
Modelling the behaviour of steel fibre reinforced
concrete using a discrete strong discontinuity approach

C. Octávioa, D. Dias-da-Costab,c, J. Alfaiatea, E. Júlioa
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Abstract

The use of Fibre Reinforced Concrete (FRC) is gradually wide-spreading due to
the significant advantages relatively to Normal Concrete (NC). In the case of steel
fibres, the quasi-brittle behaviour of plain concrete structures can be modified
into an enhanced ductile behaviour as a direct result of this addition. Since the
mechanical properties of both FRC and NC can be significantly different, this
work aims at developing a finite element formulation to specifically address the
simulation of the behaviour of FRC members up to failure. For this purpose,
the Conforming Generalised Strong Discontinuity Approach (CGSDA) is adopted
with steel fibres explicitly introduced in the finite element mesh. The resulting
formulation has the following main characteristics: i) variational consistency; ii)
fibre elements automatically considered regardless of the presence of cracks; and
iii) no additional degrees of freedom are required. The proposed formulation is
validated using experimental results from tests conducted with different dosages
of steel fibres.
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Nomenclature

a total displacement vector at the nodes

â regular displacement vector at the nodes

ã enhanced displacement vector at the nodes

b̄ body forces vector

B strain-nodal displacement matrix

Bw enhanced strain-nodal displacement matrix

D constitutive matrix

E Young’s modulus

f̂ vector force at the regular nodes

fc compressive strength

ft tensile strength

fw vector force at the additional nodes

GF fracture energy

h parameter defining the jump transmission to Ω+ and Ω−

HΓd diagonal matrix containing the Heaviside function evaluated at each degree
of freedom

HΓd Heaviside function

i, j nodes placed at both extremities of the discontinuity

I identity matrix

k, l nodes placed at both extremities of the fibres

kn, ks normal and shear penalty parameters, respectively

Kaa bulk stiffness matrix
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Kaw, Kwa, Kww enhanced bulk stiffness matrices

Kd discontinuity stiffness matrix

ld discontinuity length

L differential operator matrix

MRw matrix transmitting the rigid body motion from the discontinuity opening

MnRw matrix transmitting the non–rigid body motion from the discontinuity open-
ing

Mw matrix transmitting the displacement resulting from the discontinuity open-
ing

Mk∗
w matrix containing the contribution of the discontinuities of all enriched

elements to each node of the element

n unit vector normal to the boundary

N shape function matrix

n+ unit vector normal to the discontinuity surface

Nw enhanced shape function matrix

nel number of enriched elements

N enhanced fibre shape function matrix

P external load

t traction vector

t̄ natural forces vector

T discontinuity constitutive matrix

u total displacement vector

û regular displacement field vector

ũ enhanced displacement field vector
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[[u]] jump vector

w∗ nodal jump vector

x global coordinates of a material point

x1,x2 global frame

αd discontinuity angle

βββ diagonal matrix of the contribution of each enriched element

Γ boundary

Γd discontinuity surface

Γt boundary with natural forces

Γu boundary with essential conditions

εεε total strain tensor

σσσ stress tensors

ν Poisson ratio

Ω body

d(·) incremental variation of (·)

(·)s symmetric part of (·)

δ(·) admissible or virtual variation of (·)

δΓd Dirac’s delta–function along the surface Γd

(·)e (·) belonging to the finite element e

(·) f (·) belonging to the fibre element f

(·)+, (·)− (·) at the positive and negative side of the discontinuity, respectively

(·)n, (·)s normal and shear component of (·)
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1. Introduction

Fibre Reinforced Concrete (FRC) has several advantages when compared to
Normal Concrete (NC). The presence of steel fibres enables crack bridging and
a post-cracking tensile strength, which delays the development of classic failure
mechanisms. When compared to the classic quasi-brittle behaviour of plain con-
crete structures, the FRC provides an enhanced response with improved ductility.

In recent years, a significant number of experimental studies related with FRC
has been carried out. There are, however, still few numerical approaches capable
of simulating the behaviour with the discrete representation of fracture and fibres.
In terms of the modelling of the discontinuity, three main strategies can be found
for FRC: (i) lattice models, e.g. [1–4]; (ii) smeared crack models, e.g. [5–8]; and
(iii) the discrete crack approach, e.g. [9–11]. Lattice models [1–4], by their nature,
automatically simulate the fibres as if it were discrete elements, and without the
need to increase the total degrees of freedom of the system. Nevertheless, there
are still difficulties in the application of such models, namely those related with
the definition of material properties and geometry of the elements used to model
the bulk.

Existing smeared models have differences in what concerns the simulation of
fibres. The approaches proposed by Peng and Meyer [5] and by Caner et al. [8],
for instance, do not explicitly simulate the fibres in the bulk, being these only
taken into account for cracked finite elements. Peng and Meyer [5] assumed the
fibres to decrease damage in the parent elements, whereas Caner et al. [8] used a
reference strain given by the average opening of all cracks, within a certain length,
to activate the fibres. Radtke et al. [6] simulated the fibres by means of equivalent
loads applied at the nodes of parent elements. In this case, a micro-mechanical
model provides the force needed to pull-out the fibres from the cementitious mat-
rix, being the pull-out distance given by the opening of the crack bridged by the
fibre. Also within the scope of the smeared crack approach, Cunha et al. [7]
provided an approach to embed discrete fibres in the finite element mesh using
constitutive pull-out laws from experimental tests. A common limitation underly-
ing smeared models lies on the fact that the simulation of cracks not being discrete.
As a consequence, specific regularisation techniques are required to avoid mesh
dependency issues and true material separation might be very difficult to simulate.

Discrete crack models have been used by different authors. Denneman et al.
[9] modelled fracture using an embedded discontinuity approach, although with
the discrete simulation of the fibres. Wu et al. [12] defined cracks using local de-
grees of freedom at element level, in which case jumps and traction forces are not
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continuous along the cracks and the stiffness of the fibre is not directly taken into
account. A different approach, based on zero-thickness interface elements [13]
was presented by Caggiano et al. [10] and Etse et al. [11] to simulate the fracture
of bulk elements. The mixture theory [14] was used in this case to account for the
fibre-concrete interaction, reason why the fibres were not explicitly simulated as
discrete embedded elements.

Having all the above works under consideration, a different approach is herein
followed for modelling FRC with discrete representation of cracks and fracture.
The approach is developed within the scope of the discrete crack approach and
has the following features:

i) fibres simulated as discrete elements embedded in the finite element mesh,
both in pre-cracking and post-cracking stages;

ii) cracking handled by means of a discrete crack approach, which avoids mesh
dependency and the need for regularisation techniques;

iii) the number of degrees of freedom of the problem unchanged and independ-
ent of the number of fibres.

In this scope, a discrete conforming formulation introduced in [15] is adop-
ted for the simulation of crack propagation. This formulation is built at element
level, following the embedment concept, and presents the following main advant-
ages: i) variational consistency; ii) no limitations on the choice of the parent finite
element; iii) comprehensive kinematics of the discontinuity, including both rigid
body motion and stretching; iv) fully compatible enhanced kinematic field; v) ad-
ditional global degrees of freedom located at the discontinuity; vi) continuity of
both jumps and tractions across element boundaries; and vii) stress locking free.
The strategy adopted to embed fibres within the finite element mesh is described
in the following main sections.

The outline of the manuscript is as follows: first the kinematics of a strong dis-
continuity and the variational formulation are reviewed in Section 2; the element
technology issues are presented in Section 3, whereas in Section 4, a structural
example is presented and discussed for validation purposes; finally, in Section 5,
the main conclusions are drawn.

2. General framework

The discrete crack approach framework is herein adopted for the description
of discontinuities within a body. According to this, microcracking is assumed to
develop as soon as the tensile strength of the material is reached. Microcrack-
ing then localises in a zero width surface of discontinuity, Γd , which follows a
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stress-jump softening relation. Due to the traction continuity condition, the bulk
gradually unloads during this softening process. The onset of localisation is iden-
tified using an initiation criterion, selected before the analysis [16]. In this case, a
simple Mode-I opening, i.e., the Rankine criterion [17–20] is adopted.

2.1. Kinematics of a strong discontinuity
In this section the kinematics of a strong discontinuity is briefly presented.

For that purpose, consider the body Ω illustrated in Fig. 1, where Γ represents
the external boundary and Γd the internal boundary related with the discontinu-
ity, the latter defining two subregions: Ω+ and Ω−. All loading is assumed to
be quasi-statically applied and includes body forces, b̄, and both natural and es-
sential boundary conditions, t̄ and ū, respectively applied on external boundaries
Γt and Γu. Vector n is defined orthogonally to the boundary surface and pointing
outwards, whereas n+ is orthogonal to the discontinuity and pointing inwards Ω+.

Γd

(1− h) [[u]]

ũ|Γd
= [[u]]

û+ hũ

n+

Γu

Ω−

n
t̄

Γ

Γt

û− (1− h) ũ

Ω+

t+

h[[u]]

Figure 1: Domain Ω crossed by a strong discontinuity Γd and 1-D representation of the displace-
ment field.

The displacement field inside the body, u, has two different parts: i) the reg-
ular displacement field, û; and ii) the enhanced displacement field, ũ, the latter
exclusively due to the discontinuity opening, such that:

u(x) = û(x)+HΓd ũ(x), (1)

where HΓd stands for the standard Heaviside function.
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According to Fig. 1, the jump at the discontinuity, [[u]], is obtained by applying
Eq. (1) to both sides:

[[u]] =
(
u+−u−

)
|Γd

= ũ|Γd . (2)

In the case of small displacements, the strain field is given by the following
equation:

εεε =∇∇∇
su =∇∇∇

sû+HΓd∇∇∇
sũ+δΓd

(
[[u]]⊗n+

)s at Ω, (3)

where (·)s corresponds to the symmetric part of (·) and ⊗ to the dyadic product.

2.2. Variational formulation
The principle of virtual work for the problem under consideration can be writ-

ten as [15, 21–23]:

−
∫

Ω\Γd

(∇∇∇s
δu) : σσσ(εεε) dΩ−

∫
Γd

δ[[u]] · t+ dΓ+
∫

Ω\Γd

δu · b̄ dΩ+
∫

Γt

δu · t̄ dΓ = 0,

(4)
which is the classic principle of virtual work with an additional term representing
the work at the discontinuity.

3. Element technology

This section presents the discretised set of equations developed for finite ele-
ments with embedded discontinuities and fibres.

3.1. Element interpolation
A body Ω is now discretised into finite elements. Fig. 2 represents one of those

elements, with domain Ωe, that contains one discontinuity Γe
d and one fibre Γe

f .
The discontinuity is assumed to be straight and cross an entire finite element and
is defined by two nodes, i and j, placed on the edges of the enriched finite element.
The fibre is also straight and defined using two tip nodes, k and l, which can sit
anywhere inside the finite element or at its edges. If the fibre spans across more
than one finite element, the fibre is simply discretised and handled at element
level. It is highlighted that the nodes used to define the fibre are fictitious and,
therefore, do not give rise to additional degrees of freedom.

According to [15], the displacement field due to a strong discontinuity, given
in Eq. (1), can be approximated using the following equations:

ue = Ne (x) [ae +(HΓd I−HΓd) ãe] if x ∈Ω
e \Γ

e
d , (5)
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(a) (b)

Figure 2: Domain Ωe crossed by a strong discontinuity Γe
d and a fibre Γe

f : (a) definitions; and (b)
general opening.

[[u]]e = ue+−ue− = Ne (x) ãe at Γ
e
d , (6)

where Ne contains the element shape functions, ae are the total nodal degrees of
freedom related to ue, ãe are the enhanced nodal degrees of freedom related to ũe

and HΓd is a diagonal matrix with ‘1’ for nodal degrees of freedom belonging to
Ωe+ and ‘0’ otherwise.

The displacement for an embedded fibre element is interpolated using the fol-
lowing equation:

u f = N f a f at Γ
e
f , (7)

where N f are shape functions of a truss element and a f are the total nodal degrees
of freedom corresponding to nodes ‘k’ and ‘l’. Since these degrees of freedom
can be obtained using Eq. (5), the following equation can be written:

u f = N f (x)
[
I f ae +H f

Γd
ãe
]

at Γ
e
f , (8)

where N f is defined by:

N f (x) = N f (x)
[

Ne (xk) 0
0 Ne (xl)

]
, (9)

and I f and H f
Γd

are obtained by staking into rows the identity matrix and (HΓd I−HΓd),
respectively, evaluated at each node of the fibre.
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The strain field is derived by applying the standard differential operator L to
Eqs. (5) and (8), respectively leading to:

εεε
e = LeNe(x)︸ ︷︷ ︸

Be(x)

[ae +(HΓd I−HΓd) ãe] in Ω
e \Γ

e
d (10)

and
εεε

f = L fN f (x)︸ ︷︷ ︸
B f (x)

[
I f ae +H f

Γd
ãe
]

at Γ
e
f . (11)

The corresponding incremental stress is derived from:

dσσσ
e = DeBe(x) [dae +(HΓd I−HΓd)dãe] in Ω

e \Γ
e
d , (12)

dσσσ
f = D f B f (x)

[
I f dae +H f

Γd
dãe
]

at Γ
e
f , (13)

whereas the incremental traction at the discontinuity is obtained from Eq. (6) as:

dte = Ted[[u]]e = TeNe (x) ãe at Γ
e
d . (14)

In Eqs. (12) to (14), De, D f and Te are the tangent stiffness matrices of the bulk,
fibre element and discontinuity, respectively.

3.2. General kinematics
In this section, a detailed description of the enhanced displacement field is

provided. Further discussion on this topic can be found in [15, 22–24]. The
following derivations are obtained using the CGSDA [15]. Accordingly, the en-
hanced nodal degrees of freedom can be written as follows:

ãe = Mek∗
w we∗ , (15)

where we∗ is a vector containing the additional degrees of freedom due to the
discontinuity from all nel enriched neighbouring elements, and matrix Mek∗

w acts
as a means of transmitting the opening of the discontinuity to the regular nodes of
the finite element. Matrix Mek∗

w has the contribution of all enriched neighbouring
elements, such that each row Mei∗

w corresponds to the i-node of the element, and
is given by:

Mei∗
w = Me

w +
nel

∑
j=1, j 6=e

βββ
j{M j

w−Me
w
}
, (16)
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where βββ
j is a diagonal matrix for each node, containing β

j
xi terms for both direc-

tions (x1,x2), computed by:

β
j
xi
=

K j
i,xi

∑
nel
k=1 Kk

i,xi

. (17)

In Eqs. (16) and (17), K j
i,xi

is the stiffness matrix component of the bulk for
element j, direction xi. Me

w is the matrix transmitting both rigid and stretching
opening modes of Ωe+ over Ωe− [23], defined as:

Me
w = Me

Rw +Me
nRw, (18)

with

Me
Rw

=

1− (x2−xi
2)sinαe

d
le
d

(x2−xi
2)cosαe

d
le
d

(x2−xi
2)sinαe

d
le
d

− (x2−xi
2)cosαe

d
le
d

(x1−xi
1)sinαe

d
le
d

1− (x1−xi
1)cosαe

d
le
d

− (x1−xi
1)sinαe

d
le
d

(x1−xi
1)cosαe

d
le
d

 ,

(19)

Me
nRw

=

[
− se

n[1+cos(2αe
d)]

2 − se
n[sin(2αe

d)]
2

se
n[1+cos(2αe

d)]
2

se
n[sin(2αe

d)]
2

− se
n[sin(2αe

d)]
2 − se

n[1−cos(2αe
d)]

2
se

n[sin(2αe
d)]

2
se
n[1−cos(2αe

d)]
2

]
(20)

and

se
n =

s(x)
le
d

= (x1− xi
1)

cosαe
d

le
d

+(x2− xi
2)

sinαe
d

le
d

, (21)

where x = (x1,x2) is the global position of any material point inside the bulk,
(xi

1,x
i
2) is the global position of crack tip i, whilst le

d and αe
d are the length and

angle defining the discontinuity (see Fig. 2a).

3.3. Discretised equations
Eq. (15) can now be introduced in Eqs. (1), (6), (8) and (12) to (14), and then

used to discretise Eq. (4). By progressively taking: i) δdwe∗ = 0; and ii) δdae = 0,
the following system is derived:(

Ke
aa +K f

aa

)
dae−

(
Ke

aw +K f
aw

)
dwe∗ = dfe, (22)

−
(

Ke
wa +K f

wa

)
dae +

(
Ke

ww +Ke
d +K f

ww

)
dwe∗ = dfe

w, (23)
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where Ke
aa =

∫
Ωe\Γe

d
BeT DeBe dΩe, Ke

aw =
∫

Ωe\Γe
d

BeT DeBe
w dΩe, Ke

wa =
∫

Ωe\Γe
d

BeT
w DeBe dΩe,

Ke
ww =

∫
Ωe\Γe

d
BeT

w DeBe
w dΩe, Ke

d =
∫

Γe
d

NeT
w TeNe

w dΓe, K f
aa =

∫
Γ f

B f T D f B f A f dΓ f ,

K f
wa =

∫
Γ f

B f
w

T
D f B f A f dΓ f , K f

ww =
∫

Γ f
B f

w
T

D f B f
w A f dΓ f ,

and

Be
w = Be(HΓd I−HΓd)M

ek∗
w , (24)

B f
w = B f

(
I f ae +H f

Γd
ãe
)

Mek∗
w , (25)

Ne
w = Ne(HΓd I−HΓd)M

ek∗
w (26)

and A f is the area of the fibre.
The external forces are computed using the following equations, where the

self-weight of the fibre has been omitted:

dfe =
∫

Ωe\Γe
d

NeT b̄e dΩ
e +

∫
Γe

t

NeT t̄e dΓ
e, (27)

dfe
w =

∫
Ωe\Γe

d

NeT
w b̄e dΩ

e +
∫

Γe
t

NeT
w t̄e dΓ

e. (28)

Since this formulation is variationally consistent, symmetry is kept in the case
of symmetric constitutive laws.

3.4. Implementation issues
The distribution of fibres is herein considered to be a random process. The

coordinates of one of the tips of the fibre and corresponding angle are randomly
generated. After this step, the coordinates of the second tip of the fibre are directly
calculated using its length and angle. Only fibres generated inside the specimen
are considered valid. This process is carried out until reaching the pre-defined
dosage of fibres. Since the process of enrichment is exclusively built at element
level, whenever a fibre spans across more than one finite element, the fibre is
discretised into segments defined by the intersections with the edges of the bulk
elements.

In the case of elements not cracked, the system of Eqs. (22) and (23) is sim-
plified by deleting all terms related with dwe∗. The onset of crack localisation
is identified using a non-local stress state adopted in the vicinity of the crack tip
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[15, 25]. The algorithm used for crack propagation and to enforce path continuity
is detailed in [15]. The degrees of freedom of the additional nodes due to cracking
are global, thus jump and traction are continuous along the crack path [24].

4. Case study

The proposed formulation is herein applied to the simulation of experimental
results from Costa et al. [26]. The experiment consists on a three-point bending
beam and different dosages of steel fibres. The experimental set-up and corres-
ponding results are summarised in Section 4.1, whereas the numerical simulations
are discussed in Section 4.2.

4.1. Three point FRC bending beam
The experimental set-up is presented in Fig. 3a, and a typical failure mechan-

ism obtained during the tests is shown in Fig. 3b.

(a) (b)

Figure 3: Three point FRC bending beam: (a) test set-up; and (b) failure mechanism during a test.

The specimen is a 850 × 100 × 100 mm3 prism with a 20 × 50 × 100 mm3

mid-span notch at the bottom. Costa et al. [26] tested three different dosages of
steel fibres (0.25%, 0.50% and 1.00%), with two beams for each dosage, as well
as two reference beams without steel fibres. In Fig. 4, the load vs. mid-span ver-
tical displacement curves are presented for the tested specimens. From this figure
it can be concluded that the gradual increase of fibres leads to the modification
of the structural behaviour. For lower dosages the response is similar to a non-
reinforced concrete specimen, whereas for higher dosages the response becomes
more ductile, with an increased peak load.
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Figure 4: Three point FRC bending beam: experimental results for all specimens from [26].

According to Fig. 4, there is a significant difference between the two 0.50%
specimen responses. Unfortunately, the specimen with the lower peak load was
not properly produced in laboratory, which resulted in a different fibre distribution
(see Fig. 5). For this reason, this curve is not included in the analyses described
in the following section.

4.2. Numerical simulations
In Fig. 6a the structural scheme adopted for the numerical simulation is presen-

ted. The following concrete parameters were experimentally determined by Costa
et al. [26] for the mixture without fibres: Young’s modulus Ec = 24500 N/mm2;
compressive strength fc = 59.1 N/mm2; tensile strength ft0 = 2.0 N/mm2; frac-
ture energy GF = 0.05 N/mm; and Poisson’s ratio ν = 0.2. After localisation, the
discontinuity is assumed to follow a mode-I fracture exponential constitutive law.

The properties of the fibres are the following: diameter d f = 0.375 mm;
Young’s modulus E f = 200000 N/mm2; and Poisson’s ratio ν = 0.3. The con-
stitutive law includes the bond behaviour between steel fibres according with the
guidelines found in Model Code 2010 [27]. The law was obtained after a prelim-
inary numerical study using the specimens with 0.25% of fibres (see Fig. 7). The
fibres were then randomly distributed, as detailed in Section 3.4, considering ten
different distributions for each fibre dosage.

The mesh is composed of 901 bilinear elements and 4225 fibre elements in
the area of the notch, as shown in Fig. 6b for one of the three 0.25% models. The
number of fibres increases for the following two cases, reaching 8450 and 16900
fibre elements for 0.50% and 1.00%, respectively.
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(a) (b)

Figure 5: Three point FRC bending beam: fibre distribution on top of the notch for the specimens
with 0.50% of steel fibres: (a) wrong distribution in one specimen; and (b) adequate distribution
according to [26].

The arc-length method is used to enforce the monotonic growth of the normal
opening of the notch. Results shown in Figs. 8 to 10 reveal a similar crack path
among all models and dosages of steel fibres, which is in agreement with the
experimental observation. In Fig. 8 the crack path for one of the models with
0.50% of steel fibres is shown as example, with the fibres being omitted for clarity
purposes.

Comparison between experimental [26] and numerical results is shown in
Fig. 9, where the envelope for the ten considered distributions is shown in grey.
There is good agreement between experimental and numerical models, with sim-
ilar initial stiffness, peak load and post-peak ductile behaviour (see Table 1).

Peak load (N) Fracture energy (N/mm)
0.25% 0.50% 1.00% 0.25% 0.50% 1.00%

Exp. (Spec. 1) 951.0 1566.0 2472.0 0.8813 2.1738 4.2588
Exp. (Spec. 2) 1062.0 - 2691.0 1.2285 - 3.6471
Exp. (Average) 1006.5 1566.0 2581.5 1.0549 2.1738 3.9530
Num. (Average) 901.5 1470.4 2673.9 1.1009 2.0215 3.8246
|Error| 10.43% 6.11% 3.58% 4.36% 7.01% 3.25%

Table 1: Comparison between the experimental and numerical results, in terms of peak load and
fracture energy.
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(b)

Figure 6: Three point FRC bending beam: (a) structural scheme (100 mm width, dimensions in
mm); and (b) mesh adopted for one of the 0.25% models, showing a detail near the notch for one
of the three fibre distributions considered.
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Figure 7: Three point FRC bending beam: adopted constitutive law for the steel fibres.

Figure 8: Three point FRC bending beam: crack path for a steel fibres dosage of 0.50%

Table 1 contains experimental and numerical results concerning the peak load
and fracture energy, the latter computed according to [28]. The error is gener-
ally significantly below 10%, which denotes the good agreement of the numerical
model for all fibre dosages, regardless of the experimental variability expected in
this type of material.

In Fig. 10, the deformed mesh is shown with the corresponding principal stress
maps for three different stages with the steel fibre dosage of 0.50%. It is interest-
ing to note that the tensile bulb developing at the crack front gradually spreads
across larger areas with increasing fibre dosage, showing the bridging effect on
the propagating crack (see the details in Fig. 11). In all cases, the obtained stresses
are always below the tensile strength.

Observing Fig. 10 it is possible to conclude that the proposed formulation
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(a) (b)

(c) (d)

Figure 9: Three point FRC bending beam: load vs. mid-span vertical displacement curves for steel
fibres dosages of: (a) 0.00%; (b) 0.25%; (c) 0.50%; and (d) 1.00%

reproduces the stress field in the bulk, with the stresses gradually approaching
zero in the vicinity of the crack due to the debonding of steel fibres. Higher
stresses are visible in Figs. 10a and 10b in the central region of the specimen.
These peak values represent the bridging effect, which increases with the number
of fibres crossing the crack. It should be highlighted that these peak stresses are
smaller than the tensile strength for all tested dosages of fibres.

5. Conclusions

In this paper a new formulation was presented for the simulation of the beha-
viour of FRC structures. The innovative features include the discrete simulation
of both cracks and steel fibres, which are embedded into finite elements. Thus, the
formulation is entirely built at element level and remains variationally consistent.
Due to the discrete crack approach framework adopted, relatively coarse meshes
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(a)

(b)

(c)

Figure 10: Three point FRC bending beam: σ1 (N/mm2) map obtained for: (a) δv = 0.5 mm; (b)
δv = 3.0 mm; and (c) δv = 9.0 mm (displacements magnified 15 times).

can be used without the need for special regularisation techniques. It is high-
lighted that: i) no additional degrees of freedom are required to embed the fibre
elements; and ii) the fibre elements are considered during pre and post-cracking
stages. Bond between fibre and cementitious material is considered implicitly by
adopting a constitutive law derived from the Model Code 2010 [27].

The formulation was validated in the simulation of three-point FRC bending
beams. It is emphasised the good agreement between crack paths and load vs.
displacement curves, for all studied dosages of steel fibres. The model adequately
captures the initial stiffness of the experimental specimens during the pre-cracking
stage. Afterwards, both peak load and post-peak ductile behaviour are in accord-
ance with the experimental observations for increasing dosages of steel fibres. The
model shows the development of the tensile bulb surrounding the crack tip front,
which results from the bridging effect responsible for delaying the propagation
and softening of the tensile stress at the crack. This increases the ductility of the
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(a) (b) (c)

Figure 11: Principal stresses details at the specimen mid-span for the considered steel fibres
dosages: (a) 0.25%; (b) 0.50%; and (c) 1.00%

structural member. These results are quite promising and the authors will continue
developing this models towards the simulation of the distributed cracking forming
inside the tensile bulb for higher dosages of fibres. The possibility of introducing
the slippage of the fibres will also be addressed.
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