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Abstract 11 

Hygro-thermo-chemical models provide useful representations of the mechanisms of moisture 12 

transport and temperature variations that take place in concrete structures and that can 13 

influence their durability and service behaviour. Several material parameters need to be 14 

specified when performing a hygro-thermo-chemical simulation. While some of these 15 

parameters can be evaluated based on the concrete mix specifications or from data reported in 16 

the literature, some other parameters are not readily available from the literature, partly 17 

because of their large variability and partly because they do not possess a precise physical 18 

meaning. In this context, this paper presents a robust inverse analysis procedure for the 19 

identification of this latter set of material parameters. The inverse analysis problem is 20 

formulated by using temperature and relative humidity profiles taking place within a concrete 21 

component as input. The proposed approach is applied to evaluate the minimum number of 22 

temperature and relative humidity measurements that are necessary to be performed for a 23 

successful identification of the sought material parameters. Representative results of an 24 

extensive sensitivity analysis are presented to gain insight into the most effective locations 25 

within the concrete component for the measurements and instants in time when these 26 

measurements should be collected. The inverse analysis procedure is then presented and 27 
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validated against a set of pseudo-experimental results affected by different levels of noise, 28 

highlighting the robustness of the proposed methodology when applied with the arrangements 29 

suggested in terms of discrete relative humidity and temperature measurements and monitoring 30 

periods.  31 

 32 
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1. Introduction 37 

Durability and serviceability limit states represent important requirements associated with the 38 

design of concrete structures. Excessive deformations, displacements and cracks may 39 

drastically affect the service behaviour of a structure and lead to increased maintenance costs. 40 

These effects are influenced by the time-dependent properties of the concrete and, in particular, 41 

by the physical and chemical mechanisms that take place in the concrete, especially in its early 42 

age. Moisture transport during hardening, occurring for release of water through the external 43 

surfaces and for internal water consumption due to chemical reactions such as cement 44 

hydration, causes volume changes that give rise to drying and autogenous shrinkage strains, 45 

respectively. The heat released during the cement hydration reaction may also cause volume 46 

changes inside the concrete. Different numerical and experimental studies on the early concrete 47 

behaviour exist in the literature and deal with the self-heating and self-drying phenomena. 48 

Bažant and Najjar [1] proposed a well-known material model for nonlinear moisture transport 49 

suitable for concrete and similar materials. This model was extended in subsequent years, for 50 

example, by including the direct modelling of the cement hydration occurring in concrete at 51 

early age by means of a thermodynamics based approach (e.g. [2]); by considering the aging 52 

effect on strength development through a coupled thermo-chemo-mechanical model (e.g. [3]) 53 

or, more recently, by taking into account the permeability increase once a macro crack is 54 

formed (e.g. [4]). Kim and Lee [5] and Oh and Cha [6] proposed a model for moisture and 55 

temperature calculation at concrete early age, where a sink term was added to the diffusive 56 

moisture equation to account for internal water consumption. A multi-phase coupled thermo-57 

chemo-mechanical model was proposed by Gawin [7] and more recently by Du [8] and it 58 

accounted for the porous nature of the concrete by considering a micro-scale description of the 59 

material. The effects of the 3D meso-structure, modelled with different aggregate particles 60 

shapes and porous cement paste matrix, and of microcracks distribution on diffusivity and 61 
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permeability of concrete materials has been studied in [9] and [10]. A new cement hydration 62 

model has been proposed in [11], considering the effects of C-S-H layers forming around 63 

anhydrous cement grains to control the very long hydration process which may occur in thick 64 

concrete components. Di Luzio et al. ([12] and [13]) proposed a hygro-thermo-chemical model 65 

by considering the effect of cement hydration on both moisture and temperature calculations in 66 

terms of internal water consumption and self-heating generation.  67 

While the use of such hygro-thermo-chemical models provides great insight into the material 68 

behaviour, it requires the knowledge and input of several material parameters. The latter can be 69 

subdivided into two major sets: (i) one set of parameters that can be evaluated based on the 70 

concrete mix specifications or from data reported in the literature; and (ii) a second set of 71 

parameters that are characterised by a large variability (based on data available in the literature) 72 

and, among these, many parameters do not possess a precise physical meaning and, for this 73 

reason, are not amenable to a direct measurement. The inability of the latter set of parameters 74 

to be easily identified provides a limitation on the wider use of the hygro-thermo-chemical 75 

model. 76 

In this context, this paper aims to provide a robust procedure for the identification of the set of 77 

material parameters for the hygro-thermo-chemical modelling defined at point (ii), i.e. 78 

parameters characterised by a large variability, some of which not amenable to a direct 79 

measurement because not reflecting a precise physical property. The proposed approach relies 80 

on the use of an inverse analysis procedure (see [14], [15] and [16]) that adopts temperature 81 

and relative humidity distributions as input data. The particularity of the proposed 82 

methodology is to give indication on the minimum number of temperature and relative 83 

humidity measurements that are required for a successful identification of the material 84 

parameters. This minimum requirement is established after evaluating through an extensive 85 

sensitivity analysis (of which representative results are presented in the following) the most 86 
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effective locations and instants from concrete casting for the temperature and relative humidity 87 

measurements to take place through the thickness of a typical concrete component. The 88 

identification of the optimal locations and instants in time for the temperature and humidity 89 

measurements has significant practical implications, because supporting the effective planning 90 

of monitoring and measurement setups for laboratory or in-situ investigations. This becomes 91 

particularly significant considering the fact that recent technological advancements have led to 92 

a growing use and acceptance of temperature and relative humidity sensors embedded in 93 

concrete [17], for example, for its real-time strength monitoring. The outcomes of the proposed 94 

study will enable to optimise the number, locations and durations of the measurements while 95 

maximising the information collected.  96 

In the first part of the paper, the hygro-thermo-chemical model is presented. In this section, a 97 

clear distinction is provided between the sets of parameters required by this model that can be 98 

determined from either the concrete mix specifications or from data available in the literature, 99 

and those that are characterised by a large variability and that are the focus of the present study. 100 

In view of using recorded temperature and relative humidity information as input in the inverse 101 

analysis process, the influence and responsiveness of the different material parameters on these 102 

two fields is discussed and representative trends are reported. The inverse analysis procedure is 103 

then introduced and its robustness is tested considering different scenarios constructed using 104 

pseudo-experimental data subjected to different degrees of noise. Representative results are 105 

provided to highlight the robustness of the proposed methodology when applied with the 106 

arrangements suggested for the discrete relative humidity and temperature measurements and 107 

with the recommended monitoring periods.  108 
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2. Hygro-thermo-chemical model 109 

This section presents the hygro-thermo-chemical model capable to describe, over a spatial 110 

domain Ω, how the variations of the relative humidity h and temperature T take place over time 111 

t in a concrete component while accounting for different environmental conditions. 112 

The model here adopted has been proposed in [12] and here applied, without any loss of 113 

generality, to a concrete mix without the presence of silica fume. The water transport 114 

mechanisms taking place in the concrete are described by the combination of the Fick’s law, 115 

expressing the flux of water mass j  as proportional to the gradient of the relative humidity h 116 

(i.e. hD h= − ∇j ) and the water mass balance equation, e.g. [1-12]:  117 

[ ]=          in h
w D h
t

∂
∇ ⋅ ∇ Ω

∂
 (1) 

where the total water content w depicts the sum of the evaporable water we and the non-118 

evaporable water wn, i.e. the water chemically bonded, for example, by cement hydration. The 119 

moisture diffusion hD  depends on the relative humidity h and temperature T as highlighted by 120 

the following expression [12]: 121 

( ) ( ) ( )
1

1
1

0

, 1 1 1 n
h

DD h T T D h
D

−
  

= + − −  
  

ψ  (2) 

in which  ( )Tψ ( ( )0e ad adE RT E RT−
= , with 0T  being the reference room temperature (taken 122 

as 296°K in the simulations presented in the following), considers the influence of the 123 

temperature on the moisture diffusion (see [18]), while it is usually assumed that 124 

4700adE R K=  (see e.g. [1]), and parameters 0D , 1D  and n depend on the specific concrete 125 

mix. In the literature, it is recognized that moisture diffusion depends on different transport 126 

mechanisms, which can be modelled individually to achieve a more physical description of the 127 
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process. However, such an approach requires a series of information, such as concrete pore 128 

structure, pore radii and connectivity, that is usually not readily available or easily measurable 129 

from experimental tests. As this paper is focused at the identification of optimal or acceptable 130 

sets for practical experimental measurements, it is felt that the use of this single 131 

phenomenological law for the modelling of the different underlying physical mechanisms is 132 

acceptable, as also adopted by others in the literature [1,12]. 133 

Under the assumption that the non-evaporable water can be expressed as ( )n c c cw k c=α α , with 134 

c being the cement ratio content and ck  a material parameter that, according to [12] and 135 

references herein, can be assumed equal to 0.253, and assuming the evaporable water to be 136 

expressed as a function of the relative humidity and of the degree of cement hydration cα , i.e. 137 

( ),e e cw w h α= , Equation (1) can be rewritten as follows: 138 

[ ]=          in e e
h c c

c

w wh D h k c
h t

α
α

 ∂ ∂∂
∇ ⋅ ∇ − + Ω ∂ ∂ ∂ 

&  (3) 

where the dot operator represents partial differentiation with respect to time t and cα  is 139 

calculated as the ratio between the level of hydration cX  and its theoretical asymptotic value 140 

,th
cX ∞  exhibited in ideal hygro-thermal conditions. The maximum level of hydration at time 141 

infinity cX ∞  is usually assumed to remain below ,th
cX ∞  and, therefore, the maximum value of 142 

the reaction degree ,th
c c cX Xα ∞ ∞ ∞=  is usually smaller than one, i.e. 1cα ∞ < . According to [19], 143 

we may assume ( ) ( )1.032 0.194c w c w cα ∞ = + , with w/c being the water-to-cement ratio.  144 

Equation (3) highlights how the local variation of humidity depends on the divergence of the 145 

moisture flux and on two additional terms describing the microstructure variation (gel 146 

formation) and the internal consumption due to cement hydration.  147 
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The variation of cα  over time increases with relative humidity content and reduces while 148 

approaching its asymptotic value c
∞α  as described by: 149 

( )
( )

2
1

1

1

cc c

c c
c c c c c b

c

TAA e e
a ah

γη α
α

α α α α
α

∞
∞

∞

   −−        = + ⋅ − ⋅ ⋅ ⋅   + −   

&  (4) 

where c acE Rγ =  with acE  being the hydration activation energy and R the universal gas 150 

constant. Parameters 1cA , 2cA  and cη  have no precise physical meaning and govern the so-151 

called normalized chemical affinity. Constants a and b enter into the empirical function 152 

( ) ( )
1

1 b
hb h a ah

−
 = + −  , which takes into account the slowing of the hydration process when 153 

relative humidity decreases below a certain value (around 80%). Their values are usually taken 154 

equal to a = 7.5 and b = 4.0 (see [1]).  155 

The evaporable water can be expressed as a function of the relative humidity (sorption 156 

isotherm curve) as follows:  157 

( ) ( ) ( )
( ) ( )0 1

2 2
1

0.188 1 1
, 1 1 1

1

c
c vg cc

e c vg c

w c c e
w h c e e

e
α κ α

α κ α
− − −

= − + −
−

 (5) 

in which 0w  ( )( )w c c=  is the initial water content and it is assumed that 158 

( )1
2

10 c cg h
e e

α α∞ −
=  and ( )1

1

10 c cg
e e

α α∞ −
= . Equation (5) depends on two other material 159 

parameters c
vgκ  and 1g  that govern the amount of water contained in the cement gel pores and 160 

the shape of the sorption curve, respectively. From equation (5), the moisture capacity ew h∂ ∂  161 

is derived and inserted in equation (3). 162 
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The temperature field is calculated based on the Fourier’s law, in which the heat flux q is 163 

expressed as a function of the temperature spatial gradient ( )Tλ= ∇q , and the enthalpy 164 

balance equation as follows: 165 

[ ]=          in t c
Tc T Q
t

∂
∇ ⋅ ∇ + Ω

∂
&ρ λ  (6) 

where T is the absolute temperature, λ is the heat conductivity that can be assumed constant for 166 

the temperature range considered in the present study, while ρ and tc  depict the concrete mass 167 

density and the specific heat, respectively, and cQ&  represents the rate of heat generation due to 168 

cement hydration, calculated as c c cQ cQ∞=& %&α , with cQ∞%  being the total heat content per unit 169 

cement mass due to cement hydration.  170 

Equations (3) and (6) are coupled by their dependency on the degree of cement hydration cα  171 

as well as by the moisture diffusion coefficient hD  that depends on both temperature and 172 

relative humidity. 173 

The hygro-thermo-chemical model depends on a series of parameters. Some of them are well 174 

known concrete characteristics, whose values can be evaluated based on the concrete mix 175 

specifications or from data reported in the literature. These parameters are listed in the upper 176 

part of Table 1. Other parameters are characterised by a large variability (considering data 177 

available in the literature) and, among these, some do not possess a precise physical meaning. 178 

This set of parameters is listed in the lower part of Table 1 and their range of variation 179 

(obtained and derived from [12, 13, 20 and 21]) is collected in Table 2.  180 

 181 

Table 1. 182 

 183 

Table 2. 184 
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 185 

Table 3. 186 

 187 

2.1 Finite element formulation 188 

The hygro-thermo-chemical model described in Equations (3) and (6) is solved in the 189 

following by means of the finite element method, giving rise to the following discretized 190 

equations: 191 

 + =


+ =

&
&

WH DH F
CT ΛT Q

 (7) 

where H and T depict unknown vectors that collect all nodal values (of the finite element 192 

representation) of the relative humidity and temperature fields at each instant, while the system 193 

matrices are defined as:  194 

d
e

T e
e e

e

w
hΩ

∂
= Ω

∂∫UW N N  (8) 

d
e

T
e h e

e

D
Ω

= Ω∫UD B B  (9) 

 d 0.253 d
e e

T T T e
e e c

e e c

w c α
αΓ Ω

 ∂
= − Γ − + Ω ∂ 

∫ ∫F N n j N &U U  (10) 

d
e

T
e t e

e

c
Ω

= Ω∫U ρC N N  (11) 

d
e

T
e e

e Ω

= Ω∫U λΛ B B  (12) 

 d d
e e

T T T
e e c

e e

Q
Γ Ω

= − Γ + Ω∫ ∫Q N n q N &U U  (13) 
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where symbol 
e
U refers to the assembly operation typical of the finite element approach, and 195 

matrices eN  and eB  collect shape functions and their spatial derivatives, respectively.  196 

For the solution of Equations (7), Dirichlet’s boundary conditions (on h and T) are directly 197 

imposed on the unknown vectors H and T, while Cauchy’s boundary conditions can be 198 

introduced in the right end side of the equation, see [22].  199 

Equation (7) can be integrated over time by means of the so-called θ-method [22]:  200 

( )

( ) ( ) ( )

( )

( ) ( ) ( )

1
1

1 1 1

1
1

1 1 1

1

              1 1 1

1

              1 1 1

k k
k k

k k k k k k

k k
k k

k k k k k k

t

t

+
+

+ + +

+
+

+ + +

 − + − +  ∆
     + − + − = + −      


− + − +  ∆


     + − + − = + −      

θ θ

θ θ θ θ θ θ

θ θ

θ θ θ θ θ θ

H HW W

D D H H F F

T TC C

Λ Λ T T Q Q

 (14) 

The above equations are approximated by taking the system matrices and the “load” vector at 201 

the previous instant k and by assuming 1 2=θ  for the remaining term:  202 

1 1

1 1

2

2

k k k k
k k k

k k k k
k k k

t

t

+ +

+ +

 − +
+ = ∆


− + + = ∆

H H H HW D F

T T T TC Λ Q
 (15) 

These equations are then solved with respect to the unknown vectors at instant k+1:  203 

11

11

1 2 1 2

1 2 1 2

k k k k k k k k

k k k k k k k k

t t t

t t t

−+

−+

    = + ∆ + ∆ − ∆    


    = + ∆ + ∆ − ∆   

H W D W H F D H

T C Λ C T Q Λ T
 (16) 

Time step t∆  is not taken constant through the analysis but its value is increased as the 204 

simulation evolves since the rate of change of the mechanisms involved in the process 205 

decreases. In particular, after some convergence tests, t∆  was taken equal to: 1200 s from the 206 

beginning to twice the curing time, then equal to 4 h up to 40 days, then 40 h up to 1 year and 207 
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then equal to 400 h up to the final time. Optimized time steps strategies could have been 208 

investigated, in order to reduce the total computing time, but this was considered out of the 209 

scope of the present publication. 210 

The use of the proposed numerical model is illustrated by evaluating the variations over time of 211 

the humidity profiles that occur in a typical concrete component exposed for drying and heat 212 

exchange through its top and bottom surfaces (Figure 1). With reference to the initial 213 

conditions adopted in the numerical analyses, at instant t=0 (instant of concrete casting and 214 

beginning of the curing period) relative humidity and temperature are set equal to 100% and 215 

296 K (room temperature), respectively, and the degree of cement hydration is assumed null.  216 

Two types of boundary conditions are considered in this study and these reflect possible 217 

conditions, such as those that could be specified in a laboratory environment when dealing with 218 

shrinkage measurements of concrete specimens, see figure 1: 219 

• Curing phase. As for the humidity field, all sides are sealed by the formworks except 220 

for the upper side which is kept wet. For this reason on the lateral and lower sides of the 221 

finite element model zero-Cauchy boundary conditions are imposed while a relative 222 

humidity equal to 100% is assumed on the upper side of the model. These boundary 223 

conditions for the humidity field produce the loss of symmetry in figure 2. For the 224 

temperature field, it is assumed that the formworks are not able to impose perfect 225 

adiabatic conditions and, for this reason, the room temperature is assumed on both the 226 

upper and lower sides of the model. This selection of boundary conditions is preferred 227 

to test the proposed inverse algorithm with respect to the most unfavourable conditions 228 

because adiabatic conditions on the lower side would induce higher temperatures and, 229 

therefore, pseudo-experimental information more sensitive to the sought parameters. On 230 

the lateral sides of the finite element model adiabatic conditions are assumed. 231 
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• Drying phase. After the curing period, the lateral sides are sealed, for example, with 232 

plastic sheets to achieve relative humidity and heat fluxes along one direction only, i.e. 233 

along the thickness of the concrete component. For this reason, on the lateral 234 

boundaries of the finite element model zero-Cauchy boundary conditions are imposed, 235 

while on the upper and lower sides Dirichlet boundary conditions that enable heat and 236 

moisture exchange are imposed, as indicated in figure 1. These boundary conditions 237 

induce fluxes of heat and moisture across these boundaries due to the gradient of the 238 

relative field between the prescribed boundary value and that occurring inside the 239 

model.  240 

The above boundary conditions induces quasi-1D solutions and, for this reason, the 2D model 241 

has been discretised by a structured mesh of three-nodes triangular elements, see figure 1, with 242 

5 elements only through the width. The mesh has been refined close to the upper and lower 243 

boundaries where high spatial gradients are expected. After a convergence study and as a 244 

compromise between the conflicting requirement of accuracy and reduction of computing time, 245 

finite element discretizations with 300 elements and 213 nodes and 600 elements with 423 246 

nodes, were adopted for the models 120 mm and 240 mm thick, respectively. 247 

The results, in terms of humidity profiles, have been calculated for a period of 10 years and 248 

plotted in Figure 2 at different time increments. Two thicknesses have been considered for the 249 

concrete component, i.e. 120 mm (Figures 2a,b) and 240 mm (Figures 2c,d). Two external 250 

relative humidities (RHs) have adopted in the simulations and consist of 80% (Figures 2a,c) 251 

and 40% (Figures 2b,d). The material parameters used in the humidity predictions have been 252 

based on the mean values of ranges included in Table 2 and values specified in Table 3.  253 

The results of Figure 2 highlight the ability of this model to simulate the highly non-linear 254 

humidity profiles that can develop through the thickness of a typical concrete component and 255 

how these can be influenced by the drying mechanism activated by the different external 256 
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environmental conditions and due to the selection of different section heights and wet curing 257 

periods (results presented in Figure 2 have been calculated based on a wet curing period of 10 258 

days). Figure 2a shows that, when exposed to a high relative humidity environment (i.e. 259 

environmental RH of 80%), a thin concrete component can approach an equilibrium condition 260 

of the entire cross-section with the ambient conditions after nearly a year from casting. This 261 

process is slower for a thicker concrete component as highlighted in Figure 2c with thickness 262 

of 240 mm in which, only after 10 years, equilibrium of the entire cross-section with the 263 

environment is achieved. When considering concrete components exposed to dry environments 264 

(with RH of 40%), steep humidity gradients occur in the 120 mm and 240 mm thick 265 

components and, even after 10 years, equilibrium of the entire cross-section is not obtained, as 266 

depicted in Figures 2b, d. 267 

 268 

Figure 1.  269 

 270 

Figure 2.  271 

 272 

3. Sensitivity analysis 273 

The design of the experiments, for inverse analysis purposes, can be improved by sensitivity 274 

analysis, which is intended to compute the influence of each sought parameter on the 275 

measurable quantities. The sensitivity analysis described in this section is used to gain a better 276 

understanding on how the sought material parameters, i.e. those listed in the lower part of 277 

Table 1, influence the variations of the relative humidity and temperature over time. In 278 

particular, the sensitivity analysis is applied to enhance the selection of the most effective time 279 

duration and spatial positions for the relative humidity and temperature measurements that will 280 
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be considered and evaluated in the implementation of the inverse analysis technique in the 281 

following section, (see e.g., [23], [16]). 282 

Sensitivity indices are computed as partial derivatives of relative humidity h and temperature T 283 

with respect to the model parameters ip  at a certain instant in time t (taking t = 0 the time of 284 

concrete casting) in a certain position z within the thickness of the concrete component as 285 

follows:  286 

( ) ( )
( ),

, ,
, ,

, ,i

i
h p

i

h z t pS z t
p h z t

∂
=

∂
p

p
p

 (17a) 

( ) ( )
( ),

, ,
, ,

, ,i

i
T p

i

T z t pS z t
p T z t

∂
=

∂
p

p
p

 (17b) 

These indices are normalised, for comparison purposes, with respect to the parameter value and 287 

to the current and local value of the corresponding field. In the numerical computations, after 288 

some preliminary convergence studies, the (first-order) derivatives have been approximated by 289 

forward finite-differences with 0.1% increments, and have been evaluated in a number of 290 

locations through the thickness of the concrete component and for a certain number of time 291 

instants. 292 

Figure 3 presents the sensitivity of the humidity profiles with respect to all model parameters 293 

through the thickness of the concrete component and at representative instants in time. These 294 

results have been obtained by assigning to the model parameters the mean values of Table 2 295 

and those specified in Table 3, and by considering a 120 mm thick concrete component 296 

exposed on its top and bottom surfaces while applying a constant external temperature of 20°C 297 

and a relative humidity of 80%. 298 

 299 

Figure 3. 300 

 301 
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The null sensitivity for all the parameters at the upper and lower sides of the model is due to 302 

the Dirichlet boundary conditions assumed. The curves plotted in Figure 3 highlight how the 303 

influence of the different model parameters on the relative humidity distributions varies in time 304 

and space. The time instants considered in the graphs of Figure 3 have been selected to outline 305 

both increasing and decreasing trends in the calculated sensitivity indices ( ), , ,
ih pS z t p . In 306 

particular, it is possible to observe that there are two regions which present the highest 307 

sensitivities, with respect to all parameters, namely the mid-height of the concrete component 308 

and the position about 10 mm from the external surfaces. Among the plotted parameters 309 

governing moisture diffusion, the one which most affects the results in terms of humidity 310 

distribution is the exponent n, characterized by a sensitivity index ten times greater than the 311 

ones computed for parameters 0D  and 1D . It is interesting to observe that the sensitivity with 312 

respect to 1D , which represent the moisture diffusion at saturation (h = 1), reaches its peak 313 

value after 20 days and then it decreases with decreases in the humidity content. On the 314 

contrary, the sensitivity with respect to 0D , which represents the moisture diffusion at h = 0, 315 

keeps increasing for the first 180 days while the position of maximum sensitivity moves 316 

towards the mid-height of the concrete component as the desiccation process progresses. 317 

Sensitivity with respect to cQ∞%  is almost null since this parameter is expected to influence 318 

primarily the variation of the temperature field. Figure 4 depicts the sensitivity indices of the 319 

temperature profiles ( ), , ,
iT pS z t p  computed only with respect to the parameters affecting this 320 

field, through the thickness of the concrete component and at selected time instants based on 321 

the concrete specimen and external environmental conditions described for ( ), , ,
ih pS z t p . 322 

 323 

Figure 4. 324 

 325 
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Figure 4 shows that the influence of the different model parameters on the temperature 326 

distribution is continuously varying in time and space. In particular, it is possible to observe 327 

that the region which presents the highest sensitivities, with respect to all parameters, is the 328 

mid-height of the concrete component. Another important conclusion which can be drawn from 329 

Figure 4 is that the highest sensitivity is achieved in the first few hours of the cement hydration 330 

chemical reaction, even if the time duration of the temperature variation phenomenon is about 331 

2 days. 332 

When considering the time variability of sensitivity indices for the humidity field (Figure 3), it 333 

is interesting to observe that the curves related to those parameters, which directly influence 334 

cement hydration ( 1cA , 2cA , cη  and cγ ), present a first peak after the first 10-30 days and a 335 

second one (of opposite sign) after about 1 year. The time dependence associated with the 336 

sensitivity indexes is illustrated in Figure 5 for a concrete component 120 mm high and for a 337 

period of 10 years considering the highest ( ), , ,
ih pS z t p  (i.e. those determined for n, 1g , cγ  and 338 

cη ). For parameters governing moisture diffusion and sorption curves (n and 1g , respectively), 339 

the maximum value for ( ), , ,
ih pS z t p  is achieved between two and six months and after one 340 

month, respectively. The other two parameters ( cγ  and cη , governing cement hydration) 341 

present a maximum value after 30 days and a minimum after about one year. 342 

 343 

Figure 5. 344 

 345 

The trends depicted in Figure 5 for the 120 mm thick component exposed to an environmental 346 

RH of 80% are slightly modified when considering a dry environment (i.e. environmental 347 

RH = 40%) in Figure 6 and a larger thickness (i.e. 240 mm thick component) in Figures 7 and 348 

8 with RH equal to 80% and 40%, respectively. 349 
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 350 

Figure 6.  351 

 352 

Figure 7.  353 

 354 

Figure 8.  355 

 356 

In particular, Figure 6 (component with thickness of 120 mm and exposed to RH = 40%) 357 

shows how the peak values of the sensitivities are postponed in time. For example, the peak 358 

sensitivity for parameter n occurs after 4-5 years of casting (instead of 2-6 months observed 359 

with an ambient RH of 80%), and the peak and minimum values exhibited by 1g  along the 360 

different positions through the thickness take place after 1-2 months and 10-20 years, 361 

respectively (instead of the single peak observed after 1 month with RH = 80%). The variations 362 

for cγ  and cη  follow the trend exhibited by 1g , with the sensitivity peak soon after the pour (at 363 

about 1 month from casting) and the minimum after 2-3 years (instead of 12 months with 364 

ambient RH = 80%). These results highlight how the lower environmental relative humidity of 365 

40% significantly extends the transient processes associated with the moisture movements due 366 

to the fact that it takes now longer time for the concrete component to find equilibrium through 367 

its entire height with the surrounding environment. 368 

The sensitivity indices calculated for the thicker component (i.e. 240 mm) are presented in 369 

Figures 7a-d and 8a-d for ambient relative humidities of 80% and 40%, respectively. The 370 

overall differences observed for the two levels of external RH are similar to those noted for the 371 

120 mm thick components in Figures 5 and 6, while the larger thickness leads to longer 372 

transfer processes to reach an equilibrium condition through the entire concrete component 373 

and, consequently, the instants in time of the peak and minimum points are postponed. 374 
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Based on the numerical tests carried out on the sensitivity analysis, the implementation of the 375 

inverse analysis approach presented in the following section will account for the fact that the 376 

positions characterized by the highest sensitivity are the mid-height of the component and close 377 

to its exposed surfaces for the humidity measurement, and just the mid-height for the 378 

temperature.  379 

The highest sensitivity of the temperature field occurs in the first 6 hours from casting, when 380 

the humidity transport mechanism has almost not even started, as depicted by its negligible 381 

sensitivity. This means that measurements of the temperature distribution in this time interval 382 

are bound to enhance the identifiability of those parameters affecting this field, especially of 383 

those, cement hydration depends upon. 384 

4. Inverse analysis 385 

The inverse problem is usually defined as the minimization of a suitable norm, expressing the 386 

discrepancy between the experimental results and the numerical counterparts, computed as a 387 

function of the sought parameters.  388 

The identifiability of the different parameters contained in the hygro-thermo-chemical model 389 

has been investigated following a numerical procedure well established in literature (see [24], 390 

[25] and [26]) that involves the setting up and implementation of different inverse analyses that 391 

start from the so-called pseudo-experimental results, i.e. results numerically generated starting 392 

from a given set of model parameters and supplied in input to the inverse problem. If this is 393 

well-posed, then its solution should provide in output the value of the parameters adopted to 394 

generate the pseudo-experimental data. 395 

The input data for the inverse problem consists of both humidity and temperature profiles taken 396 

at different locations through the thickness of the concrete component and at different time 397 

instants. In particular, at each instant 1 htNτ = K  of the time history, relative humidity e, sh τ  is 398 

measured through the component thickness in a discretised number of locations, i.e. at 399 



20 

1 hzs N= K . Similarly, at each instant 1 TtNτ = K , temperature e, sT τ  distribution is measured 400 

along the section in a discretised number of points 1 Tzs N= K . The discretization points 401 

adopted for both the space and time domains are based on the considerations obtained from the 402 

sensitivity analysis that highlighted the time instants and the spatial positions where the two 403 

fields are most affected by the sought parameters. Assuming to collect the model parameters to 404 

be estimated (i.e. those listed in the lower part of Table 1) in vector p , and denoting 405 

experimental and computed quantities by subscript “e” and “c”, respectively, the discrepancy 406 

between measured and computed quantities can be defined by the following norm:  407 

( ) ( )( ) ( )( )2 2
, ,2 2

1 1ht hz Tt TzN N N N

h n s e, s T n s e, s
s t se, s e, s

w h h T T
h Tτ τ τ τ

τ τ τ

   
= φ − + φ −   

   
∑∑ ∑∑p p p  (18) 

where ( )1h ht hzN Nφ =  and ( )1T Tt TzN Nφ =  are weight factors whose magnitude ensure an 408 

equivalent contribution to be provided by the two terms defining the objective function. 409 

The minimization of the function of Equation (19) is performed by the so-called Trust Region 410 

(TR) algorithm (see, e.g. [27] and [28]). Starting from a given initialization vector, this is 411 

automatically updated by means an iterative procedure based on subsequent evaluations of the 412 

objective function ( )w p , of its gradients and on an approximation of the hessian matrix. The 413 

process stops when a priori tolerances on either the variation of the objective function or the 414 

Euclidean norm of the normalized optimization variables are met. 415 

A deterministic batch approach is adopted in the present investigation, which means that 416 

uncertainties of both experimental measurements and system modelling are not processed 417 

stochastically, but the effect of random noise of different amplitude applied to the inverse 418 

problem input is considered in order to investigate the robustness of the proposed identification 419 

procedure. In particular, these disturbances are generated with uniform probability density over 420 

an interval centred on the exact amplitude.  421 
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For each adopted value of the parameters model adp , the corresponding pseudo-experimental 422 

data are perturbated by different noise extractions ( )1... NOISEn N= . For each noise extraction, 423 

the optimization algorithm is run several times ( )1... INITi N=  starting from different 424 

initialization vectors to avoid the solution to remain stuck in local minima that might exist 425 

given the nonlinear and non-convex nature of the objective function. The identified value, with 426 

respect to all initialization vectors, id
np  is computed as average of all identified values id

nip  427 

weighted with respect to the inverse of the objective function in solution, as: 428 

( )( )
( )( )

,

,

1

1

INIT

INIT

N
id id
ni k ni

id i
n k N

id
ni

i

p w
p

w
=

∑

∑

p

p
 (19) 

The error with respect to the assumed set of model parameters, for each noise extraction n, is 429 

then computed as: 430 

,
, 100

id ad
n k kid

n k ad
k

p p
err

p
−

= ⋅  (20) 

A final error index is then computed as the average of all the single errors computed for each 431 

noise extraction as follows: 432 

,
1 NOISEN

id id
k n k

nNOISE

err err
N

= ∑  (21) 

This global error norm computes the average of the absolute values of the different errors 433 

resulting from the different noise extractions to avoid compensations between errors of 434 

opposite signs when a large number of random noise extractions is adopted. 435 

4.1 Results 436 

Different inverse analysis exercises have been solved in the following to investigate the 437 

optimal formulation of the inverse problem for the identification of the parameters 438 

characterised by a large variability (i.e. those listed in the lower part of Table 1), contained in 439 
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the model presented in Section 2 on the basis of humidity and temperature profiles 440 

measurements. In the following, only representative results are presented to outline and support 441 

the key findings of this work.  442 

The concrete properties adopted in the simulations are those equal to the means values of 443 

Table 2 and those specified in Table 3. Drying boundary conditions have been assumed on the 444 

two opposite surfaces of the concrete component (Figure 1) and the external temperature has 445 

been assumed constant and equal to 296 K.  446 

The first inverse analysis exercise considers a 120 mm thick concrete component exposed to an 447 

environment relative humidity of 80%. In this initial simulation, no noise is added to the 448 

pseudo-experimental data. Figure 9 illustrates the convergence curves of the sought parameters 449 

(normalized with respect to the expected value) for two different initialization vectors. 450 

 451 

Figure 9. 452 

 453 

From these results, it is evident that the inverse problem is not well posed with respect to the 454 

identification of parameters 1cA  and cγ , identified with a weighted average error of 65.5% and 455 

1.8%, respectively, while all the other parameters are identified with their expected value, with 456 

a maximum error of 0.2% for 2cA . The lack of identifiability of parameters 1cA  and cγ  is 457 

related to the form in which they appear in the hygro-thermo-chemical model when defining 458 

cα&  in Equation (4). This is attributed to the fact that both parameters have an equivalent effect 459 

on cα& , i.e. an increase in 1cA  leads to an increase of cα&  that could be similarly produced by a 460 

decrease of cγ . Because of this behaviour, the inverse analysis procedure struggles to 461 

distinguish between these two parameters. This ill-posedness of the inverse problem is 462 
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confirmed in Figure 10 that illustrates the variation of the objective function of Equation (18) 463 

plotted with respect to 1cA  and cγ . 464 

 465 

Figure 10. 466 

 467 

From this figure, it is evident the existence of different combinations of these two parameters 468 

providing the same absolute minimum of the objective function. However, due to its higher 469 

sensitivity, as highlighted, for example, in Figures 3 and 4 and also by the shape of the 470 

objective function in figure 10, cγ  can be still identified with a small error. The temperature T 471 

located in the denominator of the exponent of the exponential function of Equation (4) (with cγ  472 

being located at the numerator of this exponent). provides only a marginal support to the 473 

identification of 1cA  and cγ , especially when considering realistic boundary conditions that 474 

enable heat exchange between the concrete component and its surrounding environment.  475 

The above considerations have suggested that the following inverse analysis exercises will be 476 

carried out assuming 1cA  known a priori. This assumption is considered valid based on the fact 477 

that the lack of identifiability of parameter 1cA  previously discussed does not affect the 478 

identifiability of all other model parameters, see Figure 9. The validity of this assumption is 479 

later reconfirmed by the results reported in Table 6 outlining how different values for 1cA  do 480 

not influence the identifiability of the sought parameters.  481 

Representative results obtained from the inverse analysis procedure are presented in the 482 

following considering different arrangements for the discrete measurements of the relative 483 

humidity and temperature fields together with different periods of monitoring. Different 484 

concrete components and ambient conditions are used as case studies, for example varying 485 

their concrete thickness, period of wet curing after casting and ambient relative humidity. All 486 
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pseudo-experimental results have been generated with a noise perturbation of ±10% to evaluate 487 

the robustness of the inverse procedure. It is considered that this noise is acceptable for the 488 

purpose of this study to take into account the inaccuracy and the disturbance associated with 489 

the experimental measurements. 490 

Table 4 reports the results obtained considering a varying number of discrete humidity 491 

measurements through the thickness of the concrete component as well as the inclusion of a 492 

temperature measurement. The concrete component is 120 mm thick and wet cured for 1 day 493 

from casting. The ambient relative humidity is taken equal to 40% and the measurements are 494 

performed for a period of 30 days (with a frequency of one measurement per hour). Column A 495 

of Table 4 highlights how the use of one humidity measurement, even if selected at the mid-496 

height of the concrete component that corresponds to the point of maximum sensitivity, is not 497 

sufficient for the sought parameters identification, the estimation of 0D  being affected by an 498 

error (21.7%) much larger than the added noise. The use of a second relative humidity 499 

measurement (located 10 mm below the exposed surface in column B of Table 4) ensures the 500 

identifiability of all parameters (the observed errors are within the magnitude of the noise 501 

introduced in the pseudo-experimental measurements). The inclusion of additional relative 502 

humidity measurements, for example at 20 mm and 30 mm below the exposed surface, does 503 

not improve the results as depicted by the values reported in columns C and D of Table 4.  504 

The results outlined in columns E-G of Table 4 aim at evaluating the optimal position for the 505 

second humidity measurement for a 120 mm high concrete component and show that 10 mm 506 

below the exposed surface guarantees the identifiability of all parameters (column E), 507 

differently from the other choices implemented that struggle in the identification of 0D  508 

(columns F and G). This result is consistent with the outcomes of the sensitivity analysis that 509 

shows a peak in this position (i.e. at 10 mm below the external surface) for the parameters 510 

governing moisture diffusion and sorption curves. 511 
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The results identified in columns A-G of Table 4 have been obtained considering one discrete 512 

temperature measurement located at its point of maximum sensitivity, i.e. mid-height of the 513 

concrete component, therefore highlighting the adequacy of using only the selected 514 

temperature measurement. The parameters identified without the inclusion of a temperature 515 

measurement (reported in column H of Table 4) do not lead to a successful characterisation of 516 

cQ∞%  and 2cA . These observations highlight how the use of a temperature measurement as 517 

experimental information is crucial for the identification of the model parameters cQ∞%  and 2cA , 518 

governing cement hydration, which cannot be identified if information on humidity distribution 519 

only are considered.  520 

 521 

Table 4. 522 

 523 

The influence of varying the period used for the monitoring of the relative humidity and 524 

temperature is presented in columns A-C of Table 5. For a concrete component with height of 525 

120 mm, a period monitored of 30 days (column A) is sufficient for the identification of all 526 

model parameters. Longer periods of 60 days (column B) and 90 days (column C) seem not to 527 

improve the identifiability of the sought parameters. 528 

The presence of a lower external relative humidity and, therefore, of a larger spatial gradient 529 

emphasizes the moisture transport phenomena and, consequently, improve the identifiability of 530 

all the parameters associated with this process. This is highlighted when comparing the results 531 

of columns A (RH 40%), with D and E (RH 80%) of Table 5, where it is shown that for a 532 

higher external humidity a longer monitoring period (90 days instead of 30 days) is needed to 533 

identify all the sought parameters. 534 

Variations in the wet curing applied after concrete casting does not seem to influence the 535 

identifiability of the model parameters as, for example, depicted in columns A, F and G for wet 536 
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curing periods of 1, 3 and 7 days, respectively. Curing periods approaching the monitored 537 

duration of the concrete component may jeopardize the identifiability of parameter 0D  538 

governing moisture diffusion, as depicted in column H for a wet curing period of 14 days. Such 539 

a problem could be addressed by simply modifying the period monitored for the relative 540 

humidity measurements in order to gather sufficient experimental information after the end of 541 

the curing period (see column I).  542 

 543 

Table 5. 544 

 545 

At the beginning of this section, it has been shown that the parameters 1cA  and cγ  could not be 546 

uniquely identified (Figures 9 and 10). The approach proposed in this paper to address this ill-547 

posed condition has been to assign a value to 1cA  equal to its mean value reported in the 548 

literature (=29450 s-1 based on the range provided in Table 2) before the application of the 549 

inverse analysis procedure. The results reported in Table 6 highlight how the identifiability of 550 

the model parameters is not affected when an incorrect value for 1cA  (i.e. different from the 551 

one used for the generation of the pseudo-experimental measurements) is specified in input of 552 

the inverse analysis. In particular, the upper and lower limits of 1cA  (see Table 2 for its range) 553 

are used in input for the results specified in columns B and C of Table 6 (with column A 554 

showing the errors determined using the exact value for 1cA , i.e. the value adopted to generate 555 

pseudo-experimental data). These results confirm that the identifiability of all parameters is not 556 

affected, except for the “companion” parameter cγ , whose identification error increases, 557 

especially when the lower limit is assumed (however always within the same order of 558 

magnitude of the added noise for the cases considered). 559 

 560 
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Table 6. 561 

 562 

The results discussed till now have been produced for a relatively thin concrete component 563 

with a thickness of 120 mm. Representative errors obtained in the case of a thicker component 564 

are outlined in Table 7. In this case, a longer period of measurements is needed and of at least 565 

90 days (as depicted in Columns F and G) in order to let the moisture transport process develop 566 

sufficiently to collect the amount of experimental information needed for the calibration of the 567 

model parameters, especially of those governing moisture diffusion. Shorter monitored periods 568 

(reported in columns A-C for 30 days and in columns D and E for 60 days) do not provide 569 

sufficient experimental information. The use of two discrete measurements for the relative 570 

humidity is still required, with one measurement taken at the mid-height of the concrete 571 

component and the second one close to the exterior surfaces (errors reported in columns F and 572 

G consider the location of the second humidity measurement to be carried out at 10 mm and 573 

30 mm, respectively, below the exterior surface).  574 

 575 

Table 7. 576 

 577 

5. Conclusions  578 

This paper considers a hygro-thermo-chemical model capable of predicting temperature and 579 

moisture variations taking place over time in a concrete component and subdivides its 580 

parameters into two main sets: (i) one set of parameters that can be evaluated based on the 581 

concrete mix specifications or from data reported in the literature; and (ii) a second set of 582 

parameters that are characterised by a large variability and, in some cases, without a precise 583 

physical meaning and, therefore, not amenable to a direct measurement.  584 
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This paper presents a robust inverse analysis procedure for the identification of the second set 585 

of parameters using temperature and relative humidity measurements as input data. The aim of 586 

the present investigation is to provide an indication on the minimum (in time and space) 587 

number of discrete temperature and relative humidity measurements that are required for a 588 

successful identification of the sought material parameters. These results may find applications 589 

in enhancing the planning of the monitoring of in-situ investigations and of experimental tests. 590 

Representative results have been presented to highlight the ability of the proposed 591 

methodology to identify correctly all the sought model parameters (within an error of the same 592 

order of magnitude of the noise added to the pseudo-experimental data in input to the inverse 593 

problem). The considerations listed below summarise the results observed for the specific case 594 

studies considered in this paper associated with the identification of the concrete parameters 595 

governing moisture and heat transport mechanisms: 596 

• For the identification of the parameters governing the humidity field, at least two points 597 

within the height of the concrete component have to be monitored: one at the mid-598 

height ( )0.5 D× and the second close to the exposed surface (preferably about 10 mm 599 

below the exterior surface for the 120 mm and 240 mm thick components considered in 600 

this study). 601 

• The thicker the concrete component the larger the monitored period should be to let the 602 

moisture transport process develop sufficiently in order to gather the amount of 603 

experimental information needed to identify the model parameters. In the present 604 

analyses, for a concrete component 120 mm thick a period of 30 days (with a frequency 605 

of one measurement per hour) has been proven to be sufficient, while for a 240 mm 606 

thick component at least 90 days are required. 607 

• Information on temperature field is crucial for the identification of the parameters 608 

governing the cement hydration. In the presented analyses, it has been shown that 1 609 
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measurement per hour taken at the mid-height of the concrete component 610 

(corresponding to the position with highest sensitivity) for a period of at least 48 hours 611 

from the time of casting is sufficient for the identification of the sought parameters. 612 

• The presence of a lower external relative humidity emphasises the humidity transport 613 

mechanism and provides a better identification of the sought parameters, especially of 614 

those governing the moisture diffusion. If a larger humidity is applied (in the present 615 

examples 80% instead of 40%) the monitoring period should be increased (90 days 616 

instead of 30 days) in order to collect a sufficient amount of experimental information 617 

needed for the present identification purposes. 618 
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Table 1. Material parameters required in input of the hygro-thermo-chemical model. 1 

 2 

 Parameter Description 

Parameters calculated 
based on concrete mix 
specifications or assigned 
known values well 
accepted in the literature  

c cement content 
w/c water-to-cement ratio 

a, b 
parameters associated with the variation of the 
degree of cement hydration over time and taken 
as a = 7.5 and b = 4.0 [1] 

λ heat conductivity 
ρ concrete mass density  

tc  concrete specific heat  

ck  
parameter associated with non-evaporable water 
and taken as 0.253 (as suggested in [12]) 

Parameters characterised 
by a large variability (see 
Table 2) – some of which 
do not possess a precise 
physical meaning  
(to be identified with the 
inverse analysis 
presented in Section 4) 

1cA , 2cA , cη  
parameters with no precise physical meaning 
associated with the variation of the degree of 
cement hydration over time 

γc 
parameter calculated as the ratio of the 
hydration activation energy over the universal 
gas constant 

cQ∞%  total heat content per unit cement mass due to 
cement hydration 

c
vgκ  parameter that governs the amount of water 

contained in the cement gel pores  

1g  parameter that governs the shape of the sorption 
curve  

0D , 1D , n 
parameters that control the moisture 
permeability and depend on the specific 
concrete mix 

 3 

  4 
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Table 2. Range of variation for the parameters listed in the lower part of Table 1. 5 

 6 

Parameter Range of variation Mean value 
1cA  3900 − 55000 [s-1] 29450 

2cA  10-6 − 5⋅10-2 2.5⋅10-2 
cη  5.5 − 8.0 6.75 
cγ  3000 − 8000 [K] 5500 

cQ∞%  400 − 550 [kJ/kg] 475000 
c
vgκ  0.10 − 0.26 0.18 
1g  1.20 − 2.20 1.70 

0D c  0.2⋅10-14 − 7.5⋅10-14 [m2/s] 3.85⋅10-14 
1D c  4.8⋅10-10 − 12⋅10-10 [m2/s] 8.4⋅10-10 
n 3.0 − 4.5 3.75 

 7 

  8 
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Table 3. Parameters used in the proposed numerical simulations. 9 

 10 

Parameter Assumed value 
c 400 kg/m3 

w/c 0.40 
a 5.5 
b 4.0 
λ 2.3 W/mºC 
ρ 2400 kg/m3 

tc  1100 J/kgºC 

ck  0.253 
 11 

  12 
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Table 4. Results of the inverse analysis exercises in terms of id
kerr  [%]: varying location of 13 

discrete measurements for the relative humidity h and the temperature T.  14 

 15 

D [mm] 120 
RH  40% 
Period of wet curing  1 day 
Period monitored  30 days 
Location of discrete measurements1     

for h [mm] 60 60/10 60/20/10 60/30/20/10 60/10 60/20 60/30 60/10 
for T [mm] 60 60 none 

Column A B C D E F G H 
D0 21.7 5.9 4.5 5.2 5.9 11.9 14.7 6.3 
D1 3.1 3.9 2.9 4.8 3.9 2.9 3.1 7.2 
n 3.3 0.7 0.6 1.0 0.7 1.7 2.5 0.8 

c
vgκ  7.1 2.5 2.0 2.2 2.5 3.1 7.3 7.2 

g1 5.4 3.7 3.6 4.7 3.7 5.3 4.1 6.6 
γc 0.1 0.3 0.2 0.2 0.3 0.2 0.1 1.5 

cQ∞%  4.4 2.4 1.8 3.5 2.4 4.2 2.2 11.1 
Ac2 6.5 5.6 5.4 4.7 5.6 6.3 5.9 37.8 
ηc 6.2 3.1 3.2 4.4 3.1 5.1 4.5 5.5 

NOTE: 1Locations measured from external surfaces of concrete component [mm]. 16 
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Table 5. Results of the inverse analysis exercises in terms of id
kerr  [%]: varying the period 18 

monitored, the external relative humidity RH and the period of wet curing after casting.  19 

 20 

D [mm] 120   
Location of discrete measurements for h [mm]1 60/10    
Location of discrete measurements for T [mm]1 60    

Period monitored [days] 30  60  90  30 90 30 14+292 
RH  40% 80% 80% 40% 40% 

Period of wet curing [days] 1 1 1 3  7 14  14 
Column A B C D E F G H I 

D0 5.9 3.3 4.4 10.3 8.7 7.1 7.9 13.3 5.0 
D1 3.9 3.0 2.4 3.6 3.3 2.8 2.5 2.5 3.9 
n 0.7 0.5 0.6 1.2 0.8 1.0 1.2 2.0 0.7 

c
vgκ  2.5 1.9 2.4 4.0 5.0 2.4 2.6 2.8 1.7 

g1 3.7 4.1 2.5 4.9 4.3 2.6 3.7 2.4 5.0 
γc 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 

cQ∞%  2.4 2.8 1.6 3.0 2.0 2.7 3.1 1.7 3.8 
Ac2 5.6 5.4 4.0 3.2 4.4 4.4 5.2 5.1 4.1 
ηc 3.1 3.5 1.8 3.7 2.7 2.4 4.4 2.8 5.2 

NOTE:  1Locations measured from external surfaces of concrete component [mm]. 21 
2Period monitored for the relative humidity measurements after the completion of the 22 
wet curing period. 23 
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Table 6. Results of the inverse analysis exercises in terms of id
kerr  [%]: varying the period 25 

monitored, the external relative humidity RH and the period of wet curing after casting.  26 

 27 

D [mm] 120 
RH  40% 
Period of wet curing  1 day 
Period monitored  30 days 
Location of discrete measurements for h [mm]1 60/10  
Location of discrete measurements for T [mm]1 60  

Parameter Ac1 [s-1] 29450  3900 55000  
Column A B C 

D0 5.9 6.0 6.4 
D1 3.9 4.5 4.1 
n 0.7 0.7 0.7 

c
vgκ  2.5 3.2 2.6 

g1 3.7 4.7 3.7 
γc 0.3 10.8 2.9 

cQ∞%  2.4 2.8 2.3 
Ac2 5.6 5.2 5.0 
ηc 3.1 3.4 2.7 

NOTE: 1Locations measured from external surfaces of concrete component [mm]. 28 
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Table 7. Results of the inverse analysis exercises in terms of id
kerr  [%]: varying the period 30 

monitored and the location of the discrete measurements for the relative humidity for a thicker 31 

concrete component. 32 

 33 

D [mm] 240   
RH 40%   
Period of wet curing  1 day   
Location of discrete measurements for T [mm]1 120    

Period monitored [days] 30  60 90 
Location of discrete measurements for 

h [mm]1 120/10 120/20 120/30 120/10 120/30 120/10  120/30 

Column A B C D E F G 
D0 7.8 16.2 27.9 5.0 7.0 3.3 6.1 
D1 6.7 5.1 4.9 5.7 5.4 3.4 3.2 
n 1.1 3.1 3.2 0.8 1.0 0.6 0.9 

c
vgκ  5.1 6.6 9.7 5.6 10.6 5.7 5.8 

g1 6.7 8.5 8.8 5.1 8.1 4.1 3.7 
γc 0.5 0.4 0.3 0.4 0.5 0.2 0.2 

cQ∞%  2.8 4.9 3.4 1.5 2.1 1.5 1.1 
Ac2 13.4 10.1 10.1 11.5 14.1 6.4 6.4 
ηc 5.7 7.6 6.2 4.0 5.4 2.3 2.3 

NOTE: 1Locations measured from external surfaces of concrete component [mm]. 34 
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 1 

Figure 1. Typical concrete component used in the simulations: finite element model, initial and 2 

boundary conditions.  3 
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(a) concrete thickness of 120 mm and 

environmental RH of 80% 
(b) concrete thickness of 120 mm and 

environmental RH of 40% 

  
(c) concrete thickness of 240 mm and 

environmental RH of 80% 
(d) concrete thickness of 240 mm and 

environmental RH of 40% 
 5 

Figure 2. Humidity profiles for 10 years of simulation  6 

for typical concrete components (Figure 1) with thicknesses of 120 mm and 240 mm. 7 
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(a) 1cA  (b) 2cA  

  
(c) cη  (d) cγ  

  
(e) cQ∞%  (f) c

vgκ  

  
(g) 1g  (h) 0D  

  
(i) 1D  (l) n  

Figure 3. Sensitivity of humidity profiles with respect to the different model parameters.  9 
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(a) 1cA  (b) 2cA  

  
(c) cη  (d) cγ  

 

 

(e) cQ∞%   
 10 

Figure 4. Sensitivity of temperature profiles with respect to the selected model parameters. 11 
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(a) n  (b) g1 

  
(c) cγ  (d) cη  

 13 

Figure 5. Time dependence of the maximum sensitivity indices at selected locations through the 14 

concrete component height H of 120 mm exposed to an ambient RH of 80%.  15 
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(a) n  (b) g1 

  
(c) cγ  (d) cη  

 16 

Figure 6. Time dependence of the maximum sensitivity indices at selected locations through the 17 

concrete component height H of 120 mm exposed to an ambient RH of 40%.  18 
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(a) n  (b) g1 

  
(c) cγ  (d) cη  

 20 

Figure 7. Time dependence of the maximum sensitivity indices at selected locations through the 21 

concrete component height H of 240 mm exposed to an ambient RH of 80%.  22 
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(a) n  (b) g1 

  
(c) cγ  (d) cη  

 23 

Figure 8. Time dependence of the maximum sensitivity indices at selected locations through the 24 

thickness of the 240 mm concrete component exposed to an ambient RH of 40%.  25 
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 27 

 28 

Figure 9. Convergence curves of the sought parameters (normalized with respect to the expected 29 

value) for two different initialization vectors. 30 
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 32 

 33 

Figure 10. Objective function in equation (19), plotted with respect to 1cA  and cγ . 34 

 35 
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