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Abstract 

Driving is a highly valued daily living activity easily disrupted by illness, injury, or 

age-related changes. General practitioners (GPs) are ultimately responsible for determining 

medical fitness to drive but lack valid and reliable tools. The desktop (original) version of 

DriveSafe DriveAware (DSDA) is a promising, valid and reliable test but it is not practical 

for medical practice. The concern of this thesis was the conversion of original DSDA into a 

touchscreen test of cognitive fitness to drive for GPs and occupational therapists to use in 

predicting patient driving performance without on-road testing.  

Because we were transitioning from a test administered and scored by a trained 

assessor to one where patient touch responses were scored in-app, we needed to develop an 

automatic data collection and scoring system that reflected the decision that would otherwise 

have been made by an expert-rater. We tested usability of the system with older adults then 

examined set scoring parameters to determine if these discriminated at-risk from comparison 

drivers. Results indicated the system we designed reflected the decisions that would have 

been made by a trained assessor. 

Next, we conducted a study to examine the internal validity, reliability, and predictive 

validity of data gathered with touchscreen DSDA. The criterion measure was outcome of a 

standardised occupational therapy on-road assessment. Rasch analysis provided evidence that 

touchscreen DSDA had retained the strong psychometric properties of original DSDA. 

However, results of a discontinued feasibility study indicated potential barriers to uptake of 

the test by physicians. Touchscreen DSDA may rather be a tool for occupational therapists to 

use in driver screening and addressing the community mobility need of their clients. Research 

indicates no there is no one best tool for screening fitness to drive. However, the thesis 

findings indicate touchscreen DSDA is one useful tool.
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CHAPTER 1 

Background to the Research 

People in many cultures consider driving as one of their most-valued instrumental 

activities of daily living (IADLs) (i.e., the often-complex activities that support daily life in 

the home and community) (Al-Hassani & Alotaibi, 2014; Dickerson, Reistetter, & Gaudy, 

2012; Fricke & Unsworth, 2001). Driving is important for maintaining independence and 

connectedness to the community and for providing a sense of self-worth and self-

determination (Donorfio, D'Ambrosio, Coughlin, & Mohyde, 2009; White et al., 2012). 

Gaining a license is considered a rite of passage for the young and older drivers want to drive 

for as long as possible, often with no plan for cessation (Coxon & Keay, 2015; Kostyniuk & 

Shope, 2003). However, driving is complex and therefore easily disrupted by illness, injury, 

or age-related changes. The presence of chronic and multiple medical conditions, particularly 

among older drivers, is associated with increased crash risk and driving errors (Barco et al., 

2015; Charlton et al., 2010; Dobbs, Heller, & Schopflocher, 1998; Kay, Bundy, Clemson, & 

Jolly, 2008; Marshall, 2008; Marshall & Man-Son-Hing, 2011; Molnar, Patel, Marshall, 

Man-Son-Hing, & Wilson, 2006; Papa et al., 2014). Despite this, researchers recommend 

fitness to drive is determined on an individual level, with a focus on functional status rather 

than diagnosis (Charlton et al., 2010; Dickerson et al., 2017; Dickerson et al., 2007; Laycock, 

2011; Marshall, 2008; Marshall & Man-Son-Hing, 2011). ‘Fitness to drive’ is a driver 

characteristic defined by the absence of a medical condition or functional deficit (physical, 

cognitive or sensory-perceptual) that significantly increases crash risk or significantly impairs 

ability to control a vehicle and conform to road laws (Transportation Research Board, 2016). 
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The Need for Driver Screening 

“Assessing Fitness to Drive” (Austroads & National Transport Commission, 2016) 

provides physicians in Australia and New Zealand with a decision-making guideline 

regarding fitness to drive for patients with medical conditions. These guidelines indicate that 

a practical on-road assessment may be required to determine fitness to drive (Austroads & 

National Transport Commission, 2016). On-road assessments, usually conducted by 

occupational therapists with specialised training, are generally considered optimal for 

determining fitness to drive because functional driving performance is assessed in real traffic. 

Therefore, the test has high acceptability (Kay, Bundy, Clemson, et al., 2008; Langford, 

2008; Laycock, 2011; Wheatley & Di Stefano, 2008). On-road assessment is ideal for 

patients where there is uncertainty regarding fitness to drive, where vehicle modifications 

may be required, or where it is clear the patient will benefit from a driver rehabilitation 

programme (Dickerson, Reistetter, Davis, & Monahan, 2011; Kay, 2008). However, it is not 

practical for all drivers who have a medical condition to undergo an on-road assessment due 

to cost, waiting times, and a limited number of qualified assessors (Dickerson & Bédard, 

2014; Dickerson et al., 2011; Kay, Bundy, & Clemson, 2009a). A first-level screen is 

required to allow identification of patients who are either clearly fit or unfit to drive, avoiding 

unnecessary referral to driving clinics for these groups (Bédard & Dickerson, 2014; 

Dickerson, 2014b; Dickerson & Bédard, 2014; Kay, Bundy, & Clemson, 2008; Korner-

Bitensky, Toal-Sullivan, & von Zweck, 2007b; Molnar, Byszewski, Marshall, & Man-Son-

Hing, 2005). If a first-level screen with good predictive ability existed, patients identified as 

not fit could be advised to discontinue driving and may use their time and monetary resources 

in other ways (e.g., for alternative transport). Patients identified as fit could return to driving 

without unnecessary and expensive testing (Bédard & Dickerson, 2014). Only drivers with 

inconclusive results would require referral for on-road testing, ensuring limited driving clinic 
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resources are dedicated to those with uncertain outcomes or who will benefit from driver 

rehabilitation (Gibbons et al., 2017).  

Driver screening is primarily of benefit for determining cognitive fitness to drive 

because drivers with physical impairments often still require referral to driving clinics to 

determine if vehicle modifications or license restrictions are needed (Kay, 2008). For more 

than 25 years, researchers have examined clinical tests to identify a cognitive screen that can 

accurately predict driving performance without testing drivers on-road (Kay, Bundy, 

Clemson, Cheal, & Glendenning, 2012). The desk top (original) version of DriveSafe 

DriveAware (DSDA) is one test that has shown sufficient sensitivity and specificity to 

accurately predict on-road performance (Allan, Coxon, Bundy, Peattie, & Keay, 2015; Hines 

& Bundy, 2014; Kay, Bundy, & Clemson, 2008; Kay et al., 2009a; Kay, Bundy, & Clemson, 

2009b; Kay et al., 2012) and test-retest reliability (O'Donnell, Morgan, & Manuguerra, 2018). 

Scores trichotomise drivers into “unsafe”, “further testing”, and “safe” categories. In this 

research, safe driving was operationalised as meeting license authority standards for driving 

with no intervention required; unsafe driving represented failure to meet license authority 

guidelines for driving and assessor judgement that the participant had no potential for 

improvement (Kay, Bundy, & Clemson, 2008; Kay et al., 2009a). The original DSDA 

identifies safe drivers with a sensitivity of between 91% and 93%, unsafe drivers with a 

specificity of 96%, and correctly classifies 90% of drivers (Hines & Bundy, 2014; Kay et al., 

2009a). Driver-trained occupational therapists have used original DSDA, and its precursor 

test Visual Recognition Slide Test (VRST), as part of a clinical assessment of cognitive 

fitness to drive in Australia for more than 25 years (Kay, Bundy, & Clemson, 2008).  

General practitioner context. Administration of original DSDA is limited to driver-

trained occupational therapists because verbal responses need to be interpreted by a trained 
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professional (Kay & Bundy, 2009). In most countries, general practitioners (GPs), rather than 

occupational therapists, are the professionals ultimately responsible for determining fitness to 

drive for older and medically impaired drivers. GPs are in an ideal position to screen drivers 

because patients usually present to them in the first instance; they are required to fill out 

license authority medical forms (Dobbs et al., 1998; Sims, Rouse-Watson, Schattner, 

Beveridge, & Jones, 2012); and there is mandatory reporting of medically ‘at risk’ drivers in 

jurisdictions of many countries including the US, Canada, and Australia (Austroads & 

National Transport Commission, 2016; Jang et al., 2007). Surveys show that GPs believe 

they should be responsible for making determinations about medical fitness to drive but lack 

valid and reliable driver screens that are practical for use in medical practice (Classen et al., 

2016; Dobbs et al., 1998; Fildes, 2008; Jang et al., 2007; Marshall, Demmings, Woolnough, 

Salim, & Man-Son-Hing, 2012; Molnar et al., 2006; Sims et al., 2012; Wilson & Kirby, 

2008; Woolnough et al., 2013; Yale, Hansotia, Knapp, & Ehrfurth, 2003).  

The original DSDA is a promising screen for GPs because it is face valid, sufficiently 

predictive for trichotomising patients (i.e., “safe”, “requires further testing”, and “unsafe”) 

via two evidence-based cut-off scores and was developed against the optimum criterion 

measure of a standardised occupational therapy on-road assessment. However, the original 

version of DSDA is not suitable for medical practice because it takes 20-30 minutes and 

requires a trained administrator using a data projector and screen. The DSDA authors, Dr 

Lynn Kay and Professor Anita Bundy, recognised the need to convert the test to touchscreen 

so it was suitable for general practice (Kay, 2008). The process of conversion of original 

DSDA into a brief, valid, and practical driver screen for GPs is the subject of this thesis. GPs, 

medical specialists, and licensing authorities often refer to occupational therapists for further 

assessment of patient fitness to drive where the outcome of driver screening is uncertain. 

Therefore, occupational therapists also have an important role in predicting patient fitness to 
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drive. 

Occupational therapy context. Driver assessment and rehabilitation is recognized as 

an important practice domain for occupational therapists (American Occupational Therapy 

Association, 2014; Canadian Association of Occupational Therapists, 2009; Occupational 

Therapy Australia, 2015). The profession is widely recognized as a leader in the field: 

contributing significantly to the development of clinical practice guidelines, assessment 

protocols, position and consensus statements, standardised assessments, and theoretical 

constructs of driving behaviour (American Occupational Therapy Association, 2014; Bédard 

& Dickerson, 2014; Canadian Association of Occupational Therapists, 2009; Carr, 

Schwartzberg, Manning, & Sempek, 2010; Di Stefano & Macdonald, 2010; Dickerson, 2013, 

2014b; Kay et al., 2009a; Kay, Bundy, Clemson, et al., 2008; Occupational Therapy 

Australia, 2015; Patomella, Tham, Johansson, & Kottorp, 2010; Vrkljan, Myers, Crizzle, 

Banchard, & Marshall, 2013).  

Occupational therapists in Australia and New Zealand are required to attend 

additional training for certification to conduct on-road assessments (designated as “driver-

trained occupational therapists”) (Austroads & National Transport Commission, 2016; 

Occupational Therapy Australia, 2015). However, it is important for all occupational 

therapists to address driving regardless of their area of expertise because driving is a critical 

IADL (Dickerson, 2013; Dickerson & Bédard, 2014; Dickerson, Meuel, Ridenour, & Cooper, 

2014; Vrkljan, McGrath, & Letts, 2011). Occupational therapists who are not driver-trained 

are frequently asked to address driving with their patients. This includes advising medical 

teams regarding fitness to drive, identifying which patients require further testing, advising 

patients and family regarding community mobility options, and providing patient support in 

cessation of driving (Dickerson, 2013, 2014b; Korner-Bitensky et al., 2007b). Researchers 
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(Bédard & Dickerson, 2014; Dickerson, 2014b; Korner-Bitensky, Toal-Sullivan, & von 

Zweck, 2007a; Vrkljan et al., 2011) asserted that occupational therapists who are not 

specialists in driving have the skill and competence to apply screen results to determine 

fitness to drive for those at the extremities (i.e., clearly fit or unfit to drive); and can 

determine if, and when, to refer to specialist services. All occupational therapists need to 

understand how to appropriately screen fitness to drive (Dickerson, 2013; Dickerson & 

Bédard, 2014; Dickerson et al., 2011) and require access to suitable and valid cognitive 

fitness-to-drive tools so reliable advice is given in this high-stakes area and patients are not 

subjected to extensive cognitive testing unsuitable for predicting driving performance 

(Dickerson, 2013; Vrkljan et al., 2011).  

Survey results have indicated that many driver-trained occupational therapists are not 

confident using clinical tools alone to determine fitness to drive, preferring to take patients 

on-road regardless of the outcome of off-road testing (Korner-Bitensky, Bitensky, Sofer, 

Man-Son-Hing, & Gelinas, 2006; Korner-Bitensky, Sofer, Gelinas, & Mazer, 1998; Vrkljan 

et al., 2013). This is consistent with clinical practice in Australia and New Zealand where all 

drivers referred for a driving assessment are typically taken on-road. Respondents in one 

study indicated that on-road assessment was always conducted because it was not possible to 

predict driving performance regardless of how poorly patients performed off-road and 

because patients and family would not accept license cancellation unless based on results of a 

practical driving test (Korner-Bitensky et al., 1998). However, researchers (Dickerson & 

Bédard, 2014; Kay et al., 2009a; Korner-Bitensky & Sofer, 2009) have proposed that on-road 

testing should not be automatic due to the risk of collision, and the pressure to ensure health 

services reflect best practice and are cost effective. Surveys have indicated significant 

variation in off-road assessment clinical practice among clinicians, with low use of 

computerised assessments and selection of tests that may not be evidence-based or driving 
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related (Dickerson, 2013; Korner-Bitensky et al., 2006). Whilst the focus of this thesis is on 

the development of a driver screen for GPs, I hope the research will also provide driver-

trained occupational therapists with a valid, driving related clinical screen to minimize 

unnecessary and expensive on-road testing: thus ensuring on-road assessment and 

rehabilitation are available for those who will benefit most. This is particularly important in 

Australia where health service providers are increasingly reluctant to subsidise the cost of 

driver assessment and require driving clinics to be self-funding.  

Personal statement. The research reported in this thesis developed out of my 

experience as an occupational therapist specialising in driver assessment and rehabilitation. I 

had used the original version of DSDA and VRST in my clinical assessment of patient fitness 

to drive since 1999. I had participated in DSDA and VRST research as a staff member in the 

Driver Rehabilitation & Fleet Safety Services Clinic at The University of Sydney. Pearson 

published the original version of DSDA as a cognitive fitness-to-drive assessment for driver-

trained occupational therapists in 2009. Pearson and the DSDA authors recognised the need 

to convert the test to touchscreen so GPs could use it as a screen to guide decision making 

regarding patient fitness to drive (Kay, 2008).  

I was employed by Pearson Australia to project manage the touchscreen DSDA 

conversion in 2012. My brief was to convert original DSDA into a short, valid, accurate, 

touchscreen test suitable for a broad range of diagnostic groups, not tied to the Australian 

context, and user-friendly for GPs, occupational therapists and other health professionals. 

This involved changing the test from one requiring a trained administrator using a computer, 

data projector and screen, to one that was largely self-administered via iPad by health 

professionals without specialised training. The challenge was to keep the touchscreen version 

as similar as possible to the original version, whilst retaining the test’s predictive validity and 
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reliability. Pearson agreed for this project to be conducted as a PhD under the supervision of 

Professor Anita Bundy at The University of Sydney. Professor Bundy is an author of DSDA 

and receives royalties from sale of the test. While she had a vested interest in the completion 

of the project, pass or fail of the thesis was determined by external examiners. Further I was 

hired by Pearson to develop a valid and reliable iPad application but Pearson were not 

invested in me receiving a pass mark on the thesis per se. 

As an employee of Pearson and project manager for the conversion of original DSDA 

to touchscreen, I had vested interest in the success of the project. However, I was not 

involved in the data collection at the participating driving clinics based around Australia and 

New Zealand. I collected data for four cases via my Sydney-based driving clinic, Rehab on 

Road. As with all assessors, I was blind to the results of touchscreen DSDA at the time of the 

assessment. The statistical analysis was initially conducted by Haijiang Kuang, Senior 

Psychometrician at Pearson US, to comply with Pearson’s policy that all statistical analysis 

for all products is conducted internally prior to publication to ensure accuracy and validity. 

Statistical accuracy and validity were also checked by my three university supervisors.  

Thesis Overview 

Chapter 2 comprises a critical review of existing driving models that I conducted to 

identify key concepts and mechanisms potentially underlying DriveSafe performance so I 

could retain these in the digital DSDA test conversion. Generally, tests are developed to 

reflect a model. However, VRST was developed over 25 years ago by an occupational 

therapist trying to develop a clinical assessment to reflect real-world driving situations. In 

retrospect, I wished to examine existing driving models to place the touchscreen DriveSafe 

subtest within the context of an overall driving model. 
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Chapter 3 comprises a critical review of the literature that I conducted to determine if 

GPs needed a fitness-to-drive screen to justify project funding, and to identify how such a 

screen should be designed. I identified existing fitness-to-drive tools, evaluated whether these 

were sufficiently accurate to predict driving performance, and determined whether these tests 

were feasible for medical practice. I also identify suitable touchscreen test design criteria for 

GPs to inform digital DSDA design and research project design. 

Chapter 4 comprises an extended methodology in which I describe the process of 

developing touchscreen DSDA, including identification of suitable test design criteria to 

ensure the screen was optimally designed for the intended context (general practice), the 

intended administrators (GPs and other health professionals), and the group most likely to 

take touchscreen DSDA (older adults).  

Chapter 5 comprises a manuscript titled “Usability testing of touchscreen DriveSafe 

DriveAware with older adults: A cognitive fitness-to-drive screen”. This study was 

conducted to test usability of touchscreen DSDA with older adults concurrently with the iPad 

application (app) design, programming, and evaluation. I sought to make the touchscreen 

version of DSDA as similar as possible to the original version in order to retain validity. 

However, I was transitioning from a test administered by a trained assessor who interpreted 

and scored patient verbal responses, to a test where patient touchscreen responses were 

scored automatically in-app. Therefore, I needed to develop an automatic data collection and 

scoring system that reflected the decision that would otherwise have been made by an expert 

rater. I took a user-centred design approach: involving older adults in each stage of the 

development to ensure touchscreen DSDA achieved the project aims and was user friendly 

for the intended context and user groups.  
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Chapter 6 comprises a manuscript titled “Converting the DriveSafe subtest of 

DriveSafe DriveAware for touchscreen administration”. This study was conducted as part of 

the development of the automatic data collection and scoring system for DriveSafe, the more 

complex of the two DSDA subtests. I applied a structured process to determine what 

constituted correct scores. I then examined the resulting scoring parameters to determine if 

these discriminated at-risk drivers from a comparison sample, prior to psychometric 

evaluation.  

Chapter 7 presents a manuscript titled “Predicting fitness to drive for medically at-risk 

drivers using touchscreen DriveSafe DriveAware”. I conducted this study to examine the 

internal validity, reliability, and predictive validity of data gathered with touchscreen DSDA, 

and to set cut-off scores for trichotomising drivers based on the likelihood of passing an on-

road assessment. The outcome of a standardised occupational therapy on-road assessment 

was the criterion measure. 

In Chapter 8 I discuss a study I commenced to test the feasibility of touchscreen 

DSDA for medical practice. I discontinued this study for the various reasons discussed. Two 

doctors implemented touchscreen DSDA into their clinics and completed an interview 

regarding their experiences. Whilst these results only represent the views of two doctors, they 

raise important issues that require further exploration in future research.  

Finally, in Chapter 9, I synthesise the conclusions of the literature reviewed and the 

findings reported in the three manuscripts. I discuss the limitations of the research, 

implications for practice, and directions for future research. 
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CHAPTER 2 

Critical Review of Existing Driving Models 

Becky Zropf, an occupational therapist who established driver assessment and 

rehabilitation training for occupational therapists at The University of Sydney in 1989, 

developed VRST, the precursor test to the DriveSafe subtest (Cheal & Kuang, 2015). Ms 

Zropf reported there was no suitable driving-related cognitive assessment available at the 

time (personal communication via telephone and email, February 23, 2015). Therefore, she 

developed a test to simulate the need to quickly and accurately identify hazards that a driver 

should notice for safe decision-making. She introduced a time pressure as in real driving, 

along with areas of low contrast (e.g., shadows and pedestrians wearing dark clothes), to help 

identify drivers likely to have difficulty on-road. In short, she developed VRST to reflect the 

visual search ability required in real world driving. In retrospect, as I began this thesis, I 

wished to examine existing driving models to: (a) place the touchscreen DriveSafe subtest 

within the context of an established overall driving model; and (b) identify key concepts and 

mechanisms underlying DriveSafe performance. I needed this knowledge to ensure that I 

retained critical test mechanisms in the touchscreen DSDA conversion. Such knowledge can 

also be applied in future revision of the test (e.g., if Pearson wished to introduce moving 

scenes, increase item complexity, or transition to alternative modes of digital administration). 

Researchers (Carsten, 2007; de Winter & Happee, 2012; Michon, 1985; Ranney, 

1994) have argued that a successful driving model is one that is simple, explicit, usable, 

validated, and predictive. In addition to these criteria, I sought a model consistent with 

DriveSafe theoretical concepts and able to identify how components of DriveSafe 

mechanisms interact to produce behaviour (Glennan, 2005). A mechanism for a behaviour 
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can be defined as “a complex system that produces that behaviour by the interaction of a 

number of parts, where the interactions between parts can be characterized by direct, 

invariant, change-relating generalizations” (Glennan, 2005, p. 445). Additionally, I sought a 

model capable of explaining and predicting the driving behaviour of both healthy and 

functionally impaired drivers (Fox, Bowden, & Smith, 1998; Kay, 2008). The focus of this 

portion of the literature review was on models that would potentially explain the DriveSafe 

subtest. 

I reviewed literature via four online databases: Medline via OvidSP (1946 to present), 

Cinahl via Ebsco (1982 to present); Scopus; and, PsycTESTS. My search terms included: 

automobile driving; driver behaviour models; motivational models; trait models; traffic 

environment; traffic psychology; and, cognition. I did not apply a year or locality limitation. I 

reviewed the reference lists of relevant articles along with articles citing these publications. 

By hand searching the reference lists, I identified several key conference presentations and 

frequently cited texts that I reviewed. 

Classification of Models 

Over many decades, researchers and theorists have proposed a vast number of driving 

models to examine the construct of safe driving. I applied Michon’s (1985) 2-way 

classification system to organise this analysis (see Figure 2.1).  
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Figure 2.1. Michon’s (1985) classification of driver behaviour model types (p. 490). 

Classification of models by interaction of components. Michon (1985) used the 

labels “Functional” and “Taxonomic” to distinguish whether components of the model either 

do or do not interact, respectively (Michon, 1985). The components of functional models do 

dynamically interact (e.g., mechanistic and motivational models) (de Winter & Happee, 

2012). In contrast, taxonomic models present an inventory of facts where elements of the 

model have no dynamic relationship (de Winter & Happee, 2012; Michon, 1985; Ranney, 

1994). Task analysis and Trait Models typify taxonomic models (Michon, 1985).  

Classification of models by orientation. Michon (1985) used the labels “Input-

output” and “Internal State” to distinguish whether models are oriented either to observable 

behaviour or to driver motivations respectively. Input-output models are oriented to 

observable behaviour (e.g., task analysis and mechanistic models) (Michon, 1985; Ranney, 

1994). Whereas internal state or psychological models are motivation oriented, making 
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assumptions about the processes occurring in the driver’s mind (e.g., trait models and 

motivational models) (de Winter & Happee, 2012; Michon, 1985).  

Input / output models. I excluded models classified as input-output (i.e., both task 

analysis and mechanistic/adaptive control models) from this review because these models are 

based on analysis of observable driving behaviour (e.g., traffic following or lane keeping) 

which are unrelated to DSDA (Michon, 1985). Task analysis models generally provide a 

detailed description of the driving task in terms of task, performance, and ability 

requirements (Michon, 1985). Mechanistic / adaptive control models describe a sequence of 

stages of observable driving behaviour with various inputs and outputs, typically via complex 

computer simulations and mathematical models (de Winter & Happee, 2012; Michon, 1985; 

Ranney, 1994). The driver’s motivations and cognitive processes are not taken into 

consideration (de Winter & Happee, 2012; Heikoop, de Winter, van Arem, & Stanton, 2015; 

Ranney, 1994). DriveSafe measures the construct of awareness of the driving environment, 

involves visual search, and assumes attention is critical to safe driving; driving is not broken 

down into component parts (Kay et al., 2009a). Therefore, DSDA does not fit within the 

input-output paradigm. I required a model capable of understanding human errors and 

difficulties. 

Internal state models. Internal state models generally attempt to explain the whole 

driving task, taking into consideration the actions of drivers, their mental processes (such as 

motivations and risk acceptance), and the driving environments (de Winter & Happee, 2012; 

Lutzenberger & Albayrak, 2013; Ranney, 1994; Shinar & Oppenheim, 2011). Michon (1985) 

identified three categories of internal state models: motivational, cognitive, and, trait models. 

Motivational models. Motivational model theorists view driving as a self-paced task 

impacted by internal threat-related emotions such as fear and anxiety that affect driving 
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behaviour (Schmidt-Daffy, 2013). These emotions increase or decrease depending on task 

demands, speed, and capability of the driver (de Winter & Happee, 2012; Fuller, 2005; 

Ranney, 1994; Schmidt-Daffy, 2013). Motivational models are generally applied to the study 

of driver behaviour via computer simulations of dynamic driving environments, manipulated 

to produce changes in traffic density, speed, and risk (Schmidt-Daffy, 2013; Zhang & Kaber, 

2013). Ranney (1994) noted that the study of driving in this context may be misdirected since 

the model assumes driving is determined by the motivations and goals of the driver, which 

are difficult to simulate in a laboratory (Fox et al., 1998). The most recent and well-cited 

motivational model is Fuller’s Task-Capability Interface (TCI) model (See Figure 2.2) (de 

Winter & Happee, 2012; Fuller, 2005). 

Figure 2.2. Fuller’s (2005) Task Capability Interface model (p. 465). 
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Kay (2008) critiqued the TCI model for its congruence with DSDA and concluded 

that the emphasis on risk mediated by speed as the critical factor impacting safe driving, was 

too simplistic. Additionally, whilst concepts such as self-awareness and the difference 

between learned and conscious driving behaviour are represented, these are not adequately 

specified, and the model lacks sufficient empirical testing (Kay, 2008). This is consistent 

with other researchers’ (Carsten, 2007; de Winter & Happee, 2012; Ranney, 1994) cautions 

about applying motivational models to driver assessment due to lack of specification, over-

reliance on confirmation, lack of precision, failure to account for the complexity of driving, 

and lack of quantitative research support. I found that motivational models were not a good 

fit with DSDA due to an incompatible theoretical basis and insufficient specification of key 

mechanisms. The DriveSafe test design also precluded application (i.e., presentation of static 

not dynamic scenes involving visual search and recall of object features). 

Cognitive models. Cognitive-model theorists view driving as a hierarchical task, 

involving automatic and conscious cognitive processes (Fox et al., 1998; Lutzenberger & 

Albayrak, 2013; Michon, 1985). Michon’s (1985) Hierarchical Control Model was the first to 

conceptualise driving behaviour as a hierarchy of interacting skills influenced by 

environmental input: namely, Control Level (driving manoeuvres), Manoeuvring Level 

(adapting to current traffic situations) and Strategic Level (general plans) (Lützenburger & 

Albayrak, 2013; Michon, 1985). The Transportation Research Board (2016) redefined 

Michon’s (1985) model terms for professionals engaged in driver evaluation and 

rehabilitation for consistency, and to reflect advances in clinical practice, measurement tools 

and technology. The operational level of driving relates to control of the vehicle through 

operation of car controls (based on skills that are over learned and largely automatic) 

(Transportation Research Board, 2016). The tactical level refers to the manoeuvring control 

executed over a vehicle to complete a goal directed trip (e.g., maintaining lane position, gap 
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selection and obeying traffic signs). The strategic level relates to trip planning (e.g., goals, 

route and mode of travel), including accepting the related costs and risks. It also includes 

adapting the trip in response to obstacles (e.g., a route change due to road closure) 

(Transportation Research Board, 2016).  

Michon’s (1985) model was foundational for many subsequent works and contributed 

significantly to contemporary conceptualisations of driving behaviour (Fox et al., 1998; 

Lutzenberger & Albayrak, 2013). For example, Dickerson & Bédard (2014) adapted 

Michon’s (1985) model to establish an occupational therapy framework for identifying 

driving risk and potential for return to driving. Clinical decision making questions were 

proposed for each level in the heirachy and a check list was designed to identify which client 

factors may impact safe driving (Dickerson & Bédard, 2014). The authors proposed that 

generalist occupational therapists could use the tool to guide clinical judgement regarding 

whether further assessment was required, and driver-trained occupational therapists could use 

the tool to organise information and identify information gaps needed to make a fitness to 

drive determination (Dickerson & Bédard, 2014). 

One human factors psychology model that expanded Michon’s (1985) model is the 

Goals for Driver Education Framework (GDE-framework), which conceptualises driving as a 

broad set of skills applied according to the driver’s motives and goals; higher levels guide 

and control behaviour on lower levels (Lützenburger & Albayrak, 2013; Peraaho, Keskinen, 

& Hatakka, 2003). This model was updated to include a fifth level in 2010, and renamed 

Goals for Driver Education in the Social Perspective (GDE5SOC) (see Figure 2.3). The lower 

three levels relate to the technical aspects of the driving task (vehicle manoeuvring, mastery 

of traffic situations, and driving goals and context) (Keskinen, 2014). The fourth level relates 

to personality and life skills factors affecting driver choices and behaviour (Keskinen, 2014). 
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The fifth level was added because it was recognised that driver choices are also affected by 

the social environment (e.g., social norms, legislation and subculture). 

 

 

 

 

 

 

 

 

 

Figure 2.3. Goals for Driver Education in the Social Perspective (GDE5SOC) five-level 

driving hierarchy (Keskinen, Peräaho, Laapotti, Hernetkoski, & Katila, 2010). 

Kay (2008) selected the GDE-framework as the best fit for DSDA because the model 

was sufficiently complex to represent the driving task, attempted to explain the pattern of 

crashes common among novice drivers, and incorporated skills, experience, and self-

awareness. These factors allow application to both healthy and impaired drivers: required for 

predicting fitness to drive among patients with functional impairments (Kay, 2008).	  

Nevertheless, the GDE-framework is difficult to apply to DriveSafe because it was 

developed to guide novice driver education with a focus on the driver; DriveSafe was 
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developed to assess awareness of the driving environment. Inclusion of self-evaluation fits 

with the DriveAware conceptualisation of awareness as critical for safe driving. However, 

DriveAware operationalizes awareness as a lack of discrepancy between the participant’s 

responses and an agreed standard (Kay et al., 2009b). Whereas, the GDE-framework only 

broadly discusses the concept and does not define or operationalise it so that it can be 

empirically tested. The framework touches on concepts that may explain driver attention 

(e.g., reality is stored as constantly changing mental representations that guide attention, 

perception, and decision making) (Peraaho et al., 2003). Yet, the underlying mechanisms are 

not specified, limiting validation or use for prediction, and resulting in failure to generate a 

significant body of research findings (de Winter & Happee, 2012; Michon, 1985; Ranney, 

1994; Shinar & Oppenheim, 2011). Still, I found the model too complex for practical 

application, in agreement with other researchers (Carsten, 2007; de Winter & Happee, 2012) 

who considered the adding of more and more components to Michon’s (1985) hierarchical 

control model counter-productive and unnecessary for measurement.  

Trait models. Trait-based models describe relationships between driver 

characteristics, focusing on a broad range of stable driver traits such as visual acuity, visual 

fields, memory, or selective attention (de Winter & Happee, 2012). Traits that are transient or 

that change over time (e.g., motivations of the driver or environmental factors) are generally 

not considered (Ranney, 1994). An example of a trait model is the Multifactorial Model of 

Driver Safety proposed by Anstey et al. (2005) which identifies predictors of on-road 

performance and accident risk among older drivers (see Figure 2.4). Anstey et al. (2005) 

identified three “enabling factors” required for safe driving, with additional dimension 

comprising self-monitoring and belief about driving capacity. 
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Figure 2.4. Example trait-based model: Multifactorial Model of Driver Safety (Anstey et al., 

2005, p.60). 

I was hesitant to explore application of trait models to DriveSafe because they are 

typically simplistic; Rabbit (1981) described them as lineal, independent processes that focus 

on identifying reliable predictors without consideration of psychological factors. They have 

failed to generate sufficient evidence they can predict driving performance despite a long 

history in driving research (Carsten, 2007; de Winter & Happee, 2012; Michon, 1985; 

Rabbitt, 1981; Ranney, 1994; Shinar & Oppenheim, 2011). Additionally, trait models 

generally lack well developed theoretical underpinnings and operational definitions of 

components, resulting in reliance on logic-based, post hoc explanations of relationships 

between the traits and the criterion measure (Adler & Silverstein, 2008; de Winter & Happee, 

2012; Michon, 1985; Ranney, 1994). Trait models often lack clarity regarding what 

constructs are being measured, causing construct proliferation and redundancy among 

multiple studies (Heikoop et al., 2015; Ranney, 1994). This is particularly evident for tests of 

attention where researchers have not defined the specific psychological mechanisms being 
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tapped into (e.g., selective versus divided attention) and have used overlapping constructs and 

terms (Heikoop et al., 2015; Ranney, 1994). Furthermore, Trait-model research typically 

relies on statistical correlations to explain empirical connections in studies, which do not 

necessarily explain causality or meaningful relationships among the components and the 

criterion measure, and have limited predictive power (Bédard, Weaver, Darzins, & Porter, 

2008; Heikoop et al., 2015; Michon, 1985; Ranney, 1994; Shinar & Oppenheim, 2011).  

Despite these criticisms, Ranney (1994) noted that selective attention was consistently 

identified as the strongest predictor of accident involvement in numerous trait-based studies, 

justifying further investigation. Thus, he suggested the visual search paradigm as a promising 

new direction for modelling driving behaviour, although still trait-based. The visual search 

paradigm focuses on a drivers’ abilities to identify salient information in constantly changing 

driving scenes (Ranney, 1994). Thus, it is compatible with the DriveSafe assumption that 

visual attention is critical to safe driving. Additionally, test protocols most similar to 

DriveSafe arise from this paradigm: specifically the change blindness model. Therefore, I 

explored the change blindness, trait-model in detail, to determine if DriveSafe fitted within 

the model and if it could help me discover DriveSafe mechanism and how they behave to 

measure of awareness of the driving environment. 

The Change Blindness Model – A Good Fit for DriveSafe? 

I reviewed literature from the visual search paradigm and change blindness literature 

via four online databases: Medline via OvidSP (1946 to present), Cinahl via Ebsco (1982 to 

present); Scopus; and, PsycTESTS. I used the search terms: automobile driving; change 

blindness; change detection; attention; cognition; visual search; traffic accidents; risk 

awareness; driving errors; and, looked-but-failed-to-see. I did not use a year or locality 
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limitation. I also reviewed reference lists from relevant articles along with articles citing 

these publications. 

Background - visual attention. Given age-related increased crash risk at 

intersections and the high number of crashes attributed to missing or delayed hazard 

perception for all drivers, a significant body of research is dedicated to the study of failure to 

notice potential conflicts with other objects whilst driving (Baldock et al., 2016; Barco et al., 

2015; Caird, Edwards, Creaser, & Horrey, 2005; Fildes, 2008; Preusser, Williams, Ferguson, 

Ulmer, & Weinstein, 1998; Rakotonirainy, Steinhardt, Delhomme, Darvell, & Schramm, 

2012; Wood et al., 2009). A particular subject of study has been the common occurrence of 

drivers looking in the direction of other road users, particularly bike riders, but failing to 

perceive them. Accidents of this type are labelled “looked-but-failed-to-see” and typically 

result in drivers failing to take into account certain hazards (Koustanaï, Boloix, Van Elslande, 

& Bastien, 2008). Drivers have the information needed for perception but something prevents 

them from seeing an object in full view. Researchers (Bédard et al., 2006; Caird et al., 2005; 

Galpin, Underwood, & Crundall, 2009; Hoffman, Yang, Bovaird, & Embretson, 2006; 

Pringle, Irwin, Kramer, & Atchley, 2001; Rensink, 2005; Rensink, O' Regan, & Clark, 1997; 

Wood, Horswill, Lacherez, & Anstey, 2013) argued this key factor is attention. In fact, many 

studies have shown that failures in attention are the main cause of accidents (Eby & 

Kostyniuk, 2004; Klauer, Dingus, Neale, Sudweeks, & Ramsey, 2006; Koustanaï et al., 2008; 

Preusser et al., 1998; Ranney, 1994).  

Hoffman et al. (2006) defined attention as, “the mechanism by which certain aspects 

of the environment are selected for further processing while others are inhibited” (p. 985). 

Attention is critical in most cognitive tasks (e.g., shopping or banking) that require searching 

for, and prioritising, information (Hoffman et al., 2006). In driving, the driver must monitor 
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the visual scene to rapidly and accurately identify simultaneous information critical for safe 

decision-making, such as traffic light changes, upcoming road signs, and pedestrians crossing 

(Hoffman et al., 2006; Rizzo et al., 2009). Since failure to detect these types of changes is a 

significant cause of accident, numerous authors (Caird et al., 2005; Crundall, 2009; Hoffman 

et al., 2006; Koustanaï, Van Elslande, & Bastien, 2012) have suggested a measure of where, 

when, and how drivers allocate attention would be beneficial in road safety research and 

could perhaps be used to predict driving impairment. Attentional failures have been studied 

since the early history of psychology via a number of research traditions. The change 

blindness model emerged from the study of how a unified picture is formed from information 

obtained from separate glances (transsaccadic integration) (Jensen, Yao, Street, & Simons, 

2011).  

Model description. Change blindness is defined as the surprising failure to notice 

large changes in a natural scene, photograph, or film when these coincide with a brief visual 

disruption (Jensen et al., 2011; O'Regan, Rensink, & Clark, 1999). It can be induced by a 

variety of situations such as saccades (the rapid eye movements that occur as the eye fixation 

point changes from one location to another), eye blinks, mud-splashes on a windscreen, blank 

screens, flickers, and film cuts (Caird et al., 2005; O'Regan et al., 1999; Velichkovsky, 

Dornhoefer, Kopf, Helmert, & Joos, 2002). Under usual circumstances a movement signal 

would attract attention to the change location making it easy to detect, but a transient 

disruption overwhelms this signal causing attention loss or redirection, inducing change-

blindness (Galpin et al., 2009; Koustanaï et al., 2012; Rensink, 2000). This disruption 

effectively removes ‘bottom up’ activity (e.g., a luminosity change) that automatically 

attracts attention (Richard, Wright, Ee, & Prime, 2002). The observer is forced to use ‘top 

down’ methods to scan various elements of the scene, deciding where to focus attention 

(Richard et al., 2002). Hence, in driving, there is potential for dangerous events occurring in 
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full view to go unnoticed if they occur simultaneously with even innocuous disturbances such 

as an eye blink or saccade (Caird et al., 2005; O'Regan et al., 1999). The effect is even more 

pronounced in novel or complex situations with competing attention demands (Becker & 

Rasmussen, 2008; Jensen et al., 2011; Koustanaï et al., 2008). 

Theoretical background. Rensik (2000, 2002, 2005) provided an in-depth analysis 

of the theoretical concepts and mechanism involved in the change blindness model. He 

proposed Coherence Theory to explain the nature of attention based on results of his own 

change detection experiments and the change blindness literature. His main tenants are: (a) 

attention and short-term memory significantly overlap and may be part of the same process; 

(b) objects that are attended to are placed in a coherent complex that falls apart as soon as 

attention is withdrawn; and, (c) a higher-level structure determines what can be done with the 

coherent complex (Rensink, 2000, 2002, 2005). The content of attention complexes is sparse 

in detail and specific to the task at hand (Rensink, 2002; Rensink et al., 1997). At least four 

properties of four to five attentional complexes can be retained at one time (e.g., colour, size, 

orientation and presence of a gap). Observers are generally good at screening which 

properties should be entered into attention complexes and which ones should be left out, but 

can only focus either globally or locally at the one time (Rensink, 2002).  

Coherence theory is represented in Figure 2.5. Early processing occurs rapidly at a 

low level to form structures (proto-objects) with limited spatial and temporal coherence. 

These dissolve with new stimuli at their location. Focused attention grasps several proto-

objects at a mid-level coherence field forming a more stable individuated object. The 

feedback that occurs between the two levels is broken when attention is released. The object 

representation then dissolves back into the proto-objects pool and is overwritten (Rensink, 

2005; Rensink et al., 1997) 
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Figure 2.5. Rensink’s (2005) pooling of attended information in Coherence Theory (p.78). 

 
There is a large body of evidence to support Rensink’s (2000, 2002, 2005) theory, 

which indicates remarkably little information is stored about objects that are not being 

directly attended to (Becker & Rasmussen, 2008; Blackmore, Breistaff, Nelson, & 

Trościanko, 1995; Hayhoe, Bensinger, & Ballard, 1998; Jensen et al., 2011; Koustanaï et al., 

2008; O'Regan et al., 1999; Rensink, 2000, 2005; Rensink et al., 1997; Simons & Levin, 

1997). Additionally, accurate visual representations only exist as long as people are attending 

to a particular area or object: meaning that changes occurring in other parts of the scene may 

go unnoticed because there is no detailed representation of the changed location at that 

moment (Caird et al., 2005; Pringle et al., 2001; Rensink, 2000, 2002; Rensink et al., 1997).  

Rensink (2002) proposed that if formation of coherent structure requires attention, 

then successful participation in daily activities depends on attention management. The limited 

amount of information that is stabilized must be used as effectively as possible for the task at 

hand (Rensink, 2002). This limited capacity impacts speed of information processing, 
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performance accuracy, and reaction time in situations such as driving (Hasher & Zacks, 1998; 

Hoffman et al., 2006). Adults with age-related changes and medical impairments would be 

expected to have even greater capacity limitations in these areas (Hoffman et al., 2006), 

indicating the impact of these factors on performance could be measured via the change 

blindness model. Thus, within the change blindness model, safe driving would depend on the 

ability to orient attention in response to external stimuli and internal goals (Hoffman et al., 

2006).  

Model Mechanisms 

I identified key model mechanisms in the change blindness literature that fitted well 

with the DriveSafe subtest protocol. These must be present to ensure the correct visual 

perceptual mechanisms are being assessed (Rensink, 2002).  

Decoupling motion and change. Motion and change must be separated to decouple 

the outputs of the change and motion detection systems (Rensink, 2002). Tasks must be 

designed so that there is no motion cue in the detection of change. Change is defined as an 

alteration to a well-defined structure over time, maintaining spatiotemporal (space-time) 

continuity (Rensink, 2002); it is referenced to structure. In contrast, motion is defined as a 

temporal (time-related) variation in a quality (e.g., luminosity) at a fixed point. Motion is 

referenced to location (Rensink, 2002). It is important to separate motion and change because 

motion detection does not need structure and motion detectors do not require attention for 

their operation (Rensink, 2002). A key aspect of focused visual attention is the ability to 

create and maintain consistent spatiotemporal representation, requiring more sophisticated 

processes than for motion detection (Rensink, 2002).  

Decoupling detection of change-in-progress and completed-change. The process 

of seeing a change in progress must be decoupled from the detection of a completed change; 
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otherwise the detection of the transformation itself is being measured (Rensink, 2002). The 

detection of completed change involves noticing that a change has occurred at some point in 

the past, perhaps when vision was briefly occluded, but there is no sense of dynamic change 

(Rensink, 2002). The viewer must compare a representation in memory with the 

representation of the structure currently visible. Continuity must be maintained by something 

other than the visual representation itself (Rensink, 2002). 

Decoupling change and difference. Change and difference are separate concepts in 

change-detection studies even though both rely on similarity, and are referenced to structure 

without the nature and complexity of the structure being important (Rensink, 2002). Change 

refers to transformation over time to a single structure. In contrast, difference refers to lack of 

a similarity in the properties of two structures that are side-by-side, relying on comparisons. 

There is no sense of the structures being related in time or transforming (Rensink, 2002). 

Spotting the difference between two structures side-by-side is different to detecting change in 

two images presented sequentially (Rensink, 2002). The detection of dynamic change 

involves spatiotemporal continuity in both the external and internal representations, requiring 

sophisticated memory that maintains continuity and the perception of dynamic transformation 

(Rensink, 2005). Uncoupling change from difference involves separating the effect of long-

term memory from the effects of visual attention (Rensink, 2005).  

Methods for assessment of correct perceptual mechanisms. Motion and change 

outputs to stimuli can be uncoupled by either making the change slow enough so there is no 

change signal to draw attention (slow fade in or out) or by creating an event that swamps the 

motion signal at the point of the change, such as a flicker, flash or occlusion (Rensink, 2005). 

Change and difference can be uncoupled by minimising the impact of memory so that visual 
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attention can be assessed. The impact of memory can be minimized by adding time pressure 

and by making the viewer respond to a completed change, not dynamic change.  

Application to DriveSafe. The review of the change blindness literature enabled me 

to identify key change blindness model mechanisms critical for the assessment of the 

attention search ability of drivers, then consider how these mechanisms could underlie 

DriveSafe. The outcome of this analysis is summarised in Table 2.1. 
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Table 2.1 

Proposed Touchscreen DriveSafe Assessment Mechanisms Based on the Change Blindness 

Model and Relationship to Driving 

DSDA Stimuli Action Mechanism Effect Relationship to Driving 

Digital, static, 
naturalistic 
driving scenes 

Objects 
appropriate to 
driving context  

Driving related 
task  

Activates driving-
related schema to 
guide attention 

Triggers planned 
and serial search 
for change 

Cause viewer to observe the 
scene from the perspective of a 
driver 

Systematic scanning of the 
road environment for 
potential hazards and 
change 

Countdown 
screen and bell 
(Mask) 

Cues attention  

Masks change 

Separates motion and change 
to decouple outputs of the 
change and motion detection 
systems (i.e., no motion cue so 
visual attention can be 
assessed) 

Swamps motion signal 

Forces top down methods to 
encode scene  

Simulates eye blinks, 
saccades, mudsplashes, and 
rapid changes on-road, 
potential causing hazards to 
be missed 

Time limited 
object display 
(changed 
elements) 

Minimises the 
impact of memory  

Decouples change and 
difference so detection of the 
transformation is not measured 

Ensures viewer responds to 
completed change.  

Viewer must compare 
representation in memory with 
representation of visible 
structures. 

Separates the effect of long 
term memory from visual 
attention so visual attention 
can be assessed 

Forces spontaneous and 
economical search for change 

Simulates the amount of 
time a driver has to scan for 
information in the driving 
environment and make turn 
decisions at intersections 

Presentation of 
stimuli once 
(one-shot) 

Minimises input of 
memory and eye 
movements for 
extended visual 
search 

Allows measurement of 
accuracy in conditions similar 
to real world driving 

Changes happen only once 
without the opportunity for 
extended search for 
encoding and recall of 
driving scene elements  
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I found that motion and change are decoupled in touchscreen DriveSafe by masking 

object change prior to each new display via a ghosted image of the intersection along with a 

count down and auditory bell. The mask swamps any motion signal that would otherwise 

exist if objects changed within a continuously presented scene. I found that change is 

decoupled from difference by the time pressure. The viewer has 4 seconds to commit the 

objects to memory before they disappear, ensuring they respond to completed and not 

dynamic change. The time pressure means the viewer must take a more spontaneous and 

economical search for change as in real driving (Blackmore et al., 1995; Veirk & Kiesel, 

2008).  

Change Blindness Test Protocols 

All change detection studies have the same basic design despite evolving over many 

years with varying tasks and stimuli: a viewer is presented with a stimulus (e.g., a picture); an 

alteration is made to the stimulus (e.g., an element is removed or altered); the response of the 

viewer is measured (Rensink, 2002). The content of the change is not important except that a 

radical change in appearance should not be introduced. For example, a car should not be 

placed in the sky in a real-world driving scene; otherwise performance may be related to the 

influence of the anomaly rather than the change itself (Rensink, 2005). The simplest change 

that can be made is item appearance or disappearance. Change can also be made to item 

properties, such as: colour, brightness, shape, orientation, location and importance (Rensink, 

2005). Most studies use static computer displays or images of naturalistic scenes but the 

methods described below can be broadly applied, including to real-world situations. 

One-shot task. In one-shot tasks the image is presented (A), followed by a blank, 

then the original image is presented again but with a change (A1) (i.e., A, blank, A1) (Jensen 

et al., 2011). The blank screen between the two images represents a saccade and is used to 



	  
	  

40	  

mask the appearance of the new object (O'Regan et al., 1999). The viewer may only see each 

image once (Velichkovsky et al., 2002). Performance is usually measured by accuracy in 

detecting the change, although response time may also be measured (Rensink, 2002). This 

task minimises the input of long-term memory and eye movements (Rensink, 2002). 

Flicker tasks. In the late 1990’s, Rensink et al. (1997) adapted the one-shot task into 

the ‘flicker technique’ by to enable a richer phenomenological experience of change 

blindness for the viewer (Jensen et al., 2011). In the flicker task two images are presented in 

quick succession (e.g., 240ms) with a blank in between (e.g., 80ms) (O'Regan et al., 1999). 

The viewer sees a continual cycle of the alternating images until the change is noticed or the 

task times out (i.e., A, blank, A1, blank, A, blank, A1…) (O'Regan et al., 1999; Rensink, 

2000). The viewer is usually very surprised to have missed the change for so long once it is 

identified (Jensen et al., 2011). An example of the flicker task sequence and timing is 

presented in Figure 2.6. Performance is primarily measured via response time but accuracy 

may also be measured (Rensink, 2002). 
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Figure 2.6. Typical flicker task sequence and timing. 

Modified flicker method. Caird et al. (2005) modified the flicker method so it could 

be used to test a driver’s attentional capabilities at intersections. This involved adding a time 

pressure, because drivers only have a few seconds to observe the driving scene, and adding a 

goal-oriented decision that must take place rapidly. Caird et al. (2005) labelled their 

technique the modified flicker method (MFM). The authors suggested application of this 

method as a low-cost way of conducting traffic safety research, such as evaluating driver 

attention for road infrastructure including traffic lights and signs (Caird et al., 2005).  

Mudsplashes. O’Regan et al. (1999) discovered that change blindness could also be 

induced by scattering a few small, high contrast shapes (similar to mud splashes on a 

windscreen) over a natural scene instead of a blank (see Figure 2.7 for an example array).  
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Figure 2.7. Example mudsplashes array: an example changing element would be removal of 

the rear car. 

The small, brief (80ms) disruptions mask even large changes occurring simultaneously, 

making them very difficult to detect (O'Regan et al., 1999; Velichkovsky et al., 2002). 	  

Theoretical difference of tasks. One-shot tasks and flicker tasks are similar but have 

important theoretical differences (Jensen et al., 2011). In one-shot tasks, the viewer must 

encode elements from image A and hold as much information as possible in memory for 

subsequent comparison with image A1, to increase their chance of finding the change (Jensen 

et al., 2011). The flicker task allows the viewer to scan small sections of the image to hold in 

memory for comparison across the blanks until the change is noticed (Jensen et al., 2011). 

One-shot tasks are more applicable to the real world where change is presented only once. 

Therefore, this approach is usually applied to test visual memory for scenes. Viewers are 

generally aware they are looking for a change in both techniques (Jensen et al., 2011). Flicker 

technique has been criticised for being less naturalistic and causing eye strain and fatigue for 

the viewer trying to maintain image constancy (Macknik, Fisher, & Bridgeman, 1991). Both 
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one-shot and flicker tasks have been used extensively in driving research to measure how 

drivers allocate attention and process information (Koustanaï et al., 2012) (see Table 2.2).  

 
Table 2.2  

Examples of Driving Related Change Blindness Research 

Driving Research Topic References 

Impact of chronological age on 
change detection  

Caird et al., 2005; McCarley et al., 2004; Pringle et al., 2001; Rizzo 
et al., 2009 

Impact of experience change 
detection 

Crundall, 2009; Koustanaï et al., 2012; McCarley et al., 2004; Zhao 
et al., 2014 

Impact of cognitive load and 
distraction on scanning and 
change detection 

Lee, Lee, & Boyle, 2007; McCarley et al., 2004; Pearson & 
Schaefer, 2005; Richard, Wright, Ee, & Prime, 2002; Schömig, 
Metz, & Krüger, 2011; Wallis & Bulthoff, 2000; White & Caird, 
2010 

Impact of mode of vision 
occlusion on change detection  

Velichkovsky, Dornhoefer, Kopf, Helmert, & Joos, 2002 

Impact of training on change 
detection 

Gaspar, Neider, Simons, McArely, & Kramer, 2013 

Impact of Alzheimer’s disease 
on change detection  

Rizzo et al., 2009 

Impact of route familiarity on 
change detection  

Martens & Fox, 2007 

Impact of time constraints on 
decision accuracy at 
intersections 

Caird et al., 2005; White & Caird, 2010 

Applicability of the change-
detection paradigm to driving 

Caird et al., 2005; Galpin et al., 2009; Koustanaï et al., 2012 

The study of visual attention 
mechanisms whilst driving 

Bédard et al., 2006; Charlton & Starkey, 2011; Hoffman et al., 
2005; Hoffman et al., 2006; Hughes & Cole, 1986; Pringle et al., 
2001; Shinoda, Hayhoe, & Shrivastava, 2001 

Impact of object features on 
change detection  

Caird et al., 2005; Hoffman et al., 2006; Koustanaï et al., 2012;  
Pringle et al., 2001 
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Ecological Validity of the Change Blindness Model 

The change blindness model has been criticised for being unrelated to the attentional 

demands of the real world and inadequate to understand human cognition in complex systems 

like driving (Smilek, Eastwood, Reynolds, & Kingstone, 2007, 2008). Smilek et al. (2007, 

2008) criticised the assumption that breaking down cognitive processes into basic 

mechanisms and studying them a laboratory would indicate how they operate in everyday 

life; human behaviour should instead be studied in real life situations for ecological validity 

(Smilek et al., 2007, 2008).  

Change blindness researchers (Beck, Levin, & Angelone, 2007b) countered this 

criticism with multiple examples of experiments conducted either in real-world settings or 

with a whole task approach using stimuli with high face validity (i.e., driving simulators, 

driving videos, and naturalistic driving images). These included change blindness 

experiments conducted during chess games (Reingold, Charness, Pomplun, & Stampe, 2001), 

naval combat operations (Divita, Obermayer, & Nugent, 2004), and various other work 

settings such as hospitals, offices, emergency departments, and traffic control offices (Beck et 

al., 2007b; Levin, Simons, Angelone, & Chabris, 2002). Change blindness researchers argued 

their method is valid because real-life driving scenes provide a natural visual environment 

where certain objects and events needed to be prioritised (Hoffman et al., 2006). For 

example, driving scenes provide a context for viewers to use a goal-directed and stimulus-

driven process to guide eye movements and attention, as in real driving (Hoffman et al., 

2006; Hughes & Cole, 1986). Evidence indicates participants clearly view scenes from the 

perspective of a driver, detecting change to relevant targets much faster regardless of the 

location and using scanning patterns unique to driving (Caird et al., 2005; Galpin et al., 2009; 

Koustanaï et al., 2012). Participants consider the change blindness protocol face valid in the 
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few surveys conducted to examine their views regarding relationship to real world driving 

(Caird et al., 2005; Crundall, 2009). 

Whether the vision occlusion methods used in change blindness research are 

comparable to real-world blinks, saccades, and the sudden object change that occur in driving 

may be questioned. However, when modes of occlusion are compared in research (e.g., 

blinks versus artificial blanks and flickers), they have equal effects regardless of the source of 

the disruption (Fernandez-Duque & Thornton, 2000; Jensen et al., 2011; Rensink, 2002; 

Velichkovsky et al., 2002). Change blindness has been shown to have strong and generalised 

effects that are stable across a wide variety of situations (e.g., photographs of real scenes, 

video, animations, digital images, movie clips, and real-life situations), stimuli (e.g., changed 

object colour, salience, type, orientation or location) and disruption source (e.g., saccades, 

blinks, movie cuts and real-world interruptions) (Rensink, 2000, 2002, 2005).  

Test Protocols Similar to DriveSafe 

I conducted a review of the change blindness literature to identify driving assessments 

developed from within the change blindness model, because I noticed that most driving 

related research from this paradigm included experimental protocols similar to original and 

touchscreen DriveSafe (i.e., digital presentation of photographs of naturalistic driving scenes 

taken from the perspective of a driver, with participants required to recall information 

regarding serially presented driving related objects). However, I only identified four studies 

conducted specifically to develop formal driver assessment tools: DriverScan (Hoffman et al., 

2006); Deceleration Detection Flicker Test (Crundall, 2009); Modified Flicker Technique 

(Caird et al., 2005); and the Hazard Change Detection Test (Wetton et al., 2010). I compare 

the four test protocols in Table 2.3.
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DriverScan. DriverScan was developed to measure attentional search ability in older 

adults, adapted from Rensink et al.’s (1997) flicker task (Hoffman et al., 2006). The authors 

selected the change blindness model because the viewer must monitor the environment and 

search for change similarly to driving (Hoffman, McDowd, Atchley, & Dubinsky, 2005). I 

summarise the test protocol in Table 2.3 above. DriverScan was developed via a pilot study 

then administered to 155 older drivers for instrument development. Item response theory 

statistical analysis indicated the items were unidimensional and reliable, that individuals with 

attentional deficits were the most precisely measured, and that ability to detect change was 

significantly predicted by the study variables: visual clutter, change brightness, and change 

relevance (Hoffman et al., 2006).  

DriverScan and UFOV TM were used in a subsequent study to determine if both tests 

could predict driving simulator performance and self-reported accidents (N = 155; aged 63 – 

87) (Hoffman et al., 2005). DriveScan could not predict past accidents but could predict 

simulator driving performance with a sensitivity of 71% at the cost of 35% false positives: 

performing better than UFOV TM for false positives (sensitivity 85% at a cost of 48% false 

positives) (Hoffman et al., 2005). The authors attributed this result to lack of a contextual 

background in UFOV TM making the selective attention process more artificial. Neither test 

could reliably identify at-risk older drivers when compared to self-reported crash data and 

performance in a driving simulator (Hoffman et al., 2005). A limitation of the study was the 

validity of these two outcome measures. There is contradictory research regarding validity of 

driving simulators and their relationship to real-world driving (Dickerson et al., 2014; Kay, 

2008) and questionable reliability of self-reported crash data due to over- and under-

reporting, and insensitivity of the measure due to the low frequency of the events (Clay et al., 

2005; Lew et al., 2005). DriverScan was applied in one further study within a battery of tests 
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used to predict performance in UFOV TM (Matas, Nettelbeck, & Burns, 2014). UFOV TM has 

three subtests: 1) processing speed, 2) divided attention, and 3) selective attention (Ball & 

Owsley, 1993). The authors concluded that DriveScan was a significant predictor of 

performance in subtest 1 and 2, and that performance in subtest 2 (divided attention) is best 

explained by change detection (DriveScan) and processing speed (Matas et al., 2014). 

Deceleration detection flicker test (DDFT). Crundall (2009) developed the DDFT as 

a simple, low-cost method for exploring driving-related research questions with some real-

world validity. This was in response to the risk and ethical difficulties associated with on-

road driving research, the cost of questionable validity of driving simulators, and the cost and 

time associated with developing driving videos (Crundall, 2009). I summarised the DDFT 

test protocol in Table 2.3 (the comparison of test protocols). DDFT was developed over two 

experiments conducted with experienced and inexperienced drivers including a primary and 

secondary driving task (e.g., detection of car in front decelerating) (Crundall, 2009). Results 

indicated a significant main effect of driver experience in accuracy of change detection 

(93.6% compared to 86.9%). Experienced drivers performed better on the secondary task 

(87% compared to 78%) (Crundall, 2009). Participants in the study reported they felt the 

DDFT assessed driving-relevant skill (Crundall, 2009). Crundall (2009) advised further 

research to determine if the test could become a diagnostic tool.  

Modified Flicker Method (MFM). Caird et al. (2005) developed the MFM to test the 

attentional ability of drivers at intersections. The authors modified the flicker task to make it 

more related to real-world driving (Caird et al., 2005). Observers were given a driving-related 

goal (i.e., deciding if safe to proceed at an intersection) to allow driving experience to impact 

performance and guide attention. A time pressure was added because drivers often have only 

a few seconds to observe the driving scene before making a decision. It was assumed this 
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would negatively impact decision accuracy (Caird et al., 2005). I summarised the test 

protocol in the Table 2.3 above. 

Caird et al. (2005) conducted a study with MFM to assess the effect of age and time 

on intersection turn decision accuracy. Participants viewed images for either 5 or 8 seconds, 

approximating the time required for intersection approach. Participants (N = 62) comprised 

four age groups (i.e., 18-25; 26-64; 65-73; 74+). Participants responded to four questions 

after taking each item to measure confidence (e.g., “How confident are you in your decision 

to go or not to go?”) (Caird et al., 2005). Findings indicated object contrast and size did not 

predict decision accuracy for any age group even though visual acuity and contrast sensitivity 

were worse for the two older groups (65+). The youngest group had greater turn decision 

accuracy. Older drivers had especially low accuracy for detecting pedestrians. Road sign 

change detection also declined with age. Older drivers relied heavily on traffic control 

devices to make decisions, often to the exclusion of other objects such as pedestrians: 

suggesting older drivers adopt coping strategies to identify the most important objects but 

may miss unexpected hazards (Caird et al., 2005). Fourteen test items significantly predicted 

accuracy (Caird et al., 2005).  

Caird et al. (2005) concluded that MFM was useful for assessing attention to fixed 

objects (e.g., traffic lights and signs) and for testing drivers’ visual search and decision 

making under time pressure, allowing measurement of the impact of experience (Caird et al., 

2005). The authors proposed the test could be applied to assess working memory and study 

the looked-but-failed-to-see phenomenon, which can be hard to measure in real traffic (Caird 

et al., 2005). They advised further research to establish test validity and reliability (Caird et 

al., 2005). 
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Australian Capital Territory (ACT) Hazard Change Detection Task (HCDT). 

Wetton et al. (2010) developed the ACT HCDT as one of two hazard perception measures 

created to separate the processes required in hazard detection. The ACT HCDT was based on 

a change detection test developed by Marrington et al. (2008) to evaluate the impact of 

simulated cataracts on hazard perception. The HCDT was the outcome measure in the 2008 

study. As could be anticipated, participants wearing cataract simulating goggles had slower 

reaction times in the HCDT (Marrington, Horswill, & Wood, 2008). Anstey et al. (2012) 

subsequently used the Marrington et al. (2008) version of the HCDT as an outcome measure 

in a study conducted to examine the Multifactorial Model of Driver Safety (described earlier 

in the thesis). The ACT HCDT test protocol appears in Table 2.3. 

Both the Wetton et al. (2010) and Anstey et al. (2012) examined correlations of 

HCDT scores with scores on other tests (e.g., UFOV TM). Wetton et al. (2010) concluded that 

the ACT HCDT was not suitable for testing novice drivers because they performed faster 

than experienced drivers. The test was also not correlated with other measures used in the 

study. Anstey et al. (2012) found evidence that HCDT was correlated with age, gender (males 

being faster) and tests of spatial and executive speed. Neither version of the HCDT has been 

compared with criterion measures such as accident rates, performance in a driving simulator, 

or performance on-road. Predictive validity has not been examined. 

Comparison of test protocols. Similarities between the four test protocols and 

original and touchscreen DriveSafe include: (a) presentation of photographs of real driving 

scenes taken from the driver’s perspective and modified via editing software to introduce 

changed elements relevant to the driving task; (b) display of images via digital equipment 

(computer, data projector, or iPad); and (c) measurement of performance via change 

detection accuracy and / or response times: with DriveSafe and MFM also adding questions 
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for participants similar to those in DriveAware. All protocols have a driving related task to 

complete (i.e., scan the driving scene for objects or hazards and recall changed elements) but 

MFM and DDFT add a separate driving related goal to increase applicability to driving.  

A significant difference between original and touchscreen DriveSafe and the other 

four protocols is timing of object display. MFM and DriveSafe have the most similar object 

presentation time: 4s for DriveSafe; 5s or 8s for MFM. Caird et al. (2005) found no 

difference in performance whether the objects were displayed for 5s or 8s. This timeframe 

appears to reasonably represent the amount of time a driver has to scan the driving 

environment at intersections and make a turn decision (Caird et al., 2005). The mask is 

presented for much longer in touchscreen DriveSafe (4s) compared to most change blindness 

studies (around 80ms). However, findings from change blindness research indicate the length 

of the mask is not important, as long as it is at least the length of a blink or saccade (i.e., 

80ms) (Summerfield, Lepsien, Gitelman, Mesulam, & Nobre, 2006). In fact, viewers are able 

to retain memory of scenes and detect change after 1 to 2 days, as long as there has been 

sufficient time to encode the original image (Summerfield et al., 2006).  

Original and touchscreen DriveSafe apply a unique change detection task. The other 

protocols implement a flicker task. Both versions of the DriveSafe subtest present stimuli 

only once for each item: with the blank first (i.e., blank, A1, A). The mask precedes the 

change to swamp any motion signal so that only the completed change is seen (see Figure 

2.8).  
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Figure 2.8. Image sequence and timing for touchscreen DriveSafe. 

The mask consists of a heavily ghosted image of the intersection with a countdown and bell 

in touchscreen DriveSafe, rather than the blank screen used in the other test. The touchscreen 

DriveSafe protocol has similarities to Rizzo et al.’s (2009) study of change detection for older 

drivers with Alzheimer’s disease, where driving-related objects (e.g., cars and pedestrians) 

slowly faded in and out of the scene without a change to the base image in the item. 

Driver-Scan, MFM, DDFT and HCDT are too lengthy to be used as GP fitness-to-drive 

screens due to the number of items presented (between 30 and 64). However, the tests could 

Blank intersection 
(viewer initiates next  
item after responding) 
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be shortened with further research to identify and remove redundant or poorly performing 

items. Driver-Scan presents images via a data projector and large screen and seats the viewer 

at a mock vehicle console: a set-up not practical for GPs. The other tests are presented via a 

personal computer, a set-up that could be managed in a GP office. The main barrier to use of 

the four tests as GP fitness-to-drive screens is that they are at the beginning stage of 

development. MFM, DDFT, and Driver-Scan have not been studied further despite being 

developed around a decade ago. The psychometric properties and predictive validity of data 

gathered with the tests have not been sufficiently investigated using suitable criterion 

measures. However, study findings support change blindness as a face valid model for driver 

assessment that can discriminate between individuals and measure the impact of age and 

experience (see Appendix B for further information regarding how the model measures these 

impacts). 

Does DriveSafe Fit the Change Blindness Model? 

Original and touchscreen DriveSafe meet Rensink’s (2002) criteria for change 

blindness protocol because the viewer is presented with a stimulus (i.e., image of a natural 

driving scene), an alteration is made to the stimulus (i.e., object appearance and 

disappearance) and the response of the viewer is measured (via accuracy of ability to recall 

object type, location and orientation). All changes are appropriate to a driving scene. 

Additionally, DriveSafe utilises mechanisms identified by change-blindness model 

researchers (Caird, Edwards, Creaser, & Horrey, 2005; Crundall, 2009; Galpin, Underwood, 

& Crundall, 2009; Jensen, Yao, Street, & Simons, 2011; Koustanaï, Van Elslande, & Bastien, 

2012; O'Regan, Rensink, & Clark, 1999; Rensink, 2002; Rensink, O' Regan, & Clark, 1997) 

as necessary for assessment of driver visual attention: use of naturalistic driving scenes and 
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stimuli, a driving related task, masking of object change, and a time-limited, one-time display 

of objects. 

One-shot task is the change blindness test protocol most similar to DriveSafe because 

the change is only made once then the viewer must respond. Consistent with one-shot 

protocols, accuracy is the most important aspect being measured; response time is also 

recorded but is not included in scoring. Some researchers (Jensen et al., 2011) have proposed 

that a one-shot task is better for studying what observers do under naturalistic conditions. It is 

also advantageous for driving research because the input of memory and eye movements for 

extended search is reduced (Blackmore et al., 1995; Veirk & Kiesel, 2008). In real driving, 

the viewer does not have up to 45s to scan each small section of the scene and compare 

repeated change over time as in the flicker task. The flicker task can still be used successfully 

but is sometimes modified to incorporate a driving related task to increase application to 

driving (Caird et al., 2005; Crundall, 2009; Wallis & Bulthoff, 2000).  

Original and touchscreen DriveSafe are similar to almost all other driving-related 

change blindness test protocols in that a static, naturalistic driving scene taken from the 

perspective of a driver, appears on a screen. Only a few driving related protocols use 

alternative forms of presentation including video (Wallis & Bulthoff, 2000) and driving 

simulators (Charlton & Starkey, 2011; Martens & Fox, 2007; Shinoda, Hayhoe, & 

Shrivastava, 2001). Touchscreen DriveSafe is unique in the use of touchscreen technology 

and the presentation of objects immediately after the mask, followed by an unchanged image. 

However, this method is more suited to newer, touchscreen technologies where attention 

must first be cued to a small screen before the change can be made. The countdown and bell 

in touchscreen Drive Safe shift the viewer’s attention to the centre of the screen so they are 

optimally primed for the change, otherwise there would be a risk that the change would occur 
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without the viewer looking at the screen. A cueing screen was also used in MFM (Caird et 

al., 2005). 

Conclusion. DSDA is a unique assessment among published psychometric tests of 

cognitive fitness to drive. However, I found that the DriveSafe subtest protocol is not new 

and fits well within the change blindness model. According to the model safe driving would 

depend on the attentional management of limited stabilised information, impacting speed of 

information processing, performance accuracy, and reaction time (Hasher & Zacks, 1998; 

Hoffman et al., 2006; Rensink, 2002). The impact of fitness-to-drive factors, such as age 

related changes, cognitive impairment, reduced vision, and the presence of medical 

conditions, could further limit capacity, allowing a test such as DriveSafe to discriminate 

among individuals and predict safe driving. In the context of the change blindness model, 

DriveSafe could be described as a fitness-to-drive screen that measures individual differences 

in attentional search ability of drivers. 

I was able to apply the change blindness model to consider how the key change 

blindness model mechanisms could underlie DriveSafe and operate to assess the attentional 

search ability of drivers. This step enabled me to retain potentially critical test mechanisms in 

the touchscreen DriveSafe conversion. Trait models have been criticised for relying on 

correlations without underlying theoretical concepts, clearly defined constructs, and 

operationalization of mechanisms: resulting in lack of success in identifying predictors of 

safe driving (Adler & Silverstein, 2008; de Winter & Happee, 2012; Heikoop et al., 2015; 

Michon, 1985; Ranney, 1994). However, I propose that these criticisms can be addressed by: 

(a) applying the change blindness model to describe underlying theoretical concepts and 

mechanisms; (b) a study design that includes a suitable outcome measure (e.g., a standardised 

on-road assessment); and, (c) statistical methods that allow construct validity and internal 
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reliability to be examined, cut-off scores to be set, and sensitivity, specificity, PPV and NPV 

to be calculated. I found the change blindness model fit the criteria of a simple, explicit, 

usable, validated, and predictive model, applicable to driving related research.  
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CHAPTER 3 

Critical Review of Existing Fitness-to-Drive Screening Tests 

The conversion of a standardised assessment to digital administration requires a 

significant investment of time and financial resources. Therefore, I conducted a needs 

analysis prior to project commencement to justify the research. I reviewed the literature to: 

(a) identify existing screening tests used for determining fitness to drive; (b) determine if 

these tests had sufficient accuracy to predict on-road performance; and, (c) evaluate if these 

tests were feasible for medical practice. Driver screening refers to brief, simple tests that 

identify drivers who are either clearly without deficits that will impact driving or those who 

require further in-depth assessment to determine fitness to drive (Bédard & Dickerson, 2014). 

The aim of the literature review was to determine if GPs already had access to suitable 

fitness-to-drive screens. First, I examined literature to identify optimum fitness-to-drive test 

design criteria recommended by researchers, so existing tests could be compared against 

these criteria. Next, I reviewed literature to identify existing fitness-to-drive tests that were 

potentially practical and valid for medical practice. I searched five online databases: Medline 

via OvidSP (1946 to present), Cinahl via Ebsco (1982 to present); Ageline via Ebsco (1978 to 

present); Scopus; and, PsycTESTS. Search terms included: automobile driving; automobile 

driver examination; safety; driver evaluation; risk assessment; cognition; psychometrics; 

neuropsychological tests; general practitioner; older driver; and, fitness-to-drive. I reviewed 

reference lists of relevant articles and articles citing these publications. The literature search 

did not have a time or locality limitation.  
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GP Fitness-to-drive Test Design Criteria Recommended in the Literature 

Bédard et al. (2008) described the development a suitable fitness-to-drive screen for GPs as a 

quest: 

A quick and valid screening tool has been treated by many researchers, including 

ourselves, as the “holy grail”. Such a tool, which could be administered quickly at a 

licensing bureau or by a health professional, would have considerable value. (p. 336) 

A vast amount of research has been dedicated to this endeavour. Whilst it is not possible to 

predict driving performance with 100% accuracy, researchers have set a number of criteria 

for a useful driver screen. Researchers (Bédard & Dickerson, 2014; Bédard et al., 2008; 

Molnar et al., 2006; Weaver & Bédard, 2012) recommend evidence-based cut-off scores 

where sensitivity, specificity, positive predictive value (PPV) and negative predictive value 

(NPV) are reported. Tests that rely on a statistically significant relationship between the 

results and poor driving performance do not have sufficient accuracy to predict driving 

performance due to a significant overlap in safe and unsafe scores: a limiting characteristic of 

correlation research (Bédard et al., 2008; Heikoop et al., 2015; Michon, 1985; Ranney, 1994). 

Having two cut-off scores can address this problem, allowing categorisation of patients into 

pass, fail, and intermediate categories (Langford, 2008; Laycock, 2011; Molnar et al., 2006). 

Bédard et al. (2008) reported that a driver screen is only clinically useful if it classifies a 

large proportion of drivers as either safe or unsafe, with only a small percentage (10 – 20%) 

falling into the further testing category. Asimakopulos et al. (2012) described an ideal fitness 

to drive screen as one that is simple to administer, takes 5-10 minutes, and has sensitivity, 

specificity, PPV and NPV values over 80%. Additionally, researchers (Classen, Velozo, 

Winter, Bédard, & Wang, 2015; Classen et al., 2010; Hargrave, Nupp, & Erickson, 2012; 

Kay et al., 2012; Langford et al., 2008; Laycock, 2011; Wheatley & Di Stefano, 2008; Yale 
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et al., 2003) recommend that assessment tools be compared against a suitable and valid 

criterion measure, preferably a standardised occupational therapy on-road assessment. 

Dalchow, Niewoehner, Henderson, and Carr (2010) highlighted the importance of 

driver screen face validity. GPs require a test that patients will accept as related to real-world 

driving, so patients feels they have had a fair assessment of driving ability and will be more 

likely to accept the results, particularly if they fail (Dalchow, Niewoehner, Henderson, & 

Carr, 2010). Driving tests with the highest rate of acceptance amongst patients are: on-road 

assessment, visual acuity testing, hazard perception tests, road rules tests, and components of 

neuropsychological tests with driving-related scenes and activities (e.g., map reading) 

(Crundall, 2009; Dalchow et al., 2010). Tests traditionally used for driver screening such as 

Trail Making Test (TMT) Part A and B, Clock Drawing Test, Rapid Pace Walk, and maze 

tests, have a low rate of acceptance (Dalchow et al., 2010). Driver assessment is stressful and 

has potentially significant quality-of-life implications. Therefore, patients need to be able to 

understand why a particular test has been adopted and perceive that it is related to their 

driving ability (Dalchow et al., 2010).  

A significant concern for the high stakes task of driver assessment is that tests be 

sufficiently predictive to avoid misclassifications, particularly minimising identification of 

patients as safe when they are not, due to the risk of injury and death for the driver and others 

(Bédard et al., 2008). Although less critical for community safety, misclassification of safe 

drivers as unsafe also has potentially significant negative health outcomes. There is much 

evidence that driving cessation is associated with declining cognitive, physical and social 

functioning, increased depression, higher rates of admission to long-term care facilities, and 

increased mortality (Chihuri et al., 2016; Edwards, Lunsman, Perkins, Rebok, & Roth, 2009). 
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Table 3.1 summarises the GP fitness to drive test design criteria recommended in the 

literature. 

Table 3.1  

GP Fitness-to-Drive Test Design Criteria Recommended in the Literature 

Criteria for a GP driver screen Criteria references 

Evidence based cut-off scores Bédard et al., 2008; Molnar et al., 2006 

 

2 cut-off scores (generating a “further 

testing” category) 

 

Bédard et al., 2008; Langford et al., 2008; 

Molnar et al., 2006; Laycock, 2011 

 

Sensitivity, specificity, PPV and NPV 

reported and above 80% 

 

Asimakopulos et al., 2012; Bédard et al., 2008; 

Langford et al., 2008; Molnar et al., 2006; 

Weaver & Bédard, 2012  

 

Criterion measure: a standardised on-

road assessment 

 

Classen et al., 2015; Classen et al., 2010; 

Hargrave et al., 2012; Laycock, 2011; 

Wheatley & Di Stefano, 2008; Yale et al., 2003 

 

Small percentage (e.g., 10-20%) of 

patients classified “further testing” 

 

Bédard et al., 2008; Weaver & Bédard, 2012 

 

 

Face valid for the driving task 

 

Crundall, 2009; Dalchow et al., 2010; Weaver 

& Bédard, 2012  

 

Brief (i.e., 10 minutes or less) 

 

Asimakopulos et al., 2012 

 

User friendly for GPs (i.e., portable, 

no unique testing consoles, no 

training, and simple) 

 

 

Asimakopulos et al., 2012; Dalchow et al., 

2010; Fildes, 2008; Molnar et al., 2006 
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This list provided us with a useful template for evaluating existing fitness-to-drive tests and 

also informed both the touchscreen DSDA app design and the design of research projects 

conducted in later phases of the touchscreen DSDA conversion. 

Review of currently available driver screens. Many neuropsychological tests 

commonly used in driving clinics, such as Trail Making Test (TMT) Parts A & B, Motor-

Free Visual Perception Test (MVPT), and maze tests, have sensitivity and specificity either 

not calculated or well below an acceptable level for accurately predicting driving 

performance (Anstey, Wood, Lord, & Walker, 2005; Bédard et al., 2008; Classen, Wang, 

Crizzle, Winter, & Lanford, 2013; Kay et al., 2012). Therefore, these tests are not suitable to 

use alone to screen fitness to drive. Numerous authors have presented self-assessment or 

family and carer driver assessments used for determining if older drivers are safe to drive 

(Classen et al., 2016; Classen, Wen, Velozo, Bedard, et al., 2012; Classen, Winter, Velozo, 

Hannold, & Rogers, 2013; Classen et al., 2010; Levasseur et al., 2014; Medhizadah, Classen, 

& Johnson, 2018). Few of these are rigorously developed and evaluated (Levasseur et al., 

2014) or have sensitivity and specificity reported. Additionally, older driver self-assessment 

has low accuracy in predicting on-road assessment outcomes (Marottoli & Richardson, 

1998).  

However, one promising, reliable and accurate driver screening tool is the Fitness-to-

Drive Screening Measure (FTDS), a 54-item online screening tool for a proxy rater (e.g., 

family and carers) to use in determining if older drivers are having difficulty with driving 

(Classen et al., 2016; Classen et al., 2015; Classen, Wen, Velozo, Bédard, et al., 2012; 

Classen, Wen, Velozo, Bedard, et al., 2012; Classen, Winter, et al., 2013; Classen et al., 

2010). The proxy rates the level of challenge 54 driving skills present to the drive (e.g., 

driving in the correct lane) on a 4-point scale from very difficult to not difficult. Results place 
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older drivers into one of three categories: accomplished driver, routine driver, and at-risk 

driver. Two studies (Classen et al., 2015; Classen, Wang, Crizzle, et al., 2013), have 

examined whether FTDS can predict on-road assessment outcomes. Classen et al. (2015) 

reported the specificity and sensitivity of 33 FTDS items at two cut points as 98.2% and 

19.4% respectively, with 28/200 misclassifications; and, 60.4% and 80.6%, with 73/200 

misclassifications. The authors noted a ceiling effect, with items assessing the performance of 

only the least competent drivers (Classen et al., 2015). Classen et al. (2013) reported good 

sensitivity (79%) in a study involving 168 community dwelling older drivers and their 

family/carers but specificity was 59%, with a large number of false positives (Classen, Wang, 

Crizzle, et al., 2013). FTDS is a free, easily-accessible driver screening tool with favourable 

face valid and content validity (Classen, Winter, et al., 2013; Classen et al., 2010). It is a 

helpful tool for starting a conversation regarding cessation of driving and guiding older 

drivers to resources for further assessment where required (Classen et al., 2015; Classen, 

Wang, Velozo, et al., 2013; Classen, Wen, Velozo, Bédard, et al., 2012; Classen, Wen, 

Velozo, Bedard, et al., 2012). However, the assessment takes 20 minutes (Classen et al., 

2014), is designed to be administered by a family/carer proxy familiar with the older drivers’ 

driving performance (Classen et al., 2015; Classen, Wen, Velozo, Bédard, et al., 2012; 

Classen, Winter, et al., 2013), and classifies only 6% of participants in the “at-risk” category 

(Classen et al., 2014). Therefore, the test is neither practical nor suitable for medical practice, 

or sufficiently predictive to screen fitness to drive. 

In a structured review to identify accurate and practical fitness-to-drive screens for 

clinicians, Asimakopulos et al. (2012) identified driver screens that are accurate enough to 

predict driving performance: with sensitivity, specificity, PPV and NPV over 80%. However, 

among the 53 tools reviewed, only four had sufficient accuracy to predict driving 

performance: Useful Field of View (UFOV TM), original DSDA, Sensory Motor Cognitive 
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Tests (SMCTests), and Stroke Driver Screening Assessment (SDSA). However, none of 

these tools met all of the criteria (Asimakopulos et al., 2012). Asimokopulos et al. (2012) 

identified SDSA (Lincoln, Radford, & Nouri, 2012) as a promising test. SDSA is a battery of 

cognitive tests developed in the UK to determine fitness to drive for stroke patients (Lincoln 

et al., 2012). SDSA takes approximately 30 minutes to administer (Selander, Johansson, 

Lundberg, & Falkmer, 2010) and has been adapted for Sweden and Norway (Selander et al., 

2010). The outcome of an on-road assessment was the criterion measure used in the research 

(Asimakopulos et al., 2012; Lincoln et al., 2012; Selander et al., 2010). Initial research 

indicated SDSA was accurate enough to predict driving performance, correctly classifying 

approximately 80% of stroke patients (Asimakopulos et al., 2012; Lincoln & Fanthome, 

1994; Lincoln et al., 2012). However, a validation study conducted in Sweden and Norway 

indicated fewer than 70% of patients were correctly classified (Lundberg, Caneman, 

Samuelsson, Hakamies-Blomqvist, & Almqvist, 2003). A further study found only 50% of 

patient with cognitive impairment and 62% of stroke patients were correctly classified 

(Selander et al., 2010). Selander et al., (2010) concluded that SDSA cannot predict the 

outcome of an on-road assessment and should not be used as a stand-alone test (Selander et 

al., 2010).  

Our group conducted a similar review of clinical fitness-to-drive tests (Kay et al., 

2012). In agreement with Asimokopulos et al. (2012), we identified SMCTests (Innes et al., 

2007) as potentially sufficiently accurate to predict fitness to drive. SMCTests is a 

computerised group of visuomotor and visuoperceptual tests administered via an integrated 

car body apparatus (Innes et al., 2007). Result of an on-road assessment was the criterion 

measure used in the research (Hoggarth, Innes, Dalrymple-Alford, & Jones, 2013; Innes et 

al., 2007; Innes, Jones, Anderson, Hollobon, & Dalrymple-Alford, 2009). Early research 

conducted by Innes et al., (2007) indicated high sensitivity and specificity: 97% and 89% 
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respectively. However, results of a subsequent study with cognitively impaired older drivers 

(N = 279), evidenced lower sensitivity and specificity (73.5% and 70.2% respectively), 

indicating SMCTests are not sufficiently accurate to predict driving performance (Hoggarth 

et al., 2013). SMCTests have high face validity (Innes et al., 2009) but they are not practical 

for GPs because specialised testing equipment is required and the administration time is 

lengthy: reported as several hours in one study (Heitger et al., 2004).  

UFOV TM (Ball, Beard, Roenker, Miller, & Griggs, 1988; Ball & Owsley, 1993), a 

15-minute computerised test of functional vision and visual attention, is a driver screen that 

has been widely used and extensively studied (Bédard et al., 2008; Classen, Wang, Crizzle, et 

al., 2013; Dickerson et al., 2014; Kay et al., 2012). Although criterion measures vary between 

studies, UFOV TM has been compared with results of an on-road assessment in some research 

(Austroads, 2004; Bédard et al., 2008; Myers, Ball, Kalina, Roth, & Goode, 2000). UFOV TM 

has the potential to be practical for medical practice because it is easy to administer via 

computer and has a short administration time compared to other fitness-to-drive tests. 

However, UFOV TM demonstrates variable sensitivity and specificity estimates between 

studies and these are not consistently high enough for the test to be used to predict driving 

performance accurately (Bédard et al., 2008; Classen, Wang, Crizzle, et al., 2013; Dickerson 

et al., 2014; Kay et al., 2012).  

DriveAble (Dobbs, 2005) is another computerised test widely used to determine 

fitness to drive, primarily in Canada. However, evidence from driver screen review studies 

indicates the test is not a good predictor of on-road performance, with sensitivity 76%; 

specificity 90%; PPV 97%; and, NPV 47% (Kay et al., 2012; Korner-Bitensky & Sofer, 

2009). Additionally, the author has not published the DriveAble algorithms. A recent large (N 

= 3662) study conducted by the test author indicated a very low error rate for pass and fail 
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predictions for patients categorised as requiring further testing: 1.7% for pass predictions and 

5.6% for fail predictions (Dobbs, 2013). Whilst these results are promising, DriveAble is not 

suitable for medical practice due to the need for expensive administration equipment (i.e., a 

unique testing console); ongoing subscription for interpretation of results; lengthy test 

administration time (35 to 50 minutes according to Korner-Bitensky & Sofer, 2009); and 

because a large percentage of participants are classified as requiring further testing (36.5% to 

46%) (Dobbs, 2013; Korner-Bitensky & Sofer, 2009). 

I briefly mention the Mini-Mental State Examination (MMSE) (Folstein, Folstein, & 

McHugh, 1975) and Montreal Cognitive Assessment (MoCA) (Nasreddine et al., 2005) here 

because these are the cognitive screening tools most frequently used by GPs (Dobbs et al., 

1998; Hoggarth, 2013; Wilson & Kirby, 2008): adopted because they are quick, inexpensive, 

and easy to administer (Dobbs et al., 1998; Hoggarth, 2013; Wilson & Kirby, 2008). The 

MMSE was developed to estimate the severity of cognitive impairment (Folstein et al., 

1975). The MoCa was developed to detect mild cognitive impairment because the authors 

noted that individuals with mild impairment consistently scored within the normal range on 

MMSE (Nasreddine et al., 2005). Both tests are scored on a 30-point scale, with a higher 

score representing better function. MoCA includes tasks that assess a broader range of 

cognitive domains and is more sensitive to mild cognitive impairment than MMSE (Bowers 

et al., 2013; Nasreddine et al., 2005; Trzepacz et al., 2015). The validity of MMSE in 

predicting on-road assessment outcome has been widely researched but many studies only 

examine statistically significant relationships between MMSE and accident rate or on-road 

performance, rather than calculating sensitivity and specificity: many demonstrating no 

correlation (Anstey et al., 2005; Asimakopulos et al., 2012; Bédard et al., 2008; De Raedt & 

Ponjaert-Kristoffersen, 2001; Dickerson et al., 2014; Hollis, Duncanson, Kapust, Xi, & 

O'Connor, 2015; Vrkljan et al., 2011).  



	  
	  

66	  

However, a number of studies have compared the accuracy of MMSE and MoCA in 

predicting on-road assessment outcome, calculating sensitivity and specificity. Bowers et al. 

(2013) examined a range of cognitive measures, including MMSE and MoCA, to determine if 

combining tests would better predictive driving performance. The authors concluded MMSE 

and MoCA were equivalent predictors (specificity: 0.76 and 0.68; sensitivity 0.67 and 0.80 

respectively) but neither test was sufficiently accurate alone (Bowers et al., 2013). The best 

combination of tests for predicting on-road assessment outcome was UFOV TM subtest 2, 

MMSE, visual acuity and contrast sensitivity measures, and removal of Trails A and B from 

the battery (specificity 0.95; sensitivity 0.80) (Bowers et al., 2013). Whilst this combination 

was very accurate in identifying safe drivers, it failed to identify 20% of at risk drivers 

(Bowers et al., 2013). Additionally, GPs require a brief, stand-alone screen of fitness to drive 

rather than a battery of tests due to practical limitations, such as short patient consultation 

time. Wood et al. (2013) reported a similar sensitivity for MMSE compared to Bowers et al. 

(2013) (0.65 compared to 0.67 respectively) but particularly low specificity (0.37) (Wood et 

al., 2013). Hollis et al. (2015) found that neither test is predictive for drivers without 

cognitive impairment (Hollis et al., 2015). The MoCA was a stronger predictor for drivers 

with cognitive impairment but neither test was sufficiently accurate (Hollis et al., 2015).  

MoCA was recommended as quick cognitive screen for health professionals to use in 

determining the need for on-road assessment in one study of patients with neurological 

impairments (N=135) (Esser et al., 2016). However, whilst specificity was high (94%) results 

indicated low sensitivity (44%). The authors proposed a lower cut-off score of <12 

(sensitivity 100%; specificity 16.7%) and an upper cut-off of  >27 (sensitivity 100%; 

specificity 4.9%). However, these proposed cut-off scores placed 78% of participants in the 

further testing category, impacting clinical utility of the test (Esser et al., 2016). In summary, 

researcher evidence consistently shows that MMSE and MoCA do not have sufficient 



	  
	  

67	  

predictive accuracy to be use alone to make decisions about fitness to drive (Asimakopulos et 

al., 2012; Bédard et al., 2008; Bowers et al., 2013; De Raedt & Ponjaert-Kristoffersen, 2001; 

Dickerson et al., 2014; Hollis et al., 2015; Kay et al., 2012; Vrkljan et al., 2011; Wood et al., 

2013). 

Summary. The fitness-to-drive tests identified in the literature with sufficient 

accuracy to predict on-road assessment outcomes were compared with GP fitness-to-drive 

test design criteria identified in the literature (summarised earlier in Table 3.1): so feasibility 

for medical practice could be determine. Table 3.2 contains the results. 
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These findings indicate no fitness-to-drive screen meets all the criteria recommended 

by researchers for a practical and valid driver screen, consistent with findings from published 

fitness-to-drive test reviews (Bédard et al., 2008; Dalchow et al., 2010; Dickerson, 2014b; 

Fildes, 2008; Molnar et al., 2006). Short, simple tests (e.g., UFOV TM) do not have the 

discriminative power required to screen drivers (Kay, Bundy, & Clemson, 2008). Longer 

tests approaching acceptable predictive validity (e.g., DriveAble, SMCTests, and original 

DSDA) are not practical for medical practice due to lengthy administration times, the need 

for specialised equipment and training, or lack of face validity (Dalchow et al., 2010; Fildes, 

2008; Kay, 2008; Kay, Bundy, & Clemson, 2008; Molnar et al., 2006). One limitation of the 

Chapter 3 literature review was that it was not a comprehensive review. However, the 

findings were consistent with those of numerous other researchers (Asimakopulos et al., 

2012; Bédard et al., 2008; Dickerson, 2014b; Kay et al., 2012; Molnar et al., 2006; Vrkljan et 

al., 2011) who have conduced comprehensive reviews and concluded that GPs did not 

currently have access to one tool that can be used to screen drivers. This outcome supported 

the dedication of resources to the conversion of original DSDA into a brief, practical, and 

valid touchscreen fitness-to-drive screen for GPs. 
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CHAPTER 4 

Extended Methodology: Development of Touchscreen DSDA 

The conversion of original DSDA into a touchscreen fitness-to-drive screen for GPs 

and other health professionals involved many steps. We conducted the following processes 

prior to the touchscreen development: (a) needs analysis to determine if there was a demand 

for a digital version of DSDA, with findings presented to Pearson to secure project funding 

(findings discussed later in this chapter); (b) project planning, research design, and 

submission of ethics applications; (c) identification of optimum touchscreen test design 

criteria for GPs and older adults (findings discussed later in this chapter); and, (d) a tender 

process to select a suitable app developer. 

We conducted the following processes in the design and programming phase: (a) 

developed product specifications and prepared elements for usability testing in conjunction 

with the app developer; (b) conducted usability testing with GPs, occupational therapists, and 

older adults concurrently with app design and programming to ensure the app was user 

friendly (including set up of research sites, participant recruitment, and data analysis as per 

the ethics applications); (c) developed an audio script and conducted studio voice recording 

of in-app instructions; and, (d) conducted systematic touchscreen DSDA quality assurance 

checks and product testing throughout all development stages to ensure the app was user-

friendly and free from design faults.  

We conducted the following steps in the validation research phase: (a) set up of ten 

research sites: including equipment provision, administrator training, and set up of data 



	  
	  

73	  

collection and storage mechanisms as per the ethics application; (b) data analysis including 

evaluation of construct validity and internal reliability, setting touchscreen DSDA cut-off 

scores, and determining sensitivity, specificity, PPV and NPV; and, (c) finalisation of the 

fitness-to-drive classification process based on the cut-off scores, including ensure this was 

programmed and scenario tested with the app developer. 

Finally, we conducted the following processes prior to release of the iPad app into the 

Apple Store: (a) designed the touchscreen DSDA in-app results and reporting mechanisms 

for administrators: including consent forms, report forms, disclaimers, and advisory 

warnings; (b) wrote the technical manual (see Appendix A); (c) assisted Pearson to develop 

product technical support and maintenance systems, customer support, and sales staff 

training; (d) assisted Pearson to develop marketing content (e.g., website and flier product 

information); (e) developed and provided webinar training for touchscreen DSDA 

administrators; (f) released touchscreen DSDA to the Apple Store for approval then to the 

market via the app developer; and, g) identified GPs and medical specialists willing to 

implement touchscreen DSDA into their medical practices as part of a study planned to 

evaluate the feasibility of the test for this context: including research site set up and data 

collection (discussed in Chapter 8). 

At the beginning stage of the project we had a concept of how a touchscreen version 

of DSDA might look. However, we needed to confirm our design assumptions with the 

intended administrators (general practitioners) and the group most likely to take the test and 

most likely to struggle with the technology (older adults). We assumed GPs required a brief 

test but were unsure how GPs would define brief (e.g., 3 or 10 minutes). We did not know if 

GPs would prefer to administer the test themselves, in conjunction with a practice nurse, or 

via referral to an external service (e.g., an occupational therapist). We also did not know if 
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GPs had access to an iPad or an android tablet and which mode of administration they would 

prefer. Additionally, we were unsure what mode of digital administration would be optimum 

for older adults and how the app should be best designed to suit their needs. Therefore, we 

consulted GPs directly and I conducted a review of the literature as described below. 

Fitness-to-drive Screen Needs & Preferences Identified by GPs 

I needed to understand GPs’ needs and preferences regarding practical test design 

prior to commencing app design, so the final product would be functional and useful for 

them. GPs’ views and practices regarding assessment of patient fitness to drive have been 

explored via a large number of surveys investigating: (a) GP familiarity with current 

legislation and the need for further education (Hoggarth, 2013; Jang et al., 2007; Kahvedzic, 

McFadden, Cummins, Carr, & O'Neill, 2015; Pfaffli, Thali, & Eggert, 2012; Wilson & Kirby, 

2008); (b) opinions and attitudes towards the driver-assessor role (Jang et al., 2007; Jones, 

Rouse-Watson, Beveridge, Sims, & Schattner, 2012; Kahvedzic et al., 2015; Marshall et al., 

2012; Omer, Dolan, Dimitrov, Langan, & McCarthy, 2014; Sims et al., 2012); (c) current 

clinical practice regarding fitness-to-drive assessment (Braekhus & Engedal, 2009; Hoggarth, 

2013; Jang et al., 2007; Marshall et al., 2012; Wilson & Kirby, 2008); and, (d) managing the 

consequences of the fitness-to-drive assessment (Jones et al., 2012; Nouri, 1988). However, 

there is a paucity of research exploring GPs’ needs and preferences regarding the practical 

aspects of fitness to drive test design (e.g., how long it should take and how it should be 

administered).  

In the absence of published research to guide test design, Pearson surveyed a 

representative sample of 200 Australian GPs via a market research company. Results are 

reported in Appendix C (Brown, Cheal, Cooper, & Joshua, 2013). GPs reported they needed 

a driver screen, but it must be brief (M and Mdn = 10 minutes); valid, simple to administer in 



	  
	  

75	  

an office setting; and have the option of practice nurse administration (Brown et al., 2013). 

Most GPs (84%) had access to a practice nurse whom they considered could spend slightly 

longer time administering the screen (M = 14m; Mdn = 15m). Most GPs (84%) preferred in-

house administration, either via the GP, a practice nurse, or a combination. Only 10% 

preferred referral to another professional to complete the screen and 6% considered the test 

would not be feasible. Most GPs (78%) reported iPad access; only 7% preferring android 

tablets (Brown et al., 2013). These findings contributed to the decision to: (a) select iPad 

rather than android tablet as the administration mode; (b) allow a 10-minute administration 

time; and, (c) design the test to be partially self-administered with capacity for a practice 

nurse to setup and supervise the self-administered components, to reduce testing time. The 

next step was to ensure touchscreen DSDA was designed to be user-friendly for those who 

will take the test. 

Suitability & Design of Touchscreen Technology for Older Adults 

Because of a world ageing population and the higher rates of cognitive impairments 

among older adults (Global Burden of Disease Study 2013 Collaborators, 2015), the group 

most likely to take touchscreen DSDA are older adults. Therefore, age-related changes and 

the requirements of older adults needed to be taken into consideration at the commencement 

of the design process (Rogers & Mitzner, 2016). Consequently, I conducted a review of the 

literature to determine the suitability of touchscreen administration for older adults and to 

determine which design criteria should be applied to ensure the test was user-friendly for 

older adults who may be less familiar with digital technology. I searched three online 

databases: Medline via OvidSP (1946 to present), Cinahl via Ebsco (1982 to present); and, 

Ageline via Ebsco (1978 to present). Search terms included: older adults; touchscreen; digital 

tablet; iPad; mobile application; hand held computers; and, health information technology. I 
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reviewed reference lists of relevant articles and articles citing these publications. The 

literature search did not have a time or locality limitation. I also searched for statistical 

reports and surveys available on the Internet via research companies such as Nielsen and 

Price Waterhouse Coopers, due to the rapid changes occurring in digital technology 

development and adoption rates in the community. 

Survey results (Nielsen & IAB Australia, 2015; Statista, 2017) indicated rapid uptake 

of touchscreen technology broadly across age groups. Fifteen million Australians own a 

smartphone and eleven million own a tablet, with demand increasing rapidly each year 

(Nielsen & IAB Australia, 2015); September 2015 was the first month in which time spent on 

a tablet exceeded time spent on a personal computer (Nielsen & IAB Australia, 2015). 

Convenience, portability, user-friendly operating systems, and larger screens are driving the 

high uptake of mobile touchscreen devices (Statista, 2017). I sought to determine if 

touchscreen technology was suitable for application in health care, particularly among older 

adults. 

The National Health Service (NHS) in the United Kingdom noted a growing gap 

between the proliferation of digital devices for everyday tasks and the continued delivery of 

health care via traditional modes, such as face-to-face consultation and paper administration 

of forms and tests (Clionsky & Clionsky, 2014). The NHS estimates significant cost-benefit 

(£5,059 million over 10 years) in transitioning health services online for access via digital 

devices (e.g., for assessment of minor ailments, primary care pre-assessment, pre-operative 

screening, post-surgical and secondary care remote follow-up, and administrative tasks such 

as appointment bookings and test result notifications) (National Health Service, 2011; Price 

Waterhouse Coopers & Department of Health, 2013).  
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The benefits of digital modes of administration are clear for clinicians, who readily 

adopt digital tablet apps for healthcare delivery due to the time and accuracy advantages 

(Daly, Xu, & Levy, 2015; Downing Peck, 2011; Glaser, Jain, & Kortum, 2013; Godwin, Tan, 

Bockhold, Ma, & Tran, 2015; Howell, Hood, & Jayne, 2015; Turney & Reynard, 2014; 

Wiarda, McMinn, Peterson, & Gregor, 2014). More than 165,000 medical apps are available 

to clinicians, with thousands added each year (McCarthy, 2015). Patients miss significantly 

fewer items when they self-administer assessments via healthcare apps compared to paper 

administration (Matthew et al., 2007; Ryan, Corry, Attewell, & Smithson, 2002; Wilson et 

al., 2002). Additionally, equivalence studies indicate that touchscreen and paper 

administration of standardised assessments are equivalent measures (Clionsky & Clionsky, 

2014; Lavi, Malki, & Kornowski, 2014; Matthew et al., 2007; Ryan et al., 2002; Wilson et 

al., 2002). Further, there is evidence that capacity to form a therapeutic patient relationship is 

not reduced by touchscreen test administration compared to traditional methods (Clough & 

Casey, 2015; Eonta et al., 2011; Wiarda et al., 2014). The ubiquity of touchscreen personal 

devices and cost-benefit for clinicians supported the selection of touchscreen for DSDA 

administration. However, I sought to determine if patients, particularly older adults, were 

equally positive about assessments being presented to them via digital tablet and if they could 

successfully use them.  

Older adult perspectives regarding touchscreen technology use. Stereotypes 

suggest older adults are less interested in technology, have lower uptake, and struggle with 

the format (Kunemund & Tanschus, 2014). Some surveys indicate that older adults are less 

likely to engage in health services via technology or perceive the need for digital devices 

(Gitlow, 2014; Gordon & Hornbrook, 2016; Kontos, Blake, Chou, & Prestin, 2014). 

Nonetheless, Kunemund and Tanschus (2014) advised against treating older adults as a 

homogeneous group when it comes to understanding adoption of technology due to the 
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complex interplay of factors such as health status, living situation, available supports, socio-

economic status, and needs on uptake. Acceptance also changes with the specific technology: 

whether it is seen as socially desirable, easy to use, and useful (Kunemund & Tanschus, 

2014).  

There is anecdotal evidence that older adults readily adopt touchscreen technology, 

finding smart phones and tablets more user friendly that computers. However, there are 

relatively few studies that examine the use of iPad technology with older adults (Delello & 

McWhorter, 2016). Moussa et al. (2017) conducted a literature review to examine the 

implementation of mobile health technology among older adults aged ≥65 diagnosed with a 

mental illness or cognitive impairment. Only 7 out of the 1941 studies reviewed that met the 

inclusion criteria (i.e., that participants must be diagnosed with a mental illness), examined 

mobile health technologies (Moussa et al., 2017); 3 addressed touchscreen technology, and 

only one (Onoda et al., 2013) examined self-administration of an iPad application. Onoda et 

al. (2013) found that iPad could be successfully used to screen a large (N = 222) older 

population (Mage 70.7) for dementia. However, usability was not evaluated from the 

perspective of the participants.  

Studies evaluating delivery of healthcare via digital tablets in hospital and community 

settings indicate technology is not a barrier for older adults, particularly in the case of iPad 

(Cook et al., 2014; Dixon, Bunker, & Chan, 2007; Turney & Reynard, 2014). For example, 

results of a feasibility study conducted to evaluate delivery of education to cardiac surgery in-

patients (N = 149; Mage = 68 years; Range 52-90 years), via iPad, indicated 84% of education 

modules presented over 5 days were consumed and 90% of patients reported understanding 

90% of the content (Cook et al., 2014). Increasing age was not associated with decreasing 

iPad use and the older patients quickly learnt to use the technology, despite being initially 
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unfamiliar with it. The authors perceived a cost-benefit in reducing length-of-stay and re-

admission due to providing engaging, simple, and timely education regarding daily 

healthcare, without reliance on busy hospital staff to deliver education verbally (Cook et al., 

2014). Perhaps surprisingly, iPads have also been used successfully with older adults with 

dementia, aiding participation in group well-being activities (Leng, Yeo, George, & Barr, 

2014), aiding reminiscence and recall, and increasing communication and socialisation 

(Upton, Upton, Jones, Jutlla, & Brooker, 2011; Yack & Camic, 2017). 

The following three studies examined older adults experiences using digital tablet 

devices in community and residential care settings. Tsai, Shillair, Cotten, Winstead, & Yost. 

(2015) conducted 21 semi-structured interviews with older (69-91), community based 

residents who owned a digital tablet, to examine technology self-efficacy. Participants 

reported the decision to adopt a tablet device was driven by recommendation from family or 

seeing others with the technology. All participants reported finding digital tablets quick and 

easy to learn to use and user-friendly; all were happy with their device. Participants described 

feeling confident and “current” using their tablets; 90% (n = 19) felt more connected to 

family and the world since adopting the device (Tsai, Shillair, Cotten, Winstead, & Yost, 

2015). There was a clear difference in perceived self-efficacy using a tablet compared to a 

computer, with computers described as being frustrating, complex and intimidating. 

Residents valued their iPads due to their size, portability and convenience (Tsai et al., 2015). 

These findings are consistent to those of Watkins and Xie (2015) who explored older adult (N 

= 22; age ≥60) perceptions of iPad use for increasing fruit and vegetable consumption via 

relevant applications; participants were unfamiliar with the technology. Five focus group 

sessions were conducted incorporating instruction in iPad use. The participants reported 

similar influencers regarding choice to adopt (family, social contacts and advertising) and 

found iPad user friendly, positive and engaging (Watkins & Xie, 2015).  
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Østensen et al. (2017) provided 15 residents in aged care facilities (Mage 78.3) with an 

internet-connected iPad as part of an innovative care programme to promote thriving and 

participation. All had little prior exposure to digital tablets (Østensen, Gjevjon, Øderud, & 

Moen, 2017). Participants attended a weekly, 12-month iPad training programme in how to 

use various iPad applications (e.g., Pintrest and Facebook) and functions (e.g., email). 

Training was supported by community care nurses and provided by adolescent youth 

volunteers. Semi-structured interviews were conducted pre-training, after 6 months, and after 

12 months (Østensen et al., 2017). All older adults reported finding iPads easy to use and 

feeling more socially connected after training. For example, many participants re-established 

contact with family and friends they could no longer visit. A group of participants formed a 

social group based on a mutual interest in music, using iPad applications such as Spotify. One 

resident wanted to try online shopping to increase her sense of independence (Østensen et al., 

2017). Participants described a sense of mastery, satisfaction and pride in learning to use an 

iPad, and found them an interesting and positive addition to their lives. Community nurses 

reported the residents seemed happier, more social, and left their rooms more often. The 

authors proposed a model of care using technology to prevent isolation and functional decline 

based on the success of the intervention (Østensen et al., 2017). 

Whilst both these studies provide evidence that older adults find iPads intuitive and 

simple to learn to use, sample sizes were small and results cannot be generalised. However, 

the views of participants were consistent, and findings supported the use of touchscreen tablet 

devices with older adults. No studies were found indicating iPad was unsuitable for the 

healthcare context or standardized assessment delivery for older adults. Regardless, the 

unremitting pace of technological development and almost universal adoption of digital 

devices within the community suggest use of touchscreen devices in healthcare will only 

increase, particularly as cohorts who are native users of technology age. The findings from 
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this literature review gave me confidence that iPad administration of assessments is 

advantageous for both clinicians and older and cognitively impaired adults. Next, I searched 

the literature to identify suitable touchscreen design criteria for older adults. 

DSDA iPad app design for seniors. Many older adults experience age-related 

changes that could impact interaction with an iPad (e.g., reduced vision, hearing loss, reduced 

reaction time, reduced coordination, and cognitive changes) (Loureiro & Rodrigues, 2014). 

We wanted to design an interface that would take these limitations into consideration so 

DSDA examined the desired construct (awareness of the driving environment) and not 

individual differences in ability to enter responses via iPad. Motor and cognitive performance 

in touch based functions (e.g., tap and drag) are critical to a person’s ability to successfully 

interact with an iPad (Findlater, Froehlich, Fattal, Wobbrock, & Dastyar, 2013). Many 

studies have examined the performance of older adults with touchscreen functions to 

determine what works best. A study comparing iPad to computer mouse performance of 20 

older (Mage = 74) and 20 younger (Mage = 28) adults found a lower error rate and faster 

performance on iPad for both groups (decreased by 35% for older adults; 16% for younger) 

(Findlater et al., 2013). Consistent with other research (Cockburn, Ahlström, & Gutwin, 

2012; Kobayashi et al., 2011), drag was the slowest iPad function for both groups, perhaps 

because the object is obscured by the finger or due to the additional dexterity and pressure 

required to “hold” and slide the target against resistance. However, participants considered all 

touchscreen functions relatively easy (Findlater et al., 2013). In a study comparing finger, 

stylus and mouse inputs, fingers were slowest for dragging (Cockburn et al., 2012). Fingers 

were fastest for tapping but less accurate for smaller targets, probably due to the target being 

obscured by the finger and the finger being a larger, cruder pointing device. However, overall 

error rate was very low for all three modes (Cockburn et al., 2012).  
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Useful guidelines arose from this body of literature that we applied when designing 

the touchscreen interface for older adults. The most relevant for this project included: larger 

sizes for targets (≥ 8mm); larger, simple fonts; highly contrasting colours, targets, and 

backgrounds; adjustable audio volume; caution in design of ‘drag’ tasks: testing these with 

seniors first; simple, meaningful icons; avoidance of scrolling or distracting and irrelevant 

elements; and reduction of the gap between intended and actual touch location due to parallax 

(i.e., where object position appears to differ when viewed from different angles) (Kobayashi 

et al., 2011; Loureiro & Rodrigues, 2014; Schneider, Wilkes, Grandt, & Schlick, 2008).  

In summary, comparison of keyboard, mouse, and touchscreen input methods 

consistently show that older adults perform best on touchscreen devices (Cockburn et al., 

2012; Findlater et al., 2013; Kobayashi et al., 2011; Schneider et al., 2008) and that iPad 

reduces the performance gap between older and younger adults compared to traditional 

desktop setups (Findlater et al., 2013; Schneider et al., 2008). These finding supported the 

choice of iPad as the optimum mode of digital DSDA administration for older adults. 

However, in addition to the literature review we required a clearer understanding of how 

older adults may enter responses via touchscreen in practice, to identify potential barriers to 

effective performance. Therefore, we took a user-centred design (UCD) approach to the 

touchscreen DSDA development: to ensure test design was informed by the needs and 

preferences of the intended user group and that we avoided potentially costly and time-

consuming user-interface problems during the clinical research phase. A UCD approach 

included usability testing elements of touchscreen DSDA with older adults in the field, 

concurrently with the design, programming, and evaluation stages. Usability can be defined 

as the extent to which a product or service can be used with effectiveness, efficiency and 

satisfaction by the target user to achieve specified goals in the specified context of use 

(Hussain & Kutar, 2009; International Organization for Standardization, 2010; Nayebi, 
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Desharnais, & Abran, 2012) and has been described as a cornerstone of best practice when 

designing medical devices (Hegde, 2013). I presented the results in Chapters 5 and 6.  
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CHAPTER 5 

Journal Article 1 

Usability testing of touchscreen DriveSafe DriveAware with older adults: 

A cognitive fitness-to-drive screen 

The following manuscript describes a study in which we examined the usability of 

touchscreen DSDA with older adults concurrently with the app design, programming, and 

evaluation. This allowed us to test and validate our design assumptions with the group most 

likely to take touchscreen DSDA and most likely to have difficulty with the technology. We 

also tested the automatic data collection system we had designed to ensure touchscreen 

DSDA reflected the data collection decisions that would have been made by a trained 

administrator. The present study was essential to the development of touchscreen DSDA 

because we could not have predicted what difficulties older adults may have without usability 

testing. I formatted this chapter in accord with the style of the journal to which the 

manuscript was submitted. The manuscript was published by Cogent Medicine on December 

5, 2018 (Cheal, Bundy, Patomella, & Scanlan, 2018). 
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Usability testing of touchscreen DriveSafe DriveAware with older adults: 

A cognitive fitness-to-drive screen 
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Newton Scanlan, PhDa 
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Abstract 

Background. DriveSafe DriveAware is a cognitive fitness-to-drive screen that can 

accurately predict on-road performance. However, administration is restricted to trained 

assessors. General practitioners are ultimately responsible for determining fitness to drive in 

many countries but lack suitable tools. We converted DriveSafe DriveAware to touchscreen 

to provide general practitioners and other health professionals with a practical fitness-to-drive 

screen. This necessitated the development of an automatic data collection system. We took a 

user-centred design approach to test usability of the system with older adults, the group most 

likely to take the test.  

Method. Middle aged and older adult volunteers were asked to try an iPad application 

to assist in the development of a fitness-to-drive screen. Seventeen males and 18 females 

(mean age 70 years) participated in four trials, each participant tested only once. We tested all 

text and function changes until all older adults could successfully self-administer the screen. 

Results. Older adults found basic touchscreen functions easy to perform, even when 

unfamiliar with the technology.  
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Conclusion. Usability testing allowed us to develop a user-friendly touchscreen data 

collection system and ensured design errors were not missed. Psychometric evaluation of data 

gathered with touchscreen DriveSafe DriveAware is required prior to use in clinical practice.  

Keywords. Older adults; automobile driving; cognitive assessment screening 

instrument; touchscreen 

Background 

People in many cultures consider driving as one of their most valued daily living 

activities (Al-Hassani & Alotaibi, 2014; Dickerson et al., 2012; Fricke & Unsworth, 2001). 

Gaining a license is considered a rite of passage for young people and older adults want to 

drive for as long as possible, often with no plan for cessation (Coxon & Keay, 2015; 

Kostyniuk & Shope, 2003). However, driving is complex and therefore easily disrupted by 

illness, injury, or age-related changes. Chronic medical conditions, particularly among older 

drivers, are associated with increased crash risk and driving errors (Barco et al., 2015; 

Charlton et al., 2010; Dobbs et al., 1998; Kay, Bundy, & Clemson, 2008; Marshall, 2008; 

Marshall & Man-Son-Hing, 2011; Marshall et al., 2007; Molnar et al., 2006; Papa et al., 

2014). Despite this, researchers recommend fitness to drive is determined on an individual 

basis, with a focus on functional status, rather than diagnosis (Charlton et al., 2010; Marshall, 

2008; Marshall & Man-Son-Hing, 2011). 

General practitioners are the professionals ultimately responsible for determining 

medical fitness to drive in most countries and are in an ideal position to screen drivers 

because: 1) patients usually present to them in the first instance; 2) they are required to fill 

out license authority medical forms (Dobbs et al., 1998; Sims et al., 2012); and, 3) there is 

mandatory reporting of medically ‘at risk’ drivers in jurisdictions of many countries 
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including the US, Canada, and Australia (Austroads & National Transport Commission, 

2016; Jang et al., 2007). Surveys show general practitioners believe they should be 

responsible for making determinations about fitness to drive but lack valid and reliable driver 

screens that are practical for use in medical practice (Dobbs et al., 1998; Fildes, 2008; Jang et 

al., 2007; Marshall et al., 2012; Molnar et al., 2006; Sims et al., 2012; Wilson & Kirby, 2008; 

Woolnough et al., 2013; Yale et al., 2003).  

The desktop (original) version of DriveSafe DriveAware is a cognitive fitness-to-

drive test showing promise as a driver-screening instrument. Data gathered with original 

DriveSafe DriveAware are face valid, reliable, sufficiently predictive, test-retest reliable, and 

trichotomise patients via two evidence-based cut-off scores based on the likelihood of 

passing an on-road assessment (i.e., “Likely to Pass”, “Requires Further Testing”, and 

“Likely to Fail”) (Hines & Bundy, 2014; Kay, Bundy, & Clemson, 2008; Kay et al., 2009a, 

2009b; Kay et al., 2012; O'Donnell et al., 2018). However, original DriveSafe DriveAware is 

not practical for medical practice and requires a trained administrator. Therefore, we further 

developed the test so it would be suitable for administration by general practitioners. Prior to 

development of the new screen, we surveyed a representative sample of 200 Australian 

general practitioners to identify their preferences regarding a driver screen (Brown et al., 

2013). General practitioners reported they needed a brief (mean and median 10 minutes), 

valid and simple test. Thus, we designed DriveSafe DriveAware to be largely self-

administered via iPad, with capacity for a practice nurse to setup and supervise the self-

administered components.  

Because the majority of drivers likely to take touchscreen DriveSafe DriveAware will 

be older adults (typically classified as age ≥65), we wanted to be sure that older adults could 

use tablet technology and feel comfortable with it. Whilst research findings suggest that older 



	  
	  

89	  

adults find digital tablets easy to learn to operate, intuitive and user-friendly (Delello & 

McWhorter, 2016; Moussa et al., 2017; Onoda et al., 2013; Østensen et al., 2017; Tsai et al., 

2015), older adults experience age-related changes that could impact interaction with a digital 

tablet (e.g., reduced vision, hearing loss, reduced reaction time, reduced coordination, and 

cognitive changes). We wanted to design an interface that would consider these limitations so 

that touchscreen DriveSafe DriveAware examined the desired construct (i.e., awareness of 

the driving environment and one’s own driving performance) (Kay et al., 2009a) and not 

individual differences in ability to enter responses via a touchscreen. First, we reviewed 

optimum touchscreen design guidelines for older adults. The most relevant for this project 

included: large targets (minimum .31” or 8 mm); large, simple fonts; high-contrast colours; 

contrasting targets and backgrounds; caution in the design of drag tasks including testing with 

seniors first; avoidance of scrolling; simple and meaningful icons; and, avoidance of 

distracting or irrelevant elements (Kobayashi et al., 2011; Loureiro & Rodrigues, 2014; 

Schneider et al., 2008). 

We took a user-centred design approach to avoid potentially costly, time-consuming 

user-interface problems in the clinical research phase. Hegde (2013), described usability 

testing as the cornerstone of best practice when designing medical devices. Usability is 

defined as the extent to which a product or service can be used with efficiency, effectiveness, 

and satisfaction by the target users to achieve specified goals in the specified context of use 

(International Organization for Standardization, 2010). The user-centred design philosophy 

places end users at the centre of the design process (Dorrington, Wilkinson, Tasker, & 

Walters, 2016; McCurdie et al., 2012). Elements of the design are refined via an iterative 

process (Hegde, 2013; McCurdie et al., 2012; Rogers & Mitzner, 2016).  
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We sought to make the touchscreen version of DriveSafe DriveAware as similar as 

possible to the original version in order to retain test validity. However, we were transitioning 

from a test where a trained administrator collected, interpreted and scored variable data via 

participant verbal responses, to a test where variable data were collected via participant 

touchscreen responses and scored automatically. This necessitated the development of an 

automatic variable data collection and scoring system that would reflect the decisions that 

would otherwise have been made by a trained assessor. In the present study we addressed the 

research question “Does the touchscreen data collection system we designed collect variable 

data in a way that is user-friendly for older adults who may be unfamiliar with the 

technology?” We sought to answer this question by testing the usability of the touchscreen 

DriveSafe DriveAware data collection system with older adults concurrently with 

touchscreen DriveSafe DriveAware software design and programming. 

Method 

The University of Sydney Human Research Ethics Committee provided approval for 

the study. We conducted four rounds of usability testing on four days over one month. 

Results from each round informed the next stage of design and programming. We aimed to 

test approximately 10 participants per round. Testing with larger numbers was not considered 

beneficial because a repeated pattern of errors emerged after trials with 7 to 10 individuals. 

These errors needed to be addressed in programming before further feedback was useful. 

Each participant was tested only once. 
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Setting. We conducted rounds 1 and 4 at a large aged care residential facility. 

We conducted rounds 2 and 3 at a community centre. Round 2 occurred within the 

context of a social group for older adults. DSDA was administered to Round 3 

participants individually. Both centres were located in Sydney, Australia. 

Participants. We placed an advertisement in community meeting areas at both 

centres, asking for older adult volunteers to assist in the development of a fitness-to-drive 

screen for general practitioners. Potential volunteers were informed that their information 

would be anonymous; we would provide no advice regarding their driving. Volunteers 

advised centre staff if they wished to participate. A total of 35 adults volunteered: 17 males 

and 18 females aged between 41 and 89 (mean age 70 years); 83% (29 participants) were 

over 65. We collected no identifying data. No one withdrew or was excluded after agreeing to 

participate. Participant characteristics including iPad use are listed in Table 1. 
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Table 1 

Summary of participant characteristics 

Round n Gender Mage (Range) Previous iPad use 

1 13     Male = 6 
Female = 7 

78 (66 – 89) 

 

Never:  5 
Rare:  3 
Frequent: 5 

2 9 Male = 4 
Female = 5 

74 (66 – 77) Never:  4 
Rare:  2 
Frequent: 3 

3 6 Male = 2 
Female = 4 

51 (41 – 59) Never:  1 
Rare:  1 
Frequent: 4 

4 7 Male = 5 
Female = 2 

77 (69 – 85) Never:  6 
Rare:  1 
Frequent: 0 

Total 35 Male = 17 
Female = 18 

70 (41 – 89) Never:  16  
Rare:  7 
Frequent: 12 

Note. Rare = <1 x month; Occasional = ≥1 x fortnight (no responses); Frequent = ≥1 x week  

 

Rounds 1 and 4 participants lived in supported care units. Eleven were ambulant; 2 

mobilised via wheelchair. Three reported a past stroke; 3 reported hearing impairment; 1 

reported significant vision impairment. Round-2 participants were all retired, ambulant, 

generally well, driving, and living independently in the community. Round-3 participants 

were younger and more active than the other groups. All were in paid employment and 

driving. Inclusion of a middle-aged group allowed comparison with a different generational 

cohort. The educational status of the sample was: post graduate degree (n = 1), university 

degree (n = 7), college certificate (n = 6), completion of high school (n = 5), completion of 

middle high school (n = 9) and completion of primary school (n = 1), not reported (n = 6). 
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Instruments. DriveSafe measures awareness of the driving environment (Kay, 

Bundy, & Clemson, 2008; Kay et al., 2009a). Touchscreen DriveSafe consists of 10 images 

of a 4-way intersection (see example image in Figure 1). Each image includes between two 

and four potential hazards (i.e., people or vehicles). These hazards appear for 4 seconds then 

disappear, leaving only the blank intersection. Participants are asked to recall the hazards that 

were displayed, touching the blank intersection to identify hazard type, location, and 

direction of movement. 

 

Figure 1. DriveSafe image example.  

DriveAware measures awareness of one’s own driving abilities (Kay et al., 2009a, 

2009b). Touchscreen DriveAware (Kay et al., 2009b) consists of two self-administered 

questions and five questions administered by a general practitioners or suitably qualified 

health professional (see example question in Figure 2). The DriveAware items yield a 
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discrepancy score based on the difference between the patient’s self-ratings and the 

clinician’s ratings, or performance in DriveSafe. 

 

Figure 2. DriveAware image example.  

Touchscreen DriveSafe DriveAware was presented to participants via a 3rd generation 

iPad (operating system 9), with a 9.7-inch, 2048 x 1536 mm (264 pixels per inch), 

multitouch, "retina" display. Headphones and a stylus were available to use depending on 

each participant’s preference. 
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Procedure 

We developed a pilot version of touchscreen DriveSafe DriveAware based on screen 

blueprints, which provided a visual guide of the skeletal framework and arrangement of 

elements in the iPad application. We performed several rounds of in-house testing and quality 

checks until we had created a satisfactory version for the present study. 

The first author trialled the pilot version at the two centres. At the time of the trial, each 

participant sat on a chair with the iPad on a table in front. Volume and brightness were 

adjusted to full. Participants adjusted the position of the iPad to suit their focal length and 

chose whether to use a stylus or headphones. The examiner recorded participant actions and 

comments during testing with attention to apparent ability to understand test requirements, 

operate functions (e.g., tap, drag, undo, and buttons), and evidence of any anxiety or 

frustration. The examiner also recorded any technical difficulties related to programming. 

The first author conducted a brief interview with each participant post testing including 

questions regarding test difficulty, ability to understand and follow written and audio 

instructions, and ability to operate the device. 

After each round of testing, the first author discussed any difficulties encountered and 

potential solutions with the iPad application developers. Agreed programming and design 

changes were made and quality checks performed, followed by re-testing with participants. 

Testing continued until touchscreen DriveSafe DriveAware was fully programmed and 

participants could independently self-administer the test. 

Analysis. The analysis focused on functional outcomes: whether participants 

could understand the test requirements, successfully perform the associated actions via 

the touchscreen (e.g., tap a target or adjust an arrow direction), and complete the 
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required task in a timely manner and without errors. We assessed these outcomes 

against the project goals and objectives presented in Table 2. 

Table 2.  

Touchscreen DriveSafe DriveAware development goals and objectives. 

Subtest / Area Goals Objectives 

Test set up  Standardise administration 

without administrator 

training 

- Optimize vision 

- Maximise hearing  

- Cue attention to the screen 

Drive Safe Enable user to successfully 

enter the following 

responses for each hazard 

observed: 

• Location 

• Type 

• Direction of 

movement  

- Ensure timely and smooth 

progression of items 

- Ensure user can tap target 

location 

- Ensure user can tap object 

type from an array 

- Ensure user can input object 

direction of movement  

- Ensure user can undo 

unwanted responses 

Drive Aware Enable user to 

comprehend each question 

and enter one response 

from three options  

- Enable user to read and hear 

each question and response 

options 

- Design user-friendly buttons  

- Ensure smooth and timely 

progression of items 
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Results 

Following is a summary of the main challenges encountered and the solutions 

implemented prior to testing in subsequent rounds.  

Test Setup. Usability testing provided important insight regarding optimum test set-

up. For example, four Round-1 participants forgot to wear their reading glasses and all failed 

to attend to the screen at the commencement of each item. Some had difficulty entering 

responses via touch, largely due to incorrect finger angle when the iPad was flat on the table. 

We addressed these difficulties by adding a written and audio prompt to put reading glasses 

on if worn; adding a countdown (i.e., “3, 2, 1”) and bell to cue timely attention; and placing 

the iPad on a stand angled to 20°. Result from Round-2 and -3 testing indicated these 

measures had resolved the testing difficulties; we identified no further test set-up challenges. 

Three participants reported hearing loss in Round 4. One had a significant loss, did 

not wear hearing aids, and could not hear the instructions with full volume. However, all 

three participants reported hearing the instructions clearly once wearing headphones. One 

participant had a significant hand tremor that impaired touch ability. A stylus resolved this 

problem. Round-2 participants were asked to try both stylus and finger inputs and could use 

either equally successfully. Round-3 participants did not have any difficulty with test set-up. 

DriveSafe. The primary goal for the DriveSafe evaluation was to determine user-

friendly input methods. 

Object location input. Round-1 participants (n = 9) triggered unwanted object location 

responses by resting a hand on the screen or by incorrect touch. Also, we encountered 

technical difficulties for ‘tap’ functions because some objects were situated too close 

together. We resolved all difficulties via use of an iPad stand and optional stylus, a 
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programmed 0.5-second delay between taps to allow menus to open, and adjustment of object 

proximity. We encountered no further difficulties in subsequent rounds. 

Object type input. Round-1 participants had difficulty with object-type menus 

overlapping each other or the screen edge, preventing option selection. We overcame these 

difficulties by programming a 1cm exclusion zone around the perimeter of the screen and by 

moving close objects further apart. Round-2 participants failed to notice or use the icon 

depicting two people (see Figure 3a). Therefore, we enlarged it and moved it to a more 

prominent location on the menu (from left to right). We added forced selection of that icon to 

a practice item and inserted an error message to provide clarification (i.e., “For 2 people 

walking together, use the 2-person icon”). We encountered no further difficulties in 

subsequent rounds. 

 

(a) Object selection menu 

  

 

 

 

 

 

 

First the user taps the object on the menu 

that represents the object they recalled 

being displayed. 

(b) Object direction selector 

  

 

 

 

 

 

 

Next the user pivots the arrowhead to 

indicate the direction of movement 

recalled. The icon is fixed. 

Figure 3. DriveSafe object selection menu and object direction selector.  
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Direction of movement input. We trialled two direction input methods in Round 1: an 

8-way arrow icon (i.e., tap the arrow representing the object’s direction) and a drag icon (i.e., 

drag the object in the desired direction). More people preferred “drag” to “arrows” (n = 10:2). 

One participant found both options difficult. Participants reported drag provided a more 

accurate reflection of their intended direction stating, “The arrows are not really spot on” and 

“I wish there was one in the middle”. Because the drag function was the most successful, we 

discontinued arrow testing. Five participants in Round 2 had difficulty with the drag motion, 

either not dragging the icon far enough or trying to drag it too far. We resolved this in 

subsequent rounds by fixing the icon at the tap location and snapping out a ghosted arrow 

once the participant selected the object type. The ghosted arrow became solid once touched 

(see figure 3b). We also extended the drag radius and required a pivot action, which older 

adults found easier than drag alone. 

We wanted to make the touchscreen interface user-friendly without prompting 

responses. For example, in the original version of DriveSafe, patients could ‘forget’ to 

provide a verbal response for the ‘direction’ category; this contributed to scoring and served 

to discriminate among individuals. We initially tried “no cue” for this category but each of 

the 13 participants forgot to enter at least one response. Lack of a visual cue was therefore 

not useful for discriminating ability among participants of varying ability levels. We 

addressed the problem of eliciting a response, whilst minimising cueing, by inserting the 

ghosted arrow. This prompted participants to enter a direction response but, if they failed to 

respond, they could still proceed. 

Item progression. In Round-1, we identified a significant problem in self-

administration of item progression via the “next” button. All participants over-focused on 

tapping this button, missing the brief display of objects. We corrected this by a) delaying the 
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appearance of the “next” button until a first response had been entered; b) adding a written 

and audio instructions once objects had disappeared (i.e., “Tap where you saw the object”); 

and c) inserting a message at the conclusion of each item (i.e., “Are you sure you have 

completed this screen?”). Some participants tried to enter responses before objects had 

disappeared. This was largely resolved by the above programming changes. Inserting an error 

message was not viable, as this would have distracted participants from committing the 

hazards to memory.  

Designing a user-friendly “undo” process proved challenging in all rounds. Middle-

aged (Round-3 participants) and older participants had contrasting experiences and 

difficulties. We added undo instructions into the demonstration image and forced undo 

practice because Round-1 and -2 older adults did not understand how to use the undo button.  

However, Round-3 participants strongly disliked being forced to practice (e.g., stating, “I 

don’t think I should have to press undo. I didn’t make a mistake” and “No. I’m not undoing 

because I did it right”). Making practice optional in conjunction with additional instructions 

worked well for all adults. Round-3 participants did not have difficulty with any other 

challenges on usability testing.  

Understanding of test requirements. In Round 1, only 1 of the 13 participants 

understood the test requirements. Participants continually pressed the next button, missing 

many items. We resolved this in Round 2 with forced practice of incorrect demonstration 

items and two levels of in-application instructions. To avoid disrupting test flow for 

participants who quickly understood test requirements, only participants having difficulties 

received second level instructions. The wording of some test instructions confused 

participants in Round 2. For example, one DriveSafe instruction stated, “You will now see 10 

images of an intersection”. Including numerals confused the participants (e.g., “That's a 
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problem. I thought I needed to look for 10 items”), so we removed them. Field-testing 

allowed identification of particular words or colours that were problematic. For example, 

participants failed to understand the word “marker”. Thus, we substituted the word “arrow”. 

Participants reported a red message background made them feel like they had done something 

wrong. We resolved this by changing the background colour to blue. 

Round 4 participants had the least iPad exposure: only one participant reported 

owning an iPad but rarely using it. The others had never used one. One 79-year-old male with 

significant hearing loss, full vision loss in one eye, and glaucoma in the other eye, presented a 

particular challenge (he was still driving). He reported he had never seen an iPad and did not 

understand the touchscreen concept. Despite this he completed the test successfully and with 

ease, wearing headphones. The only difficulty he had was working out how to drag the 

direction icon. The second level of in-application instructions addressed the difficulty and he 

required no administrator assistance.  

We learned about the need to create an administrator-assisted option for test 

administration because two participants struggled with the practice items (neither had used an 

iPad before). A brief verbal prompt addressed their difficulties but the first participant 

became frustrated after five item repetitions. We developed an administrator-assist procedure 

to meet needs we observed during the study. For example, we concluded that an 

administrator should intervene after four unsuccessful practice attempts.  

We chose not to develop a solution for every observed problem. For example, one 

participant took twice as long as the others to complete the test and demonstrated behaviours 

not observed among other participants (e.g., placing a car in the foreground of every image 

although there was no object at this location). These difficulties may have related to test 
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design or to the participant’s cognitive deficits. Because we did not observe a similar problem 

in any other participant, we did not develop a programming solution.  

DriveAware. Participants self-administered DriveAware with ease through all rounds 

of testing. Therefore, we made no adjustments. The original design worked well in practice.  

Discussion 

Consistent with findings from other research, older adults in this study found basic 

touchscreen operations easy to perform without training, even when unfamiliar with the 

technology (Findlater et al., 2013; Leng et al., 2014; Østensen et al., 2017; Tsai et al., 2015; 

Watkins & Xie, 2015). All participants quickly understood how to interact with the iPad, 

although 23 of 29 participants aged over 65 had never or rarely used one. Participants’ 

overall response to the touchscreen test was positive; spontaneous comments from 4 

participants indicated they found the test face-valid (e.g., “I think it is fair in the fact that it 

makes you look at your surrounds, which a lot of older people don't, and just basic road rules 

I guess” and “That seemed quite good. If my doctor made me do this to check my driving, 

that would be fair”).  

DriveSafe was the more difficult subtest to convert to iPad administration because it 

was the more complex aspect of DriveSafe DriveAware. The original version relied on an 

administrator to interpret patient verbal responses. It was fundamental to consider motor and 

cognitive performance required for touch-based functions such as “tap” and “drag” in the 

DriveSafe DriveAware conversion (Findlater et al., 2013). Consistent with other research 

(Cockburn et al., 2012; Findlater et al., 2013; Kobayashi et al., 2011), participants found tap 

intuitive and drag more difficult. However, participants were not precise when entering 

responses via either action. This may be due to parallax (where object position appears to 

differ when viewed from different angles), because the target is obscured by the finger, or 
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due to the additional dexterity and pressure required to “hold” and slide the target against 

resistance (Cockburn et al., 2012; Findlater et al., 2013; Kobayashi et al., 2011; Loureiro & 

Rodrigues, 2014). The arrow design that avoided the need for a precise dragging action 

worked better than the other options trialled. We considered this lack of precision when 

determining scoring in a subsequent study, allowing generous zones to be scored as correct. 

Consistent with design guidelines for older adults (Loureiro & Rodrigues, 2014), we found 

timing of interface elements critical to smooth progression of the test. For example, 

participants encountered difficulties in Round 1 because the “next” button appeared before it 

was needed, resulting in over-focus on this button and misapplication.  

Cueing timely attention to the small iPad screen was fundamental in the conversion 

because participants determined when to progress to the next item. In touchscreen DriveSafe 

DriveAware, a loud bell and countdown timer successfully cued attention via auditory and 

visual prompts. We did not standardise distance to the screen based on touchscreen design 

guidelines for older adults which recommended seniors be free to adjust the iPad distance for 

comfortable viewing (Loureiro & Rodrigues, 2014). This worked well in practice. 

Participants did not have difficulty observing the smaller hazards, which varied in size from 

.04” (10 mm) to .24” (62 mm). 

We tested all text and function changes across age groups as any change significantly 

impacted performance. The middle-aged cohort reported different challenges to the older age 

groups (i.e., with forced undo practice). Round-3 participants did not have any difficulty with 

test set up, following instructions, or with touchscreen operations. This is considered related 

to their younger age, familiarity with digital technology compared to the older adults, and 

because they were trialling the third iteration of DSDA. Inclusion of participants with 

challenges common to older age, such as hearing and vision loss, tremors, and potential 
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cognitive changes, avoided user-interface problems that might have occurred if we had 

considered only the needs of able-bodied users. The performance of participants with these 

challenges informed test set-up and administration procedures and identified the need for an 

examiner-assisted version of administration. 

Limitations & Future Implications. A limitation of this study was the small sample 

size, which may have resulted in low probability errors not being detected (Hegde, 2013). 

However, we considered a range of other sources to mitigate this: literature review, task 

analysis, prototyping, interviews, expert reviews, and continuous quality checking. A further 

study was conducted to develop an automatic data scoring system to reflect the decisions that 

would otherwise have been made by an expert-rater (Cheal, Bundy, Patomella, Scanlan, & 

Wilson, 2018). Additionally, a further study was conducted to examine the psychometric 

properties and predictive validity of data gathered with touchscreen DriveSafe DriveAware 

before it could be used in clinical practice (Cheal & Kuang, 2015). 

Conclusion. A user-centred design process allowed us to develop a user-friendly 

touchscreen data collection system for older adults, the group most likely to take touchscreen 

DriveSafe DriveAware and most likely to struggle with the technology. The approach taken 

allowed us to test and validate our design assumptions and ensured design errors were not 

missed. We believe that conducting usability testing concurrently with iPad application 

design, programming and evaluation resulted in significant cost, time, and efficiency benefits.  
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CHAPTER 6 

Journal Article 2 

Converting the DriveSafe subtest of DriveSafe DriveAware  

for Touchscreen Administration 

The following study was conducted to determine if the automatic data collection and 

scoring system we designed represented the decision that would otherwise have been made 

by a trained administrator, and if the scoring parameters we set discriminated between at-risk 

and comparison drivers. The present manuscript was accepted for publication by the 

Australian Journal of Occupational Therapy on 23.10.2018.   
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Abstract 

Background. DriveSafe measures awareness of the driving environment. It is one 

subtest of DriveSafe DriveAware, a cognitive fitness-to-drive screening instrument. We 

converted DriveSafe to a touchscreen format for ease of administration; this necessitated 

development of an automatic variable data collection and scoring system to reflect the 

decisions that would otherwise have been made by an expert rater. We applied a structured 

process to determine what constituted “correct” scores. We then examined the resulting 

scoring parameters to determine if these discriminated at-risk drivers from a comparison 

sample.  

Methods. Thirty older drivers referred for a fitness-to-drive assessment, identified as 

‘at-risk’, and 30 comparison drivers took touchscreen DriveSafe. Following presentation of 

images containing between two and four objects / hazards for 4 seconds, participants 

indicated their recall of object / hazard characteristics (type, location, and direction of 
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movement) by touching the screen. We analysed responses via descriptive statistics to 

compare spread, accuracy and consistency; and via a Fisher’s exact test to determine whether 

the set scoring parameters could discriminate between at-risk and comparison drivers. 

Results. Fisher’s exact test results indicated 24 of 28 location zones and 18 of 

28 direction ranges discriminated at-risk drivers from the comparison group (p<0.05). 

Frequency of missed or incorrectly identified hazards was much higher for the at-risk 

group for all variables. At-risk drivers missed or misidentified significantly (p<0.00) 

more object types (34%). directions (47%) and locations (36%) than the comparison 

group. The comparison group missed ≤4% for each variable. At-risk drivers entered 31 

additional responses for objects / hazards not displayed; the comparison group entered 

no additional responses. 

Conclusion. The automatic variable data collection and scoring system reflected 

decisions that would have been made by an expert rater. This systematic process provided 

automated scoring decisions that enabled us to discriminate at-risk drivers from a comparison 

group. Psychometric evaluation of data gathered with touchscreen DriveSafe is required prior 

to use in clinical practice. 

Keywords 

Cognitive Assessment Screening Instrument; Automobile Driving; Computer, 

Handheld 

 

Background 

Occupational therapists require valid and reliable measures to inform clinical practice, 

service access, funding decisions, policy, and research in healthcare. Standardised measures 

are increasingly converted to touchscreen due to time and accuracy advantages for clinicians 
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(Daly, Xu, & Levy, 2015; Downing Peck, 2011; Glaser, Jain, & Kortum, 2013; Godwin, Tan, 

Bockhold, Ma, & Tran, 2015; Howell et al., 2015; Turney & Reynard, 2014; Wiarda, 

McMinn, Peterson, & Gregor, 2014). However, there is a risk that ability of the test to 

capture the underlying construct may be lost through the conversion process, affecting 

validity and reliability. Significant time and financial resources are typically dedicated to 

digital test conversion. Therefore, it is critical the process is conducted in a way that will 

maintain ability of the test to record and measure variation in the underlying construct.  

DriveSafe DriveAware (DSDA) (Kay et al., 2009a) is a clinical screen of cognitive 

fitness to drive that has been used by driver-trained occupational therapists in Australia for 

many years. The DSDA total score classifies participants into one of three categories based 

on likelihood of passing an on-road assessment: “Likely to pass”, “Requires further testing”, 

and “Likely to fail.” Administration of the original version of DSDA is limited to driver-

trained occupational therapists because training is required to interpret participants’ verbal 

responses. Occupational therapists who are not specialists in driving are frequently asked to 

address driving with their clients: advising medical teams if further assessment is required; 

advising clients and family regarding community mobility options; and providing support in 

cessation of driving (Dickerson, 2014a, 2014b; Korner-Bitensky et al., 2007b). Occupational 

therapists need a suitable cognitive fitness-to-drive screen so they can give reliable advice in 

this high-stakes area and clients need not undergo extensive cognitive testing unsuitable for 

predicting driving performance (Dickerson, 2014b; Vrkljan et al., 2011). We converted 

original DSDA into a first-level screen that could be administered via touchscreen by 

occupational therapists and other health professionals without training to determine the need 

for on-road assessment.  

DriveSafe Subtest. The focus of the present paper is on touchscreen conversion of 

the DSDA subtest, DriveSafe, because this was the most complex of the two DSDA subtests 
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to convert. DriveSafe measures the construct of awareness of the driving environment (Kay, 

Bundy, & Clemson, 2008; Kay et al., 2009a) via visual search and assumes that attention is 

critical to safe driving. A driver scanning the driving environment must rapidly and 

accurately process simultaneous information critical for safe decision-making (Hoffman et 

al., 2006; Rizzo et al., 2009). DriveSafe utilises mechanisms identified by researchers (Caird 

et al., 2005; Crundall, 2009; Galpin et al., 2009; Jensen et al., 2011; Koustanaï et al., 2012; 

O'Regan et al., 1999; Rensink, 2002; Rensink et al., 1997) as necessary for assessment of 

driver visual attention: use of naturalistic driving scenes and stimuli, a driving related task, 

masking of object change, and a time-limited, one-time display of objects.  

We sought to make touchscreen DriveSafe as similar as possible to original DriveSafe 

in order to be sure we retained accurate representation of the construct being measured. 

However, we were transitioning from a test where scores were assigned based on verbal 

response interpreted by an expert rater, to a test where touchscreen responses are scored 

automatically in-app. This necessitated development of an automatic variable data collection 

and scoring system that would reflect the decisions that would otherwise have been made by 

an expert rater. We applied a structured process (Aparasu, 2011; Summers, 1970) for the 

measurement of abstract constructs such as behaviour to guide this development, 

operationalised via the following interlinked steps: Step 1) identification of acceptable 

variables that reflect the underlying construct; Step 2) data collection including development 

of data collection rules; and Step 3) assignment of values to data with respect to a specified 

scale. The final step, evaluation of the validity and reliability of data gathered with 

touchscreen DriveSafe, was completed in a subsequent study. 

Previous researchers (Kay, Bundy, & Clemson, 2008; Kay et al., 2009a) had 

identified the original DriveSafe variables (Step 1) and provided evidence of construct 

validity, internal reliability (Hines & Bundy, 2014; Kay, Bundy, & Clemson, 2008; Kay et 
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al., 2009a) and test-retest reliability (O'Donnell et al., 2018). Original DriveSafe items require 

recalling characteristics of objects presented for 4 seconds in each of 10 driving images. The 

characteristics represent four variables: a) object type (e.g., car); b) object location (e.g., 

road); c) object side of screen (e.g., right); and d) object direction of movement (e.g., going 

left) (Kay et al., 2009a). The present study concerns Steps 2 and 3: how to collect data with 

respect to the four variables via touchscreen, including development of data collection rules; 

and how to assign values based on these rules with respect to a scale specified in original 

DriveSafe. This scale awarded 1 point for each piece of information for each object, correctly 

recalled (Kay et al., 2009a).  

We addressed the research question “How generous should scoring parameters be 

when awarding points for the touchscreen DriveSafe object location and direction of 

movement variables?” (a sub-process for achieving Step 3). We sought to answer this 

question by examining touchscreen responses entered by at-risk older drivers and a 

comparison group. Our hypothesis was that at-risk drivers would be more likely than the 

comparison group to incorrectly identify object variables in the driving environment.  

Method 

The University of Sydney Human Research Ethics Committee provided approval for 

this study. In addition, the St Vincent’s Hospital Sydney Human Research Ethics Committee 

provided ethics approval for the hospital sites.  

Setting 

We employed a prospective design over a 2-month period. We administered 

touchscreen DriveSafe to two groups: a) older adults referred to eight driving clinics in 

Australia and New Zealand; and b) adult volunteers recruited from a community centre and 

office in Sydney, Australia.  
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Participants 

Group 1 comprised 30 older adults (n=8 female) referred for a driving assessment to 

determine the impact of a medical condition on fitness to drive; 16 participated in New 

Zealand and 14 in Australia. Diagnoses included dementia (n=12); stroke (n=6); 

cardiovascular conditions (n=4); Parkinson’s disease (n=3); traumatic brain injury (n=2); and, 

other neurological conditions (n=3). Participants were aged 57-89 years (Mage=78; SD=9.2), 

with a mean Mini-Mental State Examination 2: Standard Version (MMSE2:SV) (Folstein, 

Folstein, White, & Messer, 2010) score of 24/30 (range=17-30; SD=2.8): a 30-point 

standardised assessment of cognition interchangeable with Mini-Mental State Examination 

(MMSE) (Folstein et al., 1975; Folstein et al., 2010).  

We invited consecutive participants who met the inclusion criteria: a valid driver’s 

license; vision within license authority guidelines; completion of at least 1 year of high 

school; English as a first language; age >55 years; and drivers identified as at-risk. ‘At-risk’ 

was operationalised as missing four or more objects in touchscreen DriveSafe (completed in 

the clinical assessment of fitness to drive prior to on-road testing) and/or on-road assessment 

results indicating failure to meet license authority criteria for safe driving. (Group 1 

participants completed a standardised on-road assessment as part of a separate study. Results 

were used to identify at-risk drivers for this study). Six participants received a pass or 

conditional pass in the on-road assessment but were included because they missed a high 

number of objects (M=7/28) and details (M=17/56) in DriveSafe. We excluded potential 

participants with a psychiatric illness, because previous experience suggests that people 

diagnosed with a psychiatric illness can do well in DriveSafe but perform poorly on-road due 

to disturbances of mood, behaviour, or perception. We considered these to be potential 

confounders. We also excluded participants with a developmental delay or aphasia. No 

participants declined to participate.  
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Group 2 comprised 30 adult volunteers from a community centre. We recruited 

participants via advertisement in community meeting areas asking for volunteers to try a new 

iPad application to assist in the development of a fitness-to-drive screen. We informed 

potential volunteers that any information provided would be anonymous and we would give 

no advice regarding their driving. We collected no identifying information. Once volunteers 

contacted the first author or centre staff, we made an appointment for them to complete 

touchscreen DriveSafe. Group 2 participant age ranges in years were 20-29 (n=7); 30-39 

(n=7); 40-49 (n=12); 50-59 (n=1); and 60-65 (n=3). Most (n=27) were employed full-time: 

clerical/administration (n=12); health professions (n=10); education (n=4); and electrician 

(n=1); 3 were retired. All were licensed drivers. Participants were not aged match because the 

focus of the study was test development. Therefore, we wanted one group of drivers who 

represented those who were most likely to take the test (older drivers with impairments who 

may struggle with the technology) and one group to represented young drivers without 

impairment who were likely not at-risk. We tested every participant only once. No one 

withdrew from the study after agreeing to participate. We removed data from 2 comparison 

group participants: 1 due to a high number of missing or random responses and 1 due to 

duplication of results attributed to a programming error identified following completion of 

data collection. To include these responses would have significantly impacted data validity. 

As data were de-identified from the point of collection, we could not identify which 

participants’ data had been removed. 

Instrument – Touchscreen DriveSafe 

Touchscreen DriveSafe is self-administered via iPad with written and audio instructions 

and consists of 10 images of a 4-way intersection. Each image includes two to four potential 

hazards (a total of 28). These hazards are presented for 4 seconds then disappear, leaving 

only the blank intersection. Examinees are asked to recall the hazards previously displayed, 
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touching the intersection to identify (a) object location, (b) object type, and (c) direction of 

object movement. Object location is indicated by touching the intersection. Object type is 

indicated by touching an object from a menu of five objects (i.e., pedestrian, two people 

walking together, bike, car, or truck). Object direction is indicated by adjusting an arrow to 

represent the direction the object was travelling (objects are static). Touchscreen responses 

are visible to the participant and can be adjusted until the participant initiates the next item. 

Each piece of correctly recalled information yields 1 point. The maximum score is 84: 28 for 

each scoring category (object type, location and direction).  

Procedure 

At-risk older adults self-administered touchscreen DriveSafe. The occupational 

therapist provided assistance, if required, without prompting responses. Group 2 participants 

self-administered touchscreen DriveSafe unassisted. All participants took touchscreen 

DriveSafe using an iPad (iOS 9) with a 9.7-inch, 2048 x 1536 mm, multi-touch "retina" 

display. Headphones and a stylus were available to use.  

Analysis 

Data were collected via touchscreen then analysed as described below.  

Object Location. We collected touch point data to answer the question how to collect 

data with respect to the two original DriveSafe object location variables (i.e., object side of 

screen and location). We collapsed these two categories because a single touch point 

comprises both variables. Two sets of data were required to plot values for a single touch 

point: x-axis and y-axis locations in pixels (Px). We created a Microsoft Excel x-y scatter 

chart for each item separately for each group, allowing visual inspection of responses. We 

assigned each touch point a shape and colour for clearer visualisation. The symbols were 

consistent across object type (e.g., bike = purple circle).  
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We created zones around each object to determine how to assign values for object 

location, so that responses placed within the zone could be scored 1 and missing responses or 

responses outside the zone could be scored 0. Zones were unique for each object due to 

variation in object type, size, and location. We examined spread, consistency, and accuracy of 

responses between groups via descriptive statistics (M, SD, and range) for each axis to inform 

decisions regarding how generous zones should be. Because we combined two variables 

(object side and location), the total score for the location variable was 28 (1 point for each 

correctly recalled object location); this compared to 56 in original DriveSafe. Once correct 

zones were generated, we examined results of a Fisher’s exact test for each zone to determine 

whether the set parameters discriminated at-risk from comparison drivers to test our 

hypothesis that at-risk drivers would be more likely than the comparison group to incorrectly 

identify object location (p<0.05). 

Object Type. We assigned numbers to each object type (e.g., car = 4) so we 

could code and match responses. We scored objects matching the displayed object 1 

and missing or non-matching responses 0 (Step 3). We examined accuracy and 

consistency of total scores between groups via descriptive statistics: mean (M), range, 

and standard deviation (SD).  

Object Direction. We determined correct direction ranges for each object so 

responses that fell within the range could be scored 1 and missing responses or responses 

outside the range could be scored 0. Ranges were unique to each object due to the wide 

variation in object type, size, location and trajectory (objects were static). We compared 

spread, consistence, and accuracy of responses between groups for objects via descriptive 

statistics (M, SD and range) to inform decisions regarding how generous correct direction 

ranges should be. Once ranges were set, we examined results of a Fisher’s exact test to 

determine whether each range discriminated at-risk from comparison drivers to test our 
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hypothesis that at-risk drivers would be more likely than the comparison group to incorrectly 

identify object direction (p<0.05). 

Results 

Following are the results for the object location, type, and direction variables as 

determined in the process of establishing scoring parameters. We divided the results into 

three sections reflecting the main scoring categories: object location, object type, and object 

direction. 

Object Location 

At-risk drivers entered a response (regardless if correct) on average for 78% of 

responses (range=13-35/28; SD=6.1); comparison drivers entered a response (regardless if 

correct) for 96% of responses (range=21-28/28; SD=2.0). (Note that additional responses 

were recorded for all variables). 

Data collection rules (Step 2). We developed the following data collection rules to 

determine how to collect data with respect to the object location variable. We scored location 

as an independent variable similarly to original DriveSafe because we judged that participants 

who placed an incorrect object at a correct location should receive more credit than someone 

who did not respond. The participants who responded had at least identified that something 

was present at the correct location that a driver should avoid. Therefore, we scored location 

data based on whether responses fell within a specified correct zone, regardless of object type 

data entered. We allowed a maximum of three responses additional to the number of 

displayed objects per image. We recorded and reported additional responses to provide 

therapists with qualitative information.  

Assignment of values: correct location zone (Step 3). We needed to generate 

correct location zones to assign values based on the data collection rules developed: so 
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we could award 1 point for each correct location response within the zone and 0 points 

for missing responses or responses outside the zone. Analysis of the scatter charts 

indicated object surface area should be included within zones because participant 

responses covered this area although not representing the correct location. For example, 

the truck surface area in Figure 1 covers the footpath, park, and house (see Figure 1). 

Participants from both groups placed location points over these areas once the truck had 

disappeared. We assumed that participants did not believe the truck was driving on the 

footpath or grass but rather the target surface area was important to their perception of 

locality under time pressure. Therefore, the truck surface area was included in the zone 

(see Figure 1B). Aside from object surface area, we excluded any locations unrelated to 

the driving context (e.g., trees or sky). 
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Figure 1. Comparison of Item 2 location responses between groups  

Note. Yellow box = no response for object type and direction
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We compared location range and SD data between groups for both axes to determine 

the ideal width and height of correct zones. Final zone parameters also reflected our practical 

experience with original DriveSafe. For example, the red zone around the car in Figure 1B 

includes the road immediately in front of the car to reflect the previously broad original 

DriveSafe category, where the entire street would have been accepted as a correct response. 

Older adult (Group 1) responses demonstrated a substantially greater spread and variation of 

data across both axes for all objects. However, both groups demonstrated a greater spread 

across the horizontal when compared to the vertical for all objects (see example in Figures 1 

and 2).  
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Figure 2. Comparison of Item 8 location responses between groups 

Note. Yellow box = no response for object type and direction
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Examination of the range, SD, and scatter charts, indicated the comparison group was 

more accurate in target location for all objects. In contrast to the at-risk group, comparison 

driver responses were within 200 Px vertically and horizontally for 25 of 28 objects. Zones 

were established based largely on the comparison group’s correct responses but with more 

generous parameters to accommodate the expected reduced accuracy of older adult responses. 

Determining if zones discriminated between drivers. Results of the Fisher’s exact 

test indicated scoring parameters discriminated at-risk from comparison drivers for 24 of 28 

location zones (p<0.05). This means that at-risk drivers were more likely to incorrectly 

identify object location compared to the comparison group for 86% of the objects. There 

were no between group differences for the following objects: pedestrians on the left and right 

in item 1 (p=0.37 and 0.39 respectively), and the car and person in item 8 (p=0.06 and 0.08 

respectively) (item 8 hazards are pictured in Figure 2).  

The total mean score for at-risk drivers for location was 18/28 (range=6-24; SD=4.6) 

compared to 27.5/28 for Group 2 (range=25-28; SD=0.7) (see Table 1). At-risk drivers 

missed 19% of locations presented (M=5.2 locations per person; range=0-15; SD=4.0) and 

misidentified 17% (M=4.8; range=1-11; SD=2.4). Thus, at-risk drivers missed or 

misidentified 36% of locations (M=10.0; range=3-22; SD=4.6). At-risk drivers entered 13 

locations not displayed (M=0.4; SD=0.9). The comparison group missed 2% of locations 

(M=0.5; SD=0.7), misidentified 2% (M=<0.1; SD=0.2), and entered no additional responses. 

Results of a Kolmogorov–Smirnov test of normality indicated the data were skewed. 

Therefore, a Mann-Whitney U test was performed with a Bonferroni correction to determine 

differences between groups. Results indicated a significant difference in ability to recall 

object locations between groups (p<0.00). These results indicated at-risk drivers found recall 

of object location more difficult than the comparison group for all objects and most of the 

zones we generated were able to discriminate between drivers in the at-risk category. 
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Table 1 

Difference in recall of object details between at-risk and comparison drivers for the three 

DriveSafe variables (object location, type and direction). 

 
 Missed 

% 

Misidentified 

% 

Missed & 

Incorrect % 

Additional 

Responses 

Total Mean 

Score /28 

Object Location 

At-risk 19 17 36 13 18.0 

Group 2 2 2 4 0 27.5 

Object Type 

At-risk 22 12 34 10 18.4 

Group 2 2 2 4 0 26.9 

Object Direction 

At-risk 30 17 47 8 15.0 

Group 2 2 1 3 0 27.2 

 

Object Type 

Assignment of values to the object type variable was straightforward because the data 

were nominal and the scoring method was the same as for original DriveSafe (i.e. participant 

response were matched with the displayed object then scored). 

Data collection rules (Step 2). We coded then matched objects, scoring object type 

independently of object location, similarly to original DriveSafe. This was because our 

practical experience with original DriveSafe indicated at-risk drivers found object type 

easiest to recall and direction of movement the most difficult. We wanted to evaluate 



	   	  
	  

	   130	  

performance in the categories separately. We allowed participants to initiate the next item 

without indicating object type because the opportunity to ‘forget’ to respond contributed to 

scoring and served to discriminate among individuals. 

Assignment of values (Step 3). We assigned values based on the data collection rules 

developed by awarding 1 point for each selected object matching the displayed object and 0 

points for mismatched objects or missing responses. We awarded points up to the maximum 

number of objects displayed. Each participant received a total score out of 28, representing 

the total number of correctly recalled object types. We examined responses across groups to 

ensure data collection and assignment of values reflected the specified scale and allowed the 

expected variation in performance between groups to be captured.  

Consistent with expectations, at-risk older drivers missed or misidentified 

significantly more objects than the comparison group. Results of a Kolmogorov–Smirnov test 

of normality indicated the data were skewed. Therefore, a Mann-Whitney U test was 

performed with a Bonferroni correction. Results indicated a significant difference (p<0.00). 

At-risk drivers missed 22% of object types (M=6.2 object types per person; SD=3.9) and 

misidentified 12% (M=3.4; SD=1.7) (see Table 1). Thus, at-risk drivers missed or 

misidentified 34% of object types (M=9.6; range=2-18; SD=4.2) compared to 4% (M=1.1; 

range=0-4; SD=1.3) for Group 2. At-risk drivers entered 10 additional responses for objects 

not displayed (M=0.3; SD=0.9); the comparison group entered no additional responses. The 

at-risk drivers’ total mean score for the object type category was 18.4/28 (range=10-26; 

SD=4.0) compared to 26.9/28 (range=24-28; SD=1.3) for Group 2.  

Only 3 of the 30 at-risk drivers correctly identified all 3 bikes; 10 correctly identified 

both trucks. At-risk drivers missed or misidentified almost half (48%) of all bikes (M=1.4/3; 

SD=0.8) and trucks (47%) (M=0.9/2; SD=0.8), 36% of single pedestrians (M=4.7/13; 

range=0-12; SD=3.1), 25% of cars (M=2.0/8; range=0-7; SD=1.2), and 21% of pedestrian 
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couples (M=0.6/3; SD=1.0/3). Twenty-one of 28 comparison drivers correctly identified both 

trucks; 7 missed one and 1 missed both (M=0.3/2; SD=0.5). Five comparison drivers missed 

or misidentified one of the 3 bikes (M=0.2/3; SD=0.4). Comparison drivers missed 1% of cars 

(M=0.1/8; range=0 - 1; SD=0.3), 1% of single pedestrians (M=0.2/13; range=0-2; SD=0.5), 

and 1% of pedestrian couples (M=<0.1/3; SD=0.2). Trucks represented 39% of missed or 

misidentified objects for the comparison group although only two were displayed; bikes 

represented 22%, although only three were displayed. In comparison, pedestrians made up 

55% of objects missed or misidentified by at-risk older drivers (57% of objects displayed), 

cars 20% (29% of objects displayed), and bikes and trucks 25%. At-risk drivers missed (i.e., 

failed to enter a response for any variable) 18% of objects displayed (M=5/28; range=0-16; 

SD=4.2); comparison drivers missed 2% (M=0.5/28; range=0-4; SD=<0.1). At-risk drivers 

entered 10 additional responses for objects not displayed; comparison drivers entered no 

additional responses. These results indicate at-risk drivers found recall of object type more 

challenging than the comparison group for all hazards. 

Object Direction 

At-risk drivers entered a response (regardless if correct) on average for 62% of 

direction responses (range=9-31/28; SD=5.44). Average response entry was much higher for 

the comparison group (M=97%; range=22-28/28; SD=1.46). 

 Data collection rules (Step 2). We set the following data collection rules to answer 

the question how to collect data with respect to the object direction variable. We scored 

object direction independently of object type and location because we considered that 

participants who noticed something travelling in the correct direction but failed to identify the 

object type or specific location, demonstrated greater awareness than someone who did not 

enter a response. Similar to the object type variable, we made it possible to forget to enter a 

response and progress to the next item.  
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Assignment of values: correct direction ranges (Step 3). To determine how to 

assign values with respect to the original DriveSafe scale, we determined correct degree 

ranges for each object so we could score directions that fell within the range 1 and 

missing responses or directions outside the range 0. We scored directions correct up to 

the maximum number of directions displayed. The total maximum score for the 

direction variable was 28 of 28. 

We determined how generous correct direction ranges should be (scoring parameters) 

by examining range, mean, and SD across groups. Correct ranges varied for each object 

depending on trajectory, location, size, and shape. To enable meaningful analysis of 

participants’ perceptions of direction related to specific objects when generating ranges, we 

combined object type and direction variables for this aspect of the study. We also removed 

incorrect responses. For example, we removed 6 at-risk driver responses ranging from 37° to 

141° from Item 8 for the person on the left walking left (correct answer 270°) (see Figure 2). 

To retain these responses would have resulted in incorrect scoring and large correct direction 

ranges that did not accurately reflect the perception of unimpaired participants, reducing the 

possibility that the variables would discriminate between individuals based on their 

awareness of the driving environment. We established ranges largely on the comparison 

group’s correct responses but with more generous parameters to accommodate the expected 

reduced accuracy of older adults. 

Determining if set ranges discriminate between drivers. Once we had set scoring 

parameters, we scored the object direction variable independently of the object type and 

location variables because we wanted to evaluate whether the direction ranges could 

discriminate between individuals in the at-risk group. Results of the Fisher’s exact test 

indicated scoring parameters discriminated at-risk from comparison drivers for 18 of 28 

direction ranges (p<0.05). This means that at-risk drivers were more likely to incorrectly 
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classify direction for 64% of the objects when compared to the comparison group. There 

were no between-group differences in correctly identifying the direction of 10 objects. This 

included the pedestrian on the left in DS item 1, for which all participants correctly classified 

the direction. Fisher’s exact test results appear in Table 2 for the remaining 27 objects. (The 

response count is different between groups because data for 2 participants in Group 2 were 

removed). 

Table 2 

Fisher’s exact test results for object direction ranges displaying differences between 

performance of at-risk and comparison drivers where p>0.05 = no difference. 

DS 
Item 

Object 
 

p At-risk Group 
Response count 

        /30 

Comparison Group 
Response Count 

       /28 

DS 1 Car 0.04 20 27 

 Person R <0.00 9 27 

DS 2 Car <0.00 7 27 

 Truck 0.01 12 28 

 Person <0.00 10 28 

DS 3 Car 0.01 23 28 

 Couple 0.54 20 28 

DS 4 Couple 0.29 19 28 

 Car <0.00 18 28 
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DS 5 Person 0.05 20 28 

 Truck 0.14 14 22 

 Car 0.01 18 25 

DS 6 Bike 0.24 9 28 

 Person R 0.01 13 28 

 Person L <0.00 13 27 

 Car <0.00 23 25 

DS 7 Person 0.07 20 28 

 Couple 0.01 31 28 

DS 8 Bike 0.14 9 28 

 Car 0.11 14 28 

 Person R <0.00 9 28 

 Person L <0.00 13 25 

DS 9  Person 0.01 13 28 

 Person R 0.02 16 28 

 Car 0.01 23 28 

DS 10 Bike 0.16 19 28 

 Person <0.00 17 28 

Note. DS = DriveSafe; R = Right ; L = Left; Bold = no differences (p>0.05) between 

performance of the at-risk drivers and the comparison group 
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We did not adjust direction ranges for the 10 objects that did not discriminate between 

participant groups at this stage because the average response entry was lower for the at-risk 

group for all objects, indicating older adults found recall of object direction more 

challenging. Additionally, at-risk drivers missed 30% of directions (M=8.4 object directions 

per person; SD=4.1) and misidentified 17% (M=4.7; SD=2.8) (see Table 1). Thus, at-risk 

drivers missed or misidentified 47% of directions (M=13.0; range=5-21; SD=4.6) compared 

to 3% (M=0.8; range=0-4; SD=1.0) for the comparison group. At-risk drivers entered 8 

additional responses (M=0.3; SD=0.7); the comparison group entered no additional responses. 

The at-risk driver’s mean total score for the object direction category was 15.0/28 (range=7-

23; SD=4.7) compared to 27.2/28 (range=24-28; SD=1.0) for Group 2. Results of a 

Kolmogorov-Smirnov test of normality indicated the data were skewed. Therefore, a Mann-

Whitney U test was performed with a Bonferroni correction. Results indicated a significant 

difference (p<0.00). These findings indicated the correct ranges we generated for the 

direction variable were able to discriminate between drivers in the at-risk category for most 

objects.  

Discussion 

The concern of the present study was the development of an automatic, touchscreen 

variable data collection and scoring system for a standardised assessment that reflected the 

decisions that would otherwise have been made by an expert rater. This had not been done 

previously for DriveSafe. Therefore, we applied a structured process (Aparasu, 2011; 

Summers, 1970) to guide the project, and examined touchscreen responses entered by at-risk 

older drivers and a comparison group to answer the question how generous scoring 

parameters should be when awarding points for the location and direction variables. Results 

indicated the data collection and scoring system we established for each of the three 

DriveSafe variables accurately recorded data, and that the location and direction variable 
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scoring parameters we set discriminated between at-risk and comparison drivers for most 

objects. Fisher’s exact test confirmed our hypothesis that at-risk drivers would be more likely 

than comparison drivers to incorrectly identify object variables in the driving environment for 

24 of 28 location zones and 18 of 28 direction ranges. Average response entry was lower and 

frequency of missed or incorrect responses much higher for at-risk drivers for most objects. 

At-risk drivers also entered 31 additional responses for objects not displayed whereas 

comparison drivers entered no additional responses. These results indicated at-risk drivers 

found recalling object characteristics more challenging than the comparison group for all 

hazards displayed. This suggests that the automated scoring rules we developed reflected the 

scoring decisions that would have been made by an expert rater when scoring the correctness 

of responses for object type, location and direction of movement in original DriveSafe. While 

reporting of this component of the test conversion process is often overlooked, it is an 

essential step prior to the psychometric testing of the touchscreen version of the DriveSafe. 

Psychometric testing is the subject of a future study.  

Findings from this study have important implications for researchers planning to 

convert existing standardised assessments for digital administration. We found that success 

relied on a number of key factors. An understanding of the existing knowledge base 

regarding the construct was essential so critical mechanisms necessary for assessment of 

driver visual attention were not lost when making decisions about how to capture data (e.g., 

masking of object change in DriveSafe). We attempted to replicate the original test as closely 

as possible to retain the test’s psychometric properties and outcomes: including retaining the 

variables measured and the previously determined scale of measurement where possible. The 

validity, reliability and predictive validity of touchscreen DSDA were examined in a further 

study to confirm the test had retained these psychometric properties (Cheal & Kuang, 2015). 

We found that the characteristics of the data capture method (i.e., touchscreen) affected data 
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collection and scoring decisions. For example, we had to collapse two variable categories in 

the transition from verbal to touchscreen response. Examining responses from older, at-risk 

and comparison drivers was essential for informing decisions regarding scoring parameters 

because we could not predict how participants would respond and there was no right answer 

regarding how generous scoring parameters should be. We did not want to set parameters so 

generous it was not possible to discriminate between individuals. Conversely, we did not 

want to set parameters so narrow participants without deficits could not pass the test.  

Because the focus of the study was on determining data capture and scoring methods, 

we did not consider factors such as object type, size, trajectory, location, and luminosity in 

the study. The impact of these factors on observation or misidentification of objects is 

therefore outside the scope of the study. However, it is of interest that trucks and bikes made 

up 61% of missed and misidentified objects for comparison drivers, even though there were 

only two trucks and 3 bikes in the test, whereas pedestrians (16 individuals or couples) made 

up 55% of missed and misidentified objects for at-risk drivers. Comparison drivers 

demonstrated high accuracy in recalling all variables compared to at-risk drivers, who missed 

and misidentified a high number of object features broadly across object types. Consistent 

with our previous experience with original DriveSafe, at-risk drivers found object direction of 

movement the most difficult variable to accurately recall.  

These results raise questions regarding how drivers allocate attention at intersections: 

whether healthy drivers prioritise areas of the driving scene important for safe decision 

making along with pedestrians and cars, whereas older drivers may allocate attention more 

broadly and miss important details. Researchers (Caird et al., 2005; Hoffman et al., 2006; 

Koustanaï et al., 2008; Rizzo et al., 2009) propose that the common occurrence of drivers 

failing to perceive hazards in clear view, particularly bikes, may be due to the challenge of 

managing limited attention resources in complex traffic situations. Drives focused on 
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systematically scanning the driving environment for imminent threats, may fail to perceive 

less frequent or serious ones: particularly objects such as bikes and pedestrians that have 

atypical properties and presentations (e.g., speed and movement patterns) (Koustanaï et al., 

2008). Given the age-related increased crash risk at intersections and the high number of 

crashes attributed to missing or delayed hazard perception for all drivers (Baldock et al., 

2016; Barco et al., 2015; Caird et al., 2005; Fildes, 2008; Preusser et al., 1998; Rakotonirainy 

et al., 2012), further research regarding the impact of factors such as object type and location 

on hazard detection may be beneficial in road safety research and prediction of driving 

impairment (Hoffman et al., 2006; Koustanaï et al., 2012). 

Further research is required to test the usability of touchscreen DriveSafe with older 

adults, the group most like to take touchscreen DriveSafe and most likely to struggle with the 

technology, before a final version was ready for psychometric testing (conducted in a 

subsequent phase of development). Additionally a further study was required to examine the 

psychometric properties and predictive validity of data gathered with touchscreen DriveSafe 

before it could be used in clinical practice (results published elsewhere) (Cheal & Kuang, 

2015). 

Limitations 

A convenience sample was selected for the older group, and the comparison group 

self-selected to participate. Therefore, the groups may not be representative of the wider 

population. The two groups were not aged matched and it was assumed that group 2 

participants were not at-risk driving. However, this was because the purpose of the study was 

test development: we sought a group of at-risk older drivers to compare with younger, 

healthy drivers so we could compare responses and set scoring parameters. Sample sizes were 

also small. However, there was reasonable agreement on location and direction data: the 
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variables of interest for establishing scoring parameters. Therefore, we did not collect 

additional data.  

Conclusion 

Occupational therapists and other health professionals require access to sound 

assessment tools for fitness-to-drive measurement so they can give reliable advice in this 

high-stakes area: identifying clients at the extremities (i.e., clearly safe or unsafe to drive) and 

those requiring further assessment. Conversion of original DriveSafe to touchscreen was the 

first step in a development process conducted to provide occupational therapists with a first-

level screen of cognitive fitness to drive. The structured process described in this study and 

usability testing of touchscreen DriveSafe with at-risk and comparison drivers provided us 

with information critical to the variable data collection and scoring decisions made and 

enabled us to retain construct measurement in the digital test conversion. 

Key Points for Occupational Therapy  

• This study applied a structured process for conversion of a standardised, expert-rated 

assessment to an automatically-scored touchscreen assessment. 

• Scoring rules supported effective discrimination between at-risk older drivers and the 

comparison group. 

• The automated scoring procedures for touchscreen DriveSafe appear to accurately 

capture participant performance. 
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CHAPTER 7 

Journal Article 3 

Predicting Fitness to Drive for Medically At-risk Drivers  

Using Touchscreen DriveSafe DriveAware 

	  

This following study was conducted to determine if the touchscreen version of DSDA 

had acceptable evidence for internal reliability and validity. The predictive validity of 

touchscreen DSDA was examined to determine if the test was sufficiently accurate to be used 

as a first-level screen of cognitive fitness to drive. The manuscript has been formatted 

according to the requirements of the journal to which it has been submitted. The manuscript 

is currently under review. 

 

Results from this study have been presented at the following conferences: 

 

Cheal, B., & Bundy, A. (2015, October). Determining fitness to drive for older and 

cognitively impaired drivers - DriveSafe DriveAware a touchscreen test for medical practice. 

Paper presented at The Australasian College of Road Safety Journal and Conference, Gold 

Coast, Australia. 

 

Cheal, B., & Bundy, A. (2015, September). DriveSafe DriveAware - A valid cognitive fitness 

to drive touchscreen test for medical practice? Paper presented at the GP-15 The RACGP for 

General Practice, Melbourne, Australia. 
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Predicting Fitness to Drive for Medically At-risk Drivers  

Using Touchscreen DriveSafe DriveAware 
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Kuang, PhDc, Justin Newton Scanlan, PhDa 
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Abstract 

Objective: To examine the psychometric properties and predictive validity of touchscreen 

DriveSafe DriveAware (DSDA), a screening test of cognitive fitness to drive for general 

practitioners and other health professionals.  

Design: A prospective study comparing a screening test with a criterion standard. 

Setting: Ten community and hospital-based driver assessment and rehabilitation clinics in 

Australia and New Zealand. 

Participants: Older and cognitively impaired drivers (N=134) aged 18 to 91 years (Mage=68) 

referred for an assessment to determine the impact of a medical condition on ability to meet 

license authority standards. Inclusion criteria: a valid driver’s license, vision within license-

authority guidelines, completion of at least one year of high school, and English as a first 

language. Six patients declined to participate (n=4 female; Mage=69 years). Of the 142 

patients who agreed, 1 withdrew after failing the on-road assessment and 7 did not meet 

inclusion or study criteria.  

Interventions: Not applicable. 



	   	  
	  

	   148	  

Main Outcome Measure: A standardized occupational therapy on-road assessment. 

Results: Rasch analysis provided evidence for construct validity and internal reliability of the 

touchscreen DSDA. Optimal upper and lower cutoff scores were set to trichotomize drivers 

into three categories: likely to pass an on-road assessment; likely to fail an on-road 

assessment; and further testing required. Specificity of touchscreen DSDA was 86% and 

sensitivity 91%. The positive predictive value was 83%; negative predictive value, 92%. 

Overall accuracy of classification was 88%. 

Conclusion: Evidence supports the clinical utility of the touchscreen version of DSDA for 

predicting with substantial accuracy which patients require on-road assessment.  

Keywords: Automobile Driving; Safety; Cognition; Psychometrics; General Practitioners. 

 

Drivers must monitor the visual scene to rapidly and accurately identify simultaneous 

information critical for safe decision-making (e.g., road signs and pedestrians) (Hoffman et 

al., 2006; Rizzo et al., 2009). Since failure to detect such information often results in 

accident, researchers propose that examining drivers’ allocation of attention could be 

beneficial for predicting driving impairment (Caird et al., 2005; Hoffman et al., 2006; 

Koustanaï et al., 2012). For many years, researchers have examined clinical tests to identify 

one that can accurately predict driving performance off-road.  

Researchers (Asimakopulos et al., 2012; Bédard et al., 2008; Molnar et al., 2006) 

have advised that a suitable fitness-to-drive screen must have: evidence-based cutoff scores 

with sensitivity, specificity, positive predictive value (PPV), and negative predictive value 

(NPV) above 80%; two cutoff scores for trichotomizing drivers into “likely to pass”, “likely 

to fail” and “requires further testing” categories to reduce the problem of overlapping safe 
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and unsafe scores (Laycock, 2011; Molnar et al., 2006); and, a small percentage of patients 

(10-20%) classified “further testing” for clinical utility (Bédard et al., 2008). Additionally, 

the screen must be sufficiently predictive to avoid misclassifications (Bédard et al., 2008) 

particularly minimizing categorizing unsafe drivers as safe, due to the risk of accident.  

In most countries, general practitioners (GPs) are ultimately responsible for 

determining fitness to drive and are in an ideal position to screen drivers as a first point of 

contact. Surveys show GPs believe they should have this responsibility but lack valid and 

reliable tests, practical for medical practice (Classen et al., 2016; Dobbs et al., 1998; Fildes, 

2008; Jang et al., 2007; Marshall et al., 2012; Molnar et al., 2006; Sims et al., 2012; 

Woolnough et al., 2013; Yale et al., 2003). Importantly, GPs require a test that patients will 

accept as related to real-world driving so they feel they have been fairly assessed and are 

more likely to accept the results (Dalchow et al., 2010). Many existing screening tools are 

population-specific (Devos et al., 2007; Hoggarth et al., 2013; Lundqvist, Gerdle, & 

Ronnberg, 2000; Marshall et al., 2007; Matas et al., 2014; Nouri & Lincoln, 1992; Piersma et 

al., 2016; Wood et al., 2013) (e.g., Stroke Driver Screening Assessment) (Nouri & Lincoln, 

1992). However, fitness to drive is an overall concept associated with driving privilege 

(Drachman, 1988) and GPs require a population-free (i.e., generic) screening test that they 

can administer to any patient for whom driving is a concern. Considering these design criteria 

(Asimakopulos et al., 2012; Bédard et al., 2008; Dalchow et al., 2010; Molnar et al., 2006), 

we adapted an existing psychometrically-sound test (DriveSafe DriveAware; [DSDA]) 

(Hines & Bundy, 2014; Kay, Bundy, & Clemson, 2003, 2008; Kay et al., 2009a, 2009b; 

O'Donnell et al., 2018) as a brief (10-minute), user-friendly screen (Cheal & Kuang, 2015).  

The purpose of this study was to examine the psychometric properties and predictive 

validity of data gathered with touchscreen DSDA. An on-road assessment was the criterion 

measure: Performance Analysis of Driving Ability (P-Drive) (Patomella et al., 2010; 
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Patomella, Tham, & Kottorp, 2006), a standardized assessment of driving ability, coupled 

with therapist judgment determined the outcome. 

Method 

The University of Sydney Human Research Ethics Committee provided approval for 

this study. St Vincent’s Hospital Sydney Human Research Ethics Committee provided ethics 

approval for the hospital sites.  

Setting 

This prospective study took place in ten driving clinics in Australia and New Zealand. 

Sixty percent of patients (n=81) were assessed in Australia. Driver-trained occupational 

therapists (n=16) conducted the assessments.  

Participants 

The sample consisted of 134 patients age 18+ (Mage=68 years; SD=16.9) referred to 

determine the impact of a medical condition on fitness to drive. The sample was divided into 

two groups. Group 1 included 34 participants aged 18 to 59 diagnosed with a neurological 

condition that had the potential to impact cognitive capacity (e.g., stroke, brain injury or 

Parkinson’s disease). Participants who had primarily physical deficits were excluded from 

this group; to include them would have led to an overestimation of the accuracy of the 

prediction, as the purpose of DSDA is to determine cognitive fitness to drive. Group 2 

included 100 participants aged 60 and over with any diagnosis, including general medical 

(n=3) and physical deficits (n=7). People with any diagnosis were included in the older group 

due to the increasing incidence of cognitive impairment with age and general community 

concern regarding cognitive fitness of older drivers.  
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Consecutive patients who met these inclusion criteria were invited: a valid driver’s 

license, vision within license-authority guidelines, completion of at least 1 year of high 

school, and English as a first language. Patients were excluded if they had a developmental 

delay, psychiatric illness, or aphasia. Patients with physical deficits were only included if 

aged 65+ (range = 67-84; Mage = 76), to avoid overestimating the accuracy of prediction. 

Six patients (n=4 female; Mage=69 years) declined to participate. Of the 142 patients 

who agreed, 1 withdrew after failing the on-road assessment; 5 did not meet the inclusion 

criteria; and the on-road assessment was incomplete for 2. The final sample (94 males, 40 

females) is described in Table 1.  
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Table 1. 

Patient Diagnoses 

 
Diagnoses N  (%) 

 
MMSE-2:SV a   

M           SD 

Traumatic brain injury 15 11 28.66 1.72 

Stroke / TIA 42 31 27.14 2.62 

Dementia / memory loss 38 29 22.84 4.56 

Parkinson’s disease 7 5 28.00 1.63 

Other neurological  13 10 27.09 2.47 

Physical deficits  7 5 28.00 1.15 

General medical 3 2 26.00 1.73 

Unsafe driving report / 
no formal diagnosis 

9 7 25.38 5.26 
 

Total 134 100 26.64  

a Mini-Mental State Examination - 2: Standard Version (MMSE-2: SV) is a 30-point 

standardized assessment of cognitive status, interchangeable with Mini-Mental State 

Examination (MMSE) (Folstein et al., 1975; Folstein et al., 2010) | Note: TIA = transient 

ischemic attack. 

Instruments 

We utilized two standardized assessments: touchscreen DSDA (Cheal & Kuang, 

2015) and Performance Analysis of Driving Ability (P-Drive) (Patomella et al., 2010; 

Patomella et al., 2006). 
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Touchscreen DSDA. Touchscreen DSDA, a clinical screen of cognitive fitness to 

drive, comprises two subtests: DriveSafe and DriveAware. Scores on DriveSafe separate 

drivers into preliminary “safe”, “unsafe”, and “further testing categories”. DriveAware scores 

are then applied to generate a final trichotomy based on the likelihood of passing an on-road 

assessment: “Likely to Pass”, “Requires Further Testing”, and “Likely to Fail.” Previous 

research provides evidence of construct validity, internal reliability (Hines & Bundy, 2014; 

Kay, Bundy, & Clemson, 2008; Kay et al., 2009a, 2009b) and test-retest reliability 

(O'Donnell et al., 2018) for the original version (original DSDA).  

Touchscreen DriveSafe. DriveSafe measures awareness of the driving environment 

(Kay et al., 2009a, 2009b) via visual search and assumes attention is critical to safe driving. 

DriveSafe utilizes mechanisms identified by researchers (Caird et al., 2005; Galpin et al., 

2009; Jensen et al., 2011; O'Regan et al., 1999; Rensink, 2002; Rensink et al., 1997) as 

necessary for assessment of driver visual attention: a driving-related task, use of naturalistic 

driving scenes and stimuli, masking of object change, and a time-limited, one-time display of 

objects. Touchscreen DriveSafe is self-administered via iPad (Cheal & Kuang, 2015) with 

written and audio instructions. The test consists of 10 images of a 4-way intersection (Figure 

1 contains one example image). Each image includes two to four potential hazards (i.e., 

people or vehicles located in a particular place and moving a particular direction). Hazards 

are presented for 4 seconds then disappear leaving only the intersection. Participants are 

asked to recall information about the hazards by touching the blank intersection to identify: 

(i) each object from an array, (ii) its location, and (iii) direction of movement. A total of 28 

objects is presented. Each piece of correctly identified information yields 1 point. The 

maximum score is 84: 28 for each object category (i.e., object type, location and direction).  
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Figure 1. DriveSafe Item Example 

Previous experience with original DriveSafe indicates at-risk drivers find object 

direction of movement the most difficult to recall and object type the easiest. The item 

hierarchy presented in the original DriveSafe research confirms at-risk drivers find object 

type easiest to recall (Kay et al., 2009a) (object location and direction were combined 

variables in this study). Our hypothesis was that this structure would be represented in the 

touchscreen version item hierarchy.	  

Touchscreen DriveAware 

DriveAware measures awareness of one’s own driving abilities (Kay et al., 2009b). 

Awareness is operationalized as a lack of discrepancy between the participant’s responses 

and an agreed standard (Kay et al., 2009b). Awareness is critical for safe driving because it 

enables the driver to self-monitor driving performance (Kay et al., 2009b). Seven 

DriveAware questions are administered: Two self-administered by the patient and five 
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administered by a clinician (Figure 2 provides a sample item). One of the 7 questions 

contributes to rating on the agreed standard. Therefore, DriveAware consists of 6 items. Each 

item yields a discrepancy score based on the difference between the patient’s self-rating, the 

clinician’s ratings, or performance in the subtests. The total maximum score is 17. 

 
 

 

 

 

 

 

 

 

 

 

Figure 2. DriveAware Item Sample 

DriveAware was developed as a supplement to DriveSafe to increase predictive 

accuracy, after original DriveSafe research identified awareness as critical for safe driving 

(Kay, Bundy, & Clemson, 2008). The original DriveAware item hierarchy reflected a 

progression of awareness from awareness of deficits in performance on cognitive tests, to 

awareness of deficits in daily life, to awareness of deficits that may impact driving 
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performance (Kay et al., 2009a, 2009b). Our hypothesis was that this hierarchy would be 

similarly represented for touchscreen DriveAware. 

Performance Analysis of Driving Ability (P-Drive) 

P-Drive is a standardized observational assessment of driving ability: 25 items 

comprise four categories: Manoeuvres, Orients, Follows Regulations, and Attends and Acts 

(Patomella et al., 2010; Patomella et al., 2006). Items are scored on a 4-point scale (4 = 

competent). A score of 1 on any item is interpreted as unsafe driving. Examiners score the 

worst behaviour observed for each item. For example for the item ‘Obeying stop signs and 

traffic lights’, if the driver obeys three of four stop signs, the failure to stop is scored. P-Drive 

allows for route variation across centres because scoring is based on observed behaviour. P-

Drive was adjusted by the third author for this study, due to the differences in road rules in 

Australia and New Zealand compared to Sweden. Summed scores yield a raw score out of 

100. Cut-off scores of both 85 (Selander, Lee, Johansson, & Falkmer, 2011) and 81 

(Patomella & Bundy, 2015) have been proposed. A cut-off score of 81 in the 2015 study 

yielded a specificity of 0.92 (i.e., 92% of drivers anticipated to pass did pass) and sensitivity 

of 0.93 (i.e., 93% of drivers anticipated to fail did fail). The positive predictive value was 

0.95 and the negative predictive value was 0.90. However, no cut-off scores have been set for 

the Australian / New Zealand context; Whilst the cut-off scores informed the decision made, 

final determinations were based on P-Drive score coupled with clinical judgement using the 

following pass/fail criteria applied in previous DSDA research: Pass (i.e., safe and legal 

driving without intervention); Conditional pass (i.e., safe and legal driving with restrictions); 

Intervention (i.e., lessons required); Fail (i.e., failure to meet safe and legal driving criteria/ 

driving instructor intervention). Data for the pass and conditional pass groups were collapsed 

for analysis because both groups had achieved the criteria for safe driving. The combination 

of an on-road assessment tool with sound psychometric properties and a gestalt decision are 
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supported in the literature as the optimum for standardising the on-road assessment and 

capturing all aspects of driving performance (Di Stefano & Macdonald, 2003; Justiss, Mann, 

Stav, & Velozo, 2006; Kay, Bundy, Clemson, et al., 2008; Shechtman, Awadzi, Classen, 

Landford, & Yongsung, 2010). 

Procedure 

The first three authors trained driver-trained occupational therapists (examiners) via 

two 1-hour interactive webinars. This included training in route design using compulsory 

route inclusions recommended by Di Stefano & Macdonald (2010) and Patomella & Bundy, 

(2015), and testing examiners for consistency in scoring P-Drive. Examiners designed a set-

driving route in consultation with the driving instructors, who rated the level of challenge for 

each route so comparison could be made across centres. The first author reviewed all data to 

ensure participants met study criteria and assessments were conducted according to protocols. 

Examiners administered touchscreen DSDA and MMSE-2:SV off-road, and 

conducted vision and physical function screenings. Participants completed a 60-minute on-

road assessment in a dual-controlled vehicle; patients and examiners were blinded to DSDA 

results. A driving instructor seated in front provided route instructions and monitored safety. 

The examiner, seated in the rear, recorded driving performance and scored P-Drive once the 

on-road assessment concluded. 

Statistical Analysis 

We analysed DriveSafe and DriveAware data separately to evaluate item quality, 

remove problem items, and generate cut-off scores to trichotomise drivers based on the 

outcome of the on-road assessment. DriveAware cut-off scores were added to DriveSafe 

categories to refine classifications and generate the final trichotomy. We retained raw scores 
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because they yielded the same results as the Rasch scores and are easier for clinicians to 

understand. 

We used Rasch analysis (Winsteps Version 3.72.2) (Linacre, 2014) partial credit 

model to examine evidence of construct validity and internal reliability (Bond & Fox, 2007). 

Rasch analysis is suitable for a population with mixed diagnoses because it tests the 

assumption that easy items are easy for all participants and the most competent participants 

will perform best on all items, regardless of factors such as diagnosis (Bond & Fox, 2007; 

Kay, Bundy, & Clemson, 2008). Winsteps converts raw scores into interval scores (measures) 

expressed as log-odds probability units (logits) and generates a single hierarchy describing 

item difficulty and participant competence (Bond & Fox, 2007). Our analyses followed an 

iterative process with results from each phase informing the next. Iterative analyses allowed 

us to create the most parsimonious item set and to ensure that each item contributed to the 

unidimensional construct represented by the subtest. We examined the following sources of 

evidence for both subtests throughout the process.  

At each step, we examined point-measure correlations to ensure each was positive 

(i.e., part of the construct) (Bond & Fox, 2007). Goodness-of-fit statistics revealed how well 

data conformed to the Rasch model assumptions: (i) more able participants have greater 

likelihood of passing difficult items; and, (ii) easy items are easy for all people (Bond & Fox, 

2007). For each item and person, Winsteps generated two pairs of goodness-of-fit statistics 

expressed as mean square (MnSq) and standardized values (ZStd) (Bond & Fox, 2007). We 

considered removal of items where both MnSq and ZStd values were outside acceptable 

ranges (Bond & Fox, 2007; Tennant & Pallant, 2006). 

We examined the extent to which the overall spread of items matched participant 

ability, with attention to areas along the hierarchy where the construct was overrepresented 

(i.e., more than one item at the same difficulty level), suggesting redundancy. We also 
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identified gaps along the hierarchy indicating insufficient spread of item difficulty, reducing 

instrument precision.  

We examined the person reliability index, a Cronbach’s α equivalent, the person 

separation index, and number of strata (H= [4G+1]/3; where G = the separation index) for 

evidence of internal reliability. Strata indicate how reliably the test separates participants into 

statistically distinguishable groups (Fisher, 2007). We sought a person reliability index > 0.80 

(Fisher, 2007) and an H value > 2.0.  

At each iteration, a principal component analysis (PCA) of the residuals further 

contributed to examination of construct validity, providing evidence for the strength of any 

additional constructs represented in the subtests. We checked the empirical variance closely 

matched the Rasch-predicted model variance in the first factor and the percentage of 

explained variance was much greater than the percentage of unexplained variance (Linacre, 

2003, 2014); an unexplained variance from the first factors < 3 eigenvalue units provides 

additional evidence that the test is unidimensional (Linacre, 2014). We also completed a 

uniform differential item function analysis (DIF) to check that females and males did not 

differ systematically on items (i.e., t values < 1.96) because research (Ackerman et al., 2011; 

D'Ambrosio, Donorfio, Coughlin, Mohyde, & Meyer, 2008; Molnar & Eby, 2008; Morgan, 

Winder, Classen, McCarthy, & Awadzi, 2009) indicates that women consistently express less 

confidence in their driving performance than men. 

We examined evidence of the predictive validity of DSDA data by establishing 

optimal lower and upper cut score for each subtest using ROC curves. Lower cut scores 

maximized identification of unsafe drivers while minimizing misidentification of safe drivers 

(i.e., Sensitivity and PPV). Upper cut scores maximized identification of safe drivers while 

minimizing misclassification of unsafe drivers (i.e., Specificity and NPV). 
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Results 

Of the 132 participants, 49% passed the driving assessment; 40% failed; and 11% required 

further testing or intervention.  

DriveSafe 

Point measure correlation coefficients were all positive and ranged from .44 to .75 (m 

= .63). All items had goodness-of-fit statistics within acceptable ranges (see Table 2). 

However, we removed one item in the first analysis because examiners reported technical 

difficulties while administering it and removal did not change the results. 

Table 2.  

Goodness-of-Fit Statistics, Item Measures (IM) and Standard Error (SE) for DriveSafe Items 

 DriveSafe Infit DriveSafe Outfit IM SE 

Items MnSq ZStd MnSq ZStd   

Location - Image 1 1.06 0.48 0.88 -0.31 -2.02 0.14 

Location - Image 2 0.91 -0.64 0.66 -1.27 -2.02 0.15 

Location - Image 3 0.88 -0.65 1.36 0.8 -3.32 0.23 

Location - Image 4 0.84 -0.86 0.58 -0.76 -3.38 0.23 

Location - Image 5 0.91 -0.61 1.54 1.71 -2.47 0.16 

Location - Image 6 1.34 2.17 1.37 2.02 -2.01 0.14 

Location - Image 7 0.88 -0.58 0.74 -0.33 -2.98 0.22 

Location - Image 8 0.97 -0.14 1.14 0.78 -1.95 0.13 

Location - Image 9 1.20 1.46 1.42 1.58 -2.62 0.16 

Location - Image 10 0.90 -0.5 0.89 -0.04 -2.94 0.22 
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 DriveSafe Infit DriveSafe Outfit IM SE 

Items Continued MnSq ZStd MnSq ZStd   

Object - Image 1 1.08 0.63 0.88 -0.44 -1.79 0.14 

Object - Image 2 1.02 0.17 0.98 -0.01 -1.61 0.14 

Object - Image 3 1.08 0.55 1.02 0.21 -3.03 0.22 

Object - Image 4 0.63 -1.99 0.50 -0.91 -3.18 0.23 

Object - Image 5 0.97 -0.18 0.85 -0.73 -1.93 0.15 

Object - Image 6 1.17 1.28 1.19 1.41 -1.04 0.13 

Object - Image 7 0.76 -1.37 0.54 -0.88 -3.36 0.24 

Object - Image 8 1.07 0.56 1.09 0.69 -1.18 0.13 

Object - Image 9 0.86 -0.89 0.67 -0.91 -2.44 0.16 

Object - Image 10 0.90 -0.61 1.04 0.23 -2.76 0.21 

Direction - Image 1 0.92 -0.57 0.75 -1.15 -1.53 0.14 

Direction - Image 2 1.00 0.03 0.77 -1.09 -1.24 0.13 

Direction - Image 3 1.01 0.12 0.81 -0.47 -1.91 0.17 

Direction - Image 4 0.82 -1.35 0.84 -0.49 -1.98 0.18 

Direction - Image 5 0.97 -0.2 0.97 -0.14 -1.01 0.14 

Direction - Image 6 1.38 2.72 1.35 2.53 -0.61 0.12 

Direction - Image 7 0.88 -0.79 0.68 -0.71 -2.07 0.18 

Direction - Image 8 1.12 0.9 1.11 0.77 -0.65 0.11 

Direction - Image 9 1.06 0.52 1.24 1.42 -0.94 0.13 

Direction - Image 10 1.02 0.21 0.79 -0.59 -1.73 0.17 

The range of item difficulty was comparable to the range of participant ability in the 

map of items and drivers, except for the most competent drivers. There were few gaps along 

the hierarchy (see Figure 3). 
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     Drivers    Items 
 
  Score  More Competent  |  Hardest 
 
    4                P  P  P  P  P  + 
                                    | 
               P  P  Q  P  P  P  P  | 
                                   T| 
                                    | 
                                    | 
    3                               + 
                           P  P  P  | 
                                    | 
                                    | 
                  P  P  P  Q  P  P  | 
                                    | 
    2                P  P  P  P  P  + 
                                   S| 
                  P  P  P  P  P  P  | 
                     P  P  F  P  P  | 
                                    | 
                     P  Q  P  P  P  | 
    1                   P  F  P  P  + 
                                 P  | 
                                 P  | 
                              Q  Q  | 
                           P  P  F  | 
               F  F  P  P  Q  Q  P  | 
    0                            F M+ 
      P  P  P  F  F  P  P  Q  P  P  | 
                  F  F  Q  F  P  P  | 
                           F  F  F  |T 
               P  P  F  P  P  Q  P  |  dir-Im6   dir-Im8 
                        F  Q  Q  Q  | 
   -1                         F  P  +  dir-Im9  dir-Im5   ob-Im6 
                     P  F  F  F  P  |S dir-Im2   ob-Im8 
                     F  F  F  P  F  | 
                           P  P  F  |  dir-Im1 
                     F  F  Q  F  F  |  dir-Im10  ob-Im2 
                        F  P  F  P S|  dir-Im3   ob-Im1 
   -2                   F  F  F  F  +M dir-Im4  dir-Im7  loc-Im1  loc-Im2  loc-Im6  loc-Im8  ob_s5 
                           F  F  F  | 
                           F  F  F  | 
                                 P  |  loc-Im5   ob-Im9 
                              F  F  |  loc-Im9 
                                    |S ob-Im10 
   -3                            Q  +  loc-Im10  loc-Im7   ob-Im3 
                              F  F  |  ob-Im4 
                                    |  loc-Im3   loc-Im4   ob-Im7 
                                   T| 
                                    |T 
                                    | 
   -4                               + 
                                 F  | 
                                    | 
                                    | 
                                    | 
                                    | 
   -5                               + 
                Less Competent  |  Easiest 

Note: F = failed on-road; P = passed on-road; Q = required further testing; dir = direction of movement; loc 

= location of object; ob = object; Im = Image number; M = mean; S = 1 standard deviation; T = 2 standard 

deviations 

Figure 3. Map of Drivers and Items for DriveSafe Subtest  
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The test separated participants into >5 strata (separation index=3.76; H=5.34), 

providing evidence that DriveSafe is sensitive enough to distinguish multiple levels of 

awareness of the driving environment. A high reliability index (.93) provided evidence for 

the replicability of person placement along the hierarchy. 

The PCA yielded an empirical variance (55.1%) closely matching the modeled 

variance (56.4%). The percentage of unexplained variance by the first contrast was 4.6% 

(Eigenvalue = 3.1), which is slightly more than desired (i.e., < 3) but much less than the 

variance explained by items (14.8%; Eigenvalue = 9.9) and persons (40.4%; Eigenvalue = 

27.0). A uniform DIF analysis revealed no significant difference between males and females 

on any item.  

DriveAware 

 
We excluded data from 2 participants from analysis of DriveAware data due to 

missing data for those two participants. The iPad apparently failed in these two instances as 

no data were recorded.  

Point measure correlations were positive, ranging from 0.64 to 0.82 (Mean = 0.70), 

indicating all items were part of the construct. All items except Item 5 had fit statistics within 

the acceptable ranges (see Table 3).  
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Table 3. 

Goodness-of-Fit Statistics, Item Measures (IM) and Standard Error (SE) for DriveAware 

Items 

 Infit Outfit IM SE 

Item MnSq ZStd MnSq ZStd 

1. Ability to recall DriveSafe location 0.95 -0.31 0.95 -0.19 -2.22 0.15 

2. Ability to recall DriveSafe direction  0.75 -2.11 0.73 -1.94 -1.52 0.14 

3. Concerns regarding driving performance 1.10 0.85 1.10 0.8 1.03 0.15 

4. Surprised by hazards whilst driving 0.90 -0.72 0.88 -0.69 -0.40 0.13 

5. Awareness of why asked to do DSDA 1.67 3.80 2.36 3.35 -0.58 0.14 

6. Awareness of performance on DSDA 0.64 -3.20 0.62 -3.24 -0.99 0.14 

Note: DSDA = DriveSafe DriveAware 

As expected, the hierarchy of items was consistent with previous iterations of 

DriveAware (Kay et al., 2009a, 2009b), with awareness of reduced performance in the test 

being easier than awareness of the reason for being tested; awareness of reduced driving 

performance was the most difficult (see Figure 4). The map revealed gaps where there were 

people but no items.  
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                                  Drivers  | Questions 
 
Score                               Intact Awareness | Most Aware 
 
    5                                                       F  F  + 
                                                                  | 
                                                                  | 
                                                                  | 
                                                                  | 
                                                                  | 
    4                                                             + 
                                                   P  P  P  P  F  | 
                                                                  | 
                                                                  | 
                                                                 T| 
                                                                  | 
    3                                                             + 
                                                                  | 
                                                                  | 
                                                                  | 
                                             F  F  P  P  P  P  P  | 
                                                                  | 
    2                                                             + 
                                                                  | 
                                                                 S| 
                     P  P  P  P  F  P  F  P  P  P  P  P  P  P  P  | 
                                                                  | 
                                                                  |T 
    1       F  P  P  P  P  P  P  P  P  P  F  P  F  F  P  P  P  P  + 3.Concern about driving 
                                                                  | 
                                                                  | 
      F  P  P  F  P  P  P  F  P  F  P  P  F  P  P  P  P  P  P  P  | 
                                                                  | 
                                                                  |S 
    0                            P  P  P  P  P  P  P  P  F  P  P M+ 
                                                                  | 
                                    F  F  F  F  F  F  F  F  P  F  | 4.Surprised by hazards 
                                                                  | 5.Why asked to do DSDA 
                                                                  | 
                                       F  F  F  F  F  F  P  P  F  |M 
   -1                                                             + 6.Performance on DSDA 
                                                         F  F  F  | 
                                                                  | 
                                    F  P  P  F  F  F  F  F  F  F  | 2.DS direction recall 
                                                                 S| 
                                                P  F  F  F  P  P  |S 
   -2                                                             + 
                                                                  | 1.DS location recall 
                                                F  F  F  F  F  F  | 
                                                                  | 
                                                                  | 
                                                F  F  F  F  F  P  |T 
   -3                                                             + 
                                                                  | 
                                                            P  F T| 
                                                                  | 
                                                                  | 
                                                                  | 
   -4                                                       F  F  + 
 
                                             Absent Awareness | Least Aware 
 

Note: F = failed; P = passed; M = mean; S = 1 standard deviation; T = 2 standard deviations; DS = 

DriveSafe; DSDA = DriveSafe DriveAware 
 

Figure 4. Map of drivers and items for DriveAware subtest 
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The person reliability index (0.80) was acceptable. A separation index of 1.98 

revealed almost 3 strata (H = 2.95). The PCA yielded a modeled variance (59.3%) that 

closely matched the empirical variance (59.4%). The percentage of unexplained variance by 

the first contrast was 11.4% (Eigenvalue = 1.6), which is within the acceptable range (i.e., < 

3) and less than the percentage of variance explained by item (16.1%; Eigenvalue = 2.2) and 

person (46.3%; Eigenvalue = 6.1). Uniform DIF analysis revealed females scored 

significantly higher (i.e., greater discrepancy) than males on Item 1 (t = -3.35) (“How well 

did you remember the location of people and vehicles”). No other item differed significantly. 

Predictive Validity 

Predictive validity refers to how accurately DSDA predicted drivers who actually 

passed/failed on-road. Thus, data from patients categorized as “requiring further testing” (n = 

20) were excluded from this analysis because the pass/fail category was indeterminate for 

these participants.  

ROC curves revealed optimal cutoff scores of 57 and 72 for DriveSafe and 10 and 13 

for DriveAware based on results of the on-road assessment. The resulting driver 

trichotomization appears in Figure 5.  
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Figure 5. DSDA Cutoff Scores Trichotomy 

Specificity, sensitivity, NPV and PPV of the combined and individual tests appear in 

Table 4. Classification accuracy appears in Table 5. 
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Table 4. 

Descriptive Statistics (%) for DriveSafe and DriveAware Lower- and Upper- Cutoff Scores  

 
Lower Cutoff Upper Cutoff Combined 

 DriveSafe DriveAware DriveSafe DriveAware DSDA 

Sensitivity 91 89 63 51 91 

Specificity 66 74 94 91 86 

PPV 79 83 93 89 83 

NPV 84 83 65 57 92 

Accuracy of 
classification 

80 83 68 68 88 

Note: DSDA = DriveSafe DriveAware; PPV = positive predictive value; NPV = negative 

predictive value 

 

Table 5. 

Accuracy of DriveSafe DriveAware (DSDA) Classification  

 Actual Driving Performance  

DSDA  Unsafe Further Testing Safe 

Unsafe (fail test) 39 (34%) 

(true positive) 

4 (4%) 4 (4%) 

(false positive) 

Safe (pass test) 8 (7%) 

(false negative) 

8 (7%) 49 (44%) 

(true negative) 
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Discussion 

The purpose of this study was to examine the psychometric properties and predictive 

validity of data gathered with touchscreen DSDA. Touchscreen DSDA met criteria set by 

researchers for a useful GP driver screen. Researchers (Anstey et al., 2005; Asimakopulos et 

al., 2012; Bédard et al., 2008; Kay et al., 2009a; Molnar et al., 2006) agree that the statistics 

most valuable to clinicians selecting assessment tools are sensitivity, specificity, PPV, and 

NPV; these statistics should be >80% (Asimakopulos et al., 2012). Specificity of touchscreen 

DSDA was 86%; sensitivity 91%; PPV, 83%; and NPV, 92%. Overall accuracy of 

classification was 88%. These findings indicate touchscreen DSDA had slightly lower, but 

acceptable, sensitivity and specificity compared to original DSDA: specificity of touchscreen 

DSDA was 96-97% in original DSDA; sensitivity was 93-95% in original DSDA (Kay et al., 

2009a). Touchscreen DSDA had acceptable evidence for internal reliability and construct 

validity similarly to original DSDA (Hines & Bundy, 2014; Kay, Bundy, & Clemson, 2008; 

Kay et al., 2009a, 2009b). 

Eight participants passed DSDA but failed on-road (i.e., false negative); we could 

discern no distinguishing characteristics (such as diagnosis, age, gender, or driving 

performance). Nonetheless, GPs should use professional judgment and other clinical 

indicators in addition to touchscreen DSDA to support fitness-to-drive determinations. 

Further supporting clinical utility, Touchscreen DSDA has two cutoff scores for 

trichotomising drivers, reducing the problem of overlapping scores (Molnar et al., 2006); 

places only 11% of patients in the further testing category (Bédard et al., 2008); takes around 

10 minutes; and has high face-validity (i.e., patients can perceive its relationship to driving). 

The map of items and drivers indicates DriveSafe most precisely differentiates less 

competent drivers (i.e., there was a ceiling effect for driver who fell into the safe category). 
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This is not problematic as measurement precision is unnecessary to discriminate between 

“good” and “excellent” drivers; DriveSafe is designed to identify safe drivers. As expected, 

participants found direction of movement the most difficult variable to recall and object type 

the easiest for most items, consistent with previous research (Kay et al., 2009a).  

The DriveAware map revealed gaps where there are no items to measure both the 

least and most aware participants. However, the purpose of DriveAware is to distinguish 

between poor performers where DriveSafe results are borderline and additional qualitative 

and quantitative information is required to categorize patients; the test is not used alone. 

DriveAware Item 5 (“Why have you been asked to complete DriveSafe DriveAware?”) had 

fit statistics outside the acceptable range indicating somewhat erratic responses. Nonetheless, 

we retained Item 5 because of its contribution to judging patient insight. DIF analysis 

revealed females tended to underestimate their performance compared to males on item 1 

(“How well did you remember the location of people and vehicles?”). Studies that examine 

gender differences in self-rated driving performance consistently show that women express 

less confidence in their performance than men (Ackerman et al., 2011; D'Ambrosio et al., 

2008; Molnar & Eby, 2008; Morgan et al., 2009). Health professionals should be mindful of 

gender differences when interpreting DriveAware results. 

Limitations 

P-Drive allows consistent scoring over variable routes, nonetheless conditions likely 

varied somewhat. Relatively small numbers in patient groups precluded systematic 

examination of differences by diagnostic group. However, person fit statistics were within 

acceptable ranges and results of the principal components analysis indicated no evidence that 

diagnoses separated groups. Further research confirming the cut-off scores for specific 

diagnostic groups is needed. 
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Conclusion 

Our results suggest that touchscreen DSDA is sufficiently predictive be used as a 

first-level cognitive fitness-to-drive screen. Only patients with inconclusive results require 

referral for further testing. Patients identified as likely to be safe can avoid unnecessary 

testing and patients identified as likely to be unsafe can be advised to discontinue driving.  
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CHAPTER 8 

Determining Suitability of Touchscreen DSDA for Medical Practice 

(Discontinued Study) 

Findings from the literature review described in Chapter 3 established that general 

practitioners (GPs) need, but do not currently have access to, suitable fitness-to-drive screens. 

Surveys conducted to determine how GPs are currently tackling driver screening in the 

absence of suitable tools present a unified picture. Although GPs generally agree they should 

be responsible for determining medical fitness to drive, they report a lack of confidence due 

to non-specific medical guidelines, insufficient training, and lack of resources (Classen et al., 

2016; Hoggarth, 2013; Jang et al., 2007; Jones et al., 2012; Marshall et al., 2012; Omer et al., 

2014; Sims et al., 2012; Wilson & Kirby, 2008). Therefore, GPs tend to take an ad hoc 

approach, without clear guidelines, an agreed standard, or specific assessment protocols 

(Braekhus & Engedal, 2009; Jang et al., 2007; Sims et al., 2012; Wilson & Kirby, 2008). The 

most common approach is to conduct vision screening: often or always performed by 93% to 

99% of respondents in 3 surveys (Braekhus & Engedal, 2009; Jang et al., 2007; Wilson & 

Kirby, 2008). Aside from this procedures vary widely, including a combination of history 

taking, cardiac examinations, abbreviated neurological examinations, review of medications, 

physical test (e.g., strength testing), and hearing testing (Braekhus & Engedal, 2009; Jang et 

al., 2007; Sims et al., 2012; Wilson & Kirby, 2008). Unfortunately these category of tests are 

unsuitable for determining fitness to drive because the purpose of physical and medical 

examinations is to detect disease, not determine functional status or fitness to drive (Laycock, 

2011). 
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The percentage of GPs who often or always use formal cognitive tests to screen 

fitness to drive varies across studies: 22% (Braekhus & Engedal, 2009); 49% (Jang et al., 

2007); and, 56% (Sims et al., 2012). Omer et al. (2014) found that less than one third 

reported “often or always” assessing cognition (Omer et al., 2014). Wilson and Kirby (2008) 

reported that 26% of GPs (N = 99) reported they did not assess cognitive function at all 

(Wilson & Kirby, 2008). This may reflect the lack of valid, reliable and practical assessments 

available for GPs to use. The MMSE (Folstein et al., 1975; Folstein et al., 2010) is 

overwhelmingly the most common cognitive test administered (Dobbs et al., 1998; Hoggarth, 

2013; Marshall et al., 2007; Wilson & Kirby, 2008): used by 80% of GPs who formally test 

cognition when screening fitness to drive in one Norwegian study (Braekhus & Engedal, 

2009), and in general practice for 88% of GPs in a New Zealand study (Hoggarth, 2013). 

Unfortunately the MMSE and similar pen and paper tests (e.g., the MoCA and clock drawing 

test) are not sufficiently predictive of on-road performance to reliably use in driver screening, 

as discussed in Chapter 3. 

Pearson Clinical Assessment (Australia and New Zealand) conducted market research 

prior to the DriveSafe DriveAware (DSDA) digital development, to determine how GPs were 

currently determining fitness to drive, if they perceived a need for a fitness-to-drive screen, 

and how they preferred the test be designed for medical practice. They surveyed a 

representative sample of 200 Australian GPs in 2012. Results, reported in Appendix C, are 

consistent with the survey findings described above. Additionally GPs reported finding the 

national medical guidelines cumbersome, ambiguous and not user-friendly; receiving 

insufficient information from patients and family to make an informed decision; and concern 

about lack of government funding for fitness-to-drive assessments. GPs reported they relied 

on patient observations (e.g., mobility and grooming), medical examinations, vision 

assessment, and information provided by family to determine fitness to drive. Despite a 
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reported lack of confidence assessing fitness to drive, most (63%) GPs reported rarely or 

never referring patients for an occupational therapy on-road assessment. Barriers cited 

included cost, waiting times, patient reactions, concern about validity of the assessment, and 

service access.  

These findings are consistent with published GP survey results, which indicate GPs 

are making decisions about fitness to drive without referring to the results of on-road 

assessment (Braekhus & Engedal, 2009; Hoggarth, 2013; Jang et al., 2007; Omer et al., 

2014). Rates of referral for license authority or occupational therapy on-road tests are low, 

with GPs, often citing concerns about cost, waiting times and uncertainty regarding validity 

(Jones et al., 2012; Sims et al., 2012). In one Irish survey, 70% of GPs (N = 257) reported 

rarely or never referring for on-road assessment (Omer et al., 2014). A Norwegian study 

indicated GPs only referred for on-road assessments in exceptional cases (Braekhus & 

Engedal, 2009). This may be region-specific depending on practice traditions, awareness of 

referral pathways, and the level and cost of service provided. Occupational therapy driving 

assessors were considered invaluable in two more recent Australian GP surveys, with much 

higher referral rates (59% in one case) (Jones et al., 2012; Sims et al., 2012). 

In summary, decades of research demonstrated that GPs need, but do not have access 

to, practical and valid driver screens. The focus of this thesis was on the development of such 

a screen. Examination of the psychometric properties and predictive validity of data gathered 

with touchscreen DSDA indicated the tool might be sufficiently predictive and practical for 

use in medical practice (results presented in Chapter 7). To ensure predictive validity, I 

conducted the research within the context of occupational therapy driving clinics. However, 

GPs provided the impetus for developing Touchscreen DSDA. Therefore, I conducted a study 
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to determine if physicians considered touchscreen DSDA practical and valid for medical 

practice and if they would use it for screening fitness to drive.  

I asked a convenience sample of GPs and medical specialists in Sydney and 

Melbourne if they would like to trial touchscreen DSDA in their practices for 6-weeks, then 

participate in a brief semi-structured interview to explore their experiences and the 

experiences of any staff involved (e.g., practice nurses). The physicians had previously 

expressed an interest in being involved in touchscreen DSDA development and research and 

provided their contact details through various avenues of contact including at conference 

presentations, professional development sessions, and via health networks. Physicians who 

agreed to be involved were provided with an information sheet describing which patients 

would be suitable for touchscreen DSDA (i.e., drivers aged 60+ with any diagnosis and 

drivers aged 18+ with a medical condition that has the potential to impact cognition). GPs 

were advised not to use the test with patients with little or no driving experience, who did not 

speak English as their primary language, or who had not completed at least year 7 at school; 

the test is not standardised for these groups. They were also advised that no patient data 

would be collected. Physicians were provided with an iPad, stand, headphones and stylus for 

a minimum of 6-12 weeks at the commencement of the study. Physicians kept the iPad and 

accessories if they completed the participant interview. Touchscreen DSDA was provided 

free of charge during the trial. Physicians were not paid for their time. 

Physicians from six general and specialist medical practices agreed to participate in 

the study: general practitioners (2), a consultant rehabilitation physician (1), neurosurgeons 

(2), and a geriatrician (1). Only one GP and one medical specialist used touchscreen DSDA 

with their patients and completed the interview. The other four physicians did not trial 

touchscreen DSDA with any of their patients although provided with additional time (8-12 
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weeks). One GP reported being too busy to implement the app. Two medical specialists 

reported being very motivated to trial the app but did not do so within the time frame and 

study closure date. The remaining medical specialist did not provide a reason for not 

implementing the app. The study was eventually discontinued because I could not recruit 

enough participants and therefore collect sufficient data. However, findings from the two 

interviews that were conducted, raised important issues that could be further explored in 

future research. 

Method 

The University of Sydney Human Research Ethics Committee approved this study. 

Participants provided written, informed consent prior to study enrolment. 

Participants 

One participant was a general practitioner based in a small medical practice in 

Melbourne, Australia. She was not the business owner. The other participant was a consultant 

rehabilitation physician with his own medical practices both in Sydney and a regional area of 

Australia, where he resided. He also conducted hospital rounds. 

Procedure 

This qualitative study was conducted over an 18-month period. No patient data were 

collected. Physicians participated in a 20-minute semi-structured interview after using 

touchscreen DSDA in their medical practices for at least 6 weeks. Two team members 

conducted the interviews, taking detailed notes and transcribing each interview. A female 

team psychologist conducted the GP interview in the GP’s office. I conducted the other 

interview over the phone because the Sydney physician lives in a regional area. We used an 

open-ended interview guide to ensure consistency of wording. The 12 questions were 
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designed to explore frequency of touchscreen DSDA use, type of patients tested, 

administration processes, physician and patient experiences, whether screening results were 

trusted, and how test results were applied.  

Data Analysis 

Because only two physicians participated in the study there was insufficient data for 

conducting the planned structured inductive thematic analysis procedure described by Braun 

and Clarke (2009). Therefore, I present findings from the two interviews separately for each 

participant. I then discuss findings that were consistent across the two. 

Results 

The consultant rehabilitation physician trialled the app with four patients aged 18 to 

65 with potential cognitive impairment due to stroke, age-related changes, multiple sclerosis, 

and cerebral palsy. He wanted to use the app with a fifth patient aged in his 70’s and 

diagnosed with hypoxic ischemia and short-term memory loss, but was concerned the results 

might indicate the patient was fit to drive, whilst he and the patient’s son were trying to 

discourage driving. He was concerned the test might give the patient false hope. The 

physician reported that one of the four patients (diagnosed with a stroke) found it hard to 

understand the test instructions and took 20 minutes to complete the screen, whereas the other 

patients had no difficulty with self-administration. The physician reported he was not 

concerned about the additional administration time but rather that the patient kept looking to 

him for re-assurance and he had to state: “I can’t help you. You just do what you think is 

best”.  

The physician reported he still wanted to refer some patients for an occupational 

therapy driving assessment even though they passed the screen “just to be sure”. For example 
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the stroke patient who was slow to complete the test passed, but the physician referred him 

for a driving assessment, regardless, due to the difficulty the client had with self-

administration. The physician reported concern that the test was too easy (as all his patients 

passed) but stated he would continue using the app because touchscreen DSDA gave him an 

objective and consistent method of determining fitness to drive. He stated, “sometimes the 

outcome was different from what I expected but it is still probably helpful…It helps the 

patient see how they are going…and gets them thinking about return to driving”. The 

physician was considering referring to an occupational therapist (without driver-training) in 

the private hospital to administer the test but stated that for his public hospital ward rounds: 

“I wouldn’t get the registrar to do it on the ward or the practice nurse. I would keep doing it 

myself. I like watching how they do the test: how they react and how it works for them”. The 

physician reported he was considering administering touchscreen DSDA to patients on 

hospital admission and discharge, as an outcome measure unrelated to predicting driving 

performance.  

The second interview was conducted with a GP in Melbourne who had tried 

touchscreen DSDA with five patients. She reported her first assessment of a dementia patient 

(MMSE 23/30) had not gone well. The patient had a high level of education (PhD) and was 

very experienced with a desktop set up. He failed touchscreen DSDA and “got offended” and 

was “very resistant to the fact that he had failed”. The patient reported the GP had not given 

him sufficient set-up instructions. He subsequently wrote a complaint letter, stating 

touchscreen DSDA tested short-term memory rather than driving skill and attributed his poor 

result to lack of familiarity with an iPad. The GP advised the patient’s medical specialist of 

the touchscreen DSDA outcome and advised the patient’s wife to arrange an on-road driving 

assessment, but she was not confident they followed this advice. The GP reported this 

experience taught her that the medical practice needed documentation to support the test, 
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such as a consent form describing potential outcomes so the patient was aware of what was at 

stake. She stated, “I was probably a little bit naïve sailing in there with my new little test”. 

She reported this experience was a good but painful and provided a tough lesson: 

By the time we had that first experience we were seeing this as our job to negotiate 

this gently rather than just tear in there with the results: and we saw it as a much more 

complex issue than when we started. 

The second patient the GP tested had diabetes and suspected dementia. This patient 

spontaneously told the doctor he had a lot of scratches on his car and was reversing into 

things constantly. The patient failed the test then became very abusive (as he had been related 

to other matters in the past). He also wrote a complaint letter stating he had not been given 

sufficient instructions, had been tricked, and did poorly because he was not experienced with 

iPad. The doctor reported both she and another staff member had in fact given detailed 

instructions and informed the patient he would need to do an occupational therapy driving 

test regardless of the outcome. The GP attributed both patients’ blaming the poor result on 

lack of familiarity with an iPad as “bluster” and “an excuse”.  

The GP anticipated she had lost one of the patients: “I am sure he is driving very 

badly and doesn’t want to know about it so he’s avoiding us”. The interviewer asked the 

doctor how she would have managed this conflict in the past. She replied that she would have 

referred the patient for a driving test and been faced with the dilemma: “Am I going to report 

this to VicRoads or am I just going to negotiate this? It has to be one of the hardest bits of 

general practice”. The GP described a third patient who needed driver screening but had not 

agreed to do touchscreen DSDA. The GP stated, “I am now at the point where – do I send 

him to VicRoads anyway? But his elderly wife is relying on him and it’s just a disaster”. She 

lamented that public transport was very poor in her area. 
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The GP reported she had learned from these two negative experiences and 

subsequently developed a consent form, and determined to be clearer when explaining why 

the test was being administered and potential consequences. She stated, “So I was much more 

proactive. After that we didn’t have any trouble...We learnt the hard way”. She was very 

relieved that following patients did well on touchscreen DSDA and could clearly manage 

self-administration. The third attempt to administer touchscreen DSDA was an uneventful 

and positive experience. The patient passed: “He became engaged with the process of doing it 

even though it was unfamiliar territory, so we could see that someone who had not got 

dementia could actually suss their way around it as a naïve person.”  

Touchscreen DSDA was administered to two subsequent patients referred by the 

police due to unsafe driving. The police also required both patients to do an occupational 

therapy on-road assessment. One patient was a 70-year-old female who lost concentration 

and drifted into a car (no formal diagnosis). The GP reported the patient’s positive experience 

doing touchscreen DSDA restored her confidence in driving and she went on to pass the 

occupational therapy driving test. The interviewer pointed out that the patient had actually 

fallen into the further testing category. The GP reported this was only because she sometimes 

“forgot she could touch the screen”, but the GP was confident she was safe to drive. The 

second patient referred by the police was a dialysis patient found slumped in his car after 

fainting, due to a series of medical and personal issues. The GP stated she thought, “Aha, I’ve 

got just the thing for you” and was pleased that the patient passed touchscreen DSDA. Fitness 

to drive reflected medical issues for this patient but the GP found touchscreen DSDA useful 

for determining if the patient was “concentrating”. 

The GP administered the app on the first three occasions then asked her practice nurse 

to administer it for the remaining patients. She reported patients needed a very quiet, separate 
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room so they could concentrate (whereas the Sydney physician reported no difficulty 

administering the app in a busy medical practice setting). The GP described finding assessing 

patient fitness to drive very stressful. She stated, “It is probably the hardest thing to do in all 

of general practice – talking about their driving. It is such a sensitive, tightly-held thing”. She 

was concerned about the risk of losing a relationship with the patient and losing a customer. 

She stated, “We need legislation and mandatory reporting”. The GP lamented the lack of 

tools for determining fitness to drive despite this being a necessary part of their role: “All we 

can do is go behind their back and report it to VicRoads [the state licensing authority]”. The 

GP planned to continue using touchscreen DSDA in the group private practice: 

We are planning to introduce this as a standard part of our general practice 75+ 

assessments but this made me realise that without any backup from the government 

it’s just really hard. The people who need it are the hardest ones to do it with.  

The GP stated her ideal situation would be administering touchscreen DSDA within the 

medical practice, with government funding. Alternatively she suggested the licensing 

authority could administer the test to everyone age 75+ and doctors could access the result 

via a password-protected link online. The GP stated, “this [touchscreen DSDA] helped me 

feel more supported but getting them to do it – the ones most likely to fail are the ones most 

likely to be resistant. So I feel a bit uncertain how to proceed.” The GP said she would still 

refer patients who failed touchscreen DSDA for an occupational therapy driving assessment 

because they would otherwise not accept the result. She reported feeling confident that 

patients who passed the test could avoid expensive on-road testing and noted the test 

administration was a positive experience for both her and the patients when they passed. The 

GPs concluding remarks were,  
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When you’ve got someone with dementia, you are never going to get to that point of 

insight. So, you’re always up against it. Even demonstrating to them that they failed 

didn’t invite them to reflect. They just got defensive. So, that’s also a lesson in that it 

is always going to happen. So, ok, what are we going to do to prepare for that? We’ve 

got to  get them off the roads, eventually.  

Discussion and Implications for Future Research 

The data collected only represented the views of two physicians. Therefore, the 

findings cannot be generalised. However, data gathered identified some common areas of 

concern consistent with those expressed by physicians in the literature, requiring further 

exploration in research.  

Lack of support. GPs consistently report a lack of clarity and support from policy 

makers and licensing authorities regarding driver-screening procedures (Braekhus & 

Engedal, 2009; Jang et al., 2007; Marshall et al., 2012; Omer et al., 2014; Sims et al., 2012). 

Consistent with this, the Melbourne GP express significant concern regarding the lack of 

“back up” from the government, licensing authorities, and general practice colleagues. She 

wanted more legislation around driver screening so there would be clear processes that the 

patient must follow, implemented by an external body. For example she suggested mandatory 

administration of touchscreen DSDA in licensing authority offices for drivers aged 75+ (there 

is currently no aged based testing of drivers in Victoria). This is consistent with the findings 

from the survey of 200 Australian GPs described in Appendix C: some GPs reported their use 

of touchscreen DSDA would depend on whether it was accepted by licensing authorities and 

insurers. They were concerned patients would not do the test unless it was mandated (see 

Appendix C). 
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Results of the two interviews, and the difficulty recruiting physicians to trial 

touchscreen DSDA, suggests that physicians may require more support implementing 

touchscreen DSDA into their practices, such as legislation and policy support from policy 

makers and license authorities; training in how to administer the test and interpret the results; 

and, documentation to support administration (i.e., patient information sheets and consent 

forms). The Melbourne GP found that the information sheets and consent forms she 

developed reduced patient concerns and conflict. Therefore, it may be beneficial to develop 

standard patient information sheets to accompany touchscreen DSDA, which can be adapted 

for the needs of individual medical practices. Further research is recommended regarding 

whether doctors require touchscreen DSDA administration training in addition to the 

touchscreen DSDA in-app administration manual because both participants misinterpreted 

test results for one of their patients. For example, the Melbourne GP considered that her 

patient who received the ‘further testing’ result had done well and passed. The Sydney 

physician administered the app to a patient without driving experience as a cognitive screen. 

He did not seem aware that touchscreen DSDA was not standardised for patients without 

driving experience: although this is stated in the administration manual and on the 

automatically-generated report forms. Pearson offers individual support and test 

administration training webinars for GPs but these findings suggest it may be important to 

explore additional ways of training and supporting GPs in test administration.  

Managing patient conflict. Surveys consistently show that physicians are concerned 

about telling patients they need driver screening and then communicating the result to 

patients when they fail (Braekhus & Engedal, 2009; Classen et al., 2016; Jang et al., 2007; 

Jones et al., 2012; Marshall et al., 2012; Omer et al., 2014; Sims et al., 2012). Physicians 

report concern that withdrawing driving damages the patient-doctor relationship; may result 

in losing a patient; and significantly reduced quality of life for the patient (Braekhus & 
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Engedal, 2009; Classen et al., 2016; Jang et al., 2007; Jones et al., 2012; Marshall et al., 

2012; Omer et al., 2014; Sims et al., 2012). The Melbourne GP describing feeling upset 

regarding the negative reactions of two patients who failed DSDA and lacked confidence 

regarding how to manage patient reactions: both patients continuing to drive despite her on-

road assessment recommendation. The Sydney physician did not describe any concerns about 

withdrawing driving privileges but did describe deciding whether or not to administer 

touchscreen DSDA based on how he perceived the patient would react to the outcome. 

The Melbourne GP implemented support systems around touchscreen DSDA testing 

to reduce patient conflict including providing more information about the testing procedure 

and the implications. She found this significantly reduced conflict for future patients. Whilst 

there is an in-app consent form for the patient or doctor to complete prior to each 

administration and a patient outcome report that is given to the patient on completion of the 

test, these findings suggest additional supports are needed. For example, patients may benefit 

from a generic information sheet that describes the test background and potential outcomes in 

detail. Further research is required to determine whether use of touchscreen DSDA will be 

advantageous for doctors in helping them manage patient conflict when addressing fitness-to-

drive screening. 

Trusting touchscreen DSDA results. The predictive validity study described in 

Chapter 7 indicates touchscreen DSDA has sufficient accuracy to be used to by physicians to 

determine the need for further on-road assessment. However, both physicians raised issues 

around trusting the test results. The Sydney physician preferred to continue referring for on-

road assessment regardless of the touchscreen test result just to be sure. The Melbourne GP 

seemed willing to accept the results as long as they agreed with her expectation and clinical 

judgement. She noted a gender difference between males and females in acceptance of 
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driving cessation: “Very few men give up their licenses voluntarily. Most of them are forced 

to…Women volunteer a lot of the time”. The GP considered that her male patients who failed 

touchscreen DSDA would still want to undergo on-road testing because they would not 

accept that the test result related to their actual driving performance. She also noted a 

difference between her male and female patients’ capacity to self-administer the iPad 

application; women performing better. However, the gender-based DIF analysis performed in 

the predictive validity study described in Chapter 7 indicated no statistically-significant 

difference in performance between males and females in the DriveSafe subtest. 

The Sydney physician was not certain he could trust the results with two patients who 

passed and still wanted to refer for an on-road assessment “just to be sure”. He was 

concerned that the additional time taken by one patient may indicate difficulty with driving 

and was concerned that another patient diagnosed with multiple sclerosis may have difficulty 

with the physical aspects of driving (a valid reason for proceeding with on-road assessment). 

These findings are preliminary and it is not surprising that both physicians were uncertain 

regarding trusting results since they were unfamiliar with the test, used it with a low number 

of patients, and all of the Sydney-based physician’s patients passed. Further research is 

required to investigate whether doctors will trust touchscreen DSDA recommendations, how 

they are going to manage results that disagrees with their expected outcomes, and in what 

circumstances they would override the result. 

DSDA feasibility for medical practice. Both physicians found DSDA feasible for 

medical practice in terms of administration time, ease of use, location of testing, and cost. No 

practical concerns were reported. The Melbourne GP reported: “This [touchscreen DSDA] 

helps me feel more supported”. Both physicians intended to continue using touchscreen 

DSDA. The Sydney physician described it as a “handy”, objective and consistent method of 
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assessing fitness to drive and felt it was a good tool for providing patients with feedback on 

how they were going. Both physicians intended to continue referring for occupational therapy 

on-road assessments and to administer touchscreen DSDA in conjunction with other health 

professionals (i.e., the practice nurse or non-driver trained occupational therapists). This 

suggests administration of touchscreen DSDA may in fact increase referral to generalist and 

specialist occupational therapy services as physician awareness of issues related to fitness to 

drive are raised. This evolution was particularly evident for the Melbourne GP.   

The fact that only two doctors successfully implemented touchscreen into their clinics 

highlighted the difficulty of changing current health professional clinical practice. This may 

be due to time, cost and training limitations, and suggests some doctors may prefer to 

outsource touchscreen DSDA test administration. One limitation of the study was that doctors 

were not compensated for their time in administering the application and participating in the 

interview. It is recommended that doctors be paid for their time in future studies to 

potentially increase participation. It is important to conduct further research to identify 

barriers to adopting the fitness to drive screen, particularly as GPs consistently report they 

need such a test. The preliminary finding from the two interviews suggests some physicians 

may prefer to refer to occupational therapists to do both off-road screening and on-road 

testing. Further investigation is required whether generalist and driver-trained occupational 

therapists, rather than GPs, should be the target population for administration of touchscreen 

DSDA. 
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CHAPTER 9 

Summary and Conclusion 

The studies included in this thesis contributed to the conversion of original DSDA into a 

clinical, touchscreen test of cognitive fitness to drive. Results of the study of the 

psychometric properties and predictive validity of data gathered with touchscreen DSDA, 

presented in Chapter 7, indicated touchscreen DSDA was sufficiently accurate to be used as a 

first-level screen to predict on-road performance. Specificity of touchscreen DSDA was 86% 

and sensitivity 91%. The positive predictive value was 83% and negative predictive value, 

92%. Overall accuracy of classification was 88%; 11% of patients were classified as 

“required further testing”. The data showed evidence of construct validity and reliability. 

Now, revisiting the criteria for the design of a suitable GP fitness-to-drive screen identified in 

the literature, summarised in Chapter 2, results of the research presented in this thesis 

indicates touchscreen DSDA meets these criteria (see Table 9.1). 
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Table 9.1  

Comparison of Touchscreen DSDA with GP Fitness-to-Drive Screen Design Criteria 

GP driver screen criteria Criteria references Touchscreen DSDA 

Evidence-based cut-off 

scores 

Bédard et al., 2008; Molnar et 

al., 2006 

Yes 

2 cut-off scores (generating 

a “further testing” category) 

Bédard et al., 2008; Langford et 

al., 2008; Molnar et al., 2006 

Yes 

Sensitivity, specificity, PPV 

and NPV reported and 

above 80% 

Asimakopulos et al., 2012; 

Bédard et al., 2008; Langford et 

al., 2008; Molnar et al., 2006; 

Weaver & Bédard, 2012  

Yes (specificity 86%; 

sensitivity 91%; PPV 83%; 

NPV 92%; overall 

accuracy of classification 

88%) 

Criterion measure: a 

standardised on-road 

assessment 

Classen et al., 2015; Classen et 

al., 2010; Hargrave et al., 2012; 

Laycock, 2011; Wheatley & Di 

Stefano, 2008; Yale et al., 2003 

Yes 

Small percentage (e.g., 10-

20%) of patients classified 

“further testing” 

Bédard et al., 2008; Weaver & 

Bédard, 2012 

 

Yes (11%) 

Face valid for the driving 

task 

Crundall, 2009; Dalchow et al., 

2010; Weaver & Bédard, 2012  

Yes 

Brief (i.e., 10 minutes or 

less) 

Asimakopulos et al., 2012 Yes (around 10 minutes) 

User friendly for GPs (i.e., 

portable, no unique testing 

consoles, no training, and 

simple) 

Asimakopulos et al., 2012; 

Dalchow et al., 2010; Fildes, 

2008; Molnar et al., 2006 

Yes 
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Nevertheless, results of the discontinued study conducted to determine if touchscreen 

DSDA was feasible for medical practice, presented in Chapter 8, indicated potential barriers 

to GPs adopting the test. This is early, incomplete research that examines the views of only 

two doctors but raises important issues that require further investigation. Physicians in the 

study reported finding touchscreen DSDA user-friendly and practical for medical practice. 

However, the findings suggested physicians required further supports around driver screening 

for touchscreen DSDA to be successfully adopted: for example, additional training, 

standardised information for patients about the test and potential implications, legislative and 

policy support, and funding.  

The difficulty of recruiting doctors for the study and getting them to try the 

application with their patients, may indicate that doctors will prefer to refer to external 

providers for touchscreen DSDA administration. It may be that occupational therapists will 

be the primary users of touchscreen DSDA and that use of the test among generalist 

occupational therapists may strengthen the role of occupational therapists in driver-screening 

and addressing client community mobility needs, as recommended in the Occupational 

Therapy Practice Framework (American Occupational Therapy Association, 2014). Findings 

from the discontinued study suggest use of touchscreen DSDA may raise physician 

awareness of patient fitness to drive concerns, leading to an increase referral rates to 

occupational therapist: both for off-road administration of touchscreen DSDA by generalist 

occupational therapists and for on-road testing by driver-trained occupational therapists. 

Further research is required to identify barriers to physicians adopting touchscreen DSDA 

and to verify these assumptions.  

Findings from the two studies conducted to convert original DSDA into a touchscreen 

test, presented in Chapters 5 and 6, provided processes and guidelines that healthcare 
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researchers converting standardised assessments for digital administration could follow. We 

found that a combination of literature review and usability testing, following an iterative 

process concurrently with app design, programming and evaluation, ensured the test was 

user-friendly for practitioners and patients, and avoided costly design errors. Additionally we 

found that our success relied on a clear understanding of the existing knowledge base for 

measurement of the desired construct and critical test mechanisms, so these are not lost when 

converting test variables to a new mode of data collection, scoring and interpretation. 

Limitations and Future Directions 

The research presented in this thesis has several limitations. The criterion measure 

used in the study of touchscreen DSDA psychometric properties and predictive validity was a 

standardised on-road assessment. P-Drive (Patomella et al., 2010) was the on-road 

assessment tool selected as it allowed consistent scoring of driving performance across 

variable routes and driving conditions and when using vehicle modifications. Despite use of a 

standard on-road assessment tool, driving in a real-world environment cannot be completely 

standardised, as drivers must negotiate rapidly-changing situations. We conducted the on-

road assessments in diverse locations around Australia and New Zealand. Whilst all driving 

clinics were based in capital cities and measures were taken to standardise routes, traffic 

conditions and physical road features would have varied amongst sites to reflect clinical 

needs, evaluator skill, time of day, traffic density, and weather conditions.  

In this study, the same therapist conducted both the touchscreen test and the on-road 

assessment. Therapists were asked not to observe the client complete the self-administered 

components of the test but we could not control this. However, therapists were blind to the 

results of touchscreen DSDA since no scoring categories or cut-off scores existed at that 

point. Using a separate therapist, blind to the off-road assessment results, might have 
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improved validity of finding but this was not possible within reasonable cost for the 10 

clinics.  

The need for cut-off scores for specific diagnoses (e.g., dementia or stroke) may be 

questioned. However, when we examined diagnostic groups separately there was no 

discernible difference in spread of patients related to diagnosis. Confirming predictive 

validity of touchscreen DSDA with specific diagnostic groups is an important area for future 

research. Touchscreen administration of DSDA allowed the collection of precise digital data, 

which provided scope for future research in areas such as examining differences in 

performance amongst specific diagnostic groups (e.g., dementia and traumatic brain injury); 

for people with vision impairments (e.g., visual field loss or glaucoma); or for neurological 

patients with a hemi-spatial neglect. Touchscreen DSDA may provide important insight 

regarding observation, attention, touch patterns, and memory recall for these or similar 

groups. Research regarding the success of touchscreen DSDA as an outcome measure for 

evaluating the effectiveness of interventions (e.g., pre- and post- neurosurgery) or tracking 

changes in cognitive capacity over time (e.g., for degenerative conditions such as dementia) 

would address a knowledge gap in these areas and increase the practical application of the 

tool.  

Touchscreen DSDA has only been standardised for people who speak English as a 

first language. Standardising administration of the test for drivers in countries where English 

is not typically spoken is an important area for future research to allow broader access. 

Touchscreen DSDA currently reflects driving conditions for regions where drivers drive on 

the left side of the road (e.g., Australia, New Zealand, Singapore, UK, and Hong Kong). The 

test needs to be standardised for countries where drivers drive on the right side of the road. 
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This would involve re-photographing the images for the relevant cultural contexts and 

conducting research to standardise touchscreen administration for drivers in these countries.  

Touchscreen DSDA was released to the Apple Store in April 2015 and is now 

increasingly used by health professionals in Australia and New Zealand in clinical practice 

and research. Researchers (Dickerson et al., 2017; Gibbons et al., 2017) advise that there is 

no one best tool for screening fitness-to-drive for all drivers and several should be used. 

Touchscreen DSDA is one test that can be useful.
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Appendix A 

DriveSafe DriveAware Administration Manual 

I wrote the following technical manual to provide touchscreen DSDA administrators 

with instructions regarding how to set up and administer the screen and how to interpret the 

results. Dr Haijiang Huang, Senior Psychometrician at Pearson US, assisted in writing the 

Chapter 5 statistical analysis and results section. The DriveSafe DriveAware Administration 

Manual was published by Pearson in-app and online on release of touchscreen DSDA to the 

Apple Store in April, 2015. The reference for this manual is: 

Cheal, B., & Kuang, H. (2015). DriveSafe DriveAware for Touch Screen Administration 

Manual. Sydney, Australia: Pearson Australia Group Pty Ltd. 
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Appendix B 

Are Age Effects, Experience, and Health Status Measured by the Change 

Blindness Model? 

The change blindness effect is stable and sustained across a wide variety of 

environments. However, the nature of the task and the stimuli presented (task effects) and 

individual factors (observer effects) can impact change blindness detection rates (Jensen et 

al., 2011). A model that is capable of measuring the impact of ‘task effects’ (e.g., object 

location, relevance, and brightness) and ‘observer effects’ (e.g., age, experience, medication 

effects, and personal goals) on performance would have significant advantages for predicting 

driving performance because it is widely recognised that these factors impact safe driving. 

Therefore, I reviewed the literature to determine if there was sufficient evidence that the 

change blindness model was capable of measuring these impacts to enable discrimination 

among individuals. The online databases searched and the search terms used are described in 

Chapter 2. 

Task Effects 

The impact of object features (e.g., location and relevance) on change detection has 

been widely studied. For example, research results indicate object deletion is more likely to 

be detected than object addition (Agostinelli, Sherman, Fazio, & Hearst, 1986; Beck, Levin, 

& Angelone, 2007a; Pearson & Schaefer, 2005) and probable change is more likely to be 

detected that improbable change (Beck, Angelone, & Levin, 2004). The variables measured 

in touchscreen DSDA are accuracy of ability to recall object type, location, and direction of 

movement. Therefore these task effects will be further examined.  
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Impact of object type / relevance. Viewers seem only sensitive to changes in the 

structures that are relevant to the task they are currently performing (Rensink, 2002). Within 

the context of driving, viewers are much more likely to notice changes to the scene that are 

driving related (e.g., traffic light changes rather than a building change) (Galpin et al., 2009; 

Richard et al., 2002). Looked-but-failed-to-see events may occur because objects with 

atypical properties, such as a bicycle entering from an unexpected direction, may be 

perceived as marginal for the task at hand and therefore may go unnoticed (Koustanaï et al., 

2012). There is significant experimental evidence that objects of central interest are detected 

significantly faster than objects of peripheral interest (Galpin et al., 2009; Hollingworth & 

Henderson, 2000; Pearson & Schaefer, 2005; Pringle et al., 2001; Rensink et al., 1997; 

Velichkovsky et al. 2002; Wallis & Bulthoff, 2000)  

This included a series of mudsplashes experiments which provided important insights 

regarding the nature of attention (O'Regan et al., 1999). Observers identified central interest 

changes almost immediately but took significantly longer to identify peripheral interest 

changes, missing them completely in 13-30% of cases (O'Regan et al., 1999). Results 

indicated the observer was unable to make a comparison of the current view with the 

previous view once the transients had subsided, even though the change was not masked and 

the disturbance was minor. The authors proposed that these results demonstrated how 

attention-grabbing transients in the overall scene prevent attention from being focused on the 

change location, even when in full view (O'Regan et al., 1999). In a subsequent experiment, a 

small textured rectangle briefly covered the change location to cue attention to the change 

without disclosing the nature of the change (O'Regan et al., 1999). Viewers could 

immediately identify the change if made to central-interest objects, demonstrating the mask 

had not “wiped” representations from this part of the scene and that the central interest 

elements had been encoded (O'Regan et al., 1999). Observers were often unable to identify 
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marginal interest object changes, indicating the marginal-interest elements had not been 

encoded. Results of both experiments confirmed that internal representations of the visual 

world are actually quite sparse and largely only contain information on things of central 

interest (O'Regan et al., 1999). Only the aspects of the scene that the observer attends to and 

encodes as interesting, are available for comparison (O'Regan et al., 1999). 

Impact of object location. Research results consistently show that the further the 

changed object is from the eye fixation point, the less people are likely to notice it, regardless 

of meaningfulness (O'Regan, Deubel, Clark, & Rensink, 2000; Pearson & Schaefer, 2005; 

Wallis & Bulthoff, 2000). Only one driving-related study was found that contradicted these 

finding: indicating detection of far-relevant targets was faster than near-relevant targets in 

driving scenes (Galpin et al., 2009). The authors suggested this might be due to the different 

scanning processes required for driving compared to other tasks, including a horizontal 

scanning bias due to the reasonable expectation that important changes will occur along the 

horizontal (Galpin et al., 2009). This bias is evident in real-world driving, in driving 

simulators, and even when people are watching videos of driving (Crundall & Underwood, 

1998; Crundall, Van Loon, & Underwood, 2006). Drivers have a wider attentional search, 

which may explain why the periphery was well attended to by the participants (Galpin et al., 

2009). Galpin et al.’s (2009) findings are consistent with research that shows novice drivers 

rely on foveal or central vision in driving, with long fixations centrally (Mourant & 

Rockwell, 1972; Summala, Nieminen, & Punto, 1996). Experienced drivers perform better 

than novices with peripheral vision, showing longer fixations to the periphery and other 

specific areas of the scene (Mourant & Rockwell, 1972; Summala et al., 1996). These 

scanning patterns are not the same for non-driving tasks (Summala et al., 1996). Finding from 

this research supports the application of the change blindness protocol to assessment of 

fitness to drive.  
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Impact of object orientation. Few change blindness studies have examined the 

impact of object orientation on change detection in isolation. Object orientation is important 

in driving so that the driver can determine direction of movement in order to judge risk. Only 

one driving-related study was found that examined the impact of object orientation from the 

perspective of a driver. Kostanaï et al. (2012) presented a group (n = 60) of novice drivers 

(i.e., less than 2 years’ experience) and experienced drivers (n = 60) with 45 naturalistic 

driving scenes on a data projector screen, via a one-shot task. The changed object was a car 

that presented a risk to the driver from 3 possible orientations in intersections (i.e., car 

turning left, on-coming car, or car entering from the right). One group of participants were 

given a driving related task and the control group were given a non-driving related task. 

Results indicated that participants given a driving goal acted like drivers when viewing the 

scene, tapping into different abilities than just detection (Koustanaï et al., 2012). They 

performed better that the control group and change detection was strongly correlated with the 

difficulty of the task. Surprisingly, participants had more difficulty detecting a car on the 

right at an intersections in less detailed, rural settings, which contrasted with findings from 

other studies showing increased difficulty with visual complexity (Beck & Levin, 2003; Beck 

et al., 2007a; Wright, Green, & Baker, 2000). The authors suggested this might be because 

low contrast cars were used, which are harder to see in rural settings. Also the rural settings 

provided less structure and context for the driving task (e.g., traffic lights and road markings) 

(Koustanaï et al., 2012). This study did not show any particular impact of variously orientated 

vehicles on performance, which is intuitive, considering the complexity and wide potential 

variation inherent in the driving task. 



	   	  
	  

	   258	  

Observer Effects  

Change detection requires encoding items into memory then comparing them over 

time (Jensen et al., 2011). Individual differences in working memory, selective attention and 

information processing speed may therefore impact change detection performance (Jensen et 

al., 2011). Jensen et al. (2011) proposed that an assessment tool that could measures these 

aspects might be useful in predicting “noticing” in real driving situations. 

Impact of chronological age. It is well recognised in fitness to drive literature that 

advancing age impacts driving performance. A model capable of measuring the impact of age 

related changes on performance could be practically applied to assessment of cognitive 

fitness to drive. Results from change blindness experiments indicate older drivers are slower 

to detect change (Caird et al., 2005; Pringle et al., 2001; Rizzo et al., 2009), demonstrate 

reduced scanning compared to younger drivers (Caird et al., 2005), and have particularly low 

accuracy for detecting pedestrians and traffic sign changes, resulting in incorrect decisions 

(Caird et al., 2005). Bédard et al. (2006) proposes that attention and perception are the key 

determinants of driving performance among older drivers: impacted by task complexity and 

the need to divide attention. However, results form a number of studies indicate that only 

some aspects of attention are compromised with age: primarily visual search, memory 

retrieval, and selective attention (Folk & Hoyer, 1992; Folk & Lincourt, 1996; Foster, 

Behrmann, & Stuss, 1995; Hasher & Zacks, 1998; Hoffman et al., 2006; Scailfa & Joffe, 

1997). These aspects of attention are particularly compromised where there is a high number 

of distractors or a task time pressure (Becker & Rasmussen, 2008; Brink & McDowd, 1999; 

McCarley et al., 2004), as in the task of driving.  

Hasher and Zacks (1998) conclude in their review of literature on aging and memory, 

that older adults respond to age-related deficits in memory retrieval and selective attention 
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inhibitory mechanisms by relying more heavily on environmental cues and the immediate 

array; and by making greater use of personal experience and knowledge for interpretation. 

This is consistent with results of a change blindness study conducted by Caird et al. (2005), 

indicating older drivers rely heavily on traffic control devices such as traffic lights to make 

decisions, often missing other important objects such as pedestrians. Caird et al. (2005) 

suggested this might be due to older drivers developing strategies to cope with complex 

intersections by focusing on the immediate most relevant objects (e.g., traffic devices) but at 

the risk of missing other important information. Hasher and Zacks (1998) propose that 

similar effects would likely be involved for younger adults who have been diagnosed with 

medical conditions affecting the same mechanisms.  

Impact of medical conditions. The change blindness model would have important 

application in the assessment of fitness to drive if the underlying mechanisms allowed 

reliable measurement of the impact of medical conditions on attention and change detection 

in driving scenes. A limited number of studies have applied the change blindness model to 

specific diagnostic groups. The change blindness model has been applied to investigate visual 

awareness in children diagnosed with Attention Deficit Hyperactivity Disorder (ADHD) 

(Maccari et al., 2013; Turkan, Amado, Ercan, & Percinel, 2016), children and adults 

diagnosed with autism spectrum disorder (ASD) (Fletcher-Watson et al., 2012), adults 

diagnosed with schizophrenia (Grandgenevre et al., 2015), and older drivers diagnosed with 

Alzheimer’s disease (Rizzo et al., 2009).  

ADHD is one of the most common childhood psychiatric conditions and inattention is 

the most commonly studied symptom of ADHD (Maccari et al., 2013; Turkan et al., 2016). 

Early research indicates that the change-detection model is useful for studying differences in 

attentional preferences between typically developing children and children diagnosed with 
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ADHD. Maccari et al. (2013) reported finding the change blindness model more effective for 

assessing visual search efficiency and focused attention because traditional psychometric 

tests are lengthy and disengaging for children with ADHD, resulting in loss of interest and 

demotivation, thus causing an over-estimation of difference compared to typically developing 

children (Maccari et al., 2013). Conversely video games utilised by other researchers to 

measure attention are highly engaging, arousing, and interesting, potentially minimizing the 

gap (Maccari et al., 2013). Maccari et al. (2013) found that children with ADHD showed 

specific impairment in the top-down search strategies typically useful for solving complex 

tasks, which may contribute to their limited attentional resources. Additionally children with 

ADHD were also slower and less accurate in detecting change compared to typically 

developing children (Maccari et al., 2013). In a study of eye movements during change 

detection tasks, Turkan et al. (2016) found that typically developing children had longer 

fixations on the change area and longer fixation maintenance compared to children with 

ADHD. These findings suggests children with ADHD may have greater difficulty detecting 

change due to their attentional deficits and difference in voluntary eye movement control 

(Turkan et al., 2016).  

Change detection has been used in a series of studies of attentional preferences of 

children and adults diagnosed with autism spectrum disorder (ASD). The methodology has 

been used to study the presumed local-processing bias of people with autism (i.e., increased 

attention to detail, particularly of insignificant aspects) (Fletcher-Watson et al., 2012). 

Findings are mixed with some studies showing slower detection time for marginal interest 

items (Fletcher-Watson, Leekam, Turner, & Moxon, 2006) and lack of the impact of context 

(Loth, Carlos Gomez, & Happe, 2008), and others showing an advantage in detection for 

people diagnosed with ASD, particularly for marginal interest items. Attention to social 

information, assumed to be impaired in ASD, has also been studied, with the surprising 
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findings that there is no difference in detection rates for social versus non-social information 

for adults with ASD (Fletcher-Watson, Leekam, Findlay, & Stanton, 2008; Smith & Milne, 

2009). Further research is required to reconcile this with the reduced attention to social 

information revealed via other methods of research (Fletcher-Watson et al., 2012). 

Rizzo et al. (2009) investigated whether advanced age and Alzheimer’s disease (AD) 

increased change blindness in driving scenes. An increase was anticipated due to likely 

degenerative changes in areas of the brain responsible for vision, allocation of attention, and 

change detection. A unique change detection method was applied where participants were 

shown a static, naturalistic driving scene (taken from the perspective of a driver) with a slow 

fading in and out of the changed object. Only one change occurred per image pair (e.g., 

appearance of a car in the left lane). The observer was asked to identify and touch the 

location of the change as quickly and accurately as possible on the screen. Performance was 

measured via hit rate, percentage of true positives, false positives rate, number of catch trials 

where a change was reported and response time. Results from the cognitively health group (N 

= 68, aged 20 - 84) indicated that as age increased, hit rate decreased, with an acceleration 

from age 68. False positives did not increase and there was no significant correlation in hit 

rate. Response times were significantly worse for the AD group (M = 7.42s) and the older 

controls (M = 5.72s; M = 1.54 age adjusted). Change blindness was correlated with poor 

performance on other cognitive screens including TMT (A & B) and UFOV TM for both the 

older and AD groups. Results suggest aging reduces capacity to perceive visual change and 

AD decreases this further (Rizzo et al., 2009). Results of this study indicate the fade in and 

out change blindness method is applicable and useful for driving related research. 

The study of the impact of medical conditions on awareness via the change blindness 

model is in its early stages, particularly for driving. However, results from the studies 
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highlighted indicate that change detection tasks may successfully differentiate between 

individuals with cognitive impairment in the context of a driving related task.  

Impact of experience. Individuals differ in their level of prior knowledge and 

experience related to the tasks they perform. Much evidence from the change-detection 

model indicates that observers are able to draw on previous knowledge and experience to 

more efficiently guide attention (Beck, Martin, Smitherman, & Gaschen, 2013; Crundall & 

Underwood, 1998; Jones, Jones, Smith, & Copley, 2002; Reingold et al., 2001; Werner & 

Thies, 2000; Zhao et al., 2014). One experiment compared experts and novices in the domain 

of football, finding that experienced observers could attentionally scan scenes more quickly 

to identify changes meaningful to play, whereas rates of detection for non-meaningful change 

were the same as for the novice group (Werner & Thies, 2000). Comparable results were 

found for chess players (Reingold et al., 2001), veterinary medicine students (Beck et al., 

2013), veterinarian radiologists (Bass & Chiles, 1990; Beck et al., 2004; Beck et al., 2013) 

and drug users: who were more likely to notice changes to drug paraphernalia in photographs 

than non-drug users (Jones et al., 2002). 

Similarly, for the domain of driving, the impact of experience on change detection for 

drivers versus non-drivers has been investigated showing drivers search a larger area more 

efficiently, with fewer eye movements and more focus on relevant objects that require 

monitoring (Crundall & Underwood, 1998; Crundall, Underwood, & Chapman, 1999; 

Summala, Lamble, & Laakso, 1998; Summala et al., 1996; Zhao et al., 2014). These studies 

indicate awareness of visual information is conditioned by real-world experience. People do 

not intuitively know where to expect hazards in a driving scene but must be trained in 

effective search patterns as a learner driver, then practice.  
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Intuitively we expect people to continue improving the longer they perform a task. 

However, evidence suggests the benefit of experience plateaus within the first 1-3 years of 

practice (Beck et al., 2013; Miglioretti et al., 2009). The largest change in ability occurs in 

the first few years, after which lower-order functions become more automated (Beck et al., 

2013; Miglioretti et al., 2009). This is consistent with the task of driving where eventually the 

task becomes over-learned and easy, resulting in experienced drivers tending to share time 

and attentional resources with other activities (e.g., mobile phone use or eating), increasing 

risk of accident (Summala et al., 1996). The importance of practical training was highlighted 

in a study conducted by Becks et al. (2013). The effect of experience was only noticeable 

among undergraduate radiology undergraduates once they had attended practical and specific 

training in radiology (i.e., senior medical students who had attended a radiology rotation). 

Performance was not impacted by years of experience after this stage when compared to 

experienced radiology staff (Beck et al., 2013).  

Findings from these studies indicate awareness of visual information is learned and 

training can impact change detection performance on the specific level but there is no 

evidence yet that training can be generalized (Beck et al., 2004; Gaspar, Neider, Simons, 

McArely, & Kramer, 2013). However it is clear that experience has a top-down effect on 

change detection (Caird et al., 2005; Jensen et al., 2011). It is well recognised that driving 

experience impacts driving performance. The capacity of the change blindness model to 

measure the impact of experience highlights the utility of the model for assessing driving 

performance.  

Impact of goals / task. Change blindness experiment results indicate the intention of 

the observer will impact the degree to which they expect the change, which will affect the 

mechanisms used in change detection (Koustanaï et al., 2008; Rensink, 2000). Researchers 
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(Caird et al., 2005; Hoffman et al., 2006; Koustanaï et al., 2012; Pringle et al., 2001; 

Schömig, Metz, & Krüger, 2011) who apply the change blindness model to driving often 

introduce a driving related activity (e.g., search for hazards) so the participant views the 

scene from the perspective of a driver and the task is more representative of real-world 

driving. Most change blindness research uses an intentional approach where the observer is 

told to search for a change and is expecting it. Rensink (2002) advises this approach for 

assessment of perceptual capacities. Alternatively, a divided-attention approach involves 

giving the viewer a secondary task, such as judging when it is safe to go in traffic (Caird et 

al., 2005; Crundall, 2009). The search for change may be part of the driving related task (e.g., 

detecting the car in front stopping) or incidental, with no warning that a change will occur. 

Research shows change detection is much harder with an incidental approach, although some 

change is still noticed (Rensink, 2002).  

Some researchers (Schömig et al., 2011; White & Caird, 2010) have applied the 

change blindness model to explore the impact of the driver’s goal on driving safety. Schömig 

et al., (2011) demonstrated that drivers were able to engage in a secondary task in an aware 

manner and appropriately defer the task in highly demanding traffic situations. However, 

they questioned whether these results would be the same for highly motivating tasks (e.g., 

checking a phone text) or if the driver underestimated the risk of engaging in the task (e.g., 

adjusting the radio). White & Caird (2010) explored these issues further using a change 

blindness experimental design to evaluate the impact of passenger conversation on hazard 

detection, measuring the impact of passenger attractiveness and the driver’s level of 

extraversion. The authors found that drivers where more distracted by conversation with 

attractive passengers and extraverted drivers were more easily distracted. Error rates and 

frequency of look-but-failed-to-see accidents (measured in a driving simulator) increased in 

these situations (White & Caird, 2010).  
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Conclusion 

There is clear evidence that the change blindness model is able to measure the impact 

of factors critical to safe driving such as age-related changes, experience, and health status, 

supporting the application of this model to the development of fitness-to-drive tests for health 

professionals (Caird et al., 2005; Crundall, 2009; Hoffman et al., 2006; Wetton et al., 2010). 

However, further research is required to examine the psychometric properties and predictive 

validity of such tests so they are evidence based and valid for clinical practice. 



	   	  
	  

	   266	  

Appendix C 

DriveSafe DriveAware Digital Development: 

General Practitioner Survey Findings 

Pearson Clinical Assessment (Australia and New Zealand) conducted market research 

prior to the DriveSafe DriveAware (DSDA) digital development, to determine if GPs 

perceived a need for a fitness-to-drive screen and how they preferred the test be designed for 

medical practice. AFS Smart Askers, a market research company with a large database of 

GPs who provide paid opinions regarding various topics, conducted the research. I 

commenced employment with Pearson in May 2012 and enrolled in my PhD in March 2013. 

The market research commenced prior to my student enrolment and was organised and 

funded by Pearson. Therefore, I did not include it as part of my thesis. However, I did 

participate in the survey design, analysis of findings, and write-up of results. 

Study Authors: Fiona Brown, Beth Cheal, Melinda Cooper, & Nicki Joshua 

Affiliation: All authors were Pearson Clinical Assessment employees (Sydney, Australia)  

Report Date: May 2013 

AFS Smart Askers sent 866 surveys to Australian general practitioners (GPs) 

registered in their database. A representative sample was selected based on average GP age, 

gender, and location by state, nationally. The survey closed once 200 responses were 

received. Incomplete surveys were not included in the sample (n = 13). Surveys were 

completed via an online questionnaire with a short presentation of the proposed DriveSafe 
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DriveAware digital test design presented part pay through the questionnaire. No identifying 

information was collected. Demographic information collected included location by state (see 

Figure 1), age, gender, occupation, years of employed in general practice, practice size, 

patient age demographic, type of patients, and number of patients seen per week.  

 

 

 

 

 

 

 

 

Figure 1. Participant location by state, in comparison to location of registered GPs nationally. 

The sample consisted of 76 females (38%) and 124 males (62%). Participant age and 

years of experience working as a physician are presented in Table 1.  
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Table 1. 

Participant Age and Experience 

Age (years) Sample (%) Experience (years) Sample (%) 

30-39  15 2-5  3 

40-49  28 6-10  15 

50-59  41 11-20  28 

60-69  11 >20  54 

70+  4   

Prefer not to answer 1   

Total 100  100 

 

The average number of GPs per practice was six. GPs reported seeing an average of 

149 patients per week and performing an average of 87 fitness-to-drive assessments per year 

(M = 50; Mode = 50). GPs estimated that 25% of their patients were aged 60 to 74 and 16% 

were aged 75+ on average. They estimated that around 6% experienced memory loss or were 

diagnosed with dementia and around 5% had been diagnosed with other neurological 

conditions affecting cognition (e.g., stroke or brain injury) on average. GPs reported 22% of 

their patients had an enhanced primary care plan on average. 

Methods of Assessing Fitness to Drive 

GPs were asked to rate how frequently they relied on the listed indicators 

(professional judgement, patient observations such as mobility and grooming, reference to 

medical guidelines, family report, formal assessment results, and outcome of an occupational 

therapy driving assessment) to determine fitness to drive. They were also provided with an 
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“other” free-text category. The three indicators with the highest level of agreement were: (a) 

reliance on professional judgement (“always” = 64%; “often” = 30%); (b) observations of 

patient factors such as mobility, grooming and behaviour (“always” = 53%; “often” = 34%); 

and, (c) reference to Austroads medical guidelines (Austroads & National Transport 

Commission, 2016) (“always” = 13%; often = 37%). GPs also reported questioning the 

patient’s family about their concerns (“often or always” = 39%; “sometimes” = 43%). Some 

doctors (n = 14) reported in the free-text field that they relied on patients or their family to 

provide information about driving safety but noted this was not a reliable source of 

information: “A lot depends on hearsay from family and the patient which is not always 

reliable”; “No penalty for false or lack of information by patients”; and, “Difficult to assess 

an older patient with some physical impairments…without a family member to verify that 

they are not having problems”. Other methods listed in the “other” category were general 

medical examinations (n = 17); specialist opinion (n = 11); vision assessment (n = 8); liaison 

with the licensing authority or license authority testing (n = 4); use of standardised 

assessments (n = 3); and, evaluating use of alcohol and illegal drugs (n = 2). Most GPs (63%) 

reported rarely or never referring for an occupational therapy driving assessment; 32% 

reported sometimes referring. Only 6% reported often referring. Comments from some 

participants (n = 9) indicated that cost and access might be a barrier to occupational therapy 

driving assessment referral. Two respondents stated they did not agree with the assessment 

outcome. Others stated that occupational therapy driving assessments should be paid for by 

the government and be mandatory for drivers aged 75+.   

Use of standardised assessment. Only 27% of GPs agreed that they used 

standardised assessments to determine fitness to drive. GPs were asked in a separate question 

to list the standardised assessment they used generally in their medical practices. The most 

commonly listed test was MMSE (Folstein et al., 1975): 79% of doctors reported using it. 
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Few other standardised assessments were listed. These included the Anxiety and Depression 

Checklist K10 (n = 8); the Epworth Sleepiness Scale (n = 4); Geriatric Depression Scale 

(GDS) (n = 3); General Practitioner assessment of Cognition (GPCOG) (n = 3); Clock 

Drawing Test (n = 2); Maze test (n = 2); DriveAble (n = 2); MoCa (n = 1); and Romberg’s 

test (n = 1). Nearly 30% of doctors reported using formal vision tests such as the Snellen’s 

eye chart and visual fields tests; 4 doctors reported using audiometry test.  

Satisfaction with Methods of Assessing Fitness to Drive 

GPs were asked to rate their satisfaction with their current methods of determining 

fitness to drive: 51% were somewhat satisfied; 26% reported little to no satisfaction. Only 

23% were very satisfied. Most (77%) GPs agreed that they were confident in their ability to 

evaluate patient fitness to drive and had the tools they needed (60%); 40% did not agree they 

had the tools required. However, when GPs were asked to describe the shortcomings of their 

current methods of assessing fitness to drive in open-text responses commonly (n = 76) 

described a lack of sufficient information for making fitness-to-drive determinations. Some 

participants expressed concern about the medical guidelines and license authority forms (n = 

38). The medical guidelines were described as “cumbersome”, “not very user friendly” and 

“ambiguous”. Typical responses included: “Too focused on broad disease categories and not 

on cognitive function”; “difficult to use in the setting of a GP consultation. There are often 

time constraints…the guidelines are not very user friendly and there can be scope for 

misinterpretation”; and, “Chronic conditions which are not on the list but may cause the 

driving to be unsafe, cause stress for the doctor when assessing fitness to drive”. GPs 

recommended simplification of forms and better information to guide their decision making: 

“I am satisfied with the methods of formal OT assessments but I am not satisfied with the 

lack of uniformity in guidelines as to which drivers are to be assess or referred”.  
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Perceptions Regarding Driving Assessor Role 

GPs were provided with an open-text field to provide further comment at the 

conclusion of the survey. Some GPs (n = 22) responded that a third party should be doing the 

fitness-to-drive assessments or that a practical driving assessment should be given; others 

commented that GPs should not be determining fitness to drive at all (n = 15). Rather, an 

independent body, such as doctors employed by the licensing authority, should be making the 

determinations. Following are examples of common responses: “Demand the bureaucrats 

provide their own doctors to do the testing, as we often have an interest conflict in doing 

these tests”; “I feel I don’t have the expertise to accurately assess driving ability in some 

circumstances”; and, “It is ridiculous to expect that a GP will be able to decide who is fit or 

otherwise to drive”. Most (85%) of GPs agreed or strongly agreed with the statement that 

they were concerned regarding their legal liability in assessing patient fitness to drive.  

Most GPs disagreed with the statement “I am concerned that advising cessation of 

driving results in loss of business for my practice” (“Disagree” n = 50%; “Strongly Disagree” 

n = 32%). However, most (83%) agreed with the statement “It concerns me that revoking a 

patients’ license often leads to negative consequences for them”. In the free-text field’s 4 GPs 

reported reluctance to withdraw driving due to the potential impact on the patient’s quality of 

life. Responses included: “There is a tendency of the GP to sign the patient as fit to drive 

based on social circumstances, e.g., if patient is not able to drive, he/she cannot come for 

medical check-ups…do everyday shopping” and “If I feel the patient is not fit I do not want 

to be seen as the person denying the person the privilege, convenience”.  Some GPs reported 

concern regarding certifying someone as fit to drive when they were seeing them as a first-

time patient without an adequate medical history: “Difficult for first time unfamiliar 

patients…patients tend to downplay their symptoms of medical problems”.  
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Most (65%) of GPs agreed that they felt unduly pressured to find their patients fit to 

drive. Free-text responses from 28 doctors indicated they were concerned about negative 

reactions from patients if they were advised to cease driving or attend driving or medical 

specialist assessments. Typical responses included: “Too much pressure on me to allow 

driving”; “Lot of pressure on doctors to oblige the wishes of the patient”; and “The worst is 

the pressure put on me to agree to a license when I do not agree they are fit”. The following 

response describes the tension often felt by doctors: “As the patient’s trusted doctor it can be 

really difficulty to broach the possibility of not being able to drive any longer. They are often 

extremely offended and resent you for breaking their trust as they see it”; “Patients get angry 

when you certify them as unfit to drive”; and, “Causes huge difficulties in doctor-patient 

relationship”. Some GPs (n = 14) reported a perceived conflict of interest in assessing fitness 

to drive: “It is a major decision to make that impacts on my patient’s quality of life and since 

they almost always people who are well known to me. I am sometimes sure that I may not 

remain impartial and objective”; “there is always a tendency for doctors to be over lenient”; 

and, “GPs don’t like failing their patients. Many of those patients have seen their GPs for 

many years”. Three doctors reported that if they did not certify their patient as fit to drive 

they would “just go down the road to the next doctor and get a license!” 

Perceptions Regarding Digital DriveSafe DriveAware 

GPs were given a brief demonstration of the proposed format of a digital version of 

DSDA then asked if and how they would use the test. Most participants indicated they would 

be likely to use the test (84%); 16% were undecided or indicated they would not use the test. 

Comments included: “Looks good, close to real driving situations without being in the car. 

Better than the current method which is nothing”; “Standardises the assessment…would help 

in convincing the patient they need further assessment – without blaming the doctor for this”; 
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“I am amazed about how old people like iPads as compared to laptops”; and “Keen to 

embrace objective assessment tools especially those that have been proven as this reduces my 

liability and improves safety”.  

GPs were asked what factors would determine their decision to adopt a fitness-to-

drive test like DriveSafe DriveAware. Around 30% (n = 59) identified the time taken to 

complete the test. GPs were also concerned about the assessment cost and how to pass this on 

(n = 43). Typical comments included: “If a Medicare rebate is involved I can see it working. 

Most of the assessments are on pensioners and they would not pay for the test if it was not 

mandatory” and “I would expect Transport to pay for the tool: I would advise patient that this 

service will NOT be bulk billed. Many will be singularly unimpressed”. Some doctors 

compared the cost of the test to an occupational therapy driving assessment and considered it 

would be feasible: “Far less expensive and problematic that formal road driving 

assessments”. Other doctors (n = 28) commented that they would need to be convinced 

regarding the validity and reliability of the test before they would use it and or commented 

that it must be user-friendly (n = 28): “Not sure if elderly driver can handle this”, “Concerned 

older patients may find it threatening” and “I like the idea but older people are afraid of new 

technology and are not very quick to do something in 3 seconds”. 

GPs specifically addressed how the test would fit in the context of license authority 

guidelines and their legal obligations in free-text responses (n = 25). Some doctors wanted 

assurance that DSDA would be approved by licensing authorities and insurers (e.g., “I am 

interested to hear what the roads licensing authorities think of it”; “Looks interesting and 

good but I would need to trial it in-clinic and assess VicRoads opinion in regards to the test”; 

and, “It would depend on the legal acceptance of the test”. GPs wanted DSDA formally 

integrated into license authority guidelines and practice: “Patients would be unlikely to do it 
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if it was not mandated”; “Great idea. However this should be a mandatory annual test for 75 

plus drivers – not just the overworked, overused GP and nurse duo”; and, “Really should be a 

community based requirement for older drivers”. 

Most (84%) GPs reported they had access to a practice nurse who could administer 

the test. They preferred in-house administration, with the doctor, a practice nurse, or a 

combination of both administering the test (84%). Few participants (10%) reported they 

would prefer to refer to an external provider to complete the test and only 6% considered the 

test would not be feasible for them. Most GPs (78%) reported access to an iPad. Only 7% 

preferred android administration. 

Conclusion 

Results of the survey indicated that GPs perceive a need for a fitness-to-drive screen 

and would consider using a digital version of DSDA if it was brief, valid, user-friendly and 

practical for medical practice. GPs saw the test as advantageous because it potentially 

reduced conflict with the patients by shifting the fitness-to-drive determination from them, 

and because it provided additional medico-legal support. However, GPs were concerned 

about how the test would be funded and wanted it to be covered by Medicare. It was also 

important to them that the test to be integrated within current licensing authority standards 

and guidelines, so the patient would agree to undergo testing. 
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Survey Questions 

1. Approximately how many assessments of fitness to drive would you do in a year? 

2. How frequently do you use each of the following to assess fitness to drive? 

a. Your professional judgement 

b. Observed factors such as patient mobility, grooming and behaviour 

c. Refer to Assessing Fitness to Drive Medical Guidelines (Austroads) 

d. Question family about their concerns 

e. Formal assessment (e.g., Mini-Mental State Examination) 

f. Referral for an occupational therapy driving assessment 

3. How satisfied are you with your current methods of assessing fitness to drive (5 point 

Likert scale). 

4. Why? What are the shortcomings of the current methods of assessing fitness to drive? 

5. Please indicate your level of agreement with the following statements: 

a. I am concerned about my legal liability in assessing fitness to drive. 

b. Advising cessation of driving negatively impacts the doctor-patient 

relationship. 

c. I feel unduly pressured by patients to report them as fit to drive. 

d. It concerns me that revoking a patients’ license often leads to negative 

consequences for them. 

e. I have the assessment tools I need to assess fitness to drive. 

f. I am concerned that advising cessation of driving results in loss of business for 

my practice. 

g. I am confident in my ability to evaluate a patient’s fitness to drive.  

Brief demonstration of proposed DSDA fitness-to-drive screen 



	   	  
	  

	   276	  

6. How long would you be willing to take in administering this test face-to-face? (Insert 

0 if you would not administer the test). 

7. How long would you be willing for your practice nurse to spend administering this 

test? (Insert 0 if not applicable).  

8. Which of the following scenarios would be feasible within your practice (select all 

that apply) 

a. Doctor administers the entire test 

b. Practice nurse administers the entire test 

c. Reception / administration staff administer the entire test 

d. Practice nurse supervises the tests and the doctor conducts the interview 

e. Reception / administration staff supervises the tests and the doctor conducts 

the interview 

f. Patient completes the tasks unsupervised in the waiting area and the doctors 

conducts the interview 

g. Patient completes the tasks unsupervised in a consulting room and the doctor 

conducts the interview. 

h. I would refer patients to an external provider (e.g., occupational therapist or 

psychologist) to administer the entire test and forward the results to me.  

i. None of the above, but I may still use this test in my practice. 

j. None of the above, this product is not feasible for my practice.  

9. How would you handle the cost of the assessment? 

a. No direct cost to the patient (I would absorb the cost) 

b. Integrate into the patient consultation fee 

c. Charge a separate fee on top of the usual consultation fee 
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d. Refer to an external service who will bill the patient directly (e.g., 

Occupational therapist or psychologist) 

e. Other – please specify 

10. Please mark all that apply: 

a. I own or would be willing to buy an iPad that patients could use to do this test. 

b. The practice owns or would be willing to purchase an iPad that patients could 

use to do this test. 

c. I would use this test if it was on an android device as I own or am likely to buy 

one.  

d. None of the above.  

11. Do you currently use any of the following devices in your practice? Please select all 

that apply: laptop computer, desktop computer, iPad (full size), android tablet 

(comparable to iPad size). 

12. Please feel free to add any additional comments you have about the test.  

(Additional questions were asked related to marketing) 
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Appendix D 

Ethics Application Documentation 
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