
1 INTRODUCTION 

Estimating the real stiffness of a partially fractured 
concrete member for a given design load is a very 
difficult task, in particular because the concrete 
placed between cracks has a significant role in trans-
ferring tensile stresses – this is usually known as the 
‘tension stiffening effect’ – and the crack pattern can 
be random and it also depends on the maximum load 
the structure experienced. For this reason, predicting 
the behaviour of a concrete member subjected to 
serviceability loads, and corresponding crack open-
ings and overall deformation, can encompass several 
difficulties. In the last decades, the research commu-
nity has witness many computational approaches to 
be introduced for predicting the fractured behaviour 
of different materials with the discrete representation 
of cracks. There are now different numerical tech-
niques that can be used. Advanced techniques, for 
instance, are able to avoid the need for remeshing 
when cracks propagate by making use of enriched 
finite element meshes (nodes or elements) that can 
simulate the discontinuous displacement fields asso-
ciated with cracks (Belytschko & Black, 1999, Moës 
et al., 1999, Wells & Sluys, 2001a, Areias & Be-
lytschko, 2005, Dvorkin et al., 1990, Oliver, 1996, 
Jirásek & Zimmermann, 2001, Wells & Sluys, 
2001b, Linder & Armero, 2007, Alfaiate et al., 2002, 
Dias-da-Costa et al., 2013). Although these ad-
vanced models are available, most validations have 
been focusing on the formulation itself and have 

used ‘well-known’ benchmark solutions, where the 
specimen usually fails under a limited number of 
highly localised cracks. In addition, comparison with 
experimental data is typically made using load 
vs. displacement curves, and other relevant features 
(e.g. crack openings) are missing. Aiming at con-
tributing to reduce this gap, the authors herein pre-
sent the validation of a numerical model for predict-
ing the fractured behaviour of reinforced concrete 
members with discrete cracks for serviceability 
monotonic loads.  

2 NUMERICAL MODELLING 

2.1 Discretised equations 
In quasi-brittle materials, the discontinuities are typ-
ically much softer than the bulk and its opening can 
be considered to be transmitted to the neighbouring 
material as if it were a rigid body movement. The 
stresses along the discontinuity are in equilibrium 
with the surrounding bulk, which unloads elastically 
as the discontinuity widens and softens its tensile 
stress. Under this assumption, it can be shown that 
the discretised set of equations for a finite element 
containing a crack is given by (Simo & Rifai, 1990, 
Dias-da-Costa et al., 2009, Dias-da-Costa et al., 
2013, Dias-da-Costa et al., 2010): 
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where 
   
Kââ

e = BeT DeBe dΩ
Ωe \Γd

e
∫  is the stiffness of a regu-

lar finite element,   Be  is the strain-nodal displace-
ment matrix,   De  is the linearised constitutive matrix 
for the bulk, 

   
K d

e = Nw
eT TeNw

e dΓ
Γd

e
∫  is the stiffness of 

the discontinuity,   Nw
e  contains linear interpolation 

functions defined along the discontinuity,   Te  is the 
linearised constitutive matrix for the discontinuity, 

  K p
e  is a penalty matrix that enforces the shear jump 

transmission along the discontinuity, 

   
Kaw

e = Kââ
e HΓd

e Mw
ek ,   K wa

e = Kaw
eT  and 

   
K ww

e = HΓd

e Mw
ek( )T

Kââ
e HΓd

e Mw
ek ,   a

e  are the total dis-

placements on the regular nodes of the element,   w
e  

is a vector containing the opening of the discontinui-
ty at both extremities over the edges of the element 
and    f̂ e  are the regular forces. It can be shown that 

    
df e = dfw

e − HΓd

e Mw
ek( )

T
df̂ e  is zero under certain cir-

cumstances.  

2.2 Solution procedure 
New crack fronts are introduced during the numeri-
cal analysis through the centre of each finite element 
whenever the first principal stress reaches the tensile 
strength of the material. In the same way, existing 
fronts are propagated when the first principal stress 
at the tip reaches the tensile strength of the material. 
The angle of propagation is orthogonal to the first 
principal stress and is kept constant during the anal-
ysis and after the onset of cracking. The additional 
nodes used to define the discontinuity within each 
element are global and shared among enriched 
neighbouring elements, hence assuring the continui-
ty of jumps and tractions across edges.  

The numerical solution is found using a non-
iterative procedure that was shown to be robust in 
the presence of many sources of material non-
linearities (e.g. concrete crushing, cracks opening, 
steel yielding, bond-slip in steel-concrete interfaces) 
(Graça-e-Costa et al., 2012). Before starting the 
analysis, all constitutive models are discretised into 
multilinear branches, hence avoiding the need to it-
erate at the constitutive level. Each step of analysis 
is composed of a trial step, followed by a true step.  

The trial step starts with the load being applied to 
the structure and the selection of the solution sense 
leading to the highest energy release rate (Gutiérrez, 
2004, Verhoosel et al., 2009). If no bifurcation 

points are found, meaning that all integration points 
follow admissible constitutive paths, the trial step 
becomes the true step and a new one is initiated. In 
the presence of bifurcation points, transition is made 
to a total approach such that damage grows on all 
material points that follow admissible paths and ac-
cording to the information retrieved during the tenta-
tive step. A detailed description of the method can 
be found in (Graça-e-Costa et al., 2012, Graça-e-
Costa et al., 2013). 

3 EXPERIMENTAL TESTS 

The experimental benchmark data used for valida-
tion purposes was obtained from two reinforced 
lightweight aggregate concrete (LWAC) beams 
loaded on two points and tested until failure. The 
beams were 3 m long and had a cross-section of 
12 cm by 27 cm. Two different longitudinal tensile 
reinforcement ratios were adopted, respectively 
1.12% (beam B1s-1.12T) and 2.96% (beam B1s-
2.96T), to obtain two distinct behaviours under ulti-
mate limit states (see Figure 1) with, respectively, 
under- and over-reinforced failure modes. The stir-
rups were 8 mm diameter and spaced 50 mm. The 
bars adopted were ribbed and S 500, whereas the 
LWAC had a compressive strength of 57 MPa, a 
tensile strength of 4 MPa and a Young’s modulus of 
25.5 GPa. 	
   

 

	
   	
  
Figure 1. Under- and over-reinforced failure. 

 
During the test, the beams were simply supported 

with 2.80 m between supports and loaded in two 
points at 40 cm from the mid-span. The typical load 
vs. mid-span curves can be seen in Figure 2, whereas 
Figure 3 shows the structural scheme.  

 

 
Figure 2. Load vs. mid-span displacement curves (Carmo et al., 

2013). 
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4 VALIDATION 

This section presents a detailed comparison between 
numerical and experimental results. Particular focus 
is given to deformations and crack patterns, since 
these are the most relevant for reinforced concrete 
structures under service limit states. With this aim, 
the analysis focuses the range between 60 and 80% 
of the maximum load supported by each beam. 

The numerical model is defined in the assumption 
of plane stress, with the concrete being modelled us-
ing bilinear elements and the steel reinforcements 
being modelled using linear truss elements – see 
Figure 3. Interface elements simulate the bond be-
tween steel and concrete with the constitutive behav-
iour taken from the Model Code 2010 (fib, 2013). 
Steel is assumed to behave as elastic perfectly plas-
tic in both tension and compression. 

The constitutive model for concrete is linear elas-
tic and perfectly plastic under compression, and lin-
ear elastic under tension. In the latter case, disconti-
nuities are embedded to simulate cracked finite 
elements according to the procedure discussed in 
Section 2 and using a mode-I exponential softening 
law. Since the fracture energy was not experimental-
ly assessed, a value of 0.10 N/mm was chosen hav-
ing into account typical results. 

 

 
Figure 3. Structural scheme and mesh. 

 

4.1 Displacements, curvatures and critical loads 
Figure 2 shows the load vs. mid-span displacement 
for both beams until failure. There is a good overall 
agreement between numerical and experimental da-
ta, with the model predicting the response in the first 
(uncracked state) and second stages (cracked state). 
The cracking, yielding and maximum loads are also 
properly predicted, as shown by Figure 4, with the 
numerical model being sensitive to the role of the 
longitudinal reinforcement ratio on the response. 
The post-peak behaviour for the over-reinforced 
model, however, cannot be captured by the simula-
tion due to the assumption of a perfect-plastic mate-
rial made for concrete. This limitation, however, 
does not impact on the results since focus is given 
superficially to serviceability loads significantly be-
low that threshold. 

 

 
Figure 4. Cracking, yielding and maximum loads. 

 

4.2 Crack openings 
Figure 5 presents the sum of the widths of all the 

cracks in the region between applied loads and at the 
level of the longitudinal tensile reinforcements. This 
sum was selected to minimise the impact of the ex-
perimental randomness associated with cracking. 
The numerical results are generally close to the ex-
perimental observation for all stages of analysis, 
with differences found only for the last stage of the 
under-reinforced beam. This confirms the applicabil-
ity of the model to predict crack openings, which is 
also related with the good agreement regarding the 
cracked flexural stiffness seen in Figure 2.  

 
Figure 5. Crack openings for each reference load. 

 
The numerical model allows extracting more data, 

in particular the evolution of the crack width with 
the average steel stress – see Figure 6. Initially, the 
crack width increases almost linearly with the steel 
stress. After the onset of steel yielding, the crack 
width progresses much faster due to the inability of 
the reinforcement in constraining the crack opening 
in that region. The relation between mid-span dis-
placement and crack width is very interesting be-
cause it reveals different behaviours. The average 
crack width increases linearly with the displace-
ments for all range of analysis, whereas the maxi-
mum crack width has two distinct stages. Before 
20 mm, the rate is similar to the one observed on the 
average crack width, meaning that there are no criti-
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cal cracks. After this stage, however, the rate in-
creases substantially, clearly showing that there is at 
least one critical crack dominating the response. 
Even during this stage, the evolution is proportional 
to the overall displacement. 

The crack pattern and stress distribution obtained 
with the numerical model is shown in Figure 7 for 
the over-reinforced beam. It is interesting to denote 
that the process of cracking is not yet stabilised at 
60% of the ultimate load. The onset of cracking 
starts with the localisation of an active crack in the 
region where the stress is higher (underneath the ap-
plied load) – Figure 7 (top). As the distance to the 
crack increases, conditions can be met for another 
crack to form, as soon as the tensile strength of the 
bulk is reached by the stress bond transfer mecha-
nism. Two new cracks then become active in Figure 
7 at 28% of the maximum load. As the applied load 
is further increased, the stresses in the concrete be-
tween the cracks also increase progressively, until 
new cracks localise between the previously existing 
cracks – compare Figures 7 at 42% and 49% of the 
ultimate load. This ability to capture the process of 
crack localisation and the tension stiffening effect is 
critical to predict the behaviour under serviceability 
conditions.  

 

 
Figure 6. Average steel stress and displacement vs. maximum 

and average crack width for specimen B1s-1.12T 

5 PARAMETRIC STUDY 

Using the numerical model validated in the previous 
section, a parametric study is now undertaken to as-
sess the impact of different tensile reinforcement ra-
tios on the structural response. In all the analyses de-
scribed next, the geometry, material properties and 
loading conditions are kept the same as in Section 3. 
Three additional models are defined to have a com-
plete spectrum of tensile reinforcement ratios. The 
models with the highest and lowest ratios are close 
to the minimum and maximum allowed by the Euro-

code 2.  The corresponding tensile and compressive 
area of steel reinforcements and corresponding ratios 
are summarised in Table 1.  

 

 

 

 

 
Figure 7. First principal stress and crack pattern for specimen 
B1s-2.96T at 17%, 28%, 42% and 49% of the ultimate load 

from top to bottom. 
 
Table 1.  Numerical models with different tensile re-
inforcement ratios. 

Beam  As 
(cm2) 

d 
(cm) 

ρ=As/(bd) 
(%) 

As’ 
(cm2) 

ρ’=As’/(bd) 
(%) 

B1s-
0.58T 1.57 (2∅10) 23.7 0.58 

0.57 
(2∅6) 0.20 

B1s-
1.12T 3.14 (4∅10) 23.4 1.12 

B1s-
2.06T 

5.59 
(2∅16+2∅10) 23.0 2.06 

B1s-
2.96T 8.04 (4∅16) 22.6 2.96 

B1s-
4.63T 12.57 (4∅20) 22.2 4.63 

 
The load vs. mid-span displacement curves are 

shown in Figure 8. It is highlighted how the overall 
behaviour of all models and corresponding strength 
changes with the increasing longitudinal reinforce-
ment ratio. The points represented in each curve 
identify the three stages selected for further analysis 
under serviceability conditions and for the same 
strength level regardless of the model, i.e. for 60, 70 
and 80% of the maximum load. The impact of the 
tensile reinforcement ratio on the bending stiffness is 
seen more clearly in Figure 9, where the bending 
moment is related with the curvature at the central 
area of the beam (i.e., between applied loads). In this 
figure, the moment is calculated using the applied 
load, whereas the curvatures are provided by the se-
cond derivative of the parabolic curve adjusted to 
the vertical displacements between loads. The ratio 
between moment and curvature provides the flexural 
stiffness and this value is seen in the slope of the 
lines depicted in Figure 9. The stiffness at servicea-
bility increases, as expected, with the reinforcement 
ratio, since there is an increasing area of reinforce-
ment contributing for the moment of inertia. The in-
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creasing reinforcement also decreases the magnitude 
of deformations, which is evident for the same load 
level. 

The control of crack openings in reinforced con-
crete structures is very important, not only to assure 
a proper structural behaviour for serviceability loads, 
but also to achieve the required durability and ac-
ceptable appearance. The numerical model with dis-
crete cracks is suitable to predict this behaviour, as 
shown by the evolution of the tensile stress in steel 
reinforcements with the maximum crack width rep-
resented Figure 10. This relation is almost linear for 
all the range of reinforcement ratios tested, with the 
highest ratios being related with the smaller crack 
widths. This is in agreement with what would be ex-
pected and confirms the approach often followed in 
design codes where crack openings are limited to 
acceptable values by constraining the stress level in 
steel reinforcements.  

 

 
Figure 8. Load vs. mid-span displacement for all tensile rein-

forcement ratios. 
 

 
Figure 9. Moment vs. curvature for all tensile reinforcement ra-

tios and loading stages. 
 
Another parameter that can be analysed is the total 

crack opening per meter at the level of the tensile re-
inforcement. This parameter can be related with the 
durability of structure, since it provides indirect in-
formation about the possible area of steel exposed to 
the environment and to a higher risk of corrosion. 
This value also extends the information retrieved 

from the maximum crack width, which only gives 
meaningful data regarding a critical cross-section.  

 

 
Figure 10. Steel stress vs. maximum crack opening. 

 
The relation between tensile reinforcement ratio 

and the total crack opening per meter has an interest-
ing trend. For the same level of strength and for steel 
ratios below 2.5%, the total opening of cracks de-
creases linearly with the reinforcement ratio. How-
ever, for ratios above 2.5%, the total crack opening 
almost does not change and there is no advantage in 
adopting higher ratios beyond this point solely with 
the purpose of reducing the exposure level of tensile 
steel reinforcements (Figure 11). 

 

 
Figure 11. Reinforcement ratio vs. total crack opening per me-

ter. 

6 CONCLUSIONS 

This paper presented and validated a computa-
tional framework within the scope of the discrete 
crack approach that can be used to efficiently predict 
the behaviour of concrete members for any level of 
loading. The model includes the discrete representa-
tion of cracks and embeds the rigid body movements 
associated with the opening of the cracks inside fi-
nite elements. A non-iterative algorithm is used to 
obtain the structural response, regardless of the nu-
merous sources of material non-linearities that often 
compromises the convergence to a solution. Good 
agreement was observed between numerical and ex-
perimental results, including all meaningful parame-
ters, such as cracking, yielding and ultimate loads. 
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Same observation extends to other parameters that 
are critical to the accurate prediction of the behav-
iour under serviceability monotonic loads. These pa-
rameters include the process of crack localisation 
and propagation, as well as the crack openings re-
ported for the different levels of loading. Overall, it 
can be highlighted the good agreement between nu-
merical and experimental data, including flexural 
cracked stiffness, crack openings and the tension-
stiffening effect, all automatically incorporated in 
the simulations and evolving with the load level.  

It is also worth highlighting that the tensile rein-
forcement ratio seems to be a significant parameter 
for controlling the total crack openings for tensile re-
inforcement ratios below 2.5%. Above this reference 
value, however, the total opening of the cracks re-
mains nearly unchanged.  
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