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Abstract: The ability to model fracture propagation is critical to predict the structural response of a 
concrete member and possible failure mechanisms. Even for structures under normal service loads, good 
estimations on the overall deflections and associated stiffness are highly dependent on the onset of 
fracture and resulting crack pattern, both directly related with the tension-stiffening effect. With the aim of 
developing robust models to capture this behaviour, a preliminary numerical study is herein presented on 
the influence of rebar diameter in the cracking pattern of concrete beams captured numerically. Focus is 
first given to the performance of the numerical model and its mesh objectivity. Experimental results from 
concrete beams tested under flexural loads are adopted for validation. Two very distinct rebar diameters 
are used to assess the ability of the model in predicting the average crack opening, maximum crack 
opening and average crack spacing for a wide range of loads.  
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1. Introduction  

It is well-known that reinforced concrete structures are typically cracked even for relatively small service 
loads. Quantifying the damage associated with any given load level is essential to predict the overall 
behaviour of the structure, including its deflections. This damage depends on the maximum load level 
ever attained and on the resulting crack pattern. Considerable amount of research was done in terms of 
numerical modelling of fracture. One of the most commonly used techniques is based on the smeared 
crack approach, according to which discontinuous fracture is handled on an averaged sense [1-3]. This 
formulation is very convenient for implementation purposes and provides good results for micro-cracking 
and diffused crack patterns. Smeared models, however, are unable to simulate true material separation in 
the presence of the highly localised cracks that often develop in structures, particularly when approaching 
its ultimate load capacity.  

Other existing approaches have tackled material separation directly in the scope of the discrete crack 
approach [2,4]. Remeshing algorithms, where the underlying finite element mesh is progressively modified 
with crack propagation [5-7], were shown to be quite effective. The drawback of such approaches is 
related to the frequent need to modify meshes. Nodal and element enrichment approaches can overcome 
such shortcomings. At the expense of additional degrees of freedom, enrichment approaches enable the 
simulation of the discontinuous displacement fields associated with cracks [8-16]. Most research carried 
out to date, however, focused mainly on the development of the techniques and validation was performed 
mostly with well-known benchmarks. As finite element enrichment techniques become more available, 
their limitations and advantages need to be critically assessed at a deeper level, so that they can be 
employed in the design of structures. Validation should address not only the ability to predict the overall 
structural behaviour for both service and ultimate loads, but other parameters – e.g. crack patterns and 
crack openings – have to be correctly predicted as well.  

This paper describes a numerical model developed in the context of the discrete crack approach, which 
can simulate the behaviour of concrete members regardless of the level of damage, from the onset of 
cracking and until failure. In the following sections, the model is assessed in its performance and mesh 
objectivity. Experimental results from Pérez Caldentey et al. [17] are used for validation regarding crack 
openings and average spacing, for a relatively wide range of loads.  

 

 



2. Numerical approach 

The numerical model adopted in this paper uses a technique to embed discontinuities in the finite element 

mesh and applicable to the simulation of fracture under tensile stresses. The main aspects concerning this 

formulation, analytical derivations and numerical implementation can be found in [13-16], reason why only 

the main features are recovered in the following.  

According to the concept of the discrete crack approach [18], microcracking is assumed localised into a 

surface of discontinuity when the tensile strength of the material is reached. The onset of localisation and 

corresponding load can be identified with the Rankine criterion in the case of quasi-brittle materials. When 

load increases further, damage progresses and the discontinuity opens gradually while the tensile stress 

is softened. The load carrying capacity under tension decreases and, since both discontinuity and 

neighbouring material are in equilibrium, the neighbouring material unloads elastically. A true crack is said 

to be formed when damage reaches its maximum and the discontinuity is no longer able to withstand 

tensile stresses.  

The opening of the crack can be mathematically formulated by a jump in the displacement field that 

occurs with the corresponding strain unbounded. The variational principle for a body   with an external 

boundary   and a strong discontinuity d  defining two subregions, 
  and 

 , can be written as [19]:  
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where σ  is the stress tensor, ε  is the strain, u  is the total displacement, 


t  is the vector of tractions 

applied to the discontinuity, u  is the opening of the discontinuity, and b  and t  are, respectively, the 

body forces and natural boundary conditions.  

The total displacement inside the body, u , can be obtained by overlaying the displacement of the 

uncracked material, û , with the displacement caused by the opening of the discontinuity, u : 
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where 
d

H  is the standard Heaviside function. 

Using the latter equation and assuming the opening of the discontinuity to be transmitted to the 

neighbouring material as if it were a rigid body movement, the variational principle in Eq. (1) can be 

simplified in the two variational statements [13,14]:  
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Eqs. (3) and (4) can then be discretised independently. The first equation corresponds to the standard 

principle of virtual work and leads to the usual finite element formulation for an uncracked domain. The 

second equation is equivalent to the principle of virtual work for a zero-thickness interface element 

applicable to the simulation of fracture or contact between materials [20]. Although both equations are 

independent, there is a kinematic compatibility condition – see Eq. (2) – that relates the three 

displacement fields (i.e. field of total displacements, field of displacements without discontinuity, and field 

of displacements caused by the opening of the discontinuity). At the finite element level, this condition can 

be casted as:  
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where 
e

a  are the total nodal degrees of freedom related to 
e

u , ˆ
e

a  are the degrees of freedom related to 

û , and 
e

w  are the enhanced nodal degrees related to the opening of the discontinuity. 
ek

wM  is a matrix 

that relates the opening of the discontinuity with the rigid body displacement of the regular nodes of the 

element, and 
d

e

H  is a diagonal matrix with components equal to ‘1 ’ for nodal degrees of freedom in 
e  

and ‘ 0 ’ otherwise. 

Following standard finite element discretisation procedures and using the coupling term in Eq. (5), the 

following system of equations can be obtained: 

ˆ ˆ
ˆd d

d d

e e e e

e e e e e e
d p

       
     

          

awaa

aw ww

K K a f

K K K K w f
,         (6) 

where ˆ ˆ

\

d
e e

d

e eT e e e

 

 aa
K B D B  is the stiffness for the regular finite element, 

e
B  is the strain-nodal 

displacement matrix, 
e

D  is the linearised constitutive matrix for the bulk material, d
e
d

e eT e e

d w w



 K N T N  

is the stiffness of the discontinuity, 
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T  is the linearised constitutive matrix for the discontinuity, 
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typically included to enforce proper shear jump transmission along the discontinuity [14] and 
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T
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w w f f H M f  is zero if all loads are directly applied at the nodes of the element.  

The numerical solution is found using the non-iterative procedure discussed in [21]. During the analysis, 

new discontinuities are introduced at the centre of the finite element when its first principal stress reaches 

the tensile strength. Discontinuities are then propagated when the first principal stress at the centre of the 

element ahead or at the tip reaches the tensile strength of the material. The angles of propagation are 

orthogonal to the first principal stress and are kept fixed after the onset of localisation. It should be 

highlighted that in the current implementation only one discontinuity can cross a finite element. 

 

3. Validation 

Two beams tested by Pérez Caldentey et al. [17] in a four-point loading scheme are adopted for validating 

and assessing the performance of the numerical model. The beams have the same cross-section and 

reinforcement layout, although different rebar diameters: one specimen has four 12 mm steel bars 

(specimen 12-20-00), whereas the other has four 25 mm bars (specimen 25-20-00). The representation is 

shown in Figure 1 and it should be highlighted that both specimens have no stirrups at the upper face in 

the middle span. 

The experimental study by Pérez Caldentey et al. [17] aimed at characterising the process of cracking 

under increasing flexural loading for a range of reinforcement ratios and layouts. The material properties 

for concrete were 26.9 MPa and 2.14 MPa, respectively the compressive and tensile strengths, whereas 

the fracture energy can be estimated as 0.050N/mm. The steel had a yielding stress of 550 MPa.  

 

Figure 1. Loading scheme and cross-section (all dimensions in mm). 

 



 

3.1  Mesh discretisation 

Two meshes with different levels of discretisation (one coarse, one refined) are selected for assessing the 

objectivity of the numerical model – see representation in Figure 2. 

Steel reinforcements are simulated using linear elements connected to concrete elements with zero-

thickness interfaces. The bond-slip law is given in Model Code 2010 [22], with the onset of slip defined for 

0.19 MPa and the ultimate peak bond strength of 10.5 MPa for 0.6 mm slip. The reinforcement is linear 

elastic and perfectly plastic for both tensile and compressive stresses. The concrete elements are under 

plane stress conditions, linear elastic under tensile stresses (with embedded cracks being used when the 

tensile strength of the material is reached) and linear elastic perfectly plastic under compression.  

 

  

(a) (b) 

Figure 2. Meshes with two different levels of discretisation: (a) coarse; and (b) refined. 

For comparison, both discretisations are defined using the same material properties, constitutive models 

and 12 mm reinforcements (see Figure 2). The resulting load vs. displacement curves are compared in 

Figure 3, together with experimental data found in [23]. It should be mentioned, however, that the 

available experimental results concern specimen 12-20-10 in [17], which despite having similar material 

properties and amount of longitudinal reinforcement, also has stirrups. In any case, the experimental 

results are only shown to provide indicative values, and given that 12-20-10 was not heavily reinforced for 

shear, the differences are expected to be small, at least for the first stages of damage propagation.  

Figure 3 denotes the high degree of proximity between coarse and refined meshes in overall responses. 

Both models capture well the onset of cracking. The models also capture the behaviour and progressive 

loss of stiffness with increasing deflection. Results are very close to experimental data.  

 

Figure 3. Load vs. vertical displacement curves. 

Figure 4 shows the crack pattern obtained with both meshes for three stages of loading, where only 

cracks with openings above 0.02 mm – i.e., considered to be active – are shown. The crack pattern is 

relatively similar in both meshes. Since the numerical implementation allows only one discontinuity per 

finite element, the coarser model shows situations where two or three partial cracks are unable to align 

and form a single continuous crack. This is particularly noticeable in the mid-span in Figure 4a. The 

refined mesh does not present such issue.  

The average crack spacing depends on the constitutive model adopted for bond-slip. After the first crack 

is formed and active, the debond between steel and concrete occurs near the crack, which widens 

progressively with increasing slip. As the distance to the crack increases, the damage and debond 



become smaller and the bond transfer mechanism is re-established. The tensile stresses in concrete 

increase again and conditions can be met for new cracks to localise. This process occurs progressively 

and secondary cracks form at later stages of loading.  
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(c) (d) 

Figure 4. Map showing active cracks for both coarse and refined meshes at: (a) 70kN; (b) 90kN; 

and at (c) 160 kN. 

 

3.2  Crack spacing and openings 

In this section the numerical models are compared with experimental results for average crack opening, 

maximum crack opening, average crack spacing and final crack distribution. For this study, only the 

refined mesh is considered. Table 1 summarises the main results and provides experimental data from 

[17,24].  

 

Table 1. Average crack opening, maximum crack opening and average crack spacing. 

 

Load (kN) 

Average crack opening Maximum crack opening Average crack spacing 

Num. (mm) Exp. (mm) error Num. (mm) Exp. (mm) error Num. (mm) Exp. (mm) error 

1
2

-2
0

-0
0
 

70.1 0.239 0.164 46% 0.271 0.37 -27% - - - 

90.1 0.300 0.243 23% 0.366 0.41 -11% - - - 

160.1* 0.416 0.632 -34% 0.793 0.969 -18% 115 173 -34% 

2
5

-2
0

-0
0
 

100.0 0.116 0.123 -13% 0.132 0.198 -33% - - - 

180.7 0.156 0.148 -1% 0.213 0.287 -26% - - - 

400.2 0.204 0.352 -33% 0.295 0.688 -57% 86 131 -35% 

* the experimental value was measured at 175kN [24].  

 

 



The average absolute error for the maximum crack opening among all stages and models is 29%, a value 

that is similar to the one found for the average crack opening (25%). This shows that the numerical 

models have similar performance regardless of the parameter related to cracking being analysed. It would 

nevertheless be desirable to compare with experimental data for load vs. displacement curves, to assess 

if this error can be partially explained by differences in the overall structural behaviour. Such results were 

not available at the time this article was written.  

Although the numerical model apparently tends to underestimate the experimental values, this cannot be 

assumed as a feature of the model without further testing. In fact, given that the average error is of the 

same order for all parameters (average and max opening, crack spacing) in Table 1, it is likely to be 

caused by the choice of constitutive parameters in the simulation rather than by the discrete crack 

formulation used. The fracture energy was based on typical values and the bond-slip law was taken from 

Model Concrete 2010 [22]. Since both are highly connected to the process of crack localisation, 

propagation and opening, they impact the accuracy of the numerical results.  

Figure 5 shows the development of cracking for the same load steps in Table 1. This figure highlights that 

the numerical model captures the changes in crack spacing caused by the different reinforcement 

diameters, with the smaller average spacing being observed in specimen 25-20-00 at the stabilised 

stage (see also Table 1).  
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(e) (f) 

Figure 5. Crack maps for specimens 12-20-00 at: (a) 70kN; (c) 90kN; and (e) 160kN; and 25-20-00 at: 

(b) 100kN; (d) 180 kN and (f) 400kN. 

 

Figure 6 compares the crack pattern for the last stage of loading in both specimens. The representation of 

the width is scaled so that relative differences can be easily noticed. The experimental crack map is based 

on a sketch representation from results and pictures available in [17]. The crack pattern in both numerical 

models captures all main features observed experimentally, including the number and direction of cracks 

and openings. The failure of specimen 25-20-00 occurs with the crushing of concrete near the support, as 

evidenced by the experimental pattern in Figure 6b. Numerically, this behaviour is also observed. 



 

 

(a) 

 

 

(b) 

Figure 6. Comparison between experimental and numerical crack patterns at final stage of loading 

for specimen: (a) 12-20-00; and (b) 25-20-00. 

The first principle stress is represented in Figure 7 using a colour scheme that highlights the stresses in 

concrete and that shows the role of active cracks in the dissipation of tensile stresses. The tension 

stiffening effect is evident with the concrete between cracks being able to withstand a certain amount of 

tensile stress. Closer to the crack this stress becomes zero (blue colour) due to the equilibrium conditions 

between crack and concrete mentioned in section 2. 

  

 

Figure 7. First principle stress map at 70kN (displacements magnified by a factor of 10). 

 

4. Conclusions 

This paper presented a preliminary study that is part of a research plan aimed at assessing the error of 

numerical models in the estimation of crack openings and average spacing. This first part of the study 

assessed the performance of the finite element model based on embedded discontinuities. The 

assumption underlying this model is that displacements caused by the opening of discontinuities induce a 

rigid body displacement on their neighbourhood. Experimental tests from Pérez Caldentey et al. [17] 



provided data for average and maximum crack openings, and average crack spacing, for two concrete 

beams with different rebar diameters.  

The overall crack pattern and main features of the model were shown to be correctly captured by the 

numerical model. The load vs. displacement of the concrete member was similarly captured using coarse 

and refined meshes, and good agreement was observed with available experimental results. The models 

further showed to be able to handle the process of debonding in the neighbourhood of cracks, which was 

critical to simulate the tension stiffening effect. The numerical load vs. displacement curves highlight the 

progressive loss of stiffness with increasing damage and deflections, and correctly predicted the load at 

the onset of cracking and subsequent typical stages of flexural behaviour.  

Since only one discontinuity was allowed per finite element in the numerical implementation, coarser 

meshes were not always able to generate a single discontinuity crossing the entire depth of the beam. 

Instead, two or three partial cracks in the neighbourhood behave as if they were a single continuous 

crack, assuring that the energy is correctly dissipated. Although this could make the definition of average 

crack spacing harder for a coarse model, crack openings and patterns are generally well captured. When 

comparing with experimental results, the numerical models were shown to globally underestimate crack 

openings and spacing by an average error close to 30%. Since this error was of the same order for 

average and maximum crack openings, and average crack spacing, it was probably partially caused by a 

systematic source of error in the constitutive parameters that were not experimentally assessed. In 

particular, the fracture energy and the bond-slip law for steel reinforcements were not measured 

experimentally and both are highly relevant for the process of crack localisation and propagation.   
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