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Abstract 

An image deformation method is herein proposed to monitor the crack propagation in structures. The 

proposed approach is based on a computational algorithm that uses displacements measured by 

photogrammetry or image correlation to generate a virtual image of the surface, from an initial input to any 

given stage of analysis. This virtual image is then compared with the real image of the specimen to identify 

any discontinuities that appeared or evolved during the monitored period. The procedure was experimentally 

validated in the characterisation of crack propagation in concrete specimens. When compared with other 

image processing techniques, for instance based on edge detectors, the image deformation approach showed 

insensitiveness to any discontinuity previously existing on the surface, such as cracks, stains, voids or 

shadows, and did not require any specific surface treatments or lighting conditions. With this approach the 

global crack maps could be extracted from the surface of the structure and extremely small changes 

occurring within a given time interval could be characterised, such as the movement associated with the 

opening of cracks. It is highlighted that the proposed procedure is general and therefore applicable to detect 

and characterise surface discontinuities in different materials and test set-ups. 

Keywords: Image Deformation Approach; Monitoring cracks; Structural health monitoring; Discontinuity 

detection; Photogrammetry; Digital Image Correlation. 
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1. Introduction 

The mapping of cracks appearing at the surface of a structure is still frequently performed using a direct 

sketch based on visual observations, whereas the openings are evaluated by means of measuring magnifiers 

or crack width rulers. This rather empirical process is time-consuming and can face human errors. 

Fortunately, innovative technological developments have been recently brought-up to mitigate existing 

drawbacks [1]. Within these developments, three classes of new approaches can be identified which are 

based on the: i) strain field; ii) image processing; and iii) combination of both. The first approach identifies 

the areas of strain or curvature localisation related with cracks [2]. The strain can be calculated using the 

derivative of the displacement field measured by photogrammetry [3-7] and image correlation [2, 8-10], or 

using the electronic speckle pattern interferometry from two coherent laser beams pointed at the surface [5, 

11-14]. These techniques based on the strain field are still limited to indirect characterisation of cracks.  

The second approach mentioned above includes the use of image processing algorithms, such as edge 

detectors [15-17], transform-based methods and wavelets [18]. Most of these methods output a binarised 

image where any resulting discontinuities are roughly identified with a crack pattern. Unfortunately, shadows 

or imperfections can be wrongly identified as real cracks without a careful preparation of the surfaces and 

adequate lighting conditions.  

More complex image processing algorithms exist which: combine mathematical morphology operations to 

extract linear features from the image and a modified iterative Hough transformation to detect newly formed 

cracks in a time interval [19]; and emulate the percolation of a fluid using brightness and shape parameters to 

obtain a crack map [20]. Combined approaches may allow improved results. For instance, the strain field can 

be used to redirect image-processing algorithms towards areas with the highest strains, i.e. areas where 

cracking is expected to exist [21, 22]. Nevertheless, even with this approach, there are still false detections. 

One possible way to mitigate this issue could be the use of neural network classifiers [23]. 

It has to be highlighted though that the above-mentioned procedures have been developed for detecting crack 

patterns at each frame regardless of any previous propagation history. For this reason, changes occurring 

between given time intervals, such as the movement of each side of the crack, cannot be easily identified. In 

addition, most techniques can only be used in simple settings and under controlled conditions (to avoid false 

detections). 
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Taking into account all the above-mentioned drawbacks, this manuscript presents an image deformation 

technique for structural monitoring of cracks that is computationally efficient, insensitive to false 

discontinuities and lighting conditions, and that can support the identification of the crack evolution within a 

period of time, independently of surface treatments to enhance detection.  

2. Image Deformation Approach 

2.1. General remarks 

Consider an initial reference image frame. Given the displacement field function, ru , the current position of 

a pixel, cx , can be obtained from the following expression:  

c r r= +x x u , (1) 

where rx  are the coordinates of the pixel in the reference frame. 

The displacement field is a function of the reference position and is known for a set of discrete points using 

photogrammetry [3-5] or image correlation [8, 9]. A linear or nonlinear interpolation scheme is used to 

calculate the displacement values all over the surface [24-26]. With the displacement field function defined, 

Eq. (1) can be used to compute a virtual image frame for any given time instant (assumed hereafter as 

‘current’) that predicts how the structure should look like from the initial image of the surface (see 

Figures 1a and 1b). If there are no new events, such as cracks forming, propagating or opening between 

initial and current instants, the virtual image matches the current real image from the same surface. If these 

events indeed occur, then they can be characterised by comparing current real and virtual frames (see 

Figure 1c). It is highlighted that pre-existing cracks, shadows or surface imperfections are not misleadingly 

identified (see Figure 1d) using this approach since they will appear in both virtual and current frames. 
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 (a) (c) (d) 

Figure 1 – Image deformation approach: (a) reference frame; (b) current virtual frame obtained using the 

displacement function and real frame; (c) current real frame; and (d) difference between current virtual 

and real frames. 

2.2. Virtual frame computation 

The virtual frame can be computed from the measured displacements using different approaches. In this 

section, three options are discussed.  

2.2.1. Direct approach 

The current virtual frame can be built directly using Eq. (1) to move all pixels in the region of interest of the 

reference frame to the new positions defined by the displacement field. In this case, the following drawbacks 

occur: i) several pixels may be moved from the reference frame into the same pixel in the virtual frame – see, 

for instance, pixels ‘e’ and ‘f’ in Figure 2a; and ii) unfilled pixels may appear in the virtual frame – for 

instance, pixels ‘d’ and ‘e’ in Figure 2a have created a gap in the virtual frame. These situations can be 

avoided with _a subpixel approach (see Figure 2b). The drawbacks are the minimum subpixel size required 

to avoid gaps and overlaps not being known beforehand, and the number of operations involved, which can 

become computationally demanding.  

   

(a) (b) (c) 

Figure 2 – Virtual frame computation: (a) direct pixel approach; (b) direct subpixel approach; and 

(c) inverse subpixel approach. 

Figures 3a and 3b represents the real frame and corresponding virtual frame calculated without subpixel 

accuracy. It is interesting to denote that the virtual frame is almost identical to the real current frame and 

shows the same overall deformed shape with the exception of cracks that propagated or formed. In this way 
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crack patterns can easily be characterised, as it will be shown in the following sections. Figure 3c provides a 

magnified detail of the virtual frame where gaps are noticeable. 

 

 

(a) (c) 

 

 

(b) (d) 

Figure 3 – Direct approach: (a) current real frame; (b) current virtual frame; (c) detail of the virtual frame; 

and (d) same detail using subpixel accuracy. 

The gaps can be reduced with subpixels. For instance, in Figure 3d, each pixel is subdivided into 9 equal 

subdomains or subpixels, in which case the processing time grows from 1.5s to 104.8s for a region of interest 

of approximately 1300 x 3800 pixel. Figure 4 illustrates computing time vs. different pixel sizes. 

 
Figure 4 – Direct approach: computing time vs. pixel size. 

2.2.2. Inverse approach 

An inverse approach can be followed by progressively filling all pixels in the virtual image frame 

(Figure 2c). This requires solving a system of equations for each pixel inside the virtual frame to identify its 

initial position in the reference frame. This approach can be regarded as an optimised subpixel approach 

(compare Figures 2b and c). Accordingly, Eq. (1) can be cast in the following form: 



6 

 

( ) ( )r c r r r− + =  =x x u x 0 F x 0 , (2) 

and a Newton-Raphson procedure is adopted to solve for rx . 

If 
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The Newton-Raphson procedure is repeated until ( )1 0.5i
r
+ =F x . This tolerance is enough to assure fast 

convergence.  

Figure 5 contains the result for the example used in the previous section, with a total computing time of 3.6s.  

 

 

(a) (b) 

Figure 5 – Inverse approach: (a) current virtual frame; and (b) detail of the virtual frame. 

2.2.3. Simplified approach 

As mentioned in Section 2.2, ru  is a function of the reference coordinates of the pixel. A simplified 

approach can be obtained if the displacement field is interpolated in the virtual frame with the set of scattered 

photogrammetric or image correlation points used to measure displacements. The displacement function, 

now symbolically written as ( )cru x , represents an interpolation of this data within the virtual frame. 

Although approximate, this procedure avoids solving the system of equations in the previous section, as the 

position of the pixel in the reference frame can be directly calculated from: 

( )r c r c= −x x u x  (5) 
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and the corresponding image data is transferred to position cx
 
in the current virtual frame.  

The total required time for computing the example from the previous sections was 2.3s and the result is 

similar to the one in Figure 5. 

2.3. Identification of crack events  

As discussed in Section 2.1, any change occurring between initial and current time frames can be 

characterised by directly computing the difference between virtual and real current frames. Figures 6a and 6b 

are the result after subtracting Figure 3a to Figure 5a (inverse colours have been used for clarity).  

The resulting map can be superimposed with the real current frame to highlight all crack events, leading to 

Figures 6c and 6d. Note that the current real frame was made darker to increase contrast. Any initially 

existing discontinuity such as a crack, a shadow, a surface imperfection or even painted targets, are not 

misleadingly identified, because they appear in both virtual and real frames. 

 

 

(a) (b) 

 

 

(c) (d) 

Figure 6 – Crack events: (a) difference between virtual and real current frames; (b) detail; (c) results 

superimposed with the current real frame; and (d) detail. 

3. Case studies 

This section contains two experimental tests to illustrate the method. For each experimental test, only the 

most relevant information is given. Sections 3.1.1 and 3.2.1, designated “Preliminary considerations”, 
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contain all information related with each test procedure, including image acquisition, target detection and 

error assessment. All issues strictly related with the image deformation and its results are thoroughly 

presented in Sections 3.1.2 and 3.2.2, designated “Image Deformation Approach”. 

3.1. Lightweight high-strength concrete beam 

This section describes a flexural test on a high-strength lightweight concrete beam with a density of 

1870 kg/m3 and a mean compressive strength of 51 MPa at 28 days of age. The structural scheme, load and 

boundary conditions are represented in Figure 7a. The cross-section of the beam is represented in Figure 7b, 

including the S500 steel reinforcement bars. More details can be found in [27]. 

 
  

(a) (b) 

Figure 7 – Lightweight high-strength concrete beam: (a) structural scheme, load and boundary conditions; 

and (b) cross-section (dimensions in cm) 

The survey area is schematically represented in Figure 7a, whereas the corresponding image frames are 

shown in Figure 8 for all selected instants. These are also represented in the load vs. vertical displacement 

curve depicted in Figure 9a.  

3.1.1. Preliminary considerations 

No special attention was given to lighting conditions. A regular digital camera was installed on a tripod at 

approximately 180 cm from the surface of the specimen and triggered using a remote shutter. All images 

were acquired at maximum resolution, i.e., 4608×3072 pixel and 48-bit depth, using a 55 mm focal length 

lens. 

The displacement field at the surface of the specimen was measured using photogrammetry [3-5]. For that 

purpose, circular targets with 5 mm diameter were painted with centres placed according to a regular grid of 

20 mm. The Hough transform was used to detect the geometrical centre of all targets, for all defined stages (a 

complete description of the procedure can be found in Ballard [28]). In this first experimental test, the 

surface of the specimen was painted white for higher contrast. 
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 8 – Lightweight high-strength concrete beam: (a) stage 0; (b) stage 1; (c) stage 2; (d) stage 3; and (e) stage 4. 

Immediately before starting the test, ten images were acquired within a short period of time. These images 

were later used to assess the target detection error and to scale and align all subsequent images using a 

homography (more details in [29-31]). The displacement field was computed at each stage by measuring the 

coordinates relatively to any selected reference frame.  

The load vs. vertical displacement measured by LVDT at mid-span (see Figure 7a) is represented in 

Figure 9a. The displacement for the target closer to the LVDT is also represented in the same image for all 

stages. Figure 9b shows the high correlation between LVDTs and photogrammetry for the three control 

points (represented in Figure 7a) in all stages. This validates the displacement field measured by 

photogrammetry.  

The ten images acquired at the beginning of the test allowed computing the error in the homography, which 

is measured by the difference between real target coordinates (defined by the known grid spacing) and the 

coordinates averaged from the image, and the root mean square precision from the differences found in each 

of the ten images for the coordinates of each target. The homography error was on average 0.177 mm, 

whereas the minimum and maximum values were, respectively, 0.068 mm and 0.806 mm. Since this is a 
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systematic error affecting the real coordinates of each pixel, it tends to vanish when computing relative 

displacements. Consequently, the error in the displacements is considered to be exclusively due to the target 

detection algorithm. This error was on average 0.037 mm, having a minimum of 0.013 mm and a maximum 

of 0.019 mm. Figures 10a and 10b show the representation of both errors along x- and y-axes. 

  
(a) (b) 

Figure 9 – Lightweight high-strength concrete beam: (a) load vs. vertical displacement; (b) 

Photogrammetry vs. LVDT. 

Finally, all images were aligned and scaled to 1:4 using the homographic parameters, since the mean 

resolution of the original image frames was circa 0.25mm/pixel.  

The displacement field at the surface was linearly interpolated by means of a Delaunay triangular mesh using 

all available targets.  

  
(a) (b) 

Figure 10 – Lightweight high-strength concrete beam: (a) precision; and (b) error in the homography 

along x- and y-axes. 

3.1.2. Image Deformation Approach 

The procedure is herein applied using the simplified approach discussed in Section 2.2.3 and stage 0 the 

reference frame (Figure 8a) for subsequent stages (Figures 8b to 8e). As discussed in Section 2.3, the 

difference between virtual and current real frames was computed and superimposed to the real current frame. 

All results are represented in Figures 11 to 13. 
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Cracks initially appearing in stage 1 are barely noticeable in Figure 11a. Nevertheless, the image deformation 

approach was capable of detecting discontinuities above 1 pixel width (compare Figures 12a and 12b, or 

Figures 13a and 13b). Furthermore, it appears insensitive to pre-existing imperfections at the surface, such as 

the vertical line clearly seen in the specimen (e.g. Figure 11a) or even the painted targets, which vanish in the 

analysis. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 11 – Lightweight high-strength concrete beam – real current frame and crack events (highlighted in white), 

respectively: (a) and (b) stage 1; (c) and (d) stage 2; (e) and (f) stage 3; (g) and (h) stage 4. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 12 – Lightweight high-strength concrete beam – left region of interest in the real current frame and 

corresponding crack events (highlighted in white), respectively: (a) and (b) stage 1; (c) and (d) stage 2; (e) 

and (f) stage 3; (g) and (h) stage 4. 

The method is now applied to stage 4 (Figure 8e) assuming stage 3 (Figure 8d) as reference. This procedure 

allows monitoring any ‘non-smooth’ event occurring between those two stages. Results are represented in 

Figures 14 to 16. Between the two monitored stages, the cracks on the right side of the specimen remain 

practically unchanged – see Figures 14a and 14b. For this reason, Figure Error! Reference source not 

found.c does not highlight any crack in that region.  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 13 – Lightweight high-strength concrete beam – right region of interest in the real current frame 

and corresponding crack events (highlighted in white), respectively: (a) and (b) stage 1; (c) and (d) stage 

2; (e) and (f) stage 3; (g) and (h) stage 4. 

 

The two regions of interest marked in Figure 14 are represented in Figures 15 and 16. From these Figures, 

the discontinuous changes between the two selected stages of analysis can be identified by the image 

deformation approach. For instance, for the crack represented in Figure 15b at the middle, only the left edge 

opened between stages 3 and 4, being the right edge almost unchanged. The right crack in Figure 16b opened 

practically symmetrically in the lower part, whereas the edge is the one opening at the middle and upper 

regions of interest. Up to the authors’ knowledge, this is the only existing approach capable of performing 

such analysis. Visually, these changes are nearly impossible to detect. 
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(a) 

 
(b) (c) 

Figure 14 – Lightweight high-strength concrete beam – crack events (highlighted in white) in: stages 3 and 4, 

respectively (a) and (b), taking stage 0 as reference; and (c) stage 4, taking stage 3 as reference. 

 

  
(a) (b) 

Figure 15 – Lightweight high-strength concrete beam – crack events (highlighted in white) in the left 

region of interest in stage 4, taking: (a) stage 0; and (b) stage 3, as reference. 

Finally, since the obtained frames are scaled 1:4, any measurement related with the geometry of cracks (e.g. 

crack width, length, area or path) can be obtained for any stage of loading (see for instance [32]).  

  
(a) (b) 

Figure 16 – Lightweight high-strength concrete beam – ‘non-smooth’ events (highlighted in white) in the 

right region of interest in stage 4, taking: (a) stage 0; and (b) stage 3, as reference. 
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3.2. High strength concrete beam 

This section describes the application to a shear test performed on a high-strength prestressed concrete 

(HSC) beam. The corresponding structural scheme, load and boundary conditions are represented in 

Figure 17a.  

The cross-section of the beam was ‘I’-shaped with 50 cm height, the bottom flange was 30 cm wide with 

thickness ranging from 7.5 to 10.0 cm, whereas the upper flange, also 30 cm wide, had a thickness varying 

between 6.0 to 6.5 cm (see Figure 17b). Twelve adherent strands were placed at the bottom flange, whereas 

the upper flange contains two non-adherent strands. The prestress was released at the age of 7 days, whereas 

the experimental shear test was performed at 6 years of age. The HSC presented an average compressive 

strength of 120 MPa at 28 days of age [33]. 

 
 

 
(a) (b) 

Figure 17 – Prestressed HSC beam: structural scheme, load and boundary conditions; and (b) cross-

section (dimensions in cm) 

Figure 18 shows the surveying area identified in Figure 17a for all monitored instants. These are also 

represented in the load vs. vertical displacement curve in Figure 19a.  

This test has been selected due to the poorly treated surface, which presented several initial imperfections 

(see Figure 18). Therefore, this is a demanding test regarding the robustness of the approach.  

3.2.1. Preliminary considerations 

The procedure adopted is the same as described in Section 3.1.1. For this reason, only the main aspects and 

differences are mentioned herein. In this case, the camera was installed at approximately 90 cm from the 

surface of the specimen and images were acquired at maximum resolution, i.e., 4608×3072 pixel and 48-bit 

depth, using a 55 mm focal length lens. The diameter of each target painted at the surface was 10 mm and the 

centres defined a grid with 25 mm spacing – see Figure 18. 
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(a) (b) 

  
(c) (d) 

Figure 18 – Prestressed HSC beam: (a) stage 0; (b) stage 1; (c) stage 2; and (d) stage 3. 

Figure 19a presents the load vs. displacement at the target nearer to the LVDT (see Figure 17a), whereas 

Figure 19b shows the high correlation between the two.  

  
(a) (b) 

Figure 19 – Prestressed HSC beam: (a) load vs. vertical displacement; (b) photogrammetry vs. LVDT. 

The homography error and precision are represented in Figure 20. In this case, the homography error was on 

average 0.162 mm, whereas the minimum and maximum values were, respectively, 0.086 mm and 

0.293 mm. The precision was on average 0.042 mm, having a minimum of 0.022 mm and a maximum of 

0.075 mm. 
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Figure 20 – Prestressed HSC beam: error in the homography and precision along x- and y-axes. 

3.2.2. Image Deformation Approach 

Following the same procedure presented in Section 3.1.2, results are represented in Figures 21 to 23. Figure 

21 compares the real current frame and the ‘non-smooth’ events detected when subtracting the real from the 

virtual current frames. Two selected areas, both on the left and right sides of the monitored area, are 

magnified and shown in Figures 22 and 23. These areas are identified in Figure 21 using dashed lines. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 21 – Prestressed HSC beam – real current frame and frame containing the crack events (highlighted 

in white), respectively: (a) and (b) stage 1; (c) and (d) stage 2; (e) and (f) stage 3. 
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Similarly to what was already observed in Section 3.1.2, the image deformation approach allows detecting 

initial cracks slightly above 1 pixel width already in stage 1. These cracks are very hard to identify visually 

(see Figure 21a and compare Figures 22a and 22b, or Figures 23a and 23b).  

The main conclusion to retain is the fact of the approach being practically insensitive to shadows created by 

gradually varying lighting conditions (e.g. a shadow appears in Figure 21c, but not in Figure 21f) and, more 

importantly, to any surface imperfection such as stains, voids or small damages initially present at the 

surface of the specimen. This means that the approach is particularly robust and does not require any specific 

preparation of the surface. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 22 – Prestressed HSC beam – detail on the left of the real current frame and the frame containing 

the crack events (highlighted in white), respectively: (a) and (b) stage 1; (c) and (d) stage 2; (e) and (f) 

stage 3. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 23 – Prestressed HSC beam – detail on the right of the real current frame and the frame containing 

the ‘non-smooth’ events (highlighted in white), respectively: (a) and (b) stage 1; (c) and (d) stage 2; (e) 

and (f) stage 3. 

4. Conclusions 

In the scope of structural health monitoring, surface cracks are still frequently mapped by sketches based on 

visual observations, being the crack openings evaluated by means of measuring magnifiers or crack width 

rulers. This rather empirical process is time-consuming and prone to human errors. Furthermore, it is very 

difficult to monitor crack propagation and evolution through time.  

Different procedures have recently been proposed to overcome, or at least mitigate, the above-mentioned 

drawbacks. Nevertheless, in spite of the technological developments, nearly all procedures present 

limitations in what concerns monitoring crack propagation within a time interval. Typically, the crack pattern 

is depicted for each time instant independently from any previous history and is not possible to accurately 

identify changes occurring within a given time interval. Most existing techniques can only be applied in very 

simple tests, under strictly controlled conditions regarding surface and lighting conditions, mainly to avoid 

false detections. 

A different monitoring strategy is followed in this manuscript, which is based on an image deformation 

approach. With this approach, an initial reference image is deformed to match a given stage of analysis using 
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the real displacements provided by photogrammetry or image correlation. Both deformed (virtual) image and 

current real images should match, except if new crack events happened since acquiring the reference picture. 

These changes include new cracks, crack propagation and openings, and can be straightforwardly identified 

by comparing both virtual and real frames.  

The approach was applied to monitoring crack propagation in concrete members, herein used as case studies. 

Following this study, it could be observed that the approach is computationally efficient, requires reduced 

computational time and is insensitive to any discontinuity previously existing at the surface, such as cracks, 

stains, voids or shadows. No special lighting conditions are required to enhance results and the process of 

crack propagation. In fact, the crack opening/closure occurring within selected time interval can be 

adequately characterised without specific surface treatments to enhance detection. Finally, it should also be 

mentioned that the approach can provide good results in relatively large surveying areas and is not 

constrained to concrete cracks. Similar procedure can be applied to different materials with the purpose of 

detecting and characterising multiple sources of surface discontinuities within the range of the camera 

resolution.  
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