 − 1

8 + λE[w]Da√
a2 − 1− a

)

b1 = λD

(
E[l] + E[w]√

a2 − 1− a

)

ζ ′2 = λE[w]a exp
(
−λE[w]E[l] + λE[w]D(a− 1)

4 +λE[w]2
√
a2 − 1

8 + λE[l]Da√
a2 − 1− a

)

b2 = λD

(
E[w] + E[l]√

a2 − 1− a

)
.

Next, we perform the first-order Taylor expansions for
√
a2 − cos2 θ, exp(−b1

√
a2 − cos2 θ)

and exp(−b2
√
a2 − cos2 θ), separately at θ = 3π

4 . Their first-order Taylor expan-

sions are given as

√
a2 − cos2 θ ≈ η − 3π

8η + θ

2η (A.39)

where η =
√
a2 − (1/2),

exp(−b1
√
a2 − cos2 θ) ≈ exp(−b1η)

(
1 + 3πb1

8η

)
− b1 exp(−b1η)

2η θ, (A.40)

and

exp(−b2
√
a2 − cos2 θ) ≈ exp(−b2η)

(
1 + 3πb2

8η

)
− b2 exp(−b2η)

2η θ. (A.41)

Finally, substituting (A.39), (A.40) and (A.41) into (A.38), we obtain the closed-

form approximation for the fSR(τ) as in (3.31).
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Appendix B

Proofs for Chapter 5

B.1 Proof of Lemma 5.1

Denote by r the distance between a BS to a LoS user. Using the transformation

r = t1/αL and the mapping theorem [65], the intensity measure for LoS user is

given by

ΛL([0, t)) = 2πλb
∫ ∞

0
P(rαL < t)e−βrrdr

= 2πλb
∫ ∞

0
E
[
1(r < t

1
αL )

]
e−βrrdr

= 2πλb
∫ t

1
αL

0
e−βrrdr

= 2πλb
β2

(
1− e−βt1/αL

(
1 + βt1/αL

))
. (B.1)

Next, we can obtain the intensity of the LoS UE as

λL(t|L) = dΛL[0, t)
dt

. (B.2)

Consequently, the distribution of the distance Rs to the closest LoS BS

P[Rs > r] = exp
(
−2πλb

β2

(
1− e−βr (1 + βr)

))
(B.3)
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and the PDF of Rs is given as in Lemma 5.1.

B.2 Proof of Lemma 5.2

Given that the typical user has at least one LoS BS, the conditional probability

density function of its distance to the nearest LoS BS is given as

fL(x) = 2λbπxp(x) exp
(
−2λbπ

∫ x

0
rpL(r)dr

)
/BL (B.4)

where r > 0, BL = 1 − exp (−2λbπ
∫∞

0 rpL(r)dr) refers to the probability that

a user has at least one LoS BS and pL(r) is the LoS probability as given in

Section 5.2.1.

Next, we derive the probability that the user is served by a LoS BS as in the

following. Let dc be the distance from the typical user to its nearest BS in Φc
b

with c = {L,N}. The user is served by a BS in ΦL
b if and only if it observe an

LoS BS, and its nearest BS in ΦL
b has smaller path loss than that of the nearest

BS in ΦN
b . Thus, we have

AL = BLP
(
δd−αLL > δd−αNN

)
= BL

∫ ∞
0

P
(
dN > xαL/αN

)
fL(x)dx, (B.5)

where BL is the probability that the user has at least one LoS BS and ϑL(x) =

xαL/αN .

P (dN > ϑL(x)) = P
(
ΦN
b ∩ B(0, ϑL(x)) = ∅

)
= exp

(
−2λbπ

∫ ϑL(x)

0
pN(t)tdt

)
(B.6)

where B(0, x) denotes the ball centered at the origin of radius x and pN(t) is the

non-LoS probability as given in Section 5.2.1. Then, by substituting (B.6) for

(B.5), we can obtain the probability that the user is served by a LoS BS as in
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(5.15).

By conditioning that the serving base station is LoS, the PDF of distance

from the user to its serving BS

fSSRs (x|L) = BLfL(x)
AL

exp
(
−2λbπ

∫ ϑL(x)

0
pN(t)tdt

)
(B.7)

Finally, after some simple mathematical manipulations, (B.7) can be written as

in Lemma 5.2.

B.3 Proof of Lemma 5.5

The distribution of Ra
x for Case 1 can be obtained by following the similar steps

as in the derivation of the distribution of the distance between two nodes in a

circle [103]. However, we include the exclusion region around the typical BS,

where it guarantees that there are no active UEs are located inside this region.

Thus, the PDF of distance in Lemma 5.5 is conditioned by Rs resulting in the

random variable Ra
x has the domain [Rs, Rs +Dc].

Next, we derive the PDF of Ra
x for Case 2. Let Ry be the distance from

the typical BS to the cluster center. Since we have assumed that the typical

UE is located at the origin, we have Ry = Rs for the intra-cluster interference.

As illustrated in Fig. 5.3, when the typical BS is located outside the typical

cluster, the interferer may exist on numerous possible locations on the minor arc

of a circle with radius r. It is expected that, as the distance of the interferer

increases from r to r + dr, the minor arc will also gradually move outwards by

distance dr. Denote by P(E|dr) the probability that the intra-cluster interfering

UE falls within the shaded region swept by the minor arc during the movement,

as illustrated in Fig. 5.3. Then, conditioned on Rs, we can express the PDF of
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Ra
x as

fRax(r|Rs) = lim
dr→0

P(E|dr)
dr

(a)=
2r arccos

(
R2
s+r2−D2

c

2Rsr

)
dr

dr

(b)=
2r arccos

(
R2
s+r2−D2

c

2Rsr

)
dr

πD2
cdr

, (B.8)

where (a) follows from the area of the shaded region and (b) is caused by uniform

distribution of the intra-cluster interfering UEs within the circles with radius Dc.

Thus, the proof is complete.

B.4 Proof of Lemma 5.6

We note that the distance of interferer depends on Ry, which refer to the similar

cases in Lemma 5.5, i.e., Case 1 and Case 2. The inter-cluster interfering UE

can be classified into the following cases.

Case 1: When 0 < Ry < Dc. In this case, the typical BS is located inside

the cluster. Here we include the exclusion region as depicted in Fig. 5.2. Conse-

quently, the minimum distance from this UE to the typical BS is Rs. Given the

distance Rs < Ry < Dc, the possible location of the inter-cluster interference UE

that has the same distance to the typical BS can be further classified into three

types:

(i) when Rs ≤ r ≤ Dc−Ry as shown in Fig. 5.2 (blue dashed), the interfering UE

lies on the circumference of a circle centered at the typical BS point with radius

r, which gives the first case of (5.25).

(ii) when Dc − Ry ≤ r ≤
√
D2
c −R2

y as depicted in Fig. 5.2 (red dashed), the

interfering UE lies on the major arc of a circle centered at the typical BS point

with radius r, which gives the second case of (5.25).

(iii) when
√
D2
c −R2

y ≤ r ≤ Dc − Ry as shown in Fig. 5.2 (green dashed), the
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interfering UE lies on the minor arc of a circle centered at the typical BS point

with radius r, which gives the third case of (5.25).

Case 2: When Ry > Dc, the typical BS is located outside the cluster. The

possible location of the inter-cluster interfering UE that has the same distance

from the typical user is on the minor arc of a circle with radius r, i.e., denoted

as dash-line in Fig. 5.3, which gives the first case of (5.26).

Finally, to obtain the PDF of Re
x, we can follow the similar derivation as those

in Lemma 5.5, except that we replace the area of the shaded region following

the cases mentioned above.

B.5 Proof of Theorem 5.1

Recall that the intra-cluster interference is given in (5.28). IaLL can be computed

as the sum of interference from each LoS UEs with LoS links to their serving BSs,

which is given by

IaLL =
∑

x∈κ0∩ψL
hx,zGx,zδr

−αLtαLε, (B.9)

where ψL is the points of κ0 with LoS to its serving BS.

Similarly, IaLN can be computed as the sum of interference from each LoS UEs

with non-LoS links to their serving BSs, which is given by

IaLN =
∑

x∈κ0∩ψN
hx,zGx,zδr

−αLtαN ε, (B.10)

where ψN is the points of κ0 with non-LoS to its serving BS.

IaNL can be computed as the sum of interference from each non-LoS UEs with
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LoS links to their serving BSs, which is given by

IaNL =
∑

x∈κ0∩ψL
hx,zGx,zδr

−αN tαLε. (B.11)

IaNN can be computed as the sum of interference from each non-LoS UEs with

non-LoS links to their serving BSs, which is given by

IaNN =
∑

x∈κ0∩ψN
hx,zGx,zδr

−αN tαN ε. (B.12)

First, we derive the Laplace transform of IaLL. Conditioned on Rs and based

on (B.9), we have

LIaLL (s|Rs) = E

exp
−s ∑

x∈κ0∩ψL
hx,zGx,zδr

−αLtαLε


(a)= E

 ∏
x∈κ0∩ψL

1
1 + sGx,zδtαLε

rαL


(b)= exp

(
−n

4∑
k=1

bk

∫ Dc+Rs

Rs

(
1− 1

1 + sakδt
αLε

rαL

)

× fRax(r|Rs)dr

(c)= exp
(
−n

4∑
k=1

bk

∫ ∞
0

∫ Dc+Rs

Rs

(
1− 1

1 + sakδt
αLε

rαL

)
(B.13)

× fRax(r|Rs)f ξRt(t|L)drdt,

where (a) is the moment generating function of the exponential random variable,

(b) follows from (5.11) and the assumption that Gx,z is a discrete random variable

and from the generating functional of PPP, (c) by unconditioning on t where the

PDF of Rt is given in Lemma 5.4. Then, we have the Laplace transform of IaLL

as in (5.31).

The Laplace transforms for IaLN , IaNL, and IaNN are obtained following the

similar steps as in (B.13) and are given as in (5.32), (5.33) and (5.34), respec-

tively. Finally, the Laplace transform of the overall Ia is given by the product of
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individual Laplace transforms as in Theorem 5.1.

B.6 Proof of Theorem 5.2

Based on (5.9), the Laplace transform of IeLL is given by

LIeLL (s|Rs) = E

exp
−s ∑

y∈Φp

∑
x∈κy

hx,zGx,zδr
−αLtαLε


(a)= EΦp

 ∏
y∈Φp

Eκy

 ∏
x∈κy

1
1 + sGx,zδtαLε

rαL


(b)= exp

−λp ∑
c∈{L,N}

∫
R2

(1− βLL(y, s))pc(y)dy


= exp
−2πλp

∑
c∈{L,N}

∫ ∞
v

(1− βLL(y, s))ypc(y)dy
 (B.14)

where (a) is the moment generating function of the exponential random variable,

(b) is from (5.10) and βLL(y, s) is the generating functional of the cluster centered

at y, which is given by

βLL(y, s) = exp
(
−n

4∑
k=1

bk

∫ ∞
0

∫
R

(
1− 1

1 + sakδt
αLε

rαL

)
(B.15)

× fRex(r|Rs)f ξRt(t|L)drdt.

The Laplace transforms for IeLN , IeNL, and IeNN can be obtained following the

similar steps as in (B.14). Then, the Laplace transform of the overall Ie is obtained

from the product of individual Laplace transforms as in Theorem 5.2.

B.7 Proof of Theorem 5.3

Given that the link from the typical UE to the typical BS located at z , (Rs, 0)

is LoS and based on (5.7), the conditional coverage probability can be computed
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as

P(γ|L,Rs) = P (SINRz > γ)

= P
(
hzMbMuδR

αL(ε−1)
s

σ2 + I
> γ

)

= exp
(
−γσ

2RαL(1−ε)
s

δMbMu

)
E
[
exp

(
−tR

αL(1−ε)
s I

δMbMu

)]

= exp
(
−γσ

2RαL(1−ε)
s

δMbMu

)
LI
(
tRαL(1−ε)

s I

δMbMu

)

= exp
(
−sLσ2

)
LI (s|Rs)

(B.16)

where s = γR
αL(1−ε)
s

δMbMu
and I is the interfering UEs. Recall that we have assumed

that UEs within the cluster have the same link status to the typical BS and only

LoS clusters are considered in the CS strategy. Thus, we have I = Ia + Ie =

IaLL + IeLL, where the Laplace transforms are given by (B.13) and (B.14). Finally,

by substituting (B.13) and (B.14) into (B.16), and by unconditioning the derived

expression with the PDF of Rs, which is given in Lemma 5.1, we conclude with

the desired expression in Theorem 5.3.
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