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Thesis Summary 

This thesis is concerned with the scaling properties of soil spatial variability. There is a need for better 

understanding of soil variability in space to allow more efficient sampling and mapping. In this thesis, 

we develop our understanding of the scaling behaviour of soil variability relies on using legacy data to 

develop empirically-based scaling theories. In the introduction, we highlight how understanding 

spatial variability informs digital soil mapping and spatial sampling and review existing studies of 

spatial variability. Our review highlights the practical problem of collecting sufficient data to develop 

a comprehensive theory of soil spatial scaling, and the associated knowledge gap. We propose to 

address this problem by using large legacy datasets to investigate the scaling properties of soil. We 

identify three major aims: First, a general characterisation of soil variability scales ranging from field 

to global. Second, the development of a general model of variability across scales, finally, to test the 

variability of soils compared to other environmental variables. We work towards each of these aims 

in Chapters 2 to 6 as outlined below.  

 
Chapter 1 sets the context and significance of scaling issues related to soil science and describes the 

importance of scales of observation for understanding soil processes, in particular for digital soil 

mapping.  We review soil variability across different scales and identify a major knowledge gap. Studies 

that describe soil variability at several fine scales commonly find variability dominated by variation 

within just a few meters. Studies that consider variability across a landscape scale tend to find useful 

measures of variability at these scales too. Largely due to the expense and difficulty of collecting data 

there are few studies that consider the scaling properties of variability between the sub field and 

regional scale. We proposed that legacy data might be a useful and as yet underused resource for 

addressing this gap.   

In Chapter 2, we used soil texture legacy data from across the Australian continent as the basis for a 

description of soil variability at different scales. First, we employed empirical variogram calculation 

from classical geostatistics to model the soil variability at different scales by simultaneously varying 

the bin size and the extent. We further developed our theory of spatial scaling by combining the 

variograms into a composite that measured variability across scales. Using the ‘variogram method’ we 

investigated the possibility of a power scaling law, or the existence of a fractal dimension to describe 

roughness across scales. We found that the change in variability between scales was not well 

described by a fractal model, or even a traditional multifractal model. Instead we propose a new 

measure of roughness. Our new framework is conceptually linked to the multifractal model, but allows 

a gradual change in stochasticity or variability as the scales change. Our results suggest that a more 
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gradual approach to soil variability is more appropriate than the traditional multifractal framework, 

which proposes regions of self-similarity punctuated by rapid change.  

In our third chapter, we use a radiometric dataset to investigate the effects of sampling distribution 

on the shape of the variogram and the roughness index. Radiometric data makes a useful proxy for 

soil texture as the radiometric signal is linked to clay. The Radiometric dataset has more even coverage 

(although a wider support) than the soil texture legacy data. This allows us to sample across the 

continent, and also allows us to investigate different sampling designs which may be useful for 

estimating scaling properties.  

To investigate the claim that soil is more variable at fine scales than other environmental properties, 

we assemble a range of legacy data and remotely observed data for a number of environmental 

variables. Using the methods developed in Chapter 2, and the alternative sampling design developed 

in Chapter 3 for the remotely observed data, we compare variability between properties across scales. 

We find that contrary to popular mythology there are several environmental variables that show 

similar levels of stochasticity across most scales.  

In order to test the limits of our proposed model of scaling of soil properties, we access a global dataset 

and use it to model global clay variograms. Unlike variability at the other scales, we find that the global 

clay variogram is strongly isotropic, and the variograms do not fit well with the model of spatial scaling 

developed for the Australian continent. This might imply that the spatial scaling model we develop in 

Chapter 2 applies only up to continental scales. Surprisingly, the global variograms do not show more 

variability than the continental variograms.  

In our final investigative chapter, we seek to better understand the scaling properties of the soil at the 

field and sub field scale. Because of the importance of these scales for agricultural decision making, 

there is a significant amount of data available at these scales. This data is currently under used. We 

compile precision agriculture variograms from the literature and investigate whether they are useful 

for prediction of field scale variability. There is some similarity in the range (the majority of field scale 

variograms reach the sill at less than 100m) but the shape and the other variogram properties vary 

widely. The existing literature does not provide a useful guide to the expected variability of soil 

properties at the field scale. Further, the extremely short range, and high sill that is found at these 

scales suggests that further work is to be done to understand how the ‘local sill’ and the ‘global sill’ 

interact in practice.   

The final chapter of this thesis presents conclusions and areas of future work to further improve our 

understanding of soil spatial scaling. Recommended areas of future work broadly included a greater 
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focus on developing an understanding of how the scaling patterns of variability differ between regions, 

and the links between variability in soil properties and other environmental properties.  
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Tell the truth through whichever veil comes to hand — but tell it.  
Zadie Smith  
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1.1 Soil and Scale  

Our understanding of any property or process is influenced by the scale of our observation. When 

studying a particular soil property, it is critical that investigation occurs at a level of resolution which 

is appropriate for the model we are trying to construct (Hoosbeek & Bryant, 1992). In some cases, we 

can be guided by the structure of the soil itself.  Dijkerman (1974) emphasises the hierarchical nature 

of soil organisation: the soil can be subdivided into smaller and smaller subsystems of decreasing 

complexity: the landscape can be divided into the profile, which can be divided into the pedon.  

 

Figure 1.1. Soil structure schematic, based on Dijerkman’s (1974) hierarchy 

 

Soil formation is dependent upon the interaction of environmental variables such as climate, parent 

material, vegetation, human influence, topography and time (Heuvelink & Webster, 2001; Jenny, 

1941; R. Webster, 2000).  Each of these factors will operate distinctly at different scales. For example, 

general climate trends are much easier to predict (more consistent) than the exact location and timing 

of a thunder storm (Costanza & Maxwell, 1994). These soil forming factors interact with each other 
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and with the soil in complex ways. For example, rainfall and climate drive the development of 

vegetation (in conjunction with the existing soil condition) and over time the vegetation affects not 

only the soil condition, but also the microclimate, and to some extent the macroclimate. This 

complexity means that while the behaviour of the soil is theoretically deterministic and, with enough 

information, should be possible to model mechanistically, in practice, we often cannot explain soil 

behaviour mechanistically. Or, if we can, we can only do so under certain specific scales. For example, 

Moni et al.  (2010) find evidence that suggests the mechanisms that link iron and aluminum oxides to 

storage of organic carbon operate at the pedon scale, but not at the field scale. Wiesmeier et al. (2019) 

characterise key scale dependent drivers of soil carbon variability (Figure 1.2).  

 

Figure 1.2. Overview on the scale-dependent hierarchy of drivers and indicators for SOC storage (MAT 
= mean annual temperature, MAP = Mean annual precipitation, TWI = topographic wetness index, SSA 
= specific surface area). Figure from Wiesmeier et al. ( 2019)  
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Our scales of observation and the statistical analysis employed can be expected to affect the results 

of any model we apply them to (Dungan et al., 2002). This is not always explicitly considered by soil 

scientists, but the underlying principle is well understood by the discipline:  A simple example, likely 

to be well known is the practice of compositing soil samples. This practice reduces the impact of fine 

scale spatial variability. This deliberate removal of very fine scale spatial information (typically 

compositing occurs within a few meters) reduces fine scale stochasticity and reveals more general 

spatial trends. Another example which highlights the soil scientists understanding of the importance 

of scale is the pedological practice of breaking up soil profiles by horizons.  

So far, we have used the term ‘scale’ without including a precise definition. The term scale is often 

used with different meanings between different disciplines1. We introduce here some more precise 

terms which describe important components of scale: support, spacing and extent. These terms can 

be used to describe temporal variability (Blöschl & Sivapalan, 1995) or spatial variability in one or more 

dimensions (Young & Gotway, 2007). The focus of this thesis is on lateral spatial variability, so unless 

otherwise specified when we refer to scale, or the terms Support, Spacing and Extent we are referring 

to lateral spatial variability.  

● Spacing refers to how far apart the observations are 

● Support refers to the coverage of the observation  

● Extent (sampling) the maximum distance between any two observations  

 

As well as being used to describe the scale of observation, each of these terms can be used to describe 

the scale of the model output as well. When used to describe the model output the terms have a 

similar meaning.  

 

● Extent refers to the maximum distance of the map or the model 

● Spacing refers to how frequently the predictions occur and  

● Support refers to the coverage of each prediction  

 

It is common for spacing and support of a model output to be identical. When this is the case, support 

and spacing are often bundled together into a single term (resolution) or grain size.  

 

                                                      
1 With reference to mapping, ‘small scale’ to describe a map which depicts a large territory, and therefore has been scaled 

down more. Large scale describes a map which depicts a small territory, and therefore which is drawn at scale not too far 
from the original. The terms small scale and large scale do not provide information about the resolution or the quality or 
detail of the information underlying the map.  



 

 

5 

 

Spacing     Extent     Support  

 
Figure 1.3. The sampling scale triplet of spacing, extent and support for a regularly spaced two 
dimensional case. (Figure taken from Skøien & Blöschl, (2006)).  

These terms can also sometimes be usefully applied to the modelling or working scale.  
 
 

 

1.2. Soil Spatial Scaling and the Soil Map   

Scale is an important concept in soil science (and other areas of science). It has particular importance 

for the growing field of digital soil mapping. Over the last several decades there has been a 

proliferation of techniques being developed for digital soil mapping (Grunwald, 2011). Development 

of accurate soil maps at a range of scales will be required for addressing challenges of the future, in 

particular climate change and food security (Grunwald, 2011).  

A major challenge faced by the digital soil mapper is using observations from one scale and converting 

it into information that is useful for decision making. For information to be useful it needs to be 

accurate and precise enough to meet the needs of the information user, and it also needs to be 

available at a spatial scale relevant for decision making (Lark, 2005; Malone, et al.  2013). This is an 

especially challenging problem when we are working with the soil resource, because the scale of 

observation is typically very far removed from the required scale of prediction. Current methods of 

soil sampling are expensive, time consuming and destructive. Our observation support is typically very 

small: a soil core typically has a lateral support of around 10cm, and with a few exceptions spacing is 

either sparse, or the extent is small. By contrast when we require information about the soil we require 

it to be continuous, and where possible detailed.  

 Geostatistics has provided us with a useful toolkit for predicting continuous soil properties from 

limited information. Despite this, the problem of how best to predict from different scales of 

observation is not yet fully understood. The soil is complex: it encompasses physical, chemical and 

biological processes which interact differently across spatial scales. This means that soil variability has 
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different characteristics at different scales (Lark & Webster, 1999)2. Our understanding of how this 

variability changes between scales is limited by our ability to observe the soil. Our limited 

understanding of soil variability across scales is  a problem because optimal sampling and modelling 

of the soil requires an understanding of how variability changes between scales. In particular, an 

accurate understanding of variability across scales will inform two practical questions commonly faced 

by the Digital Soil Mapper.  

This leads to two practical questions for the Digital Soil Mapper:  

1. How can we best sample (control the scale of observation) to get the most useful information 

for the least cost.  

2. Given the information that we do have, how can we best use it to produce a useful map or 

model?  

We describe in section 1.2.1 and 1.2.2. how a greater knowledge of the scaling properties of soil 

variability helps us to better address each of these questions. 

 

1.2.1 Spatial scale and sampling design  

Understanding soil variability at different scales allows us to create a more efficient sampling design 

(Kerry & Oliver, 2004; Lark, 2002; Pettitt & McBratney, 1993). There is always a trade off between the 

cost of sampling (time, money and soil destruction) and the benefit, information gained from the 

sampling. When we don’t know how variability changes with scale, we cannot estimate ahead of time 

how much information we might gain from increasing the resolution of the sampling. We elaborate 

on this problem in Chapter 2.   

 

1.2.2 Spatial scale and change of support  

Understanding the detail required to make information ‘relevant for decision making’ requires not 

only an understanding of the decisions which are being made, but also an understanding of the 

underlying variability of the soil at any particular scale. The first part of this statement is perhaps 

intuitively obvious. A landholder who can manage their fertilizer application down to 1m is unlikely to 

                                                      
2 When we use the term variability we follow Heuvelink & Webster, (2001); McBratney,(1992); Webster, (2001) who define 

soil variability as the potential or tendency for the soil to vary. Measures of variability for a particular property include the 

range, s.d. and the variance. Each of these measures is a method of quantifying the potential of a particular property to vary. 

In this thesis we tend use the semivariance, and the variogram to quantify variograms across scales. We also use statistics 

derived from the semivariogram to quantify how variability changes with scale.  
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be particularly interested in the difference between individual cm, or in the average variability across 

the whole field. The second part of this paragraph’s opening statement: that the underlying variability 

at any given scale is an important determinant of the ‘relevant’ spatial scale is perhaps less obvious. 

Antle et al.  (2003) highlight this with reference to different management regimes for soil carbon 

sequestration. Understanding how spatial variability changes between scales also allows us to 

understand how the representation of the soil resource in a given map compares to the underlying 

reality (El Maayar & Chen, 2006; Malone et al., 2013; Zhang et al. , 2002). All maps (like all other types 

of models) involve generalisations. Understanding how soil variability changes between scales allows 

us to understand how much information is lost in any particular generalisation.  

 

1.2.3 Studies of soil spatial variability at different scales   

There have been significant efforts made to develop our understanding of how soil variability changes 

across scales. The majority of these studies focus on understanding the scaling properties of variability 

at extents less than 50 km. This is in part due to the expense of wide extent field surveys, and in part 

because of the importance of understanding fine scale variability for precision agriculture applications.  

The majority variograms of soil properties calculated at the field scale have a local sill at less than 

100m (more detail in chapter 2). Beckett & Webster (1971) find that in general around half of the 

variability contained within a field can be found within a meter (when sampling using traditional soil 

cores). This emphasises the importance of very fine scale spatial variability. This tendency to find 

significant variability in soil at short extents is often also found in studies that focus more explicitly 

upon scaling. Smith’s (1938) study of the variability in yield finds that as the size of the field increases 

the variability captured within it also increases but at a decreasing rate. Using an explicitly nested 

sampling design (optimal for capturing variability across scales (Le Guen et al., 2017) find that fine 

scale variability is significant and masks the effects of biochar application between fields. Combining 

fractal theory with the variogram, Burrough (1983) finds that soil pH and texture fraction exhibit 

notable short term stochasticity. Amico (2015) finds fine scale variability is driven by cryoturbation. 

Šamonil et al., (2011) find that that 70-80% of the sill (across a field) occurs within a distance of 10m. 

Studies that consider the variability of soil at fine scales consistently find high levels of soil 

stochasticity. However, studies that measure the variability and spatial dependence of different soil 

properties at regional scales also tend to find patterns of dependence at extents up to hundreds of 

km. Liu et al. (2013) measure spatial dependence of Nitrogen and Phosphorous across the Loess 

plateau  (an extent of ~ 1000km at the maximum East West direction) and find spatial dependence at 

extents of several hundred km. Hu, et al.   (2014) and Liu et al. (2013) explicitly compare variability 
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between scales. Hu et al.  find that soil organic matter and total nitrogen spatial dependence at scales 

of 30km extent and 400m spacing, are distinct from spatial dependence at fine scales (5km extent and 

100m spacing). Liu et al. (2013) find something similar when they measure the spatial dependence of 

soil nutrients in an agricultural region of Eastern China at (12km and 84km). Xiaoni, et al.  (2010) find 

scale dependence in their examination of scaling properties of heavy metals in agricultural soil. The 

difficulty of obtaining enough samples to accurately measure variability at regional scales means that 

these studies typically cannot consider variability across a wide range of scales. Each sample taken by 

Xiaoni et al.  (2010) is made up of five samples within a 10m by 10m square. Hence, they are 

deliberately removing the fine scale variability that field scale studies are deliberately investigating. 

Yemefack et.al. (2005) use nested sampling and ANOVA analysis to compare variability at plot, field 

and regional scales, but their sample size is limited to only 134 points, which may not be sufficient for 

a comprehensive modelling of the scaling patterns. In a recent study, Lark et al., (2017) suggest that 

estimation of scale dependent variance components would require around 200-250 samples.  

One field in which there have been studies linking scaling properties from the very fine to the 

continental scale is in microbiology. Green et al. (2004) find a power law relationship linking microbial 

biodiversity to area. Zhou et al.  (2008) do not find a strong power law relationship between species 

richness and area. Van Der Gast et.al. (2011) find that arbuscular mycorrhizal fungi demonstrate 

scaling in turnover, but that this is dependent on human management. Based on the description of 

studies above we conclude the following:  

● The majority of studies that consider field scale variability find significant variability reached 

at very short extents  

● Studies that consider the spatial variability and dependence at regional scales often find 

spatial correlation at extents up to hundreds of km. 

● There are few studies that compare spatial variability / dependence at more than one or two 

scales  

● The high data requirements for describing variability across scales represent a significant 

barrier to accurately describing how variability changes with scale.   

● There are significant knowledge gaps about how variability is related between scales. There is 

especially a lack of empirical studies that model the change in variability of soil properties 

between multiple scales.  
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1.3. Legacy data: An opportunity for improving our understanding of soil 

spatial scaling   

There are significant data requirements for modelling the scaling properties of soil variability (Lark et 

al., 2017). These present a significant difficulty in the development of theory that describes how the 

statistical properties of the soil vary with scale. A general theory to describe how the variance of soil 

properties changes with spatial scale would allow more efficient sampling design and allow better use 

of existing soil information.  

In the last ten years or so there have been significant undertakings aimed at compiling and 

synthesising soil legacy data (Ribeiro et al., 2015; Searle, 2014). These compiled data sources have 

been used for large scale (global and national) digital soil mapping projects. They are a potentially 

valuable resource for modelling variability across scales from the local to the global. This thesis aims 

to use these existing legacy data sources to model spatial variability across scales and investigate the 

possibility of developing a general theory of spatial scaling.  

 

1.4. Our Questions  

There is a significant knowledge gap around how the spatial variability of soil at fine scales and short 

extents is connected to the spatial variability of soils at coarser scales and greater extents. Fine scale 

studies (field extent or smaller) tend to find that variability is dominated by very fine scale variability 

(within a few meters), large scale studies often find trends in spatial variability occurring across 

hundreds of km. Due (in part) to the cost and difficulty of sampling across multiple scales there are 

limited studies that link variability at the sub field scale to variability at scales of more than a few km.  

Our thesis addresses the following broad questions:   

● How variable is the soil at different spatial scales?  

● Can we develop a general model to describe how soil variability changes across spatial scales?  

● How does soil variability compare with the variability of other environmental properties across 

spatial scales?  

 

How variable is the soil at different spatial scales? 

In our initial characterisation of soil variability at different spatial scales (Chapter 2), we calculate 

declustered variograms from a legacy dataset. By varying the bin size and spatial extent we are able 

to change the scale of variability that each variogram is modelling.  We assess the impact of the 
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distribution of the dataset using a proxy variable (Chapter 3). We use the same method to calculate 

global variograms using a different legacy dataset (Chapter 5). We also include a meta-analysis of field 

scale variograms to examine the field and sub field variability of soil properties in more detail (Chapter 

6).  

 

Can we develop a general model to describe how soil variability changes across spatial scales? 

In the second part of Chapter 2, we apply the ‘empirical variogram method’ of Burrough (1983) to the 

Australian legacy dataset. We find that a modification of this method provides a better 

characterisation of how variability changes across scales. When calculating the global variogram 

(Chapter 5) we find that the model does not extend to the global scale. We also find that while the 

model works well when applied to the sub-field scale based on the legacy dataset, individual field scale 

variograms are not well captured within this framework (Chapter 6).   

 

How does soil variability compare with the variability of other environmental properties across spatial 

scales?  

In Chapter 2, we develop a general model that describes spatial variability in soils from the field to the 

continental scale. In Chapter 4 we apply this model to other environmental variables. This allows us 

to compare the variability between environmental properties across multiple scales. It also allows us 

to consider the implications of different support and sampling distribution on the modelled results.  
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Chapter 1A: 

 

A list of important spatial terms  
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We include below a list of closely related terms that are used throughout the thesis. Most of these 

terms are defined throughout the thesis as they occur. They are included here for convenience.  

Variability: When we use the term variability we follow Heuvelink & Webster, (2001); 

McBratney,(1992); Webster, (2001) who define soil variability as the potential or tendency for the soil 

to vary. Measures of variability for a particular property include the range and the variance. The 

variogram (which relates variability to separation distance) is used frequently throughout this thesis.  

 

Variation: In this thesis refers to the actual change in a particular property (i.e., where the soil is 

actually more variable) rather than the tendency for the soil to vary (variability).  

 

Stochasticity: The term stochasticity in this thesis describes whether variability (of a particular 

property in space is more or less random. The more stochastic a property is, the more dominant the 

short range variability. A property with less stochasticity (noise, or random variation) will vary 

gradually in space and long term trends will be more important.  

 

Hurst Exponent: The Hurst Exponent relates the autocorrelation of a series to the lag or separation of 

the series. Varying between zero and one, the closer the Hurst Exponent is to zero, the lower the 

autocorrelation, and the more stochastic or antipersistent the series. A Hurst exponent closer to one 

indicates stronger autocorrelation, and a less stochastic, more persistent series. 

 

Hausdorff Besicovitch Dimension: the Hausdorff Besicovitch Dimension (or D value) can usefully be 

understood as a measure of roughness (Berry and Lewis, 1980) or stochasticity. The more significant 

the short range variability is, the higher the D value (Eghball et al., 1999). In the case of two 

dimensional data (i.e. spatial data) a D value of exactly 2.5 occurs if variability has a linear relationship 

with separation distance. This corresponds to Brownian motion and a Hurst Exponent of 0.5. D values 

> 2.5 imply that short range variability is more important than long range variability (antipersistence, 

and a Hurst exponent < 0.5). As the D value increases towards 3 the variogram approaches a pure 

nugget model (i.e. no spatial trend, pure white noise). D values lower than 2.5 suggest that long range 

variability is relatively more important than short range variability (persistence, and a Hurst exponent 

> 0.5). 

 

Roughness Index: In this thesis we introduce a measure of stochasticity which we term the roughness 

index. Like the Hurst Exponent and the Hausdorff Besicovitch Dimension it quantifies the relative 

importance of short versus long range spatial variability (or stochasticity). The roughness index is 

distinct from the Hurst Exponent and Hausdorff Besicovitch Dimension because rather than assuming 

a constant fractal relationship it allows the measure of roughness to vary with separation distance or 

scale. 
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Chapter 2: 

 

Spatial Variability of Australian Soil Texture: A multiscale 

analysis 
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Abstract  

Understanding how soil variability changes with spatial scale is critical to our ability to understand and 

model soil processes at scales relevant to decision makers. The compilation of large legacy data sets 

has opened up new possibilities to model spatial variability at the continental or even global scale. 

Using the National Soil Site Collation (NSSC) dataset of Australia we created empirical variograms for 

sand and clay fraction at extents from 1km to continental. The NSSC dataset is highly spatially 

clustered; a typical feature of legacy datasets. This leads to lumpy artefacts in the variograms. To 

reduce this lumpiness, we employed grid based declustering. We used the declustered empirical 

variograms to calculate the Hausdorff Besicovitch Dimension – a unitless measure of spatial 

roughness. We first fit a power model to each declustered variogram and calculated the Hausdorff 

Besicovitch dimension at each modelled scale. This allowed us to assess the roughness or variability 

at each modelled extent, however this assessment was somewhat coarse. We have proposed a new 

model that allows us to calculate the Hausdorff Besicovitch dimension continuously across all extents. 

The conceptual basis of this model moves away from a Multi-fractal framework typically used by soil 

scientists. It allows us to describe spatial variability or stochasticity as a continuous function of spatial 

separation. Both our new model and the continental scale variograms of texture emphasise the high 

degree of short range variability in soil spatial texture. Empirical variograms indicate that around 50 

per cent of spatial variability occurs at less than 10km, and 30 % at less than 1 km. Spatial variability 

increases with depth consistently across all modelled extents and model types. Beyond extents of 

around 100km, the Hausdorff Besicovitch Dimension remains relatively stable. Soil spatial variability 

is highly stochastic at fine scales. Spatial variability may change gradually with extent and scale rather 

than abruptly.  
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2.1. Introduction  

Our ability to understand and manage the soil resource is dependent on the scale at which we can 

observe and model soil characteristics and processes. As soil scientists, one of our key challenges is to 

produce information about soil quality and processes at a resolution and extent useful for decision 

makers (Lark, 2005; Malone et al., 2013). It may often be necessary to do this without the collection 

of additional data (Malone et al., 2013; Pongpattananurak et al., 2012). Modelling soil properties is 

challenging because a soil property at any given location is the result of a complex interplay of 

environmental and management factors over time. While these are in theory deterministic processes, 

the outcomes of these complex soil forming processes are often so unpredictable that they appear 

random (Heuvelink and Webster, 2001; Webster, 2000). The relative dominance and interactions of 

these different factors will vary with location and with the scale of observation (Heuvelink and 

Webster, 2001; Lark, 2011). This applies to both the deterministic and the ‘random’ component of soil 

variability. Capturing variability at relevant spatial scales is critical to production of useful models and 

maps, but is not a simple task. Without a priori knowledge of patterns in soil spatial variability it is 

easy to design a soil survey that misses important spatial variation either by sampling with spacing 

that is too broad or an extent that is too narrow. The importance of this issue has led to much work 

on the efficient design of soil surveys across multiple scales (Lark, 2005, 2011; Pettitt and McBratney, 

1993; Webster et al., 2006). Even with these efficient methods, multiscale sampling strategies tend to 

be both time consuming and expensive and not always possible. It may be possible for the soil scientist 

to shape their expectations about the likely variability of soil at different scales from existing literature, 

but generally speaking our understanding of the variability of the majority of soil properties at 

different spatial scales is still limited. The availability of continental-scale soil data allows new avenues 

for approaching the question of how soil variability changes with scale. In this chapter:   

● We use legacy data to calculate empirical variograms at spatial extents ranging from 

continental to 1 km by varying bin size and extent. This illustrates the utility of the empirical 

variogram as a tool for exploiting large legacy datasets in investigation of scaling patterns 

(Sections 2.2.2, 2.2.3, 2.2.4 and 2.3.1).  

● We describe two methods for calculating the spatial roughness for the quantitative assessment 

of spatial variability (Sections 2.2.5, 2.2.6, 2.2.7 and 2.2.8) and apply these methods to the 

empirical variograms we have calculated (Sections 2.3.2 and 2.3.3). This allows us to expand 

on the inferences we have drawn about changes in variability across scales (Sections 2.3.4, 

2.3.5, 2.3.6, and 2.3.7). 
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2.2 Methods 

2.2.1 Conceptual overview  

Collaborative efforts to build large scale digital soil maps such as GlobalSoilMap have led to the 

creation of consolidated databases of soil information. These databases represent a significant 

resource for empirical characterization of soil spatial variability. Our idea was to take advantage of the 

inherent flexibility in the experimental variogram to create soil variograms at a range of spatial scales 

using compiled legacy data. By adjusting the bin size and extent of each variogram we adjusted the 

spatial scale so that each variogram captures a different magnitude of spatial variability. Creation of 

variograms across a range of spatial scales allowed the characterization of patterns of spatial 

variability with scale. We fit power curves to the empirical variograms across a range of modelled 

scales. The exponent parameter from the fitted power curve was used to calculate the Hausdorff 

Besicovitch Dimension or D value, a unitless measure for the roughness of an object. Burrough (1983) 

used this dimension to compare spatial variability between environmental properties. The ‘variogram 

method’ used by Burrough (1983) is rooted in the concept of Multifractals (regions of similar variability 

separated by ‘zones of transition’). We introduce a differentiation-based method for estimating this 

dimension continuously across changing extents. Because the underlying conceptual framework for 

our model is distinct from the Multifractal framework we replace the term Hausdorff Besicovitch 

Dimension with the more general ‘roughness index’. Because the roughness index is dependent upon 

the shape of the variogram but not the units, it provides a simple but useful quantitative tool for 

assessing spatial variability between properties and between scales. We calculated the ‘roughness 

index’ across different spatial extents and at several different depths using both methods.  

The schematic below outlines the workflow of the chapter.  
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2.2.2 NSSC soil texture data 

The soil texture data used in this analysis was compiled to support the Australian contribution to the 

GlobalSoilMap (Grundy et al., 2015). A collaboration of state and national government agencies and 

some universities worked together to produce the National Soil Site Collation or NSSC (Searle, 2014). 

The database includes geo-located soil observations collected by research and government agencies 

from the 1930s onwards. The NSSC is a composite of data from a variety of sources therefore it does 

not have a unified sampling design and the NSSC dataset reflects the research priorities of the different 

data collecting institutions at different times. The dataset is heavily focused in agricultural regions and 

includes areas of high density sampling and sparse sampling (Fig. 1). The complete database contains 

information on several soil properties including percentage clay and percentage sand fraction from 

almost 16,000 soil profiles. Percentage sand and clay fractions from this database are used in this 

study.  
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Figure 2.4. The distribution of the NSSC dataset. Each black dot represents an individual soil 
observation. 

 

Observations in the NSSC database were not taken at consistent depths. Data was normalized using 

the generalized equal area spline depth function (Malone et al., 2009). Soil depth intervals were 

selected in line with the GlobalSoilMap depth intervals (0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–

200 cm3, Arrouays et al., 2014). Prior to applying the spline depth function, locations with no top soil 

measurement were discarded and locations with multiple observations or overlapping depths were 

deleted. The number of observations that were used at each interval are shown in Tables 2.1 and 2.2 

below. The spline function does not return values at depths below the available data. The NSSC 

database contains more observations for the topsoil than the subsoil. This results in fewer data points 

observations available at lower depth intervals. Summary statistics for percentage Clay and Sand 

fraction are presented in Tables 2.1 and 2.2 below. 

                                                      
3 This depth combines 60-100 and 100-200.   
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Table 2.1. Percentage Clay fraction: Summary statistics  

Soil Depth Number of 

observations 

Mean (% clay)  Median 

(% clay) 

Standard 

deviation 

(% clay) 

Skewness  Kurtosis 

0-5 cm 13830 21.52 15.87 17.44 1.10 3.38 

5-15 cm 13342 23.38 18.00 17.74 0.93 3.00 

15-30 cm 9026 26.98 22.48 18.99 0.65 2.48 

30-60 cm 7758 34.19 33.04 20.19 0.29 2.25 

60-200 cm 5969 37.57 37.73 19.49 0.15 2.39 

 

Table 2.2. Percentage Sand fraction: Summary statistics 

Soil Depth Number of 

observations 

Mean (% sand)  Median 

(% sand) 

Standard 

deviation 

(% sand) 

Skewness  Kurtosis 

0-5 cm 13258 63.17 66.83 22.74 -0.46 2.25 

5-15 cm 13091 61.37 64.39 22.78 -0.37 2.16 

15-30 cm 9012 57.82 58.86 23.43 -0.18 2.05 

30-60 cm 7727 51.48 50.38 23.97 0.07 2.08 

60-200 cm 5916 48.41 47.05 23.13 0.17 2.24 

 

2.2.3 Experimental Variograms – modelling at multiple scales  

We calculated experimental variograms using Matheron's (1963) method-of-moments estimator 

(Equation 1).   

̂ (ℎ) =
1

2𝑀(ℎ)
∑ {𝑧(𝑥𝑗) − 𝑧(𝑥𝑗 + ℎ)}

2𝑀(ℎ)

𝑗=1
 Equation 1 

In Equation 1 (above) the theoretical relationship between separation distance (lag or ) and 

semivariance, ,  is estimated by the function ̂ (ℎ).  M(ℎ) is the number of paired comparisons at a 

particular lag (ℎ).  z(xj) and z(xj + ℎ) are the values of the property Z at places xj and xj + ℎ separated by 
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lag ℎ. It is common practice for the lag  ℎ  to cover a specified distance interval. For instance 1 km 

increments.  

Use of method of moments to estimate semivariograms has been criticized for bias and for subjectivity 

(Lark, 2000). However, bias decreases as sample size increases (Oliver & Webster, 2014). Variograms 

are typically estimated based on tens to hundreds of data points, while this study uses several 

thousand. This significantly reduces problems of bias. Another reason to favour the use of Method of 

Moments in this context is the difficulty associated with using either REML (Restricted Maximum 

Likelihood) or MCMC (Markov Chain Monte Carlo) methods on very large datasets.  

When using method of moments, the practitioner is required to select both bin size and extent. In 

relation to Equation 1, the bin sizes determine the interval over which the term  spans. The intrinsic 

subjectivity of this method provided a convenient method for modelling variograms at different scales. 

Fixing the number of bins at 1,000, the maximum extent of the experimental variogram was gradually 

reduced. As the extent decreased, the bin size decreased proportionally. Combinations of bin size and 

extent are displayed in Table 2.3.  

 

Table 2.3. Extent and bin size combinations for empirical variograms 

Extent 1km 10km 100km 1000km 3,800km  

Bin size 1m 10m 100m 1km 3.8km 

 

2.2.4 Experimental Variograms - improving fit using spatial declustering  

It has been established that empirical variograms calculated from spatially clustered data can be 

biased or lumpy (Emery, 2007; Marchant et.al., 2013; Richmond, 2002). This makes them less suitable 

for modelling variograms and for kriging because in clustered situations the variability at different lags 

is unequally characterised. As discussed above, the NSSC dataset used in this chapter has been 

compiled from a variety of government agencies and research bodies, and reflects the priorities of 

those bodies at the time of data collection. As such, the dataset is heavily clustered. Empirical 

variograms calculated with the method-of-moments exhibit strong lumpiness at spatial extents 

greater than 40km (you can see this lumpiness illustrated in figure 2.7). This is consistent with the 

pattern noted by Marchant et al. (2013) when using a similar dataset.  

Methods for reducing this bias have been suggested by Emery (2007), Richmond, (2002) and Marchant 

et.al. (2013). We favour the last method as, unlike the first two, it is dependent only upon the spatial 
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location of the data and not upon the values of the data themselves. It is also easily computed and 

has intuitive appeal.   

We use Marchant et.al.’s (2013) modified declustering method of moments estimator (Equation 2) to 

recalculate the empirical variograms at the scales specified in Table 2.3. Deutsch (1989) describes the 

cell declustering procedure which Marchant et al. (2013) used to calculate weighting values. These 

methods are briefly summarized below.  

1. A regular grid with cells of a fixed size and shape4 is projected over the study area.  

2. The number of observations in each cell of the grid is calculated. This value which we can call 

c is assigned to each observation in the dataset.  

3. Steps 1 and 2 are repeated several times, with the grid slightly offset each time. The average 

value of c from each repetition is calculated for each data point. We can call this value . This 

ensures that boundary effects do not dominate the calculation of declustering values.  

4. Declustering weights, w, are set as inversely proportional to the value and then scaled so 

that the average declustering weight is equal to one. In this way, we ensure that isolated data 

points are given more weight than data points which are closely clustered with other data 

points.  

The empirical variogram is then calculated using Equation 2: 

̂(ℎ) =
∑ {𝑧(𝑥𝑗)−𝑧(𝑥𝑗+ℎ)}

2𝑀(ℎ)

𝑗=1
{𝑤(𝑥𝑗) × 𝑤(𝑥𝑗+ℎ)}

∑ {𝑤(𝑥𝑗)×𝑤(𝑥𝑗+ℎ)}
𝑀(h)

𝑗=1

   Equation 2 

The weighting values, w, in Equation 2 allow us to increase or decrease the importance of a particular 

observation when calculating the empirical variogram: w(xj) and w(xj+ ℎ) are the weighting values 

associated with observations at location xj, and xj+ ℎ. The method can be compared to Cressie’s (1985) 

weighted least squares calculation. Cressie (1985) weights each point on the empirical variogram by 

its variance. Intuitively, the smaller the error variance for a particular point, the more information it 

reveals, and hence the more important it is in variogram calculation. In Marchant et al.’s (2013) 

formulation (Equation 2), the weighting factor w is calculated exclusively from the spatial distribution 

of data points. The more isolated a data point, the more unique information it is expected to contain, 

and the greater the weight that is put upon it.  

                                                      
4 Typically square, but in some cases this can be rectangular 
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Effective use of this declustering method depends on selection of an appropriate cell size for the 

calculation of weighting values (w in Equation 2). A very fine grid size would result in all data points 

receiving a declustering weight of one. Conversely, a very coarse grid size would result in only a few 

highly weighted values.  

Following Deutsch (1989), Marchant et al.  (2013) suggest that an optimal grid size should allow the 

most isolated data points to be alone in a grid cell. Marchant et al. (2013) also suggest that a number 

of grid sizes be trialled, and the effects on the empirical variogram be assessed visually. As with bin 

size selection, there is a degree of practitioner subjectivity involved in the selection of appropriate 

grid sizes. There appears to be a trade-off between the removal of lumpiness and the precision of the 

empirical variogram. The larger the grid size is, the greater the reduction in lumpiness, but the more 

diffuse the overall shape of the empirical variogram.   

We found that grid sizes suitable for removing declustering at one spatial extent were not necessarily 

appropriate at other extent. The final extent, bin size and grid size combinations that we selected are 

displayed in Table 2.4. Declustered variograms were calculated for all depths specified in Table 2.1 

and 2.2. The maximum extent, bin size and grid cell size combinations in Table 2.4 were kept consistent 

for variograms calculated at each depth.  

Table 2.4. Extent, bin size and grid size combinations for declustered empirical variograms  

Extent 1km 10km 100km 1000km 3,800km  

Bin size 1m 10m 100m 1km 3.8km 

Grid size (m) 5 0.7km 0.7km 7km 70km 70km 

 

2.2.5. Measures of roughness:  The Hausdorff Besicovitch Dimension and the Hurst Exponent 

The Hurst Exponent and the Hausdorff Besicovitch Dimension are related concepts which quantify the 

variability of a data series (spatial or temporal). The Hurst Exponent (Hurst, 1951) is commonly 

described as a measure of the long term memory of a series, while the Hausdorff Besicovitch 

Dimension (or D value) can usefully be understood as a measure of roughness (Berry and Lewis, 1980). 

The Hurst Exponent relates the autocorrelation of a series to the lag or separation of the series. 

Varying between zero and one, the closer the Hurst Exponent is to zero, the lower the autocorrelation, 

and the more stochastic or antipersistent the series. A Hurst exponent closer to one indicates stronger 

autocorrelation, and a less stochastic, more persistent series. There is an inverse linear relation 

between the Hurst Exponent and the D value. When calculated for two dimensional spatial data the 

                                                      
5 Length of one side of a square grid  
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D value will vary between 2 and 3. The more significant the short range variability is, the higher the D 

value (Eghball et al., 1999). In the case of two dimensional data (i.e. spatial data) a D value of exactly 

2.5 occurs if variability has a linear relationship with separation distance. This corresponds to 

Brownian motion and a Hurst Exponent of 0.5. D values > 2.5 imply that short range variability is more 

important than long range variability (antipersistence, and a Hurst exponent < 0.5). As the D value 

increases towards 3 the variogram approaches a pure nugget model (i.e. no spatial trend, pure white 

noise). D values lower than 2.5 suggest that long range variability is relatively more important than 

short range variability (persistence, and a Hurst exponent > 0.5). Simulated surfaces were calculated 

for several D values using the Lower Upper decomposition matrix method (Davis, 1987). These are 

shown in Fig. 2.2 along with associated power curves.   
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Figure 2.2.. Power curve variograms and simulated 2 dimensional surfaces. D values are: 2.56, 2.8 and 
2.95 top to bottom  

                                                      
6 This image was calculated using an alpha term of 0.999999 rather than 1 to ensure that the covariance matrix remained 

positive semidefinite.  
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2.2.6. The ‘Variogram Method’ for calculating the D Value  

We use the variogram method introduced by Burrough (1983) to calculate the Hausdorff Besicovitch 

Dimension (henceforth called the D Value) for each empirical variogram. The method is 

computationally simple, and only requires two steps.  

1. Fit a power curve (Equation 3) to experimental variograms and find the estimate of the 

exponent ( ω )7.  

2. Use the exponent term ( ω ) in a simple linear relationship (Equation 4) to estimate the D 

Value.  

𝛾 = 𝑏ℎ𝜔
  Equation 3 

𝛾 is the semivariance:  𝛾 ≥ 0   

ℎ is the separation distance or lag between points:  ℎ≥ 0  

ω and b are numerical constants: 2 ≥𝜔 ≥ 0 and b ≥ 0 

 

𝐷 = 3 −  
𝜔

2
 Equation 5 

 

ω the exponent term from Equation 3:  0≤ω ≤2 

D is the Hausdorff Besicovitch Dimension for an isotropic property measured in two dimension: 2≤ 𝐷 ≤3 

 

The original publication of the variogram method (Burrough, 1983) uses a slightly different equation 

(Eq. (5)). The Burrough (1983) paper uses variograms calculated from data on one dimensional 

transects while our variograms are calculated from two dimensional data. The equation we use (Eq. 

(4)), has the simple adjustment of a ‘+1’ term. This allows the calculation of D values for two 

dimensional spatial data (Bez and Bertrand, 2011; Chan and Wood, 2000). This computationally trivial 

adjustment ensures that the D value remains between 2 and 3 (the appropriate range for two 

dimensional data). This adjustment relies on the assumption of isotropy. Calculation of directional 

empirical variograms at multiple scales across this dataset did not find evidence for anisotropy. 

𝐷∗ = 2 − 
𝜔

2
  Equation 5 

                                                      
7  Because the paper by Burrough was published before non-linear least squares estimates were possible, he finds the 

estimate for ((𝜔) by fitting a linear relationship to a plot of the variogram on a log-log scale and finding the slope.  
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𝜔 is the exponent term from Equation 3:  0≤ 𝜔 ≤2 

D* is the Hausdorff Besicovitch Dimension for a property measured in one dimension: 1≤ 𝐷 ≤2 

 

All of the analysis conducted in this chapter is on two dimensional data. Subsequent discussion of D 

values henceforth will refer to the two dimensional D values from Equation 4. 

 

2.2.7. D values: Comparing variability across scales  

We calculated D values from declustered empirical variograms for sand and clay percentage fractions 

using empirical variogram parameters shown in Table 2.5.  

 

Table 2.5. Extent, bin and grid size for declustered empirical variograms used in calculation of D values8 

Extent (km) 1 10 20 100 200 600 1000 2000 

Bin Size (m) 1 10 20 100 200 600 1000 2000 

Grid size (m) 9 0.7 0.7 0.7 7 7 70 70 70 

 

As stated earlier, the roughness index expresses the relative importance of short range and long range 

variability. As the spatial extent of observations changes, the meaning of ‘short range’ and ‘long range’ 

also changes. Examining how D values change with scale has important implications for our 

understanding of variability. We will illustrate with three examples below. 

● If the D value remains constant as resolution increases then relative importance of short range 

and long range variability remains constant. For instance if the D value remained the same as 

the extent of the variogram changed from 100m to 100km, this would imply that the 

relationship between variability at 1m and 100m is the same as the relationship between 

variability at 1km and 100km. It does not imply that the spatial pattern is the same, but that 

the degree of roughness is the same.  

 

● If the D value decreases as the resolution increases, it implies that fine scale spatial trends 

exist and can only be detected as finer scales of observation become possible. At fine 

resolutions the spatial structure that is unobservable at coarser resolutions becomes short-

                                                      
8 All variograms are calculated with all of the data in the data set. For instance  in the 1km extent 1m bin size variogram the 

data point associated with the 5 m bin includes all of the pairs of data which are separated by 4.5- 5.5. m regardless of 
location or of orientation.  
9 Length of one side of a square grid  
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range spatial structure, and the short-range structure at coarser resolutions becomes long-

range structure. As a result, stochasticity reduces.  

● If the D value increases as the resolution increases, it implies that spatial trends are not 

detectable at finer resolutions. As resolution becomes coarser (decreases), stochasticity 

reduces and the spatial trend increases. The very short range stochasticity is no longer 

observable, and the long range trends become observable.  

Understanding which of these trends is likely to occur over particular spatial ranges has implications 

for sampling, modelling and understanding soil processes. If stochasticity is increasing as extent and 

bin size are increasing, point based sampling is less likely to provide useful information about medium 

to long range trends. If stochasticity reduces dramatically over a particular scale range, then sampling 

more finely is likely to provide useful information 

The Hausdorff Besicovitch Dimension has been described as ‘scale invariant’ (Eghball et al., 1999). This 

does not mean that the spatial extent and resolution does not affect the value, but rather that the 

total magnitude of variability does not. The dimension measures only the relative importance of short 

range versus long range variance. As described above this makes the property useful for comparing 

roughness across spatial scales (as the meaning of long range and short range varies). It also makes 

the dimension a useful alternative to variograms for comparing between properties. Even where the 

units of measure are the same (e.g. sand percentage and clay percentage) variograms are influenced 

by the magnitude of the property they are measuring. This makes it difficult to compare directly 

between properties using variograms. The D value is derived from the variogram but depends only on 

the shape of the variogram curve so is not influenced by the magnitude or the unit of measure of the 

variability. A tool sometimes used to visualize how D values change with scale is the ‘fractogram’. This 

label is primarily used in ecology (Leduc et al., 1994; Schmid, 2000). The fractogram is simply a plot of 

D values against scale. The fractogram provides an effective illustration of how the D value changes 

with resolution. This aids our understanding of how the underlying spatial patterns might be affected 

by the scale of observation. The eight variograms described in Table 2.5 were included in the 

fractogram. 

 

2.2.8. The Hausdorff Besicovitch Dimension: An adaption of the ‘Variogram Method’ for 

continuous estimates of ’roughness index’  

The methods described above create several distinct variograms at different extents in order to 

compare how variability changes between these distinct ranges (using both visual assessment and D 

values). We now introduce a method that assesses the relationship between variability and scale on a 
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continuous basis. We repeated this approach for sand and clay, topsoil and subsoil. We consider this 

approach to have two key advantages: 1. It removes a degree of arbitrary decision making in the 

selection of scales at which to model variograms 2. The ‘fractogram’ curve derived using these 

methods is calculated directly from a single composite variogram, rather than by linking together 

values calculated from individual variograms. It is based on a single fitted curve. This approach also 

has a different underlying conceptual framework, and will be discussed further in Section 2.2.9. Briefly, 

our method allows the characterisation of a change in the D values at all scales. This is a departure 

from the framework described by Burrough where regions of self-similarity are characterized by 

finding linear sections on a log-log variogram. The more continuous framework implies a more gradual 

change in stochasticity and therefore a more gradual change in the control of the variogram. Because 

of this shift in framework, we propose the use of the term ‘roughness index’ instead of D value. We 

outline details of this approach using an example (clay topsoil) below. 

 

Step One: Composite Variogram  

We created composite variograms using data points from declustered empirical variograms calculated 

with different bin sizes and extents. The composite variogram combines sections from variograms 

calculated at different scales so that it includes high resolution short scale information from the finest 

scale variograms and coarser resolution data calculated at larger extents. When combining this data 

we exercised a degree of subjectivity in inclusion and exclusion to ensure a smooth transition between 

scales. The composite variogram for top soil clay shown in Fig. 2.3. 

 

Figure 2.3. Composite Variogram, top soil clay 
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Step Two: log-log scale Composite Variogram 

The power function (Eq. (3)) and Eq. (6) below are equivalent. This equivalence means that a power 

curve plotted on a log-log scale will appear as a straight line: The exponent term (ω) from the power 

curve will equal the slope of the log-log curve. 

log 𝛾 = log(𝑏) +  𝜔 log ℎ  Equation 6   

𝛾 is the semivariance:  𝛾 ≥ 0   

ℎ is the separation distance or lag between points:  ℎ≥ 0  

ω is a numerical constants : 0≤ 𝜔 ≤2  

 

Before rapid computational power became available it was common practice to estimate a power 

curve by plotting points on log-log paper and visually estimating a line of best fit (Burrough, 1983). 

Plotting variograms on a log-log scale (Fig. 4) and identifying linear sections is sometimes used as a 

tool for identifying regions of self-similarity. The slope (or derivative) of a linear section of a curve 

plotted on a log-log scale can be used to estimate ω.  

 

Figure 2.4. Composite variogram, top soil clay, log10-log10  scale 

 

Visual assessment of the composite variogram plotted on a log-log scale indicated that a curve might 

provide a better fit than a straight line or series of straight lines. While it is possible to imagine straight 

lines between 100 m and 1 km, 1 km and 100 km, 100 km and 1000 km there are no strongly linear 

sections and there does not appear to be strong evidence for self-similarity interspersed by transition 

zones. We propose that a curved line would be a better approximation for this shape. 

 

 



 

 

34 

 

Step Three:  Fitting a curve to the composite variogram  

We based our curve selection on  visual inspection of fit and residual plots and R2. The exponential 

decay function (increasing) proved the best fit (Equation 7). Using non linear least squares we 

estimated values for the parameters, k, A and C. Estimates of these parameters as well as the shape 

of this curve are shown in Figure 2.5 below.  
 

 log10   = 𝐶(1 − e−𝑘 log10 ℎ ) + 𝐴  Equation 7  

𝛾 is the semivariance:  𝛾 ≥ 0   

ℎ is the separation distance or lag between points:  ℎ≥ 0  

C, A and k are constants: k>0, C >0 

 

 

Figure 2.5. Composite variogram, top soil clay,  log10-log10 scale – fitted curve  

 

Step Four:  Calculating the derivative  of the curve 

Having fit a curve to the experimental variogram we then take the derivative of the curve.  

 

The general form of the derivative of log10   with respect to log10 ℎ is presented below (Equation 8).   

 

𝐶 k 𝑒−𝑘 log10 ℎ  Equation 8 

𝛾 is the semivariance:  𝛾 ≥ 0   

ℎ is the separation distance or lag between points:  ℎ≥ 0  

C and k are constants: k>0, C >0  

ω = 0.29 
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Using the estimates for C and K estimated in our worked example (1.04, 0.28 respectively) we can 

calculate the specific value for the derivative of the log-log curve. We include the curve and equation 

for the worked example (clay top soil) below in Figure 2.6 and 2.7.   

  

Figure 2.6. Derivative of the composite variogram curve – plotted against log10(h) (log to the base 10 
separation distance). 

 

Figure 2.7. Derivative of the composite variogram curve – plotted against ℎ (separation distance), top 
soil clay 

 

Step Five : Estimating a continuous D value or Roughness Index 

We use this derivative as an estimate for ω (in equation 5).  

 

Substituting Equation 8 into Equation 5 to yield Equation 9 it is then trivial to solve for the D value as 

a function of h (separation distance or lag). (Plotted in Figure 2.8 below).  
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D =  
4−𝐶(1+k(e−𝑘 log (ℎ))

2
+ 1  Equation 9  

𝛾 is the semivariance:  𝛾 ≥ 0   

ℎ is the separation distance or lag between points:  ℎ≥ 0  

C and k are constants: k>0, C >0  

ω = 0.29 

 

Figure 2.8. Roughness Index calculated from the composite variogram curve: plotted against 
separation distance (ℎ) 

 

The underlying premise of this method is the equivalence between the exponent of a power curve, 

and the derivative (or slope) of the same curve plotted on a log-log scale. When a variogram fits a 

power curve perfectly, the plot of that variogram on a log-log scale will be a straight line. If the plot of 

the variogram on a log-log scale does not fit a single straight line it can be divided up into shorter 

segments which have the same estimated slope (and therefore the same estimated Roughness Index). 

However it is rare for a curve to show strong linearity separated by obvious transition zones.  On 

curvilinear lines one could imagine taking shorter and shorter line segments to estimate Roughness 

Index. At the limit of this idea, the line segments would be very small, and the line segments when 

viewed together would appear as a curve. 
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2.2.9 Implications of the two methods.  

The variogram method is aligned with an underlying concept of soil variability as part of a multifractal 

system. Burrough (1983) hypothesises that different soil forming processes will dominant soil 

variability at different scales. For a particular spatial range which is dominated by a soil forming 

process, soil variability is likely to be self-similar in the sense that the relationship between separation 

distance and expected variability will be constant and predictable. Regions of self-similarity will be 

characterized by a linear variogram when plotted on a log-log scale. We would expect different 

processes to dominate at different scales. When the dominance is shifting from one process to 

another we can consider this a ‘region of transition’. At these regions the slope of the line of the 

variogram will change. This framework is one of ‘multifractals’ — multiple fractal relationships layered 

upon each other. Another possibility is that change in roughness occurs more gradually. Rather than 

a multifractal framework with distinct regions of self-similarity separated by transition zones, the soil 

variability may change more gradually. This framework suggests a more gradual transition between 

different soil forming elements. Allowing the D Value (which measures the relative importance of 

short range variability) to change gradually implies that variability does not follow self-similar patterns 

over particular extents, but rather changes gradually. This may imply that the control between 

different environmental factors shifts gradually rather than abruptly over scales. Because of this 

shifting framework we suggest that a name such as ‘roughness index’ would be more appropriate than 

D value, which is closely tied to the concept of fractals. Understanding at which scales variability 

changes the most rapidly is of interest regardless of the underlying framework. Whether we are 

looking for distinct regions of transition separating self-similar variability, or a more gradual change, 

understanding where relative roughness changes most dramatically can allow us to better target our 

sampling and better model spatial variability.  

 

2.3 Results and Discussion 

2.3.1 Empirical Variograms – Variability across scales and the impact of spatial declustering 

 

Fig. 9 displays variograms calculated for clay without declustering. Fig. 10 shows variograms calculated 

for clay at the same scales but using declustering. Declustered variograms were also calculated using 

the sand percentage dataset (Fig. 11). It is evident that a large proportion of total spatial variability in 

the property is realised at short extents. For both sand and clay around 30% of the variability is realised 

in the first kilometre, and around 50% in the first 10 km (Figs. 10 and 11). This similarity is unsurprising, 

because sand and clay fractions are not independent variables.  
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The effect of declustering on the empirical variograms is striking. Without declustering, variograms 

calculated for the three largest extents: 3800 km (full extent); 1000 km; and 100 km (Fig. 9) are very 

lumpy. Neither the 10 km nor the 1 km extent variograms exhibit lumpiness. Declustering removes 

the vast majority of this lumpiness for the 1000 km extent and the 100 km extent. At the largest extent 

(3800 km), the declustering methods did not remove lumpiness in the second half of the variogram. 

This is likely because this lumpiness is not due to spatial clustering, but rather a common feature of 

modelling variograms beyond half of the maximum extent. The lumpiness in the 100 km and 1000 km 

can be attributed to the strong spatial clustering in the dataset. Because of this strong spatial 

clustering, there are some lags (spatial separation distances) which are dominated by two densely 

sampled regions. If there is an above average variance between two dominant patches then the 

variogram will have an upward spike at that lag. A below average variability between the two patches 

will cause a downward peak. This does not indicate that the distribution is biased. There is no reason 

to expect that the average variability between these two regions would be the average variability for 

that separation distance across the dataset. Normal variability in the spatial distribution combined 

with patchy sampling can produce spikes or noise. Because this lumpiness is an artefact of the 

sampling distribution and not representative of a trend in the underlying spatial distribution, removing 

the lumpiness through the use of the declustering method is an improvement to the variograms 

(Marchant et al., 2013).  

As noted above, the declustering does not remove all of the lumpiness in the maximum extent 

empirical variogram. The 1 km and 10 km extent variograms do not illustrate lumpiness, but 

declustering does produce variograms with a slightly different shape. Declustering has a smaller 

impact on the narrower because it's much less likely that densely sampled patches will create a strong 

spike over a relatively short spatial extent. But densely sampled patches may still exert a more subtle 

bias over the variogram, and declustering will work to reduce this influence. At these narrower extents 

it is less likely that there will be two dominant patches by these separation distances, but there will 

still likely be overrepresentation of some points (which will alter the shape). Power curves (Eq. (3)) 

were fitted to each variogram using the nonlinear least squares method. Parameters in the model10 

are significant at p < 0.01 for all scales whether declustered or not (Table 2.6). The power curves are 

displayed as red lines in Figs. 9, 10 and 11. It is obvious from visual inspection that at the three largest 

extents (extent 3800 km, 1000 km and 100 km) the power curves fit the declustered empirical 

variograms better than the variograms calculated without declustering. Marchant et al. (2013) suggest 

that the removal of noise in the declustered empirical variograms results in fitted curves that much 

more closely describe the underlying spatial structure. The difference in the fit of the power curve at 

                                                      
10 This is more relevant for ω, as a value of 0 for b would create a null model     



 

 

39 

 

the 1 km and 10 km extent is marginal. There is no obvious lumpiness to be removed at these scales, 

but it may be possible that there is a degree of bias which has been removed by the declustering (i.e. 

reducing the impact of highly sampled areas). We assert that it is better to proceed with the 

declustered empirical variograms at all scales for the remaining analysis. 

 

Figure 2.9. Empirical variograms calculated across varying spatial extents. Data from the NSSC dataset: 
Clay content (% fraction); soil depth 0-5cm.  Black dots represent individual bins. Red lines are the fitted power 

curves. Other coloured lines indicate expansion.  
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Figure 2.10. Empirical variograms calculated across varying spatial extents using declustering. Data 
from the NSSC dataset: Clay content (% fraction); soil depth 0-5cm. Black dots represent individual bins. Red 

lines are the fitted power curves. Other coloured lines indicate expansion. 
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Figure 2.51. Empirical variograms calculated across varying spatial extents using declustering. Data 
from the NSSC dataset: Sand content (as percentage): soil depth 0-5cm.  Black dots represent individual bins. 

Red lines are the fitted power curves. Other coloured lines indicate expansion. 
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Table 2.6. Power curve parameters and Roughness Index values from variograms of clay and sand 

content at 0 – 5cm depth interval. 

    extent (km)  

    3800 1000 100 10 1 

parameter variogram estimate se  estimate se  estimate se  estimate se  estimate se  

ω 

Clay % 

no 
declustering 

0.08 0.004 0.18 0.002 0.10 0.00 0.27 0.01 0.40  

b  171 4 92 1.3 131 1.6 89 1.3 96  

RMSE  34.3   14.9   15.7   21.8   79.7  

D value 2.96  2.92  2.95  2.87  2.80  

ω 

Clay %  
 
declustering 
applied 

0.06 0.003 0.14 0.00 0.13 0.00 0.24 0.01 0.42 0.06 

b  203.9 4.2 128.82 1.51 118.02 0.95 97.46 1.78 108.45 5.30 

RMSE  24.6   13.94   9.98   30.81   86.92   

D value 2.97  2.93  2.93  2.88  2.79  

ω 

Sand % 

declustering 
applied 

.17 .005 0.11 .002 0.16 0.01

0 

0.25  .009 0.36 0.05

5 

b  158.7 6.07 238.0 3.16 185.7 7.49 180.0 2.86 192.0 8.76 

RMSE  65.58  25.6  83.91  49.52  147.5  

D value 2.92  2.94  2.92  2.88  2.82  

 

2.3.2 The Roughness Index – Variability across scales  

Fig. 12 shows D values obtained plotted against separation distance (i.e. a Fractogram) for sand and 

clay topsoil and subsoil. D values calculated from distinct variograms modelled at different extents 

(methods described in Sections 2.2.6 and 2.2.7) are represented as points. Continuous D values 

(roughness index) calculated from the derivative of the composite variogram on the log-log scale 

(methods described in Section 2.2.8) are shown as curved lines. The two methods show a similar trend 

in the change in D values with scale. D values are high (> 2.7) for sand and clay percentage fraction 

across all modelled extents (Table 2.6, Fig. 10). This is consistent with the high short range variability 

observable in the variograms in Section 2.3.2. Other studies which have estimated the fractal 

dimension of soils have also found high D values (Bai and Wang, 2011; Burrough, 1983; Eghball et al., 

1999). The change in D values with scale is similar between sand and clay. There is a tendency for D 

values to decrease as the resolution of the modelling increases. The decrease in D values appears most 

dramatic at the narrowest bin sizes and extents modelled. This implies that much of the spatial 

structure of soil variability is organised at fine scales. The lowest values of around 2.8 for the finest 

variogram (1 m bin size, 1 km extent) increase to almost 2.9 by 10 m bin size 10 km extent. By 100 m 
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bin size 100 km extent, the D values appear to have reached a steady state. That is, the relationship 

between variability at 100 m and variability at 100 km is the same as the relationship between 

variability at 1 km and 1000 km. At the finest scale modelled (bin size 1 m, total extent 1 km) the D 

appear to still be decreasing (Fig. 10). This suggests that there is unresolved spatial variation at scales 

finer than those captured by the spacing of our data set (Burrough, 1983). The D value is usually 

calculated from a limited set of observations of a continuous process so the calculated D value reflects 

not only the underlying patterns in variation of a property, but also how well the particular sample 

captures this variation. A high D value might indicate a high level of stochasticity in the data, or it may 

indicate that the spacing is too wide to resolve short range patterns. If a D value remains high over a 

range of spatial scales it is indicative of a high level of roughness or stochasticity (at least over this 

range of scales). Alternatively, if the D value decreases as the spatial scale changes, then this suggests 

that the resolution is influencing the perceived stochasticity. The practical importance of this 

unresolved variation will depend on the end use of data. Management of soils at scales of < 1 m is 

often impractical, so information at scales finer than this may not have a strong practical use. 

 

2.3.3. D values: Comparison of methods  

There is a close correspondence between the values generated with the two methods (Fig. 10). The 

variogram method models a much noisier relationship between D value and distance than the 

‘continuous D value or Roughness Index’. This could be either a positive or a negative feature of the 

‘continuous variogram’ method. The emphasis on fitting the model using an entire composite 

variogram ensures that the important broad trends are captured. One could also interpret this 

negatively: by creating a composite variogram, the opportunity to investigate shifts in roughness 

between scales, has been reduced. We lean towards the former explanation (provided that the curve 

fit to the composite variogram is good, with no trend in the residuals). Fig. 11 illustrates the fit of the 

exponential decay model (Eq. (7)) to the composite variograms on the log-log scale. The fit appears to 

be very good across for different separation distances and texture types. Another criteria that could 

be used to decide preferentially between the methods is the underlying belief in how the variability 

changes with scale. In Section 2.2.9 we discuss the underlying difference in frameworks between the 

two methods. Burrough (1983) hypothesised that it is likely that soil will have particular scales over 

which it behaves in a fractal-like manner (constant D values) separated by regions of transition. When 

a variogram representing a property with this behaviour was plotted on a log-log scale it would 

visualise as several straight lines of differing slopes. Another possibility is that change in roughness 

occurs more gradually. We believe the shape of the composite variogram is curved enough to favour 

the second option. However it is possible to imagine the data fitting Burrough's explanation. For 
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instance, divided into three segments (1 m to 100 m then 100 m to 10 km then 10 km to 1000 km) 

each segment could be close enough to linear to draw a straight line through it. The question of how 

linear is linear enough to meet the first hypothesis remains somewhat open (Figs. 13 and 14). The 

most significant argument (in our opinion) for the use of the variogram method for calculating D values 

presented is the background for its use. We were not able to find a precedent for the continuous 

method of calculating the D value across scales. 

 

 

Figure 2.12. Hausdorff Besicovtich Dimension plotted against separation distance.  Sand and Clay 
topsoil and subsoil 
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Figure 2.63. log10-log10 variograms with fitted curves. Sand and Clay topsoil and subsoil. The blue 
squares shown are the data points from the composite variograms. The red curves are the fitted 
models (equation and R2 shown on chart) 
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2.3.4. Changes in Soil variability with depth  

Declustered variograms were calculated across depths for a number of spatial extents. D values were 

fitted to these variograms using the power curve method, and fractograms are presented in Fig. 12. 

Variability increases with depth from 0 to 5 cm down to 30–60 cm at every extent modelled. As depth 

increases from 30 to 60 cm to 60–200 cm, the variability may increase or decrease depending on 

extent. The 1 km extent variogram, the semivariance of the subsoil layer increases more gradually 

than the 30–60 cm layer. In the variogram presented for 1000 km, the fitted power curve reaches peak 

variance almost instantaneously, resulting in the very high D value (Fig. 12).  

 
Figure 2.74. D values mapped against spatial extent for clay (top) and sand (bottom) 
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2.3.5. Spatial variability increases with depth:  Possible mechanistic explanations 

At all spatial extents we considered in this analysis, topsoil (0–5 cm and 5–15 cm) showed less 

variability than lower depths (15–30 cm, 30–60 cm and 60–200 cm). A thorough investigation into the 

causes of this trend is beyond the scope of this chapter, but we speculate on some possible 

mechanistic explanations below. The dominance of agricultural soils in the dataset must be noted. 

Anthropogenic influences, such as tilling, are likely to be a significant controlling factor in soil 

condition. Mechanical churning of the soil is likely to have a homogenizing effect on soil texture, and 

would be limited to the topsoil. The texture of deeper layers is likely to be more heavily influenced by 

the local parent material. In addition, Australian agricultural regions are typically dominated by duplex 

soils (soil with contrasting texture in the A and B horizons) and to a lesser extent by Vertosols (or 

Vertisols, WRB). Duplex (or texture contrast) soils are characterized by sandy loam top soils (A 

horizon), commonly extending up to 30 cm in depth, and clayey subsoils (B horizon). The increase in 

variability at depths > 15 cm may be due to a mix of A horizon and B horizon samples. It may also 

reflect increased variability in this depth range where the illuviation processes are more likely to be 

active. The mechanics of collecting soil data are another factor that could be contributing to the 

patterns of variability evident in the data. In particular, where soil is extremely clayey or extremely 

sandy, collecting soil becomes increasingly difficult with depth. Extreme observations at these depths 

may not have been recorded due to mechanical difficulties.  

 

2.3.6 Contribution to spatial scaling literature    

The question of how much soil varies across a given spatial extent is of fundamental interest to soil 

scientists. This article follows a number of others which describe soil spatial variability using formal 

mathematical relationships. Smith (1938) may have been the first to quantify soil spatial variability by 

formalizing the relationships he observed between plot size and yield variability with a logarithmic 

function. Green et al. (2004) were able to accurately characterize spatial diversity in soil eukaryotes 

over small to mid-ranges. McBratney (1992) considered the variability of magnesium at extents from 

field to continental but the conclusions are limited by lack of data. These contributions highlight both 

the possibility and the utility of developing a unified scaling theory for prediction. The spatial variability 

of many soil characteristics has been quantified over small extents and for particular biophysical 

regions (Bui et al., 2014; Ettema and Wardle, 2002; Garten et al., 2007; Tesfahunegn et al., 2011) 

among others. These studies have a strong advantage in their accurate description of soil scaling 

properties over small spatial extents. However the findings are specific to the regions they are 

conducted in so the results are difficult to generalise. The field of soil hydrology has made significant 



 

 

48 

 

achievements in consolidating smaller studies to develop a more general understanding of the scale 

effects on soil moisture properties. Efforts to consolidate understanding of scale effects in soil 

hydrology have led to a better understanding of the controls of soil moisture at different scales (Biswas 

et al., 2012; Crow et al., 2012; Western and Bloschl, 1999; Western et al., 2002) allowing 

improvements in predictive capacity. Our exploration of the spatial variability of soil texture across 

multiple scales moves us closer to answering the fundamental question: how variable is soil? There is 

a pronounced knowledge gap around the quantification of soil variability at mid to large scales. Our 

analysis considers spatial variability at extents from 1 km to several thousand kilometres and finds the 

following:  

• Spatial variability of soil texture is greater at lower depths.  

• Short range variability makes up a large proportion of total variability, around 50% of total soil 

variability is realised within 10 km and around 20% within 1 km.  

• There is likely to be unresolved spatial variation at scales finer than those we have modelled.  

• At extents > 100 km the relationship between variability and separation distance appears to reach a 

steady state.  

These general results provide new information on soil spatial variability across scales. This information 

can be of use for informing soil survey design. Where site specific expectations about soil variability 

are not available, our results can suggest the extent of information lost or gained that could be 

expected from changing sampling density. An increased understanding of spatial variability in soils 

may also be useful for up and downscaling maps. Understanding how much more variability should 

be revealed as the resolution increases, and how much of this can be spatially modelled should assist 

digital soil mapping efforts, or at least assist in understanding the limitations of maps (i.e. where a 

downscaled map cannot include significantly more variability due to lack of information, but we expect 

that it should). The results from our analysis are also likely to be useful for simulations 

 

2.3.7 Future work  

Because the analysis presented in this chapter uses the complete (cleaned) dataset, all of the results 

presented in this chapter are of a general nature. We have characterised the average relationship 

between spatial extent and variability in primarily agricultural areas within Australia. We have not 

differentiated between different climatic regions, land uses or soil types. Splitting the dataset and 

repeating some or all of the analysis will improve our ability to use our results for prediction and to 

investigate how other factors might be driving soil variability. It may also be useful to conduct a similar 
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analysis on other properties. The Hausdorff Besicovitch Dimension is a useful tool for comparing 

spatial variability between properties and the methods used in this chapter lend themselves well to 

legacy datasets. Comparing the variability of other soil and other environmental properties across 

varying spatial extents is a logical extension of this work. The NSSC database has significant amounts 

of data available for pH and soil organic C, however as pH and SOC vary in time and in terms of 

response to testing procedure it will be more difficult to utilize the entire dataset than it was for 

texture. One of the limitations revealed by our work is the unresolved spatial variability at fine scales. 

Resolving trends in fine scale variability would require collection of additional data at these scales. 

Other trends suggested by our results: high levels of short range variability, scale invariance at medium 

to large extents and increasing variability with depth. Future work could and should test these trends 

with for purpose experimental design. 

Because the analysis presented in this chapter uses the complete (cleaned) dataset, all of the results 

presented in this chapter are of a general nature. We have characterised the average relationship 

between spatial extent and variability in primarily agricultural areas within Australia. We have not 

differentiated between different climatic regions, land uses or soil types. Splitting the dataset and 

repeating some or all of the analysis will improve our ability to use our results for prediction and to 

investigate how other factors might be driving soil variability. It may also be useful to conduct a similar 

analysis on other properties.  

The Hausdorff Besicovitch Dimension is a useful tool for comparing spatial variability between 

properties and the methods used in this chapter lend themselves well to legacy datasets. Comparing 

the variability of other soil and other environmental properties across varying spatial extents is a 

logical extension of this work. The NSSC database has significant amounts of data available for pH and 

soil organic C, however as pH and SOC vary in time and in terms of response to testing procedure it 

will be more difficult to utilize the entire dataset than it was for texture.  

One of the limitations revealed by our work is the unresolved spatial variability at fine scales. Resolving 

trends in fine scale variability would require collection of additional data at these scales. Other trends 

suggested by our results: high levels of short range variability, scale invariance at medium to large 

extents and increasing variability with depth. Future work could and should test these trends with for 

purpose experimental design.  
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2.4 Conclusions 

Our study highlighted two consistent trends around soil texture variability. The first is that variability 

increases with depth, as does roughness. The second is that a significant proportion of soil texture 

variability occurs at short extents. These results were indicated by the first part of the analysis 

(modelling empirical variograms across scales) and supported by the second part of the analysis 

(calculating D values from these empirical variograms). This supports evidence from other literature 

that soil is more variable than other environmental properties. The D values we calculated range from 

2.79 to 2.96. This is consistent with, although on the high end of, other studies using D values to assess 

soil variability. The change in D values across different extents, (modelled in two different ways) 

indicates that there may be important unresolved variability in soil texture at finer resolutions than 

those included in this study.  

● Empirical variograms calculated from large datasets are an effective and efficient tool for 

modelling variability across scales.  

● Grid-based declustering is an effective strategy for reducing lumpiness in variograms resulting 

from clustered data distribution. When applying this method across scales, selection of 

appropriate grid sizes at each scale becomes important.   

● Approximately half the continental variability of soil texture is realised within 10km. One third 

is realised in the first 1km.  

● Soil texture variability and roughness tend to increase with depth across all scales up to depths 

of 60cm. Beyond 60cm the relationship becomes more complex.  

● There is likely to be unresolved variability at scales finer than those we have modelled.  

● When modelled across multiple spatial extents, soil texture variograms can be closely 

approximated by the function log10 𝛾 = 𝐶(1 − 𝑒−𝑘 log10 ℎ) + 𝐴. This allows us to calculate a 

continuous relationship between D value and variability.  
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Chapter 3: 

 

 

Assessing the impact of sampling distribution on the 

Variogram and roughness index 

 

 

 

 

 

 

 

 

 

 

 

 

When you know better, you do better.  
– Maya Angelou   
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Abstract  

In this chapter we use a proxy dataset to test how different sampling designs affect the ‘roughness 

index’ developed in the previous chapter. We use a simple random average to test the effects of the 

biased sampling design in Chapter 2 on the variogram. We introduce a sampling design that selects 

independent pairs from the raster dataset. This aligns more closely with the sampling design typically 

used when calculating the Fractal Dimension or Hurst Exponent. We find that there is minimal 

difference in the results regardless of the sampling design used. This Chapter supports the conclusions 

drawn in Chapter 2, and introduces a sampling design used in Chapter 4.  
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3.1 Introduction 

Sampling design is an important feature in variogram estimation. When using legacy data, it is not 

possible to control sampling design, and this may create bias or distortion in results. In this Chapter 

we use a Gamma Radiometric data as a proxy for soil texture to test different sampling designs. We 

use a simple random design to test the effect of bias, and a more complex random sampling design 

that avoids the reuse of observations across bins.  

It is important to test the effect of sampling design, because while we are able to use declustering 

algorithm to remove noise in variogram estimation this declustering method cannot compensate for 

potential bias caused by a complete lack of data across large regions (as occurs in the NSSC dataset in 

Central Australia). The other important issue we are able to address here is the effect of reusing the 

same spatial observations in more than one bin. In Chapter 2, our method of calculating the variogram 

reuses observations, it is difficult to avoid this when using the legacy dataset. This is common practice 

when calculating an experimental variogram, but studies that consider D values and the Hurst 

exponent do not reuse observations11. Because our roughness index is derived from these methods, 

it is worthwhile to consider the impact of this feature of variogram calculation.  

We use the Gamma Radiometric dataset which covers the entire continent as a proxy for clay content. 

Because we have continental coverage we can experiment with sampling design. This allows us to 

evaluate:  

1. The effect of the declustering;  

2. The effect of the large areas with missing information on the variogram;  

3. The effect of ‘reusing’ observations when calculating the variogram.. 

 

3.2 Methods  

3. 2.1  Data 

We use percentage of Potassium (40K) from the Radiometric map of Australia (Minty et al., 2009)  as a 

proxy for soil mineralogy. The map provides levelled and merged composite grids of several 

radiometric elements over Australia at a 100m resolution. The raw data for the map comes from 

systematic airborne radiometric surveys undertaken over the last 40 years. The resolution of the 

airborne surveys is shown in Figure 3.1 (taken from Minty et al., 2009). The Radiometric data was 

                                                      
11 Studies that use D values and the Hurst exponent will typically start with a for purpose survey design with pairs collected at 

specific intervals. Each of these pairs will only be used once. This means that the variance calculated at each separation distance 

is calculated from independent data.  
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aligned to a common datum, and older surveys were back calibrated using new field observations. 

Details of the alignment and calibration are available in Minty et al. (2009).  

Significant additional information was collected during the Australia wide airborne geophysical survey. 

The survey was flown in 2007 at a nominal terrain clearance of 80 m above ground level. The north–

south flight lines were spaced 75 km apart and the east–west flight lines spaced 400 km apart. A 33 L 

NaI (Tl) detector was used in the survey (Milligan et al., 2009).  

 

Figure 3.8. Left Panel: Radiometric sampling density (Minty et al. 2009) Right Panel: Potassium layer 

from the radiometric map of Australia (original source Geoscience Australia).  

 

3.2.2 Sampling Design  

We use three different sampling designs, detailed below: Comparisons between each of these reveals 

different information.  

 

3.2.2.1  NSSC Sampling Design  

We select ‘samples’ from the Gamma Radiometric raster using the same spatial locations contained 

within the NSSC dataset (13,830 observations).  
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Figure 3.2. The distribution of the NSSC dataset. Each black dot represents an individual soil 

observation. (Duplicated from Figure 2.1).  

 

3.2.2.2 Simple Random Sampling Design  

We randomly select 13,000 samples from the Gamma Radiometric raster. We calculate empirical 

variograms using the same extent and bin size combinations used in Chapter 2. Following the 

methodology described in Chapter 2 we calculate composite variograms, by combining the variograms 

across bin sizes and calculating roughness index from it.  

 

3.2.2.3  Random Pairs Sampling Design  

The roughness index which we introduced in the previous chapter is derived from the composite 

variogram method of calculating the D value. It is also theoretically linked to the Hurst exponent. Both 

the variogram method and the calculations of the Hurst exponent are calculated so that each 

observation is used only once. That is, that any individual data point is used in only one ‘bin’ or ‘lag’. 

In the previous chapter and in the two sampling conditions described above, we reused observations 

so that any individual spatial observation would be reused. Theoretically any given spatial observation 

could be used in every bin if it had a pair separated by the same distance.  

The problems associated with this reuse of observations can be understood in a way that is similar to 

the problems associated with clustered sampling. The reuse of observations provides the opportunity 
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for these observations to exert a disproportionate influence on the variogram. An observation that is 

used in multiple bins will have an effect on each of those bins.  

When calculating empirical variograms from the legacy dataset it is difficult to achieve this condition. 

However, when sampling from a raster grid which covers all of Australia, we have the luxury of being 

able to design our own sampling regime (without the added complication of additional costs).  

We use this raster dataset to design a sampling scheme which meets the following conditions.   

● Random sampling across the continent  

● Observations are not used in more than one bin  

● Pairs are distributed at a range that allows us to model a variogram on a log-log scale with 

good detail  

 

The steps are as follows:  

1. Specify q lag distances (h1 to hq) at appropriate intervals for modelling variogram across 

desired extent. We used the following intervals:  .001, .025, .05, .075, .1, .15, .2, .25, .3, .35, .4, .5, .6, 

.7, .8, .9, 1, 1.25, 1.5, 1.75,2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50 ,75, 100 , 200, 300, 

400, 500, 600, 700, 800, 900, 1000 (km)  

 

2. Randomly select n data points from raster grid. In this case we set n = 72012  

 

3. Match each of the n (720) randomly selected data points with another point sampled from 

the raster. Each of these paired points will be h1 separation distance away. For anisotropic sampling 

each degree angle from 1 to 360 degrees was represented twice13 ensuring an even coverage of 

angles. We also tested two anisotropic sampling schemes: For anisotropic (E-W) sampling the 

orientation has an equal chance of being 90 degrees of 270 degrees14. For anisotropic (N-S) sampling, 

the orientation has an equal chance of being 0 degrees or 180 degrees15.  

                                                      
12We chose 720 so that each an. This size sample was partly a matter of convenience (i.e. doubling the degrees) and partly 

because this number of observations was sufficient to obtain consistent values for the variance in each bin, but not so large 
to slow down the computation.  
13 With the exception of cases where the paired observation fell outside of the bounds of the Australian continent, in which 

case the sample was excluded.  
14 We used equal numbers of East and West lags so that the East and West coasts had similar representation.  
15 We used equal numbers of North and South lags so that the North and South coasts had similar representation. 
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4. Repeat steps 2 and 3 for lags h2 to hq 

 

5. Calculate the semivariance for each lag h2 to hq and plot  

 

 

Figure 3.3. Schematics showing the paired observations for 10km lag and 100km lag (right). Original 
random sample (1 to 720) are shown in black. Paired observations (isotropic condition) are shown in 
red. Note the greater separation distance in the right hand panel results in more observations falling 
outside of the boundaries of the continent.  

As the separation distance increases, the chances of the ‘paired point’ falling outside of the boundaries 

of the raster map of Australia also increases. This means that towards the largest separation distance 

(1000km) typically the number of pairs is around 360, compared to 720 for the smallest separation 

distances.  

This sampling design has three major advantages.  

● It means that each observation is only used once.  

● The pairs are randomly selected.  

● It is easy to control the direction of the pairs and calculate either isotropic or anisotropic 

variograms.  

This sampling design does not address the issue of contiguous or overlapping pairs, but simulation 

studies have suggested that there is not a significant difference between the bias in these designs 

provided that there are enough observations (Ellis, 2007).  

 



 

 

62 

 

3.3. Results and Discussion  

3.3.1 Clustered observations, declustering and the variogram.     

In the previous chapter we describe the mechanism by which the patchiness in the sampling 

distribution creates the lumpiness in the variogram.  We briefly reiterate here: A dense cluster of 

observations means that there is more information coming from the region where the dense 

observations occur. When there are two dense clusters of observations these two spatial regions 

become the dominant source of information about variability at this particular separation distance or 

lag. While the expected variance of any two observations does not depend on the location of these 

observations (under the assumption of second order stationarity), natural variability means that it is 

unlikely that the variability at these two locations is exactly the average variability for that lag over the 

whole continent. Where the two densely sampled areas have lower than average variation (between 

them) the overrepresentation of these two regions will result in a ‘dip’ in the variogram at that 

particular separation distance or lag. Where the densely sampled areas have higher than average 

variability (between them) the variogram will spike at that approximate lag. The grid-based 

declustering method addresses this trend by reducing the importance of the densely sampled 

observations in the calculation of the semivariogram. The method simply overlies a grid over the area, 

and computes the density of samples each of the cells within the grid. The declustering method is 

shown to be effective at removing the lumpiness in the variogram, this is consistent with Marchant et 

al.   2013 who introduce the method of grid based declustering as a tool for dealing with patchy 

sampling designs.  

Using the Gamma Radiometric dataset to mimic the NSSC data distribution and the declustering 

process provides us with the opportunity to test the declustering process. Using the Gamma 

radiometric data as a proxy for soil texture is useful because of the relationship between clay texture 

and the Gamma radiometric signal (Rossel, Taylor, & McBratney, 2007). Our proxy can provide an 

indication of whether there is a bias created by the omission of large areas of the data from the 

sampling design. Declustering, while a useful tool for addressing the differences in sampling density, 

cannot address potential bias arising from absent observations. If the area missing is large enough and 

the variability contained within it different to the areas that have been sampled, then the lack of 

observations in central Australia are likely affect the shape of the variogram.  

It was expected that the overall trend in the declustered variogram might differ from the overall trend 

in the random sample variogram due to bias. Large areas of the continent did not have any samples. 

However, the two variograms were similar with the exception of the slight dip (at around 400km).  
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The only visible ‘lump’ that the declustering does not appear to fully address is the slight dip at around 

450 km. It is important to distinguish between natural bumps in the shape of the variogram (i.e. those 

that represent the true underlying spatial variability of the property in question) and artefacts of the 

data clustering. Because the variogram calculated from the ‘simple random’ does not show any sign 

of a bump, this suggests that this pattern is left over from the sampling distribution, rather than a 

feature of the underlying distribution. This indicates that the declustering, while a very useful tool, 

cannot entirely remove artefacts of a clustered sampling design. Another drawback of the declustering 

tool, is the coarse ‘spread’ of the declustered variogram. This highlights the cost (in terms of precision) 

of correcting for the sub optimal sampling design.  

 

 

Figure 3.4. a-c Experimental variograms calculated from Radiometrics data using different sampling 
design schemes and methodologies.  
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The comparison of the declustered radiometrics variogram with the ‘average’ variogram reinforces 

the finding that declustering is an appropriate tool for reducing lumpiness that results from a clustered 

sampling design. The declustered Gamma Radiometric variogram has significantly less lumpiness than 

the variogram which is untreated, but there is still a very slight ‘dip’ in the variogram occurring at 

around 400km. This ‘dip’ is not present in the randomly sampled variogram, suggesting that it is a 

leftover feature from the sampling design rather than a true reflection of the spatial variability. The 

comparison with the variogram calculated from the random sample also highlights the fact that the 

declustering makes the variogram much more diffuse.  

 

3.3.2 Alternative sampling designs, and the roughness index  

In Section 3.3.1. the Gamma Radiometric raster was used as a proxy for soil texture to assess the effect 

of the patchy NSSC distribution, and declustering on the dataset. In this section we use the same 

Gamma Radiometric NSSC dataset to test its impact on the roughness index calculation.  

Typically, studies that calculate the Fractal dimension or the Hurst exponent use non-overlapping 

observations, i.e. any given observation can only be used in one bin (Burrough, 1983). The roughness 

index that we describe in Chapter 2 is derived from the variogram method of calculating the D value 

and is conceptually similar to the Hurst Exponent. In Chapter 2, we reuse each sampling location. This 

is not consistent with the standard practice for D values and the Hurst exponent. We’ve introduced a 

sampling design that is random, provides control over the separation distance and which selects pairs 

of observations independently for each lag or separation distance. We compare the variogram 

calculated from these observations with the variograms calculated from the standard random 

sampling.  

At extents greater than 100km the estimates of the roughness indices are very similar for all three 

sampling designs (Figure 3.7). At shorter extents however, there is a notable difference for the 

roughness indices calculated from the ‘simple random’ sampling design and the other two sampling 

designs (Figure 3.6). It is interesting that it is the average variogram, and not the NSSC design that is 

the most distinct of the three designs. The ‘random pairs’ design and the ‘simple random’ design both 

cover the whole continent. The ‘NSSC’ design and the ‘simple random’ design both reuse observations, 

while the ‘random pairs’ does not. The similarity between the NSSC and the ‘random pairs’ design is 

more evident when examining Figure 3.5a-c. The simple random design has very few ‘bins’ at 

separation distances of less than 500m. This means the spread of points at small lag values ‘h’ will be 
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wider.  This will affect the fit of the model at finer scales, and in turn lead to a very different shape of 

the roughness index curve.  

Another advantage of this sampling regime is the discretion over the lags. By spacing the lags as we 

want them, we naturally create a multiscale variogram. This is a simpler and cleaner process than 

combining variograms calculated at different scales as we did in Chapter 2.  

 

Figure 3.5. a-c Log-log experimental variograms calculated from Radiometrics data using different 
sampling design schemes and methodologies.  
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Figure 3.6. Comparison of sampling designs, roughness index value against distance 0-10km.  

 

 

Figure 3.7. Comparison of sampling designs, roughness index value against distance 0-1000km. 

 

Table 3.1. Comparison of roughness index value against extent for different sampling designs  

Distance  
 

NSSC Simple random Random Pairs  

1km 2.61 2.44 2.65 

10km 2.80 2.73 2.80 

100km 2.90 2.87 2.89 

1000km 2.95 2.94 2.94 
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3.4 Conclusions 

● Declustering is a useful tool for handling highly clustered observations, but does not 

compensate fully for having a good sampling design in the first place.  

 

● Nevertheless, the lack of observations in central Australia do not appear to have significantly 

affected the overall shape of the variogram.  

 

● Having sufficient observations with a sufficiently fine scale sampling density appears to be a 

more important determinant of the ‘roughness index’ than either having randomly distributed 

observations, or having the semivariance calculated independently 

 

● While there is little practical difference between the D values calculated from the NSSC and 

the ‘random pairs’ design in this case. The ‘random pairs’ design is easier to implement and 

theoretically better due to its random sampling and greater coverage.  

 

These conclusions inform the work undertaken in the next Chapter.  
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Chapter 4 

 

New Data for Old Questions: Is soil more variable than other 

environmental properties? 

 

 

 

 

 

 

 

 

 

 

 

 

 
Our origins are of the earth. And so there is in us a deeply seated response to the 
natural universe, which is part of our humanity 
 
Rachel Carson  
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Abstract  

Soil environment interactions are of intrinsic interest to natural scientists. Understanding how 

variation and variability in environmental properties interacts with the variation and variability in 

other environmental properties is of intrinsic interest. Further, developing an understanding of this 

relationship is likely to have practical implications for modelling and mapping purposes. Soil is 

commonly considered to be more complex at the finest scales than other environmental variables, 

although this may be in part due to the very fine support that is typically used to measure it.  

In this chapter, we use the ‘roughness index’ to measure the stochasticity (or relative importance of 

short range and long range variability) over a range of scales. We find that the multi-scale variability 

of most of the properties we consider can be readily modelled using the roughness index.  

At most scales we consider, soil appears to show similar stochasticity to fine scale elevation, and 

Enhanced Vegetation Index (a proxy for vegetation). Gamma Radiometrics is slightly less stochastic. 

Rainfall and long range elevation show significantly less stochasticity (more dependence on long range 

trend).  

At the very finest scales soil does appear to show greater fine scale variability. Determining whether 

this result is an indication of the underlying nature of the soils, or a feature of the data itself required 

further work.  
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 4.1 Introduction  

The condition of the soil resource at any given location and moment is the result of a complex interplay 

of environmental and management factors. The relative dominance and interactions of these factors 

varies with location and with the scale of observation (Heuvelink & Webster, 2001a; Lark, 2011). In 

theory, these are deterministic processes, and many soil-environment interactions are well 

understood. However, the outcome of these multiple soil forming factors when combined is so 

unpredictable that the distribution of soil properties in space appears random (Heuvelink & Webster, 

2001a; R. Webster, 2000). Our understanding of how different environmental factors affect the soil 

condition and of how soil condition affects environmental factors is far from complete. A major 

limitation in our understanding is the difficulty in collecting sufficient data to populate our models. 

Models of some mechanistic interactions between soil and other environmental properties have been 

well developed and when they exist can provide a firm basis for soil formation and integrated 

modelling. Empirical models of relationships between environmental properties can complement 

mechanistic models. However, data driven investigation into these interactions is usually limited to 

fine scales and specific environmental conditions. Even the most basic question: Are soils more 

variable than other environmental properties is not yet comprehensively answered.  

In this chapter, we analyse the multiscale variability of a number of different environmental variables 

using the 'roughness index' approach introduced in Chapter 2. This approach derives from the 

empirical variogram method (Burrough, 1983) and the Hurst exponent for measuring spatial variability 

across scales.  

In this chapter we:  

• Illustrate that the roughness index is a useful measure of multiscale variability for several 

different environmental properties with data in different formats (Section 4.3.1 and 4.3.2).  

• Compare the trends in spatial variability across scales and between environmental properties 

(Section 4.3.4. - 4.3.7.). 

• Evaluate the effect of data on the ‘roughness index’. 
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4.2 Methods  

4.2.1 The roughness Index  

In Chapter 2 we introduced a unitless measure for characterising spatial variability of a data series 

across scales, which we call the ‘roughness index’. We calculated this roughness index for soil texture 

using a legacy dataset of point observations.  

Conceptually linked to the fractal dimension (Burrough, 1983) and the Hurst exponent, the ‘roughness 

index’ is calculated by plotting the variogram on a log-log scale, fitting a  curve and taking the 

differential of this curve. The Roughness index is calculated from the slope (or derivative) of the fitted 

curve. It provides a continuous measure of the change in variability over space and represents the 

relative importance of short range and long range variability.  

The value of the roughness index can fall between 2 and 3. Values approaching 2 imply a strong degree 

of long range variability. Values closer to 3 occur when short range variability is more dominant. A 

value of 3 is associated with a lack of spatial trend, or complete randomness. A key advantage of the 

roughness index is its abstraction from units. This makes it well suited to compare between properties 

and scales. In this chapter we calculate the roughness index for several different environmental 

properties. This allows us to describe how spatial variability changes over scale for a number of 

environmental properties. It also allows us to compare the relationship between soil variability and 

the variability of environmental properties.  

  

4.2.2. Applying roughness index to different data structures  

The major distinction we make between our datasets is whether they are point data or coverage data. 

For the remainder of this chapter, point data means that the data is collected manually at a specific 

location. The support for the two point datasets we use here is also small (typically less than 1m 

squared). We use two ‘point data’ sets, the NSSC soil texture dataset described in Chapter 2 (Searle 

2014) and a point data rainfall dataset from the Australian Bureau of Meteorology (2017).  

In this chapter, we use the term ‘coverage data’ to describe a raster dataset which covers the whole 

continent. The primary source of information for each of the ‘coverage datasets’ we use is from 

airborne surveys. These airborne surveys have a wider support (or footprint) than the point data 

surveys. The exact support or footprint depends largely on the height of the survey (the higher the 

survey the wider the footprint). For some properties the boundaries of the observation are diffuse 

which has a smoothing effect on representation of local variability. The strengths and weaknesses of 
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the different data forms are summarized in Table 4.1 below, and key properties summarized in Table 

4.2.  

Table 4.1. Advantages and disadvantages of point and coverage data used in this analysis  

 Advantages   Disadvantages   

Point Data  Potential to capture very short range 

variability accurately  

 

Lack of observations in central Australia 

Well defined observation boundaries Ad hoc design 

 Noise in data 
 

Coverage 

Data  

Broad representation of properties 

over Australia  

 

Less potential to measure very short range 

variability  

 

Control over sampling design  

 

Observations influenced by surrounding 

area  

Better representation of long range 

trends?  

 

Data support depends on the measurement 

 

Table 4.2. Summary of key metadata properties of datasets we used. 

Data Name  Description   Modelling  Output 

resolution  

Digital Elevation 
Model Smooth 
(DEM-S)  

Represents Ground surface topography 
with vegetation features removed. 

Derived from 1 second 
resolution SRTM data 
acquired by NASA in 
February 2000.  

3 arc seconds 
(approximately 

90m)16 

Percentage slope  Slope measures the inclination of the 
land surface from the horizontal.  

Derived from the DEM –S 3 arc seconds 
(approximately 
90m)  

elev_focalrange300
m_3s 

The elevation range measures the full 
range of elevations within a 300m 
circular radius and can be used as a 
representation of local relief. 

derived from the 
Smoothed Digital 
Elevation Model 

3 arc seconds 
(approximately 
90m) 

PM Radiometrics – 
Potassium  

The Radiometric Map of Australia 
Dataset - Potassium 

Combined data from 
multiple airborne surveys 

100m resolution  

                                                      
16 The 3 second resolution product was generated from the 1 second 300 m elevation range product and masked by the 3” 

water and ocean mask datasets 
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Enhanced Vegetation 
Index (EVI), MODIS 
TERRA  

Modis Terra, 2000 to 2011  The EVI algorithm uses 
the 500m blue band to 
correct for residual 
atmospheric effects 

250m, 16 day 
composite  

Clay %       (0-5cm) Individual point observations collected 
from a variety of observations and 
collated  

Data was cleaned and 
splined (Chapter 2 for 
details)  

Point 
observations  

Sand  %       (0-5cm) Individual point observations collected 
from a variety of observations and 
collated  

Data was cleaned and 
splined (Chapter 2 for 
details)  

Point 
observations  

Rainfall  Individual point observations collected 
by the Bureau of Meteorology 

Data which was too 
incomplete was 
discarded 

Point 
observations  

 

4.2.3. Point Data  

We describe here two point datasets. Soil texture and rainfall data. 

Table 4.3. Percentage Clay fraction: Summary statistics  

Soil Depth Number of 

observatio

ns 

Mean  Median  Standard 

deviation  

Skewness  Kurtosis 

Sand (%) 13830 21.52 15.87 17.44 1.10 3.38 

Clay (%) 13258 63.17 66.83 22.74 -0.46 2.25 

Rainfall (daily average 
in ml 2004-2013)  

3512 1.82 1.61 1.18 2.89 16.21 

Rainfall (daily average 
in ml, 1999) 

4802 2.16 1.83 

 

1.56 3.54 22.99 

 

Rainfall (daily average 
in ml, 2004) 

5547 1.90 1.69 1.30 3.14 19.90 

Rainfall (daily average 
in ml, 2009) 

5476 1.92 1.52 1.45 2.74 12.56 

Rainfall (daily average 
in ml, 2014) 

5037 1.79 1.57 1.18 3.27 20.18 

 

 

4.2.3.1. Soil Texture Point Data : National Soil Site Collation Database  

The soil texture data used in this analysis was compiled to support the Australian contribution to the 

GlobalSoilMap (Grundy et al., 2015). A collaboration of state and national government agencies and 

some universities worked together to produce the National Soil Site Collation or NSSC (Searle, 2014). 
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The NSSC is a composite of data from a variety of sources. Consequently, it does not have a unified 

sampling design, and the NSSC dataset reflects the research priorities of the different data collecting 

institutions at different times. The dataset is heavily focused in agricultural regions and includes areas 

of high density sampling and sparse sampling (Figure 4.1). The complete database contains 

information on several soil properties including percentage clay and percentage sand fraction from 

almost 16,000 soil profiles. Percentage sand and clay fractions for topsoil (0-5cm) are used in this 

study.   

 

Figure 4.1. The distribution of the NSSC dataset. Each black dot represents an individual soil 
observation. 

 

We employ the spatial declustering method of (Marchant et al., 2013), described in more detail in 

Chapter 2 to remove the lumpiness in the variogram. In very brief terms, the declustering process 

assigns additional weight to observations that are more spatially isolated, and reduces the weight of 

observations in densely sampled areas. This technique was also used for the rainfall data (Section 

4.2.3.2).  
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4.2.3.2  Rainfall Point Data : Australian Bureau of Meteorology  

We obtained point data collected from rainfall observation stations controlled by the Australian 

Bureau of Meteorology. The spatial distribution of these data is based on convenience legacy (more 

samples are taken close to populated areas).  

 

 

Figure 4.2. Distribution of the Bureau of Meteorology rainfall observations 2001-2010 (10 year 
average)  

 

The best method for dealing with this (or the best choices to make to accurately represent the 

variability in rainfall over space) are still somewhat open to debate. The shorter the temporal support 

(i.e. the shorter the time window) the more stochasticity remains in the data. For example, fine scale 

temporal rainfall data (i.e. daily or weekly) tends to be highly stochastic, and may not accurately 

represent the spatial trends in rainfall. The temporal distribution of rainfall, as well as the annual 

average, can of course be important, but for the purposes of this chapter at least we are going to limit 

the analysis to broader temporal scales (annual and decadal).  

We chose to discard locations where there were less than 300 daily observations for the year. 

Summary statistics for the NSSC soil data, a selected decadal average, and several annual averages for 

rainfall are shown in Table 4.3.    
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4.2.4. Calculating an experimental variogram from coverage data   

As we mention in Section 4.2.1 and 4.2.2, the use of 'coverage data' provides us with the opportunity 

to subsample data to calculate the roughness index. We also sample from the raster dataset to reduce 

the computational load of calculating variograms.  

The empirical variograms we calculate from the point data sources re use observations (as is typical 

of the classical empirical variogram). This is a departure from the preferred methods for calculating 

the Hurst exponent (from which the roughness index is derived). Typically studies that calculate the 

Hurst exponent use a sampling design that ensures that each pair of observations are used exclusively 

in a single bin.  

Using coverage data allows us to control the sampling design in a way that we cannot when we are 

using legacy data. In the previous chapter we discuss some of the potential impacts of legacy data  

By selecting unique pairs at pre-specified separation distances or lags, we can avoid potential issues 

with autocorrelation.  

We use the ‘random pairs’ sampling design described in Chapter 3.  This design ensures both that 

unique pairs are used for the calculation of pairs (avoiding the problem with autocorrelation17), and 

that the underlying distribution of points are random (avoiding potential problems with grid based 

sampling). This design also allows us to dictate the lags.  

 

4.2.4.2. Coverage datasets – summary of key parameters 

We selected coverage datasets that described properties of interest and that were suitable for our 

modelling. The calculation of the semivariogram (upon which our roughness index is based) requires 

that the data is numeric and ordinal, so we did not include categorical variables. We also required 

datasets with a reasonably fine support or resolution. For example, we chose not to use climate data 

available from the Australian Bureau of Meteorology comes at a 5km resolution which makes 

modelling below this resolution meaningless.   

We present a brief summary of key properties of each of the coverage datasets that we use in Table 

4.2 above, and more detail about each dataset in Sections 4.2.3.3. to 4.2.3.8.   

 

                                                      
17 There is still a minor issue with auto-correlation because pixels are not excluded after they have been sampled, so a small 

proportion of pixels will be resampled.  
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4.2.4.3. Digital Elevation Model – smoothed   

A number of terrain models that model different features of terrain at high resolution have been 

developed by the Commonwealth Scientific and Industrial Research Organisation of Australia (CSIRO). 

All of these models ultimately derive from the Shuttle Radar Topography Mission (SRTM) satellite data 

collected by NASA during its 2000 space shuttle mission (Farr et al., 2007). We briefly describe the 

meaning of each layer and the basic processing/ modelling used below.  

The digital elevation model represents ground surface topography. It has been filtered from 

vegetation features and is smoothed to reduce noise to better represent the surface shape 

(Geoscience Australia, accessed 2018). The smoothing processes mean that the DEM-Smooth 

supports calculation of local terrain shape attributes such as slope, aspect and curvature that cannot 

be reliably derived from the unsmoothed 1 second DEM because of artefacts (Gallant, 2011).    

 

4.2.4.4. Percentage slope  

Calculated from the smoothed digital elevation model, percentage slope measures the deviation from 

horizontal or flat of the land surface. Percentage slope provides information about likely run off and 

erosion potential.  

 

4.2.4.5. Elevation focal range – 300m  

Derived from the DEM – Smoothed data, the elevation range measures the full range of elevations 

within a circular window in this case 300m. This data can be used as a representation of local relief 

(CSIRO 2018).  

 

4.2.4.6. Radiometric data  

We use percentage of Potassium from the Radiometric map of Australia (Minty et al., 2009)  as a proxy 

for soil mineralogy. Airborne Radiometric surveys have diffuse boundaries. The strongest signal comes 

from the area directly below the observation, but lateral observations continue to affect the signal. As 

lateral distance increases, the contribution to the signal decreases (Minty, 1997). This gradual 

reduction in signal influence with distance has a smoothing effect on local variability. 

The map provides levelled and merged composite grids of radiometric regions of interests (ROIs) 

pertaining the potassium, thorium, uranium and total count over Australia at a 100m resolution. The 
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raw data for the map comes from systematic airborne radiometric surveys undertaken over the last 

40 years. The resolution of the airborne surveys is shown below (Figure 4.3 taken  from Minty et al., 

2009). The Radiometric data was aligned to a common datum, and older surveys were back calibrated 

using new field observations. Details of the alignment and calibration are available in Minty et al., 

(2009).  

 

 

Figure 4.3. Left Panel: Radiometric sampling density (Minty et al. 2009) Right Panel: Potassium layer 

from the radiometric map of Australia (original source Geoscience Australia).  

 

While the soil samples are observed to a given depth, sometimes >2m, the radiometric data tends to 

observe only the top of the soil profile, typically the top 35cm (Minty, 1997). The footprint (which can 

be thought of loosely as the support) of an airborne radiometric survey will typically be around 50-

100 meters, with diffuse boundaries due to the low linear attenuation co-efficient of air18.   

 

                                                      
18 The linear attenuation co-efficient describes how many atoms there are in a cubic cm volume of material. The lower the 

linear attenuation co-efficient, the wider the spatial range of materials that will affect the  
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4.2.4.5. Enhanced Vegetation Index  

Enhanced Vegetation Index appears to be better than NDVI (the traditional vegetation indices) at 

discriminating in areas of high vegetation density (Didan, et al.,  2015). EVI is calculated using visible 

and near visible spectrum (Didan et al. ,  2015):   

 

𝐸𝑉𝐼 = 𝐺
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝐶1𝑅𝑒𝑑 − 𝐶2𝐵𝑙𝑢𝑒 + 𝐿
 

 

NIR, Red, and Blue are surface reflectance (full or partially atmospheric-corrected for Rayleigh 

scattering and ozone absorption.  L, C1, C2 and G are all coefficients. L is the canopy background 

adjustment for correcting the nonlinear, differential NIR and red radiant transfer through a canopy. 

C1 and C2 are the coefficients of the aerosol resistance term (which uses the blue band to correct for 

aerosol influences in the red band). G is a gain or scaling factor. The coefficients adopted for the MODIS 

EVI algorithm are, L=1, C1=6, C2=7.5, and G=2.5 (Didan et al., 2015).   

The MODIS EVI that we use has a 16 day temporal resolution and a 250m spatial resolution. The best 

pixels from the 16 day temporal window are used. In some cases (e.g. where cloud cover is high), there 

will not be any quality information recorded in a given 16 day window (observations are taken daily) 

and the pixel values will be based on modelled data.  

 

4.3. Results and Discussion  

4.3.1. Curve Fit  

Use of the log-log composite declustered variogram for estimating variability across scales 

depends on finding a model that closely fits the variogram when it's plotted on a log-log scale. The D 

values at any given extent are directly derived from the function fit to the log-log variogram. A poorly 

fitting model, would not provide useful information about the change in stochasticity. As is illustrated 

in Figures 4.4 through 4.11 the increasing exponential decay model (y = C (1 - e-kt), k > 0) appears to fit 

very well. The weakest part of the fit is the small distances where the curvature in the data is stronger 

than the curvature in the function for a few properties (relief, clay and sand)   

When applied to the point rainfall data sources (Figure 4.11), the function is very close to a linear 

function. We will discuss the implication of this for describing rainfall variability in sections 4.3.3 and 



 

 

81 

 

4.3.6. The increasing exponential decay function is quite flexible so that a number of  spatial structures 

can be modelled with a single function. This strengthens the evidence that the trends illustrated in 

Figures 4.12 and 4.13 provide an accurate representation of the underlying trends.  

All of the environmental properties we modelled (with the exception of rainfall) had a curvilinear trend 

(Figure 4.4 to Figure 4.11). The sole exception to this (from amongst the data we have modelled) is 

rainfall, which had a function very close to linear. This was the case for the 10 year average presented 

in Figure 4.11, as well as for each annual average that we calculated (Figure 4.14).  There are limited 

observations available with short separation distances, so the experimental variogram illustrates a 

high degree of stochasticity at finer scales (Figure 4.11). This makes it difficult to confidently assign 

any particular values to the curve, and the linear trends shown in the rainfall data might be due to a 

lack of fine scale observations, rather than a true representation of the rainfall. There are several 

parameter combinations that return very similar Residual Sum of Squares values, and which appear 

to fit very similarly. While visually similar on the log-log scale, the different parameter combinations 

do affect the roughness index particularly at short scales.  

 

 

Figure 4.4. Log-log empirical semivariogram (DEM), with increasing exponential decay model fitted 
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Figure 4.5. Log-log empirical semivariogram (relief), with increasing exponential decay model fitted 

 

 

 

Figure 4.6. Log-log empirical semivariogram (elevation – 300m focal range), with increasing 
exponential decay model fitted 
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Figure 4.7. Log-log empirical semivariogram (Radiometrics), with increasing exponential decay model 
fitted 

 

 

 

Figure 4.8. Log-log empirical semivariogram, (EVI) with increasing exponential decay model fitted 
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Figure 4.9. Log-log empirical semivariogram (Clay topsoil), with increasing exponential decay model 
fitted 

 

 

Figure 4.10. Log-log empirical semivariogram (Sand topsoil), with increasing exponential decay model 
fitted 
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Figure 4.11. Log-log empirical semivariogram (Rainfall), with increasing exponential decay model 
fitted 

 

 

4.3.2. Overview of results.   

When considering figures 4.12, 4.13 and 4.15 it is useful to recall that the roughness index expresses 

the relative importance of short range and long range variability. As spatial extent changes, the 

meaning of ‘short range’ and ‘long range’ also changes.  

The majority of environmental properties that we consider show a decreasing value for the roughness 

index as the resolution increases (i.e. the scale becomes finer). This implies that fine scale spatial 

trends exist and can only be detected as finer scales of observation become possible. At finer 

resolutions the spatial structure that is unobservable at coarser resolutions becomes short-range 

spatial structure, and the short-range structure becomes long-range structure. As a result, 

stochasticity reduces.  

This overall trend is the same for most environmental properties, but the rate of change and the 

specific values of the roughness index vary between properties. The relative difference in these trends 

has implications for our understanding of the scales at which the most significant components of 

variability occur.  

In the case of rainfall, the roughness index remains constant across all scales. This implies that the 

relative importance of short range and long range variability remains constant. It does not imply that 

the spatial pattern is the same, but that the degree of roughness is the same 
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None of the properties that we have modelled show an increase in D value as the resolution increases 

(finer scales).  

 

Figure 4.12. Roughness index: 0-1000km for multiple environmental properties  

 

Figure 4.13. Roughness index: 0-10km across scales for multiple environmental properties  
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The roughness index increases with separation distance, in most cases fairly rapidly, before reaching 

a plateau or near plateau. As our scale of observation becomes finer (separation distance decreases), 

variation that appears stochastic at a coarser scale is revealed as a spatial trend. In a standard 

geostatistical analysis this trend would probably be modelled as a nugget effect, rather than as spatial 

trend. The differences between modelling as nugget or as short-range spatial correlation can be 

important particularly when block-support prediction is considered. With the exception of rainfall, 

each environmental property we model shows the same gradual change in D value or stochasticity. 

This is a departure from other analyses which tends to operate under a monofractal or multifractal 

framework. 

 

Rainfall exhibits a different trend to the other properties. The roughness index for rainfall remains 

constant regardless of the scale change. This implies that the spatial variability of rainfall follows a 

mono-fractal trend: The variability in rainfall remains consistent regardless of the scale of observation. 

Taken together with the lower overall value for the roughness index, this suggest that rainfall has less 

short range variability than the other environmental properties, or that the variation in rainfall overall 

is more driven by long range trends.  

Sand, Clay and Percentage slope all have very high roughness indices even at very fine scales. At a 

separation distance of 1km, the roughness index for each of these variables is greater than 2.8. At 

100m separation distance, each of these properties has a roughness index value greater than 2.7. This 

suggests that there is still likely unresolved information at finer scales than this. Radiometrics exhibits 

a much more gradual change in roughness index value. At a 1km separation distance this roughness 

index is only 2.6 (a value, not significantly different from a random walk) suggesting moderate 

amounts of stochasticity. The roughness indices for Elevation Change (within a 300m radius) and 

Enhanced Vegetation Index increase more gradually than sand, clay and percentage slope, but less 

gradually than radiometrics. This suggests that more of the spatial variation is resolved at finer scales, 

or that variability at these scales appears less stochastic and more spatially driven.   

Soil texture (as per the NSSC database), roughness, slope, elevation and gamma radiometric 

potassium all plateau to a similar roughness index (greater than 2.90). Beyond around 5km, only 

radiometrics is distinguishable within this group.  A very high roughness index (i.e. greater than 2.9) 

suggests that short range variability is a much more important driver than long range variability. All of 

these properties can be considered highly stochastic.  
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The roughness index for elevation plateaus at a similar level to rainfall. This is much lower than the 

other environmental properties we consider, and indicates greater importance of long range trends 

in the variability of these two properties. .  

 

Figure 4.14. Roughness index  across scales: average annual rainfall, selected years.  

 



 

 

89 

 

Table 4.3.  Roughness Index Values: selected distances  

 100m 1km 5km 10km 100km 1000km 

Digital Elevation Model 

Smooth (DEM-S)  

2.25 2.46 2.57 2.61 2.72 2.80 

Percentage slope  2.64 2.85 2.92 2.94 2.97 2.99 

elev_focalrange300m_3s 2.14 2.68 2.84 2.88 2.96 2.98 

PM Radiometrics – 

Potassium  

2.39 2.65 2.77 2.80 2.89 2.94 

Enhanced Vegetation 

Index (EVI) 

2.38 2.73 2.85 2.88 2.95 2.98 

Sand  2.74 2.85 2.90 2.91 2.95 2.97 

Clay  2.91 2.93 2.94 2.95 2.96 2.97 

Rainfall (2004-2013 

average)  

2.72 2.72 2.72 2.72 2.72 2.72 

Rainfall (1999) 2.71 2.71 2.71 2.70 2.70 2.69 

Rainfall (2004) 2.78 2.78 2.78 2.78 2.78 2.78 

Rainfall (2009) 2.77 2.77 2.77 2.77 2.77 2.77 

Rainfall (2014) 2.77 2.77 2.77 2.77 2.77 2.77 
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Figure 4.15. Roughness index across scales  

 

4.3.3. Topographic variables  

There are strong similarities in the roughness index that we calculate for local topographic variables 

and soil texture. Percentage slope measures the slope change over the calculated support (one ARC 

second approximately 30m). Focal elevation measures the elevation change over the adjacent 300m. 

The roughness index for both of these properties follows a very similar pattern to soil. A rapid increase 

over the first 10km and then a plateau to very high levels (over 2.95) in the first 100km.  

Elevation (which measures height above sea level) has a much lower roughness index at all scales, and 

the rates of change in the roughness index are much lower.  

Slope and 300m focal elevation change are calculated directly from the DEM. This means that any 

smoothing and modelling applied to calculate the DEM will also affect the slope and the 300m focal 

elevation change data. Any differences in roughness index for these properties come from how the 

elevation changes are measured. The percentage slope change is calculated for a 30m support and 

measures the exact change in slope over this 30m area. The grain size for the 300m focus elevation 

change is also 30m, but measures elevation change on the surrounding 300m. The DEM layer is 

measured on a 3 arc second (approximately 90m support). More importantly, this metric (meters 
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above sea level) captures the variation across the whole continent, while percentage slope change 

and focus elevation capture local variability. The DEM layer is much more heavily influenced by the 

change in elevation occurring with a mountain range, than by the smaller scale variations that might 

occur within the same mountain range. This is consistent with other studies that consider topographic 

variables. Green & Erskine, (2004) calculate the fractal dimension at fine scales (10-500m) for three 

fields and find the D value for elevation varies between 1.28 and 1.47 over three fields, and between 

1.71 and 1.86 for slope over the same three fields (for each of these fields, the fractal dimension 

remains constant over the ranges considered). These results are consistent with our results in Table 

4.3 (the relevant columns are 100m and 1km).  

The roughness index for Percentage slope change, (percentage slope) is very similar to the roughness 

index for soil texture across all scales. This suggests that fine scale topographic variation is a more 

important determinant of soil variability than the large scale variation.  

 

4.3.4 Radiometrics  

As discussed in Chapter 3, radiometrics data is often used as a proxy for soil texture. The signals 

associated with radiometric data can be linked to clay particles, and so can be used as a proxy for the 

soil texture. The roughness index for the radiometric data shows a similar trend to the soil texture 

data, but is notably lower across all scales than the soil texture data (Figure 4.12, 4.13 and 4.15). The 

roughness index calculated from Radiometrics data is also notably lower than the elevation or EVI 

data. Gamma Radiometrics are often used as a proxy for soil parent material (Dickson & Scott, 1997) 

and soil texture  so it is interesting that there are several other environmental properties that seem 

to have more similar levels of variability to soil texture.  

One likely explanation for this difference in variability is the manner in which the radiometrics signal 

is detected. The grid size for the Radiometrics signal is 3 arc seconds ~ 90m. The observational support 

or ‘footprint’ for the Radiometrics signal is about 100m19. However, as explained in the methods, the 

Radiometrics observations do not have discreet boundaries. The Radiometrics signal incorporates 

information from the periphery of the observation at a rate that decreases with distance. A large 

support with discreet boundaries will already have some smoothing effect on a variogram, and reduce 

the appearance of short term stochasticity. The incorporation of a signal from adjacent areas will 

                                                      
19 In some areas the support will be much wider, due to wider flight line spacing (See Figure 4.1).  
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further enhance this effect. Proximal sensor with smaller footprints might be useful for more detailed 

mapping as suggested by Stockmann et al., (2015). 

 

4.3.5 Rainfall  

The lower stochasticity of the rainfall is also interesting to note. The rainfall data does not exhibit the 

same distinctive rapid increase in over the first several km. In fact, it is effectively flat across all scales. 

A completely constant roughness index is consistent with a monofractal (i.e. the variability is the same 

across all scales). However, given the limited availability of rainfall data at finer scales (which is where 

most of the curvature typically occurs) this results are not definitive. We can be more confident about 

the value of the roughness index at the greater extents. 

We collated the rainfall data into annual averages for years from 1999 to 2015. Empirical variograms 

were calculated for each of these years (note these are not shown)  and the exponential decay curve 

was fit to the log-log variogram of each year. Visual inspection of this variogram data suggests a strong 

positive correlation between distance and variability, but does not suggest a strong curvilinear 

relationship. The exponential decay functions which are fit to the curves emphasises this as they are 

close to linear. A linear fit to the log-log empirical variogram means a constant value of alpha which in 

turn implies a constant D value. With the exception of 1999 and 2000, all years have a D value between 

2.75 and 2.8 across all scales (Figure 4.14). Even the slightly lower D values for 1999 and 2000 are still 

quite similar, with both close to 2.7. The ten year average has a similar value (2.72) despite the larger  

temporal scale20. Mandelbrot & Wallis (1969) note the comparatively very low D values for annual 

precipitation, between 1.1 and 1.321.  However, these D values are calculated from Hurst Exponent 

calculated for time series rather than spatial data.  

 

4.3.6 Enhanced Vegetation Index 

The Enhanced Vegetation Index (EVI) stems from the visible and near visible spectrum. It measures 

changes in the growth status and type of vegetation. The high stochasticity of the EVI from medium 

scales is somewhat surprising. Intuitively we would have expected more wide scale emphasis as 

vegetation types change significantly over the continent. The very high stochasticity at fine scales 

might suggest that on average, the soil type, and slope have a significant control over vegetation status 

and type. It may also reflect the impact of human environment interactions where agricultural 

                                                      
20 In general a larger support (temporal or spatial) reduces stochasticity.  
21 For one dimension D value vary between 1 and 2 rather than 2 and 3.  
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developments, buildings, manmade parks, paths or other structures create sharp boundaries between 

vegetation types, or between vegetation and other surface structures.  

Of all the datasets that we consider, the enhanced vegetation index has the coarsest grid size or 

support (250m). This will necessarily ensure that fine scale modelling shows less variability, as the 

chances of taking a subsample from within the same grid cell will be very high for fine separation 

distances.   

 

4.4. Implications and Conclusions  

4.4.1. Implications 

Like the D value and the Hurst exponent, the roughness index has the advantage of abstracting from 

the scale of the units of measure. It is the relative rate of change, not the absolute magnitude that 

determines the roughness index.  All three measures (Hurst, D value and roughness index) share this 

advantage when comparing between properties with different units.  

The usefulness of the roughness index as distinct from either the Hurst exponent or the Fractal 

Dimension, lies in its ability to model change in stochasticity or ‘roughness’ on a continuous or gradual 

scale. This is a significant conceptual distinction from the traditional understanding of the fractal 

dimension as a mono-fractal, or multi-fractal.  The results presented in Section 4.3.1. seem to indicate 

that this framework is useful for considering other environmental properties. In Sections 4.3.4 to 3.6 

above we discuss the roughness indices for different environmental properties and speculate about 

possible causes and implications for the distinctions between them.  

We calculate the roughness index to draw inferences about the change in variability across scales for 

different environmental variables. However, the discussion above highlights the fact that the 

roughness index that we calculate is affected by the form and structure of the data, not just the 

underlying distribution of the environmental properties. It is not possible to divorce the interpretation 

of the results from the form of the data that we have available.   

The availability of high resolution data for different environmental properties has allowed us to 

investigate the spatial variability of different environmental variables across scales in an easily 

comparable way however the form of the data limits the comparisons we can make.  

● Neither the soil nor the rainfall datasets have a statistically-based sampling design, which may 

lead to additional bias.  
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● There are limited closely spaced observations for rainfall, limiting our ability to model changes 

in variability across fine scales.  

● Radiometrics data has very diffuse boundaries limiting capacity to model fine scale variability.  

 

Despite these limitations, some noteworthy trends have emerged from this analysis.  

Burrough (1983) found that soil exhibits more short range stochasticity than other environmental 

variables, such as annual rainfall and landform variables. Our results indicate a very high level of 

stochasticity for soil properties, but we find that this level of stochasticity is similar to some 

topographic variables.  

We have compared the variability of environmental properties across multiple scales. We have 

observed that the majority of environmental properties we have modelled follow a similar overarching 

trend: Rapid increases in variability across fine scales, followed by a gradual plateau. The consistency 

of this pattern across several different properties highlights the importance of dealing with fine scale 

stochasticity when producing maps or models at coarser scales.  

Despite the consistency in the general pattern of variability as the scale changes, there are marked 

differences in the roughness index between environmental properties. The roughness index changes 

at different rates for the different properties, and the plateau occurs at a different scale for different 

properties. These distinctions reveal where the most important changes in stochasticity occur, and 

provide a useful indication of the scale at which spatial variability can be modelled as a spatial trend 

rather than as noise.  

There is a very close trend between slope, local relief and soil texture. While soil forming and 

controlling processes can be expected to operate differently in different landscapes (McKenzie & 

Ryan, 1999), the extremely close relationship might be indicative of a close relationship between these 

properties. The possibility is worth investigating further.  

The roughness index of rainfall is distinct from the other environmental properties, as it does not 

change with scale. This may imply a monofractal relationship (i.e. one where the expected 

stochasticity or variability of the property is scale invariant). The constant value estimated for the 

roughness index may also result from the lack of observations at the scales where the greatest changes 

in variability appear to occur. We have not fully considered the question of how temporal variability 

and spatial variability interact. Rainfall, unlike the other environmental properties we have considered 

is a temporally dynamic property, and this may also be affecting our results.  
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4.4.2. Conclusions   

● Most environmental properties reach high scales of stochasticity at short extents (around 

10km). Variability remains fairly consistent at greater scales.  

 

● Figure 4.14 shows that local topographic indicators (slope and local relief) and soil texture 

show similar characteristics in their spatial scaling behaviour. The roughness indeces for these 

properties vary almost identically as the scale changes.   

 

● Elevation and rainfall show significantly lower stochasticity than the other environmental 

properties modelled.  

 

● At extents greater than around 100km, local elevation and vegetation indices show very 

similar stochasticy to soil. Radiometrics is only slightly less stochastic. Rainfall and elevation 

above sea level have noticeably lower levels of variability.  

 

● At finer scales, soil is more variable than all properties except for slope which has a similar 

degree of variability. The higher apparent stochasticity at fine scales might be due to smaller 

support for soil measurements.  

 

The comparison of how spatial variability changes across scale for different properties are of intrinsic 

interest. It provides another system of considering natural systems and how they interact.   

In practical terms our results suggest useful directions for future research. They suggest that gamma 

radiometric data may not capture fine scale variability in soil texture. Whether this is largely due to 

the large footprint/ support and diffuse boundaries would be worth testing, especially with the 

increasing availability of proximal soil sensors and associated libraries.  

Similarly, the extremely close relationship between local topography and soil variability is striking. 

Whether this relationship holds up in specific regions and at specific scales would be of great interest 

to note.  
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Calculating the Global Variogram. Modelling soil variability 

beyond the continental scale   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All of my creation is an effort to weave a web of connection with the world  

Anais Nin  
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Abstract  

In this chapter, we extend our analysis by modelling the global variability in soil texture. We find that 

the composite variogram model does not readily extend to the global scale.  

Surprisingly we find that the maximum variability in global soil texture (as modelled by a global 

variogram) is not greater than the maximum variability in soil texture found within the Australian 

continent. At the global scale we find pronounced anisotropy, possibly driven by large scale climate 

trends. This anisotropy indicates that the ‘roughness index model’ we’ve used does not extend to the 

global scale.  
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5.1 Introduction  

In this Chapter we approach the question of soil global variability. A number of global soil models exist, 

and are increasingly being incorporated into models of environmental variability. In Chapter 2, we 

modelled the spatial variability of soil texture at extents from 1km to continental. Our aims for this 

Chapter are twofold. First, to describe global soil variability.  Second to test whether the model 

multiscale model developed for the Australian continent in Chapter 2 can usefully be extended to the 

Global Scale. Modelling global variograms also allows us to find a ‘global sill’ for soil texture variability, 

and to compare the variability that we found at the finest scales in Chapter 2 (1km extent) to global 

variability. We also test whether the tendency for soil texture variability to increase with depth holds 

at a global scale. This analysis is facilitated by the existence of compiled legacy datasets.  

 

5.2 Methods 

5.2.1. Calculating the Global Variogram  

We use data from the World Soil Information System (Wosis) provided by Batjes, et al.  (2016) to 

calculate global empirical variograms.  

As in Chapter 2, we increase the bin size in line with the extent. In this analysis, we use bin sizes of 

200km, and present an extent of 10,000km. We also use grid-based declustering method. Using 

latitude and longitude projections, we split the globe into 500 segments. Longitude is split into 25 

segments, and latitude is split into 20 segments.  

Around the equator the approximate grid size is 1,600km in an East-West direction and 1,000km in a 

North-South direction22. The NS grid length remains constant regardless of location, but the East-West 

separation gets smaller further from the equator. At 50º north or South, the declustering grids are 

approximately 1,000 square km.  As in Chapter 2, the weight we use for each observation is inverse to 

the number of observations that occur within the same grid23. As in Chapter 2 we check for anisotropy 

calculating directional variograms. Unlike Chapter 2, we find strong evidence for anisotropy and 

therefore present the directional variograms. We calculate variograms in the East West (EW) direction 

and the North South (NS) direction with a 45 degree tolerance on each direction. 

Because of the strong anisotropy we do not extend the roughness index model from previous 

chapters. The analysis presented in this chapter is based on empirical variograms.   

                                                      
22 Estimates based on each degree being approximately 111 km  
23 The actual weight used is calculated from 9 slightly offset averages to avoid arbitrary cut off points.    
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As we are operating on a sphere, rather than a two-dimensional grid, as in Chapter 2, an additional 

step is required to calculate separation distance. For each pair of observations, we convert degrees to 

radians using a trigonometric function and we calculate separation distance in meters using the 

haversine formula.  

 

5.2.2 The data  

We use the World Soil Information System (Wosis) dataset provided by Batjes et al.  (2016) 

supplemented with the Australian NSSC dataset described in Chapter 2. In this chapter we analyse 

percentage clay content.  

In the North South direction, the dataset is concentrated between -50º and 50º latitude (a separation 

distance of around 11,000 km). The maximum latitudinal (North-South) separation is around 16,000 

km (Figure 5.1 and Figure 5.2 left panel). There is very limited data collected in the Arctic or the 

Antarctic. In the East West direction, there is a region of very sparse data collection from around 150º 

to -150º longitude (Figure 5.1 and 5.3 left panel). This corresponds with the north and south pacific 

oceans where there is limited land mass, and where data collection is sparse over the land masses 

that do occur at these longitudes.  Other notable (but shorter) gaps in the East West data occur at 

around -30º to -20º and 50º to 70º. The density of sampling is by far the greatest at longitudes of -

120º to -80º, this corresponds with North America (Figure 5.1 and Figure 5.4 left panel).  

 

5.2.2.1. Data Cleaning  

The raw Wosis dataset contains around 80,000 points with observations for percentage clay fraction.  

In order to harmonise the data for depth, we needed to clean the data. In addition to removing 

negative values and observations where the summation of the sand and clay fraction was greater than 

100, we also removed observations where:  

● the topsoil observation did not start at depth 0 cm ;  

● If there was a gap between the layers  ; and  

● If there was an overlap between the layers.   

These data treatments allowed fitting of the Spline function.  
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We harmonised the depth data using the equal area spline with the ea_spline function in the ithir 

package (Malone, Minasny, & McBratney, 2017) using the same depth intervals as we used in Chapter 

2. We combined the global data with the NSSC Australian data. This left us with 55,562 profiles 35,988 

were from the US, another 2,101 were from Mexico, 89 from Canada, and the rest from different parts 

of the world (151 from Australia). The North American continent dominates the WOSIS dataset. The 

cleaned and splined NSSC dataset described in Chapter 2 was added to these observations, 

contributing another 13,830 observations from Australia (Figure 5.1). Summary statistics for the 

splined data of clay content in Table 5.1.  

 

Table 5.1. Summary statistics of splined composite WOSIS and NSSC dataset  

depth  count  average s.d. skewness  kurtosis  

0-5 cm 69415 20.49 15.28 1.27 1.50 

5-15 cm 68953 21.78 15.50 1.15 1.12 

15-30 cm 64520 24.91 16.55 0.88 0.43 

30-60 cm 62156 29.22 17.88 0.60 -0.04 

60-200 cm 56141 29.81 18.33 0.60 -0.09 

 

 

Figure 5.1. Distribution of WoSIS and NSSC dataset  
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5.2.2.2. Global Non-Stationarity  

We find evidence for non-stationarity about the mean and the variance in the global soil texture data 

in the North South direction (Figure 5.2). We do not find evidence of non-stationarity in the East-West 

variogram. There is a region of lower variability, and lower mean values from around -140 to 100, but 

this does not represent a strong trend (Figure 5.3).  

 

Figure 5.2.  Percentage clay fraction statistics by latitude (North-South). Average per degree of latitude 
in left panel, variance per degree of latitude in right panel.  

 

 

Figure 5.3. Percentage clay fraction statistics by longitude (East-West). Average per degree of latitude 
in left panel, variance per degree of latitude in right panel. 

 

A common approach for dealing with non-stationarity about the mean is the removal of the trend. We 

try this approach. The N-S mean trend appears as though it could be well fit by a quadratic function 

(Figure 5.2 left panel). We select the quadratic function and fit it to the raw data (Figure 5.4 left panel). 
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It is difficult to visualize the fit on the raw data, but it appears to be a good fit against the the mean 

(Figure 5.4 right panel). From this fitted curve we calculate the residuals (Figure 5.5).  

 

Figure 5.4. Percentage clay fraction against latitude. On the left panel each red point represents an 
observation. On the right panel each red point represents the average of the % clay fraction 
observations collected in that degree of longitude. The black line is the same on both panels   

 

 

Figure 5.5. Percentage clay fraction statistics calculated from residual data by latitude (North-South). 
Average per degree of latitude in left panel, variance per degree of latitude in right panel. 

 

Removal of the mean trend does not affect the stationarity about the variance (Figure 5.5 left panel), 

or the shape of the empirical semivariograms (Figure 5.6 and 5.7).  
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Figure 5.6. Global Variogram North South, calculated from original data (blue points) and residual data 
(red points) 

 

Figure 5.7. Global variogram – East West calculated from original data (blue points) and residual data 
(red points) 

 

Dealing with non-stationarity about the variance is a more difficult problem than dealing with non-

stationarity about the mean. The pronounced trend in the variance violates the second assumption of 

weak stationarity (i.e. the variance in this case is dependent not only on separation distance between 

two observations, but also on direction and location of these observations). Methods exist for 

modelling variograms when the variance is non-stationary (e.g. Lark, 2009; Meul & Van Meirvenne, 

2003), but these approaches are not compatible with empirical variogram modelling at a global scale. 

In the results and discussion below, we proceed with the original data and discuss potential drivers 
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for the non-stationarity and associated anisotropy. It is necessary to deal with non-stationarity about 

the variance to create accurate estimates of the prediction error when using variograms for kriging 

and mapping (Lark, 2009), but the underlying non-stationarity does not prevent us from drawing 

inferences about global trends in variability from the global variograms.  

 

5.3. Results and Discussion  

5.3.1. Global Variability   

We calculate semi-variograms from both the original dataset and the detrended residuals (Figure 5.8). 

Unlike the variograms calculated in Chapter 2 we find distinct anisotropy in the variograms calculated 

from the raw data and in the variograms calculated from the residuals.  

 

 

Figure 5.8. Experimental semivariograms calculated from the residuals (detrended clay % fraction 

data), with composite variogram from Chapter 2 overlain.  

 

Despite the much greater extent the global variogram does not show a greater maximum variance 

than the continental variogram. At 10,000km separation distance, both the East-West and the North-

South variogram show less variability than the Australian variogram showed at 1,000km. This result is 

surprising. Intuitively we would expect there to be more variability between continents than within 

them. It is possible that the method of measurement of soil texture variability (% fraction) is limiting 

the description of variability of soil texture. Measuring a percentage of an arbitrarily determined grain 

size interval reduces the variability that can be described. The Australian and US classification (used in 
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the WOSIS dataset) for clay content is 2 μm. The percentages presented int this chapter (and 

throughout the thesis) do not capture variation within 0-2 μm. It is possible that a more nuanced 

description of the data, such as that trialled in multifractal measures of soil texture (Grout, et al.  1998, 

Millán, et al.  2003; Neyshabouri, et.al., 2011) would allow a more accurate picture of the trend to be 

developed.  

 

5.3.2 Limits of continuous change model 

In Chapter 2, we find that variograms for percentage clay at a range of scales can be well approximated 

by power curves. Further, we find that when a multi-scale variogram is calculated and plotted on a 

log-log scale it can be well approximated by an exponential decay curve. This allows us to describe the 

change in variability across scales with a single equation. In Chapter 4 we find that this holds for a 

number of environmental properties. However, when we model the global variogram, the same 

pattern does not continue. Because we find strong anisotropy in the global models, they do not fit 

with the framework we use to describe our model in Chapter 2.  It is not surprising that the model 

does not continue to fit well at this scale. When we consider the global scale factors such as 

continental drift, extremely different climate regimes and large separation distances, all come in to 

play.  

 

5.3.3. Global Anisotropy    

The East-West variogram shows a much more gradual increase in variability than the north south. It 

also continues to increase across the entire calculated range (up to 10,000km) although this rate of 

increase declines with increasing distance. By contrast the North-South variogram (relatively) quickly 

reaches a peak (at around 4,500 km) and then variability begins to decrease again, and continues to 

decrease until the maximum range of the calculated variogram (10,000km).   

The variogram calculated in the North-South direction reaches maximum variance before 5,000 km, 

and then the variance begins to decline. For context, the circumference of the globe is about 40,000 

km, and the distance from the equator to either pole is around 10,000 km. The distance between the 

tropic of cancer and the tropic of Capricorn is about 10,000 km. We suspect the anisotropy is driven 

by the same factors as the non-stationarity. The Shape of the North-South variogram, shows a very 

similar pattern to the pattern in the non-stationarity about the mean and the variance. In Section 5.3.4 

we discuss potential drivers of the non-stationarity.  
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5.3.4. Global Non-stationarity  

The N-S non-stationarity about the mean and variance follow a similar spatial trend. Both the average 

% clay fraction and the % clay variance are greater in the equatorial region than the temperate regions.  

 

 

Figure 5.9. Koppen climate classification, source: Rubel & Kottek, 2010 

 

There appears to be a relationship between this non-stationarity and major global climatic zones. 

Around the equator (longitude of zero) there is a tropical zone that extends approximately 4000km 

(or 20 degrees north and 20 degrees south). On either side of this tropical zone there are arid or 

temperate regions. Beyond these arid and temperate regions there are cold or arctic regions (Figure 

5.9). Our dataset is heavily focused in the tropical and temperate regions with limited observations in 

the cold or arctic regions. Figure 5.10 (modelled clay content) shows a similar although less 

pronounced N-S trend, with a higher clay fraction closer to the equator.  

A number of studies find a relationship between climate and weathering at global scales although 

these relationships are not always found at regional scales (Turner et al. 2010). Discerning the effects 

of temperature on weathering remains a difficult problem because the weathering rates are 

controlled by other factors (rainfall, and lithology) and related factors such as evapotranspiration and 



 

 

110 

 

plant growth  (Turner et al., 2010). Temperature and water exposure are generally held to be key 

drivers of rates of weathering, which in turn contributes to the texture of the soil.  

 

 

Figure 5.10. Clay (0-2 micro meter) mass fraction % at 5cm depth. Source soilgrids.org  

 

5.3.5. Global Variability with Depth 

Modelled across different depths, the broad patterns of the global variogram appear quite similar. 

Some minor fluctuations appear at different depths, but the major trends are similar for both of the 

directional variograms. There also appears to be the same tendency for variability to increase with 

depth that was noted in the multi-scale analysis of Australian soil texture in Chapter 2. As with the 

Australian soil texture this trend increases until the 60-200cm depth. In the scales we considered in 

Chapter 2, we found that this depth was sometimes less and sometimes more variable than the upper 

depths. In Figure 5.11 and 5.12 below we can see that the 60-200cm depth interval is less variable 

across the entire variogram. As discussed in Chapter 2, the drivers for this increased variability with 

depth might be to do with a greater homogenisation of surface soil due to surface processes including 

agricultural processes.  
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Figure 5.11. Global variogram calculated at increasing depth intervals 

 

Figure 5.12.  Global variogram calculated at increasing depth intervals 

 

5.4 Conclusions  

● The maximum variability found in clay percentage texture at the global scale was similar to 

the maximum variability found in clay percentage texture at the continental scale. This might 

imply a limit to spatial variability is found at the continental scale.  

 

● The multiscale model that we developed in Chapter 2 appears to reach its limits for clay 

content at the continental scale. It might be possible to transform the data to allow this model 

to be extended.  

 

● At the global scale, soil texture variability is non-stationary and anisotropic.  

 

● Soil texture roughness increases with depth up to around 60cm at the global scale. This result 

is similar across scales from the field to the global.   
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Chapter 6: 

 

Variograms of Soil Properties for Agricultural and 

Environmental Applications 

 

 

 

 

 

 

 

 

 

 

Think left and think right and think low and think high. Oh, the  
things you can think up if only you try! – Dr Suess 
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Abstract  

In this Chapter, we investigate solutions to the specific problem of efficient sampling design when fine 

scale variability is unknown. Focusing on eight soil properties commonly sampled in precision 

agriculture studies (Clay, Sand, pH, Carbon, Available Nitrogen, Total Nitrogen, Phosphorous, 

Potassium), we compile variograms from existing literature to evaluate whether an ‘average’ or a 

‘proportional’ variogram can provide a good a priori estimate of field scale variability.  

We do not find sufficient trend to allow the use of the proportional variogram, and advise caution in 

the use of the average variograms. We explore a range of other strategies for improving the 

knowledge of field scale variability prior to sampling.  

 



 

 

115 

 

6.1. Geostatistics and precision agriculture  

Precision agriculture can be used to improve farm management to achieve economic and 

environmental benefits (Whelan, 2018). Short range differences in soil attributes mean that spatially 

differentiated management can create economic or environmental benefits. Effective precision 

agriculture requires accurate soil mapping at sub field scales so that management practices can be 

modified. Improvements in farming technology, for instance GPS controlled farm equipment, 

decrease the difficulty and cost associated with spatially differentiated management. This improves 

the ease of implementation and makes high resolution soil maps more valuable.  

A key challenge for geostatistics in precision agriculture is the detection of soil variability at important 

sub field scales and the systematic incorporation of this variability into accurate field scale soil maps. 

 

6.2. Soil survey, the variogram and kriging 

Soil attributes are typically difficult and expensive to observe. As a result, soil attribute maps made for 

the purpose of precision agriculture are typically created from point observations which represent a 

small proportion of the area to be mapped. Estimates of soil attributes in unknown areas are based 

on the observations and an expectation of the regions between them. This process of predicting 

attributes in unobserved areas is known as kriging (explained in more detail in Lark, 2018). 

Assumptions about spatial variability are described quantitatively in the variogram, which links spatial 

separation distance to expectations about variability. Lark (2018) and Marchant (2018) explain the 

variogram, its uses and the different methods of calculating the variogram in more detail.  

The variogram is sometimes called the 'cornerstone of geostatistics'. Accurate estimation of the 

variogram is critical to the production of accurate soil maps. Because of the hidden nature of most soil 

attributes, we can usually only directly observe a small proportion of an area of interest. In Lark (2018), 

the distinction between the experimental or empirical variogram and the model variogram is 

described in some detail. The empirical variogram plots the average variance against separation 

distance for a number of distinct lags. The model variogram uses the information from the empirical 

variogram to estimate the expected variability at all lags. The purpose of the model variogram is to 

estimate the true underlying spatial variation at a level of detail that allows useful predictions.  

Interpolation of results into unobserved points depends on the spatial structure estimated by the 

variogram. The closer the estimated variogram to the underlying spatial structure the more accurate 

the subsequent interpolation. In general, a variogram computed from samples with finer spacing and 

more observations will estimate the underlying spatial structure more accurately than a variogram 
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computed from samples with coarser spacing. Finer spacing allows the detection of spatial structure 

across more scales. The extent to which this is true will depend on the interaction of the spacing with 

the underlying spatial structure. For example, if there is no spatial relationship between points more 

than 5 m apart, then decreasing spacing from 50 m of separation distance to 10 m will not improve 

the variogram. We pause here to explain some key components of the variogram and how they are 

affected by survey design.  

 

6.3. Key components of the variogram 

While the variogram can take many forms, there are three components which are typically considered 

the most important indicators of spatial structure. Shown in the stylised diagram in Figure 6.1 and 

subsequently described, these components are the nugget, the sill and the range. The estimation of 

each of these parameters depends strongly on the sampling design.  

 

Figure 6.1. Stylised diagram, showing the three most important indicators of spatial structure, the nugget, sill 

and the range. 

 

Nugget  

In principle the nugget effect captures non spatial variation: measurement error; random variation. 

However, in practice the nugget will also capture spatial variation that occurs at scales less than the 

smallest sampling interval. If the sampling interval is wider than an important scale of spatial variation 
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then this will increase the nugget. Aliquotting (pooling of samples) will decrease the nugget. A larger 

support (area over which the sample is taken) will also decrease the nugget.  

 

Total Sill 

The total sill is defined as the maximum variability that can be expected for a particular soil property. 

Beyond a certain separation distance (the range, see below) the expected variability will not increase 

past the value of the total sill (or in some cases will increase only very slowly and slightly past the sill). 

Only bounded variogram models have a sill. The total sill is more likely to be affected by the number 

of samples and the wider separation distance than the minimum sampling spacing. When modelling 

spatial variability at a field scale, it is unlikely that the maximum variability of the soil will be reached. 

However unbounded models are rarely fit. In the context of precision agriculture, we can think of the 

total sill as being the maximum variability within this particular context, or a local maximum. If we 

extended the sampling to a regional level it is likely we would reach another magnitude of variability.  

Partial Sill  

The difference between the nugget and the sill is known as the partial sill. The partial sill is the 

component of variation that can be spatially attributed. In Figure 6.1, the semivariance increases 

linearly with distance at short separation distances. As the separation distance increases, the rate of 

increase in the semivariance decreases, before eventually reaching a plateau as the semivariance 

reaches the total sill. This pattern is commonly found in variogram models. (see Chapter 9 for more 

detail on the functional forms). Accurately determining the change in variability between the nugget 

and the sill requires sufficiently dense sampling at appropriate scales of variability.  

 

Range 

Like the nugget and the sill, the range estimated by the theoretical variogram will be strongly affected 

by the sampling design. As the lag increases, the confidence intervals (around the estimated empirical 

variogram) widen (Oliver and Webster, 2014) which can make it difficult to accurately fit a variogram 

at lags approaching the full extent. Precision agriculture surveys are typically conducted over areas 

from a few hectares to a few hundred hectares. This precludes them from capturing landscape or 

continental scale variability. Despite this, the majority of variogram fits from precision agriculture 

studies are bounded. The modelled range and sill can be thought of as the ‘local sill’ associated with 

the ‘local range’ associated with the particular extent and spacing of that survey. It is very likely that 

if the extent of the survey was increased another degree of variability would be found. It is critical to 
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consider the potential effect of both, the extent and the spacing on the range when considering 

precision agriculture studies, and how their findings may inform your own work. 

  

6.4 Soil survey design: capturing spatial variability 

The task of ensuring that a soil survey captures the necessary scales of variability is not a trivial one. 

The expense of a soil survey, and the commonly destructive nature of soil sampling creates a pressure 

to reduce the number of sampling points as much as possible. However, if sampling is insufficient or 

too sparse (relative to the underlying spatial structure) it will compromise the variogram, and thus the 

accuracy of the maps which are calculated from it. It is noted in Lark (2018) that one of the chief 

difficulties associated with the design of a soil survey for estimating a variogram is that the underlying 

spatial structure is unknown at the time the survey is designed. If the underlying spatial structure of a 

soil attribute is known, we can design a soil survey sufficiently to create a map at a particular level of 

detail.   

Where budget allows it, the best practice is to undertake a preliminary soil survey to estimate 

important scales of variation before a more comprehensive soil survey is designed. This survey should 

be nested in its design to increase the chances of capturing important scales of variability (Pettitt & 

McBratney, 1993; Webster & Oliver, 2001). However, a preliminary survey will rarely be economically 

feasible. If it is not possible to conduct a preliminary survey, a soil survey design is likely to benefit 

from the consultation of alternative sources of information about soil variability, such as existing 

literature or covariates.  

Budget or practical pressures may be sufficient to impede the collection of sufficient data to reliably 

calculate an empirical variogram. A stable variogram calculated from classical geostatistical methods 

(as described in Chapter Lark 2018) requires around 100 observations. More modern methods (as 

described in Marchant 2018) typically require around 50, although closer ot 100 is still preferred 

(Webster and Oliver 2008). It is not possible to estimate spatial variability at distances less than the 

minimum separation distance. In cases where there are few, or widely spread soil observations 

alternative sources of information may be useful for the calculation of a variogram for kriging.  

 
The expense of gathering soil observations creates a need for cheaper sources of information about 

soil variability, either to assist in the planning of a soil survey, or to use in the process of kriging itself. 

Many authors have identified sources and strategies for the production of this information.  
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6.5. Variograms from the precision agriculture literature 

Variograms calculated for the same soil attribute may be a useful source of information. However, 

variograms calculated for the same property can vary significantly for a number of reasons that should 

be carefully considered. As outlined in Malone (2018), parent material, soil type, land use, and climate 

will all have an effect on soil spatial variability. Consideration of these factors will be important in the 

selection of a variogram. Unfortunately, knowledge about soil spatial variability does not extend to 

the quantification of which of these factors are most important for determining spatial variability of 

different soil attributes.  

The underlying variability of soil attributes might be different for the reasons mentioned above. In 

addition, the methods used to detect soil variability might create differences in the shape of the 

variogram. Different projects may focus on detecting variability at different scales for management or 

budget reasons. Even if the soil type is similar between two studies, the spatial variability might not 

be measured in a way that provides useful information.  

It is also very important that the statistical methods used are assessed critically, before results are 

used or duplicated. There are a number of variograms included in Tables 6.1 to 6.8 which appear to 

use insufficient sample numbers for variogram estimation. There are several variograms which appear 

to assign spatial structure at a magnitude that appears to be meaningless relative to the units (i.e. 

total sill of less than 1 % for the soil texture fraction)24. These results have been included for 

completeness, but we wish to draw the readers’ attention to the fact that some of the variograms 

included in this collection may have issues associated with them.  

We describe below some key trends we have noted in the compilation of soil variograms and include 

a graphical summary of the variograms we have compiled. This Chapter builds on the 1999 summary 

of precision agriculture literature by McBratney and Pringle. Variograms from McBratney & Pringle 

(1999) are included as well as those we have collected from the intervening period. Summary details 

and references for each variogram are given in Tables 6.1 to 6.8. We encourage the reader to consult 

each source directly for more detail about the sampling design and process.  

Variograms for the same soil attribute from existing literature can be a useful source of information 

about field scale soil. It is important to exercise caution when consulting this literature, as 

variograms have been created from different soil types, for different purposes and possibly with 

important methodological limitations.  

                                                      
24 In some cases the magnitude of the nugget and partial sill is extremely small compared to the magnitude of the standard 

deviation. This may suggest that the data has been transformed in some way before the variogram has been fit.  We have 
reported the results as in the original article.  These results should be interpreted with particular caution.  
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6.5.1. Field scale soil variograms: key trends  

Variogram forms  

Across all soil properties, a number of functional forms were fit to variograms. For each soil property 

at least one study found no spatial structure (i.e. pure nugget) to be the best fit. This suggests that 

either the spatial structure occurs at scales finer than those surveyed, or that the variability in the 

property in question is less than the experimental error. Spherical and exponential variograms were 

commonly used. Some papers described the functional form as ‘experimental’. These models were fit 

with an exponential model for simplicity.  

 

Total sill  

Between studies the total sill (nugget plus partial sill) changes by several orders of magnitude for each 

property.  As expected, this variability is the least pronounced for bounded properties (pH, OM %, 

Sand % and Clay %) and much more pronounced for micronutrients, which vary by around 3 -5 orders 

of magnitude.  

Variability in total sill is similar to that observed by McBratney & Pringle, (1999). Inspection of the 

summary tables (Table 6.2 to 6.9) indicates that for the majority of soil properties, the range of values 

in the total sill is similar for the variograms collected by McBratney & Pringle (1999) and the more 

recently collected properties. The maximum variability reached within 1km has remained within an 

order of magnitude for all properties. For soil pH, organic Carbon and Potassium the maximum 

variability found in the more recent literature search is two to three times greater than the maximum 

variability found in the literature reviewed by McBratney and Pringle (1999)The other properties have 

a very similar maximum.  

 

Nugget  

Like McBratney and Pringle (1999) we find wide variability (several orders of magnitude) in the nugget 

parameter. McBratney & Pringle (1999) suggest that this variability is largely due to the strong effect 

of sampling design on the nugget. A variogram can only model the spatial structure that is detectable 

by the sampling design. In general, the wider the spacing, the more spatial variability will be attributed 

to the nugget component of the model. If the survey spacing is wider than the spatial structure the 

variogram will appear as a pure nugget model. A wider support and the use of aliquotting will reduce 

the ‘noise’ in the data and decrease the nugget. It has been often proposed, and is quite likely, that 



 

 

121 

 

the majority of soil properties would have more than one layer of soil structure. The differences in 

estimated nugget likely reflect both the underlying differences in spatial structure at the field scale 

and the capacity of different survey designs to capture this variability.  

 

Range  

The vast majority of modelled variograms found a range. Carbon had one linear and one nugget model, 

as did Potassium and available Nitrogen. pH had two models with zero ranges (one nugget, on 

experimental). Phosphorous had one linear model fitted, and clay and sand had one nugget model 

each.  

Table 6.1. summarises the ranges that were found for the various models. Around half of the modelled 

variograms we gathered had a range of less than 100m for the eight soil properties. Almost all of the 

modelled soil properties had a range of less than 500m.  

Table 6.1. Summary of range distances found in precision agriculture variograms  

This emphasises the importance of fine scale variability in the overall soil variability.  

 

6.5.2. Field scale soil variograms: methodological differences  

Survey design  

Another substantial difference between the survey designs was whether or not aliquotting was used. 

This is particularly significant when comparing these spatial studies because some studies model the 

range at distances that other studies were combining soil at. This is typically done for samples taken 

within 1 m of each other. This practice is likely to reduce the nugget (or white noise) and also to reduce 

any short term spatial trends which might be occurring.  

There is significant variation in the survey design which may influence the mapping of spatial 

variability. Nested designs are better placed to capture spatial trends across a variety of scales than 

designs with even spacing; however, because of the additional costs associated with these, they are 

less common.  



 

 

122 

 

Model-fitting process  

Oliver & Webster (2014) wrote an explanatory piece of work, describing the best methods for soil 

scientists to model variograms for kriging. They also described common mistakes made by soil 

scientists when calculating variograms. The majority of papers we assess do not follow all of Oliver 

and Webster’s recommendations for reporting methods. This makes it difficult to assess how well a 

fitted variogram captures underlying spatial variability. Few papers report summary statistics for a 

variety of models and few papers present variogram clouds to illustrate the utility of the fit. This does 

not necessarily mean that the fitted models are not accurate, but it does make it difficult to assess the 

model.  

Another point worth considering is the possibility that trends are being overfitted. Perhaps some of 

the models presented in this chapter would have been better represented by a nugget. These issues 

around model quality are not new, but a degree of caution is required when interpreting the results.  

The more recent literature has included studies which have found much lower values for the total sill 

for several soil attributes. For clay the lowest value found for the total sill is two orders of magnitude 

lower than the lowest value reported by Petit and McBratney. Sand is one order of magnitude lower.  

Some modelled variogams occur over a very tiny range of variability relative to the magnitude of the 

property they are measuring. Whether it is necessary or feasible to model a spatial structure of less 

than one percent for soil texture properties is questionable.  

 

Measurement methods  

The properties we have included here are commonly measured soil properties with known agronomic 

implications. However, measurement of these properties is rarely simple or consistent. Differences in 

measurement methods and differences in which component of the property is being measured will 

influence both the shape and magnitude of the variogram.  

pH is an extremely commonly measured property. However, within the studies we have assessed 

there are differences in the solution, the dilution rate and the equipment used to measure the pH. 

This problem becomes more complex when considering more difficult-to-measure properties such as 

Potassium and Phosphorus. Different studies have used different extractants to target different 

fractions for these nutrients. 

The variogram is affected by the distribution of the property it is being calculated for. The variograms 

calculated for Potassium and Phosphorus show the greatest differences in total sill. We expect that 

this is because the target of the measurements varies as well as the measurement method used.  
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Some articles were found which estimated total carbon, or inorganic carbon. However, there were 

relatively few such studies, so we have not included them here. We have included studies which 

measured organic matter as a proxy for organic carbon. We converted these using the van Bemmelen 

factor (1.724). Pribyl (2010) illustrates that an accurate conversion factor for different soils can vary 

from 1.4 to 2.5. Error in the conversion will be small relative to the overall spread of the variograms.   

 

6.5.3. Field scale soil variograms: a compilation  

Figures 6.2 to 6.9 provide a visual compilation of field scale variograms for each of the soil properties 

initially examined by McBratney and Pringle (1999). We include both the original variograms used by 

McBratney and Pringle and variograms published since then. We only include variograms which were 

calculated from untransformed data and which were based on physical observations (i.e. not from 

remotely observed data). The black bold lines represent the average variogram. Tables 6.1 to 6.8 

correspond to each Figure and include reference details and key parameters for each variogram. 

Because of the wide range of values of the source variograms the scales used in the figures cannot 

include all of them and some low sill variograms have not been included.  We include the details in 

the Tables for completeness, but suspect that they are unlikely to provide useful information. The 

figures affected and the number of source variograms not included is:- pH 1, Carbon 3, Total Nitrogen 

1, Potassium 2. 
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Figure 6.2. Compilation of field scale variograms for Clay. The bold black line represents the average 
variogram. Summary details and references for each variogram (a-ag) are given in Table 6.1. 
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Figure 6.3. Compilation of field scale variograms for Sand The bold black line represents the average 
variogram. Summary details and references for each variogram (a-r) are given in Table 2. 



 

 

126 

 

 
 
Figure 6.4. Compilation of field scale variograms for pH. The bold black line represents the average 
variogram. Summary details and references for each variogram (a-ag) are given in Table 6.3. 
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Figure 6.5. Compilation of field scale variograms for Carbon. The bold black line represents the average 
variogram. Summary details and references for each variogram (a-al) are given in Table 6.4. 
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Figure 6.6. Compilation of field scale variograms for Available Nitrogen. The bold black line represents 
the average variogram. Summary details and references for each variogram (a-m) are given in Table 
6.5. 
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Figure 6.7. Compilation of field scale variograms for Total Nitrogen. The bold black line represents the 
average variogram. Summary details and references for each variogram (a-h) are given in Table 6.6. 
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Figure 6.8. Compilation of field scale variograms for Phosphorus. The bold black line represents the 
average variogram. Summary details and references for each variogram (a-ab) are given in Table 6.7. 
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Figure 6.9. Compilation of field scale variograms for Potassium. The bold black line represents the 
average variogram. Summary details and references for each variogram (a-ad) are given in Table 6.8. 
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6.6 Estimation of the variogram from proportional variograms  

McBratney and Pringle (1999) observe a strong relationship between mean squared and variance for 

several soil properties and develop a method for estimating a ‘proportional variogram’. This method 

has the advantage of capturing the much higher levels of variability that tend to occur when the mean 

values of the property are extreme.  Similar to McBratney and Pringle (1999), we find that some soil 

properties (Phosphorus, Nitrogen, Potassium and Carbon) appear to have a strong linear relationship 

between the mean and the standard deviation. This could imply that the calculation of a proportional 

variogram would be useful for these properties. However, closer interrogation reveals that this 

relationship is largely driven by high leverage points. It is not possible to fit a robust curve to link the 

mean and standard deviation. Proportional variograms are based on the relationship between the 

mean and the variance. Because we cannot be confident about this relationship, it is not prudent to 

calculate proportional variograms. 

We advise against the use of proportional variograms as an estimate for variability, and as such do 

not update McBratney and Pringle’s 1999 estimates of proportional variograms.  

 

6.7 Estimation of the variogram from average variograms  

McBratney and Pringle (1999) calculate average variograms for seven soil properties. These average 

variograms are calculated from the sample of variograms they compile. The fourth root transform of 

each approximated by the spherical model is taken, the models are averaged, and then the average is 

back transformed25. Exponential or Spherical models are fitted to the back transformed average.  

McBratney and Pringle (1999) note the broad spread of variability in the variograms they collected, 

and suggest that this might make the ‘average’ variograms less useful. Despite this, they suggest that 

the average variogram is a useful starting point where no other information is available. Kerry and 

Oliver (2003) find evidence that average variograms can be useful for prediction when parent material 

and soil forming factors are similar, but emphasise that they do not expect a global average variogram 

to provide much useful information.  

We do not believe a global average provides useful information for predictive purposes. However, as 

McBratney and Pringle (1999) suggested, the average variogram does provide a useful reference for 

those interested in soil variability. We produce average variograms for illustrative purposes (by 

averaging the fourth-root transform of each variogram at finely spaced intervals, then plotting the 

back transformed values) but we do not fit these with a functional form.  

                                                      
25 By taking the average from the fourth transform very high and low values carry less weight.  
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As suggested by McBratney and Pringle (1999) and illustrated by Kerry and Oliver (2004) the concept 

of the average variogram has the most use for prediction when it is calculated from a select subset of 

existing variograms. The diversity of climate regimes, soil types and land use for which field scale 

variograms have been calculated means that discretion is essential in the selection process. 

Differences in sampling regime, soil measurement protocols and geostatistical methods add another 

layer of complexity that needs to be navigated in appropriate selection. We discuss these issues 

further in the next section.  

We advise against the use of the ‘global average’ variogram as an estimate of local soil variability. 

Instead, where suitable variograms are available, an average of variograms with similar conditions 

is taken. Discretion and expert knowledge will need to be used in this selection process. The process 

outlined by McBratney and Pringle (1999) for calculation of an average variogram can be followed.  

 

6.8 Ancillary information  

Kerry and Oliver have written several papers investigating the potential of using cheaper more densely 

available ancillary information to supplement expensive and sometimes sparse soil survey data. In 

2004, they compared the spatial structure of a number of ancillary data sources to the spatial structure 

of a number of fixed soil properties. They found that variograms calculated from aerial colour 

photographs of 3.4 m ‘sampling density’ can estimate range with sufficient accuracy to helpfully guide 

sampling density of the soil survey. Their 2008 paper extends the use of ancillary information to 

kriging. They suggest that the primary requirement for using data is that the ancillary variogram has a 

similar sill to- nugget ratio to the property being studied.   

 

Where it is available, ancillary information can be a useful source of information. Care must be taken 

in the selection of appropriate ancillary information. It may be useful to consult a range of ancillary 

variables.  

 

6.9 Expert Knowledge  

Truong et al.  (2013) propose the use of expert knowledge as a means to estimate the variogram when 

there are not enough observations to calculate a reliable variogram using geostastistics. They point to 

an increasing realisation from other disciplines that experts’ knowledge provides a useful source of 

information that can be incorporated into statistical models, in particular through Bayesian 

approaches. Truong et al.  (2013) also suggest that expert knowledge may be useful when there is no 

data available, or even when the available data for some reason are unreliable or unsuitable.   
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Truong et al.  (2013) propose a strict methodology for eliciting knowledge from experts in order to 

construct a variogram. Their methods are designed to avoid bias. This process is still in the prototype 

stage. Currently, those seeking to supplement data with expert knowledge will not be able to avoid 

some bias. However, in many cases, subjective expert knowledge may be the best available option. 

Even when there are data available, a degree of subjectivity will be required to assess the usefulness 

and representativeness of these data. Where possible, it will obviously be preferred that these 

subjective decisions are informed by those with expertise in the area of interest (geographical or 

topical).  

 

We strongly encourage the use of expert knowledge in the selection of appropriate datasets for the 

modelling of spatial variability. Where datasets are unavailable or deemed inappropriate, it may be 

necessary to rely entirely on expert knowledge to estimate the variogram. Eventually, it may be 

possible to elicit expert knowledge using a formal process such as that described by Truong et al.  

(2013).  

 

6.10 Quick variograms  

There may be situations when ancillary information, variograms from literature or even expert 

knowledge are unavailable or unreliable. In these cases, we would like to propose the following 

sampling approach that can be used to estimate a rough variogram at very low cost. The method 

proposed will necessarily be imprecise, but is a better alternative than not having any information. 

We anticipate that this method would be particularly useful in cases where alternative sources of 

information are available but unreliable.  

We suggest sampling in 8 locations (4 widely spaced points, each with a closely spaced pair as per the 

diagram shown in Figure 6.10). Obviously, the sampling design will be affected by the shape of the 

field. We advise that sampling occurs as close to the boundaries as possible while avoiding the edge 

effect.  

In Figure 10, one can calculate 4 bin sizes.  

Close spacing (proxy for nugget): 4 pairs A-B, C-D, E-F, G-H  

Maximum spacing (proxy for sill): 8 Pairs (A-G, A-H, B-G, B-H, C-E, C-F, D-E, D-F)  

Intermediate spacing 1: 8 Pairs A-C, A-D, B-C, B-D, E-G, E-H, F-G, F-H 

Intermediate spacing 2: 8 Pairs A-E, A-F, B-E, B-F, C-G, C-H, D-G, D-H  

The close spacing (the close pairs) can be used as a proxy for the nugget, and the maximum spacing 

(the diagonals) can be used as a proxy for the total sill.  

If the nugget and the sill are similar, we can assume that the appropriate model is the nugget model.  
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If the nugget and the sill are different, we will need to estimate the range and select a model for the 

variability.  

 

Figure 6.10. Sampling approach for estimating a ‘rough’ variogram. Here, it is shown that sampling is 

recommended in 8 locations (4 widely spaced points, each with a closely spaced pair, i.e. A-B, C-D, E-

F and G-H). Each letter represents a sampling location.  

 

There is no obvious proxy for the range that can be calculated from a small number of data points. 

The two intermediate spacings may be useful to indicate where the range should occur. If they are 

similar to the total sill, then the range should be less than the intermediate spacings. If they are smaller 

than the total sill then the range should be greater than the intermediate spacings.  

We suggest that the intermediate spacings be used to determine the limits of where the range could 

occur. The range should then be taken as the halfway point between the limits.  

For example, if the smallest intermediate bin has a variance similar to the sill, then we should set the 

range to be equal to the halfway point between the nugget and the smaller intermediate bin. If both 

of the intermediate bins have variances smaller than the sill, we should set the range to be equal to 

halfway between the total sill and the intermediate bin. 

Modelling a range larger than the maximum separation distance is always unlikely in variograms, 

because of the tendency of models to break down beyond half of the field extent. We do not think 

that unbounded models (i.e. ranges greater than the maximum separation distance) are necessary to 

consider here.  

Quick variograms are not able to provide a precise estimation of soil variability. Their primary and 

important advantage is that they are calculated from data for the property of interest in the location 

of interest. Quick variograms provide a useful source of information when either: (i) there are no 

other sources of information available; or (ii) for checking alternative sources of information against 

a reference point.  
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6.11 Recommendations  

 

• Where it is economically and practically feasible, best practice for estimating variograms is to 

conduct a preliminary survey and then a comprehensive field survey at the spatial scales of 

interest. 

• Where resources for field survey are limited, it is desirable to find a variogram for the same 

property which has been calculated for a similar soil type. This variogram may be useful as a 

source of information for survey design. It may also be possible to use this variogram for 

kriging. Due to the large variability in soil variograms calculated for each soil property, it is 

critical to use discretion in this selection process.  

• If more than one existing variogram from a similar soil type is identified, the information from 

both should be used. An averaging process may be a useful way to combine this information. 

Alternatively, they could be used separately to provide a range of predictions.  

• Ancillary information (such as that from aerial photographs) should be considered to estimate 

variograms for soil properties. It can be used for survey planning and for kriging. Care must be 

taken to ensure that these variograms have a similar nugget to sill ratio to the property of 

interest. If available, it is preferred to use information from soil survey over ancillary 

information.  

• If it is not possible to find a variogram for a similar area, other options are available. For 

example, expert knowledge could be consulted. Consultation of expert knowledge may occur 

in a formal process-based manner, or in a more informal way.  

• Quick field surveys, with limited sampling may provide a cost-effective way to estimate rough 

variograms where other information is unavailable. These methods may also be useful when 

it is desirable to supplement information with observations directly from the field. 

• Variograms are useful for designing detailed sampling surveys for agricultural and 

environmental purposes. 
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Table 6.2. Compilation of key properties for clay variograms  

 Reference  Location Climate
26 

Soil Type Land Use Timing Measuremen

t Method 

Stud

y 

Area 

(ha)  

Sampl

e Size 

Mea

n 

Standard 

Deviatio

n  

depth 

(cm)  

Model Nugge

t  

Partia

l Sill 

Range  

a Lopez- 

Granados 

2002 (Site 

Two) 

Caracol, 

Southern 

Spain  

  Vertic Xerochep crop before 

sowing 

Bouyoucos 

densimeter 

6 84 26.3 12 0-0.10 Exponential 61 84 29.9 

b Adderley 

et.al. 1997 

Nigeria     Trees     30 480 25.8 9.1 0-0.10 Experimenta

l 

30 110 250 

c Lopez- 

Granados - 

2002 (Site 

One) 

Monclova, 

Southern 

Spain  

  Alfisol crop before 

sowing 

Bouyoucos 

densimeter 

11.2 80 19.6 10.8 0-0.10 Nugget 113 0 0 

d Oliver and 

Webster 

1987, (10-15) 

Wyre 

forest, 

England 

  Acid brown loam Forest     0.025 100     0-0.15 Exponential 24.9 50.7 51.6 

e Oliver and 

Webster 

1987, (0-5) 

Wyre 

forest, 

England 

  Acid brown loam Forest     0.025 100 24.4 10.8 0 - 5  Exponential 14.34 51.8 65.7 

f Kerry & 

Oliver 2007 

            15 118 47.5 6.2   Spherical 0.72 36.72 71.48 

g Nolin et al.  

1996 

Quebec   Aquepts crop     10 130 44.3 6 0 -15  Spherical 10.8 20.9 76 

h Shatar, 1996 Moree, 

Australia 

  Vertisol crop     15 114 49 5.5 15 - 30  Spherical 17 13.5 310 

                                                      
26 Unless otherwise specified mm refer to annual average rainfall, and C refers to average annual temperature  
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i Kerry and 

Oliver 2007 

            44 294 17.9 7.3   Spherical 4.19 22.9 152 

j Farooque,et 

al.  2012 ( Site 

Two)  

Nova Scotia, 

Canada 

  sandy loam, 

Orthic Humo-

Ferric Podzols 

orchard    Bouyoucos 

densimeter 

1.6 86 9.6 4 0-15 Spherical 8.08 17.91 65.5 

k Miller et al.  

1988.  

Sacramento

, California 

  Xererts, 

Xerochrepts 

crop     8 99 37.1 4.6 Surfac

e 

Spherical 7 14 75 

l Shouse et.al.  

1990 

Texas, USA   Vertisol       0.3 203 40 3.9 0 - 30  Exponential 11.7 4.8 8.47 

m Kerry and 

Oliver, 2007 

United 

Kingdom 

          10.5 205 30.2 5.8 0-15 Spherical 3.12 11.99 99.86 

n Liu et al.  

2008 

 Henan 

Province, 

central 

China 

monsoo

n climate 

14.6C, 

680mm 

clay loam to loam  Tobacco 

Plantation  

Before 

Sowing 

Bouyoucos 

densimeter 

87 81 41.7 3.4   Spherical 2.72 11.78 609 

o Williams, 

1987  (4 

directions 

average) 

Oklahoma   Paleustolls crop     1.62 108 22 2.3 0 - 30 Experimenta

l 

8.38 4.88 52.5 

p Shouse et al., 

1990, (Field 

1) 

Texas, USA   Vertisol       0.3 182 51 3.1 0 - 30  Exponential 3.8 6.4 11.89 

q Shukla et al.  

2004 

Gross-

Enzersdorf, 

Austria 

510 mm, 

10C 

loam to sandy 

loam  

crop May  pippette 

method  

6.25 60 46.8 4.6 0-15 Spherical 5.24 4.27 347 

r Shouse et al. 

1990 

Texas, USA   Vertisol       0.3 205 46.1 2.6 0 - 30  Spherical 3.5 3.1 36.58 
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s Panagopoulo

s & Antunes 

2008  

 Algarve 

region, 

south 

Portugal 

         400 81 32.7 7 0-20 Gaussian 4.83 5.77 1997.

8 

t Kristensen, et 

al.  1995 Riso 

Riso, 

Denmark 

  Sandy 

loam/sandy clay 

loam 

crop     10.9 270     0 - 25  Exponential 0 6 37 

u Kristensen et 

al 1995 

(Vindum) 

Vindum, 

Denmark 

  Sandy loam crop     10 302     0 - 25  Exponential 0 4.8 450 

v Kilic, et al. , 

2012, (5 

years of 

cultivation) 

Kaz Lake of 

Tokat, 

Turkey 

436mm, 

12C  

Typic Ustifluvent. 

Clay loam to 

sandy clay loam  

crop/horticultur

e 

  Bouyoucos 

hydromete 

0.8 46 21.7 6.3   Spherical 0.65 1.41 310.9 

w Tabor,et al.  

1985  

Arizona   Haplargid/Molliso

l 

crop     13 49 32.1 5.8 0 - 20  Linear 1.68 60.32 500 

x Kilic et al., 

2012  

Kaz Lake of 

Tokat, 

Turkey 

436mm, 

12C  

Typic Ustifluvent. 

Clay loam to 

sandy clay loam  

marshy plants   Bouyoucos 

hydromete 

0.8 46 29.8 7.4 0-20 Spherical 0.69 0.81 207.8 

y Ayoubi, et al.  

2007 

Golestan 

province, 

Iran 

  fine, mixed, 

thermic, Fluventic 

Haploxerepts. 

crop before 

plantin

g  

Hydrometer 

method (Day, 

1965); 

1.8 101 56.3 1.1   Spherical 0.67 0.66 25.83 

z Kilic et al., 

2012   

cultivation  

Kaz Lake of 

Tokat, 

Turkey 

436mm, 

12C  

Typic Ustifluvent. 

Clay loam to 

sandy clay loam  

crop/horticultur

e 

  Bouyoucos 

hydromete 

0.8 46 20.4 5.2   Linear 0.99 0 85.66 

aa de Souza 

2010- Site 

Two 

Araras, 

SouthEast 

Brazil 

wet 

summer, 

dry 

winter 

 Oxisol  (Typic 

Haplustox) 

cropping fall of 

2004 

  22 90 34 0.2 0-20 Spherical 0 0.68 340 
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a

b 

de Souza et 

al, 2010 - Site 

One 

Araras, 

SouthEast 

Brazil 

wet 

summer, 

dry 

winter 

Oxisol  (Typic 

Haplustox) 

cropping fall of 

2003 

  20 80 26.1 0.5 0-20 Spherical 0.04 0.42 393 

ac Kerry and 

Oliver, 2007 

            6.9 109 4.1 1   Spherical 0.06 0.39 96.17 

a

d 

Molin,et al.   

2013- Field 

One 

Sao Palo, 

southeast 

Brazil  

  Typic 

Dystrudoxes  

      19 42 21.5 5.1 0-20 Spherical 0 0.15 153 

a

e 

Molin et al., 

2013 - Field 

Two  

Sao Palo, 

southeast 

Brazil  

  Typic Hapludoxes        22 92 23.1 3.7 0-20 Spherical 0.01 0.02 307.3 

af Farooque et 

al., 2012: Site 

One 

central 

Nova Scotia, 

Canada 

sandy 

loam, 

Ferric 

Podzols 

       1 56 41.9 4.4 0-15 Linear 0.01 19.16 23.7 
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Table 6.3. Compilation of key properties for sand variograms  

  Reference  Location Climate Soil Type Land Use Timing Measuremen

t Method 

Study 

Area 

(ha)  

Sample 

Size 

Mean Standard 

Deviation  

depth 

(cm)  

Model Nugget  Partial 

Sill 

Range  

a Adderly et 

al. 1997 

Nigeria     Trees     30 157 56.8 10 0-10 Experimenta

l 

10 190 250 

b Lopez-

Granados 

- 2002 Site 

Two 

Caracol, 

Southern 

Spain 

  Vertic Xerochep crop   Bouyoucos 

densimeter 

6 84 33.4 13.4 0-10 Spherical 85 99 84.8 

c Farooque 

et al., 

2012 - Site 

Two  

central Nova 

Scotia, 

Canada 

  sandy loam, 

Orthic Humo-

Ferric Podzols 

orchard      1.6 86 48.7 12.5 0-15 Spherical 68.8 106.4 67.9 

d Granados 

- 2002 Site 

One 

Moclova, 

Southern 

Spain  

  Alfisol crop   Bouyoucos 

densimeter 

11.2 80 57.4 8.5 0-10 Nugget 69 0 0 

e Liu et al., 

2008 

 Henan 

Province, 

central 

China 

monsoon 

14.6C, 

680mm 

clay loam to loam,  Tobacco 

Plantation  

Before 

Sowing 

Bouyoucos 

densimeter 

87 81 43.8 4.8 0-20 Spherical 7.7 32.43 657 

f Shatar 

(1996) 

Moree, 

Australia 

  Vertisol crop      15 114     15-30 Spherical 20 17 300 

g Miller et 

al. 1988 

Sacramento

, California 

  Xererts, 

Xerochrepts 

crop      8 99 20.2 5.9 Surface Spherical 0.6 33.4 75 

h Farooque 

et al., 

2012: Site 

One 

central Nova 

Scotia, 

Canada 

  sandy loam, 

Orthic Humo-

Ferric Podzols 

orchard      1 56 49.5 4.5 0-15 Linear 18.75 18.75 85.86 
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i Wiliams et 

al. 1987, 4 

directions 

averaged 

Oklahoma, 

USA 

  Paleustolls crop      1.62 108 27 4.8 0-30 Experimenta

l 

8 9.25 62.5 

j Tabor et 

al. 1985 

Arizona, 

USA 

  Haplargid/Molliso

l 

crop      13 49 41.7 8.4 0-20 Linear 15.4 101.4 300 

k Shouse et 

al. 1990 

Texas, USA   Vertisol       0.3 205 21.1 3.3 0-30 Spherical 6.2 5.2 22.86 

l Campbell 

1977 

Pawnee 

 Kansas, USA           1.6 160 8.5 2.9   Experimenta

l 

2.2 0.8 40 

m Kilic et al., 

2012  

Kaz Lake of 

Tokat, 

Turkey 

436mm, 

12C  

Typic Ustifluvent 

Clay loam to sandy 

clay loam  

crop/horticultur

e 

  Bouyoucos 

hydrometer 

0.8 46 25.5 9.7 0-20 Exponential 0.75 1.13 200.4 

n Kilic et al., 

2012  - 5 

years of 

cultivatio

n  

Kaz Lake of 

Tokat, 

Turkey 

436mm, 

12C  

Typic Ustifluvent. 

Clay loam to sandy 

clay loam  

crop/horticultur

e 

  Bouyoucos 

hydrometer 

0.8 46 33.5 10.3   Exponential 0.87 0.87 306 

o Kilic et al., 

2012  - 

cultivatio

n  

Kaz Lake of 

Tokat, 

Turkey 

436mm, 

12C  

Typic Ustifluvent. 

Clay loam to sandy 

clay loam  

crop/horticultur

e 

  Bouyoucos 

hydrometer 

0.8 46 50.8 7.9   Linear 1.02 0 85.66 

p Campbell 

1977 

Ladysmith 

Kansas, USA           1.6 160 1.2 0.3   Experimenta

l 

0.04 0.04 30 

q Ayoubi et 

al, 2007 

Golestan 

province, 

Iran 

  fine, mixed, 

thermic, Fluventic 

Haploxerepts. 

crop before 

planting  

Hydrometer 

method  

1.8 101 2.2 0.1 0-30 Gaussian 0.01 0 91.41 
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Table 6.4. Compilation of key properties for pH variograms  

 Reference  Location Climate Soil Type Land Use Timing Measurement 

Method 

Study 

Area 

(ha)  

Sample 

Size 

Mean Standard 

Deviation  

depth 

(cm)  

Model Nugget  Partial 

Sill 

Range  

a Kilic et al., 

2012  

(unmodified) 

Kaz Lake of 

Tokat, Turkey 

436mm, 

12C  

Typic Ustifluvent. crop   Water 1:2.5  0.8 46 7.9 0.1 0-20 Exponential 0.8 0.82 209.6 

b Sidorova et al. 

, 2012  

Northwestern 

Russia 

    crop before 

sowing 

KCl  72 5.6 0.2 23 Spherical 0.08 1 93.1 

c Kilic et al., 

2012  (20 

year)  

Kaz Lake of 

Tokat, Turkey 

436mm, 

12C  

Typic Ustifluvent. crop   Water 1:2.5  0.8 46 8.1 0.2 0-20 Linear 1.03 0 85.66 

d Kilic et al., 

2012  (5 year)  

Kaz Lake of 

Tokat, Turkey 

436mm, 

12C  

Typic Ustifluvent. crop   Water 1:2.5  0.8 46 7.8 0.2 0-20 Linear 1.01 0 85.66 

e Thompson et 

al. , 2004 - Site 

One  

Alabama, USA     crop     0.4 71   *11 Spherical 0.05 0.71 186.2 

f Pierce et al.  

1995 

(Durand) 

Durand, USA   Alfisol, fine loam crop     16 165 6.6 0.9 0-5 Spherical 0.13 0.47 354 

g Machado et 

al. , 2007 

Uberlandia, 

Brazil  

tropical 

humid 

with dry 

season, 

Red Latosol, 

moderate clayey 

texture 

crop   water: 1:1 25 121 6 0.4 0-20 Spherical 0.07 0.51 150 

h Thompson et 

al., 2004 (Site 

Three) 

Alabama, USA     crop     0.4 48   11 Spherical 0.11 0.43 168.9 
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i Mulla, 1993 Washington, 

USA 

  Ultic Haploxeroll crop     8 172 6.1 0.7 0-30 Spherical 0.17 0.26 132 

j Pierce et al. , 

1995 (Adrian) 

Adrian, USA   Alfisol, loam crop     10 74 6.5 0.9 0-5 Spherical 0.08 0.32 95 

k Camacho -

Tamayo et al., 

2007 (Site 

One) 

Puerto L½pez, 

Colombia 

 2,375 mm  

27C 

Typic Haplustox crop May-

04 

water (1:1) 

potentiometer  

1.875 42 5.1 0.4 0-10 Exponential 0.09 0.31 410 

l Webster & 

McBratney 

1987 

Suffolk, 

England 

    crop   water 77 436 7.7 0.6   Spherical 0.02 0.33 185 

m Uehara, et al.  

1985 

Sitiung, 

Indonesia 

    crop     0.0784 137     Experimental 0 0.35 4 

n de Souza et al. 

2010 (Site 

One) 

Araras, 

SouthEast 

Brazil 

wet 

summer, 

dry winter 

Oxisol (Typic 

Haplustox) 

crop fall of 

2003 

  20 80 5.6 4 0-20 Exponential 0.07 0.23 148 

o Adderley et 

al.  1997 

Nigeria     forestry      30 480 6.3 0.5 0-10 Exponential 0.15 0.1 250 

p de Souza et al, 

2010 (Site 

Two) 

Araras, 

SouthEast 

Brazil 

wet 

summer, 

dry winter 

 Oxisol  (Typic 

Haplustox) 

crop fall of 

2004 

  22 90 5.7 0.5 0-20 Spherical 0.01 0.23 97 

q Pierce et al., 

1995 

(Plainwell) 

Plainwell, 

USA 

  Entisol, loamy 

sand 

crop     22 174 6.7 0.4 0-20 Spherical 0.06 0.15 190 

r Thompson et 

al., 2004  (Site 

Two A) 

Alabama, USA     crop     0.2 124   22 Spherical 0.09 0.1 393.2 

s Birrell 1996 Missouri, USA           28 504   0-15 Spherical 0.06 0.11 125 
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t Thompson et 

al., 2004 (Site 

Two B) 

Alabama, USA     crop     0.4 58   22 Spherical 0.05 0.05 181.1 

u Kristensen et 

al. , 1995 

(Riso) 

Riso, 

Denmark 

  Sandy loam/sandy 

clay loam 

crop     10.9 270   0-25 Exponential 0 0.1 17 

v Kristensen et 

al. , 1995 

(Vindum) 

Vindum, 

Denmark 

  Sandy loam crop     10 302   0-25 Exponential 0 0.09 19 

w Liu et al. , 

2008 

 Henan 

Province, 

central China 

monsoonal 

14.6C, 

680mm 

clay loam to loam, crop Before 

sowing  

water (1: 2.5)  87 81 7.7 0.3 0-20 Spherical 0.01 0.06 308 

x Mondo, et al. , 

2012 

Sao Paulo, 

Brazil  

not 

specified  

 crop after   22 33 5 0.2 0-20 Gaussian 0.02 0.05 650 

y Laslett et al. , 

1987 

Brisbane, 

Australia 

    pasture   CaCl2  1 121 4.5 0.2   Spherical 0.02 0.03 55 

z Campbell, 

1977 

(Pawnee) 

Pawnee. 

Kansas, USA 

        CaCl2 (1:2) 1.6 160 6.5 0.3   Experimental 0.04 0 0 

aa Silva, et al.  

2003 

Santa Maria, 

Brazil  

  Ultisol dystrophic 

Hapludalf  

crop before 

sowing  

water 1:1 0.3 192 4.9 0.1 0-20 Spherical 0 0.02 18.66 

ab Campbell, 

1977 

(Ladysmith) 

Ladysmith, 

Kansas, USA 

        CaCl2 (1:2) 1.6 160 6.5 0.2   Experimental 0.02 0 0 

ac Shatar, 1996 Moree, 

Australia 

  Vertisol crop   CaCl2 (1:5) 15 114 7.4 0.2 5:30 Spherical 0.01 0.01 310 

ad Tabor et al. , 

1985 

Arizona   Haplargid/Mollisol crop     13 49 7.3 0.2 0-20 Linear 0.02 0.06 500 
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ae Lopez –

Granados,  

2002 (Site 

One) 

Moncolova, 

Southern 

Spain 

  Alfisol crop before 

sowing 

0.1 mol KCl 11.2 80 7.8 0.1 0-100 Spherical 0 0.01 66 

af Lopez- 

Granados, 

2002 (Site 

Two) 

Caracol, 

Southern 

Spain  

  Vertic Xerochep crop before 0.1 mol KCl 6 84 7.7 0.1 0-100 Nugget 0.01 0 0 

ag Shukla et al. , 

2004 

Gross-

Enzersdorf, 

Austria 

510mm 

10C 

loam to sandy 

loam  

crop May   6.25 60 NA NA 0-15 Spherical 0.01 0 158 

ah Ayoubi et al. , 

2007 

Golestan 

province, Iran 

   Fluventic 

Haploxerepts. 

crop before 

sowing 

0.1 mol KCl 1.8 101 7.9 0 0-30 Spherical 0.001 0.001 24.39 
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Table 6.5. Compilation of key properties for carbon variograms  

 Reference  Location Climate# Soil Type Land Use Timing Measurement 
Method * 

Study 
Area 
(ha)  

Sample 
Size 

Mean s.d.  depth 
(cm)  

Model  Nug.  Partial 
Sill 

Range  

a Farooque et al. , 2012 
(Site One -1) 

central Nova 
Scotia, Canada 

  sandy loam, 
Podzols 

orchard  May July 
2009  

OM (LOI) 1 56 6.6 1.5 0-15 Sph. 1.14   

b Farooque et al. , 2012 
(Site One -2) 

central Nova 
Scotia, Canada 

  sandy loam, 
Podzols 

orchard  Jun-10 OM (LOI) 1 56 6.6 1.4 0-15 Sph. 1.11 2.28 76.1 

c Panagopoulos & 
Antunes, 2008 

Algarve region 
of south 
Portugal 

Mediterranean Mostly 
Lithosols  

forestry, 
crop 

  OM (WB-wet)  400 81 1.2 0.5 0-20 Exp. 1.63 2.14 70.23 

d Farooque et al. , 2012  
(Site Two -2) 

central Nova 
Scotia, Canada 

  sandy loam, 
Podzols 

orchard  Jun-11 OM (LOI) 1 56 24 5.7 0-16   0.25 1.95 1997.8 

e Farooque et al. , 2012 
(Site Two -1) 

central Nova 
Scotia, Canada 

  sandy loam, 
Podzols 

orchard  May July 
2009  

OM (LOI) 1.6 86 4.9 1.3 0-15 Exp. 0.22 1.86 13.7 

f Kilic et al. , 2012  (5 
years ) 

Kaz Lake of 
Tokat, Turkey 

436mm, 12C  Typic 
Ustifluvent. 

crop   OM (WB-wet)  0.8 46 1 0.3 0-20 Exp. 0.09 1.82 14.6 

g Nolin et al. , 1996 Quebec, Canada   Aquepts crop   OC  10 130 2.8 0.7 0 - 15  Sph. 0.08 1.23 224.5 

h Kristensen et al.  1995, 
(Riso) 

Riso, Denmark   Sandy loam -
sandy clay 
loam 

crop   OC  10.9 270   0 - 25  Exp. 0 0.61 343 

i Kilic et al. , 2012  (10 
years)  

Kaz Lake of 
Tokat, Turkey 

436mm, 12C  Typic 
Ustifluvent 

crop   OM (WB-wet)  0.8 46 0.7 0.3 0-20 Exp. 0 0.43 99 

j Kilic et al. , 2012 
(uncultivated) 

Kaz Lake of 
Tokat, Turkey 

436mm, 12C  Typic 
Ustifluvent 

crop   OM (WB-wet)  0.8 46 1.6 0.4 0-20 Lin. 0.33 0.35 9.6 

k Mulla, 1993 St. John, 
Washington, 
USA 

  Ultic 
Haploxeroll 

crop   OC 8 172 1.2 0.5 0 - 30 Sph. 0.05 0 85.66 

l Gutierrez et al.   2010  Municipality of 
Pasca, Colombia 

1,800mm,   
16¬C  

Entisols and 
others 

horticulture   OC 1.5 64 6.4 0.3 0-20 Sph. 0.17 0.19 114 

m Nanni et al. , 2011  Sao Paulo state, 
Brazil 

mesothermic 
climate   

Oxisols, 
Entisols, 
Alfisols, 
Ultisols, 
Inceptisols 
and Molisols 

crop   OM1 184 184 0.7 0.4 0-20 Sph. 0.05 0.24 10240 

n Zanão Júnior et al. , 
2010 

South Eastern 
Brazil 

1,500 mm.  Oxisol 
Hapludox 
(medium 
Clay) 

crop May to 
June 
2003. 

OM 25 121 1.7 0.2 0-10 Gaus 0.05 0.15 691 
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o Cahn et al. , 1994  0.25 
ha 

Central Illinois   Mollisol crop   OC 0.25 200 1.7 0.3 0 - 15  Exp. 0 0.15 539 

p Kristensen et al. 1995, 
(Vindum) 

Vindum, 
Denmark 

  Sandy loam crop   OC 10 302   0 - 25  Exp. 0 0.18 50 

q Shukla et al 2004 Gross-
Enzersdorf, 
Austria 

temperate and 
continental, 
510mm 10C 

loam to sandy 
loam  

crop May  OC 6.25 60 1.4 0.2 0-15 Sph. 0.04 0.12 45 

r Rowlands 1, 1998** Wyalkatchem, 
WA 

  Duplex crop   OC 75 56 0.7 0.2 0-10 Sph. 0.03 0.03 163 

s de Souza et al, 2010 
(Site Two) 

Araras, 
SouthEast Brazil 

wet summer, 
dry winter 

 Oxisol  (Typic 
Haplustox) 

crop fall of 
2004 

OM 22 90 15.1 9.7 0-20 Sph. 0.02 0.03 638.985 

t Mondo et al., 2012 Sao Paolo, Brazil      crop after 
harvest 

OM 22 33 0.7 0.2 0-20 Gaus 0.01 0.04 304 

u Camacho-Tamayo et al. 
, 2008 (Site 1) 

Puerto Lopez, 
Colombia 

2,375 mm: 27C Typic 
Haplustox 

crop May-04 OC (mod- WB)  1.9 42 1.3 0.2 0-10 Exp. 0 0.05 498.2 

v Shukla et al.  2004 Gross-
Enzersdorf, 
Austria 

temperate and 
continental, 
510mm 10C 

loam to sandy 
loam  

crop May  OC 6.25 60 1 0.2 0-15 Sph. 0.02 0.04 22.1 

w Shatar (1996) Moree, 
Australia 

  Vertisol crop   OC 15 114 1.1 0.2 15 - 
30 

Sph. 0.01 0.02 184 

x Zhang et al., 2016 Jiangsu 
Province, China 

    crop 2012 OM 7 136     Sph. 0 0.03 280 

y de Souza et al. , 2010  
(Site One) 

Araras, 
SouthEast Brazil 

wet summer, 
dry winter 

Oxisol  (Typic 
Haplustox) 

crop fall of 
2003 

OM 20 80 10.7 1.4 0-20 Sph. 0.01 0.04 38.6 

z Amirinejad et al. , 2011 Uttar Pradesh, 
India 

  Inceptisol  crop   OC (WB)  19.6 145   0-15 Gaus 0.01 0.02 324 

aa Kumhalova, et al. , 2011 
(sampled 2005) 

Prague, Ruzyne, 
Czech Republic 

 526mm:   7.9C Haplic 
Luvisol.  

crop   OC 11.5 70 2.1 0.2   Sph.  0.02 0.02 380.73 

ab Camacho - Tamayo et 
al. , 2008 (Site 2) 

Puerto Lopez, 
Co lombia 

2,375 mm, 27 
C 

Typic 
Hapludox  

crop Aug-04 OC (mod- WB)  1.875 42 1.6 0.1 0-10 Sph. 0 0.01 240.5 

ac Liu et al. , 2010  Henan 
Province, 
central China 

monsoon 
climate 14.6C, 
680mm 

Sandy to 
medium clay 
loam  

crop After 
harvest,  

OM (WB-wet)  4 111 1 0.1 0-20 Sph. 0.01 0.02 33.5 

ad Liu et al. , 2008  Henan 
Province, 
central China 

monsoon 
climate 14.6C, 
680mm 

clay loam to 
loam 

crop Before 
Sowing 

OM2 87 81 0.7 0.1 0-20 Sph. 0.01 0.01 56.5 

ae Ayoubi et al. , 2007 Golestan 
province, Iran 

  Fluventic 
Haploxerepts. 

crop before 
planting 

OM (WB)  1.8 101 1.5 0.1 0-30 Sph. 0.01 0.01 556 

af Silva et al., 2003  Santa Maria, 
Brazil  

  Ultisol 
dystrophic 
Hapludalf  

crop before 
sowing  

OM 3 0.3 195 1.6 0.1 0-20  Gaus 0.01 0.01 29.28 

ag Kumhalova et al. , 2011 
(sampled  2004) 

Prague, Ruzyne, 
Czech Republic 

 526mm:   7.9C Haplic Luvisol crop   OC 11.5 70 1.7 0.2   Sph.  0.01 0.01 9.5 
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ah Kumhalova et al. , 2011 
(sampled 2006) 

Prague, Ruzyne, 
Czech Republic 

 526mm:   7.9C Haplic Luvisol crop   OC  11.5 70 1.9 0.2   Sph.  0.01 0.01 274.6 

ai Goovaerts & Chiang, 
1993 (average) 

Belgium   Typic 
Hapludalf 

    OC 0.16 73 0.7 0.1 0 - 20 Sph. 0.01 0.05 244.7 

aj Chung et al.  2008 Korea 12.7C, 1560* Coarse, 
loamy, mixed, 
non acid, 
mesic  

crop after 
harvest  

OM4 0.3 246 1.3 0.1 0-15 Lin. 0.01 0 11.5 

ak Granados - 2002 Site 
One 

monclova, 
Southern Spain  

  Alfisol crop pre 
planting 

OM5  11.2 80 0.9 0.1 0-10 Nug. 0.01 0 NA 

al Lopez-Granados - 2002 
Site Two 

Caracol, 
Southern Spain  

  Vertic 
Xerochep 

crop pre 
planting 

OM5  6 84 0.8 0.1 0-10 Sph. 0 0 0 

am Chatterjee et al. , 2015 West Bengal, 
India 

1443 mm, hot 
and humid  

  crop after 
harvest  

OC (WB)  81 100 0.5 0.1 0-15 Lin. 0 0.01 44.8 

an Kumhalova et al. , 2011-
(sampled 2007) 

Prague, Ruzyne, 
Czech Republic 

 526mm:   7.9C Haplic Luvisol crop not 
specified  

OC 11.5 70 2 0.2   Sph.  0 0.01 58 

ao Bai & Wang, 2011 Shaanxi 
Province, China 

393 mm Silty loams orchard   OC6  0.275 125 0.3 0.1 0-10 Exp. 0 0.07 247.1 

* Measurement Method refers to the original property which was measured. All values have been converted into OC.  
** Unpublished data provided provided by Pringle for original article  
1 Organic matter (OM), total and effective acidity (determined by 1 M calcium acetate - Ca(CH3 COO)2 H2 O and 1M KCl titulometric method, respectively), 
2 potassium bichromate titrimetric method 
3 photocolorimetry 
4laboratory analysis was completed by the Soil Management Division - NIAST, RDA  
6 oil bath titration 
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Table 6.6. Compilation of key properties for available nitrogen variograms  

 Reference  Location Climate# Soil Type Land Use Timing Measurement 
Method 

Study 
Area 
(ha)  

Sample 
Size 

Mean s.d.  depth 
(cm)  

Model  Nug.  Partial 
Sill 

Range  

a Liu et al. , 2010 Henan 

Province, 

Central China 

monsoon 

climate 

14.6C, 

680mm 

Sandy to medium 

clay loam  

crop After 

harvest 

Alkaline 

hydrolyzable 

N (AN)1  

4 111 75 14.3 0-20 Spherical 105.6 127.3 112.6 

b Liu et al. , 2008  Henan 

Province, 

Central China 

monsoon 

climate 

14.6C, 

680mm 

clay loam to loam crop  Before 

Sowing 

alkalytic N 

(AN)1 

87 81 70.6 10.3 0-20 Linear 110.46 0 NA 

c Lopez-Granados, 

2002 (Site Two) 

Caracol, 

Southern 

Spain  

  Vertic Xerochep crop  before 

winter 

sowing  

Nitrate2   6 84 23.2 10.2 0-10 Exponential 10 91 31.7 

d Chatterjee et al, 

2015  

West Bengal, 

India 

hot and 

humid  

  crop  after 

harvest  

Available N3 81   76.7 7.8 0-15 Spherical 17.38 45.26 43 

e Shire 3*, 1997 Wyalkatchem, 

Western 

Australia  

  Duplex crop    Nitrate  90 88 22.9 7.6 0-10 Spherical 22.14 36.86 281.432 

f Lopez-Granados,  

2002 Site One 

Moclova, 

Southern 

Spain 

  Alfisol crop  before 

winter 

sowing  

Nitrate2   11.2 80 7.1 5.3 0-10 Nugget 27.2 0 0 

g Cahn et al. , 1994 

0.25 ha 

Central Illinois   Mollisol crop    Nitrate  0.25 200 6.2 3.7 0 - 15  Experimental 7 3 5 

h Everett & Pierce, 

1996 

Michigan   Loamy sand, 

sandy loam 

crop    Nitrate  22.6 60 6.2 2.2 0 - 30  Spherical 3.05 3.7 167.05 

i Tabor et al. , 

1985 

Arizona   Haplargid/Mollisol crop    Nitrate  13 49 13.6 4.2 0 - 20  Linear 6.66 11.12 200 
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j van Meirvenne 

& Hofman, 1989  

Belgium   Udifluvent horticulture    Nitrate  1 247 8.9 2.7 0 - 

100 

Experimental 2.25 4.25 25 

k Wade et al. ,  

1996 (Pasture) 

      pasture   Nitrate    86 0.8 0.8 0-10 Experimental 0.44 0.57 120 

l Cambardella et 

al., 1994 

Iowa   Udic/argic 

mollisols 

crop    Nitrate  10 72 7.2 1.3 0 - 15  Spherical 0.14 0.2 201 

m Wade et al. 

1996, (Arable) 

Warwickshire, 

England  

        Nitrate    81 0.7 0.5 0-10 Experimental 0 0.3 60 

* Unpublished data provided provided by Pringle for original article  
 

1 Alkaline hydrolyzable N was measured using the alkaline hydrolysis diffusion method (Bao, 2005). 

2 Nitrate determined by colorimetry in SKALAR. 

3 Available N content was determined by alkaline per- manganate method as described by Subbiah and Asija (1956).  
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Table 6.7. Compilation of key properties for total nitrogen variograms 

 Reference  Location Climate# Soil Type Land Use Timing Measurement 
Method 

Study 
Area 
(ha)  

Sample 
Size 

Mean s.d.  depth 
(cm)  

Model  Nug.  Partial 
Sill 

Range  

a Ganawa et al. , 

2003 

Sawah 

Sempadan 

Malaysia 

  Jawa, Teluk, 

Karang, 

Sempadan 

and Sedu 

crop  Before 

Planting  

1 2300 120 4140 870 0-20 Spherical 100,000 700,000 460 

b Yana et.al. 2000 Takatsuki, 

Japan 

l5.8°C, 

1,240 mm  

Clay loam    after 

transplanting  

dry 

combustion  

0.5 91 3100 449.5   Spherical  30,000 270,000 35.5 

c Yana et.al. 2000 Takatsuki, 

Japan 

l5.8°C, 

1,240 mm  

  crop  after harvest dry 

combustion  

0.5 91 3400 452.2   Spherical 80,000 200,000 19.5 

d Zhang et al., 2016 Jiangsu 

Province, 

China 

    crop     7 136    Exponential 0 180,000 39.08 

e Shukla et al. , 2004 Gross-

Enzersdorf, 

Austria 

510mm, 

10C 

loam to sandy 

loam  

crop May  Kjeldahl 

method 

6.25   1328.6 381 0-15 Spherical 106,576 31,746 243.6 

f Nouri et al. , 2010 Fesaran 

village, 

Esfahan 

  clay loam and 

loam  

horticulture Before 

fertigation  

Nitrate  87 60   0-30 Spherical 30,000 30,000 141.8 

g Liu et al. , 2008   Henan 

Province, 

central 

China 

monsoon 

climate 

14.6C, 

680mm 

clay loam to 

loam 

crop   Before 

sowing 

Kjeldahl 

method  

87 81 730 100 0-20 Spherical 2,000 9,000 274 

h Ayoubi et. al, 2007 Golestan 

province, 

Iran 

  fine, mixed, 

thermic, 

Fluventic 

Haploxerepts. 

crop  before 

sowing 

Kjeldahl 

method 

1.8 101 1300 110 0-30 Gaussian 600 10,000 23.99 
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i Chung et al. , 2008 Korea 12.7C , 

1560mm* 

Coarse Loamy  crop  after harvest  2 0.3 246 1500 100   Exponential 0 0 4.5 

1sulfuric-salicylic acid digestion method 

2laboratory analysis was completed by the Soil Management Division - NIAST, RDA 
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Table 6.8. Compilation of key properties for phosphorus variograms 

 Reference  Location Climate# Soil Type Land Use Timing Measurement 
Method 

Study 
Area 
(ha)  

Sample 
Size 

Mean s.d.  depth 
(cm)  

Model  Nug.  Partial 
Sill  

 Range 

a McBratney et 

al.  1985 

Narrabri, 

NSW, 

Australia 

  Vertisol crop    P (NaHCO3 

soluble) 

1 386 129.6 58.8 0 -7.5  Gaussian 152.85 7489.55 109.64 

b Chatterjee et 

al. , 2015  

West Bengal, 

India 

hot and 

humid 

1443 

mm  

  crop/ 

horticulture  

after 

harvest  

Available 

P2O51  

81  172.4 82.4 0-15 Spherical 3700.68 3925.85 283 

c Mondo et al. , 

2012 

Sao Paolo, 

Brazil  

    crop  After 

harvest 

P resin 22 33 239.6 59.6 0-20 Spherical 1484.69 2030.1 89.9 

d Cambardella et 

al. , 1994 

(Pothole field) 

Iowa, USA   Udic/Aquic 

mollisols 

crop    P (Bray No. 1) 6.25 241 126 55.6 0-15 Spherical 596.9 2839 71 

e Delcourt et al. , 

1996 

Leefdael, 

Belgium 

  Silty crop    P 

(colorimetric) 

     0 - 25  Gaussian 310 850 74.5 

f Cahn et al. , 

1994, 0.25 ha 

Central 

Illinois, USA 

  Mollisol crop    P (Bray No. 1) 0.25 200 74 26.8 0-15 Experimental 390 760 50 

g Pierce et al.  

1995, 

(Plainwell) 

Plainwell, 

USA 

  Entisol, loamy 

sand 

crop    P (not 

specified) 

22 174 124 32 0 - 20  Spherical 233 844 172 

h Camacho -

Tamayo et al. , 

2008 (Site Two 

) 

Puerto Lopez, 

Colombia 

2 375 

mm 27 C 

Typic Hapludox  crop  Aug-04 P (Bray II) 1.875 42 28.8 25.8 0-10 Spherical 2 660.5 38.4 
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i Ganawa, et al. , 

2003 

Sawah 

Sempadan 

Malaysia 

  Jawa, Teluk, 

Karang, 

Sempadan and 

Sedu 

crop  Before 

Planting  

available P 

NH4 2 

2300 120 50.2 22.5 0-20 Spherical 69 422 597 

j Nolin et al. , 

1996 

Quebec, 

Canada 

  Aquepts crop   P (Melich III) 10 130 52 18.5 0-15 Exponential 35.1 255.5 13 

k Chung et al. , 

2008 

Korea     crop  after 

harvest 

3 0.3 246 119 15.5   Spherical 17.8 210.3 4 

l Pierce et al. , 

1995 Durand 

Durand, USA   Alfisol, fine loam crop    P (not 

specified) 

16 165 35 21 5:20 Linear 223 163 294 

m Camacho -

Tamayo et al. , 

2008 (Site One) 

Puerto Lopez, 

Colombia 

2 375 

mm 27 C 

Typic Haplustox crop May-04 P (Bray II) 1.875 42 11.1 14.2 0-10 Linear 154.4 262.9 373.4 

n Frogbrook et 

al.  2002 

(sampled 

1998) 

        before 

fertilisation  

  16.5         Exponential 17.95 131.5 17.07 

o Frogbrook et 

al.  2002 

(sampled 

1999) 

            16.5         Spherical 54.58 66.61 54.9 

p Frogbrook et 

al.  2002 

(sampled 

1997) 

            16.5         Spherical 56 59.72 49.95 

q Kristensen et 

al. 1995 (Riso) 

Riso, 

Denmark 

  Sandy 

loam/sandy clay 

loam 

crop   Available P 10.9 270     0 - 25  Exponential 0 110 60 
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r Shatar 1996 Moree, 

Australia 

  Vertisol     Available P 15 114 18 1 15 - 

30  

Spherical 55 50 290 

s Sidorova et al. , 

2012 

Northwestern 

Russia 

    crop   available P4    72 484.9 65.6   Spherical 11 93 63.7 

t Pierce et al.  

1995 (Adrian) 

Adrian, USA   Alfisol, loam crop    P (not 

specified) 

10 74 23 9 0 - 5  Exponential 23.6 60.49 68 

u Machado et.al. 

2007 

Uberlandia, 

Brazil  

tropical 

humid 

with dry 

season, 

Red 

Latosol,moderate 

clayey texture 

crop    25   12.4 9.1 0-20 Linear 82.33 0 NA 

v Mulla, 1993 St. John, 

Washington, 

USA 

  Silt loam (Ultic 

Haploxeroll) 

crop    P (acetate 

extractable) 

8 172 15.2 7.7 0 - 30  Spherical 27.58 35.8 145 

w Rowlands 1*, 

1998 

Wyalkatchem, 

WA, Australia  

  Duplex crop    P (not 

specified) 

75 56 31.9 7 0 - 10  Spherical 22.32 28.72 414.604 

x Kristensen et al.  

1995 (Vindum) 

Vindum, 

Denmark 

  Sandy loam crop    Available P 10 302     0 - 25  Exponential 0 45 148 

y Liu et al. , 2008  Henan 

Province, 

central China 

monsoon 

climate 

14.6C, 

680mm 

clay loam to loam,  crop Before 

Sowing,  

Available P5 87 81 16.1 5.9 0-20 Spherical 13.4 22.59 337 

z Lopez-Granados 

- 2002 (Site 

Two) 

Southern 

Spain 

(Caracol)  

  Vertic Xerochep crop before crop  Available P6 6 84 11.3 5.6 0-10 Exponential 0.7 33.3 28.3 

aa Lopez-Granados 

- 2002 (Site 

One) 

Southern 

Spain 

(Monclova)  

  Alfisol crop  before r 

crop  

Bray 

extractable 

P6  

11.2 80 15.5 4.4 0-10 Exponential 0.6 18.6 27.4 
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ab Ayoubi et al. , 

2007 

Golestan 

province, Iran 

  fine, mixed, 

thermic, Fluventic 

Haploxerepts. 

crop before crop Available P7 1.8 101 27.2 1.3 0-30 Spherical 1.08 0.57 35.58 

* Unpublished data provided by Pringle for original article  
 

1 Available P2O5Olsen method by way of extracting 2.5 g of soil with 50 ml of 0.5MNaHCO3 (pH 8.5) for 30 min and determining the phosphorus in the extract by the L-ascorbic acid method (Murphy and Riley 1962).  

2 available P NH4F-HCl extraction method 

3  laboratory analysis was completed by the Soil Management Division - NIAST, RDA  

4  Available P (the TsI- NAO modification of the Kirsanov method).   

5  Available P Olsen extraction method using alkaline sodium bicarbonate as the extractant in a 20:1 ratio   

6 Bray extractable P measured by colorimetry using ascorbic acid, ammonium molybdate reagents  

7  Available P  measured by colorimetry using ascorbic acid-ammonium molybdate reagents (Olsen, 1982) 
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Table 6.9. Compilation of key properties for potassium variograms 

 Reference  Location Climate# Soil Type Land Use Timing Measuremen
t Method 

Stud
y 
Area 
(ha)  

Sampl
e Size 

Mea
n 

s.d.  dept
h 
(cm)  

Model  Nug.      

a Lopez- 

Granados,  

2002 (Site 

Two) 

Caracol, 

Southern 

Spain  

  Vertic Xerochep crop before 

planting 

exchangeable 

K1   

6 84 741 156 0-

0.10 

Spherical 0 15210 54.6 

b Lopez –

Granados, 

2002 (Site 

One) 

Monclova, 

Southern 

Spain  

  Alfisol crop  before 

planting 

exchangeable 

K1   

11.2 80 468 117 0-

0.10 

Exponential 0 15210 34.5 

c Cahn et al. 

, 1994 

(0.25 ha) 

Central 

Illinois, USA 

  Mollisol crop    K (not 

specified) 

0.25 200 268.2 114.

9 

0 - 15  Experimenta

l 

5000 7500 50 

d Pierce et 

al.  1995 

(Adrian) 

Adrian, USA   Alfisol, loam crop    K (not 

specified) 

10 74 210 71 0 - 5  Exponential 1850 4168 93 

e Frogbrook 

et al. , 

2002 

(sampled 

1997) 

    clay loam    before 

fertilisatio

n  

  16.5 110    Spherical 994.5 1831 55.0

9 

f Chatterje

e et al. , 

2015  

West Bengal, 

India 

hot and 

humid, 1443 

mm 

  crop/horticultur

e 

after 

harvest 

Available K2O 81   134.8 51.9 0-15 Exponential 1864.5

1 

923.4 55 

g Chung et 

al. , 2008 

Korea 12.7C, 

1560* 

Coarse, loamy, 

mixed, non-acid, 

mesic  

crop  after 

harvest  

  0.3 246 269.1 27.3   Gaussian 304.2 2281.5 32.9 
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h Frogbrook 

et al. , 

2002 

(sampled 

1998) 

        before 

fertilisatio

n  

K2 16.5       Circular 1121 1266 57.7

1 

i Frogbrook 

et al. , 

2002 

(sampled 

1999) 

        before 

fertilisatio

n  

  16.5       Penta-

Spherical 

1050 1034 79.0

3 

j Nanni et 

al. , 2011 

 Sao Paulo 

state, Brazil 

mesothermi

c climate   

Oxisols, Entisols, 

Alfisols, Ultisols, 

Inceptisols and 

Molisols 

crop    184 184 61.3 44.6   Spherical 706.18 1373.5

6 

353 

k Pierce et 

al.  , 1995 

(Plainwell

) 

Plainwell, 

USA 

  Entisol, loamy 

sand 

crop    K (not 

specified) 

22 174 121 35.9 0 - 20  Spherical 887 391 157 

l Ferraz et 

al.  2012 

(sampled 

2008) 

Tres Pontas, 

Brazil  

mild tropical 

altitude  

Red-Yellow 

Latosol. 

crop   K Mehlich 1  22 48 7.1 6.5 0-20 Spherical 0 1268.3

7 

437 

m Liu et al. , 

2010 

 Henan 

Province, 

central China 

monsoon 

climate 

14.6C, 

680mm 

Sandy to 

medium clay 

loam  

crop  after 

harvest 

Available K3  4 111 161.4 30.8 0-20 Spherical 435 744.1 312.

4 

n Silva et al. 

, 2003  

Santa Maria, 

Brazil  

  Ultisol 

dystrophic 

Hapludalf  

crop before 

sowing  

Available K 

(flame 

photometry)  

0.3 194 111 31.9 0-20 Gaussian 527 619 16.6 
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o Pierce et 

al.  1995, 

(Durand) 

Durand, USA   Alfisol, fine loam crop    K (not 

specified) 

16 165 97 31 5 - 20  Spherical 302 833 174 

p Delcourt 

et al.  

1996 

Leefdael, 

Belgium 

  Silty crop    K (AES)     NA NA 0 - 25  Spherical 425 565 149.

7 

q Rowlands 

1*, 1998 

Wyalkatchem

, WA 

  Duplex crop    K (not 

specified) 

75 56 59.1 24.7 0 - 10  Spherical 185.17 581.23 800 

r Camacho-

Tamayo 

et al. , 

2008 (Site 

Two)  

Puerto Lopez, 

Colombia 

2 375 mm  

27C 

Typic Hapludox  crop  Aug-04 K4 1.875 42 74.1 15.6 0-10 Exponential 182.52 349.83 366.

6 

s Machado 

et al.  

2007 

Uberlandia, 

Brazil  

tropical 

humid with 

dry season, 

Red 

Latosol,moderat

e clayey texture 

crop   K5 25 121 79 21.5 0-20 Linear 466.4 0 NA 

t Kristense

n et al.  

1995 

(Riso) 

Riso, 

Denmark 

  Sandy 

loam/sandy clay 

loam 

crop    Available K 10.9 270   0 - 25  Exponential 0 389 129 

u Kristense

n et al.  

1995 

(Vindum) 

Vindum, 

Denmark 

  Sandy loam crop    Available K 10 302   0 - 25  Exponential 0 377 25 

v Ferraz et 

al. , 2012 

(sampled 

2007) 

Tres Pontas, 

Brazil  

mild tropical 

altitude  

Red-Yellow 

Latosol. 

crop   K Mehlich 1  22 54 11.5 12.5 0-20 Exponential 0 365.82 165 
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w Liu et al. , 

2008 

Henan 

Province, 

central China 

monsoon 

climate 

14.6C, 

680mm 

clay loam to 

loam, and the 

soil is slightly 

alkaline (pH , 

7.7). 

crop  Before 

Sowing 

available K 

(AK)3   

87 81 105.9 14.3 0-20 Spherical 66.9 149.2 345 

x de Souza 

et al. , 

2010  (Site 

One) 

Araras, 

SouthEast 

Brazil 

wet 

summer, dry 

winter 

Oxisol  (Typic 

Haplustox) 

crop fall of 2003   20 80 3.2 1.3 0-20 Spherical 26.1 103.9 185 

y Sidorova 

et al. , 

2012 

Northwester

n Russia 

    crop   exchangeable 

K6  

  72 202.5 36.2   Exponential 7 106 72.8 

z Ayoubi et 

al. , 2007 

Golestan 

province, Iran 

  fine, mixed, 

thermic, 

Fluventic 

Haploxerepts. 

crop before 

sowing 

available K7 1.8 101 334.6 8.1 0-30 Spherical 17.16 62.4 93.9

2 

aa Camacho-

Tamayo 

et al. , 

2008 (Site 

1) 

Puerto Lopez, 

Colombia 

2 375 mm  

27C 

Typic Haplustox crop  May-04 K4  1.875 42 70.2 7.8 0-10 Nugget  60.84 0 0 

a

b 

Thompso

n et al. , 

2004  (Site 

Two A) 

Alabama, USA     crop January    0.2 124   22 Exponential 0.1 55.1 228.

3 

ac Thompso

n et al. , 

2004 (Site 

Two B) 

Alabama, USA     crop January    0.4 58   22 Spherical 23.16 27.52 299 
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a

d 

de Souza 

et al. , 

2010 – 

(Site Two) 

Araras, 

SouthEast 

Brazil 

wet 

summer, dry 

winter 

 Oxisol  (Typic 

Haplustox) 

crop fall of 2004   22 90 3.7 1.9 0-20 Exponential 0.9 3.2 121 

ae Thompso

n et al. , 

2004 (Site 

One)  

Alabama, USA     crop September    0.4 71   11 Spherical 0.01 0.06 295.

2 

af Thompso

n et al. , 

2004 (Site 

Three) 

Alabama, USA     crop September    0.4 48   11 Spherical 0 0.03 160.

4 

* Unpublished data provided by Pringle for original article  
 

1 exchangeable K atomic absorption spectrophotometry (AAS) 1  

2laboratory analysis was completed by the Soil Management Division - NIAST, RDA 2 

3 available K (AK) neutral ammonium acetate extraction method 3 

4 K extraction with ammonium acetate pH 7.0 (USDA, 2004).6  

5 HCl 0,05 mol L-1 + H2SO4 0,025 mol L-1  7 

6 exchangeable K TsI- NAO modification of the Kirsanov method.4 

7 available K extraction with ammonium acetate (1N) (Richards, 1954) 5  
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Chapter 7: 

 

Concluding Remarks and Future work  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

You live out the confusions until they become clear  

Anais Nin 1941 

    



 

 

169 

 

7.1 Overview   

Understanding how soil variability changes with scale is fundamental to our attempts to study the soil. 

The extrapolation of data from individual soil cores to larger scales in the form of field, regional, 

national or even global soil maps relies on our assumptions about soil variability. Without 

understanding how variability changes between scales, we cannot know how much information is lost 

in any process of averaging (such as compositing), how accurate any interpolation is (such as those 

made between soil observations in kriging) or accurately understand the trade-offs between 

information lost and accuracy gained when selecting a resolution at which to produce any soil map. 

As we outlined in the introduction, the cost of multiscale sampling limits the production of empirical 

work examining the scaling properties of soil variability. As we outlined in Chapter 1, the studies in 

this topic provide valuable insights into particular fields or regions, but they tend not to be 

generalisable, and tend not to cover more than three scales (i.e., small farm, large farm, field).  

Increasing volumes of soil data stored in georeferenced electronic databases have introduced a new 

source of information that has helped us to better understand the relationship between soil variability 

at different scales. In this thesis, we have used a combination of legacy data, remotely observed data 

and published information to address the following questions.  

● How variable is the soil at different spatial scales?  

 

● Can we develop a general model to describe how soil variability changes across spatial scales?  

 

● How does soil variability compare with the variability of other environmental properties across 

spatial scales?  

 

In this concluding chapter we highlight the contributions this thesis makes towards each of these 

questions, identify unresolved questions, and highlight promising directions for further development 

of this work.  

 

7.1.1 How variable is the soil at different spatial scales?  

It is generally accepted that soil is highly variable at fine scales. Studies that consider fine scale 

variability of soil tend to find a high proportion of variability occurs within a few meters (Beckett & 

Webster, 1971; Le Guen et al., 2017; Šamonil et al., 2011). This result lies in some contrast to studies 

that consider large scale variability of the soil which find significant proportions of the total variability 

occurs at large scales (Y. Liu, et. al 2013; Z.-P. Liu, et.al. 2013). In Chapter 2 we bridged the gap between 

field scale studies and regional scale studies and extended the modelling of spatial variability to the 

continental scale.  
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We found that of the total variability found in soil texture in the Australian continent (maximum extent 

4,000km), 20% occurs within 1km and 50% occurs within 10km. When we calculate global scale 

variograms (Chapter 5) they show similar maximum variability to the variograms calculated for the 

Australian continent. Half of the average expected variability in soil texture across the whole globe is 

found within a separation distance of 10km.  

In Chapter 6 we used a different approach to focus on field scale. In Chapters Two through Five, we 

focused on quantifying the average or expected variability at different separation distances. In 

Chapter 6, we examined the variability at a single scale, but under different studies. We found several 

orders of magnitude difference in the variability for all soil properties we considered (including soil 

texture). This large range in variability highlights the distinction between the general model that we 

developed in Chapter 2 and applied through Chapter 5, and the site specific variograms we considered 

in Chapter 6. In Section 7.4., we propose further development of our understanding of spatial 

variability from legacy data by disaggregating spatial data by covariate.  

Chapter 6 also highlighted the strong tendency for variograms to reach a sill. Only a very small number 

of variograms modelled did not reach a sill within the 1km extent. In Chapter 6, we referred to this as 

the local sill, to highlight the fact that we expected greater variability to be reached as the extent 

increases. We have not yet fully resolved the question of whether these local sills occur as a true 

representation of a local maximum of variability, or whether there is something intrinsic to the process 

of modelling the variogram which promotes the appearance of finite variance.  

 

7.1.2. Can we develop a general model to describe how soil variability changes across spatial 

scales? 

We developed a model based on the Hausdorff Besicovitch Dimension (D Value) and the Hurst 

exponent.  These tools have been used to quantify the relative importance of short range and long 

range dependence in spatial or temporal variables. These tools also provide a measure of roughness 

or stochasticity that does not depend upon the unit of measure, making comparisons between 

properties easier. Our model shared these features, but adapted the framework of these tools by 

allowing the modelling of a gradual change in stochasticity (or roughness, or the relative importance 

of short and long range variability). The gradual change in stochasticity or roughness is a conceptual 

departure from the multi-fractal framework introduced by Burrough (1983) and subsequently used by 

other soil scientists. The multi-fractal framework assumes stochasticity remains constant for several 

spatial scales and then has a relatively abrupt transition to another range of stochasticity. This result 
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held for the majority of the environmental properties that we considered. While these results are 

preliminary, they might hold interesting implications for the use of fractals in environmental 

modelling.   

Using proxy data, we tried alternative sampling designs to ensure this departure was not dependent 

upon the irregular sampling design of the NSSC dataset (Chapter 3). When applied to different 

environmental variables, we found again that a model of continuous change in variability provided a 

very close fit to the data for several other environmental properties (Chapter 4). At the global scale 

our model of spatial scaling appeared to find its limits. This raises the question of whether the model 

we developed in Chapter 2 would appropriately model scaling properties of variability on other 

continents or whether it is for some reason only specific to Australia.  

Our model was limited in resolution by bin sizes of one meter. At this resolution there was a large 

degree of variability in the empirical variogram itself. And we had no capacity to model at finer scales. 

In Chapter 2 we discussed the shape of the roughness index at the finest scales. The shape of the 

roughness index at fine resolutions suggested unresolved spatial trend at these very fine scales. As 

discussed above, trends in very fine scale variability still remain poorly understood. Understanding 

very fine scale variability is of particular interest because the very fine lateral support of a soil core, 

and practical limitations on frequency of spacing mean that very fine scale variability may often be 

missed. If very fine scale variability is an important proportion of overall variability then missing it will 

mean losing valuable information, and not aggregating appropriately might mean incorporating noise 

as trend.  

 

7.1.3 How variable is the soil compared to other soil properties?  

Our results from Chapter 4 suggest that soil is not much more variable than other environmental 

properties, except at the finer scales. It is very possible that results at the finer scales are likely to be 

affected by the different supports of the different environmental variables.  

We found that the relationship of scale to variability (that is the relative importance of short range 

and long range variability with changing distance) was very similar for the following properties 

Enhanced vegetation index, soil texture % from the NSSC dataset, fine range slope, fine range 

elevation.  Only rainfall and elevation above sea level showed much lower levels of stochasticity (or a 

stronger importance of long range variability).   

We noted the strong similarity between the roughness index of the soil texture and the roughness 

index for micro-topography, at all but the very finest scales. Having the strong linkage in variability 
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across so many scales might mean that this provides a useful avenue as a proxy for soil. Modelling 

micro-topography is important for understanding sedimentary processes (Eltner et al., 2018). 

Microtopography can also exert an influence on plant species composition (Álvarez-Rogel et al., 2007).  

 

7.2 Future work  

As described above, the conclusions we have developed from this thesis have opened up a number of 

further questions and directions for inquiry. We suggest below several directions for further research. 

These are not comprehensive, but indicate in our opinion the logical next stages of development of 

this research.  

 

7.2.1 Develop understanding of drivers of spatial variability of soil texture  

Our characterization of soil spatial variability in Chapter 2 is highly general. That is, it does not 

differentiate between regions, climatic zones, land use type or any other factor. All pairs of 

observations with the same lag were included in the calculation of the semivariance for that lag.  This 

is one of the strengths of the analysis, as it ensures the results are generalisable, but there is a sacrifice 

in specificity, and potentially in the applicability of the results. Disaggregating the data and testing 

whether similar degrees of variability occur within the disaggregated data is a logical step in 

developing this data to a stage that can be used for prediction.  

As a starting point we propose bioregion, geology and topography as potentially useful covariates for 

the disaggregation of the data. Categorical maps of bioregion (Australian Government, 2012) and 

geology (Geoscience Australia, 2012) will make disaggregation based on these environmental factors 

relatively straightforward. Disaggregation by local topography would be more complex. Unlike climatic 

region and underlying geology, local topography cannot be easily spatially disaggregated. It may be 

more appropriate to consider the covariation of local topography than to disaggregate the texture 

data based on this metric.   

Ideally, we would be able to disaggregate the data based on agricultural management. However, 

because the NSSC dataset has been sampled primarily from agricultural regions, if we wish to compare 

managed versus natural soil within Australia, we will need to use a different source of information. It 

might be possible to conduct this analysis with Gamma Radiometric data (as per Chapter 3), although 

as discussed in Chapter 5, the wide support and diffuse boundaries make it difficult to observe and 

predict fine scale variability. Stockmann, et al.   (2015) illustrate the potential to combine proximal soil 

sensing with remote sensing where increased resolution is required.   
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Disaggregation of the soil texture data will improve our ability to characterise soil variability. It will 

also allow us to test the applicability of the roughness index model in more specific settings.  

 

7.2.2. Extend the analysis beyond Australia  

With the exception of Chapter 5 and 6, the analysis presented in this thesis focuses on the continent 

of Australia. Access to the WoSIS dataset, which includes very heavy sampling on the North American 

continent introduces the possibility of conducting an analogous analysis using North American data. 

A comparison of the average variability across scales is likely to be illuminating. Even more intriguing, 

this will allow us to test whether the roughness index model we’ve developed is specific to Australia 

or whether it applies from field to continental scales across other continents. As we’ve indicated, the 

usefulness of this analysis will likely be increased if we consider other environmental factors when we 

characterise variability. It would be logical to include a similar extension to the one we’ve described 

in Section 7.4.1. to the North American dataset. This analysis would be illuminating in its own right. 

Also, having a comparison to a continent of a similar size, but different geology, climate, and dominant 

soil types could provide very illuminating information about the scaling properties of variability under 

different conditions.  

 

7.2.3. Improve understanding of very fine scale variability  

Several components of this thesis point to a need for a more focused strategy if we are to improve 

our understanding of fine scale variability. The roughness index model we fit in Chapter 2 suggested 

that there was unresolved spatial variability at scales finer than we were able to model. The wide 

range of field scale variograms in Chapter 6 highlight the importance of site specificity for field scale 

variability. Finally, as we describe in Chapter 2, the sampling designs of the variograms we collect in 

Chapter 6 vary significantly. While this may be in part, due to differing aims between studies, we 

suspect that this is, at least in part informed by different opinions about the importance of fine scale 

variability. Studies that aliquot data (average several observations taken within a small area) are 

inherently implying that very fine scale variability is noise that should be removed to allow more 

accurate predictions. Studies that make predictions from single very small support (i.e. 10cm, the 

typical radius of a soil core) are inherently implying that the information in that small support is 

representative enough of the surrounding area to make predictions from. A better understanding of 

fine scale variability, and its relationship to other scales of variability will allow us to make better 

decisions about support and sampling. It will also allow us to better understand the impact of support 

when we are dealing with very different types of data (as per Chapter 5).  



 

 

174 

 

Formalising the relationship between variability across scales and information will be critical to 

ensuring that enhanced understanding of fine scale variability leads to better outcomes. Bishop, et al.  

(2001) propose a modification to Shannon’s information criterion explicitly for evaluating mapping 

accuracy and informing decisions around grid size in map production. An extension of this framework 

to take into account support size would also be useful. Combining the development of a formal 

framework for linking variability to information content at fine scales with a better characterisation of 

variability at fine scales would be ideal. Before undertaking significant for purpose field studies (with 

the associated  expense) it would be desirable to extend efforts to gather existing information. It might 

be possible to extend the analysis in Chapter 6 by seeking out raw spatial observations in place of 

calculated variograms. A focused meta-analysis of studies that explicitly consider very fine scale 

scaling, as opposed to precision agriculture studies may also provide useful results. 

 

7.2.4. Develop links between variability, scale and process   

One of the eventual long term aims of improving our ability to accurately describe soil variability across 

multiple scales is improving our ability to link variability, scale and process. Our results from Chapter 

2 suggest one possible avenue for this. When soil variability is described as multi-fractal in nature, an 

appealing explanation is that soil variability across particular scales is controlled by specific 

environmental factors. Abrupt changes in soil variability are associated with a change in the dominant 

control. Our theory of more gradual change in soil variability with scale suggests that different 

interpretations might be necessary.  Our results from Chapter 4 suggest that the variability of 

environmental factors themselves might change in a more gradual way than is implicit in Burrough’s 

(1983) theory. The view of the soil as an inert substance controlled by environmental factors is shifting 

to a more dynamic role, where the soil exerts control on other environmental factors, in particular 

vegetation and climate, examples include Govindasamy et al.  (1999) and Osborne et al.  (2004). 

Specific mechanistic studies designed to better understand the specific effects and feedbacks of 

particular variables provide valuable insights into some deterministic components of soil variation and 

variability. Better understanding variability of soil and other properties across scales and with relation 

to each other27 will complement these mechanistic studies.  

 

                                                      
27 We’ve made some suggestions in 7.4.1. 
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7.3 Final remarks  

This thesis has successfully exploited legacy data to push forward our understanding of the behaviour 

of soil variability across scales. Further development of this understanding should move us towards a 

model that can serve to enhance soil sampling methods.   
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