
 

 

 
1. Introduction 
 

Vibration mitigation and structural control have drawn 

the attention of many researchers over the last decades as an 

effective method for dissipating vibration energy. The 

necessity of reducing building vibrations has motivated 

researchers into developing various control schemes such as 

active, semi-active, and passive methods, with the first two 

being proposed more recently. These systems are 

characterised by adaptive mechanisms in which control 

forces are generated by employing external power (Yeganeh 

Fallah and Taghikhany 2014, Askari et al. 2016, Marian and 

Giaralis 2017, Younespour and Ghaffarzadeh 2016).  

The active structural control process requires measuring 

the structural response, determining the force from the 

measurements, and applying a designed load to obtain the 

controlled or desired structural response. Adaption to 

structural changes and environment relies on the algorithm 

used as a processor in the active control mechanisms, which 

can strongly impact the performance of the control system. 

Fisco and Adeli (2011a) carried out a review study on active 

and semi-active control of structures performed from 1997. 

In a companion paper, the authors also reviewed variously 

improved and new control strategies developed for civil 

structures (Fisco and Adeli 2011b). The key element to 

achieve a proper control requires selecting an effective 
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control algorithm for obtaining the control force that needs 

to be applied to the structural system.  

   The sliding mode control (SMC) method, as a nonlinear 

algorithm, was introduced to active control of civil structures 

by Yang et al. (1995) and Adhikari and Yamaguchi (1997), 

and is based on high-frequency switching (Solea and Nunes 

2007). The variable structure of the SMC makes it capable of 

switching between different control laws. Since the SMC is 

insensitive against changes and external excitation, it has 

become a competitive choice among other control methods. 

Several applications can be highlighted (Yu et al., 2016; 

Yeganeh Fallah and Taghikhany, 2015; Wu and Yang, 2004; 

Lee and Chen, 2011; Baradaran-nia et al., 2012; Yang et al., 

2015). 

   Even though the SMC has many advantages, the 

chattering phenomenon associated with the switches in the 

control force can negatively impact the actuators during the 

dynamic mitigation and is often pointed out as the major 

drawback for practical implementation. Various alternatives 

were proposed to improve the control performance of 

conventional SMC, for example, based on the boundary layer 

method (Adhikari and Yamaguchi, 1997), higher order SMC 

(Ozer et al., 2017), gain adaption (Wang and Adeli, 2012), 

and neural networks (Yakut and Alli, 2011; Li et al., 2000).  

Having into account the current state of knowledge, a 

different approach is proposed in this paper to achieve a 

chattering-free SMC. The method is based on a fuzzy logic 
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model to estimate and replace the discontinuity of the SMC 

law, i.e., the source of the chattering, by a smoother 

approximation. Fuzzy logic control (FLC) as a smart control 

technique has been used for active control in structures 

(Guclu and Yazici, 2008; Yu et al., 2016; Ghaffarzadeh and 

Aghabalaei, 2017; Gu et al., 2019). Human knowledge base 

and less mathematical effort made it a convenient control 

technique. The method uses an approximation reasoning and 

applies linguistic statements to the relationship between 

system variables.   In this paper, the CFSMC is applied to a 

control system based on active tendons. Such system uses 

pre-stressed cables or diagonal bracings located between 

floors of a structure or at the ends of cables in cable-stayed 

bridges that can be activated axially by servo-controlled 

hydraulic actuators to quickly adjust the stress state. The 

method proposed in the following sections is validated using 

a numerical example under earthquake excitations where 

uncontrolled and controlled responses are analysed.   

 

 

2. Control System Model 
 

The motion equation for a controlled structural system 

with n-degrees of freedom can be written as: 

𝑀�̈�(𝑡) + 𝐶�̇�(𝑡) + 𝐾𝑥(𝑡) = 𝐵𝑢(𝑡) + 𝑀𝑅�̈�𝑔(𝑡), (1) 

where M, C, and K are (𝑛 × 𝑛) mass, damping and stiffness 

matrices, respectively; �̈�(𝑡) ,  �̇�(𝑡)  and 𝑥(𝑡)  are the (𝑛 ×

1)  acceleration, velocity and displacement vectors, 

respectively; B is a (𝑛 × 𝑟) location matrix of r controllers, 

and R is a (𝑛 × 1)  vector denoting the influence of the 

earthquake excitation �̈�𝑔 with terms equal to -1.  

The state space form of Eq. (1) can be expressed as 

follows: 

�̇�(𝑡) = 𝐴𝑧(𝑡) + 𝐵1𝑢(𝑡) + 𝐵2�̈�𝑔(𝑡), (2) 

where 

𝐴 = [
𝑜 𝐼

−𝑀−1𝐾 −𝑀−1𝐶
] ;     𝐵1 = [

𝑜
𝑀−1𝐵

] 

𝐵2 = [
𝑜

𝑀−1𝑅
] ;                          𝑧(𝑡) = {

𝑥(𝑡)
�̇�(𝑡)

}, 

and A is a (2𝑛 × 2𝑛) plant matrix of the system; 𝐵1 is a 

(2𝑛 × 𝑟)  control location matrix; 𝐵2  is an excitation 

influence vector of size (2𝑛 × 1); 𝑧(𝑡) is a (2𝑛 × 1) state 

vector related to the floor displacements and velocities, and 

𝑢(𝑡) refers to the control law making Eq. (2) solvable. 

In this paper, an active tendon configuration is proposed 

to apply the control force on the structure. Since such system 

is based on diagonal elements, which already exist in many 

structures after stiffening and strengthening, it becomes an 

attractive practical solution. Fig. 1 shows the control 

mechanism. 

 

 

Fig. 1 Active tendon system. 

 

As it is shown in Fig. 1, tendons are installed between two 

stories. The hydraulic actuator is comprised of an actuator, a 

servo valve, and a fluid pumping system attached to the 

lower floor. One end of the tendon is connected to the upper 

floor and the other end to the piston. The relative movement 

due to inter-story drift caused by structural vibration alters 

the tension state of the tendons, which generates a dynamic 

force to mitigate the response.  

 

 

3. Sliding Mode Control 
 

The basic strategy of the SMC is based on enforcing the 

system to move towards a steady state regime by defining a 

suitable control force. The steady state is known as the 

sliding switching surface. In the SMC, the structure of the 

controller is purposely changed by a switching feedback law 

to drive the trajectories of the controlled system onto the 

specified sliding surface, known as reaching phase, and 

enforce them to remain on the surface sliding towards the 

equilibrium point. Such condition is known as sliding mode 

(Slotine and Li 1991).  

The sliding surface is herein set as a linear function of 

system states: 

𝜎(𝑧) = 𝑆𝑧, (3) 

where S is the sliding surface coefficient matrix (𝑟 × 2𝑛). A 

suitable choice of S together with constraint conditions in 

Eq. (4) leads the trajectories to reach the sliding surface and 

slide over it. 

�̇�(𝑧) = 0      and      𝜎(𝑧) = 0. (4) 

The linear quadratic regulator (LQR) method is used to 

determine S and design the sliding surface (Yang et al 1995), 

where the integral of the quadratic function of the state vector 

is minimised to derive the sliding surface coefficient matrix. 

𝐽 = ∫ 𝑍(𝑡)𝑇𝑄𝑍(𝑡)𝑑𝑡
∞

0

. (5) 

In Eq. (5), Q denotes a (2𝑛 × 2𝑛) positive definite diagonal 

weighting matrix. Using transformation matrix, D, the state 

x(t) 

Actuator 

Active Tendon 

m,c,k 

�̈�𝒈 
u(t) 

Response sensors 

Control Computer 
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equation and the sliding surface can be written in terms of a 

transformed state vector Y, 

𝑌 = 𝐷𝑍;                                      𝑍 = 𝐷−1𝑌 

𝐷 = [
𝐼2𝑛−𝑟 −𝐵1𝐵2

−1

0 𝐼𝑟
] ;        𝐵1 = [

𝐵11
𝐵12
], 

(6) 

where 𝐼2𝑛−𝑟  and 𝐼𝑟  are (2𝑛 − 𝑟) × (2𝑛 − 𝑟)  and (𝑟 ×

𝑟) identity matrices, respectively. 𝐵11 = (2𝑛 − 𝑟) × 𝑟 and 

𝐵12 = 𝑟 × 𝑟 sub-matrices are obtained from the partition of 

𝐵1 in Eq. (2). Hence, 

�̇� = �̄�𝑌 + �̄�𝑈;     𝜎 = �̄�𝑌 = 0, (7) 

in which 

�̄� = 𝐷𝐴𝐷−1;     �̄� = 𝑆𝐷−1;     �̄� = [
0
𝐵12
]. (8) 

The performance index J defined earlier then becomes: 

𝐽 = ∫ [𝑌1′, 𝑌2 ′]′𝑇 [
𝑌1
𝑌2
] 𝑑𝑡

∞

0

, (9) 

where 𝑌1  and 𝑌2  are (2𝑛 − 𝑟)  and 𝑟  vectors, 

respectively, and 

𝑇 = [(𝐷−1)′𝑄𝐷−1];      𝑇 = [
𝑇11 𝑇12
𝑇21 𝑇22

]. (10) 

𝑇11  and 𝑇22  are (2𝑛 − 𝑟) × (2𝑛 − 𝑟)  and (𝑟 × 𝑟)  matrices, 

respectively, and by minimising Eq. (9), S can be obtained 

from Eq. (8) as 𝑆 = �̄�𝐷.  

To calculate the control law, Eq. (2) is replaced into 

�̇�(𝑧) = 0 as follows: 

�̇�(𝑧) = 𝑆�̇� = 𝑆(𝐴𝑧 + 𝐵1𝑢 + 𝐵2�̈�𝑔) = 0, (11) 

𝑢𝑒𝑞 = −(𝑆𝐵1)
−1(𝑆𝐴𝑧 + 𝑆𝐵2�̈�𝑔). (12) 

Since the earthquake excitation is not known beforehand, the 

control law in Eq. (12) cannot be directly used, and the 

disturbance (𝐵2�̈�𝑔) has to be neglected. To account for the 

earthquake excitation and compensate the uncertainties in the 

disturbances, a discontinuous control law can be obtained via 

the known system parameters and under appropriate 

conditions (Slotine and Li 1991). To guarantee the existence 

and reachability of the sliding mode, the control law can be 

implemented by the following inequality: 

𝜎𝑇(𝑧)�̇�(𝑧) < −𝜂|𝜎|, (13) 

where 𝜂  is a positive constant value. Substituting Eq. (2) 

into Eq. (13), we get: 

𝜎𝑇(𝑧)𝑆(𝐴𝑧 + 𝐵1𝑢 + 𝐵2�̈�𝑔) < −𝜂|𝜎|. (14) 

Considering 𝑢(𝑡) as: 

𝑢(𝑡) = −(𝑆𝐵1)
−1𝑆𝐴𝑧 − (𝜂 + 𝛾) 𝑠𝑔𝑛(𝜎𝑇𝑆𝐵1)

𝑇  
          = 𝑢𝑒𝑞 − (𝜂 + 𝛾) 𝑠𝑔𝑛(𝜎

𝑇𝑆𝐵1)
𝑇 , 

(15) 

where 𝛾 is the bound on excitation vector, and sgn stands 

for the sign function, Eq. (14) can be written as: 

𝜎𝑇�̇� = 𝜎𝑇(𝑆𝐴𝑧 − 𝑆𝐵1[(𝑆𝐵1)
−1𝑆𝐴𝑧 

         −(𝜂 + 𝛾) 𝑠𝑔𝑛(𝜎𝑇𝑆𝐵1)
𝑇] + 𝑆𝐵2�̈�𝑔) 

          = 𝜎𝑇(−𝑆𝐵1(𝜂 + 𝛾) 𝑠𝑔𝑛( 𝜎
𝑇𝑆𝐵1)

𝑇 + 𝑆𝐵2�̈�𝑔) 

         = −𝜂|𝜎𝑇𝑆𝐵1| − 𝛾|𝜎
𝑇𝑆𝐵1| + 𝜎

𝑇𝑆𝐵2�̈�𝑔 

         = −𝜂|𝜎𝑇𝑆𝐵1| − 𝛾|𝜎
𝑇𝑆𝐵1|(1 −

𝜎𝑇𝑆𝐵2�̈�𝑔
𝛾|𝜎𝑇𝑆𝐵1|

) 

         < −𝜂|𝜎𝑇𝑆𝐵1|. 

(16) 

Therefore, considering 𝑢(𝑡)  given by Eq. (15) and 

satisfying Eq. (13) guarantees the existence and reachability 

of a sliding mode. For 𝐾 = 𝜂 + 𝛾, the control law can finally 

be rewritten as: 

𝑢 = 𝑢𝑒𝑞 − 𝐾 𝑠𝑔𝑛( 𝜎
𝑇𝑆𝐵1)

𝑇 . (17) 

Fig. 2 illustrates the block diagram of the SMC. However, 

the direct implementation of Eq. (15) causes the chattering 

phenomenon due to the discontinuous part of the equation 

( 𝑠𝑔𝑛(𝜎𝑆𝐵1) ) which frequently changes the sign of the 

control force within a short time periods generating high-

frequency switches.  

Chattering can be reduced by introducing a continuous 

approximation of the discontinuous sliding mode controller 

within a thin boundary layer neighbouring the sliding surface 

to smooth switches. One possible mathematical form of such 

solution is based on the replacement of the sign function with 

a term derived from the fuzzy inference mechanism as 

discussed in the next section. 

 

 

Fig. 2 Block diagram of SMC. 

 

 

4. Chattering-Free Sliding Mode Control 
 

Among various techniques available to reduce chattering, 

the boundary layer method can approximate the sign function 

in Eq. (15) by using a saturation function. Accordingly, a thin 

boundary layer is defined in the neighbourhood of the sliding 

surface where chattering occurs. Fig. 3 indicates the 

schematic view of the chattering phenomenon and the 

boundary layer neighbouring the sliding surface. 

 

Controller 

−(𝑆𝐵1)
−1𝑆𝐴 
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Fig. 3 Sliding surface with chattering and boundary 

layer. 

 

The saturation function is written as follows: 

𝑠𝑎𝑡(𝜎/𝜀) = {
𝜎/𝜀 if|𝜎/𝜀| ≤ 1

𝑠𝑔𝑛( 𝜎/𝜀) otherwise
 (18) 

where 𝜀  is a positive constant and 2𝜀  is the thickness of 

the boundary layer. This method smooths the control signal 

by estimating and replacing the sign function with the 

saturation function illustrated in Fig. 4. 

 

 
Fig. 4 Linear approximation of the sign function. 

     

The method, however, creates the loss of accuracy in the 

control signal. In this paper, a different approach is proposed 

based on a fuzzy inference system to estimate the 

discontinuous part of Eq. (15) and smooth the control signal. 

Fig. 5 shows a typical fuzzy logic system. 

 

 

Fig. 5 Structure of a fuzzy logic system. 

 

The step of fuzzification converts crisp inputs into fuzzy 

sets and allocates a degree of membership to every fuzzy 

input value between 0 and 1. Each fuzzy set can make use of 

different types of membership functions such as triangular, 

trapezoidal, and Gaussian. The knowledge base unit consists 

of IF-THEN rules, each comprising antecedent and 

consequent propositions. A fuzzy rule based on SMC can be 

written as: 

𝐼𝐹 𝜎 𝑖𝑠 𝐴1 𝑎𝑛𝑑 �̇� 𝑖𝑠 𝐴2⏟            
(1)

 𝑇𝐻𝐸𝑁 𝑢𝑓  𝑖𝑠 𝐵⏟    
(2)

, 

where 𝜎 is a switching variable, �̇� stands for its derivative, 

𝑢𝑓  is the fuzzy output; and 𝐴𝑖   and 𝐵  are the fuzzy input 

and output sets, and (1) and (2) represent the statements. The 

inference system performs fuzzy operations to map the fuzzy 

inputs to outputs. The defuzzification step maps the fuzzy 

output in a crisp value for the control law. 

To apply the SMC strategy, the fuzzy rules can be 

obtained based on the trajectories in the phase plane. 

Specifically, the control force is calculated to bring back the 

trajectory to a proper state leading to the desired control 

action. The fuzzy rules can be explained with respect to the 

various positions and directions of trajectories and without 

any trial and error as in conventional rule bases.  

Table 1 shows the fuzzy rule base, where P, N, L, M, S, Z 

means Positive, Negative, Large, Medium, Small, Zero, 

respectively. The symbols represent linguistic values of 𝜎, �̇�, 

and 𝑢𝑓. For example, for a position in the trajectory far from 

the sliding surface and in the positive region (𝜎 = 𝑃𝐿) while 

moving from it ( �̇� = 𝑃𝐿 ), a considerable control force is 

needed to restore the trajectory towards the sliding surface 

(𝑢𝑓 = 𝑁𝐿). 

 

Table 1 Knowledge base of fuzzy SMC. 

�̇�/𝜎 PL PM PS Z NS NM NL 

PL NL NL NM NS NS Z Z 

PM NL NM NM NS Z Z PS 

PS NM NM NS NS Z PS PS 

Z NM NS NS Z PS PS PM 

NS NS NS Z PS PS PM PM 

NM NS Z Z PS PM PM PL 

NL Z Z PS PS PM PL PL 

 

The proper choice of membership functions can lead to 

the most suitable approximation of sign functions. In this 

study, Gaussian and singleton type membership functions are 

used for input and output fuzzy members, respectively. 

Moreover, by using singleton fuzzification, product 

inference, and center-average defuzzification, the fuzzy 

output can also be obtained as (Hsiao et al. 2005): 

𝑢𝑓 =
∑ 𝑤𝑗𝑐𝑗
𝑚
𝑗=1

∑ 𝑤𝑗
𝑚
𝑗=1

= 𝑣𝑇𝜓, (19) 

where 

𝑤𝑗 =∏𝜇
𝐹𝑖
𝑗(𝑥𝑖)

𝑛

𝑖=1

;   𝑣 = [𝑐1, . . . , 𝑐𝑚]
𝑇 , (20) 

�̇� 

𝑥   

𝑠𝑎𝑡(𝜎/𝜀) 

𝜎 
+𝜀 

−𝜀 

  

Fuzzification   

  

Inference System 
  Defuzzification   

  

Knowledge Base 

𝜎, �̇� 𝒖𝒇 



 

Chattering-Free Sliding Mode Control Design with Fuzzy Model and its Application to Structures 

𝜓 =
[𝑤1 . . . .  𝑤𝑚]

𝑇

∑ 𝑤𝑗
𝑚
𝑗=1

. (21) 

In Eqs. (19)-(21), m and n are the total number of fuzzy rules 

and input variables, respectively; 𝑐𝑗 represents the center of 

the membership function in the consequent part of the j-th 

rule; 𝜇
𝐹𝑖
𝑗(𝑥𝑖) denotes the membership value of the linguistic 

variable 𝑥𝑖  to the fuzzy set 𝐹𝑖  in the j-th rule; 𝑤𝑗 

represents the firing strength of the j-th rule; and 𝜓 is the 

firing strength vector.  

Based on the fuzzy control rules for 𝜎 ≠ 0 , the fuzzy 

control output (𝑢𝑓) enforces the system trajectories to return 

to the sliding surface, which is in fact identical to the SMC 

inequality law, i.e., 𝜎(𝑧)�̇�(𝑧) < 0. Using the fuzzy model 

and replacing the sign function with 𝑢𝑓  then fulfills the 

reachability and existence of a sliding mode.  

The new control method can handle different control 

actions based on the different states of 𝜎  and �̇� , which 

implies a nonlinear mapping from 𝜎 and �̇� to 𝑢𝑓 . Hence, 

the chattering-free SMC (CFSMC) law can be written as 

shown in Eq. (22), and the nonlinear approximation of the 

sign function within the boundary layer in the neighbourhood 

of the sliding surface takes the shape illustrated in Fig. 6. 

𝑢𝐶𝐹𝑆𝑀𝐶 = 𝑢𝑒𝑞 − (𝜂 + 𝛾) 𝑠𝑔𝑛(𝜎
𝑇𝑆𝐵1)

𝑇 

               = 𝑢𝑒𝑞 − 𝐾(𝑢𝑓). 
(22) 

 

 
  Fig. 6 Fuzzy approximation of the sign function. 

   

   

5. Numerical Study 
 

A numerical example based on an eight-story shear 

building equipped with active tendons in the first and the 

eighth stories is used in this section to illustrate the 

application of the CFSMC and its effectiveness in avoiding 

chattering whilst reducing the dynamic responses of all 

stories. The method is also compared against conventional 

SMC.  

The dynamic properties of the structure selected for analysis 

are indicated in Table 2 (Yang et al. 1995). The earthquake 

records of El Centro (1940) and Northridge (1994) are used 

as dynamic excitation, as detailed in Table 3. The 

acceleration records of the two earthquakes are also depicted 

in Fig. 7. 

 

Table 2 Mass, stiffness, and damping values of the building. 

Story Mass (ton) Stiffness (kN/m) Damping (kN.s/m) 

1 345.6 3.4×105 490 

2 345.6 3.2×105 467 

3 345.6 2.85×105 410 

4 345.6 2.69×105 386 

5 345.6 2.43×105 349 

6 345.6 2.07×105 298 

7 345.6 1.69×105 243 

8 345.6 1.37×105 196 

 

Table 3 Properties of selected ground motions. 

Earthquake El Centro Northridge 

Station 
Imperial Valley, 

Station No.117 

Alhambra, CA, 

Fermont School 

Magnitude 6.9 6.6 

Depth (km) 8.8 18 

PGA (cm/s2) 341.69 99.08 

PGV (cm/s) 33.45 10.89 

PGD (cm) 10.86 2.47 

 

 

 

Fig. 7 Time histories of the selected ground motions. 

 

Fig. 8 illustrates the configuration of the building, where 

due to the significant values of the shear force and 

displacement in the first and eighth stories, those floors are 

equipped with the active tendon systems. The standard 

response time of the actuator is considered between 6-16 

milliseconds, in which case the active tendon system can be 

assumed to produce the desired control force instantly. 
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Fig. 8 Structural model of the active tendon system. 

 

With the SMC, the sliding surface is determined with the 

LQR method using a diagonal weighting matrix Q where 

𝑄𝑖𝑖 = 10
6 for i=1, 2, ..., 8, and 𝑄𝑖𝑖 = 1 for i=9, 10, …, 16. 

For the configuration of the active tendon system shown in 

Fig. 8 with a 45° inclination angle, the sliding surface 

equation for the controller in the first floor becomes: 

𝜎1 = 709.206(𝑧1) − 278.298(𝑧2) − 498.556(𝑧3) 
     +31.819(𝑧4) − 20.578(𝑧5) − 17.553(𝑧6) 
     −9.142(𝑧7) − 4.444(𝑧8) + 90.214(𝑧9) 
     +89.211(𝑧10) + 52.61(𝑧11) + 37.889(𝑧12) 
     +28.719(𝑧13) + 19.434(𝑧14) + 12.165(𝑧15) 
     +6.082(𝑧16). 

For the controller installed on the eighth floor, the 

corresponding sliding surface equation is given by: 

𝜎8 = 4.444(𝑧1) + 4.286(𝑧2) + 22.001(𝑧3) 
     +46.535(𝑧4) + 29.971(𝑧5) − 4.206(𝑧6) 
     −160.228(𝑧7) + 709.206(𝑧8) + 6.745(𝑧9) 
     +6.745(𝑧10) + 7.132(𝑧11) + 8.497(𝑧12) 
     +10.567(𝑧13) + 10.629(𝑧14) + 29.409(𝑧15) 
     +15.498(𝑧16). 

The FLC model is also designed using two input variables 

(𝜎  and �̇� ) and one output variable (𝑢𝑓)  each with seven 

membership functions. The functions chosen for both input 

and output variables are gaussian-shaped and singleton 

functions, respectively, as shown in Fig 9. Therefore, the 

fuzzy model is constructed with 49 rules. The values of 𝑣 are 

obtained according to the fuzzy control rules set in Table 1. 

Finally, it should be mentioned that K is considered as 200 

for both SMC and CFSMC laws.  

 

 

 
Fig.9 Membership functions: (a) input variables (𝜎, �̇�); 

(b) output variable (𝑢𝑓). 

 

Fig. 10 shows the uncontrolled and controlled 

displacements with the SMC and CFSMC for the first and 

the eighth stories during the El Centro excitation. From Fig. 

10 it can be concluded that both methods can decrease the 

displacements considerably.  

 

 

 
Fig.10 Displacement responses during El Centro 

earthquake. 
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Fig.11 Acceleration responses during El Centro 

earthquake. 

  

The acceleration responses are depicted in Fig. 11, where 

the high-frequency switches obtained with the SMC method 

is evident. During the Northridge earthquake, both control 

methods demonstrated a good performance (Fig. 12). 

However, the high-frequency switches prevent the SMC to 

reduce the acceleration responses satisfactorily (Fig. 13).  

 

 

 
Fig.12 Displacement responses during Northridge 

earthquake. 

 

 

 
Fig.13 Acceleration responses during Northridge 

earthquake. 

 

To better illustrate the chattering phenomenon in the 

conventional SMC, the time histories for the control forces 

are represented in Figs. 14 and 15 for both floors. 

Considerable switches are present in the time histories of the 

control forces with the SMC which can lead to reduced 

control accuracy and high wear of moving mechanical parts, 

thus preventing the actuators to generate the desired control 

force in a non-simulated situation.  

 

 

 
Fig. 14 Control force with SMC during El Centro 

earthquake. 
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Fig. 15 Control force with SMC during Northridge 

earthquake. 

 

Fig. 16 shows the forces for first and eighth stories during 

the El Centro excitation with the CFSMC, whereas Fig. 17 

shows the same output for the Northridge excitation. 

Comparison with Figs. 14 and 15 allows concluding that 

chattering is effectively eliminated with the CFSMC due to 

the replacement of the sign function with the fuzzy output 

without losing accuracy. The maximum response quantities 

registered during both earthquakes – see Tables 4 and 5 – are 

also significantly smaller with the CFSMC.   

 

 

 
Fig. 16 Control force with CFSMC during El Centro 

earthquake. 

 

 

 
Fig. 17 Control force with CFSMC during Northridge 

earthquake.  

 

Table 4 Maximum response quantities during El Centro 

earthquake. 

 Story No control SMC CFSMC 

𝑥 (𝑐𝑚) 
1 4.63 2.41 2.41 

8 27.16 7.48 7.48 

�̈� (𝑐𝑚/𝑠2) 
1 496 568 459 

8 1,230 792 643 

𝑈 (𝑁) 
1 - 10,790 10,587 

8 - 2,141 1,940 

 

Table 5 Maximum response quantities during Northridge 

earthquake. 

 Story No control SMC CFSMC 

𝑥 (𝑐𝑚) 
1 1.81 0.93 0.93 

8 11.56 3.1 3.1 

�̈� (𝑐𝑚/𝑠2) 
1 152 191 133 

8 375 385 241 

𝑈 (𝑁) 
1 - 3,660 3,492 

8 - 839 641 

 

The performance of the control system given by the root 

mean square (RMS) of uncontrolled and controlled responses 

for both SMC and CFSMC methods is represented in 

Figs. 18 and 19. Even though the displacement responses in 

both approaches are identical, the chattering negatively 

impacts the RMS values obtained with the SMC, which is 

evident in Fig. 19. 
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Fig. 18 RMS of displacements. 

 

 

 

Fig. 19 RMS of accelerations. 

 

Finally, an indication about the energy consumption of 

the control method can be derived from the RMS for the 

control forces as shown in Fig. 20. The CFSMC requires 

smaller forces to achieve suitable dynamic performance in 

comparison to the SMC. The proposed method not only 

reduces the dynamic responses with less amount of energy 

consumption, but also removes chattering in the actuator, 

which could cause a control system malfunction in practical 

applications. 

 

 

 

Fig. 20 RMS of control forces. 

 

 
6. Conclusions 

 

A chattering-free sliding mode control (CFSMC) 

methodology is presented in this paper to improve the 

performance of the conventional SMC. The proposed 

approach takes advantage of a fuzzy model for designing a 

chattering-free SMC effectively avoiding excessive 

switches. Moreover, using the concept of the sliding mode 

for constructing the fuzzy rules basis, a trial-and-error 

process is avoided. To validate the proposed method, the 

CFSMC was employed to reduce the seismic responses of an 

8-story building equipped with an active tendon system. 

Results demonstrate the performance of the proposed method 

against the SMC to eliminate chattering with high accuracy, 

whilst reducing the dynamic responses. It was demonstrated 

that the CFSMC is an effective strategy for enhancing the 

performance of the conventional method in seismic isolation 

of structures.  

While this study focussed on the dynamic response of 

structures due to seismic excitation, some important issues 

will remain and require further studies to fully assess the 

proposed control strategy, such as the stability analysis, 

nonlinearity, and uncertainty in the structural properties. The 

proposed method could also be extended to time-delay 

problems and structures with material deterioration under 

strong excitations.  
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