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Abstract 

The domestic dog is an evolutionarily unique animal and has a special niche within 

genomics research. Since their domestication from the grey wolf, dogs have become 

one of the most phenotypically diverse living land animals. Man’s desire to create 

individuals with specialised morphological and behavioural traits has led to the 

development of over 400 recognised breeds. Dogs share a significant number of 

inherited disease phenotypes with humans and are regarded as valuable animal models 

for understanding evolution and disease. New mutations are the ultimate source of new 

phenotypic diversity and evolutionary change. They can also cause rare spontaneous 

genetic disorders and collectively, they make a significant contribution to disease 

burden in managed populations. To comprehensively understand the mechanisms of 

evolution and disease, discovering the rates of occurrence, type, and patterns of 

distribution of de novo mutations across the genome is essential. Until recently, the 

characteristics of de novo mutations could be inferred only using indirect or biased 

methods. With recent technological advancements, it is now possible to directly observe 

de novo mutations that occur in a single generation directly through parent-offspring 

sequencing studies. Whole genome sequencing provides the opportunity for genomic 

variants associated with rare diseases caused by spontaneous mutations to be 

identified directly. We are on the brink of the capacity to utilize these technologies more 

fully in the field of personal medicine. In this thesis, de novo germline mutations 

affecting the evolution and occurrence of disease in the dog are identified and 

characterised. The inspiration for this work stemmed from the extraordinary phenotypic 

diversity in the species and its close relationship to people.  
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Chapter 1. Literature Review 

1.1. Introduction 

All genetic variation that drives evolution or contributes to disease once arose from a 

new DNA mutation. Characterising the rate of mutation and types of mutations that 

occur helps us to understand the mechanisms of evolutionary processes and disease. 

The identification of de novo variants and the methods for doing so have several 

practical applications. Patients with rare diseases could potentially achieve a rapid 

genetic diagnosis. Currently in Australia, an estimated 7% of rare disease patients do 

not receive a diagnosis at all and 30% received a delayed diagnosis of five years or 

more (Molster et al. 2016; Zurynski et al. 2017). Incorrect or delayed diagnosis can also 

lead to the administration of inappropriate and potentially harmful treatments, as well as 

incur additional emotional and financial burdens to affected families (Zurynski et al. 

2017). Delays in obtaining genetic diagnoses for rare diseases in animals has strong 

potential for negative economic and ecological impacts, especially for species with a 

short optimal breeding age and short lifespans. Rapid genetic diagnoses are required 

for the quick development of accurate genetic tests. Mutation rates also have an 

application in research. With ancestral DNA sequence, the mutation rate can be used 

as a molecular clock to estimate the timing of species divergence. This was previously 

heavily debated in dog domestication research (Axelsson et al. 2013; Wang, Zhai, et al. 

2013; Callaway 2013; Freedman et al. 2014). Mutation rates are also commonly used 

as a prior probability to obtain more accurate calling of de novo variants in many variant 

calling algorithms (Francioli et al. 2017).  

With the recent advancements and increased accessibility in obtaining next generation 

sequencing (NGS) data, direct observation of new mutations is now possible through 

parent-offspring sequencing. Sequencing of whole genomes using NGS technologies is 

superior to traditional methods of de novo variant characterisation. Before NGS existed, 

new mutation events could only be indirectly inferred or observed in small proportions of 

large vertebrate genomes. We begin the first chapter of this thesis with a review of the 

current understanding of how de novo mutations are formed, their impacts on fitness, 
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methods of their detection and what is currently known about de novo mutation activity 

in animal species. Our purpose is to elucidate how de novo mutations impact evolution 

and diversity within a single species. As our interest is in mutations that persist in a 

species, this work primarily concentrates on germline mutations.  

1.2. Causes of de novo mutations 

Many new mutations are caused by the imperfect process of the division and 

proliferation of cells. The process of growth and differentiation of cells, commonly 

referred to as the cell cycle, involves four coordinated phases in eukaryotes: the gap 1 

(G1); synthesis (S); gap 2 (G2); and the mitotic (M) phase (Figure 1.1). G1, S and G2 are 

collectively known as interphase and occur 95% for the duration of the cell cycle. In the 

G1 phase, the cell is metabolically active. Cytosolic contents and organelles grow and 

replicate. In the S phase, DNA replication occurs. In G2, the cell checks for errors in 

DNA replication that may have occurred in the previous phase and attempts to repair 

errors that are detected. The cell will continue to grow and synthesize proteins that are 

required in the next mitotic phase. The mitotic phase, consisting of four sub-phases 

(prophase, metaphase, anaphase and telophase), followed by cytokinesis, is where the 

cell proceeds to divide to form two daughter cells (Cooper 2000). The process 

described here describes the growth and replication of somatic cells. The growth and 

replication of germline cells is slightly different, as daughter cells are required to contain 

half the number of chromosomes (n) as somatic cells (2n). Gametes will undergo the 

prophase, metaphase, anaphase, telophase and cell division rounds twice (meiosis I 

and meiosis II), to produce four daughter cells. Importantly, parental chromosomes 

within gametes undergo homologous recombination during the first prophase.  
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Figure 1.1. The eukaryotic cell cycle that embodies the growth and division of 

cells.  

The cell cycle starts at the G1 phase. DNA replication occurs in the S phase. The S 

phase is followed by more cellular growth. In the next G2 phase, the cell checks for 

errors in that could have occurred during DNA replication. The cell then proceeds to 

divide in the M phase and two daughter cells are created following cytokinesis at the 

end of the cell cycle. Author’s own artwork.   
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Mutations arise from errors that occur during DNA replication during the S phase of the 

cell cycle (Figure 1.2). In eukaryotes, the predominant DNA polymerases ε and δ 

replicate the leading and lagging DNA strand respectively and with high fidelity (Korona 

et al. 2011). The reported error rates for the replication process range between one 

mistake per 104 base-pairs (bp) to one per 105 bp in vitro. However the rate at which 

mutations which are permanently incorporated into daughter cells is much lower 

because most of the errors that occur are recognised and corrected by proofreading 

exonucleases present within DNA polymerases ε and δ (Kunkel 2009; Korona et al. 

2011; Acuna-Hidalgo et al. 2016). Other accessory proteins such as the single strand 

binding protein also enhance the accuracy of DNA replication by DNA polymerases 

(Yang 2000). Errors which are missed by proofreading subunits can be corrected during 

the mismatch repair pathway. Mismatch repair pathway proteins (including MLH1, 

MLH3, MSH2, MSH3, MSH6, PMS1 and PMS2 in humans) excise the DNA containing 

the incorrectly incorporated nucleotide that is recognised by the proteins’ ability to 

distinguish the newly synthesized daughter strand from the parental strand (Preston et 

al. 2010; Seshagiri 2013). Mismatch repair proteins are highly conserved across 

prokaryotes and eukaryotes (Yang 2000). DNA polymerase and DNA ligase then 

replace and seal in the correct nucleotides to the newly replicated strand. Cells that 

contain mutations that are not repaired will undergo DNA damage induced apoptosis if 

the mutation is lethal, or will be sustained in the daughter cell and its subsequent 

descendant cells (Preston et al. 2010).  
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Figure 1.2. DNA replication that occurs during the S phase of the cell cycle.  

DNA polymerases (Pol) ε and δ replicate the leading and lagging strand respectively 

with an error rate of one per 104 to 105 nucleotides in eukaryotes. Both polymerases 

contain proofreading exonucleases (EXO) which ensure that an identical nucleotide to 

the leading or lagging template strand is incorporated into the newly synthesized 

strand. Errors which bypass the proofreading subunit can be correct in the mismatch 

repair pathway (this can also occur on the replication of the lagging DNA strand but is 

not represented in the figure). Author’s own artwork.  
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Errors in DNA replication have the potential to generate different types of mutations. 

The relative frequencies of their occurrences and the relative ease of their repair 

influences the observable error rate for each type of mutation. The incorrect 

incorporation of a single nucleotide base leads to nucleotide substitutions. Among 

these, transitions (purine-purine involving A and G nucleotides; or pyrimidine-pyrimidine 

involving C and T nucleotides) occur the more frequently than transversions (purine-

pyrimidine, or vice versa) in all species studied to date (Gojobori et al. 1982; Hershberg 

and Petrov 2010; Smeds et al. 2016). Each of the four nucleotides can obtain 

spontaneous, reversible rearrangements of their molecular bonds. Such 

rearrangements create a new form of the original nucleotide (termed a tautomer). 

Transition and transversion mutations can arise through tautomeric shifts. A tautomeric 

nucleotide sometimes pairs with a different nucleotide than the standard nucleotide that 

the originating nucleotide bonds with. For instance, the standard A (amino) form pairs 

with T, but its non-standard imino form A’ pairs with the C nucleotide. If this error is not 

corrected during DNA replication, a transition mutation in the newly synthesized DNA 

strand results (Griffiths et al. 2000). 

In the newly synthesized strand, changes are observed at C or G nucleotides more 

frequently than alterations at A and T bases, especially within the hyper-mutable, 

methylated cytosine base regions in CpG dinucleotide islands (Cooper and Youssoufian 

1988). The reasons for the increased mutability are not yet clear, but it is postulated that 

the ease or difficulty of separation of the paired nucleotides contributes to easier repair. 

C and G nucleotides have a strong three hydrogen bond connection, making 

dissociation and repair more difficult in GC rich regions (Ségurel et al. 2014). A and T 

nucleotides are more easily separated with only two hydrogen bonds connecting these 

nucleotides, allowing easier repair in AT rich regions. Other causes of single nucleotide 

or multinucleotide substitutions include incomplete repair of the newly replicated DNA 

strand (Acuna-Hidalgo et al. 2016).  

DNA polymerases can add or fail to incorporate occasional nucleotides due to 

misalignments to the template strand, causing small insertion-deletion (indel) errors. 

Larger indels involving double stranded breaks (DSBs) in DNA and larger chromosomal 
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segments of >1,000 bp in size are often termed structural variants (Scherer et al. 2007) 

and are most often caused by homologous recombination, non-allelic homologous 

recombination and replication-based mechanisms (Gu et al. 2008; Yang et al. 2013). 

Depending on the type of mutation, structural variants can be further classified as a 

copy number variant (CNV), inversion, translocation or segmental duplication. DSBs 

can be repaired by either the homologous recombination or non-homologous end 

joining pathways (Lieber 2010).  

Genetic context is a major determinant of frequency of mutation. Regions of low 

complexity such as minisatellite and microsatellite regions have higher mutation rates 

than complex regions of unique DNA (Baer et al. 2007). Homopolymer regions are 

similarly hyper-mutable as they are prone to replication slippage. Replication slippage 

occurs when there is a misalignment in the template and newly synthesized DNA, 

causing expansion or contraction of the homopolymer. In eukaryotes, single nucleotide 

changes occur more frequently in DNA that is in close proximity to indel mutations or 

recombination sites (Lercher and Hurst 2002; Tian et al. 2008; Duret and Arndt 2008). 

At the M phase of the cell cycle, aneuploidies can occur when chromosomes do not 

correctly segregate into their respective daughter cells (Figure 1.1). The accuracy of 

chromosomal segregation is dependent on the structural integrity of spindle 

microtubules and their ability to adequately attach onto the chromosome through a 

structure called the kinetochore (Compton 2011). Aneuploidies often have severe 

effects on cell survival and apoptosis of the affected daughter cells is usually initiated. 

Occasionally some cells survive and go on to have profound phenotypic effects. 

Aneuploidies are frequently recognised in cancerous cells and other diseases which will 

be reviewed later in this chapter.   

Spontaneous DNA mutations caused by factors independent of the cell cycle, especially 

those involving DSBs, can be caused by mutagens of endogenous (retrotransposons, 

oxygen-free radicals, by products of metabolism) or exogenous (viruses, UV radiation, 

DNA-reactive chemicals commonly found in tobacco products) sources. The main 

mechanisms to repair these DNA lesions are through the base excision repair and 
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nucleotide excision repair systems (Lindahl 1999). If spontaneously caused DNA 

mutations are not repaired before the next round of DNA replication, they become 

permanently fixed into newly created daughter cells.  

1.3. Somatic and germline mutations 

The timing of occurrence, type and location of the cell containing a de novo mutation 

influences the possible effect that the mutation has on the individual or the population. 

Germline mutations occur in the gametes of an individual’s parents and are therefore 

heritable and exposed to evolutionary processes. Somatic mutations occur in all other 

cells of the body and are accumulated post-fertilization throughout an individual’s life ( 

Figure 1.3). Somatic mutations are self-limiting as they are not heritable, but can have 

profound effects on an individual if the mutation occurs early in development (e.g. 

postzygotically), or if it induces oncogenesis (Li et al. 2014). More proliferative cell types 

such as those in the intestinal epithelial tissue are expected to harbour more new 

mutations than cells that are less proliferative, such as cells of the heart tissue 

(Shendure and Akey 2015). Researchers have observed that the somatic mutation rate 

is almost twice as high as that of the germline mutation rate for humans and mice 

(Milholland et al. 2017). The differential mutation rate highlights the importance of 

preserving the genome in the germ cells and that DNA repair in the soma is much less 

efficient.  
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Figure 1.3. Somatic and germline mutations.  

Somatic mutations are not heritable, unlike germline mutations which can be transmitted 

to some or all progeny. Somatic mutations can only occur in somatic tissue. Proliferation 

of a cell containing a somatic mutation leads to a population of cells containing the 

mutation that occurred in the original cell. Germline mutations occur in cells that are 

destined to become a sex cell (i.e. sperm or egg). Gametes containing a specific 

germline mutation that are fertilized result in progeny with the mutation present in all 

cells of their body. Author’s own artwork. 

 

1.4. De novo mutation detection methods 

As new mutations are relatively rare especially in eukaryotes, accurately identifying and 

characterising de novo events in the whole genome has remained a challenging task 

(Kondrashov and Kondrashov 2010). Our ability to detect de novo mutations is limited 

by our ability to observe the DNA sequences for whole genomes, especially in 

eukaryotic genomes with chromosomes that are megabases in total size. With the 

achievement of several technological advancements in DNA sequencing, estimates 

have become more accurate over time and error profiles of different types of mutations 

has been observed at a much higher resolution than previously possible. 
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1.4.1. Traditional de novo germline mutation rate detection methods 

The first few estimates of de novo germline mutation rates were made before DNA 

sequencing was even possible. Large chromosomal abnormalities, in particular 

aneuploidies, were easily detectable under the microscope in the early days of 

cytogenetic research. The path to detecting single nucleotide variation (SNV), small 

indels and sub-microscopic de novo variants such as CNVs required the development 

of more sophisticated methodologies and technologies. We will regard as traditional de 

novo mutation detection methods as those methods that were developed before high 

throughput sequencing technologies existed (current methods are later outlined in 

section 1.4.2).  

The first methods for estimating mutation rates were based on observations of 

spontaneously occurring phenotypes that were caused by de novo mutations in 

functional coding DNA, such as Mendelian diseases in people or lethal mutations in 

laboratory animals (Danforth 1923; Haldane 1935; Keightley et al. 1998; Kondrashov 

2002). Rates of incidence of the new phenotypes in the population were used to 

indirectly infer a mutation rate for that species.  

Once the first DNA sequencing and amplification methods were developed, researchers 

could directly observe de novo mutations, i.e. Maxam-Gilbert and Sanger sequencing in 

the 1970s (Maxam and Gilbert 1977; Sanger et al. 1977). These sequencing and DNA 

amplification methods allowed scientists to obtain DNA sequences that were thousands 

of nucleotides in length, enabling the scientists to directly interrogate small genomes 

(e.g. some viruses), or small regions of larger genomes from other organisms (e.g. 

humans, dogs, mice).  

A description of methods that have historically been used to estimate de novo mutation 

rates and their limitations are summarised in Table 1.1. Some major limitations are 

common to all traditional techniques. For example, given the extreme rarity of de novo 

mutation events in eukaryotes and lack of feasibility to interrogate multiple individual 

genomes (in humans, the current agreed estimates of the per nucleotide mutation rate 

is 1-3 x 10-8 per generation, which is equivalent to 30 – 90 nucleotides in the three 
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gigabase (Gb) human genome) (Conrad et al. 2011; Kong et al. 2012; Campbell and 

Eichler 2013), traditional methods could not provide a high resolution, accurate 

estimation and an investigation into the characteristics of new mutations in large 

eukaryotic genomes. In particular, it was not possible to observe or measure the rates: 

for each mutation type (single nucleotides, indels, CNVs, aneuploidies); across a variety 

of species of interest; in different genomic contexts; and in different physiological and 

environmental conditions, including in natural contexts. 

Table 1.1. Methods for estimating de novo mutation rates in the pre-high 

throughput sequencing era and the potential associated biases 

Measurement and methods 
taken to estimate rates 

Potential biases and 
limitations 

References 

Incidence rates of spontaneously 
occurring phenotypes present in 
natural populations (e.g. 
spontaneous Mendelian diseases 
in people). With the Mendelian 
inheritance pattern, incidence, 
fitness effect, causal locus and its 
sequence length, an estimated 
mutation rate can be calculated. 
This relies on an assumption that 
variant is under a mutation-
selection balance.  

Not all mutations cause a 
phenotypic change leading to 
underestimates of the 
mutation rate. Deleterious 
mutations associated with 
disease may be present in 
mutational hotspots. 

(Danforth 
1923; 
Haldane 
1935; Deng 
and Lynch 
1996; 
Kondrashov 
1998, 2002; 
Nachman 
2004) 

Using inbred populations to 
systematically measure 
spontaneously occurring 
phenotypes (e.g. mutations 
causing with lethal 
consequences) 

Requires inbred lines with 
short generation times, up to a 
thousand generations are 
often required to make an 
observation. Therefore this 
method is not feasible in many 
large animals. As many 
generations may be required 
to obtain an observation of a 
new phenotype, this can be 
extremely laborious. Inbred 
lines may not represent true 
natural populations. 
 

(Muller 
1928; 
Keightley 
1994) 
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Using inbred populations to 
directly identify de novo 
mutations that occur in a few loci 
by DNA sequencing or 
polymerase chain reaction 

Only possible for sites with 
unusually high mutation rates 
(e.g. mitochondria, 
microsatellites), otherwise 
sequencing would become too 
expensive as large sample 
sizes would be necessary to 
make an observation. 

(May et al. 
1996; 
Denver et al. 
2000) 

Identifying polymorphisms at 
neutral sites (e.g. synonymous 
mutations, DNA sequencing of 
orthologous sequences between 
species). Site must be neutrally 
evolving so that it is proportional 
to the mutation rate. Timing of 
species divergence must be 
known.  

Difficult to ascertain whether a 
site is truly neutral. 

(Sueoka 
1961; 
Kimura 
1968; 
Kondrashov 
and Crow 
1993; Drake 
et al. 1998; 
Nachman 
and Crowell 
2000) 

Applying artificial mutagens such 
as ethyl methanesulfonate (EMS) 
to introduce spontaneous 
mutations. EMS-induced 
mutations have been used to 
study the phenotypic effects and 
rate of true spontaneous 
mutations. 

Not ethical or feasible in 
animals with longer generation 
times. Does not provide a true 
representation of naturally 
spontaneous mutations. 

(Mukai 1970; 
Keightley et 
al. 1998) 

1.4.2. High throughput sequencing technologies for detecting de novo germline 

mutations 

Direct observation of de novo germline mutations in whole genomes would enable the 

accurate estimation of the de novo mutation rate and characterisation of their genome 

wide distribution for each mutation type. With multiple individual whole genomes from 

related individuals, many questions about de novo mutations can be answered. Before 

sequencing genomes from individuals of a family became a possibility, sequencing 

technologies had to become more affordable and higher in throughput and resources 

that complement these technologies had to be developed.   
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One of the most important resources in modern genomics research is the reference 

genome. The reference genome is a representation of a species’ DNA, where 

nucleotides are organised linearly by physical position along the lengths of each 

chromosome. Researchers studying a variety of experimental questions can then use 

the reference genome to develop tools or describe DNA of interest in subsequent re-

sequencing projects (e.g. physical positions of de novo mutations) in a consistent and 

reproducible manner. Annotations to the reference genome, including the physical 

position of various features such as genes, regulatory DNA and genomic context would 

enable a deeper understanding of how and why de novo mutations are formed. The first 

draft genome made available was the human genome in 2001 and was developed from 

a pool of four unique individuals (Lander et al. 2001; Venter et al. 2001). Sequencing 

was carried out using Sanger based technologies and the project had an estimated cost 

of up to $1 billion US dollars (USD). For the first time, researchers were able to 

characterise different features of the human genome, including its length, the number of 

genes and their organisation, GC content and relative rate of recombination across the 

genome (Lynch et al. 2016). 

To enable utilization of the reference genome in subsequent re-sequencing projects, it 

was evident that major technological advancements had to be made to reduce the cost 

of whole genome sequencing to under $1,000 USD per individual. Reducing the cost of 

providing whole genome re-sequencing would make population-level studies, 

personalised medicine and research in other species possible (Schloss 2008; Reuter et 

al. 2015). The National Human Genome Research Institute initiated a $70 million USD 

scheme to make high throughput, NGS possible in the subsequent 10 years. The 

resources provided through this scheme resulted in the development of a variety of high 

throughput sequencing platforms (Reuter et al. 2015; Ambardar et al. 2016).  

Since the human genome was sequenced, the genomes of other multicellular model 

organisms were sequenced in rapid succession including the mouse, rat, chimpanzee 

and the dog (Waterston et al. 2002; Gibbs et al. 2004; Mikkelsen et al. 2005; Lindblad-

Toh et al. 2005). NGS platforms developed accelerated genomics research and today 
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there are 35,197 publicly available reference genomes, including 1,331 animal genomes 

(http://www.ncbi.nlm.nih.gov).   

Popular NGS platforms are based on Sanger sequencing technology and involve four 

main wet laboratory steps, each with slight variations in chemistry depending on the 

sequencing platform  (e.g. from 454, Illumina, Ion Torrent companies, developed 

between 2004-2010) (Ambardar et al. 2016; Mardis 2017). The four steps include 

nucleic acid isolation, library preparation, template amplification and sequencing by 

fluorescence detection (Ambardar et al. 2016). Creating DNA libraries involves random 

fragmentation of the DNA strand to create shorter DNA templates and the attachment of 

“adaptors” to template ends. The adaptors create stable priming sites for the ends of 

diverse DNA sequences and are key to enable PCR amplification and sequencing on 

the NGS platform (Timmerman 2015; Ambardar et al. 2016). Clusters of clonally PCR 

amplified DNA templates enhances the detectable fluorescent signal that is produced 

from the extension of one nucleotide during sequencing, as technologies are not yet 

sensitive enough to detect fluorescence using only one DNA molecule. Sequencing is 

carried out from either end of the DNA fragment, resulting in the production of single 

sequences (often termed ‘reads’), or from both ends of the DNA fragment, resulting in 

paired-end reads on either side of a DNA fragment (the middle un-sequenced portion is 

commonly termed the ‘insert sequence’) ( 

Figure 1.4). Significantly, paired-end reads are on opposite strands facing the centre of 

the insert sequence, and library construction can filter DNA fragments so that paired 

reads are separated by a limited distance on the DNA which designates the “read-

length”. Depending on the sequencing platform, reads can vary in length (e.g. 36-300 

bp, single or paired-end reads are available for Illumina platforms, 200-400 bp single 

reads for Ion Torrent platforms).  
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Figure 1.4. Representation of NGS data that has been aligned to a reference 

genome.  

NGS data typically consists of short paired-end reads that are sequenced on opposite 

strands of the original DNA template. Paired-end reads typically contain a non-

sequenced insert sequence. Coverage indicates the number of reads that have 

aligned to a locus in the reference genome. Variant callers detect loci with reads 

containing variation from the reference allele.  Author’s own artwork.  

 

 

When individual genomes are sequenced using NGS technologies, the short reads 

generated must be processed using bioinformatics tools in order to achieve biologically 

relevant observations. First, reads must be arranged into their natural biological order. 

This is done by computationally aligning or ‘mapping’ reads to the reference genome ( 

Figure 1.4). Commonly used mapping algorithms place reads into the most likely 

physical position in the reference genome, by comparing similarity between the read 

and all portions of the reference. Nucleotides in the optimally aligned sequences that 

differ relative to the reference genome can next be identified using variant calling 

programs.  
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To characterise germline de novo variants in eukaryotic species, studies most recently 

employ NGS in parent-offspring trio genomes or transcriptomes (Michaelson et al. 2012; 

Sayyab et al. 2016; Francioli et al. 2017). A “trio” consists of two parents and a progeny 

(often a disease “proband”). When a high-quality variant is detected at specific locus in 

the offspring that is not present in either parent, a deviation from Mendelian law 

suggests the presence of a de novo mutation (Goldmann et al. 2016; Wong et al. 2016) 

(Figure 1.5). De novo variant detection using this technique has been employed in 

humans, mice, chimpanzees and birds to date (Venn et al. 2014; Uchimura et al. 2015; 

Smeds et al. 2016).  

 

 

Figure 1.5. A parent-offspring trio pedigree and a representation of a germline 

de novo mutation.  

One paternal chromosome (the father is represented on the pedigree as a square) 

shown in blue and one maternal chromosome (the mother is represented on the 

pedigree as a circle) shown in red is inherited by the offspring (represented on the 

pedigree as a triangle). The paternal chromosome in the offspring contains variation 

(shown in yellow) that deviates Mendelian inheritance laws, suggesting that this is a 

de novo mutation. Author’s own artwork.   
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Although NGS technologies have advanced genomic research drastically, sequencing, 

mapping and variant calling remain error prone and are limited to variant types that can 

be called accurately using common workflows. The sheer size and complexity of whole 

vertebrate genomes (~3 gigabases in humans, 48% of which are composed of repetitive 

sequences) means that such limitations are common (Mardis 2017). Each NGS platform 

is associated with its own specific propensity to particular error rates and profiles 

(Ambardar et al. 2016; Goodwin et al. 2016). For example, platforms that use PCR 

amplification are subject to PCR errors and the difficulty in re-sequencing GC rich DNA 

(Reuter et al. 2015). Read alignment to the reference genome is based on read 

nucleotide identity to the reference genome causing mapping bias towards reference 

alleles and underrepresentation of alternative alleles, especially in highly polymorphic 

regions such as in human leukocyte antigen and other immunity genes (Degner et al. 

2009; Brandt et al. 2015). The process of alignment and variant calling assumes that 

the reference genome is a true representative of the studied species. Most reference 

genomes are “incomplete” with many containing gaps, un-localised contigs that have 

not been placed on their residing chromosome and technical artefacts (The Genome 

Reference Consortium, https://www.ncbi.nlm.nih.gov/grc/). Also, as the reference 

genome is developed from one or a relatively small number of unique individuals, any 

‘novel’ DNA that is present in the subject individual but not the reference sequence may 

be missed due to the described mapping bias (Rosenfeld et al. 2012).  

To alleviate issues associated with short read NGS platforms such as sequencing errors 

and alignment artefacts, genomes must be sequenced to a high level of redundancy 

(coverage of ~30X) to achieve the high specificity that is required to characterise de 

novo mutations (Francioli et al. 2017). Coverage of >30X can achieve relatively high 

sensitivity and accuracy of calling SNVs (Cheng et al. 2014). Because higher coverage 

is associated with higher sequencing costs, some laboratories opt for exome NGS to 

detect de novo variants, especially those associated with disease (Poultney et al. 2013; 

Francioli et al. 2017). Variant types other than SNVs, in particular longer indels and 

CNVs less than 100,000 bp, are more difficult to detect and genotype to a comparable 

degree of accuracy as genotyping SNVs using short read NGS. As a consequence, the 
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characteristics and rates of large de novo indels and CNVs have not been 

comprehensively studied in species other than humans (Ghoneim et al. 2014).  

Depending upon insert sizes, paired-end sequencing on short read NGS platforms can 

improve the level at which indels and SNVs can be resolved. Long read sequencing 

platforms, which were commercially available from 2010-2014, have been designed to 

outperform short read NGS in accurately calling larger variants such as indels and 

CNVs. Long read platforms include the Oxford nanopore (minION) and single molecule 

real time (SMRT) sequencing by Pacific Biosciences (PacBio). The two dominating 

platforms produce 2,000 and 40,000 bp length reads respectively (Ambardar et al. 

2016). Both platforms are PCR-free, with the advantage of less bias when sequencing 

GC rich content and all long read platforms enable improved mappability of reads due 

the increase in alignment confidence associated with read length (Reuter et al. 2015). 

With these benefits, long read platforms have been shown to identify 85% of novel 

indels and CNVs of ~500 bp that were not detected by other methods (Chaisson et al. 

2014). Despite these benefits, long read platforms are associated with higher 

sequencing error rates (11 - 38.2%, predominantly composed of indel and homopolymer 

errors) than short read NGS platforms (0.11 – 0.28%) (Minoche et al. 2011). To benefit 

from both long and short read platforms, researchers have suggested combining both 

technologies in a single experiment (Weirather et al. 2017). However, as long read NGS 

are more expensive per base and are lower throughput than short read technologies, 

costs still limit their wide-scale use (Reuter et al. 2015; Ambardar et al. 2016). 

1.4.3. Microarray based technologies for detecting de novo CNVs 

Microarray based technologies have been successfully used to detect CNVs larger than 

100,000 bp in length, especially those arising from de novo events (Carter 2007; Egan 

et al. 2007; Sebat et al. 2007; Lupski 2007; Itsara et al. 2010; Alvarez and Akey 2012; 

Elizabeth Locke et al. 2015). There are many types of microarray based technologies 

(for a review of each see (Carter 2007)) but each works using the same principle. 

Microarrays are developed to target multiple, evenly spread sites or markers across the 

lengths of reference chromosomes. Regions where individuals differ in DNA copy 



 

 
20 

number to the reference can be identified by the relative intensity of signal that is 

emitted from hybridized probes in the region of the variant. Because the technology 

relies on linkage disequilibrium for targets to represent surrounding loci, higher density 

microarrays such as those available for human and mice are able to provide a higher 

resolution of the genome. Reliability of these markers diminishes for CNVs less than 

100,000 bp and for these variants NGS platforms are still preferred despite their 

limitations (Willet et al. 2013; Campbell and Eichler 2013; Poultney et al. 2013). 

Additionally, CNVs detected by microarrays cannot be physically placed without 

additional sequence interrogation such as through NGS.  

1.4.4. Detection of somatic mutations 

The de novo mutation detection methods that have been discussed so far relate to 

germline mutations and not somatic mutations, which are more difficult to identify. 

Somatic mutations are unique to a single cell and its descendant cells, unlike germline 

mutations which can be represented by all cells and tissue types in the body. Due to the 

relative rarity of each somatic mutation existing in an individual, obtaining high 

quantities of DNA to represent these mutations sufficiently is the biggest challenge in 

detecting somatic mutations. Many of the developed protocols used to identify somatic 

variants increase template number, either by careful sampling or through specialized 

library preparation methods.  

One common purpose for somatic mutation detection in humans and dogs is in cancer 

studies to identify putative disease causing or risk variants (Watson et al. 2013; Gardner 

et al. 2016). In cancer studies, somatic mutations are typically identified by employing 

whole genome or whole exome sequencing on DNA obtained from tumour and normal 

patient-matched tissue samples (Lawrence et al. 2013; Watson et al. 2013; Alioto et al. 

2015). A mutation is determined as somatic if it was not identified as a germline variant 

that was present in the cells of normal tissue. As cancers typically consist of many ‘sub-

clones’, each with their own unique set of somatic mutations, paired-end, deep 

coverage (~100X) sequencing is required to detect somatic mutations from technical 

artefacts (Alioto et al. 2015; Hsu et al. 2017). Furthermore, as the technique of 
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sequencing tumour-normal pairs requires a population of tumour-affected cells, this 

limits its use in a clinical setting for the early detection of cancer or for non-tumourous 

cancers (e.g. blood cancers).  

A method for the detection of somatic mutations in a cell without the need for 

descendant cells to increase DNA template number is single cell sequencing. Single cell 

sequencing was first conducted on mammalian cells for the whole genome (scDNA-seq) 

in 2011 and transcriptome (scRNA-seq) in 2009 (Tang et al. 2009; Navin and Hicks 

2011). Single cell sequencing has since also been applied to metagenomics and 

epigenomics. The technology employs similar processes to standard ‘bulk’ sequencing, 

with some additional steps. Cells need to be isolated (e.g. through microfluidics), whole 

genomes are amplified to obtain enough starting template quantities and additional 

barcoding of DNA fragments is required in library preparation. Barcodes are later used 

to identify the sequence’s cell of origin during downstream processing (Wang and Navin 

2015). Although the technology has improved significantly in the last 10 years, technical 

errors may be introduced during the amplification step and such errors remain a major 

source of false positives in this technology (Wang and Navin 2015). Despite this, single 

cell sequencing technologies provide opportunity to study other biologically relevant 

somatic mutations other than cancer, such as neuronal mutations and somatic 

mutations associated with aging (Lodato et al. 2015; Enge et al. 2017). With further 

development, the technologies show potential for use in early clinical diagnosis of 

cancers caused by somatic mutations (Navin and Hicks 2011). 

1.5. The effects of de novo mutations 

All de novo mutations can be classed as having an advantageous, neutral or deleterious 

consequence to an individual’s fitness. Fitness can be defined as the ability for an 

individual to survive and reproduce in the environment in which they reside in (Crow 

2000). Identifying the distributions of fitness effects for germline mutations aids in better 

understanding the dynamics between the occurrence of new genetic variation and the 

fitness of a population (Keightley and Eyre-Walker 2007). In general, advantageous 

mutations are rare but over time, contribute to ongoing adaptive evolution and 
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speciation (Eyre-Walker and Keightley 2007; Keightley 2012). Mutations that are highly 

deleterious undergo purifying selection and do not persist in populations for long periods 

of time. This is particularly relevant for sporadically occurring CNVs and aneuploidies, 

which may affect larger portions of the genome (Acuna-Hidalgo et al. 2016). Mutations 

that are mildly advantageous or deleterious are under lower selective pressure and 

persist in populations longer. Particular attention has been paid by the research 

community to the accumulation of mildly deleterious alleles, which are thought to 

collectively contribute to common neurodevelopmental diseases such as intellectual 

disability, autism spectrum disorders and schizophrenia (Vissers et al. 2010; O’Roak et 

al. 2011; Veltman and Brunner 2012; Poultney et al. 2013). 

1.5.1. New mutations and the evolution of canine phenotypes 

The evolutionary process that allowed the rapid phenotypic evolution of the domestic 

dog from the grey wolf is of interest because of the amount of phenotypic diversity that 

has been developed in a relatively short period of time. The event of canine 

domestication presents a valuable model for understanding the process and relationship 

that influences gene variation and phenotypes as species evolve. Genetic and 

paleontological evidence suggests that canine domestication occurred  ~15,000 - 

33,000 years ago, however most of the 400 modern dog breeds were only developed in 

the last couple of centuries (Vilà et al. 1997; Savolainen et al. 2002; Germonpré et al. 

2009a; Axelsson et al. 2013; Dreger et al. 2016). The phenotypic diversity is thought to 

be derived from genetic diversity that was already present in the wolf, however the rate 

and contribution from de novo mutations remains elusive (Wayne and Ostrander 1999). 

De novo mutations in KIT have been identified as a cause of white spotting in 

subpopulations of German Shepherd and spotted Weimaraner dogs (Gerding et al. 

2013; Wong et al. 2013). The majority of other new mutations that have been reported 

contribute to diseases including ichthyosis, bleeding disorders and progressive retinal 

atrophy (Brooks 1999; Vilboux et al. 2008; Kropatsch et al. 2016; Bauer et al. 2017). De 

novo mutations that result in observable or measurable phenotypes such as coat colour 

or disease are easier to detect. However, as not all de novo mutations have a strong 

impact on visible phenotypes, many are not likely to be detected without NGS efforts. 



 

 
23 

1.5.2. De novo mutations and disease 

Epidemiological studies have revealed sporadically occurring heritable diseases in both 

people and animal populations, with risk factors such as parental age increasing the 

likelihood of disease (Veltman and Brunner 2012). When there is no prior family history 

of a disorder expressed in a proband, researchers have recognised that causative 

genes are likely to be located in genomic regions that are more prone to mutations than 

others (these regions are often termed ‘mutational hotspots’) (Kong et al. 2012; Acuna-

Hidalgo et al. 2016).  Several disorders where new mutations are prevalent in their 

respective causative genes include Duchenne muscular dystrophy, haemophilia A and 

B, retinal atrophies and Huntington’s disease (Haldane 1946; Myers et al. 1993; Grimm 

et al. 2012; Kropatsch et al. 2016). Various types of causative mutations have been 

identified at these loci, from simple single nucleotide  mutations, CNVs, to deletions and 

inversions caused by non-allelic homologous recombination (Myers et al. 1993; Rossetti 

et al. 2011; Grimm et al. 2012).  

Before the advent of whole genome sequencing, patients with the aforementioned 

diseases were unlikely to be diagnosed within their lifetime since the responsible de 

novo mutations are usually unique to an individual. If the effect on fitness is great, 

affected individuals are unlikely to propagate the mutation and this impacts the ability to 

conduct family or population-based mapping studies. Collectively, patients with 

spontaneous disease contribute importantly to overall disease prevalence. For example, 

of all reported Mendelian phenotypes (~5,129), ~32% have no reported underlying gene 

(OMIM, 2018). Such figures are roughly similar across domestic animal species 

including the dog (~23%), cat (~35%), bovine (~41%) and pig (~58%, OMIA, 2018). 

Many unmapped traits are believed to be caused by new mutations (Chong et al. 2015). 

Whole genome and exome trio sequencing studies are regarded as an effective method 

of diagnosing sporadic genetic disorders and are expected to become common in 

clinical practice in the foreseeable future (Zhu et al. 2015; Francioli et al. 2017; 

Cummings et al. 2017). Already, these techniques have been used to successfully map 

traits including common human diseases such as autism spectrum disorders and 
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schizophrenia and have been successfully used in animal disease studies (Sayyab et 

al. 2016; Chew, Haase, Bathgate, et al. 2017).  

Aneuploidy is most frequently documented in humans as unassisted survival is severely 

impaired (Munné et al. 2004, 2016). Virtually all aneuploidies result from de novo 

events, as the effects of such mutations on fitness are so severe that individuals with 

these disorders are unable to reproduce. As with other CNVs, disease severity is 

impacted by a gene dosage effect caused by extra or missing chromosomes. The most 

common aneuploidy is trisomy 21 (Down syndrome), with a prevalence of one in 800 

births (de Graaf et al. 2015). Other autosomal aneuploidies include trisomy 13 (Patau 

syndrome) and trisomy 18 (Edwards syndrome). Sex chromosome aneuploidies are 

also prevalent in human populations. They can be in the form of monosomy (Turner 

syndrome - X0) or trisomy (Jacob’s syndrome -XYY; Klinefelter syndrome – XXY; and 

Triple X syndrome - XXX). Other forms of polysomies exist but are much more rare 

(other forms of Klinefelter syndrome - XXYY, XXXY, XXXXY; Tetrasomy X – XXXX and 

Penta X syndrome - XXXXX) (Visootsak and Graham 2006).  

In addition to the diseases caused by germline mutations, somatic mutations that are 

acquired throughout an individual’s life can become pathogenic and cause disease. 

Reported diseases include mutations that occur in the embryo (e.g. Proteus syndrome), 

or later in life (e.g. neurofibromatosis and McCune-Albright Syndrome) (Erickson 2003; 

Poduri et al. 2013). The most notorious and prevalent group of diseases caused by 

somatic mutations is cancer. Cancers can occur when disruptive mutations are acquired 

in proto-oncogenes, tumour suppressor genes or genes involved in DNA repair. These 

genes are responsible for normal cellular identity, differentiation and growth. When 

these normal cellular processes are disrupted, cells become abnormal and can have 

uncontrollable growth. The uncontrolled growth leads to formation of tumours, which is 

characteristic of many cancer-types (e.g. breast, lung, lymphoma) except for some 

blood cancers (e.g. leukemia). Disease can occur if the tumour is malignant and affect 

the ability of the organ or tissue it is residing in to function normally. In some cases, 

cells of the primary cancer can metastasize and form new tumours in other parts of the 

body. 
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Cancers are complex diseases and are genetically heterogeneous across individuals 

and even within the tumour cells of a single patient. Their heterogeneity stems from the 

stochastic nature and accumulation of somatic mutations. Most somatic mutations 

present in surviving cells are either neutral or mildly deleterious. The cells containing 

mildly deleterious mutations can clonally expand and harmful mutations can further 

accumulate in cancer driver genes. For this reason, age is a major risk factor for the 

development of many cancers (Risques and Kennedy 2018). Once cells become 

cancerous, tumours can develop and clonally expand into more aggressive forms. In the 

past decade, researchers have employed NGS technologies to determine the 

evolutionary trajectories of cancer to identify major genetic aberrations and the 

molecular interactions between cancer driving genes (Youn and Simon 2011; 

Krzywinski 2016; Peterson and Kovyrshina 2017). This knowledge can ultimately be 

used in a clinical setting such as use of identified predictive or prognostic biomarkers to 

enhance accuracy of diagnosis and effectiveness of personalised treatment plans. 

1.6. Rates and distribution patterns of new mutations within and across species 

Despite the challenges in identifying de novo mutations as previously described, it is 

evident that mutation rates vary across species, within species, within families and even 

across chromosomes of an individual (Ellegren et al. 2003; Conrad et al. 2011; 

Hodgkinson and Eyre-Walker 2011). In the current section, we describe characteristics 

of germline mutations across species only. Direct estimates of mammalian per base 

mutation rates fall around 10-8, however rates in other species can vary at an order of 

1,000 fold to this value (Lynch et al. 2016). Mutations are non-random and are 

influenced by different genomic contexts. Genome length and sequence constitution are 

unique to each species and this partially contributes to the differences observed in per 

species mutation rates. Variation in mutation rates also suggest that there are 

differences in the efficiency of DNA replication and repair across organisms (Lynch et 

al. 2016). 

Although variation in rates exists, mutational patterns are shared among species. For 

instance, compared to non-GC rich contexts, mutations in CpG dinucleotide islands are 
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reported to occur 30 times more frequently in great apes, 15 times more in other 

mammals and 10 times more in birds  (Keightley et al. 2011; Hodgkinson and Eyre-

Walker 2011; Smeds et al. 2016). Apart from GC contexts, the mutation rate is also 

influenced by the adjacent nucleotides by two to threefold for reasons that are not 

completely understood (Hwang and Green 2004). Local disruptions to DNA such as 

recombination sites and spontaneously occurring indels can regionally influence 

mutation rates. In eukaryotes and some bacteria, SNP mutations are more frequent 

within ~50-300 bp of an indel (Tian et al. 2008; Zhu et al. 2009; Hollister et al. 2010). 

Similarly, recombination hotspots have been found to coincide with substitution mutation 

hotspots (Duret and Arndt 2008).  

Parent of origin and age of conception has been identified as major factors that 

influence mutation rates. One of the first researchers to acknowledge gender 

differences was Haldane in 1946, who noted that the haemophilia gene was more 

mutagenic in men than in women (Haldane 1946). With modern technologies, Kong et 

al. 2012 later confirmed this, estimating that two additional mutations are transmitted to 

the offspring per year with increasing age of conception of the father (Kong et al. 2012). 

Whilst a similar trend is observed for mutations of maternal origin, the rate is much 

lower at 0.24 new mutations per additional year of the mother’s age (Goldmann et al. 

2016). This male bias is also observed in chimpanzees but at an even higher rate, with 

an estimated three mutations per year of the father’s age (Venn et al. 2014). This 

mutational bias could reflect the reduction in the capability of DNA replication and repair 

during cell division as an individual ages. In females, oogenesis begins during foetal 

development where all a woman’s primary oocytes are formed and arrested at prophase 

I. Further division is reinitiated at puberty when a woman begins her menstrual cycle 

and continues until she reaches menopause. On the other hand, the entire process of 

spermatogenesis in men starts at puberty and continually occurs until the death of the 

individual (Rahbari et al. 2016). 
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1.7. Aims of this thesis 

In this thesis, we use modern techniques and technologies to directly observe de novo 

mutations in the dog. New mutations are very rare events; hence, methods used to 

identify them require high sensitivity and specificity. Unlike typical parent-offspring 

sequencing studies in humans which obtain sequencing depths of ~30X, we utilize 

sequencing datasets with lower average coverage (less than 15X). For this reason, we 

first compare popular SNP calling programs and pipelines to obtain the most suitable 

method applicable to datasets used. The results of this study enabled us to develop an 

optimised pipeline to obtain direct estimates of the per base mutation rate in the dog 

and categorise their distribution throughout the canine genome to enhance our 

understanding of canine evolution. Lastly, we studied two spontaneously occurring 

genetic diseases in the dog, aiming to map spontaneous deleterious mutations in two 

breeds and demonstrate that techniques used could be enforced for clinical diagnosis.  
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Chapter 2. A performance comparison of popular single 

nucleotide variant detection methodologies applied to low 

coverage whole genome sequencing data  

2.1. Abstract 

Next generation sequencing platforms have become essential tools for understanding 

DNA in a wide range of contexts. Their success heavily relies on the accuracy, 

sensitivity and specificity of methods used to discern differences between the reference 

genome and genomes under investigation. Here we compare the relative performances 

of five popular single nucleotide variant callers with and without their associated 

recommended hard filtering criteria. We compare: FreeBayes; the Genome Analysis 

Tool-kit’s Haplotype Caller and Unified Genotyper; SAMtools; and VarScan. We tailor 

this comparison to suit smaller projects with modest sample numbers (n = 10) and 

coverage (~10X) to fill a current gap in the literature. Other comparison studies are 

generally applicable only to larger projects in model species, where there is access to 

large amounts of sequencing data and curated callsets for base and variant quality 

score recalibration. We estimated the accuracy, sensitivity and specificity of each 

pipeline according to the genotype concordance rate and number with the “truth” 

dataset for 10 canine samples. The truth dataset was defined as genotypes obtained 

from the CanineHD BeadChip array. Whole genome sequencing data was performed on 

the Illumina HiSeq2000 or HiSeq2500 platform as 100-101 base pair, paired end reads 

to an average sample coverage of 10.3X. With the exception of GATK Haplotype Caller, 

applying recommended hard filters did not improve the performance of genotyping 

concordance at the tested levels of minimum coverage. The default VarScan pipeline 

with no additional filters applied (VarScan uses SAMtools mpileup, without base 

alignment quality computation) generally outperformed other callers in terms of 

accuracy, sensitivity and specificity. The results of this study demonstrate that hard 

filtering of variant calls from low-powered genome studies can impair accuracy, 

sensitivity and specificity of callsets and provides some benchmark performance metrics 
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on a range of low coverage levels. These can be applied to future studies to aid optimal 

variant detection. 

2.2. Introduction 

Next-generation sequencing (NGS) technologies have provided scientists with 

unprecedented access to understanding DNA, one of the fundamental molecules of life. 

The range of applications has facilitated many discoveries that were made in research 

fields as diverse as ecology, agriculture, evolution, population diversity and human 

health (Schuster 2007; Mardis and Salzburg 2008; Ekblom and Galindo 2011). As 

sequencing technologies improve and the cost to sequence each nucleotide decreases, 

NGS is beginning to emerge from its role as a pure research methodology to become a 

common practice strategy for use in personalized medicine (O’Rawe et al. 2013; Hwang 

et al. 2015). 

The successful use of NGS in research and in practical applications relies heavily on 

our ability to accurately detect, categorize and genotype true biological variants of 

interest in genome data. This is a complex feat as sequencing errors, alignment 

artefacts and other sources of error can be indistinguishable from true biological 

variation. Each NGS sequencing platform is associated with an expected error rate and 

are prone to specific known types of errors. For example, Illumina’s short read 

sequencing technologies (36 – 250 base pairs (bp)) have an overall estimated accuracy 

of >99.5% (Bentley et al. 2008) and produce more substitution (0.11 – 0.28%) than 

insertion-deletion (indel) errors (3.2 x 10-6 – 2.5 x 10-5 %) (Minoche et al. 2011).  

Platforms which produce longer reads are better at resolving larger structural changes 

but are usually associated with higher rates of error. IonTorrent platforms 

(ThermoFisher Scientific) produce read lengths of 400 bp, are more prone to indel 

errors and have difficulty in accurately sequencing homopolymers larger than 6 – 8 bp 

long (Loman et al. 2012; Forgetta et al. 2013). Newer, very long read sequencing 

platforms such as those offered by PacBio (>10kb) and Oxford Nanopore Technologies, 

also have a tendency towards indel errors and have overall error rates of up to 15% 

(Carneiro et al. 2012). 
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To avoid the inclusion of these erroneous variants in data analyses, many variant calling 

algorithms have been developed.  Most existing variant calling pipelines use statistical 

inference to determine the likelihood of a true biological variant existing at any one site 

(reviewed in Nielsen et al. 2011). Depending on the sequencing platform used and the 

type of variants interrogated (germline or somatic and mutation type), several different 

quality score types are considered. Variant callers focussing on single nucleotide 

polymorphism (SNP) and indels typically account base quality, mapping quality and the 

local assembly quality metrics to determine the most likely genotype and then to provide 

an associated quality score (a “genotype likelihood”). Popular structural variant calling 

programs may assess split reads, read pair mapping span, read pair relative orientation 

and relative read depth (Tattini et al. 2015). While structural variation remains more 

challenging to accurately genotype using current technologies than SNPs and indels, it 

is generally accepted that we have not yet perfected small variant calling and that no 

single approach will work best across all datasets.  

Contemporary algorithms further improve the accuracies of calls within individuals by 

incorporating population-level data. For example, a multi-sample calling mode can be 

employed, where each locus is assessed across many samples simultaneously to 

develop a better expectation of whether the site is truly biologically polymorphic. Allele 

frequencies, genotype frequencies and patterns of linkage disequilibrium (LD) obtained 

from the observation of multiple samples can improve the confidence of a true biological 

variant at any given site. LD can be used to impute missing data and infer genotypes, 

improving calling sensitivity (Nielsen et al. 2011; Wang, Lu, et al. 2013). For well-

curated species such as human and mice, prior information can be obtained from public 

datasets such as dbSNP (https://www.ncbi.nlm.nih.gov/SNP/) and HapMap 

(http://www.hapmap.org/). When a set of known variants is not available, which is often 

the case in non-model organisms, high quality variants may be computed from the data 

at hand. An initial round of variant calling creates a callset that can be used to ‘teach’ 

the calling algorithm the quality score profiles of poor and good quality variants specific 

to the data in hand, enabling recalibration of genotype likelihood scores (McKenna et al. 

2010). 
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The extent to which multi-sample calling improves calling sensitivity over single-sample 

calling depends primarily on the number of samples and average coverage per sample. 

One study observed that single-sample calling yielded higher calling sensitivity than 

multi-sample calling in samples with low sequencing depths (5X)(Cheng et al. 2014). 

This result was independent of the minor allele frequency of the variant in the studied 

population. At low sequencing depths of 5X, multi-sample calling provided a significant 

improvement in sensitivity (~20%) only for low frequency and rare variant loci. This 

improvement required an additional 1,092 samples obtained from the 1,000 Genomes 

Project. In Cheng et al. (2014), the algorithm sensitivity to call variants always improves 

as the average coverage increases. Despite this, many researchers still opt for 

sequencing more samples at lower coverage (less than 10X) as this is believed to 

provide superior power for detecting common population variants relative to sequencing 

fewer samples at higher depths (Le and Durbin 2011; Sims et al. 2014; Gilly et al. 

2017).  

Although there are many variant caller comparison studies suited to model species with 

large datasets (for examples, see Liu et al. 2013; Cheng et al. 2014; Cornish and Guda 

2014; Pirooznia et al. 2014), there is limited information on the performance of variant 

calling pipelines that are tailored to smaller studies where prior observation of variants 

beyond the data of a single sequenced individual cannot be obtained and used for 

quality recalibration. For many laboratories, obtaining NGS data on multiple samples is 

not economically feasible and known variant data may not be available, especially for 

non-model species. In these situations, the strategy used to remove sequencing errors 

often relies on hard filtering raw data. Hard filtering is defined as setting a threshold 

(usually arbitrary) for a specific parameter of the data and variants which do not meet 

this value are removed from further analysis. Commonly used hard filtering parameters 

include base quality, mapping quality, coverage and strand bias (Van der Auwera et al. 

2013; Koboldt et al. 2013; Garrison 2015; Willet, Haase, et al. 2015b). Without 

sequence redundancy in low coverage data to appropriately represent sites that are 

more problematic to sequence such as GC rich and heterodimer prone fragments, hard 

filtering approaches may be too stringent and lead to false negative calls.  
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When hard filtering is applied, selecting appropriate threshold values is crucial to the 

success of whole genome sequencing (WGS) analysis in smaller studies or those using 

non-model species of interest. The needs will be affected by the type of analysis (for 

example, mapping analysis versus mutation detection analyses). The development of a 

validated pipeline that is well suited to a given dataset is time consuming and 

expensive, as additional methods of sequencing are needed to validate calls. For this 

reason, many researchers opt to employ recommended hard filtering cut-off values to 

define high quality variants when using popular variant calling programs (hard filtering 

recommendations are described in Methods and Supplementary Table S2).   

Our goal is to compare five popular variant callers: FreeBayes (Garrison and Marth 

2012); GATK Unified Genotyper (GATK UG) (McKenna et al. 2010); GATK Haplotype 

Caller (GATK HC) (McKenna et al. 2010); SAMtools (Li et al. 2009) and VarScan 

(Koboldt et al. 2013) and to observe the relative performance of pipelines after variants 

are filtered using recommended hard filtering criteria (Van der Auwera et al. 2013; 

Koboldt et al. 2013; Garrison 2015; Willet, Haase, et al. 2015b). The variant callers 

selected are tailored for short read data, such as those provided by Illumina platforms. 

Illumina currently has the largest market share in NGS platforms (Timmerman 2015). 

We apply these callers in single-sample mode to observe the sensitivity and specificity 

achieved when cut-off criteria are applied (hard filtering pipelines). We also observe the 

performance of callers without hard filtering (raw pipelines). Samples were 10 canine 

samples that had been subjected to WGS on popular Illumina HiSeq platforms offering 

genomes with a range or mean coverage from low to moderate (6 – 16X). To measure 

the relative calling quality of the algorithms, we assessed the concordance between 

genotyping calls made by the pipelines with genotypes called at 173,650 SNP markers 

using results on the same individuals from the CanineHD BeadChip array commercially 

provided by Neogen. Using these results as guidelines, researchers working with small 

(low coverage and number of samples) genome sequencing studies can select and 

adjust pipelines to suit their project goals. 
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2.3. Methods 

2.3.1. Samples 

Ten dogs (Canis lupus familiaris) that included three Australian Cattle Dogs, four 

Miniature Schnauzers and three Hungarian Puli were used in this study. These data 

formulate four unique parent-offspring trios. EDTA-stabilized whole blood or tissue was 

collected from the Australian Cattle Dogs and Miniature Schnauzers (See Table S1 for 

sample information). Genomic DNA was extracted using the illustra Nucleon BACC 2 kit 

using the manufacturer’s recommended protocols (GE Healthcare).  Hungarian Puli and 

two Miniature Schnauzer genotyping array and WGS data were obtained from previous 

studies (Willet, Makara, et al. 2015; Chew, Haase, Willet, et al. 2017). This study was 

conducted with approval from the Animal Ethics Committee at the University of Sydney 

(approval number N00/9–2009/3/5109 and N00/10-2012/3/5837 2015/902). See Table 

S1 for sample information.  

2.3.2. Genotyping array data and the truth dataset 

Samples were genotyped at 173,650 SNP loci on the CanineHD BeadChip array 

(Illumina) by GeneSeek (Lincoln, NE). Identity by descent proportions were obtained 

using PLINK (Purcell et al. 2007) and these calculations were used to confirm the 

pedigree relationships stated by registry data (Australian National Kennel Council) 

among each parent-offspring trio. SNPs genotyped on this array platform were used as 

the ‘truth dataset’ in this study. NCBI’s remapping service 

(https://www.ncbi.nlm.nih.gov/genome/tools/remap) was used to convert CanFam 2.0 to 

CanFam 3.1 array coordinates to make comparison with NGS genotypes consistent. To 

ensure that only accurately genotyped SNPs were considered, markers that did not 

adhere to Mendelian inheritance laws were excluded from the analysis.  

2.3.3. Next-generation sequencing 

WGS data was generated on the Illumina HiSeq2000 (n = 8) or the Illumina HiSeq2500 

(n = 2) by the Ramaciotti Centre, University of New South Wales, Kensington. Libraries 



 

 
48 

were prepared with the Illumina TruSeq kit. Each sample was barcoded and sequenced 

as 100 or 101 base-pair, paired-end reads on either one half or one full lane of the 

sequencing platform. See Table S1 for sample information.  

The Burrows-Wheeler Alignment mem (BWA-mem) tool outperforms other popular short 

read aligners and is recommended for pairing with multiple variant calling programs 

including those used in this study (Li and Durbin 2009; Van der Auwera et al. 2013; 

Cornish and Guda 2014; Layer et al. 2014; Faust and Hall 2014). Here we use BWA-

mem to align raw reads as pairs to the CanFam 3.1 reference genome for each sample 

using default parameters (Hoeppner et al. 2014). Polymerase chain reaction (PCR) 

duplicates were marked using Picard (http://picard.sourceforge.net). Local realignment 

around indels was performed using GATK (McKenna et al. 2010; DePristo et al. 2011).  

2.3.4. Variant Calling and Hard Filtering Criteria 

For each of the callers considered (FreeBayes, GATK HC, GATK UG, SAMtools and 

VarScan), we used recommended criteria (Figure 2.1) in the single sample mode to call 

variants and obtain genotypes (raw pipeline, caller-R). Next, we applied recommended 

hard filtering criteria to obtain high quality SNP genotypes (caller-F, Figure 2.1 and 

Table 2.1). Supplementary Table S2 provides a description of the parameters used in 

variant calling. For all pipelines, we defined indels or loci that were not bi-allelic as not 

called, as these are not assayed on the ‘truth’ platform used. Due to the stochastic 

nature of locus coverage in WGS experiments, we assessed genotype calls at a range 

of minimum base coverage thresholds. Raw base coverage at marker loci were 

obtained using SAMtools bedcov. Eleven different minimum coverage levels were used, 

ranging from zero coverage to 20X with an increment of 2X.  
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Figure 2.1. Representation of the ten variant calling pipelines used in this study.  

Five variant callers were used (FreeBayes, GATK HC, GATK UG, SAMtools, VarScan). 

The row labelled “Raw” indicates the options used for raw variant calling for each 

variant calling program, before hard-filters were applied. The row labelled “Hard filters” 

include additional hard-filtering steps performed for each variant calling program. For 

VarScan, we initially included all loci covered by at least one read and performed 

minimum coverage cut-off post variant calling. For detailed explanations of the filtering 

parameters, see Supplementary Table S2 and the associated software documentation.   
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Table 2.1. Variant callers and recommended hard filtering criteria used in this 

study. 

Default parameters for each variant caller were used in the raw pipelines. 

Program Variant caller Version Hard filtering recommendation 

GATK  Haplotype Caller 3.6.0 (Van der Auwera et al. 2013) 

GATK  Unified Genotyper 3.6.0 (Van der Auwera et al. 2013) 

SAMtools mpileup 0.1.19 (Willet, Haase, et al. 2015b) 

FreeBayes FreeBayes 1.0.2-33 (Garrison 2015) 

VarScan* SAMtools mpileup 

mpileup2cns 

2.3.9 (Koboldt et al. 2013) 

* VarScan depends on the input from SAMtools’ variant caller mpileup, without 

probabilistic realignment for the computation of base alignment quality (BAQ). The raw 

VarScan pipeline output is based on this and does not include the use of mpileup2cns. 

2.3.5. Refinement of the truth dataset 

We used genotypes called by each of the 10 pipelines to further refine the truth dataset. 

Loci that exhibited no genotype concordance across all 10 individuals and five variant 

callers at any one locus were removed from the truth dataset. This method aids in 

removing additional markers that were affected by CanFam 2.0 and CanFam 3.1 

reference assembly orientation differences as well as markers that were incorrectly 

genotyped on the array.  
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2.3.6. Comparison metrics 

We performed a paired, two-tailed t-test to determine whether the total concordance 

rates (2.1) were significantly different amongst the 10 pipelines tested regardless of 

minimum coverage requirement set. We then compared total concordance rates (%) 

amongst the 10 pipelines and across the 11 different coverage cut-off levels. For each 

of the variant callers, we compared their raw pipeline to their corresponding pipeline 

including hard filters to determine if filtering improved genotype concordance. To 

estimate the sensitivity, specificity and accuracy of each variant calling pipeline, we 

compared the total number of loci where the genotype called by the pipeline agreed with 

the truth dataset (concordant) and where the genotype called differed from the truth 

dataset (discordant). We calculated the standard deviation of the total number of 

concordant loci at each minimum coverage requirement level as a measure of variance 

between pipelines. Genotyping rates (including concordant and discordant genotype 

calls) are in supplementary Table S3. To determine if there are genotyping biases, we 

compared these concordance metrics for homozygous (2.2) and heterozygous (2.3) 

array genotypes separately.  

𝑻𝒐𝒕𝒂𝒍 𝒄𝒐𝒏𝒄𝒐𝒓𝒅𝒂𝒏𝒄𝒆 𝒓𝒂𝒕𝒆   

 =  
∑ 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒐𝒏𝒄𝒐𝒓𝒅𝒂𝒏𝒕 𝒈𝒆𝒏𝒐𝒕𝒚𝒑𝒆𝒔 𝒄𝒂𝒍𝒍𝒆𝒅 𝒃𝒚 𝒕𝒉𝒆 𝒑𝒊𝒑𝒆𝒍𝒊𝒏𝒆𝟏𝟎

𝒏=𝟏  

∑ 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒍𝒐𝒄𝒊 𝒊𝒏 𝒕𝒉𝒆 𝒕𝒓𝒖𝒕𝒉 𝒅𝒂𝒕𝒂𝒔𝒆𝒕𝟏𝟎
𝒏=𝟏

 𝒙 𝟏𝟎𝟎   (2.1) 

 

𝑯𝒐𝒎𝒐𝒛𝒚𝒈𝒐𝒖𝒔 𝒄𝒐𝒏𝒄𝒐𝒓𝒅𝒂𝒏𝒄𝒆 

=  
∑ 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒉𝒐𝒎𝒐𝒛𝒚𝒈𝒐𝒖𝒔 𝒄𝒐𝒏𝒄𝒐𝒓𝒅𝒂𝒏𝒕 𝒈𝒆𝒏𝒐𝒕𝒚𝒑𝒆𝒔 𝒄𝒂𝒍𝒍𝒆𝒅 𝒃𝒚 𝒕𝒉𝒆 𝒑𝒊𝒑𝒆𝒍𝒊𝒏𝒆𝟏𝟎

𝒏=𝟏

∑ 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒍𝒐𝒄𝒊 𝒘𝒊𝒕𝒉 𝒉𝒐𝒎𝒐𝒛𝒚𝒈𝒐𝒖𝒔 𝒈𝒆𝒏𝒐𝒕𝒚𝒑𝒆𝒔 𝒊𝒏 𝒕𝒉𝒆 𝒕𝒓𝒖𝒕𝒉 𝒅𝒂𝒕𝒂𝒔𝒆𝒕𝟏𝟎
𝒏=𝟏

   (2.2) 

 

𝑯𝒆𝒕𝒆𝒓𝒐𝒛𝒚𝒈𝒐𝒖𝒔 𝒄𝒐𝒏𝒄𝒐𝒓𝒅𝒂𝒏𝒄𝒆 

=  
∑ 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒉𝒆𝒕𝒆𝒓𝒐𝒛𝒚𝒈𝒐𝒖𝒔 𝐜𝒐𝒏𝒄𝒐𝒓𝒅𝒂𝒏𝒕 𝒈𝒆𝒏𝒐𝒕𝒚𝒑𝒆𝒔 𝒄𝒂𝒍𝒍𝒆𝒅 𝒃𝒚 𝒕𝒉𝒆 𝒑𝒊𝒑𝒆𝒍𝒊𝒏𝒆𝟏𝟎

𝒏=𝟏  

∑ 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒍𝒐𝒄𝒊 𝒘𝒊𝒕𝒉  𝒉𝒆𝒕𝒆𝒓𝒐𝒛𝒚𝒈𝒐𝒖𝒔 𝒈𝒆𝒏𝒐𝒕𝒚𝒑𝒆𝒔 𝒊𝒏 𝒕𝒉𝒆 𝒕𝒓𝒖𝒕𝒉 𝒅𝒂𝒕𝒂𝒔𝒆𝒕𝟏𝟎
𝒏=𝟏

  (2.3) 
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2.4. Results 

2.4.1. Truth and whole genome sequencing variant dataset 

A total of 171,672 unique markers were considered in each of the 10 pipelines and 10 

individuals after removing 796 SNPs which: did not conform to Mendelian inheritance; 

40 that could not be converted to the CanFam 3.1 reference assembly; and a further 

712 markers that had no genotype concordance with any of the 10 pipelines and 10 

individuals. Loci which were genotyped on both WGS data and the CanineHD BeadChip 

array differed depending on the individual, variant caller, pipeline and coverage.  

Whole genome sequencing on the Illumina HiSeq2000 or HiSeq2500 produced an 

average of 273 million reads per sample, with 99.13% of these successfully mapping to 

the CanFam 3.1 reference genome. This corresponds to an average mapped coverage 

of 10.3X.  

2.4.2. Comparison of genotype concordance rates of the 10 variant calling 

pipelines to truth dataset  

We found that the VarScan-R pipeline generally had significantly better genotype 

concordance than all other pipelines studied (PT-TEST < 0.05, Table 2.2). The VarScan-R 

pipeline uses SAMtools mpileup without BAQ and achieved concordance rates of 98.37 

– 99.67%. The GATK UG-R pipeline achieve similar levels of genotype concordance at 

higher levels of minimum coverage requirement (10X, see Table S4 for percent 

concordances for all pipelines and minimum coverage requirements). SAMtools-F 

outperformed the other pipelines at 20X minimum coverage requirement. The 

FreeBayes-F and VarScan-F pipelines underperformed significantly in comparison to 

the other eight pipelines tested (PT-TEST < 0.05), especially when lower minimum 

coverage requirements were set (Table S4). We also observed the effect on genotype 

concordance when the minimum coverage requirement increased (Figure 2.2 and Table 

S4). For all pipelines, genotype concordance rates improved as the minimum coverage 

requirement increased for both raw and filtered variants, except at 20X where 

improvement was only seen for FreeBayes-F, SAMtools-F and VarScan-F.
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Table 2.2. P-values from paired, two-tailed t tests on average genotype concordance rates of 10 different 

pipelines using five different variant callers with and without hard filtering (FreeBayes, GATK HC, GATK UG, 

SAMtools and VarScan) compared against genotypes obtained using the CanineHD BeadChip array. 
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FreeBayes Raw 
 

0.001 0.061 0.334 0.018 0.242 0.042 0.173 0.016 0.002 

FreeBayes Filtered 
  

0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 

GATK HC Raw 
   

0.182 0.003 0.001 0.017 0.041 0.020 0.002 

GATK HC Filtered 
    

0.003 0.117 0.024 0.258 0.011 0.002 

GATK UG Raw 
     

0.001 0.215 0.011 0.040 0.001 

GATK UG Filtered 
      

0.017 0.569 0.008 0.002 

SAMtools Raw 
       

0.041 0.001 0.002 

SAMtools Filtered 
        

0.020 0.001 

VarScan Raw 
         

0.002 
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Figure 2.2. Percent concordance of all genotypes (homozygous and heterozygous) called by 10 different 

pipelines using five different variant callers with and without hard filtering (FreeBayes, GATK HC, GATK UG, 

SAMtools and VarScan) compared against genotypes obtained using the CanineHD BeadChip array. 



 

 
55 

2.4.3. Comparison of genotype concordance rates between raw pipelines and 

corresponding pipelines that include hard filters  

For each variant caller, we compared their raw pipeline to their corresponding pipeline 

including hard filters applied to observe the effect of hard filters to genotype 

concordance. In general, applying hard filters to variants using recommended criteria 

did not improve genotype concordance rates. The exceptions where applying filters did 

improve genotype concordance occurred for GATK HC-F for low (0 – 2X) and higher 

minimum coverage and SAMtools-F for higher levels (14 – 20X) of minimum coverage 

requirements (Figure 2.2 and Table S4). 

2.4.4. Total concordance and discordance and standard deviation of genotypes 

called by each of the pipelines to the truth dataset 

To estimate the sensitivity and specificity of each pipeline, we calculated the number of 

concordant (Table 2.3) and discordant genotypes (Table 2.4) to the genotypes of the 

truth dataset. The VarScan-R pipeline called the most number of concordant genotypes 

at low minimum coverage requirements (0 – 8X). At moderate to higher levels of 

minimum coverage requirements (10 – 20X), GATK UG-R and VarScan-R both called 

the highest number of total concordant genotypes. However, as standard deviation 

decreased as the level of minimum coverage requirement increased, the number of 

concordant genotypes was similar between most pipelines (Table 2.3).  

A similar trend was observed for the number and standard deviation of discordant 

genotypes across the 10 pipelines and minimum coverage requirement levels.  The 

VarScan-R pipeline had the lowest number of discordant genotypes at lower minimum 

coverage requirement levels (0 – 8X). At moderate to higher minimum coverage 

requirement levels (10 – 20X), GATK UG-R, SAMtools-F and VarScan-R had the 

lowest number of discordant genotypes. Variation amongst the pipelines was minimal at 

higher levels of minimum coverage requirement (Table 2.4). Like the total number of 

concordant genotypes, standard deviation and minimum coverage requirement levels 

had an inverse relationship. 
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2.4.5. Homozygous verse heterozygous concordance 

To identify genotyping biases, we separately explored the rate of homozygous and 

heterozygous genotypes called by each of the 10 pipelines that were concordant with 

the truth genotypes derived from the array platform. For all variant calling pipelines and 

levels of coverage, homozygous concordance rates were higher than heterozygous 

concordance rates (Figure 2.3 and Figure 2.4). Heterozygous genotype concordance 

rates were more heavily influenced by the level of minimum coverage requirement. The 

difference in the levels of concordance between homozygous and heterozygous 

genotypes decreased as the level of coverage increased.  

The highest rates of homozygous concordance were achieved with the VarScan-F at 

lower to moderate levels of minimum coverage (0 – 12X, 99.86 – 99.85%) and the 

SAMtools-F pipeline at higher levels of minimum coverage (14 – 20X, 99.85 – 99.85%, 

Figure 2.3). Table S5 contains percentages of homozygous concordance for all 10 

pipelines and minimum coverage requirement levels. Heterozygous concordance rates 

were highest using the VarScan-R (0 – 8X, 16 – 18X) and GATK UG-R (10 – 14X and 

20X, Figure 2.4). Table S6 contains percentages of heterozygous concordance for all 

10 pipelines and minimum coverage requirement levels. 

We compared homozygous and heterozygous concordance rates for each variant caller 

between the raw and corresponding pipeline that includes hard filters applied. With a 

few exceptions, applying hard filters to variants improved homozygous concordance 

rates (Table S5). Applying hard filters generally worsened heterozygous concordance 

rates, except for GATK HC at most minimum coverage requirement levels (Figure 2.4 

and Table S6).  
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Figure 2.3 Percentage concordance of homozygous genotypes called by raw and filtered pipelines using five 

different variant callers (FreeBayes, GATK HC, GATK UG, SAMtools and VarScan) compared against genotypes 

obtained using the CanineHD BeadChip array. 
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Figure 2.4. Percentage concordance of heterozygous genotypes called by raw and filtered pipelines using five 

different variant callers (FreeBayes, GATK HC, GATK UG, SAMtools and VarScan) compared against genotypes 

obtained using the CanineHD BeadChip array.
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To compare the differences in sensitivity between homozygous and heterozygous 

genotypes that were concordant to the truth dataset, we observed the number of 

homozygous and heterozygous concordant genotypes separately (Table 2.5 and Table 

2.6 respectively). In general, FreeBayes-R and VarScan-F had the highest number of 

homozygous concordant genotypes. We observed that the GATK UG-R and VarScan-R 

pipelines had the highest number of heterozygous concordant genotypes. 
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We compared the difference in specificity between homozygous and heterozygous 

genotypes that were concordant to the truth dataset by observing the total number of 

discordant calls for homozygous and heterozygous genotypes separately (Table 2.7 

and Table 2.8) .  For homozygous concordant genotypes, VarScan-F had the least 

number for lower to moderate levels of coverage (0 – 12X), whilst SAMtools-F had the 

least number for higher levels of coverage (14 – 20X).  For heterozygous concordant 

genotypes, VarScan-R had the lowest number for lower levels of minimum coverage 

requirement levels (0 – 8X). VarScan-R and GATK UG-R had the lowest number of 

discordant heterozygous concordant genotypes at higher levels of coverage (10 – 20X). 
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2.5. Discussion 

Selecting the best variant calling algorithm and parameters to classify true biological 

variants from sequencing errors is notoriously difficult. Many variant calling comparison 

studies that cater towards projects in model species with large datasets and high levels 

of average coverage (~30X) have been performed for calling SNPs in Illumina NGS 

data (Bauer 2011; Liu et al. 2013; Cheng et al. 2014; Cornish and Guda 2014; Pirooznia 

et al. 2014). In this study, we aimed to compare 10 variant calling pipelines that include 

five variant callers (FreeBayes, GATK HC, GATK UG, SAMtools and VarScan) with and 

without recommended hard filters applied. We applied the pipelines to data that is 

representative of a non-model species and smaller study with a lower coverage dataset 

(~10X). The metrics of performance provided in this study including the genotype 

concordance rate, total number of concordant and discordant genotypes to estimate 

sensitivity and specificity can be used as a guide to determine the optimal variant calling 

pipeline for other small studies with similar datasets.  

The VarScan-R pipeline was generally the most accurate as measured by total 

genotype concordance to the truth dataset (PT-TEST < 0.05, Figure 2.2), achieving 

concordance rates of 98.37 – 99.37% across the minimum coverage requirements 

tested (0 – 20X). The VarScan variant caller is identical to the SAMtools pipeline, both 

using SAMtools’ mpileup except that BAQ computation is disabled for VarScan. As the 

VarScan authors observe (Koboldt et al. 2013), we also found that BAQ is too stringent 

by comparing VarScan-R and SAMtools-R. VarScan-R was generally the most sensitive 

and specific caller estimated by the highest number of total concordant and lowest 

number of total discordant genotypes. The superior performance of VarScan-R 

compared to other nine pipelines is evidently due to its performance compared to the 

other pipelines at lower minimum coverage requirement levels (less than 10X). At low 

levels of coverage, the standard deviation of the total number of concordant and 

discordant genotypes was relatively high. Studies with low average sample coverages 

should consider the VarScan-R pipeline as it outperformed all other 9 pipelines in 

genotype concordance, estimated sensitivity and specificity.  
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At minimum coverage requirement of 10X and over, genotype concordance rates 

become similar and at 20X each pipeline is within 0.1% of each other, except for 

VarScan-F and FreeBayes-F which were substantially lower (Table S4). Standard 

deviation in total concordance and discordance also continually decreases and the 

difference between the 10 tested pipelines became minimal (Table 2.3 and  

Table 2.4). GATK UG-R and SAMtools-F had better or similar total accuracy, sensitivity 

and specificity than VarScan-R at minimum coverage requirement of 10X and higher 

(Figure 2.2, Table 2.3 and  

Table 2.4). As the truth dataset comprised of only commonly occurring SNP loci, there 

is a potential bias where a called variant is more likely to be true, inflating genotype 

concordances across all pipelines and coverage levels. Subsequent studies should 

include known rare and de novo variants to reduce this source of bias.  

Minimum coverage requirement levels had a high impact on the accuracy, sensitivity 

and specificity of the caller, as has been previously described (Cheng et al. 2014). The 

variance across the 10 pipelines decreased as minimum coverage requirement 

increased and most pipelines performed quite similarly at higher minimum coverage 

levels (Table 2.3 and  

Table 2.4). Besides the variant calling pipeline, the minimum coverage requirement 

level should be carefully considered depending on the average coverage of the samples 

and project goals as coverage had the greatest impact on calling sensitivity and 

specificity (Table S3 contains genotyping rates for each minimum coverage requirement 

level for each of the 10 pipelines).  

Applying the recommended hard filtering criteria to variants generally did not improve 

the accuracy of genotype concordance to the genotypes of the truth dataset in this 

study (Figure 2.2). The only exceptions include GATK HC and SAMtools where filtering 

did improve genotype concordance at some levels of low and high minimum coverage 

requirement (Figure 2.2 and Table S4). In Figure 2.2, the difference in genotype 

concordance rate between the raw and pipeline with hard filters applied becomes 

smaller as minimum coverage requirement increases. We suspect that many of the 
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developed hard filtering pipelines were developed for samples with higher coverage, 

where metrics that are used in filtering can be calculated more accurately.  

Obtaining high genotyping accuracy (>99.99%) is extremely difficult for relatively low 

coverage data. As other studies have observed (Sims et al. 2014; Willet, Haase, et al. 

2015a; De Summa et al. 2017), we found a higher rate of homozygous than 

heterozygous concordance to array genotypes, especially when hard filters are applied. 

Heterozygous genotyping heavily influences the total concordance rate and is 

dependent on the minimum coverage cut-off value used. Apart from the FreeBayes-F 

and VarScan-F pipelines, heterozygous concordance rates drastically improve at ≥10X, 

and become comparable to homozygous concordance rates at ≥12X (the difference 

between homozygous and heterozygous concordance rates is 0.93 – 1.7%, depending 

on the variant caller at this coverage level, Figure 2.4). Bias towards homozygous 

genotypes is evidently caused by low average sample coverage. At low coverage (less 

than 10X), distinguishing sequencing errors from true alternative variants becomes 

difficult without the additional support for the alternative allele of multiple reads and we 

observed that applying hard filters for all five variant calling pipelines was too stringent.  

Researchers with low coverage, short read, whole genome sequencing data should 

select tools and variant calling filtering parameters based on the desired sensitivity and 

specificity that is appropriate for the research question. For example, when the research 

question is to identify genetic variants associated with disease, higher sensitivity is more 

desirable than higher specificity, within reason. From this study, this is achieved by 

sequencing samples with at least an average depth of 10X to ensure that high 

genotyping rates are achieved. Applying no additional hard filters generally increases 

the number of non-reference alleles that are captured. On the contrary, when 

genotyping accuracy is desired, including hard filters with SAMtools or VarScan can 

reduce the number of false positive genotypes called. 

This study provides reference metrics that can be used to tailor recommended hard 

filtering pipelines towards specific project goals. Its use would be suitable for projects 

with small sample sizes and WGS depth (~10X) that wish to call SNPs from Illumina 
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NGS data.  For low coverage data, hard filtering generally reduces sensitivity to detect 

SNPs, particularly at heterozygous loci. The most value is achieved for samples with a 

minimum average coverage of 10X per sample, as sensitivities and specificities 

drastically improve up until this level, where improvement with each additional coverage 

level begins to plateau.  
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Chapter 3. Direct estimate of the de novo mutation rate in the 

domestic dog 

3.1. Abstract 

All genetic variation that drives evolution and contributes to disease once arose from a 

spontaneously occurring new DNA mutation. In this chapter, we characterise the rate 

and distribution of autosomal germline mutations in one of the most phenotypically 

diverse species, the domestic dog. By characterising de novo mutations, their 

contributions to canine health and evolution can be better understood. There are 

currently over 400 recognised dog breeds, many of which were created only in the last 

couple of centuries. Through parent-offspring whole genome sequencing, we estimate 

the probability of de novo mutation to be 3.9 x 10-9 per nucleotide per generation. This 

corresponds to 81 – 112 new nucleotide mutations in each individual canine genome 

that is 2.4 x 109 nucleotides in size. The observed transition to transversion ratio in the 

canine is 2.3 units, like other vertebrate species. The rate of de novo mutations per 

generation is slightly higher in the dog than the rate of all other studied species 

including humans, mice, chimpanzees and birds. We theorize that the elevated de novo 

mutation rate may have contributed to the rapid phenotypic diversification of the 

domestic dog.  

3.2. Introduction 

The dog (Canis lupus familiaris) is believed to be the first animal to be domesticated 

and today there are over 400 recognised breeds that were developed for a variety of 

social and economic purposes (Karlsson and Lindblad-Toh 2008; Axelsson et al. 2013). 

The sole ancestor of the domestic dog is the grey wolf (Canis lupus) (Vilà et al. 1997). 

The timing, location and process of dog domestication has been heavily debated and 

many studies have been performed to understand how the species evolved to become 

one of the most phenotypically diverse living land animals (Vonholdt et al. 2010; Boyko 

et al. 2010; Larson et al. 2012; Callaway 2013; Axelsson et al. 2013; Freedman et al. 
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2014). Whilst many of the previous studies have provided extensive insight into 

understanding how rapid canine evolution occurred from the perspective of existing 

ancestral variation and intense artificial selection, no study has yet considered the 

contribution of de novo mutations to canine evolution.  

The earliest archaeological evidence of dog domestication include the discovery of 

~32,000 to 36,000 year old dog-like fossil remains in Siberia, Belgium and the Czech 

Republic  (Germonpré et al. 2009b; Ovodov et al. 2011; Germonpré et al. 2015). 

However, it is uncertain whether the fossils represent domestic dogs, animals from 

failed attempts at domestication, or simply rare, morphologically unique extant wolves 

(Freedman et al. 2014). Dog fossils found at burial sites in Israel and Germany are 

regarded as more indicative of domestication because their burial reflects their 

importance in human civilization at the time. Buried canine fossils are dated to be 

between 11,500 to 16,000 years old (Davis and Valla 1978; Boyko 2011). Studies of 

wolf and dog mitochondrial DNA variation have previously suggested that dogs were 

domesticated over 100,000 years ago (Vilà et al. 1997; Wayne and Ostrander 1999). 

Later genetic studies on genomic SNP variation indicate that it is more probable that 

dogs were domesticated from populations of wolves of either Middle Eastern or 

Southeast Asian origin only 10,000 years ago (Pang et al. 2009; Vonholdt et al. 2010). 

Such genetic studies rely on assumptions of the number of founding events and levels 

of admixture between wolves, but the true values of these cannot be known for certain. 

It is likely that the process of domestication was long and complex, involving multiple 

ancestral populations and multiple back crossing events with wolves.  

Although an agreement on the origins of the dog has not yet been reached, it is evident 

through observed patterns of linkage disequilibrium (LD) that there were two significant 

bottlenecking events in dog evolutionary history (Lindblad-Toh et al. 2005; Boyko 2011). 

The first bottleneck reflects the initial domestication of dogs from wolves. The creation 

of modern dog breeds was brought about in the second bottlenecking event, involving 

intense artificial selection and breeding within closed populations (Lindblad-Toh et al. 

2005). The second bottlenecking event has only occurred in the last few centuries and 

has resulted in more than 400 breeds that are recognised worldwide today (Dreger et al. 
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2016). Numerous specialized breeds were formed to suit a specific purpose such as for 

guarding, herding, retrieving, hunting and racing. Many other breeds were developed for 

aesthetic and behavioural traits suited for companionship.  

The two significant bottlenecking events have led to unique patterns of LD in the dog. 

LD extending several megabases can be found when analysing dogs of a single breed. 

Dogs across multiple breeds share a much shorter range of LD that only extends tens of 

kilobases (Lindblad-Toh et al. 2005; Stern et al. 2013; Friedenberg and Meurs 2016). 

This unique genetic architecture of the dog has led scientists to recognise the 

advantages of mapping traits more efficiently in this species, as fewer individuals and 

genetic markers are required compared to other species (Karlsson et al. 2007). 

Genome wide association studies (GWAS) have led to the successful mapping of many 

genes underlying a variety of canine phenotypes, some of which are shared across 

breeds through introgressive breeding. Gene variants or haplotypes in FGF4 for 

Dwarfism (chondrodysplasia), THBS2 for short-snouts (brachycephaly) and MSRB3 for 

floppy ears are examples of successful mapping of traits shared across multiple breeds 

through GWAS (Parker et al. 2009; Bannasch et al. 2010; Boyko et al. 2010; Boyko 

2011).  

Despite these successes, there is an unexpectedly large number of Mendelian traits 

that have no reported underlying causal variant (~23% of reported Mendelian traits have 

no known underlying causal variant; OMIA, 2018). Similar figures are observed in 

humans (32%; OMIM, 2018), despite humans being one of the most comprehensively 

studied species. Many of these unmapped variants are thought to be de novo mutations 

which are not in LD with common genetic markers and hence cannot be found through 

GWAS (Chong et al. 2015). De novo mutations have been implicated in the 

spontaneous occurrence of several canine phenotypes including visible traits such as 

white spotting in subpopulations of German Shepherd dogs and Weimaraners (Gerding 

et al. 2013; Wong et al. 2013); and spontaneously occurring diseases such as 

ichthyosis, bleeding disorders and progressive retinal atrophy (Brooks 1999; Vilboux et 

al. 2008; Kropatsch et al. 2016; Bauer et al. 2017). It is likely that many other de novo 

variants cause more subtle influences on phenotype and thus remain undetected.  
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two unique parent-offspring trios. Each unique parent-offspring trio can be referred to 

by the identification number (ID) of the child: USCF134, USCF136, USCF1014, 

USCF1119 and USCF1294. See Table S1 for pedigree information. 

 

Genomic DNA was extracted from EDTA-stabilized whole blood obtained from the 12 

samples using the phenol-chloroform method or the illustra Nucleon BACC2 kit 

following the manufacturer’s protocol (GE Healthcare). This research was conducted 

with the consent of the animal’s owners and with animal ethics approval granted by the 

Animal Ethics Committee at the University of Sydney (approval number N00/9–

2009/3/5109 and N00/10-2012/3/5837 2015/902). 

3.3.2. Whole genome sequencing 

Whole genome sequencing was performed for each sample using the Illumina HiSeq 

2000 (Illumina, San Diego, CA) by the Ramaciotti Centre at the University of New South 

Wales, Kensington. Libraries were prepared with the Illumina PCR-free TruSeq kit 

according to the vendor’s instructions. Each sample was sequenced as 100-101 base 

pair (bp), paired-end reads using either half or a full lane of the flow cell.  

All bioinformatics analysis was performed on the University of Sydney’s High-

Performance Computing Cluster (Artemis). Raw reads were aligned to the canine 

reference genome (CanFam 3.1) as pairs using the Burrows-Wheeler Alignment (BWA)-

mem algorithm version 0.7.15 with default parameters (Li and Durbin 2009). 

Polymerase chain reaction (PCR) duplicates were marked with samblaster, version 

0.1.22 (Faust and Hall 2014). Local realignment around insertion-deletions (indels) was 

performed using the Genome Analysis Toolkit (GATK), version 3.6.0 (McKenna et al. 

2010; DePristo et al. 2011). The number of mapped and unmapped reads was obtained 

using SAMtools idxstats.  
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3.3.3. Variant calling and genotyping 

To ensure a high level of variant calling accuracy, we obtained sites where genotypes 

were concordant between two popular variant callers: GATK (version 3.6.0) and 

SAMtools (version 1.6) (Li et al. 2009; McKenna et al. 2010). Both of these callers are 

consistently found to be the best amongst other popular callers at accurately genotyping 

SNVs in Illumina data when used in conjunction with BWA-mem as the aligner (Cheng 

et al. 2014; Cornish and Guda 2014; Hwang et al. 2015). Raw variants at all sites were 

first called with GATK’s Haplotype Caller (HC) (McKenna et al. 2010; Van der Auwera et 

al. 2013). The minimum phred-scaled emission and calling confidence threshold was 

set at 50, which is higher than the recommended values of 10 and 30 respectively (Van 

der Auwera et al. 2013). We chose a higher calling confidence to obtain highly confident 

genotype calling accuracy. GATK HC raw SNPs were excluded using GATK’s 

VariantFiltration tool if Quality Depth < 2.0, Fisher Strand > 60.0, Mapping Quality < 

40.0, HaplotypeScore > 13.0, MappingQualityRankSum < -12.5 and ReadPosRankSum 

< -8.0, as previously recommended (Van der Auwera et al. 2013). SAMtools mpileup 

and bcftools (version 1.6) was used to call and genotype SNPs, excluding bases and 

reads with base quality < 20 and mapping quality < 20. Only properly paired reads were 

considered. As recommended by SAMtools, a coefficient of 50 was applied to reduce 

the effect of reads with excessive mismatches. Using vcffilter (version 1.0.0), we further 

filtered SAMtools mpileup SNP calls and excluded sites with QUAL < 50 and MQ < 40.  

A single, high quality set of genotypes for each locus and individual were obtained for 

sites if genotypes were concordant between both filtered GATK HC and SAMtools 

callsets. This was obtained using bcftools isec with default parameters. Sites were 

retained if coverage was greater than or equal to 10, and less than or equal to two times 

the average coverage of the individual. The maximum coverage is applied to avoid 

regions with duplications as previously recommended (Willet, Haase, et al. 2015b). We 

filtered each locus by coverage using vcflib’s vcffilter (version 1.6). 
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3.3.4. Direct estimate of the per base mutation rate in dogs 

To estimate the per base mutation rate in dogs, sites passing filters in variant calling 

were further filtered by genotype. Sites where both parents were homozygous for the 

reference allele and where the child was either homozygous reference (non-de novo 

site) or heterozygous (de novo site) were obtained using vcflib’s vcffilter tool. We term 

these sites the total number of observable sites passing all filtering requirements used 

in this study. After visual inspection of potential de novo sites using SAMtools tview (Li 

et al. 2009), we noticed that some parents contained poor quality alternative bases 

despite being called as homozygous reference. As these are more likely to represent 

non-de novo sites, we manually excluded these from further analysis.  

In each trio, we defined the per base mutation rate to be: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑒 𝑛𝑜𝑣𝑜 𝑆𝑁𝑃 𝑠𝑖𝑡𝑒𝑠 𝑝𝑎𝑠𝑠𝑖𝑛𝑔 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑒 𝑛𝑜𝑣𝑜 𝑎𝑛𝑑 𝑛𝑜𝑛 − 𝑑𝑒𝑛𝑜𝑣𝑜 𝑠𝑖𝑡𝑒𝑠 𝑝𝑎𝑠𝑠𝑖𝑛𝑔 𝑓𝑖𝑙𝑡𝑒𝑟𝑠
 

 

De novo mutation events were categorised as either Ti or Tv events and a 

transition:tranversion (Ti:Tv) rate was calculated. 

3.3.5. Characterising de novo mutations 

We characterised sites that passed all quality filters according to their occurrence within 

any of seven local genomic features: coding exonic sequence (CDS), CpG island, 

intergenic, intronic, conserved, 3’ untranslated region (3’ UTR) and the 5’ untranslated 

region (5’ UTR). Using UCSC’s Table Browser (https://genome.ucsc.edu/), we obtained 

CDS, intronic, 3’ UTR and 5’ UTR regions using the refGene and xenoRefGene tracks 

in BED file format. Intergenic regions were defined as regions in the reference genome 

that were not already defined as CDS, intronic, 3’ UTR and 5’ UTR and were obtained 

using a custom perl script. Conserved regions of the genome were defined as regions 

with a phastCons score of > 0.5, calculated using reference genomes of 33 placental 

mammals. PhastCons scores that were calculated relative to the human genome 

(GRCh37/hg19) were obtained from UCSC (Pollard et al. 2010). Positions were 
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converted to the CanFam 3.1 reference genome using UCSC’s LiftOver tool.  We 

determined whether the per base mutation rate was significantly different between each 

feature by performing a paired, two tailed t-test.  

3.4. Results 

3.4.1. Whole genome sequencing 

Sequencing on the Illumina HiSeq 2000 platform for the 12 samples used in this study 

produced between 175,095,946 – 469,840,272 reads, 98.2 – 99.6% of which were 

aligned to the CanFam 3.1 reference genome. This is equivalent to an average raw 

coverage of 6.6 – 17.9X per individual (Table S2). The average raw coverage per 

unique parent-offspring trio ranged between 8.4 – 13.5X.  

3.4.2. Variant calling and per base mutation rate estimates 

The number of observable loci that passed all filtering criteria used in this study ranged 

between 64,397,375 – 1,010,866,409 bp for the five trios observed which corresponds 

to 2.9 – 45.9% of the canine reference autosomes (~2.2 gigabases, Table S3 contains 

the number of observable loci per trio, per autosome).  The number of de novo 

mutations detected ranged from 3 – 51 nucleotide variants for each offspring in the five 

unique parent-offspring trio (Table S4 contains physical position and genotypes for 

parent-offspring trios at observed de novo sites). There was one identical de novo 

mutation identified between full siblings USCF134 and USCF136 at chromosome 18 

position 28,418,247 (CanFam 3.1). 

The per-base mutation rate was estimated to be 3.9 x 10-8 (95% confidence interval 3.5 

– 4.4 x 10-8) per meiosis (Table 3.1). This is equivalent to 81 – 112 nucleotide mutations 

in the canine genome (2.4 gigabases in size). The average Ti:Tv rate was estimated to 

be 2.3 (95% confidence interval 1.3 – 3.3). The trio that included USCF1119 as the child 

was excluded from Ti:Tv analyses as no transversions were identified.  
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Table 3.1. Per base mutation, transition and transversion rate estimates for the 

domestic dog in five unique parent-offspring trios.  

The trio including the offspring USCF1119 was not included in the average transition 

and transversion rate as no transversions were detected. 

Offspring 
identifier in 
Trio 
observed 

Per base 
mutation rate 
estimate per 
generation 

Ti  Tv Ti:Tv 

USCF134 4.3 x 10-8 12 8 1.5 

USCF136 3.9 x 10-8 6 4 1.5 

USCF1014 3.4 x 10-8 22 7 3.1 

USCF1119 4.7 x 10-8 3 0 NA 

USCF1294 3.5 x 10-8 26 9 2.9 

Average 3.9 x 10-8 14 6 2.3 

Minimum 3.4 x 10-8 3 0 1.5 

Maximum 4.7 x 10-8 26 9 3.1 

Standard 
Deviation 

4.9 x 10-9 8.9 3.3 0.75 

 

Of the 97 de novo mutations collectively observed in the five parent-offspring trios, 

71.1% were transition mutations (Figure 3.2). Transition mutations constitute mutations 

between either A and G nucleotides representing 33.0% of those observed in our data 

or mutations between C and T nucleotides that represented 38.1% of observed 
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occurrences of transitions in our data. The remaining 28.9% of all de novo mutation 

events comprised transversion mutations. Transversions include mutations between A 

and C nucleotides (9.3%), A and T (9.3%), C and G (1.0%) and G and T (9.3%) 

mutations.  

 

Figure 3.2. Percentage of transition and transversion mutations observed in four 

parent-offspring trios. 

 

3.4.3. Characteristics of observed de novo mutations 

Observed de novo and non-de novo mutation events were categorised as representing 

any of seven genomic features (see previous description) and the per-base de novo 

mutation rate was calculated for each genomic feature category (Table 3.2). Total 

number of event observations for each genomic feature can be obtained in Table S5.  
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Table 3.2. Per base mutation rate estimates (x 10-8) within coding, CpG islands, 

intergenic, intronic, conserved, 3’ UTR and 5’ UTR features in dogs using five 

unique parent-offspring samples. 
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USCF134 0 0 5.2 4.1 8.4 0 0 

USCF136 0 0 5.6 2.9 8.4 0 0 

USCF1014 1.3 9.1 3.2 3.2 2.3 0 0 

USCF1119 0 0 3.2 3.9 0 0 0 

USCF1294 1.1 0 4.4 2.2 2.0 0 4.4 

Average 4.8 1.8 4.3 3.3 4.2 0 8.7 

 

A paired, two tailed t-test was performed to determine if the per base mutation rate was 

significantly higher or lower between the seven genomic features observed. The total 

number of loci observed for each feature can be found in Table S5. The 3’ UTR feature 

had significantly less mutations per base than both intergenic and intronic features (P < 

0.05).  
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Table 3.3. P-values obtained from paired, two tailed t-tests performed between 

seven genomic features to determine if the per base mutation rate was 

significantly different between each feature in the dog. 
 

Coding CpG 

Island 

Intergenic Intronic Conserved 3’ UTR 5’ UTR 

Coding 

 

0.458 0.894 0.657 0.900 0.179 0.627 

CpG Island  

 

0.494 0.458 0.900 0.374 0.691 

Intergenic   

 

0.178 0.948 0.001 0.639 

Intronic    

 

0.608 0.001 0.575 

Conserved     

 

0.074 0.657 

3’ UTR      

 

0.374 

 

3.5. Discussion 

The result of this study was a per-base, per-generation germline mutation rate in dogs 

of 3.9 x 10-8 (95% confidence interval 3.5 – 4.4 x 10-8), which is slightly higher than rates 

estimated for other vertebrates including humans, chimpanzees, laboratory mice and 

birds (Table 3.4) (Campbell and Eichler 2013; Venn et al. 2014; Uchimura et al. 2015; 

Smeds et al. 2016; Narasimhan et al. 2017). The practical consequence is an 

expectation of approximately 81 – 112 de novo nucleotide changes (also called “private 

mutations”) in each individual genome. The number of transitions outnumber the 

number of transversions (Ti:Tv) by 2.3 fold, (95% confidence interval 1.3 – 3.3). This 
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figure is similar to estimated Ti:Tv rates of other vertebrate species (Table 3.4) 

(Campbell and Eichler 2013; Venn et al. 2014; Uchimura et al. 2015; Smeds et al. 2016; 

Narasimhan et al. 2017).  

Table 3.4. Relative predicted de novo mutation rate estimates for dogs, humans, 

mice, chimpanzees and birds. 

Human, mice, chimpanzee and bird figures were obtained from several recent studies 

(Campbell and Eichler 2013; Venn et al. 2014; Uchimura et al. 2015; Smeds et al. 2016; 

Narasimhan et al. 2017). 

 Dogs Humans Mice Chimpanzees Birds 

Per base per 

generation 

mutation rate 

3.93 x 10-8 1 – 3 x 10-8 5.4 x 10-9 1.2 x 10-8 4.6 x 10-9 

Ti: Tv 2.3 2.2 2.1 2.2 2.7 

 

It is plausible that elevated mutation rate in the dog in addition to relatively large litter 

sizes (mean litter size is 5.4 for purebred dogs) (Sverdrup Borge et al. 2011) and 

shorter generation times in comparison to other studied species and domesticated 

animals may have facilitated more rapid phenotypic diversification of the dog. We 

observed a common de novo mutation at chromosome 18, position 28,418,247 

(CanFam 3.1) in both siblings (USCF134, USCF136) within a nuclear family (Table S1). 

This could demonstrate that de novo mutation events that occur in early stages of 

spermatogenesis or oogenesis in the parents can propagate to more offspring at a time, 

resulting in more rapid dissemination of new genetic variation.  

Studies in de novo mutation rates in humans and chimpanzees have suggested that de 

novo mutations occur more frequently in the offspring as the age at conception of the 

parents increases, especially of the father (Kong et al. 2012; Venn et al. 2014). Sperm 
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are created through multiple rounds of spermatogenesis throughout a mature male’s 

life, unlike in females where oogenesis begins during foetal development. The process 

of DNA replication in aging individuals is thought to foster more DNA replication 

mistakes, and hence result in more observable de novo mutations in the offspring. Age 

of conception information was unavailable for the current study. Trios including a wide 

range of ages of parents at the time their offspring was conceived should be included in 

future studies to determine parent of origin effects on the mutation rate as a function of 

age. Additionally, as different breeds of dog are known to have different average 

lifespans, future studies should be repeated on a per breed bases, and subsequently, 

an assessment of variance of the mutation rate across breeds can be determined. This 

may suggest how much the mutation rate could influence the rate of evolution in some 

breeds compared to others. 

Differences in the average mutation rate that may be observed across species is likely 

to be influenced by technical nuances. This includes sequencing technologies and 

bioinformatics pipelines employed to process the raw sequencing data. The studies 

discussed here applied a whole genome approach using Illumina sequencing 

technologies (Venn et al. 2014; Uchimura et al. 2015; Smeds et al. 2016; Narasimhan et 

al. 2017). However, the sequencing depth varied from approximately 10 to 40X 

coverage. A coverage of at least 10X is deemed to be sufficient for providing accurate 

variant calling, however slight improvements are still evident with increasing coverage 

(Cheng et al. 2014). Variant calling accuracy is also variable across variant calling 

algorithms and quality filtering parameters enforced (for performance metrics see 

Cheng et al. 2014). In order to minimize the effects technical biases when assessing 

mutation rate differences between species, future studies should ensure that 

sequencing technologies and bioinformatics pipelines used are consistent for all 

samples of all species studied. Future studies should also consider a de novo assembly 

rather than a reference genome mapping approach to mitigate potential biases from 

differences in the quality of reference genomes across species. Reference genomes 

that are more complete and representative of a population enable improved mappability 

of raw sequencing reads as mapping is dependent on sequence similarity (Degner et al. 
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2009; Brandt et al. 2015). This would therefore affect all downstream processing, 

including variant calling and de novo mutation calling accuracy. 

Improved estimates of average mutation rates per species can benefit several practical 

applications that ultize per base mutation rates. For instance, the timing of species 

divergence is calculated by using the mutation rate as a molecular clock in the study of 

ancestral DNA sequences. We provide an alternative means for scientists to estimate 

dog divergence from the grey wolf and this might inform debate on dog domestication. 

Better estimates of de novo mutation rate and transition to transversion ratios are 

expected to improve future de novo detection studies via the more accurate application 

of priors in computational prediction algorithms (Ramu et al. 2013; Francioli et al. 2017).  

De novo mutations are never in LD with genetic markers and are notoriously difficult to 

map through GWAS.  Hence, accurate identification and calling of de novo mutations is 

essential for clinical diagnosis for patients with spontaneously occurring genetic 

diseases. 

To better understand the potential effects on phenotype and evolution arising from the 

of de novo mutations that we identified, we categorised the observed variants into any 

of seven genomic features: protein-coding, CpG island, intergenic, intronic, conserved, 

3’ UTR and the 5’ UTR. We did not detect any significant difference in the mutation rate 

between each feature, other than mutations in 3’ UTR regions are significantly less 

common compared with those occurring in intergenic and intronic features (PT-TEST < 

0.05, Table 3.3). We observed no difference in the per-base mutation rate in CpG 

dinucleotide islands compared with other genomic features. This is an unexpected 

finding as methylated CpG islands have previously reported to be more mutagenic 

(Cooper and Youssoufian 1988). In humans, the per-base mutation rate has been 

observed to be 10 – 18 times higher in CpG dinucleotides compared with non-CpG 

dinucleotides (Kondrashov 2002; Lynch 2010; Kong et al. 2012; Narasimhan et al. 

2017). Higher mutation rates in CpG islands have also been observed in other animals 

including apes (30 times higher), mammals (15 times higher) and birds (10 times 

higher) (Keightley et al. 2011; Hodgkinson and Eyre-Walker 2011; Smeds et al. 2016). 
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The disparity in relative CpG island mutation rates in dogs compared to other mammals 

are most likely caused by technical limitations of this study. Next generation sequencers 

such as Illumina platforms rely on PCR amplification techniques that require specific 

optimisation in order to successfully sequence GC rich DNA (Reuter et al. 2015). The 

sequencing difficulty was evident in this study, with only ~5.5 million high-quality 

observed nucleotides occurring in CpG islands considered compared with 37,355,082 

that exists in the canine reference genome (Table S5). The rate of C to G transversion 

(1.0% of all mutations) is also likely to have been affected by this sequencing bias 

(Figure 3.2). To better characterise relative occurrences of de novo mutations across a 

variety of genomic features, future studies would benefit from the inclusion of parent-

offspring trios sequenced at higher coverage. The reliable identification of de novo 

mutations across the whole genome requires a high level of variant calling and 

genotyping accuracy. Such accuracy and coverage can be achieved through via higher 

levels of sequencing depth (>30X) (Francioli et al. 2017). However, the relatively high 

costs of sequencing currently impede on the opportunities to perform de novo mutation 

characterisations in non-model species. 

To the author’s knowledge, we are first to describe and directly observe de novo 

mutation rates in the domestic dog using a genome-wide strategy.  The estimated rates 

reveal an elevated de novo mutation rate for canines in comparison to other studied 

species to date, indicating a possible mechanism for the rapid generation of phenotypic 

diversity in the evolution of the domestic dog from the grey wolf. We have provided 

metrics in relation to de novo mutation rates in the dog that might be used as a 

molecular clock. This will enable scientists to better elucidate the timing of dog 

domestication. Metrics that we have provided can also be used as better priors for use 

in variant calling algorithms for more accurate genotyping of de novo mutations.  
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Chapter 4. The Genetics of Progressive Retinal Atrophy in 

the Hungarian Puli 

4.1. Synopsis - Exclusion of known progressive retinal atrophy genes for 

blindness in the Hungarian Puli  

In this chapter, we begin to explore the contribution of de novo mutations in canine 

disease and demonstrate how next generation sequencing data can be used to study 

low frequency variants that are associated with disease. Low frequency variants, such 

as de novo mutations that are involved in rare disease, are difficult to detect with 

traditional genome wide association analyses. In addition, studies on rare diseases are 

challenged with having a limited number of case samples. The research in chapter 4 is 

focussed on progressive retinal atrophy in the Hungarian Puli. In section 4.1, we present 

published research which reports that this form of disease is potentially novel, by 

performing comprehensive testing of reported canine progressive retinal atrophy genes.  

The supplementary materials associated with the original publication have been 

included in section 4.1.1 to provide the reader with greater context for this chapter.   





CanineHD BeadChip (Illumina) (genotyping array data of

all 14 individuals used in this study have been deposited in

NCBI’s Gene Expression Omnibus under the accession num

ber GSE87642). Coding exons and untranslated regions of

genes that co located with loci conforming to an autosomal

recessive inheritance pattern (Table S2) were then Sanger

sequenced for the two affected dogs. A full description of

materials and methods can be found in Appendix S1.

Conclusions: Exhaustive screening of 53 candidate loci in a

Hungarian Puli family segregating blindness identified no

coding variants for the phenotype of interest. Two candi

date genes in loci concordant with recessive inheritance

were identified (RLBP1 position chr3:52 260 877

52 278 803 and NR2E3 chr30:35 378 421 35 381 822,

CanFam 3.1; Fig. 1). Sanger sequencing of exons and

untranslated regions revealed no variation to the reference

genome. An additional eight recessively inherited SNPs in

other regions of the genome were found in PDE6A, RD3,

PRCD and MERTK using whole genome sequencing data;

however these were either intronic or non coding variants

and are not likely to cause disease (Table S3). This study

provides the basis for mapping and further screening of

potentially novel canine PRA genes followed by testing in

a wider sample cohort.
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4.1.1. Supplementary materials for section 4.1  

Materials and Methods 

Samples  

Two affected half sibling Hungarian Puli dogs (USCF516, USCF519) and 12 other 

individuals including their parents (USCF347, USCF524, USCF525) from the same 

kennel were used in this study (Figure S1). USCF516 and USCF519 were diagnosed 

with progressive retinal atrophy (PRA) by registered specialists in veterinary 

ophthalmology based on vascular attenuation in the eye, hyper-reflectivity and reduced 

myelination in the optic nerve head. The parents also underwent testing and were 

confirmed to be PRA clear. The remaining 9 dogs who were over 5 years of age had 

normal vision. Dogs with PRA reach complete blindness at 6 months – 4 years, hence 

we considered these 9 dogs to be PRA clear. EDTA-stabilized blood was collected from 

all 14 dogs and genomic DNA was extracted using the illustra Nucleon BACC2 kit (GE 

Healthcare). This study was carried out with the consent of the dog’s owners’ and with 

Animal Ethics approval granted by the Animal Ethics Committee at the University of 

Sydney (N00/9–2009/3/5109).  

Candidate gene selection  

A comprehensive list of 53 candidate genes was screened for PRA causative variants. 

Candidates were selected from a toolset that was developed to allow rapid screening of 

dog families with PRA (Winkler et al. 2016). Genes include PRA associated genes 

identified in multiple dog breeds and genes associated with analogous disease in 

humans. Additional genes were selected from another PRA-screening study involving 

multiple dog breeds and a review (Downs et al. 2014; Miyadera et al. 2012). Exhaustive 

screening for candidate mutations was performed with two methods – putative variant 

detection in in whole genome sequencing data and Sanger sequencing exons of genes 

that resided in loci concordant with autosomal recessive inheritance. The second 

method ensures that candidate genes within putative loci are completely and accurately 
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sequenced, especially where there is no – low coverage in whole genome sequencing 

data.  

Whole genome sequencing and putative mutation detection  

One father-mother-proband trio (USCF525, USCF347, USCF516) and the additional 

half sibling case (USCF519) were whole genome sequenced by the Ramaciotti Centre, 

University of New South Wales, Kensington. Library preparation was performed with the 

Illumina TruSeq DNA PCR-free kit. The four samples were barcoded and sequenced on 

two lanes as 101 base paired-end reads on the Illumina HiSeq 2000 (Illumina, San 

Diego, CA).  

For each sample, reads were aligned as pairs using the Burrows-Wheeler Alignment 

tool with default parameters (Li & Durbin 2009). Polymerase chain reaction (PCR) 

duplicates were marked using Picard (http://picard.sourceforge.net). Local realignment 

around insertion-deletions (INDELs) was performed using GATK (McKenna et al. 2010; 

DePristo et al. 2011). Raw SNP and INDEL variants were called in the 53 candidate 

genes (Table S1) using Unified Genotyper provided by GATK (McKenna et al. 2010). 

The VariantFiltration tool was used to filter for high quality variants using recommended 

hard filtering parameters for small datasets (Van der Auwera et al. 2013). SNPs were 

removed if Quality Depth < 2.0, Fisher Strand > 60.0, Mapping Quality < 40.0, 

HaplotypeScore > 13.0, MappingQualityRankSum < -12.5 and ReadPosRankSum < -

8.0. INDELs were removed if Quality Depth < 2.0, Fisher Strand > 200.00 and 

ReadPosRankSum < -20.0.  

High quality variants that conformed to an autosomal recessive inheritance pattern were 

retained. Concordant variants were annotated with Variant Effect Predictor (VEP) 

provided by Ensembl (McLaren et al. 2010). Known, common SNPs listed in dbSNP 

were removed and remaining functional coding variants were considered for testing in a 

wider study cohort.  
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Identification of regions concordant with recessive inheritance  

The two case (USCF516, USCF519) and 12 control dogs including the PRA clear 

parents (USCF347, USCF524, USCF525) were genotyped at 172,938 SNP markers 

using the CanineHD BeadChip array (Illumina, San Diego, CA) by GeneSeek (Lincoln, 

NE). Markers that were genotyped as homozygous for the minor allele for the cases 

only were regarded as target loci (concordant). Candidate genes and concordant loci 

were charted onto the concordance map (Figure 1).  

Sanger sequencing of candidate genes in associated loci  

USCF516 and USCF519 were screened for putative functional variants in coding exons 

of candidate genes that resided within concordant loci using PCR and Sanger 

sequencing. Primers were designed in Primer3 (Rozen & Skaletsky 2000) to amplify 

RLBP1 and NR2E3 exons (primer sequences, melting temperatures and product sizes 

can be found in Table S2). PCR was carried out using the AmpliTaq Gold 360 Master 

Mix (Applied Biosystems) in a 20 μL reaction volume. Thermocycling conditions were 

carried out as follows: denaturation at 95 oC for 15 min; 35 cycles of 95 oC for 30 sec, 

annealing at melting temperatures (Tm) according to Table S2 for 30 sec, 72 oC for 45 

sec; and lastly a final elongation step at 72 oC for 10 min. PCR products were purified 

by dispensing 7 μL of PCR product into 3 μL of a master mix containing 10x shrimp 

alkaline phosphatase (SAP) buffer, 1U SAP, 1U Exo I and water. The 10 μL reaction 

volume was placed into a thermocycler to allow enzymatic activity for 30 min at 37oC, 

followed by a deactivation period of 15 min at 80oC. Sanger sequencing of purified PCR 

products was carried out by the Australian Genome Research Facility at Westmead in 

accordance with the vendor’s instructions. Sequences were assessed for any variants 

alternative to the reference genome.  
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Figure S1. Pedigree of Hungarian Puli dogs segregating progressive retinal 

atrophy. Two dogs are affected with progressive retinal atrophy (USCF516, 

USCF519). Their parents (USCF347, USCF524, USCF525) and 9 dogs in the 

pedigree have normal vision. Dogs with individual identifiers were used in this study.  
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Table S1. A list of the 53 PRA candidate genes screened. Candidates include PRA 

genes causative or associated with PRA in other purebred dogs and genes that cause 

analogous autosomal recessive disease in humans. 

 

 Gene  CanFam3.1 Position  Reference  

CNGB1  chr2:58574552-58640412  (Winkler et al. 2016)  

DHDDS  chr2:73593302-73608757  (Winkler et al. 2016)  

RLBP1  chr3:52261271-52269489  (Winkler et al. 2016)  

PROM1  chr3:64260671-64360950  (Winkler et al. 2016)  

PDE6B  chr3:91746571-91775372  (Winkler et al. 2016; Downs et al. 2014)  

RGR  chr4:32492211-32495738  (Winkler et al. 2016)  

RBP3  chr4:34972797-34983018  (Winkler et al. 2016)  

PDE6A  chr4:59103965-59163857  (Winkler et al. 2016; Downs et al. 2014)  

AIPL1  chr5:30828619-30834894  (Winkler et al. 2016)  

GUCY2D  chr5:32844033-32859263  (Winkler et al. 2016)  

NPHP4  chr5:59819237-59935037  (Winkler et al. 2016; Downs et al. 2014)  

ABCA4  chr6:55058361-55253309  (Winkler et al. 2016)  

RPE65  chr6:76887399-76911133  (Winkler et al. 2016; Downs et al. 2014)  

CRB1  chr7:5277947-5419381  (Winkler et al. 2016)  

RD3  chr7:9874740-9887791  (Winkler et al. 2016)  

C1ORF36  chr7:9875590-9875862  (Winkler et al. 2016)  

PDC  chr7:19498785-19514226  (Downs et al. 2014)  

NRL  chr8:4086435-4091100  (Winkler et al. 2016)  

RDH12  chr8:41686714-41689770  (Winkler et al. 2016)  

SPATA7  chr8:59658291-59697320  (Winkler et al. 2016)  

TTC8  chr8:60077187-60108376  (Winkler et al. 2016; Downs et al. 2014)  

PDE6G  chr9:527987-528889  (Winkler et al. 2016)  

PRCD  chr9:4185466-4188777  (Winkler et al. 2016; Downs et al. 2014)  

FAM161A  chr10:61812850-61839706  (Winkler et al. 2016; Downs et al. 2014)  

TULP1  chr12:4633093-4639684  (Winkler et al. 2016)  
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EYS  chr12:28547134-28708579  (Winkler et al. 2016)  

C6ORF152  chr12:40445676-40489047  (Winkler et al. 2016)  

CNGA1  chr13:43831161-43864273  (Winkler et al. 2016)  

COL9A2  chr15:2647620-2661552  (Miyadera et al. 2012)  

RPGRIP1  chr15:18331912-18385143  (Winkler et al. 2016; Downs et al. 2014)  

CEP290  chr15:29194929-29281291  (Winkler et al. 2016)  

LRAT  chr15:52401373-52401765  (Winkler et al. 2016)  

SLC4A3  chr16:15117725-15126206  (Winkler et al. 2016; Downs et al. 2014)  

ADAM9  chr16:26413196-26551132  (Winkler et al. 2016; Downs et al. 2014)  

ZNF513  chr17:21332278-21335631  (Winkler et al. 2016)  

C2ORF71  chr17:22899286-22910537  (Winkler et al. 2016; Downs et al. 2014)  

MERTK  chr17:36336858-36445789  (Winkler et al. 2016)  

BEST1  chr18:54468844-54480311  (Vilboux et al. 2008)  

 

 

References  

Downs L. M., Hitti, R., Pregnolato, S. & Mellersh, C. S. (2014) Genetic screening for 

PRA-associated mutations in multiple dog breeds shows that PRA is heterogeneous 

within and between breeds. Veterinary Ophthalmology 17, 126–30.  

Miyadera, K., Acland, G. M. & Aguirre, G. D. (2012) Genetic and phenotypic variations 

of inherited retinal diseases in dogs: The power of within- and across-breed studies. 

Mammalian Genome 23, 40–61.  

Vilboux, T., Chaudieu, G., Jeannin, P., Delattre, D., Hedan, B., Bourgain, C., Queney, 

G., Galibert, F., Thomas, A. & André, C. (2008) Progressive retinal atrophy in the 

Border Collie: a new XLPRA. BMC Veterinary Research 4, 10.  

Winkler, P. A., Davis, J. A., Petersen-Jones, S. M., Venta, P. J. & Bartoe, J. T. (2016) A 

tool set to allow rapid screening of dog families with PRA for association with candidate 

genes. Veterinary Ophthalmology 20, 372-376. 



 

 

Table S2. PCR primer sequences. 

CanFam3.1 

Position 

 Forward primer (5’-3’) Reverse Primer (5’-3’) Tm 

(oC) 

Product 

length (bp) 

chr3:52,260,877-

52,278,803 

 

1 TTGGTAGTAAAGCTGAGGTCATTG TGGCCCTATCTCTCCATTTG 60 373 

 2 GGATGGCCCCTAGAATAAGC TTCCCAAAGTGTAGCCCAAG 60 866 

 3 GGATGGCCCCTAGAATAAGC TTCCCAAAGTGTAGCCCAAG 60 866 

 4 CAATCCATGTTTCGGGTAGG GGAAGTGGAGGCTATTGTCG 60 645 

 5 GACCCACACCTCACTTCCAC TGCGTATCCTGCTCAGTCAC 60 460 

 6 AAGGTGTAGGCAGGTTCAAGTC TTTCACCAGTCCCTTATTGTTG 59 744 

 7 CCACACACAAGTCCTAAACCTC CTCCTAGTGGGCTATCCTTTG 58 758 

 8 CCACACACAAGTCCTAAACCTC CTCCTAGTGGGCTATCCTTTG 58 758 

chr30:35,378,421

-35,381,822 

1 CCCAGGCATCTAGGACCAG TAGATGCTGGATTCGTGCTG 60 829 

 2 CCCAGGCATCTAGGACCAG TAGATGCTGGATTCGTGCTG 60 829 

 3 CCCAGGCATCTAGGACCAG TAGATGCTGGATTCGTGCTG 60 829 

 4 CTCACCCACAAAAATCATGC TGGAACTGCTAGGTCACAGG 59 522 
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Table S3. Putative variants identified from screening 53 candidate genes in parent-proband and an affected half 

sibling case. 

Parent 
Genotype1 

Case 
Genotype1 

Gene Position2 Type Consequence3 

G A  G G PDE6A 4:59105480 Intronic Modifier  

G A A A PDE6A 4:59139522 Intronic Modifier  

C T T T RD3 7:9886063 Intronic,  
non-coding transcript 

Modifier  

C T T T PRCD 9:4187887 Intronic Modifier  

G C A A PRCD 9:4188050 Intronic Modifier  

A G G G MERTK 17:36360580 Intronic Modifier  

G A A A MERTK 17:36361700 Intronic Modifier  

C T T T MERTK 17:36371425 Intronic Modifier  

1High quality genotypes were called using Unified Genotyper provided by GATK and recommended hard filtering 

parameters (McKenna et al. 2010; Van der Auwera et al. 2013). 2CanFam 3.1 positions. 3Variant consequences on 

protein function or expression was predicted by Ensembl’s Variant Effect Predictor (McLaren et al. 2010). 
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4.2. Synopsis - A Coding Variant in the Gene Bardet-Biedl Syndrome 4 (BBS4) Is 

Associated with a Novel Form of Canine Progressive Retinal Atrophy  

With the indication that a potentially novel form of progressive retinal atrophy was 

affecting the case Hungarian Puli as identified in section 4.1, in section 4.2, we present 

a published original research article that describes our methods for identifying a putative 

variant for canine progressive retinal atrophy. This method involved genotyping array 

and whole genome sequencing of parent-offspring trio samples. We executed this 

method and identified a highly associated nonsense SNP in BBS4 (c.58.A > T, PCHISQ = 

3.43e14, n = 103). BBS4 is a novel canine progressive atrophy gene. In humans, this 

gene is involved with Bardet-Biedl Syndrome, a ciliopathy that can cause other disease 

phenotypes including obesity and infertility. In this paper, we also provide evidence that 

the identified mutation in canine BBS4 may cause syndromic disease as we observe 

similar phenotypes in the cases. BBS4 is the second Bardet-Biedl Syndrome gene that 

has been linked to canine progressive retinal atrophy.   
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ABSTRACT Progressive retinal atrophy is a common cause of blindness in the dog and affects .100
breeds. It is characterized by gradual vision loss that occurs due to the degeneration of photoreceptor
cells in the retina. Similar to the human counterpart retinitis pigmentosa, the canine disorder is clinically and
genetically heterogeneous and the underlying cause remains unknown for many cases. We use a positional
candidate gene approach to identify putative variants in the Hungarian Puli breed using genotyping data of
14 family based samples (CanineHD BeadChip array, Illumina) and whole genome sequencing data of two
proband and two parental samples (Illumina HiSeq 2000). A single nonsense SNP in exon 2 of BBS4
(c.58A. T, p.Lys20�) was identified following filtering of high quality variants. This allele is highly associated
(PCHISQ = 3.425e 14, n = 103) and segregates perfectly with progressive retinal atrophy in the Hungarian
Puli. In humans, BBS4 is known to cause Bardet Biedl syndrome which includes a retinitis pigmentosa
phenotype. From the observed coding change we expect that no functional BBS4 can be produced in
the affected dogs. We identified canine phenotypes comparable with Bbs4 null mice including obesity and
spermatozoa flagella defects. Knockout mice fail to form spermatozoa flagella. In the affected Hungarian
Puli spermatozoa flagella are present, however a large proportion of sperm are morphologically abnormal
and ,5% are motile. This suggests that BBS4 contributes to flagella motility but not formation in the dog.
Our results suggest a promising opportunity for studying Bardet Biedl syndrome in a large animal model.
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Progressive retinal atrophy (PRA) (OMIA #000830 9615) is the most
common cause of hereditary blindness in the domestic dog (Canis lupus
familiaris), affecting.100 pure breeds (Whitley et al. 1995). It is clin
ically and genetically heterogeneous and encompasses several forms of

disease which vary by etiology, rate of progression, and age of onset
(Downs et al. 2014a). The typical characteristics are gradual night,
followed by day vision loss due to the degeneration of rod and cone
photoreceptors, and this degeneration continues until the affected
animal is completely blind (Parry 1953). Ophthalmic features that
become apparent as the retina deteriorates include tapetal hyper
reflectivity, vascular attenuation, pigmentary changes, and atrophy
of the optic nerve head (Parry 1953; Clements et al. 1996; Petersen
Jones 1998).

PRAis recognizedas theveterinaryequivalentof retinitispigmentosa
(RP) in humans due to the clinical and genetic similarities between the
disorders (Petersen Jones 1998; Cideciyan et al. 2005; Zangerl et al.
2006; Downs et al. 2011). RP is a common cause of blindness in hu
mans and affects �1 in 4000 people (Hamel 2006). There are very
limited treatment options for both PRA and RP at present (Hamel
2006). For this reason, the dog has become a valuable large animal
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model for retinal degeneration, in particular, for testing the efficacy of
novel therapeutics such as gene therapy (Pearce Kelling et al. 2001;
Acland et al. 2001; Narfström et al. 2003; Cideciyan et al. 2005;
Beltran et al. 2012; Pichard et al. 2016). As of 2016, 256 retinal dis
ease associated genes were identified for humans (https://sph.uth.edu/
retnet/). Some of these genes cause nonsyndromic RP, while others
contribute to syndromic disorders such as Bardet Biedl syndrome
(BBS) (Hamel 2006).

Currently, retinal dystrophies in 58 domestic dog breeds have been
linked toat least 25mutations in 19differentgenes (Miyadera et al.2012;
Downs et al. 2014b). Canine PRA is typically inherited in an autosomal
recessive pattern, although two forms that are X linked (Vilboux et al.
2008) and one that has dominant inheritance have been reported (Kijas
et al. 2002, 2003). Many of these discoveries in the canine were made
using candidate gene studies, linkage mapping and genome wide asso
ciation studies (GWAS) followed with fine mapping (Acland et al.
1999; Goldstein et al. 2006; Kukekova et al. 2009; Downs et al.
2014b). This success has been facilitated by the unique breeding
structure of dogs. Intense artificial selection, genetic drift, and
strong founder effects have resulted in stretches of linkage disequi
librium (LD) that can persist for several Mb within breeds, but only
tens of kb across breeds (Lindblad Toh et al. 2005). This species
population structure has allowed for the successful mapping of
Mendelian traits with fewer markers and subjects compared to hu
man gene mapping studies: as few as 10 unrelated cases and 10 con
trols (Karlsson et al. 2007; Frischknecht et al. 2013; Jagannathan
et al. 2013; Willet et al. 2015; Gerber et al. 2015; Wolf et al. 2015).
Such methods are accepted to work extremely well for mapping
monogenic traits that segregate within a single breed.

Despite thisachievement, there are stillmany formsofPRAinseveral
breeds of dog that have yet to be genetically characterized. Traits with
underlyinggeneticheterogeneityanda lateonsetarenotoriouslydifficult
to map using linkage or GWAS methods (Hirschhorn and Daly 2005;
Korte and Farlow 2013). Although PRA is collectively common, in
dividually, specific forms are relatively rare and it may take many
generations until an adequately sized cohort of unrelated case samples
are collected. The genetic heterogeneity of PRA can complicate the
results of linkage mapping and GWAS, as different causative variants
and genes can be responsible for an identical phenotype. In addition,
both linkage andGWAS rely onmarkers to be in LD and segregate with
the disease gene, making it difficult to detect rare or de novo variants
(Hirschhorn and Daly 2005).

Since the advent of whole genome sequencing (WGS) and whole
exome sequencing technologies, the discovery of causal variants for rare
or genetically heterogeneous diseases has becomemore rapidwith fewer
case samples necessary for success. One study design of note that has
been used in human and more recently in canine studies is the
sequencing of parent proband trios (Zhu et al. 2015; Sayyab et al.
2016). As this method provides the chance for earlier diagnosis than
previously possible, this gives patients the opportunity to access more
personalized treatment options (Farwell et al. 2015; Zhu et al. 2015;
Sawyer et al. 2016).

In a preliminary study, extensive screening of 53 genes associated
with autosomal recessive PRA or RP revealed no putative variants that
could be associated with PRA in the Hungarian Puli breed (Chew et al.
2017). Here, we combine genotyping array data and WGS data of a
parent proband trio with an additional half sibling case to identify a
potentially novel canine PRA gene. We successfully identify a highly
associated mutation in exon 2 of BBS4 (c.58A. T, PCHISQ = 3.425e 14,
n = 103) that segregates perfectly with the disease phenotype. This
mutation encodes a premature stop codon which is expected to result

in complete loss of function of the BBS4 protein. The association of
BBS4 with canine PRA is a novel finding and presents the first de
scription of an associated variant for PRA in the Hungarian Puli.

MATERIALS AND METHODS

Samples
This study involved 255 dogs (C. lupus familiaris) that comprised
103 Hungarian Puli and 152 Hungarian Pumi samples. This sample
cohort included 14 Hungarian Pulis segregating PRA in an autosomal
recessive pattern from a previous study (Chew et al. 2017). Three
affected Hungarian Pulis (USCF516, USCF519, and USCF1311) were
diagnosed with PRA at the age of 2 yr by registered specialists in veter
inary ophthalmology. Diagnosis was based on observed ophthalmologic
changes including vascular attenuation, hyper reflectivity, and reduced
myelination in the optic nerve head. The parents (USCF347, USCF524,
and USCF525) were similarly tested and confirmed as PRA clear. The
remaining dogs were.3 yr of age and had normal vision as reported by
their owners or veterinarians. Hungarian Pumis are a very closely related
breed to the Hungarian Pulis and have been considered as a unique
breed only since the 1920s, so were considered as a compatible cohort
for this study.

Biological samples from the 255 dogswere collected either as EDTA
stabilized whole blood or buccal cells using noninvasive swabs (DNA
Genotek) or indicating Whatman FTA Cards (GE Healthcare). Geno
mic DNA was isolated from whole blood using the illustra Nucleon
BACC2 kit (GE Healthcare) or from buccal cells on swabs using the
PerformageneKit. For samples collected on an FTA card, DNAon discs
was purified according to the manufacturer’s guidelines.

We ensured that recommendations from theAustralianCode for the
Care and Use of Animals for Scientific Purposes were strictly followed
throughout the study. Animal ethics approval was granted to conduct
this research by the Animal Ethics Committee at the University of
Sydney (approval number N00/9 2009/3/5109, September 24, 2009)
and the State Provincial Office of Southern Finland (ESAVI/6054/
04.10.03/2012).

Genotyping array data
Genotyping array data of 14Hungarian Puli andWGS data of a parent
proband trio and one additional half sibling case (USCF347, USCF516,
USCF519, and USCF525) were obtained from the preliminary study
(Chew et al. 2017). Genotyping was performed on the CanineHD
BeadChip array (Illumina, San Diego, CA) by GeneSeek (Lincoln,
NE). WGS was performed as 101 bp, paired end reads on the Illumina
HiSeq 2000 by the Ramaciotti Centre, University of New South Wales,
Kensington. The Illumina TruSeq DNA polymerase chain reaction
(PCR) free kit was used to prepare the libraries. The four samples were
barcoded and sequenced on two lanes of the sequencing machine. For
additional information on sample and data collection, refer to the
supplementary information in Chew et al. (2017). Sample information
for this study can be found in Supplemental Material, File S1.

Candidate gene selection
Comprehensive screening of 53 PRA loci in the Hungarian Puli family
revealed no obvious functional variants for the phenotype of interest
(Chew et al. 2017). To identify novel candidates, regions concordant
with a recessive inheritance pattern were identified using two case
(USCF516 and USCF519) and 12 control dogs that were genotyped at
172,938 SNPmarkers on the CanineHDarray. The control dogs included
three PRA clear parents (USCF347, USCF524, and USCF525). Only
markers that were genotyped as homozygous for theminor allele in cases,
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heterozygous in the parents, and heterozygous or homozygous for the
reference allele in the remaining nine control dogswere regarded as target
loci (Microsoft Excel 2010).

Candidate genes were selected from the region with the highest
frequency and density of concordant SNPs. LD in purebred dogs can
span several Mb long (Lindblad Toh et al. 2005), thus we considered
markers within 5 Mb to be in a single haplotype block. Using the
corresponding syntenic positional region in the mouse reference ge
nome (mouse genome assembly GRCm38, January 2012 build, the
Genome Reference Consortium), we restricted our analysis to genes
with a known phenotypic connection to vision using the Mouse Ge
nome Browser (http://jbrowse.informatics.jax.org/). Any genes within
the identified regions that were not already assessed in the preliminary
PRA gene screening study (Chew et al. 2017) were chosen as positional
candidate genes and considered for further analysis.

Whole-genome sequence processing and putative
mutation detection
Next generation sequencing data from two cases (USCF516 and
USCF519) and two parental controls (USCF347 and USCF525) were
aligned to CanFam 3.1 (Hoeppner et al. 2014). Reads were aligned as
pairs using the Burrows Wheeler Alignment tool with default param
eters (Li and Durbin 2009). PCR duplicates were marked using Picard
(http://broadinstitute.github.io/picard/). Local realignment around
insertion deletions (indels) was performed using the Genome Anal
ysis Tool Kit (GATK) (McKenna et al. 2010; DePristo et al. 2011).

Highqualityvariantswerecalled forall four individualssimultaneously
over 12 candidate genes that were selected from the locuswith the highest
density of SNPs concordant with autosomal recessive inheritance. Raw
variants were first called using HaplotypeCaller provided by GATK
(Van der Auwera et al. 2013; McKenna et al. 2010). SNPs were then
removed if Quality Depth ,2.0, Fisher Strand .60.0, Mapping
Quality ,40.0, HaplotypeScore .13.0, MappingQualityRankSum
, 12.5, and ReadPosRankSum , 8.0. Indels were removed if
Quality Depth,2.0, Fisher Strand.200.00, and ReadPosRankSum
, 20.0.

The remaining high quality SNPs and indels were annotated using
Variant Effect Predictor provided by Ensembl (McLaren et al. 2010).
Known population variants obtained from publically available data were
not considered as candidates (Lindblad Toh et al. 2005; Vaysse et al. 2011;
Axelsson et al. 2013). Exonic variants were manually evaluated for geno
type quality and conformation to the expected inheritance pattern using
SAMtools tview (Li et al. 2009) and theUCSCGenome Browser. Remain
ing variants which were predicted by SIFT (Sim et al. 2012) to be delete
rious (,0.05) were then considered for genotype validation and
segregation analysis in the wider population by Sanger sequencing.

Variant validation and segregation analysis
The pedigree relationships among the 14 array genotyped individuals
forwhich registered (AustralianNationalKennelCouncil) pedigreedata
were available were tested through identity by descent proportions
calculated using PLINK (Purcell et al. 2007).

To confirm that the identified mutation was not a sequencing error
and that the variant was concordant with the Mendelian expectation of
thedisorderphenotype,wegenotyped103HungarianPuliand152Hun
garian Pumi for the candidate causative mutation c 58A . T in BBS4
using PCR and Sanger sequencing.

Forward (59 GTTAGCAAGATACATGGTGTTGC 39) and re
verse (59 GACTATTACTGCTTTCCCCAAAA 39) primers were
designed with Primer3 (Rozen and Skaletsky 2000) to amplify a
225 bp product flanking the candidate mutation. PCR was carried out
using the AmpliTaq Gold 360 Master Mix (Applied Biosystems) in a
20 ml reaction volume. Following denaturation at 95� for 15 min, sam
ples underwent amplification for 35 cycles at 95� for 30 sec, 55� for
30 sec, 72� for 45 sec, followed by a final elongation step at 72� for
10 min. For the purification of each sample, 7 ml of PCR product was
dispensed into 3 ml of master mix containing 10· shrimp alkaline
phosphatase (SAP) buffer, 1 U SAP, 1 U Exo I, and water. Enzymatic
activity was enabled for 30 min at 37� and was then deactivated during
15 min at 80�. Sanger sequencing of purified PCR products was carried
out by the Australian Genome Research Facility at Westmead in ac
cordance with the vendor’s instructions.

Figure 1 Positions of SNP array
markers that segregate with the
PRA phenotype and candidate
genes are identified. Concor
dant markers are indicated in
blue. Color opacity describes the
density of concordant markers
with darker hues corresponding
with higher concordant marker
density. Candidate genes are
depicted in red. The locus
with the highest frequency and
density of markers is chr30:
25,254,123 39,976,525, with
103 markers and 12 candidate
genes residing on the region.
Following this is chr4: 556,510
10,473,708 with 61 markers and
three candidate genes and chr20:
9,562,689 20,226,838 with
60 markers and three candi
date genes.
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with60 concordantmarkers.This is syntenic tomouse chr6, 100.0 110.0Mb.
The mouse phenome browser revealed three candidate genes on each
of the chr4 and chr20 regions. A total of 18 genes were selected as
positional candidates in the current study (Table S1).

WGS and variant detection
Sequencing on the Illumina HiSeq 2000 produced an average of
171 million raw reads per dog. Of these reads, 99.3% were successfully
mapped to the CanFam 3.1 reference genome, resulting in an average
mapped coverage of 6.9· per individual.

In the18selectedcandidategenes,2726highqualitySNPsweredetected,
1918 of which are not currently known population variants (Table 1;
Lindblad Toh et al. 2005; Vaysse et al. 2011; Axelsson et al. 2013). Of
the 44 exonic SNPs, there were 27 synonymous, 16 missense, and one
nonsense SNP. Two of the missense SNPs, one at MEGF11, chr30:
30,251,670 and the other at STRA6, chr30: 37,344,538, followed the
expected inheritance pattern. Both were predicted by SIFT to be tolerated
(P = 1) and therefore were not considered for further analysis. The single
nonsense SNP detected occurred at BBS4, chr30: 36,063,748 and followed
the expected inheritance pattern. This was predicted to be a deleterious
mutation and was considered for validation and segregation analysis.

A total of 912 indels were detected, 900 of which are not currently
known population variants (Table 1). Four of these were exonic, and by
manual inspection none of these followed the expected inheritance
pattern and so were not considered for further analysis.

Validation and segregation of putative nonsense variant
in BBS4
A single, putative functional coding variant that passed all hard filtering
criteria was identified. The variant results in a stop gained mutation in

BBS4 and is predicted to be deleterious. We manually completed the
annotation of BBS4 in the CanFam 3.1 reference genome as exon 1 was
evidently missing (refer to File S2 for a full description of the methods
used). The complete canine BBS4 protein can be accessed through
Genbank (accession KX290494). In the complete BBS4 gene, the puta
tivemutation results in a premature stop codon (p Lys20�) as a result of
a c.58A . T SNP in exon 2 (Figure 2).

The 103 Hungarian Puli included the three affected animals and
14 others with normal vision from the same kennel (Figure 3). Pedigree
relationships for the 14 individuals for which genotyping array data
were available were confirmed through identity by descent estimations
(Table S2). Through Sanger sequencing, we observed that all three
affected dogs (USCF516, USCF519, and USCF1311) were homozygous
for the variant allele (T/T), all three obligate carrier parents were het
erozygous (A/T), and the remaining unaffected Hungarian Puli were
either heterozygous or homozygous for the wild type allele (A/A, Figure
4). All Hungarian Pumi were homozygous for the wild type allele.
Genotypes for each individual in the study can be found in File S1.

An association of PCHISQ= 3.425e 14 between the c.58A.T SNP in
BBS4 to the disease phenotype was found for all validated Hungarian
Puli genotypes (n = 103). When including validated Hungarian Pumi
genotypes, the association is PCHISQ = 3.252e 34 (n = 255). The geno
types are perfectly consistent with an autosomal recessive pattern of
inheritance for the 17 Hungarian Puli individuals with pedigree infor
mation, which supports the expected segregation pattern for PRA in
this breed (Figure 3).

Assessment of Bbs4 / mouse phenotypes in the dog
The intact affected male Hungarian Puli (n = 1) was found to be
subfertile. Semen analysis indicated normal sperm concentration but

Figure 3 Segregation of the BBS4 SNP (c.58A . T, p.Lys20�) in the Hungarian Puli family. DNA samples were available for all individuals with an
identifier (n 17). PRA is consistent with an autosomal recessive form in this family. Genotypes confirmed through Sanger sequencing repre
sented by unfilled (homozygous wild type A/A), filled (homozygous mutant T/T), or half filled (heterozygous A/T) circles (females) or squares
(males) support this mode of inheritance.
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BBS is recognized as a syndromic disease, however in the dog, the
disease may appear as nonsyndromic PRA. Like canine PRA, BBS is
typically inherited in an autosomal recessive manner, except for one
report of triallelic inheritance (Katsanis et al. 2001; Forsythe and Beales
2013). In human BBS type 4, symptoms that are observed in addition to
RP include obesity, hypogenitalism, polydactyly, mental retardation,
renal anomalies, and decreased olfaction (Iannaccone et al. 1999,
2005; Riise et al. 2002; Li et al. 2014; Aksanov et al. 2014). The severity
and frequency of occurrence of each of these symptoms is variable like
for all types of BBS, and clinical diagnosis is based on the presence of
three to four primary and two secondary symptoms (Forsythe and
Beales 2013). The difference in the underlying genetic mutation for
reports of BBS type 4 is likely to contribute to this heterogeneity.

The affected Hungarian Puli in this study were predicted to have no
functional BBS4, so we compared their phenotypes to those observed in
Bbs4 null mice. In these mice, obesity and a complete lack of sperma
tozoa flagella were observed in addition to retinal degeneration
(Mykytyn et al. 2004). In the dog, we observed all of these phenotypes
but found that canine spermatozoa flagella were not as severely affected
as those in the mouse. We observed 22% of sperm with normal mor
phology in the dog; however, a large proportion of abnormal sperm had
defective flagella (74%) and a very small proportion were motile (,5%;
Table 2). This suggests that BBS4 is only of moderate importance to
flagella formation but is necessary for providing motility in the dog.
More canine samples are required to confirm this.

The difficulty with differentiating nonsyndromic and syndromic
disease in companion animals such as the dog is that many of the
concurrent symptoms may not be diagnosed or recognized. Obesity
is common with 26 43% of pure and mixed breed dogs classed as
overweight in an Australian survey (McGreevy et al. 2005). As it is
widely recognized as a nutritional disease, many people would un
derestimate the genetic component of this phenotype. Further, in
Australia many companion animals are desexed prior to maturity,
limiting the opportunity to recognize fertility deficits. Other symp
toms such as learning or developmental delay and decreased olfac
tion may be difficult to assess in animals. For these reasons, we
recommend that all human BBS genes might be considered as
potential candidate genes for cases of canine PRA with unknown
genetic causation. Further studies are required to confirm that
BBS4 causes syndromic disease in the dog and this should be mon
itored as it may potentially be a useful large animal model for
human BBS.
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Chapter 5. The Genetics of Severe Haemophilia A in the 

Australian Kelpie 

5.1. Abstract 

Haemophilia A is a bleeding disorder caused by a reduced activity of factor VIII (FVIII) 

that is required in the coagulation cascade to create blood clots. Disease is associated 

with a wide range of mutation types in the FVIII gene that either have X-linked 

inheritance or have occurred sporadically. In this study, we report the occurrence of 

haemophilia A in two purebred Australian Kelpie pups. The affected dogs had a FVIII 

coagulation activity of <1.5 %, which is considered to be severe by the Animal Health 

Diagnostic Centre, Cornell University. To our knowledge, there was no family history of 

this disease in the affected kennel. Using genotyping array data from the CanineHD 

BeadChip array, we inferred haplotypes in the FVIII loci. The apparently healthy 

maternal grandsire contained the same apparent haplotypes as the affected dogs, 

suggesting a putative de novo mutation in the FVIII gene. Using 100 base pair, paired-

end Illumina sequencing reads from one affected and 11 unrelated control dogs, we 

called putative SNP, indel and structural variants in the FVIII gene and 13 other 

bleeding disorder loci using GATK’s haplotype caller, SVtyper and LUMPY.  A total 37 

intronic SNPs unique to the affected dog were identified, but without functional data, 

their effect could not be confirmed. Comprehensive screening of the FVIII gene in whole 

genome sequence data and through Sanger sequencing revealed no candidate exonic 

mutations. The affected dogs were also clear of a commonly reported inversion 

mutation affecting intron 22, which was tested by long range PCR. Low mutation 

detection success rates are common in rare disease research, and this emphasizes the 

need for the development of more statistically powerful and effective methodologies to 

provide sufferers with a rapid diagnosis.   

5.2. Introduction 

Haemophilia A is recognized as one of the most common and severe bleeding disorders 

affecting a range of animals including both dogs (Canis lupus familiaris) and people 
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(Brooks 1999; Graw et al. 2005). It has an X-linked recessive mode of inheritance and 

occurs in ~1 in 10,000 live male births worldwide. Disease occurs when damaging 

mutations in the FVIII gene cause coagulation factor VIII (FVIII) to be dysfunctional, 

limiting an individual’s ability to propagate the intrinsic coagulation pathway that is 

necessary to control bleeding (Tantawy 2010). In addition to excessive bleeding, clinical 

signs include increased risk of haematoma and spontaneous haemorrhaging in joints 

and muscles. The severity of disease may be classified as mild, moderate or severe 

depending on endogenous circulating FVIII levels (< 1%, 2-5% and 5-20% respectively) 

(Brooks 1999; Bolton-Maggs and Pasi 2003). Disease symptoms can be managed by 

the periodic transfusion of plasma-derived of recombinant FVIII and lifestyle changes to 

minimize the risk of bleeding. Due to the short half-lives of the proteins and the 

development of neutralizing antibodies in patients, treatment success is limited and the 

search for better treatment options is ongoing. Dogs with severe disease are often 

euthanized before reaching the age of one year due to recurrent and high risk of fatal 

haemorrhaging.  

The FVIII gene is a large and complex gene that includes 26 exons spanning over 186 

kilobases (kb) of DNA at the end of the long arm of the X chromosome in both humans 

and dogs. It coincides with a mutational hotspot and for 30% of human cases, 

spontaneous disease occurs in individuals with no prior family history of haemophilia A. 

In humans, over 2,015 distinct causative mutations have been identified and each is 

linked to a specific type of clinical severity (http://www.factorviii-db.org/) (Graw et al. 

2005; Repessé et al. 2007; Tantawy 2010). The most commonly occurring mutation 

(~45% of severe human cases) is an inversion causing a breakpoint at intron 22 within 

the FVIII gene. Intra-chromosomal recombination between a 9.5 kb region within intron 

22 (termed int22h1) and two highly homologous regions distal to the FVIII locus and 

towards the telomere on the X chromosome (int22h1 and int22h3) can cause this 

inversion event spontaneously. A wide range of other causal variant types including 

other inversions, insertions, deletions, nonsense and missense mutations have been 

reported.  



 

 
122 

Haemophilia A has been documented in several pure and mixed breed dogs (OMIA 

#000437-9615). There is a breed predisposition for the clinical severity of haemophilia A 

and for the tendency for disease to occur sporadically (Brooks 1999; Brooks et al. 2008; 

Dunning et al. 2009). Unlike human haemophilia A, the genetic characterisation of 

disease is lacking in the veterinary literature and so genetic testing for the detection of 

carrier individuals is not available in many breeds (Mischke et al. 2011). Amongst the 

cases that have been characterised, a mutation that resembles the intron 22 inversion 

in humans was evident in two separate dog colonies. The colony housed at Queen’s 

University established from affected Miniature Schnauzers and obligate carrier 

Schnauzer-Brittany Spaniel females were found with an abnormal FVIII transcript that 

contained a novel sequence element following exons 1-22 (Hough et al. 2002). 

Researchers similarly described an aberrant FVIII transcript in a colony of Irish Setters 

from the University of North Carolina in Chapel Hill (Lozier et al. 2002). Several other 

nonsense and missense mutations in breeds including German Shepherds, Boxers and 

an Old English Sheepdog have been found to associate with severe haemophilia A 

(Mischke et al. 2011; Christopherson et al. 2014; Lozier et al. 2016).  

Mice, pigs and dogs are popular animal models for testing novel therapies for 

haemophilia A (and B, caused by dysfunctional coagulation factor IX) (Yen et al. 2016). 

Besides their use in preclinical trials for FVIII infusion safety testing, dogs are popular 

models for a variety of gene therapy technologies to treat and ultimately cure 

haemophilia in humans because of the high homology of the FVIII gene and immune 

systems between the two species (Yen et al. 2016). In the last 20 years, researchers 

have used adeno-associated viral vectors and are challenged with achieving prolonged, 

high FVIII expression levels, whilst reducing vector toxicity and curbing patient response 

of inhibiting antibodies that block the function of infused FVIII (Ward and Walsh 2017). 

More recently, CRISPR-Cas9 mediated genome editing strategies have been used to 

achieve mutation correction without off target side effects in mice, showing the potential 

for pre-clinical testing in a larger model such as the dog (Ohmori et al. 2017). 

This study reports the first case of HA in the Australian Kelpie breed. Two male 

littermates were diagnosed with severe disease through FVIII coagulation assays 
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conducted by the Animal Health Diagnostic Centre, Cornell University. Here we explore 

the FVIII gene and genetic cause of disease in this family. We utilize CanineHD 

BeadChip genotyping array data from the two affected, male pups and 10 of their 

unaffected relatives to infer haplotypes at the FVIII loci. Whole genome sequencing 

(WGS) data from one affected and 11 unrelated Australian Kelpie dogs obtained from 

the Illumina HiSeq 2000 or 2500 were used to call variants in FVIII and 13 other 

bleeding candidate loci. We also used PCR and Sanger sequencing to confirm that the 

affected dogs were clear of obvious exonic mutations and the alleged intron 22 

inversion. We identified 37 putative intronic SNPs which should be further investigated 

for functional importance. 

5.3. Methods 

5.3.1. Animals 

Two male, Australian Kelpie littermates (USCF305 and USCF311) were brought to the 

University Veterinary Teaching Hospital at the University of Sydney. The pups were 

presenting with symptoms consistent with severe coagulopathy. One individual died and 

the second was subsequently euthanized.  The two affected and 21 control dogs of the 

same breed were selected for this study. The control cohort included 10 samples from 

the same extended pedigree as the affected individuals (refer to the section 5.4.1 for 

pedigree information). The diagnosis of haemophilia A in the affected dogs and nine of 

their unaffected relatives was confirmed by factor VIII and/or factor IX coagulation 

assays carried out by the Animal Health Diagnostic Centre, Cornell University. FIX tests 

are commonly performed with FVIII because reduced activity in this factor is commonly 

seen in haemophilia A patients and it is used to test the affection status of an even rarer 

bleeding disorder, haemophilia B. All other individuals exhibited no disease phenotypes 

or were unrelated, and so were assumed healthy. To the author’s knowledge, 

haemophilia A has not been diagnosed in this family prior. HA has an X-linked recessive 

inheritance pattern which supports the segregation of disease in this family.  
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Genomic DNA was extracted from EDTA stabilized whole blood samples from each 

individual using the illustra Nucleon BACC2 kit using the manufacturer’s recommended 

protocol (GE Healthcare). Recommendations from the Australian Code for the Care and 

Use of Animals for Scientific Purposes were strictly adhered to throughout this study.  

Research was conducted with animal ethics approval, granted by the Animal Ethics 

Committee at the University of Sydney (approval number N00/9–2009/3/5109, 

September 24, 2009).  

5.3.2. Genotyping array and whole genome sequencing data 

Genotyping array data for two affected and 10 unaffected relatives were obtained from 

the CanineHD BeadChip array at 173, 650 SNPs (Illumina, San Diego, CA) by Neogen 

(Lincoln). The unaffected dogs include the dam of the affected animals. The data was 

used to infer FVIII haplotypes by observing sample genotypes its residing region on 

chromosome X (122,897,137 – 123,043,373). Only markers with a minor allele 

frequency (MAF) > 0.1 were considered.  

Next generation sequencing data was performed for one affected Kelpie (USCF305) on 

the Illumina HiSeq 2000 as 100 base pair, paired end reads on a single lane of the 

sequencing platform at the Ramaciotti Centre (University of New South Wales, 

Kensington). The quality and quantity of DNA for the other affected male was 

insufficient for whole genome sequencing.  Whole genome sequencing data similarly 

sequenced on the Illumina HiSeq 2000 or 2500 for 11 Australian Working Kelpies were 

obtained from an unrelated study (Arnott et al. 2015; Pan et al. 2017).  

Raw reads were aligned as pairs to the CanFam 3.1 reference sequence using the 

Burrows-wheeler Alignment (BWA-MEM) tool (version 0.7.15) with default parameters 

(Li and Durbin 2009). PCR duplicates were marked with SAMBLASTER (version 0.1.22) 

(Faust and Hall 2014). Local realignment was performed around insertion-deletions with 

the Genome Analysis Tool Kit (GATK version 3.6.0) (McKenna et al. 2010; DePristo et 

al. 2011). Base quality scores were recalibrated with GATK using known variants that 

were downloaded from Ensembl’s dbSNP database.   
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5.3.3. Screening for putative variants in known bleeding disorder loci 

A reduction in coagulation FVIII can be influenced by proteins other than FVIII including 

FIX and von Willebrand factor. For this reason, we called SNP and small indel variants 

in WGS data in a total of 14 genes known to be associated with a bleeding tendency 

phenotype (Table S1).  GATK’s HaplotypeCaller was used to call these variants 

following best practice recommendations (Van der Auwera et al. 2013). Low quality 

SNPs defined by Quality Depth < 2.0, Fisher Strand > 60.0, Mapping Quality < 40.0, 

HaplotypeScore > 13.0, MappingQualityRankSum < -12.5 or ReadPosRankSum < -8.0 

were removed. Similarly, low quality indels defined by Quality Depth < 2.0, Fisher 

Strand > 200.0 and ReadPosRankSum < -20.0 were removed. We also called structural 

variants by using LUMPY (version 0.2.11) and genotyped these calls with SVtyper 

(version 0.0.2) with the default settings applied (Layer et al. 2014; Chiang et al. 2015). 

Common population variants were not considered as candidates (Lindblad-Toh et al. 

2005; Vaysse et al. 2011; Axelsson et al. 2013). The remaining variants were annotated 

with Ensembl’s Variant Effect Predictor (McLaren et al. 2010). Alleles which segregated 

in an autosomal or X-linked recessive manner, or which were predicted to have a high 

impact by VEP were considered for further validation. 

5.3.4. Screening the FVIII gene 

To ensure that no variants were missed, we manually screened for variants in the 26 

exons of the FVII gene using WGS data of affected individual USCF305 using SAMtools 

tview. For exons with low to no coverage, we performed polymerase chain reaction 

(PCR) and Sanger sequencing for two affected (USCF305 and USCF311) and two 

control dogs (USCF316, USCF1290). Primer 3 (Rozen and Skaletsky 2000) was used 

to design forward and reverse primers that captured both exons 23 and 24 in a 896 bp 

product (5’-ATGTCTGTGCGGATTCTTCC -3’ and 5’-TTGTACCCTGTCTGCACCTG-3’ 

respectively) and  exon 26 in a 844 bp product (5’-GTCACTGCACAGAGGACGTG-3’ 

and 5’-TGGGTTCGACGTGATGAAG-3’, respectively).  
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PCR was performed using the AmpliTaq Gold 360 Master Mix (Applied Biosystems) in a 

10 µL reaction volume. Solutions underwent PCR cycling conditions using the Veriti 96 

Fast Thermal Cycler (Applied Biosystems) as follows: denaturation at 95oC for 15 min; 

amplification for 35 cycles at 95 oC for 30 sec, 55 oC for 30 sec, 72 oC for 45 secs; a final 

elongation step at 72 oC for 10 min. PCR products were purified in a 10 µL reaction 

volume. This contained 7 µL of PCR product and a 3 µL master mix containing 1 U Exo 

I, 1 U shrimp alkaline phosphatase (SAP) and 10x SAP buffer.  Sanger sequencing was 

performed at the Australian Genome Research Facility (Westmead) according to the 

vendor’s instructions.  

5.3.5. Analysis of a putative inversion mutation at intron 22 of FVIII 

In humans, the most prevalent causative mutation of severe HA is an inversion causing 

a break of the FVIII gene within intron 22, occurring in ~45% of cases. Two independent 

canine studies have alluded to a similar mutational event causing severe HA in their dog 

colonies. We used LUMPY to call structural variants in WGS Kelpies. We also extracted 

improperly paired reads using SAMtools from intron 22 of FVIII.  

To test for a putative inversion with a breakpoint at this location, we designed a long-

range PCR test using Primer 3 to design primers to capture intron 22. We decided to 

capture the entire intron 22 which spans 16,081 bp as the exact location of the putative 

breakpoint is unknown. We designed two separate PCR tests with overlapping 

fragments as we were unable to amply the 16 kb fragment in a single PCR. The test 

was performed for the two cases (USCF305, USCF311) with the SequalPrep Long PCR 

kit with dNTPs (Thermo Fisher Scientific). The first PCR contained forward (5’- 

GTAATGGGTTGGGTGCAAAC-3’) and reverse (5’- AAGGAGCCAATGACAAATGG-3’) 

primers that captured an 11,031 bp fragment. The subsequent PCR contained forward 

(5- TGTCATTGGCTCCTTTATAGCTC-3) and reverse (5’- TCTCCAGCCTCTACGTGTC 

TC-3’) primers that captured a 5,256 bp fragment. Each PCR was performed in a 10 µL 

reaction volume. Solutions underwent PCR cycling conditions using the Veriti 96 Fast 

Thermal Cycler (Applied Biosystems) using the recommended cycling conditions 

provided by the SequalPrep Long PCR kit.  
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5.4. Results 

5.4.1. FVIII assessment in the affected family 

Coagulation activity assays for FVIII and FIX for the samples obtained from the affected 

pedigree are shown in Figure 5.1. Affected individual USCF305 and USCF311 have a 

coagulation FVIII activity of <1.5 % and 1.5% respectively. A FVIII activity of <2% is 

defined by the Animal Health Diagnostic Centre, Cornell University as an individual with 

severe HA. FIX coagulation could not be obtained for USCF311 and four other relatives 

due to poor sample quality. USCF305 had the lowest FIX activity in the family (29%). 

Regional haplotypes at FVIII on chromosome X indicate that the unaffected grandparent 

contains the same haplotype as the affected littermates (Figure 5.1).  
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Figure 5.1 Pedigree of the Australian Kelpie family segregating haemophilia A. 

Individual identifiers are displayed under the individuals that were included in this 

study. Severe disease was diagnosed in USCF305 and USCF311 based on the level 

of coagulation FVIII and FIX activity that were measured by the Animal Health 

Diagnostic Centre, Cornell University. Reference levels for FVIII and FIX coagulation 

are 50 – 200% and 50 – 150% respectively. Haplotypes represented by genotyping 

data obtained from the Canine HD BeadChip array are depicted by the colour of the X 

under each individual.  

5.4.2. Detection of variants in bleeding disorder loci 

Variants were called and annotated in 14 clotting factor loci for the single case 

(USCF305) and 11 unrelated control Australian Kelpie dogs.  Using GATK’s 

HaplotypeCaller, 2,282 and 668 raw SNPs and indels were called respectively. There 

were no structural variants called by LUMPY in any of the candidate genes. After 

filtering for quality and for variants which are not known to be common in the population, 
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1,580 SNPs and 646 indels remained. None of the indels conformed to the expected 

mode of inheritance with at least one control animal containing an identical genotype as 

the case animal at the putative loci. There were 37 SNPs which followed the expected 

inheritance pattern. All SNPs were intronic (Table 5.1).  

Table 5.1. Variants detected in 14 bleeding tendency candidate genes using whole 

genome sequencing data of one case and 11 control Australian Kelpies.  

Each locus was genotyped for each of the 12 animals. Alternative alleles detected were 

only present in affected dog USCF305 and were not found in the control dogs. Positions 

and reference alleles are relative to the CanFam 3.1 reference genome.  

Chromosome Position Gene Intron 

Reference 

Allele 

Alternative 

Allele 

9 9,212,395 GPIIIa 2 C T 

9 9,213,121 GPIIIa 2 A G 

9 9,214,462 GPIIIa 2 C G 

9 9,214,942 GPIIIa 2 G A 

9 9,215,281 GPIIIa 1 C A 

9 9,216,703 GPIIIa 1 G A 

9 9,216,981 GPIIIa 1 C A 

9 9,217,017 GPIIIa 1 G A 

9 9,217,129 GPIIIa 1 C T 

9 9,224,785 GPIIIa 1 A T 

9 9,226,881 GPIIIa 1 G A 
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9 19,053,999 ITGA2B 10 A G 

9 19,054,961 ITGA2B 12 G T 

9 19,058,091 ITGA2B 16 T C 

18 42,783,087 F2 13 G A 

18 42,783,320 F2 12 T C 

18 42,783,362 F2 12 G A 

18 42,783,978 F2 12 A T 

18 42,784,501 F2 12 T C 

18 42,784,518 F2 12 A G 

18 42,785,453 F2 12 T C 

18 42,785,747 F2 12 T C 

18 42,785,748 F2 12 G A 

18 42,785,756 F2 12 G A 

18 42,786,022 F2 12 T A 

18 42,786,584 F2 12 A G 

18 42,788,637 F2 12 A G 

18 42,788,747 F2 12 C A 

18 42,788,894 F2 12 T C 

18 42,791,141 F2 12 C T 
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18 42,791,283 F2 12 A G 

22 60,576,451 F7 2 C T 

22 60,591,358 F10 4 C G 

22 60,591,363 F10 4 G A 

22 60,594,634 F10 6 C A 

X 109,526,498 F9 6 A T 

X 122,916,938 F8 22 G T 

 

5.4.3. Screening the FVIII gene for novel and known mutations 

We performed SNP, indel and structural variant calling in WGS data and Sanger 

sequencing of exons which were not sufficiently covered (exons 23, 24 and 26). In 

addition to the intron variant detected previously (Table 5.1), we found four exonic SNP 

variants in USCF305. This included one missense mutation in exon 14 and three 

synonymous SNPs in exons 1 and 15 (Table S2). These alleles were genotyped as 

homozygous alternative in USCF305 and one or more of the control dogs and so are 

not likely to be causative for haemophilia A. An additional missense SNP (G > T) was 

detected in the WGS of the affected dog in exon 23 (chrX: 122,907,870) but confirmed 

to be homozygous for the reference allele through Sanger sequencing. No structural 

variants were detected in any of the candidate gene loci.  

We manually detected seven improperly paired reads in intron 22 using SAMtools tview 

(Table S3). All reads in intron 22 were in the forward orientation. Five of the reverse 

read mates mapped to a location distal to the FVIII gene, suggesting a possible 

inversion event similar to the prevalent intron 22 inversion seen in humans. Two 

separate, long range PCR tests that were designed to overlapping fragments that 
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together span the entire intron 22 were performed. The expected fragment sizes (~11kb 

and 5kb) were observed for both affected and unaffected Australian Kelpies, confirming 

that the improperly paired reads were caused by an alignment artefact and are not of a 

biological cause. 

5.5. Discussion 

Haemophilia A is considered the most common bleeding disorder loci in both humans 

and dogs.  Although it affects a variety of pure and mixed breeds, the underlying genetic 

cause of disease is unknown for many cases and thus genetic testing is unavailable for 

many breeds. Of the genetic mutations that are known, similarities to the human 

disorder are apparent. In both species, a variety of inherited and spontaneously 

occurring mutations in the FVIII gene can either be associated with mild, moderate or 

severe disease. The most commonly reported mutation in humans involves a large 

fragment of chromosome X at the telomere, which is inverted causing disruption in the 

FVIII gene with a breakpoint occurring in intron 22. A similar event has also been 

observed in dogs with severe haemophilia A. 

Here we report occurrence of severe haemophilia A in purebred Australian Kelpies. The 

two affected dogs (USCF305, USCF311) presented with classic clinical signs of 

haemophilia A, including low FVIII activity (<1.5%) in addition to reduced FIX activity in 

USCF305. Only males were affected in the litter, which conforms to the X-linked 

recessive mode of inheritance of haemophilia A. We screened for mutations in the FVIII 

gene. To ensure that we tested for a comprehensive list of putative loci, 13 other genes 

that have a known association with a bleeding tendency phenotype in humans were 

included in the analysis and hence we also considered the possibility of autosomal 

recessive inheritance. 

Using WGS data of affected Kelpie USCF305 and 11 unrelated control dogs, we 

detected 37 intronic SNP variants in 7 of the selected candidate genes that fit the 

expected mode of inheritance. These were predicted to have a modifier (one with low 

impact in ITGA2B at CanFam 3.1 chr9: 19,058,091) effect on the corresponding 
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proteins and includes one intronic mutation in FVIII (CanFam 3.1, chrX: 122,916,938). 

Whilst intronic mutations have no obvious impact on protein function, several point 

mutations and a deletion in intron 22 have been associated with severe haemophilia A 

in people (http://www.factorviii-db.org/). As we had not collected transcriptome samples 

and the affected dogs were deceased, we were unable to confirm the effect of putative 

variants on protein function. No indel or structural variants that were concordant to the 

expected mode of inheritance were detected.  

As haemophilia A is known to be caused by defects in FVIII, we performed 

comprehensive screening at this locus. Using 173, 650 SNP genotyping array data 

obtained from the CanineHD BeadChip, we inferred FVIII haplotypes in two cases and 

in 10 apparently healthy relatives. This revealed that the maternal grandsire (USCF316) 

had the same apparent haplotype as the affected pups despite being healthy. If FVIII 

was the causal locus, this suggests that the mutation occurred sporadically, either in the 

grandsire’s sperm or mother’s oocyte (USCF1290). Presuming the latter situation, the 

mother would not appear to be a carrier in direct genetic testing and we took this into 

consideration throughout this study. 

The FVIII gene was manually screened at each of the 26 exons and Sanger sequencing 

was performed for exons that were insufficiently covered in WGS data to ensure that all 

coding sequence was assessed. Two non-synonymous SNPs were found in exons 14 

and 23, however were also present in other healthy WGS samples and did not conform 

to the expected mode of inheritance. We made the decision to test for a mutation similar 

to the most prevalent intron 22 inversion observed in humans, especially because a 

similar event in severely affected Miniature Schnauzers and Irish Setters was found 

(Hough et al. 2002; Lozier et al. 2002). Improperly paired reads in intron 22 of USCF305 

provided some evidence for this mutation. The mates of five of these forward reads that 

mapped to intron 22 mapped 387,826 - 387,858 bp telomeric to the FVIII gene (Table 

S3). Interestingly, there is also a SNP variant following the expected mode of 

inheritance in this intron (Table 5.1). Without transcript data, we used long range PCR 

to test for a putative breakpoint within intron 22, however found no evidence for an 

inversion event as fragments of the expected size were amplified in affected dogs. 
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The detection of rare variants that are causative of disease is extremely challenging and 

mutation detection studies are often underpowered due to low case numbers. With 

canine genomes, regions that are highly associated with disease can be identified with 

~10 case and ~10 control samples for simple Mendelian traits (Karlsson et al. 2007). 

Whilst this is easily achieved for common traits, it is often unachievable for rare traits 

without colony creation, a time consuming and expensive task with obvious animal 

welfare implications. The challenge in identifying candidate variants causative for 

diseases is exacerbated by several technical limitations associated with current 

sequencing technologies and resources available. Sequencing depth, raw read 

mappability to the reference genome and completeness of annotation vary across the 

genome (Sims et al. 2014). For example, GC-rich regions which are characteristic at 

transcription start sites of protein coding genes are prone to low sequencing depth and 

hence, are likely to be less represented than other genomic contexts by whole genome 

sequencing data. 

For human medicine, where rapid diagnosis and personalized treatment for people with 

rare diseases is more pertinent, researchers are using WGS and whole exome 

sequencing from parent-offspring trios as a powerful approach to map causative 

variants in these scenarios (Zhu et al. 2015). This approach has more recently been 

applied in two independent canine studies with success (Sayyab et al. 2016; Chew, 

Haase, Bathgate, et al. 2017) and should be considered in the experimental design of 

future rare disease mapping studies. The emergence and reducing costs of next 

generation sequencing technologies have enabled these successes, however, the 

overall the diagnostic rate for rare diseases still remains relatively low at 25 – 50% 

(Yang et al. 2014; Ankala et al. 2015; Taylor et al. 2015; Chong et al. 2015; Cummings 

et al. 2017). For rare diseases where mutations are sporadically occurring, the issue of 

achieving statistical power in mutation detection studies is exacerbated because the 

disease may not appear to have Mendelian inheritance.  

Although each rare disease affects a small percentage of individuals in a population, 

when all types of rare diseases are considered collectively, they are a common 

problem. The challenges presented in this study which are common in rare disease 
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research highlight the need for the development of mapping strategies and the careful 

consideration in the experimental design of future research in this field. 
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Chapter 6. General Discussion and Conclusions 

The accumulation of new spontaneously occurring variation in the genome is known to 

drive evolution and contribute to disease. In this thesis, we explored the role of de novo 

germline mutations in the evolution of and diseases occurring in the domestic dog 

(Canis lupus familiaris). We used next generation sequencing (NGS) technologies to 

interrogate the whole genomes of canine samples to: estimate the de novo mutation 

rate in dogs (chapter 3); identify a putative mutation in a potentially novel canine 

progressive retinal atrophy gene that is associated with blindness in the Hungarian Puli 

(chapter 4); and explore the genetics of spontaneously occurring severe haemophilia A 

in Australian Kelpies (chapter 5). Whilst NGS platforms are extremely powerful in their 

high throughput and in the abundance of data that they can generate, important 

biological gene variants can be missed due to technical limitations of the technology 

and bioinformatics methodology employed to the data. Because of this, we first carried 

out a performance comparison of single nucleotide variant (SNV) detection 

methodologies that was applied to our specific data type to ensure that we utilized 

optimal bioinformatics pipelines in the subsequent chapters (chapter 2). In this chapter, 

we discuss the outcomes and knowledge gained from each experimental chapter 

separately. 

6.1. Conclusions from chapter 2 

A preliminary study prompted us to initiate the study in chapter 2 where we compared 

the performance of 10 SNV calling pipelines using five popular variant callers on the 

data used in this thesis. In the preliminary study, we tested several pipelines to 

determine the optimal bioinformatics methodology that would allow us to achieve an 

accurate estimation of the de novo per base mutation rate in dogs. Achieving a high 

level of accuracy requires extremely high calling specificity so that true de novo 

mutation loci are detected without the inclusion of other variants, including population 

variation, sequencing errors and variants caused by other technical artefacts. Yet, 

increasing specificity is often at the cost of sensitivity, and without sufficient sensitivity, 

de novo variants may not be captured due to the rarity of new mutation events. To 
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obtain an adequate balance between sensitivity, specificity and accuracy, we 

systematically compared 10 SNV calling pipelines in chapter 2. The metrics provided 

can be used to formulate optimal variant calling pipelines tailored for all other types of 

studies that utilize similar datasets, specifically, studies with Illumina NGS sequencing 

data, relatively small sample sizes and average sample coverage (~10X).  

In chapter 2 we compared five popular SNV callers: FreeBayes (Garrison and Marth 

2012); the Genome Analysis Tool-kit’s Haplotype Caller (GATK HC) and Unified 

Genotyper (GATK UG) (McKenna et al. 2010); SAMtools (Li et al. 2009); and VarScan 

(Koboldt et al. 2013). We ran each variant caller without any additional quality filtering 

(raw pipeline), and then applied recommended hard filtering (filtered pipeline) where 

genotypes are considered as ‘not called’ if they do not meet certain quality metric 

criteria (Van der Auwera et al. 2013; Koboldt et al. 2013; Garrison 2015; Willet et al. 

2015). As many other studies have observed (Yu et al. 2013; Cheng et al. 2014; De 

Summa et al. 2015; Willet, Haase, et al. 2015a), we found that the level of minimum 

coverage requirement parameter had a major impact on genotyping accuracy rates, 

estimated sensitivity and estimated specificity of each variant caller. The differences in 

the measured metrics were greatest between the pipelines with no minimum coverage 

requirement. The raw VarScan pipeline outperformed the other nine pipelines at 

minimum coverage requirement levels less than 10X in this study. As the minimum 

coverage requirement increased, the pipelines performed more similarly in accuracy, 

sensitivity and specificity, except for two underperforming pipelines (FreeBayes and 

VarScan with filters applied). There was no clear overall outperforming pipeline at 

minimum coverage requirement levels of over 10X. There is a common agreement that 

genotypes can be called with a sufficient level of confidence at sites with at least 10X 

coverage (Koboldt et al. 2013). 

Applying hard filters that were recommended by other studies (Van der Auwera et al. 

2013; Koboldt et al. 2013; Garrison 2015; Willet et al. 2015) in variant calling pipelines 

generally did not improve genotyping accuracy for the dataset used in this study. The 

genotyping accuracy was greatly affected at loci that had low coverage. As the 

minimum coverage requirements of the algorithm were increased, hard filtering became 
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more effective and the differences between the accuracies of the raw and pipelines 

including hard filters became minimal. However, we observed only two variant callers 

(GATK HC and SAMtools) that had slightly improved genotyping accuracy at higher 

levels of minimum coverage requirement (over 14X).  

We found that achieving higher sensitivity always costs in calling specificity, and vice 

versa. An optimal variant calling pipeline should be unique to each specific project 

depending on the nature of the sample data and the project goals. For example, a 

project with the goals of identifying a causative genetic variant for a phenotype may 

prioritise sensitivity over specificity, within reason, where there is a feasible number of 

putative variants to further investigate. As previously described, we used the results of 

chapter 2 to obtain an optimal pipeline for estimating the canine per generation de novo 

mutation rate, a primary aim of the research conducted in chapter 3. 

The additional benefit of sequencing at higher depths of over 10X for accurate SNV 

calling drastically reduces with increasing depth of coverage. Realistically, achieving 

high levels of per sample coverage requires continued decline in sequencing costs. For 

the same cost, many researchers will still opt to sequence more samples at a reduced 

coverage, as opposed to fewer samples at higher coverage (Le and Durbin 2011; Sims 

et al. 2014; Gilly et al. 2017). The largest sequencing company, Illumina, achieved its 

promise to decrease the cost of sequencing a single human genome for ~$1,000 USD 

at 30X depth of coverage with the release of the HiSeq X Ten platform in 2014. Illumina 

has since promised to reduce this cost to just $100, however, Schwarze et al. has found 

little evidence for this cost reduction in whole exome and genome studies conducted 

from 2013 - 2017 (Schwarze et al. 2018). The deceleration of cost reduction may be an 

intended business choice rather than restriction by technical limitations, as Illumina 

already owns the largest market share in sequencing platforms.  

Despite the ever-increasing affordability of short read NGS, these technologies are still 

limited by their ability to resolve other types of variants accurately. For this reason, we 

were restricted to analysing SNVs in chapter 2 and 3 in this thesis. This limitation 

provides an opportunity for companies such as Pacific Biosciences and Oxford 
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Nanopore that produce longer read platforms to compete in the current market. 

Resolving GC-rich regions, repetitive, insertion-deletion (indel) and copy number 

variants (CNVs) greater than 500 bp are more successful with long read sequencing 

technologies (Chaisson et al. 2014; Reuter et al. 2015; Pollard et al. 2018). In addition, 

de novo assemblies with long reads provide more complete and accurate coverage of 

whole genomes than de novo assemblies using short reads (Pollard et al. 2018). De 

novo assembly methods organise reads without the need for a reference genome. 

Biases and restrictions associated with using a reference genome (see section 1.4.2) 

can thus be avoided. Omitting cost, the current high per base error rates of long read 

(11 – 38.2%) compared to short read (0.11 – 0.28%) sequencing limit the potential for 

long read platforms to completely replace short read platforms (Minoche et al. 2011; 

Pollard et al. 2018).     

In the foreseeable future, more complete interrogation of whole genomes by accurate 

identification of all variant types and sequence contexts will be possible by combining 

short and long read sequencing data. Efficiency needs to be improved for both 

technologies, especially long read sequencing, which is still unobtainable for many 

researchers. With access to both short and long read sequencing data and 

subsequently, more accurate genotyping of all variant types, applications and research 

questions that utilise sequencing technologies can be broadened.  

6.2. Conclusions from chapter 3 

New DNA mutations are the primary source of genetic diversity and enable evolution to 

occur. In only a few hundred years, hundreds of dog breeds that specialise in a variety 

of morphological, physiological and behavioural traits have been created. To improve 

our understanding of canine evolution, we characterised the germline de novo mutation 

rates and variant distributions throughout the canine genome in chapter 3. Through 

direct observation of de novo mutations by whole genome sequencing of parent-

offspring trios, we were able to estimate the per-base, per-generation mutation rate to 

be 3.9 x 10-8 (95% confidence interval 3.5 – 4.4 x 10-8). In the canine genome which is 

2.4 gigabases in size, this is equivalent to 81 – 112 de novo nucleotide changes in each 
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individual genome per meiosis. Transitions outnumber transversions by 2.3 (95% 

confidence interval 1.3 – 3.3), which is similar to the transition to transversion ratio in 

other mammals including humans (2.2), mice (2.1) and chimpanzees (2.2) (Campbell 

and Eichler 2013; Venn et al. 2014; Uchimura et al. 2015; Narasimhan et al. 2017). 

Our estimate of the per base mutation rate in dogs is slightly higher than the reported 

estimates for other species including humans, mice, chimpanzees and birds by 1 – 4 x 

10-9 nucleotide changes per generation (Campbell and Eichler 2013; Venn et al. 2014; 

Uchimura et al. 2015; Smeds et al. 2016; Narasimhan et al. 2017). This elevated rate 

coupled with relatively large litter sizes (5.4 puppies on average for purebred dogs) and 

shorter generation times in comparison to other studied species may have facilitated 

rapid phenotypic diversification of the dog.  

To understand the possible effects of de novo mutations on phenotype in the dog, we 

categorised observed mutations into seven genomic features based on their physical 

position in the annotated reference genome. The categories included protein-coding, 

CpG island, intergenic, intronic, conserved, 3’ untranslated region (UTR) and the 5’ 

UTR. We did not find any significant bias towards mutation in any particular feature, 

except that mutations are significantly less likely in the 3’ UTR compared to intronic and 

intergenic regions (PT-TEST < 0.05). This is unlike other species, who have found that 

CpG dinucleotides are highly hypermutable compared to other genomic contexts (10 – 

30 times, depending on the animal) (Kondrashov 2002; Lynch 2010; Keightley et al. 

2011; Hodgkinson and Eyre-Walker 2011; Kong et al. 2012; Smeds et al. 2016; 

Narasimhan et al. 2017).  

The accuracy in the estimated per base mutation rate for dogs derived in chapter 3 is 

likely to be impacted by technical quirks that are unique to our dataset. Sequencing 

difficulty of GC rich contexts in Illumina NGS data, relatively low sample sequencing 

coverage and strict variant calling filtering criteria resulted in a low observation of GC 

contexts for this study. Due to our limited ability to observe GC rich contexts, there is a 

possible underestimate in the average per base mutation rate in dogs. We expect there 

to be an underestimate because the mutation rate in other animal species in CpG 
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islands is reported to be 10-30 times higher compared with non-CpG sites (Kondrashov 

2002; Lynch 2010; Kong et al. 2012; Narasimhan et al. 2017). To overcome these 

technical limitations, a greater a sequencing depth of over 30X has previously been 

recommended to obtain the high specificity and sensitivity required for accurate SNV 

calling, as well as appropriate representation of all genomic sequence contexts (Cheng 

et al. 2014; Francioli et al. 2017).  With additional utilization of long read sequencing 

technologies, characteristics other types of de novo variants including indels and CNVs 

can be characterised accurately in a range of genomic contexts. As discussed at the 

end of section 6.1, the opportunity for sequencing samples at a higher depth or to obtain 

long read sequencing data is limited by cost. 

6.3. Conclusions from chapter 4 

De novo mutations that are associated with disease are notoriously difficult to detect 

through common mapping methods such as genome wide association analyses (Lee et 

al. 2014). New variants are not in linkage disequilibrium to genetic markers that are 

typically used to identify genetic variants associated with phenotypes. In addition, 

spontaneously occurring diseases caused by new mutations are often rare and limited 

to a very small number of individuals within families. In chapter 4, we studied 

spontaneously occurring progressive retinal atrophy (PRA) in three related Hungarian 

Puli dogs. Although PRA is typically an autosomal recessive disorder in other breeds, 

there was no prior history of PRA in the subject Hungarian Puli family. 

In the first part of this chapter, we performed screening of a comprehensive list of 

reported canine PRA genes using NGS data (Miyadera et al. 2012; Downs, Hitti, et al. 

2014; Winkler et al. 2016). We found no coding variants in 53 candidate loci for the 

phenotype of interest. To ensure that we captured all possible coding variants in likely 

candidate genes, we used Sanger sequencing to sequence the exons that were not 

sufficiently covered in NGS data of any of the 53 genes that were segregating in an 

autosomal recessive pattern.  These genes were identified using genotyping array 

markers that followed the expected inheritance pattern and co-located with candidate 
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genes. With no potential damaging variants identified and no family history of PRA, we 

considered the possibility that PRA in this family of Hungarian Puli was novel.  

We further assessed positional candidate genes in loci segregating in an autosomal 

recessive pattern and identified a single nonsense SNP in exon 2 of BBS4 that was 

significantly associated with the disorder (c.58.A > T, PCHISQ = 3.43e14, n = 103). 

Dysfunctional BBS4 is known to cause Bardet-Biedl Syndrome in people, a ciliopathy 

which is characterised by many phenotypes including retinitis pigmentosa, obesity and 

infertility (Katsanis et al. 2002; Mykytyn et al. 2004; Wei et al. 2012). We also found 

evidence that the identified nonsense SNP could cause syndromic disease, as affected 

Puli were anecdotally obese, and the sole intact male was confirmed to be infertile 

primarily due to morphologically abnormal flagella. This is the first report of BBS4 and 

its involvement in canine PRA. 

Since the emergence of NGS technologies, researchers have recognised and 

demonstrated the potential for these platforms to identify low frequency, rare and de 

novo variants, particularly through sequencing of parent-offspring samples (Buermans 

and den Dunnen 2014; Zhu et al. 2015; Francioli et al. 2017; Sayyab et al. 2016). We 

applied this technique of parent-offspring whole genome sequencing here to 

successfully identify a rare SNP that is strongly associated with a potentially novel form 

of BBS4, whilst contributing to research in canine PRA.  Fast identification of 

spontaneous disease-causing variants in turn allows for DNA screening protocols to 

commence earlier. Subsequently, the identified BBS4 nonsense SNP associated with 

PRA can be eliminated from Hungarian Puli dogs more rapidly.  

The manuscript presented in section 4.2 is the second report implicating a Bardet-Biedl 

Syndrome gene with canine PRA. Besides BBS4, TTC8 was found to be associated 

with PRA in Golden Retriever Dogs (Downs, Wallin-Håkansson, et al. 2014). Our study 

and Downs et al. were opportunistic and our ability to obtain data was restricted by 

access and need to maintain the welfare of the pet dogs involved. Opportunistic studies 

enable scientists to understand diseases and how they arise in a natural context. 
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Researchers are also able to provide pet owners with a diagnosis and tests to manage 

the disease, which are particularly pertinent to animal breeders.  

Despite the benefits of opportunistic research, they lack a controlled environment and 

perpetual research to further understand the disease and explore treatment possibilities 

is limited by access to the samples. As we experienced, Downs et al. had limited 

opportunities to thoroughly explore other known Bardet-Biedl phenotypes found in 

people with the disease, or observed in BBS knockout gene mouse models (Nishimura 

et al. 2004; Iannaccone et al. 2005; Benzinou et al. 2006; Swiderski et al. 2007; 

Aksanov et al. 2014). Establishing a canine colony for research could confirm whether 

the BBS4 or TTC8 are associated with syndromic diseases, as in humans and mice. 

Colonies could also present as large animal models for the human disease counterpart. 

However, with obvious animal welfare consequences associated with maintaining a 

research colony, the benefit of this research needs to be carefully evaluated. 

6.4. Conclusion to chapter 5 

In chapter 5, we investigated the genetic basis of severe haemophilia A that was 

presented in two Australian Kelpie purebred littermates. Haemophilia A is a rare disease 

that is characterised by uncontrollable bleeding and has been reported in several 

species including dogs and people (Brooks 1999; Graw et al. 2005). In people, over 

2,015 distinct, causative mutations for haemophilia A have been identified in the factor 

VIII gene (Graw et al. 2005; Repessé et al. 2007; Tantawy 2010). The gene encodes for 

coagulation factor VIII (FVIII) and is necessary for the successful operation of the 

coagulation cascade. Disease is generally inherited in an X-linked recessive pattern, 

however, a third of all human haemophilia A cases occur sporadically (Crow 2000; 

Graw et al. 2005).  Sporadic haemophilia A has also been reported in several dog 

breeds (Brooks 1999). The present study is the first to our knowledge to report 

haemophilia A in the Australian Kelpie breed and in a sporadic form, as there was no 

prior family history of bleeding tendencies in the family. 
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As Haldane was first to realise, the mutation rate is higher in male germ cells than in 

female germ cells (Haldane 1935, 1946; Crow 2000; Nachman 2004). He made this 

hypothesis because sporadic haemophilia A was often associated with an apparently 

heterozygous, rather than a homozygous normal mother (Haldane 1935). Through 

genotyping array data of the affected Australian Kelpie family, we also observed this 

pattern (Figure 5.1). The maternal grandfather of the two cases had the apparently 

affected haplotype, despite being in the clinically normal range for coagulation assays 

for FVIII clotting. This suggests that a spontaneously occurring mutation occurred in the 

grandfather’s germ cell. 

In chapter 5, we screened for putative mutations in FVIII as well as 13 other bleeding 

disorder loci in NGS of one case and 11 unrelated Australian Kelpie control samples. 

Whilst we did not detect any damaging variants in the candidate genes selected 

including the FVIII gene, 37 intronic SNP variants in 7 of the candidate genes were 

found.  As we described in the conclusions for chapter 4, research in sporadically 

occurring or rare diseases are challenging. In chapter 5, we were tested with low 

sample numbers and limited access to sample type. As we found in chapter 4, the value 

in creating a canine colony to provide the required samples to sufficiently model the 

haemophilia A in dogs should be evaluated. Although it was not possible to access 

additional case samples, access to cDNA would reveal the functional impact of the 

putative variants identified. Whole genome sequences or transcriptomes of the parents 

and the additional case would greatly enhance the power to detect damaging variants. 

Potential use of NGS technologies in a clinical setting for obtaining a genetic diagnosis 

for spontaneously occurring diseases can also be faced with similar challenges 

described.  

6.5. Final remarks 

In this thesis, we used NGS technologies to assess the contribution of germline de novo 

mutations in canine evolution and disease. We systematically compared popular, 

recommended variant calling pipelines to provide benchmark performance metrics that 

can be used as a guide to develop an optimal pipeline that is tailored to a specific study 
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depending on their priorities for accuracy, sensitivity and specificity. We used these 

results to develop our own pipeline that enabled us to directly observe characteristics of 

de novo mutations and to estimate the per base, per generation germline mutation rate 

in the domestic dog. Finally, we contribute to research in two canine rare diseases that 

were potentially caused by de novo mutations and the outcomes of the research 

highlighted potential applications and challenges with using NGS in clinical diagnosis for 

spontaneously occurring diseases.  
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Appendix I: Supplementary material for chapter 2 

Table S1. Sample information  
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Australian 

Cattle Dog 

USCF1292 Illumina 

CanineHD 

BeadChip 

Whole 

blood 

Illumina 

HiSeq 

2000 

TruSeq 

(PCR-

free) 

1/2 x 2 100 326,493,791 98.4 12.5 

Australian 

Cattle Dog 

USCF1293 Illumina 

CanineHD 

BeadChip 

Whole 

blood 

Illumina 

HiSeq 

2000 

TruSeq 

(PCR-

free) 

1/2 x 1 101 348,600,508 99.12 13.3 

Australian 

Cattle Dog 

USCF1294 Illumina 

CanineHD 

BeadChip 

Whole 

blood 

Illumina 

HiSeq 

2000 

TruSeq 

(PCR-

free) 

1/2 x 1 101 381,441,309 99.0 14.5 
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Miniature 

Schnauzer 

USCF138 Illumina 

CanineHD 

BeadChip 

Whole 

blood 

Illumina 

HiSeq 

2500 

TruSeq 

(PCR-

free) 

1/2 x 2 100 273,023,711 98.8 10.2 

Miniature 

Schnauzer 

USCF301 Illumina 

CanineHD 

BeadChip 

Whole 

blood 

Illumina 

HiSeq 

2500 

TruSeq 

(PCR-

free) 

1/2 x 2 100 422,811,078 99.0 15.9 

Miniature 

Schnauzer 

USCF134 Illumina 

CanineHD 

BeadChip 

Tissue Illumina 

HiSeq 

2000 

TruSeq 1/2 x 1 101 229,564,555 99.6 8.7 

Miniature 

Schnauzer 

USCF136 Illumina 

CanineHD 

BeadChip 

Tissue Illumina 

HiSeq 

2000 

TruSeq 1/2 x 1 101 192,777,994 99.6 7.2 

Hungarian 

Puli 

USCF525 Illumina 

CanineHD 

BeadChip 

Whole 

blood 

Illumina 

HiSeq 

2000 

TruSeq 

(PCR-

free) 

1/2 x 1 101 197,791,391 99.3 7.5 

Hungarian 

Puli 

USCF347 Illumina 

CanineHD 

BeadChip 

Whole 

blood 

Illumina 

HiSeq 

2000 

TruSeq 

(PCR-

free) 

1/2 x 1 101 167,359,624 99.3 6.4 

Hungarian 

Puli 

USCF516 Illumina 

CanineHD 

BeadChip 

Whole 

blood 

Illumina 

HiSeq 

2000 

TruSeq 

(PCR-

free) 

1/2 x 1 101 191,605,356 99.3 7.3 



 

 

Table S2. Description of filtering parameters used in raw and filtered pipelines for 

five variant calling software 

 

Software Pipeline Filter Description 

FreeBayes Raw No indels  Ignore insertion-deletions 

No mnps  Ignore multi-nucleotide 

polymorphisms 

No-complex  Ignore complex events 

(composites of other classes of 

allele types) 

Report monomorphic Report loci which are non-variant 

to the reference allele 

Filtered  QUAL > 1 Include sites in the output only if 

the reported quality of the site is 

greater than 1. QUAL is the 

Phred-scaled probability that the 

variant reported in the ALT field of 

the VCF file exists in the 

sequencing data 

QUAL/AO > 10 AO is to observation count of the 

alternate allele (depth). Include 

sites if QUAL/AO is greater than 

10.  

SAF > 0 Include sites if the alternate allele 

is present on more than 0 sites on 

the forward sequencing reads 

SAR > 0 Include sites if the alternate allele 

is present on more than 0 sites on 

the reverse sequencing reads 
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RPR > 1 Include sites if the reads placed 

right (number of reads supporting 

the alternate is balanced to the 3’ 

end) is greater than 1 

RPL > 1 Include sites if the reads placed 

left (number of reads supporting 

the alternate is balanced to the 5’ 

end) is greater than 1 

GATK HC Raw emitRefConfidence 

GVCF 

Emit reference confidence scores 

variant_index_type 

LINEAR 

Type of variant indexing to use 

variant_index_parameter 

128000 

Variant to pass to the VCF/BCF 

IndexCreator 

stand_emit_conf 10 Include sites in the output if the 

emission confidence threshold 

(Phred-scaled) that the site is 

possibly variant is greater than 10 

stand_call_conf 30 Include sites if the calling 

confidence (Phred-scaled) is 

greateer than 30 

allSites Report loci which are non-variant 

to the reference allele 

Filtered QD > 2.0 Exclude sites if quality of depth 

(quality score normalized by the 

allele depth, AD) is greater than 

2.0 

FS > 60.0 Exclude sites if the Fisher’s exact 

test (Phred-scaled) is greater than 

60.0 to remove sites with evidence 

of strand bias 
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MQ < 40.0 Exclude sites if mapping quality 

(Phred-scaled) is less than 40.0 

MappingQualityRankSum 

< -12.5 

Exclude sites if the mapping 

qualities of reads supporting the 

reference and alternate is less 

than -12.5. An ideal value is 0, 

which indicates no difference in 

quality between alleles 

ReadPosRankSum < -

8.0 

ReadPosRankSum measures bias 

in the position of the alleles in the 

sequencing reads. Exclude sites 

where ReadPosRankSum is less 

than -8.0  

GATK UG Raw stand_emit_conf 10 Include sites in the output if the 

emission confidence threshold 

(Phred-scaled) that the site is 

possibly variant is greater than 10 

stand_call_conf 30 Include sites if the calling 

confidence (Phred-scaled) is 

greateer than 30 

glm BOTH Perform genotype likelihoods 

calculation for both SNP and indel 

Filtered QD > 2.0 Exclude sites if quality of depth 

(quality score normalized by the 

allele depth, AD) is greater than 

2.0 

FS > 60.0 Exclude sites if the Fisher’s exact 

test (Phred-scaled) is greater than 

60.0 to remove sites with evidence 

of strand bias 
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MQ < 40.0 Exclude sites if mapping quality 

(Phred-scaled) is less than 40.0 

HaplotypeScore > 13.0 HaplotypeScore measures 

evidence of regions with poor 

quality alignments and is based on 

the expectation that the sample is 

diploid. Exclude sites with a 

HaplotypeScore greater than 13.0 

MappingQualityRankSum 

< 12.5 

Exclude sites if the mapping 

qualities of reads supporting the 

reference and alternate is less 

than -12.5. An ideal value is 0, 

which indicates no difference in 

quality between alleles 

ReadPosRankSum < -

8.0 

Exclude sites if the mapping 

qualities of reads supporting the 

reference and alternate is less 

than -12.5. An ideal value is 0, 

which indicates no difference in 

quality between alleles 

SAMtools Raw p 1 p is the probability that the site is 

variant. Include sites if p is less 

than or equal to 1 

c Use Bayesian inference in variant 

calling 

Filtered Q 20 Exclude bases with base quality 

less than 20 

q 20 Exclude reads with mapping 

quality less than 20 

C 50 Recommended by SAMtools if 

mapping quality is overestimated 
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for reads containing excessive 

mismatches 

E Perform extended base alignment 

quality calculation (probability of a 

read being mis-aligned) 

Maximum coverage 2 x 

average sample 

coverage 

Exclude if the maximum coverage 

at the loci is greater than 2 times 

the average coverage in the 

sample 

c Use Bayesian inference in variant 

calling 

VarScan Raw B Disable base alignment quality 

calculation 

p 1 p is the probability that the site is 

variant. Include sites if p is less 

than or equal to 1 

c Use Bayesian inference in variant 

calling 

Filtered q 10 Exclude reads with mapping 

quality less than 10 

B Disable base alignment quality 

calculation 

min-avg-qual 15 Include base if quality (Phred-

scaled) is greater than 15 

min-reads2 1 Include if minimum number of 

reads supporting the variant allele 

is greater than 1 

min-var-freq 0.20 Include variants if the variant allele 

frequency is greater than 0.20 of 

the total reads present at the site 
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p-value 0.10 Set p-value threshold of 0.10 

(Fisher’s exact test) which a 

variant call is deemed significant 

min-freq-for-hom 0.75 Minimum variant allele frequency 

above which a variant will be 

called homozygous in a given 

sample 
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Table S3. Genotyping rates (n = 10) across 11 minimum coverage requirement 

levels obtained from raw and filtered pipelines using five different variant callers 

(FreeBayes, GATK HC, GATK UG, SAMtools and VarScan) compared against 

genotypes obtained using the CanineHD BeadChip array. 
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FreeBayes Raw 0 1,715,475 1,245 99.927 

FreeBayes Raw 2 1,701,023 15,697 99.086 

FreeBayes Raw 4 1,629,333 87,387 94.910 

FreeBayes Raw 6 1,457,691 259,029 84.911 

FreeBayes Raw 8 1,202,033 514,687 70.019 

FreeBayes Raw 10 924,196 792,524 53.835 

FreeBayes Raw 12 672,794 1,043,926 39.191 

FreeBayes Raw 14 470,366 1,246,354 27.399 

FreeBayes Raw 16 316,495 1,400,225 18.436 

FreeBayes Raw 18 203,059 1,513,661 11.828 

FreeBayes Raw 20 123,641 1,593,079 7.2021 

FreeBayes Filtered 0 1,697,474 19,246 98.879 

FreeBayes Filtered 2 1,683,039 33,681 98.038 

FreeBayes Filtered 4 1,612,095 104,625 93.906 

FreeBayes Filtered 6 1,442,670 274,050 84.036 

FreeBayes Filtered 8 1,190,351 526,369 69.339 

FreeBayes Filtered 10 916,316 800,404 53.376 

FreeBayes Filtered 12 668,160 1,048,560 38.921 

FreeBayes Filtered 14 467,913 1,248,807 27.256 

FreeBayes Filtered 16 315,338 1,401,382 18.369 
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FreeBayes Filtered 18 202,584 1,514,136 11.801 

FreeBayes Filtered 20 123,451 1,593,269 7.191 

GATK HC Raw 0 1,715,726 994 99.942 

GATK HC Raw 2 1,700,986 15,734 99.083 

GATK HC Raw 4 1,629,061 87,659 94.894 

GATK HC Raw 6 1,457,226 259,494 84.884 

GATK HC Raw 8 1,201,509 515,211 69.989 

GATK HC Raw 10 923,690 793,030 53.806 

GATK HC Raw 12 672,373 1,044,347 39.166 

GATK HC Raw 14 470,047 1,246,673 27.381 

GATK HC Raw 16 316,261 1,400,459 18.422 

GATK HC Raw 18 202,908 1,513,812 11.820 

GATK HC Raw 20 123,542 1,593,178 7.196 

GATK HC Filtered 0 1,706,809 9,911 99.423 

GATK HC Filtered 2 1,696,622 20,098 98.829 

GATK HC Filtered 4 1,625,493 91,227 94.686 

GATK HC Filtered 6 1,454,488 262,232 84.725 

GATK HC Filtered 8 1,199,534 517,186 69.874 

GATK HC Filtered 10 922,396 794,324 53.730 

GATK HC Filtered 12 671,639 1,045,081 39.123 

GATK HC Filtered 14 469,676 1,247,044 27.359 

GATK HC Filtered 16 316,055 1,400,665 18.410 

GATK HC Filtered 18 202,795 1,513,925 11.812 

GATK HC Filtered 20 123,462 1,593,258 7.192 

GATK UG Raw 0 1,710,535 6,185 99.640 

GATK UG Raw 2 1,700,394 16,326 99.049 

GATK UG Raw 4 1,628,997 87,723 94.890 

GATK UG Raw 6 1,457,458 259,262 84.898 

GATK UG Raw 8 1,201,866 514,854 70.009 

GATK UG Raw 10 924,084 792,636 53.828 

GATK UG Raw 12 672,719 1,044,001 39.186 
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GATK UG Raw 14 470,324 1,246,396 27.397 

GATK UG Raw 16 316,462 1,400,258 18.434 

GATK UG Raw 18 203,040 1,513,680 11.827 

GATK UG Raw 20 123,628 1,593,092 7.201 

GATK UG Filtered 0 1,707,817 8,903 99.481 

GATK UG Filtered 2 1,697,822 18,898 98.899 

GATK UG Filtered 4 1,626,644 90,076 94.753 

GATK UG Filtered 6 1,455,494 261,226 84.783 

GATK UG Filtered 8 1,200,413 516,307 69.925 

GATK UG Filtered 10 923,232 793,488 53.779 

GATK UG Filtered 12 672,280 1,044,440 39.161 

GATK UG Filtered 14 470,086 1,246,634 27.383 

GATK UG Filtered 16 316,304 1,400,416 18.425 

GATK UG Filtered 18 202,935 1,513,785 11.821 

GATK UG Filtered 20 123,541 1,593,179 7.196 

SAMtools Raw 0 1,716,385 335 99.980 

SAMtools Raw 2 1,701,837 14,883 99.133 

SAMtools Raw 4 1,629,904 86,816 94.943 

SAMtools Raw 6 1,458,027 258,693 84.931 

SAMtools Raw 8 1,202,210 514,510 70.029 

SAMtools Raw 10 924,265 792,455 53.839 

SAMtools Raw 12 672,825 1,043,895 39.192 

SAMtools Raw 14 470,374 1,246,346 27.400 

SAMtools Raw 16 316,483 1,400,237 18.435 

SAMtools Raw 18 203,038 1,513,682 11.827 

SAMtools Raw 20 123,612 1,593,108 7.200 

SAMtools Filtered 0 1,703,114 13,606 99.207 

SAMtools Filtered 2 1,693,281 23,439 98.635 

SAMtools Filtered 4 1,622,273 94,447 94.498 

SAMtools Filtered 6 1,451,191 265,529 84.533 

SAMtools Filtered 8 1,196,001 520,719 69.668 
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SAMtools Filtered 10 918,599 798,121 53.509 

SAMtools Filtered 12 667,564 1,049,156 38.886 

SAMtools Filtered 14 465,388 1,251,332 27.109 

SAMtools Filtered 16 311,959 1,404,761 18.172 

SAMtools Filtered 18 199,040 1,517,680 11.594 

SAMtools Filtered 20 120,764 1,595,956 7.035 

VarScan Raw 0 1,715,452 1,268 99.926 

VarScan Raw 2 1,701,004 15,716 99.085 

VarScan Raw 4 1,629,313 87,407 94.908 

VarScan Raw 6 1,457,667 259,053 84.910 

VarScan Raw 8 1,202,002 514,718 70.017 

VarScan Raw 10 924,160 792,560 53.833 

VarScan Raw 12 672,760 1,043,960 39.189 

VarScan Raw 14 470,339 1,246,381 27.398 

VarScan Raw 16 316,460 1,400,260 18.434 

VarScan Raw 18 203,018 1,513,702 11.826 

VarScan Raw 20 123,595 1,593,125 7.199 

VarScan Filtered 0 1,678,687 38,033 97.785 

VarScan Filtered 2 1,675,183 41,537 97.580 

VarScan Filtered 4 1,624,844 91,876 94.648 

VarScan Filtered 6 1,456,627 260,093 84.849 

VarScan Filtered 8 1,201,446 515,274 69.985 

VarScan Filtered 10 923,780 792,940 53.811 

VarScan Filtered 12 672,508 1,044,212 39.174 

VarScan Filtered 14 470,180 1,246,540 27.388 

VarScan Filtered 16 316,362 1,400,358 18.428 

VarScan Filtered 18 202,987 1,513,733 11.824 

VarScan Filtered 20 123,596 1,593,124 7.200 

 









 

 

Appendix II: Supplementary material for chapter 3 

Table S1.  Sample and pedigree information for the parent-offspring trios used in the study 
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USCF1292 Cattle Dog USCF1294 Father Ramaciotti 

Illumina HiSeq 

2000 

PCR-free TruSeq 

550bp insert 100 

USCF1293 Cattle Dog USCF1294 Mother Ramaciotti 

Illumina HiSeq 

2000 

PCR-free TruSeq 

550bp insert 101 

USCF1294 Cattle Dog USCF1294 Child Ramaciotti 

Illumina HiSeq 

2000 

PCR-free TruSeq 

550bp insert 101 

USCF1225 Labrador 

USCF1119; 

USCF1014 Father Ramaciotti 

Illumina HiSeq 

2000 

PCR-free TruSeq 

550bp insert 101 

USCF1224 Labrador USCF1119 Mother Ramaciotti 

Illumina HiSeq 

2000 

PCR-free TruSeq 

550bp insert 100 

USCF1222 Labrador USCF1014 Mother Ramaciotti 

Illumina HiSeq 

2000 

PCR-free TruSeq 

550bp insert 100 
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USCF1119 Labrador USCF1119 Child Ramaciotti 

Illumina HiSeq 

2000 

PCR-free TruSeq 

550bp insert 101 

USCF1014 Labrador USCF1014 Child Ramaciotti 

Illumina HiSeq 

2000 

PCR-free TruSeq 

550bp insert 101 

USCF138 

Miniature 

Schnauzer 

USCF136; 

USCF134 Father Ramaciotti 

Illumina HiSeq 

2000 

PCR-free TruSeq 

350bp insert  100 

USCF301 

Miniature 

Schnauzer 

USCF136; 

USCF134 Mother Ramaciotti 

Illumina HiSeq 

2000 

PCR-free TruSeq 

350bp insert  100 

USCF136 

Miniature 

Schnauzer USCF136 Child Ramaciotti 

Illumina HiSeq 

2000 

PCR-free TruSeq 

350bp insert  101 

USCF134 

Miniature 

Schnauzer USCF134 Child Ramaciotti 

Illumina HiSeq 

2000 

PCR-free TruSeq 

350bp insert  101 
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Table S2. Average coverage in parent-offspring trio samples 

Child 

identifier 

Father 

identifier 

Mother 

identifier 

Raw average 

coverage 

(Child) 

Raw average 

coverage 

(Father) 

Raw average 

coverage 

(Mother) 

Raw average 

coverage in 

trio 

USCF1294 USCF1292 USCF1293 14.5 12.5 13.3 13.4 

USCF1119 USCF1225 USCF1224 7.5 11.0 6.6 8.4 

USCF1014 USCF1225 USCF1222 11.7 11.0 17.9 13.5 

USCF136 USCF138 USCF301 7.2 10.2 15.9 11.1 

USCF134 USCF138 USCF301 8.7 10.2 15.9 11.6 



 

 

Table S3.  Observed sites per parent-offspring trio, per chromosome 
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1 122,678,785 USCF134 25,430,142 0 0 0 0 0 0 0 

2 85,426,708 USCF134 16,165,018 0 0 0 0 0 0 0 

3 91,889,043 USCF134 20,019,354 0 0 0 0 0 0 0 

4 88,276,631 USCF134 19,528,607 1 1 0 0 0 0 0 

5 88,915,250 USCF134 14,645,917 0 0 0 0 0 0 0 

6 77,573,801 USCF134 14,642,397 0 0 0 0 0 0 0 

7 80,974,532 USCF134 17,849,351 0 0 0 0 0 0 0 

8 74,330,416 USCF134 16,469,421 3 0 1 2 0 0 0 

9 61,074,082 USCF134 9,013,245 0 0 0 0 0 0 0 

10 69,331,447 USCF134 13,681,867 0 0 0 0 0 0 0 

11 74,389,097 USCF134 16,093,419 1 0 1 0 0 0 0 

12 72,498,081 USCF134 17,542,020 0 0 0 0 0 0 0 

13 63,241,923 USCF134 14,309,623 1 1 0 0 0 0 0 

14 60,966,679 USCF134 15,416,789 1 0 0 0 1 0 0 

15 64,190,966 USCF134 14,592,372 1 0 0 1 0 0 0 

16 59,632,846 USCF134 12,063,722 0 0 0 0 0 0 0 

17 64,289,059 USCF134 13,030,745 2 0 0 0 0 0 2 
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18 55,844,845 USCF134 10,017,989 2 0 2 0 0 0 0 

19 53,741,614 USCF134 12,722,779 0 0 0 0 0 0 0 

20 58,134,056 USCF134 10,101,522 0 0 0 0 0 0 0 

21 50,858,623 USCF134 10,929,873 0 0 0 0 0 0 0 

22 61,439,934 USCF134 15,367,588 1 1 0 0 0 0 0 

23 52,294,480 USCF134 12,190,912 1 1 0 0 0 0 0 

24 47,698,779 USCF134 7,772,509 0 0 0 0 0 0 0 

25 51,628,933 USCF134 10,939,621 0 0 0 0 0 0 0 

26 38,964,690 USCF134 5,051,270 1 0 0 1 0 0 0 

27 45,876,710 USCF134 10,410,574 1 0 1 0 0 0 0 

28 41,182,112 USCF134 7,502,532 0 0 0 0 0 0 0 

29 41,845,238 USCF134 10,364,260 0 0 0 0 0 0 0 

30 40,214,260 USCF134 8,816,006 0 0 0 0 0 0 0 

31 39,895,921 USCF134 8,839,281 0 0 0 0 0 0 0 

32 38,810,281 USCF134 10,639,933 0 0 0 0 0 0 0 

33 31,377,067 USCF134 7,771,882 2 2 0 0 0 0 0 

34 42,124,431 USCF134 9,013,408 0 0 0 0 0 0 0 

35 26,524,999 USCF134 5,301,285 1 0 1 0 0 0 0 

36 30,810,995 USCF134 7,804,227 1 0 0 0 1 0 0 

37 30,902,991 USCF134 7,113,522 0 0 0 0 0 0 0 

38 23,914,537 USCF134 4,832,706 0 0 0 0 0 0 0 

1 122,678,785 USCF136 13,865,057 0 0 0 0 0 0 0 

2 85,426,708 USCF136 8,414,400 0 0 0 0 0 0 0 

3 91,889,043 USCF136 11,446,442 0 0 0 0 0 0 0 

4 88,276,631 USCF136 11,040,943 0 0 0 0 0 0 0 
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5 88,915,250 USCF136 7,771,766 0 0 0 0 0 0 0 

6 77,573,801 USCF136 7,976,768 1 0 1 0 0 0 0 

7 80,974,532 USCF136 9,724,290 0 0 0 0 0 0 0 

8 74,330,416 USCF136 9,248,297 1 0 0 0 0 1 0 

9 61,074,082 USCF136 4,513,086 0 0 0 0 0 0 0 

10 69,331,447 USCF136 7,229,263 0 0 0 0 0 0 0 

11 74,389,097 USCF136 9,050,430 1 0 0 0 0 0 1 

12 72,498,081 USCF136 10,157,185 0 0 0 0 0 0 0 

13 63,241,923 USCF136 8,287,198 0 0 0 0 0 0 0 

14 60,966,679 USCF136 8,556,469 1 1 0 0 0 0 0 

15 64,190,966 USCF136 8,209,955 0 0 0 0 0 0 0 

16 59,632,846 USCF136 6,900,144 0 0 0 0 0 0 0 

17 64,289,059 USCF136 7,160,794 0 0 0 0 0 0 0 

18 55,844,845 USCF136 5,777,671 1 0 1 0 0 0 0 

19 53,741,614 USCF136 7,707,702 0 0 0 0 0 0 0 

20 58,134,056 USCF136 5,304,180 0 0 0 0 0 0 0 

21 50,858,623 USCF136 6,428,309 0 0 0 0 0 0 0 

22 61,439,934 USCF136 9,329,742 0 0 0 0 0 0 0 

23 52,294,480 USCF136 6,646,976 0 0 0 0 0 0 0 

24 47,698,779 USCF136 4,040,944 0 0 0 0 0 0 0 

25 51,628,933 USCF136 6,020,721 0 0 0 0 0 0 0 

26 38,964,690 USCF136 2,711,785 0 0 0 0 0 0 0 

27 45,876,710 USCF136 5,726,948 1 0 1 0 0 0 0 

28 41,182,112 USCF136 3,927,984 0 0 0 0 0 0 0 

29 41,845,238 USCF136 6,104,239 1 0 1 0 0 0 0 
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30 40,214,260 USCF136 4,704,568 0 0 0 0 0 0 0 

31 39,895,921 USCF136 5,416,406 2 0 1 0 1 0 0 

32 38,810,281 USCF136 6,240,165 0 0 0 0 0 0 0 

33 31,377,067 USCF136 4,251,515 1 0 0 0 1 0 0 

34 42,124,431 USCF136 5,183,011 0 0 0 0 0 0 0 

35 26,524,999 USCF136 2,818,856 0 0 0 0 0 0 0 

36 30,810,995 USCF136 4,351,416 0 0 0 0 0 0 0 

37 30,902,991 USCF136 3,964,706 0 0 0 0 0 0 0 

38 23,914,537 USCF136 2,831,219 0 0 0 0 0 0 0 

1 122,678,785 USCF1014 46,730,472 2 2 0 0 0 0 0 

2 85,426,708 USCF1014 28,656,218 0 0 0 0 0 0 0 

3 91,889,043 USCF1014 37,970,148 0 0 0 0 0 0 0 

4 88,276,631 USCF1014 36,191,043 1 1 0 0 0 0 0 

5 88,915,250 USCF1014 27,094,983 3 1 2 0 0 0 0 

6 77,573,801 USCF1014 27,289,875 2 1 1 0 0 0 0 

7 80,974,532 USCF1014 32,077,117 2 0 1 1 0 0 0 

8 74,330,416 USCF1014 30,048,531 1 0 1 0 0 0 0 

9 61,074,082 USCF1014 15,941,552 0 0 0 0 0 0 0 

10 69,331,447 USCF1014 24,742,921 1 1 0 0 0 0 0 

11 74,389,097 USCF1014 29,758,111 0 0 0 0 0 0 0 

12 72,498,081 USCF1014 32,700,207 1 0 1 0 0 0 0 

13 63,241,923 USCF1014 26,974,267 0 0 0 0 0 0 0 

14 60,966,679 USCF1014 27,814,599 0 0 0 0 0 0 0 

15 64,190,966 USCF1014 26,889,028 1 0 0 0 0 0 1 

16 59,632,846 USCF1014 23,169,967 1 0 1 0 0 0 0 
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17 64,289,059 USCF1014 23,627,586 1 0 1 0 0 0 0 

18 55,844,845 USCF1014 19,467,098 0 0 0 0 0 0 0 

19 53,741,614 USCF1014 24,765,288 1 1 0 0 0 0 0 

20 58,134,056 USCF1014 18,276,715 1 0 1 0 0 0 0 

21 50,858,623 USCF1014 20,571,130 0 0 0 0 0 0 0 

22 61,439,934 USCF1014 29,814,498 0 0 0 0 0 0 0 

23 52,294,480 USCF1014 21,958,424 2 1 1 0 0 0 0 

24 47,698,779 USCF1014 14,257,328 1 0 0 0 1 0 0 

25 51,628,933 USCF1014 19,940,398 0 0 0 0 0 0 0 

26 38,964,690 USCF1014 9,902,023 0 0 0 0 0 0 0 

27 45,876,710 USCF1014 18,822,187 0 0 0 0 0 0 0 

28 41,182,112 USCF1014 13,678,576 0 0 0 0 0 0 0 

29 41,845,238 USCF1014 19,747,443 1 0 0 0 0 0 1 

30 40,214,260 USCF1014 15,467,753 0 0 0 0 0 0 0 

31 39,895,921 USCF1014 17,438,733 0 0 0 0 0 0 0 

32 38,810,281 USCF1014 19,629,246 0 0 0 0 0 0 0 

33 31,377,067 USCF1014 14,102,693 0 0 0 0 0 0 0 

34 42,124,431 USCF1014 17,378,887 1 1 0 0 0 0 0 

35 26,524,999 USCF1014 9,633,840 2 0 0 0 1 0 1 

36 30,810,995 USCF1014 14,524,417 2 1 0 0 0 0 1 

37 30,902,991 USCF1014 13,076,859 2 0 2 0 0 0 0 

38 23,914,537 USCF1014 9,369,603 0 0 0 0 0 0 0 

1 122,678,785 USCF1119 3,305,006 0 0 0 0 0 0 0 

2 85,426,708 USCF1119 1,882,224 0 0 0 0 0 0 0 

3 91,889,043 USCF1119 2,908,986 0 0 0 0 0 0 0 
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4 88,276,631 USCF1119 2,763,173 0 0 0 0 0 0 0 

5 88,915,250 USCF1119 1,613,746 0 0 0 0 0 0 0 

6 77,573,801 USCF1119 1,903,218 0 0 0 0 0 0 0 

7 80,974,532 USCF1119 2,340,767 0 0 0 0 0 0 0 

8 74,330,416 USCF1119 2,305,060 0 0 0 0 0 0 0 

9 61,074,082 USCF1119 925,742 0 0 0 0 0 0 0 

10 69,331,447 USCF1119 1,698,459 0 0 0 0 0 0 0 

11 74,389,097 USCF1119 2,225,884 0 0 0 0 0 0 0 

12 72,498,081 USCF1119 2,730,763 0 0 0 0 0 0 0 

13 63,241,923 USCF1119 2,165,272 0 0 0 0 0 0 0 

14 60,966,679 USCF1119 2,264,187 0 0 0 0 0 0 0 

15 64,190,966 USCF1119 2,105,469 0 0 0 0 0 0 0 

16 59,632,846 USCF1119 1,720,829 1 1 0 0 0 0 0 

17 64,289,059 USCF1119 1,636,973 0 0 0 0 0 0 0 

18 55,844,845 USCF1119 1,401,134 0 0 0 0 0 0 0 

19 53,741,614 USCF1119 2,054,344 1 1 0 0 0 0 0 

20 58,134,056 USCF1119 1,179,438 0 0 0 0 0 0 0 

21 50,858,623 USCF1119 1,572,824 0 0 0 0 0 0 0 

22 61,439,934 USCF1119 2,654,496 1 0 1 0 0 0 0 

23 52,294,480 USCF1119 1,663,253 0 0 0 0 0 0 0 

24 47,698,779 USCF1119 834,802 0 0 0 0 0 0 0 

25 51,628,933 USCF1119 1,479,466 0 0 0 0 0 0 0 

26 38,964,690 USCF1119 508,932 0 0 0 0 0 0 0 

27 45,876,710 USCF1119 1,448,255 0 0 0 0 0 0 0 

28 41,182,112 USCF1119 867,561 0 0 0 0 0 0 0 
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29 41,845,238 USCF1119 1,663,548 0 0 0 0 0 0 0 

30 40,214,260 USCF1119 1,134,303 0 0 0 0 0 0 0 

31 39,895,921 USCF1119 1,566,164 0 0 0 0 0 0 0 

32 38,810,281 USCF1119 1,765,144 0 0 0 0 0 0 0 

33 31,377,067 USCF1119 1,152,217 0 0 0 0 0 0 0 

34 42,124,431 USCF1119 1,332,050 0 0 0 0 0 0 0 

35 26,524,999 USCF1119 631,670 0 0 0 0 0 0 0 

36 30,810,995 USCF1119 1,189,373 0 0 0 0 0 0 0 

37 30,902,991 USCF1119 1,035,278 0 0 0 0 0 0 0 

38 23,914,537 USCF1119 767,365 0 0 0 0 0 0 0 

1 122,678,785 USCF1294 55,273,848 1 1 0 0 0 0 0 

2 85,426,708 USCF1294 33,962,454 0 0 0 0 0 0 0 

3 91,889,043 USCF1294 44,808,613 0 0 0 0 0 0 0 

4 88,276,631 USCF1294 42,405,666 3 1 1 0 0 0 1 

5 88,915,250 USCF1294 31,540,124 2 0 1 0 1 0 0 

6 77,573,801 USCF1294 31,510,673 2 0 1 1 0 0 0 

7 80,974,532 USCF1294 37,673,467 1 0 1 0 0 0 0 

8 74,330,416 USCF1294 35,374,163 1 1 0 0 0 0 0 

9 61,074,082 USCF1294 18,425,316 4 2 1 1 0 0 0 

10 69,331,447 USCF1294 29,111,937 0 0 0 0 0 0 0 

11 74,389,097 USCF1294 34,929,857 0 0 0 0 0 0 0 

12 72,498,081 USCF1294 38,591,544 2 2 0 0 0 0 0 

13 63,241,923 USCF1294 31,436,333 0 0 0 0 0 0 0 

14 60,966,679 USCF1294 32,686,722 2 0 2 0 0 0 0 

15 64,190,966 USCF1294 31,934,038 2 1 1 0 0 0 0 
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16 59,632,846 USCF1294 27,445,376 0 0 0 0 0 0 0 

17 64,289,059 USCF1294 27,828,461 0 0 0 0 0 0 0 

18 55,844,845 USCF1294 22,735,961 1 0 0 1 0 0 0 

19 53,741,614 USCF1294 29,306,186 1 0 0 0 1 0 0 

20 58,134,056 USCF1294 21,537,088 3 1 2 0 0 0 0 

21 50,858,623 USCF1294 24,198,736 0 0 0 0 0 0 0 

22 61,439,934 USCF1294 34,847,974 1 0 0 1 0 0 0 

23 52,294,480 USCF1294 26,112,421 0 0 0 0 0 0 0 

24 47,698,779 USCF1294 16,567,521 0 0 0 0 0 0 0 

25 51,628,933 USCF1294 23,480,203 1 0 0 0 1 0 0 

26 38,964,690 USCF1294 11,670,827 0 0 0 0 0 0 0 

27 45,876,710 USCF1294 22,444,721 0 0 0 0 0 0 0 

28 41,182,112 USCF1294 15,860,271 0 0 0 0 0 0 0 

29 41,845,238 USCF1294 23,393,326 1 0 1 0 0 0 0 

30 40,214,260 USCF1294 18,288,054 0 0 0 0 0 0 0 

31 39,895,921 USCF1294 20,339,076 3 1 1 0 0 0 1 

32 38,810,281 USCF1294 23,068,897 0 0 0 0 0 0 0 

33 31,377,067 USCF1294 16,566,263 1 1 0 0 0 0 0 

34 42,124,431 USCF1294 20,477,674 2 1 1 0 0 0 0 

35 26,524,999 USCF1294 11,616,663 0 0 0 0 0 0 0 

36 30,810,995 USCF1294 17,128,788 1 1 0 0 0 0 0 

37 30,902,991 USCF1294 15,402,868 0 0 0 0 0 0 0 

38 23,914,537 USCF1294 10,884,299 0 0 0 0 0 0 0 



 

 

Table S4.  Physical position on CanFam 3.1 and genotypes for de novo mutations 

observed in parent-offspring trios 
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1 3,779,247 G G G G A G USCF1294 

1 121,739,924 G G G G A G USCF1014 

1 121,739,926 A A A A G A USCF1014 

4 8,941,678 C C C C T C USCF1294 

4 20,422,856 G G G G T G USCF1294 

4 24,592,772 G G G G A G USCF134 

4 49,638,228 G G G G A G USCF1294 

4 70,281,398 G G G G A G USCF1014 

5 21,562,488 T T T T C T USCF1014 

5 22,537,046 T T T T A T USCF1294 

5 22,998,572 C C C C T C USCF1014 

5 46,644,004 A A A A G A USCF1014 

5 85,195,818 T T T T C T USCF1294 

6 9,814,311 A A A A G A USCF1014 

6 28,518,209 C C C C T C USCF136 

6 32,980,209 C C C C T C USCF1014 

6 40,729,015 C C C C T C USCF1294 

6 45,422,851 A A A A C A USCF1294 
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7 8,365,994 T T T T C T USCF1294 

7 16,247,159 C C C C T C USCF1014 

7 33,746,227 A A A A C A USCF1014 

8 20,425,502 G G G G C G USCF136 

8 22,350,581 C C C C T C USCF1014 

8 55,853,926 A A A A G A USCF1294 

8 73,607,623 C C C C A C USCF134 

8 73,719,433 C C C C T C USCF134 

8 73,765,592 A A A A C A USCF134 

9 7,983,435 C C C C A C USCF1294 

9 9,424,569 G G G G A G USCF1294 

9 26,817,438 G G G G A G USCF1294 

9 28,733,303 T T T T C T USCF1294 

10 37,953,116 A A A A G A USCF1014 

11 33,950,398 T T T T C T USCF134 

11 35,963,522 G G G G T G USCF136 

12 26,613,923 A A A A G A USCF1294 

12 44,019,294 A A A A G A USCF1294 

12 55,060,734 T T T T C T USCF1014 

13 21,462,229 G G G G A G USCF134 

14 25,558,020 G G G G A G USCF136 

14 26,858,614 A A A A T A USCF134 

14 58,324,036 C C C C T C USCF1294 

14 59,269,467 T T T T C T USCF1294 
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15 26,825,863 C C C C A C USCF134 

15 32,458,744 T T T T C T USCF1294 

15 51,809,687 A A A A G A USCF1294 

15 51,904,204 G G G G T G USCF1014 

16 25,737,306 A A A A G A USCF1119 

16 54,487,862 C C C C T C USCF1014 

17 9,819,454 T T T T G T USCF134 

17 32,261,540 T T T T C T USCF1014 

17 41,353,018 T T T T G T USCF134 

18 28,418,247 T T T T C T USCF134 

18 28,418,247 T T T T C T USCF136 

18 29,365,717 C C C C T C USCF134 

18 55,700,372 A A A A C A USCF1294 

19 16,343,711 T T T T A T USCF1294 

19 20,163,470 G G G G A G USCF1014 

19 37,757,686 G G G G A G USCF1119 

20 3,790,590 T T T T C T USCF1294 

20 5,526,459 T T T T C T USCF1294 

20 41,440,801 C C C C T C USCF1014 

20 57,437,942 G G G G A G USCF1294 

22 13,103,933 G G G G A G USCF134 

22 37,991,629 C C C C A C USCF1294 

22 41,906,946 T T T T C T USCF1119 

23 6,329,495 T T T T C T USCF1014 
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23 9,749,895 A A A A G A USCF134 

23 49,416,247 G G G G A G USCF1014 

24 843,131 A A A A T A USCF1014 

25 32,245,185 A A A A T A USCF1294 

26 36,568,797 A A A A C A USCF134 

27 14,937,023 C C C C T C USCF134 

27 17,145,045 T T T T C T USCF136 

29 1,948,843 C C C C T C USCF1294 

29 6,803,696 T T T T G T USCF1014 

29 35,609,029 C C C C T C USCF136 

31 8,781,152 A A A A T A USCF136 

31 12,579,393 G G G G A G USCF1294 

31 13,978,308 C C C C T C USCF136 

31 16,302,436 T T T T C T USCF1294 

31 20,782,899 T T T T G T USCF1294 

33 6,036,956 G G G G A G USCF1294 

33 8,560,784 A A A A T A USCF136 

33 10,917,719 A A A A G A USCF134 

33 10,917,725 G G G G A G USCF134 

34 9,822,177 G G G G A G USCF1294 

34 37,099,031 T T T T C T USCF1294 

34 39,504,460 A A A A G A USCF1014 

35 4,004,809 A A A A T A USCF1014 

35 5,316,122 T T T T G T USCF1014 



 

 
185 

35 10,820,922 C C C C T C USCF134 

36 4,491,107 T T T T A T USCF134 

36 17,100,470 G G G G A G USCF1014 

36 28,660,864 G G G G T G USCF1014 

36 30,792,870 G G G G A G USCF1294 

37 14,223,810 T T T T C T USCF1014 

37 20,717,756 T T T T C T USCF1014 

 



 

 

Table S5. Number of sites passing quality filters for each parent-offspring trio in seven genomic features 

observed including coding sequence (cds), CpG island (cpg), intergenic, intronic, conserved (phastCons33), 3’ 

untranslated region (utr3) and 5’ untranslated region (utr5) 
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1 cds 197,848 0 100,598 0 455,176 0 23,760 0 503,783 0 1,281,165 0 

1 cpg 5,122 0 972 0 190,546 2 3,862 0 137,304 0 337,806 2 

1 intergenic 11,444,649 0 6,531,414 0 21,810,056 0 1,612,715 0 25,754,093 0 67,152,927 0 

1 intron 10,877,576 0 5,730,122 0 19,267,383 0 1,343,739 0 22,799,433 0 60,018,253 0 

1 phastCons33 1,131,539 0 560,633 0 2,098,615 0 146,136 0 2,423,006 0 6,359,929 0 

1 utr3 198,801 0 100,840 0 366,218 0 25,827 0 414,975 0 1,106,661 0 

1 utr5 53,841 0 26,162 0 112,444 0 7,024 0 131,434 0 330,905 0 

2 cds 145,788 0 62,765 0 300,131 0 16,132 0 349,901 0 874,717 0 

2 cpg 3,603 0 567 0 179,587 0 3,410 0 102,474 0 289,641 0 

2 intergenic 6,788,105 0 3,675,063 0 12,385,484 0 796,244 0 14,728,973 1 38,373,869 1 

2 intron 7,336,713 0 3,751,349 0 12,681,210 0 864,921 0 14,995,021 0 39,629,214 0 

2 phastCons33 850,004 0 388,148 0 1,498,100 0 98,265 0 1,737,769 0 4,572,286 0 

2 utr3 151,047 0 68,075 0 253,156 0 17,850 0 283,790 0 773,918 0 
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2 utr5 46,826 0 20,751 0 87,837 0 5,134 0 105,186 0 265,734 0 

3 cds 127,029 0 59,633 0 261,991 0 14,128 0 297,804 0 760,585 0 

3 cpg 2,426 0 667 0 105,083 0 2,269 0 65,481 0 175,926 0 

3 intergenic 11,189,427 0 6,738,147 0 21,877,611 0 1,748,341 0 25,899,472 0 67,452,998 0 

3 intron 7,236,481 0 3,857,468 0 13,075,545 0 943,555 0 15,393,182 0 40,506,231 0 

3 phastCons33 996,189 0 514,823 0 1,846,133 0 141,841 0 2,149,834 0 5,648,820 0 

3 utr3 124,712 0 58,890 0 223,334 0 16,577 0 256,405 0 679,918 0 

3 utr5 33,611 0 14,635 0 63,814 0 3,187 0 73,773 0 189,020 0 

4 cds 136,704 0 61,552 0 276,120 0 14,305 0 325,558 0 814,239 0 

4 cpg 2,690 0 287 0 87,079 0 1,241 0 56,534 0 147,831 0 

4 intergenic 9,792,679 0 5,901,086 0 18,807,740 0 1,522,316 0 22,026,302 2 58,050,123 2 

4 intron 7,570,701 1 3,980,926 0 13,421,841 1 955,756 0 15,747,985 1 41,677,209 3 

4 phastCons33 1,011,362 0 516,511 0 1,848,738 0 138,914 0 2,158,043 0 5,673,568 0 

4 utr3 147,689 0 66,596 0 240,524 0 16,077 0 278,425 0 749,311 0 

4 utr5 38,853 0 18,512 0 71,664 0 4,420 0 88,539 0 221,988 0 

5 cds 125,882 0 57,861 0 301,801 0 12,677 0 321,400 0 819,621 0 

5 cpg 4,060 0 222 0 122,450 0 1,962 0 76,587 0 205,281 0 

5 intergenic 5,667,754 0 3,216,298 0 10,967,760 2 674,613 0 12,795,729 2 33,322,154 4 

5 intron 6,757,305 0 3,423,377 0 12,068,108 1 691,638 0 13,988,847 0 36,929,275 1 

5 phastCons33 818,482 0 392,855 0 1,574,054 0 94,426 0 1,777,430 0 4,657,247 0 

5 utr3 127,985 0 54,847 0 225,141 0 13,271 0 245,087 0 666,331 0 

5 utr5 30,149 0 12,588 0 65,469 0 2,557 0 70,575 0 181,338 0 

6 cds 141,102 0 65,967 0 302,112 0 16,933 0 329,856 1 855,970 1 

6 cpg 2,703 0 333 0 109,396 0 1,752 0 79,570 0 193,754 0 

6 intergenic 5,997,716 0 3,466,145 1 11,592,417 1 836,422 0 13,323,945 0 35,216,645 2 

6 intron 6,616,754 0 3,490,542 0 12,084,920 1 831,436 0 13,939,348 1 36,963,000 2 

6 phastCons33 866,628 0 445,639 0 1,633,563 0 116,738 0 1,859,393 1 4,921,961 1 

6 utr3 132,890 0 57,705 0 220,958 0 14,907 0 246,798 0 673,258 0 

6 utr5 42,631 0 17,506 0 80,915 0 4,952 0 93,598 1 239,602 1 

7 cds 171,518 0 79,939 0 341,704 0 18,532 0 394,493 0 1,006,186 0 
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7 cpg 1,824 0 181 0 69,493 0 1,301 0 48,175 0 120,974 0 

7 intergenic 7,481,137 0 4,266,470 0 13,865,276 0 1,031,148 0 16,287,797 0 42,931,828 0 

7 intron 8,410,292 0 4,463,906 0 14,676,044 2 1,066,290 0 17,280,255 0 45,896,787 2 

7 phastCons33 898,134 0 448,314 0 1,638,392 0 115,722 0 1,891,642 0 4,992,204 0 

7 utr3 162,820 0 73,703 0 270,602 0 18,316 0 317,107 0 842,548 0 

7 utr5 48,174 0 20,383 0 87,436 0 6,254 0 103,373 0 265,620 0 

8 cds 144,180 0 65,907 0 288,692 0 16,420 0 334,336 0 849,535 0 

8 cpg 3,179 0 712 0 92,810 0 1,490 0 65,359 0 163,550 0 

8 intergenic 7,525,206 3 4,502,240 1 14,415,114 1 1,150,146 0 16,922,554 1 44,515,260 6 

8 intron 6,850,652 0 3,648,936 0 11,955,113 0 898,543 0 14,087,747 0 37,440,991 0 

8 phastCons33 994,126 0 500,787 0 1,803,507 0 139,007 0 2,087,607 0 5,525,034 0 

8 utr3 139,504 0 63,206 0 234,954 0 18,860 0 258,005 0 714,529 0 

8 utr5 38,098 0 16,053 0 71,232 0 4,721 0 85,587 0 215,691 0 

9 cds 123,563 0 51,805 0 288,888 0 10,005 0 303,863 0 778,124 0 

9 cpg 3,158 0 197 0 114,339 0 2,011 0 79,177 0 198,882 0 

9 intergenic 2,365,854 0 1,245,066 0 4,363,431 0 281,295 0 4,899,877 2 13,155,523 2 

9 intron 5,107,705 0 2,531,592 0 8,844,827 0 504,605 0 10,379,862 1 27,368,591 1 

9 phastCons33 631,281 0 287,317 0 1,150,265 0 64,420 0 1,275,367 0 3,408,650 0 

9 utr3 133,485 0 52,020 0 225,195 0 11,765 0 241,639 0 664,104 0 

9 utr5 37,478 0 15,411 0 73,129 0 2,888 0 85,458 0 214,364 0 

10 cds 128,488 0 58,026 0 255,914 0 14,044 0 287,700 0 744,172 0 

10 cpg 2,273 0 866 0 148,882 0 2,049 0 85,900 0 239,970 0 

10 intergenic 6,018,300 0 3,366,069 0 11,365,889 1 810,125 0 13,449,014 0 35,009,397 1 

10 intron 5,858,500 0 2,955,658 0 10,081,845 0 680,145 0 11,832,780 0 31,408,928 0 

10 phastCons33 805,628 0 388,736 0 1,446,202 0 102,593 0 1,685,531 0 4,428,690 0 

10 utr3 132,201 0 56,532 0 208,252 0 13,318 0 242,495 0 652,798 0 

10 utr5 35,749 0 14,170 0 65,446 0 3,504 0 76,651 0 195,520 0 

11 cds 119,282 0 53,810 0 241,935 0 13,236 0 284,308 0 712,571 0 

11 cpg 2,326 0 417 0 84,266 0 1,506 0 57,208 0 145,723 0 

11 intergenic 8,171,150 0 4,849,145 0 15,621,971 0 1,222,391 0 18,320,203 0 48,184,860 0 
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11 intron 5,993,690 1 3,176,116 1 10,671,211 0 751,324 0 12,551,484 0 33,143,825 2 

11 phastCons33 903,110 1 452,612 1 1,659,683 0 115,254 0 1,924,991 0 5,055,650 2 

11 utr3 126,967 0 57,238 0 208,002 0 15,614 0 238,901 0 646,722 0 

11 utr5 32,683 0 14,489 0 59,582 0 3,934 0 71,419 0 182,107 0 

12 cds 136,178 0 63,496 0 271,672 1 14,672 0 325,639 0 811,657 1 

12 cpg 2,494 0 470 0 60,024 0 1,401 0 51,926 0 116,315 0 

12 intergenic 8,181,131 0 4,995,700 0 15,923,292 0 1,347,288 0 18,752,559 1 49,199,970 1 

12 intron 7,152,297 0 3,972,398 0 12,763,068 0 1,076,169 0 15,064,486 1 40,028,418 1 

12 phastCons33 878,308 0 457,486 0 1,604,856 1 127,798 0 1,885,561 0 4,954,009 1 

12 utr3 134,464 0 61,670 0 223,364 0 18,304 0 250,399 0 688,201 0 

12 utr5 30,960 0 11,991 0 59,250 0 3,327 0 69,943 0 175,471 0 

13 cds 100,035 0 47,753 0 203,981 0 12,705 0 238,049 0 602,523 0 

13 cpg 1,417 0 405 0 79,574 0 1,199 0 45,564 0 128,159 0 

13 intergenic 7,570,508 0 4,610,487 0 14,696,817 0 1,182,296 0 17,226,474 0 45,286,582 0 

13 intron 5,486,050 0 3,005,644 0 9,977,425 0 811,284 0 11,542,150 0 30,822,553 0 

13 phastCons33 640,471 1 331,696 0 1,178,224 0 92,809 0 1,360,719 0 3,603,919 1 

13 utr3 94,223 0 46,543 0 163,554 0 14,063 0 184,561 0 502,944 0 

13 utr5 26,213 0 11,117 0 46,068 0 3,863 0 53,925 0 141,186 0 

14 cds 103,787 0 49,897 0 207,563 0 13,389 0 240,521 0 615,157 0 

14 cpg 787 0 113 0 58,613 0 1,272 0 41,477 0 102,262 0 

14 intergenic 6,397,078 1 3,693,019 1 11,801,137 0 983,933 0 13,934,829 1 36,809,996 3 

14 intron 6,733,905 0 3,615,825 0 11,896,289 0 951,691 0 13,970,333 1 37,168,043 1 

14 phastCons33 919,772 0 467,423 0 1,609,169 0 127,420 0 1,878,266 0 5,002,050 0 

14 utr3 112,618 0 55,529 0 190,582 0 17,362 0 220,309 0 596,400 0 

14 utr5 30,313 0 14,236 0 58,390 0 4,414 0 67,223 0 174,576 0 

15 cds 136,343 0 63,287 0 268,688 0 18,069 0 311,975 0 798,362 0 

15 cpg 1,464 0 302 0 83,854 1 1,577 0 50,086 0 137,283 1 

15 intergenic 6,279,628 1 3,642,650 0 11,886,997 1 935,982 0 14,208,755 1 36,954,012 3 

15 intron 6,578,733 0 3,600,178 0 11,754,704 0 929,296 0 13,899,632 1 36,762,543 1 

15 phastCons33 762,228 0 383,478 0 1,394,823 0 103,875 0 1,606,644 0 4,251,048 0 
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15 utr3 111,631 0 51,379 0 189,047 0 14,212 0 212,021 0 578,290 0 

15 utr5 38,111 0 18,136 0 74,725 0 4,834 0 85,822 0 221,628 0 

16 cds 82,795 0 38,208 0 179,080 0 9,982 0 208,089 0 518,154 0 

16 cpg 2,306 0 1,644 0 139,129 0 9,629 0 102,493 0 255,201 0 

16 intergenic 5,920,776 0 3,553,494 0 11,750,531 1 893,059 0 13,959,944 0 36,077,804 1 

16 intron 4,636,724 0 2,556,022 0 8,636,017 0 628,958 0 10,189,555 0 26,647,276 0 

16 phastCons33 446,205 0 229,812 0 848,592 0 61,162 0 983,198 0 2,568,969 0 

16 utr3 78,920 0 35,563 0 136,253 0 9,388 0 158,366 0 418,490 0 

16 utr5 23,539 0 10,923 0 46,795 0 3,385 0 54,261 0 138,903 0 

17 cds 130,700 0 58,431 0 249,434 0 13,611 0 286,343 0 738,519 0 

17 cpg 4,587 0 1,526 0 134,234 0 2,410 0 80,016 0 222,773 0 

17 intergenic 6,361,515 2 3,760,497 0 12,201,272 1 885,981 0 14,323,472 0 37,532,737 3 

17 intron 4,976,985 0 2,526,673 0 8,430,026 0 554,739 0 9,961,034 0 26,449,457 0 

17 phastCons33 607,390 0 299,221 0 1,108,081 0 74,281 0 1,268,414 0 3,357,387 0 

17 utr3 123,551 0 53,160 0 196,645 0 12,403 0 227,887 0 613,646 0 

17 utr5 28,759 0 12,543 0 54,163 0 2,709 0 63,009 0 161,183 0 

18 cds 80,253 0 38,679 0 197,265 0 9,135 0 217,073 0 542,405 0 

18 cpg 2,395 0 603 0 106,505 0 1,922 0 67,205 0 178,630 0 

18 intergenic 4,605,710 1 2,814,365 0 9,142,304 0 689,559 0 10,744,776 1 27,996,714 2 

18 intron 4,132,886 1 2,289,807 1 7,869,023 0 561,217 0 9,136,594 0 23,989,527 2 

18 phastCons33 432,564 0 213,989 0 835,848 0 55,064 0 944,109 0 2,481,574 0 

18 utr3 72,385 0 32,224 0 129,239 0 7,569 0 141,404 0 382,821 0 

18 utr5 17,901 0 9,038 0 40,656 0 2,032 0 46,964 0 116,591 0 

19 cds 67,448 0 31,624 0 138,263 0 9,494 0 163,025 0 409,854 0 

19 cpg 689 0 230 0 43,215 0 892 0 34,053 0 79,079 0 

19 intergenic 7,446,859 0 4,740,407 0 14,971,762 1 1,264,666 0 17,713,137 1 46,136,831 2 

19 intron 4,403,756 0 2,502,353 0 8,188,131 0 664,251 1 9,680,549 0 25,439,040 1 

19 phastCons33 651,553 0 343,989 0 1,197,364 0 98,301 0 1,406,716 0 3,697,923 0 

19 utr3 65,568 0 32,036 0 111,852 0 9,196 0 126,690 0 345,342 0 

19 utr5 14,390 0 7,470 0 27,406 0 2,274 0 33,220 0 84,760 0 
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20 cds 74,998 0 34,689 0 216,490 0 7,317 0 213,416 0 546,910 0 

20 cpg 5,037 0 194 0 137,933 0 1,500 0 88,087 0 232,751 0 

20 intergenic 3,210,072 0 1,801,041 0 5,939,636 0 425,461 0 7,009,288 2 18,385,498 2 

20 intron 5,439,258 0 2,768,029 0 9,638,693 1 599,580 0 11,322,703 0 29,768,263 1 

20 phastCons33 513,560 0 248,302 0 970,889 0 65,091 0 1,097,045 0 2,894,887 0 

20 utr3 74,001 0 29,658 0 138,222 0 8,498 0 153,973 0 404,352 0 

20 utr5 22,278 0 9,782 0 54,486 0 2,339 0 63,409 0 152,294 0 

21 cds 85,205 0 41,572 0 189,619 0 10,456 0 218,169 0 545,021 0 

21 cpg 832 0 24 0 36,468 0 826 0 27,740 0 65,890 0 

21 intergenic 4,639,674 0 2,885,278 0 9,183,913 0 712,456 0 10,868,425 0 28,289,746 0 

21 intron 5,003,056 0 2,809,303 0 8,959,902 0 677,173 0 10,518,677 0 27,968,111 0 

21 phastCons33 496,806 0 249,576 0 911,039 0 67,905 0 1,046,565 0 2,771,891 0 

21 utr3 76,748 0 35,803 0 131,373 0 9,303 0 152,401 0 405,628 0 

21 utr5 19,522 0 8,606 0 37,730 0 2,413 0 45,545 0 113,816 0 

22 cds 74,476 0 30,970 0 143,958 0 8,742 0 168,698 0 426,844 0 

22 cpg 623 0 118 0 40,988 0 1,006 0 29,707 0 72,442 0 

22 intergenic 9,604,922 1 6,177,364 0 19,434,867 0 1,800,167 1 22,630,406 1 59,647,726 3 

22 intron 4,435,098 0 2,411,279 0 7,920,224 0 655,257 0 9,327,909 0 24,749,767 0 

22 phastCons33 779,164 0 425,916 0 1,426,537 0 126,259 0 1,646,435 0 4,404,311 0 

22 utr3 67,646 0 33,549 0 115,331 0 10,337 0 136,581 0 363,444 0 

22 utr5 16,380 0 6,477 0 30,239 0 2,192 0 36,487 0 91,775 0 

23 cds 98,759 0 44,760 0 196,320 0 12,198 0 226,403 0 578,440 0 

23 cpg 1,195 0 425 0 45,932 0 1,072 0 34,294 0 82,918 0 

23 intergenic 5,294,224 0 3,028,471 0 9,967,023 0 769,859 0 11,917,179 0 30,976,756 0 

23 intron 5,238,814 1 2,771,599 0 9,131,389 1 681,472 0 10,789,657 0 28,612,931 2 

23 phastCons33 574,203 0 282,831 0 1,018,793 0 77,066 0 1,192,249 0 3,145,142 0 

23 utr3 88,719 0 40,084 0 147,917 0 10,653 0 167,503 0 454,876 0 

23 utr5 29,825 0 11,532 0 53,289 0 3,697 0 63,960 0 162,303 0 

24 cds 57,917 0 25,491 0 135,712 0 5,714 0 141,261 0 366,095 0 

24 cpg 2,575 0 478 0 146,167 0 1,864 0 70,097 0 221,181 0 
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24 intergenic 3,412,169 0 1,826,564 0 6,344,424 1 372,521 0 7,401,564 0 19,357,242 1 

24 intron 3,454,047 0 1,763,376 0 6,233,232 0 368,565 0 7,216,476 0 19,035,696 0 

24 phastCons33 419,142 0 198,876 0 788,684 0 45,929 0 893,733 0 2,346,364 0 

24 utr3 62,165 0 27,648 0 110,632 0 5,135 0 120,999 0 326,579 0 

24 utr5 20,009 0 8,181 0 39,746 0 1,844 0 44,816 0 114,596 0 

25 cds 92,005 0 44,841 0 191,702 0 10,784 0 219,454 0 558,786 0 

25 cpg 3,468 0 892 0 136,602 0 2,083 0 69,715 0 212,760 0 

25 intergenic 4,677,041 0 2,639,526 0 8,625,822 0 640,532 0 10,189,888 0 26,772,809 0 

25 intron 4,827,030 0 2,585,563 0 8,618,827 0 641,179 0 10,126,664 1 26,799,263 1 

25 phastCons33 396,676 0 200,535 0 730,279 0 54,769 0 852,236 0 2,234,495 0 

25 utr3 81,519 0 41,177 0 144,733 0 11,212 0 166,568 0 445,209 0 

25 utr5 26,306 0 10,766 0 46,379 0 2,683 0 54,496 0 140,630 0 

26 cds 47,405 0 21,450 0 121,114 0 3,751 0 131,858 0 325,578 0 

26 cpg 1,691 0 408 0 72,919 0 1,047 0 48,036 0 124,101 0 

26 intergenic 1,674,416 0 960,596 0 3,408,188 0 180,304 0 3,993,492 0 10,216,996 0 

26 intron 2,756,964 1 1,456,235 0 5,310,029 0 276,365 0 6,275,415 0 16,075,008 1 

26 phastCons33 208,746 0 94,332 0 413,615 0 18,989 0 464,646 0 1,200,328 0 

26 utr3 47,431 0 17,837 0 89,520 0 4,310 0 97,223 0 256,321 0 

26 utr5 17,195 0 6,210 0 34,768 0 1,710 0 39,575 0 99,458 0 

27 cds 104,743 0 51,541 0 216,236 0 13,802 0 245,319 0 631,641 0 

27 cpg 884 0 40 0 36,192 0 641 0 27,451 0 65,208 0 

27 intergenic 3,594,595 1 2,057,998 1 6,683,512 0 516,881 0 8,058,533 0 20,911,519 2 

27 intron 5,082,339 0 2,713,616 0 8,900,953 0 692,652 0 10,538,466 0 27,928,026 0 

27 phastCons33 489,054 0 241,677 0 887,966 0 67,109 0 1,028,208 0 2,714,014 0 

27 utr3 96,524 0 48,253 0 165,878 0 12,364 0 189,032 0 512,051 0 

27 utr5 27,694 0 12,899 0 53,530 0 2,839 0 64,039 0 161,001 0 

28 cds 88,603 0 37,919 0 171,640 0 9,380 0 193,164 0 500,706 0 

28 cpg 2,633 0 1,107 0 156,933 0 3,106 0 74,504 0 238,283 0 

28 intergenic 2,926,808 0 1,604,399 0 5,504,230 0 339,657 0 6,398,155 0 16,773,249 0 

28 intron 3,543,947 0 1,799,613 0 6,240,420 0 409,251 0 7,244,241 0 19,237,472 0 
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28 phastCons33 462,166 0 217,212 0 832,012 0 55,776 0 958,354 0 2,525,520 0 

28 utr3 93,310 0 39,760 0 147,534 0 10,945 0 173,653 0 465,202 0 

28 utr5 22,007 0 10,819 0 40,129 0 2,846 0 48,658 0 124,459 0 

29 cds 66,074 0 32,083 0 127,957 0 9,454 0 155,707 0 391,275 0 

29 cpg 1,210 0 221 0 40,503 0 870 0 33,559 0 76,363 0 

29 intergenic 5,151,337 0 3,154,182 1 10,069,205 0 859,800 0 11,894,535 1 31,129,059 2 

29 intron 3,933,683 0 2,231,433 0 7,238,504 1 599,880 0 8,628,838 0 22,632,338 1 

29 phastCons33 534,676 0 281,618 0 977,597 0 83,287 0 1,146,770 0 3,023,948 0 

29 utr3 81,632 0 40,541 0 132,680 0 12,714 0 153,601 0 421,168 0 

29 utr5 23,743 0 11,671 0 42,400 0 3,038 0 51,781 0 132,633 0 

30 cds 111,046 0 54,091 0 227,513 0 12,685 0 263,305 0 668,640 0 

30 cpg 1,422 0 92 0 53,643 0 802 0 31,463 0 87,422 0 

30 intergenic 3,115,653 0 1,694,752 0 5,512,469 0 400,129 0 6,558,665 0 17,281,668 0 

30 intron 4,535,122 0 2,420,275 0 7,921,179 0 594,846 0 9,342,342 0 24,813,764 0 

30 phastCons33 572,215 0 281,053 0 1,021,863 0 75,130 0 1,174,888 0 3,125,149 0 

30 utr3 113,935 0 52,884 0 184,783 0 14,947 0 208,505 0 575,054 0 

30 utr5 23,947 0 10,265 0 43,026 0 2,421 0 51,617 0 131,276 0 

31 cds 38,379 0 17,718 0 86,626 0 5,058 0 94,459 0 242,240 0 

31 cpg 2,152 0 483 0 120,525 0 2,009 0 49,964 0 175,133 0 

31 intergenic 5,029,894 0 3,200,386 2 10,071,602 0 931,905 0 11,856,994 2 31,090,781 4 

31 intron 2,590,491 0 1,461,203 0 4,916,019 0 407,140 0 5,690,242 1 15,065,095 1 

31 phastCons33 363,633 0 200,251 0 678,816 0 60,891 0 786,909 0 2,090,500 0 

31 utr3 40,740 0 21,429 0 75,757 0 6,793 0 82,207 0 226,926 0 

31 utr5 12,046 0 4,502 0 23,809 0 1,726 0 26,551 0 68,634 0 

32 cds 81,143 0 37,527 0 152,978 0 10,473 0 183,567 0 465,688 0 

32 cpg 525 0 81 0 13,828 0 159 0 15,005 0 29,598 0 

32 intergenic 4,669,845 0 2,854,235 0 8,914,212 0 798,405 0 10,443,948 0 27,680,645 0 

32 intron 4,644,106 0 2,607,193 0 8,214,541 0 743,762 0 9,684,619 0 25,894,221 0 

32 phastCons33 430,284 0 225,167 0 783,583 0 68,751 0 924,277 0 2,432,062 0 

32 utr3 75,514 0 38,604 0 129,427 0 10,810 0 151,053 0 405,408 0 
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32 utr5 17,978 0 8,381 0 30,714 0 2,652 0 37,634 0 97,359 0 

33 cds 66,721 0 32,105 0 133,724 0 7,746 0 155,705 0 396,001 0 

33 cpg 994 0 83 0 38,780 0 572 0 25,316 0 65,745 0 

33 intergenic 3,357,287 0 1,915,663 0 6,372,765 0 542,551 0 7,454,645 1 19,642,911 1 

33 intron 3,432,577 2 1,841,226 1 5,991,840 0 481,952 0 7,096,521 0 18,844,116 3 

33 phastCons33 398,232 0 197,674 0 712,990 0 54,912 0 828,252 0 2,192,060 0 

33 utr3 74,160 0 32,782 0 118,774 0 9,204 0 140,063 0 374,983 0 

33 utr5 18,993 0 8,868 0 33,438 0 2,729 0 37,178 0 101,206 0 

34 cds 59,693 0 26,374 0 116,018 0 6,413 0 131,174 0 339,672 0 

34 cpg 736 0 255 0 48,101 0 952 0 37,128 0 87,172 0 

34 intergenic 4,577,400 0 2,797,611 0 9,222,780 0 725,903 0 10,874,537 1 28,198,231 1 

34 intron 3,597,219 0 1,939,811 0 6,541,589 1 492,889 0 7,722,784 1 20,294,292 2 

34 phastCons33 432,829 0 221,168 0 795,476 0 59,965 0 929,798 0 2,439,236 0 

34 utr3 64,800 0 31,478 0 114,308 0 9,768 0 130,115 0 350,469 0 

34 utr5 19,824 0 8,670 0 35,826 0 2,256 0 41,782 0 108,358 0 

35 cds 27,571 0 11,916 0 60,652 0 2,473 0 71,061 0 173,673 0 

35 cpg 2,495 0 228 0 44,828 0 936 0 36,256 0 84,743 0 

35 intergenic 2,420,964 1 1,358,419 0 4,523,574 1 309,160 0 5,440,479 0 14,052,596 2 

35 intron 2,042,159 0 1,027,644 0 3,582,332 0 226,855 0 4,320,255 0 11,199,245 0 

35 phastCons33 223,168 0 111,399 0 411,958 0 25,896 0 491,294 0 1,263,715 0 

35 utr3 32,955 0 14,538 0 54,689 0 3,308 0 66,658 0 172,148 0 

35 utr5 9,816 0 3,933 0 18,424 0 781 0 21,928 0 54,882 0 

36 cds 91,359 0 41,096 0 182,396 0 11,922 0 209,672 0 536,445 0 

36 cpg 1,722 0 280 0 37,837 0 881 0 27,128 0 67,848 0 

36 intergenic 3,188,358 0 1,883,942 0 6,235,004 1 508,086 0 7,396,467 0 19,211,857 1 

36 intron 3,538,940 1 1,892,407 0 6,281,275 1 525,559 0 7,374,475 0 19,612,656 2 

36 phastCons33 568,641 0 284,881 0 1,029,813 0 82,334 0 1,192,674 0 3,158,343 0 

36 utr3 74,169 0 36,548 0 124,806 0 10,959 0 143,307 0 389,789 0 

36 utr5 22,015 0 9,811 0 37,906 0 2,902 0 43,601 0 116,235 0 

37 cds 70,238 0 32,317 0 134,874 0 8,481 0 157,271 0 403,181 0 
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37 cpg 499 0 134 0 48,009 0 1,042 0 28,395 0 78,079 0 

37 intergenic 3,053,606 0 1,772,628 0 5,852,293 1 451,489 0 6,919,735 0 18,049,751 1 

37 intron 3,214,021 0 1,749,093 0 5,746,647 1 472,958 0 6,742,146 0 17,924,865 1 

37 phastCons33 450,543 0 227,304 0 814,670 0 61,938 0 946,382 0 2,500,837 0 

37 utr3 70,540 0 34,766 0 115,211 0 8,915 0 126,627 0 356,059 0 

37 utr5 17,557 0 7,536 0 30,961 0 1,610 0 36,091 0 93,755 0 

38 cds 26,608 0 12,143 0 62,849 0 3,701 0 69,040 0 174,341 0 

38 cpg 574 0 160 0 38,633 0 546 0 16,559 0 56,472 0 

38 intergenic 2,799,463 0 1,737,281 0 5,608,742 0 487,020 0 6,539,296 0 17,171,802 0 

38 intron 1,507,363 0 814,638 0 2,757,038 0 209,537 0 3,178,244 0 8,466,820 0 

38 phastCons33 210,709 0 106,568 0 407,038 0 32,520 0 467,350 0 1,224,185 0 

38 utr3 30,081 0 12,865 0 50,415 0 3,660 0 58,872 0 155,893 0 

38 utr5 9,971 0 4,495 0 19,317 0 1,548 0 22,142 0 57,473 0 

All cds 3,761,866 0 1,739,841 0 7,898,788 1 431,779 0 8,972,419 1 22,804,693 2 

All cpg 80,770 0 16,417 0 3,303,900 3 65,069 0 2,096,993 0 5,563,149 3 

All intergenic 211,602,910 11 124,918,098 7 407,000,000 13 31,640,806 1 479,000,000 21 1,254,201,072 53 

All intron 195,533,939 8 104,142,428 3 348,000,000 11 25,466,429 1 410,000,000 9 1,083,211,110 32 

All phastCons33 23,769,421 2 11,919,809 1 43,587,827 1 3,198,543 0 50,372,305 1 132,847,905 5 

All utr3 3,718,050 0 1,707,960 0 6,308,862 0 458,714 0 7,164,205 0 19,357,791 0 

All utr5 1,025,385 0 449,518 0 1,952,538 0 119,639 0 2,291,250 1 5,838,330 1 
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Appendix for chapter 4.2 

File S1. Sample information including data availability and genotypes at BBS4 c.58A > T 

BREED ID GENOTYPING 
ARRAY 

ACCESSION WHOLE 
GENOME 
SEQUENCING 
PLATFORM 

LIBRARY ACCESSION BBS4 c.58A > 
T 
GENOTYPES 
(BY SANGER 
SEQUENCING) 

Hungarian 
Puli 

USCF347 Illumina 
CanineHD 
BeadChip 

GSE87642 Illumina HiSeq 
2000 

TruSeq, 
PCR-free 

PRJNA344694 A T 

Hungarian 
Puli 

USCF350 Illumina 
CanineHD 
BeadChip 

GSE87642 N/A N/A N/A A T 

Hungarian 
Puli 

USCF516 Illumina 
CanineHD 
BeadChip 

GSE87642 Illumina HiSeq 
2000 

TruSeq, 
PCR-free 

PRJNA344694 T T 

Hungarian 
Puli 

USCF517 Illumina 
CanineHD 
BeadChip 

GSE87642 N/A N/A N/A A T 

Hungarian 
Puli 

USCF518 Illumina 
CanineHD 
BeadChip 

GSE87642 N/A N/A N/A A T 

Hungarian 
Puli 

USCF519 Illumina 
CanineHD 
BeadChip 

GSE87642 Illumina HiSeq 
2000 

TruSeq, 
PCR-free 

PRJNA344694 T T 

Hungarian 
Puli 

USCF520 Illumina 
CanineHD 
BeadChip 

GSE87642 N/A N/A N/A A T 
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Hungarian 
Puli 

USCF521 Illumina 
CanineHD 
BeadChip 

GSE87642 N/A N/A N/A A T 

Hungarian 
Puli 

USCF522 Illumina 
CanineHD 
BeadChip 

GSE87642 N/A N/A N/A A A 

Hungarian 
Puli 

USCF523 Illumina 
CanineHD 
BeadChip 

GSE87642 N/A N/A N/A A A 

Hungarian 
Puli 

USCF524 Illumina 
CanineHD 
BeadChip 

GSE87642 N/A N/A N/A A T 

Hungarian 
Puli 

USCF525 Illumina 
CanineHD 
BeadChip 

GSE87642 Illumina HiSeq 
2000 

TruSeq, 
PCR-free 

PRJNA344694 A T 

Hungarian 
Puli 

USCF526 Illumina 
CanineHD 
BeadChip 

GSE87642 N/A N/A N/A A T 

Hungarian 
Puli 

USCF532 Illumina 
CanineHD 
BeadChip 

GSE87642 N/A N/A N/A A T 

Hungarian 
Puli 

USCF1194 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

USCF1195 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

USCF1197 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

USCF1198 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

USCF1263 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

USCF1264 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

USCF1265 N/A N/A N/A N/A N/A A A 
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Hungarian 
Puli 

USCF1266 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

USCF1267 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

USCF1268 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

USCF1269 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

USCF1270 N/A N/A N/A N/A N/A A T 

Hungarian 
Puli 

USCF1271 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

USCF1272 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

USCF1273 N/A N/A N/A N/A N/A A T 

Hungarian 
Puli 

USCF1274 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

USCF1275 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

USCF1276 N/A N/A N/A N/A N/A A T 

Hungarian 
Puli 

USCF1277 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

USCF1278 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

USCF1279 N/A N/A N/A N/A N/A A T 

Hungarian 
Puli 

USCF1280 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

USCF1281 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

USCF1282 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

USCF1283 N/A N/A N/A N/A N/A A A 
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Hungarian 
Puli 

USCF1284 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

USCF1285 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

USCF1286 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

USCF1287 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

USCF1289 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

USCF1311 N/A N/A N/A N/A N/A T T 

Hungarian 
Puli 

PUL001 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL002 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL003 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL004 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL005 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL006 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL007 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL008 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL009 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL010 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL011 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL012 N/A N/A N/A N/A N/A A A 
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Hungarian 
Puli 

PUL013 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL014 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL015 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL016 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL017 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL018 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL019 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL020 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL021 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL022 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL023 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL024 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL025 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL026 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL027 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL028 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL029 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL030 N/A N/A N/A N/A N/A A A 
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Hungarian 
Puli 

PUL031 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL032 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL033 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL034 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL035 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL036 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL037 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL038 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL039 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL040 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL041 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL042 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL043 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL044 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL045 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL046 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL047 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL048 N/A N/A N/A N/A N/A A A 
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Hungarian 
Puli 

PUL049 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL051 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL052 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL053 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL054 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL055 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL056 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL057 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL058 N/A N/A N/A N/A N/A A A 

Hungarian 
Puli 

PUL059 N/A N/A N/A N/A N/A A A 

 

All Hungarian Pumi used in this study (n = 152) had the ‘A A’ genotype at BBS4 c.58A > T, determined by Sanger sequencing.  



 

 

File S2. Completion of the current BBS4 annotation in CanFam3.1 reference 

genome 

Introduction 

Exon 1 of BBS4 is not annotated in the most current reference sequence (CanFam3.1). 

Its absence is evident by a lack of an initiation codon. When observing a multiple 

sequence alignment of BBS4 protein sequences from a variety of vertebate species 

including human, orangutan, mouse, rat, cow, cat and elephant it is clear that the dog is 

lacking the first part of the transcript. We hypothesized that exon 1 resided in a 

reference genome assembly gap ~9.7 Kb upstream to the current BBS4 annotation and 

adjacent to a region of high guanine-cytosine density.  

Methods 

Using the popular de novo aligner Velvet version 1.2.10 (Zerbino and Birney 2008), we 

attempted to resolve this gap by assembling unmapped reads and reads that partially 

mapped to the vicinity of the gap in chromosome 30 from four Hungarian Puli dogs. The 

initial attempt at assembly was unsuccessful in building a contig that completely 

resolved the gap. Alternatively, we performed a manual alignment using sequences 

from unmapped mates of reads that had aligned adjacent to the gap. A multiple 

sequence alignment with the assembled contig and exon 1 of human (NR_033028.4), 

mouse (NM_175325.3) and cat (XM_011282956.1) was performed using Clustal 

Omega (Sievers et al. 2011). The assembled contig was translated into an amino acid 

sequence using ExPASy’s translate tool (Gasteiger et al. 2003). We similarly aligned 

the predicted canine BBS4 protein corresponding to exon 1 to human (NP_149017.2), 

mouse (NP_780534.1) and cat (XP_011281258.1) BBS4 proteins. 

Results and Conclusions 

Multiple sequence alignment of the contig produced from manual assembly revealed 

that putative exon 1 of BBS4 in the dog is identical to that of the domestic cat (Felis 

catus) and differs from the human sequence by two nucleotides (Figure S1). Thus, the 
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complete BBS4 protein in dogs consists of 520 amino acids encoded by 1,560 base 

pairs of mRNA organised into 16 exons on chromosome 30 of CanFam 3.1. Protein 

sequences corresponding to exon 1 of BBS4 are identical for dog and cat but differ to 

human and mouse by one and five amino acids respectively (Figure S2).  

 

Figure S1. Multiple sequence alignment of a manually assembled canine contig with 

exon 1 of BBS4 of human (Homo sapiens), mouse (Mus musculus) and domestic cat 

(Felis catus) nucleotide sequences. The canine contig was assembled using reads from 

four Hungarian Puli dogs. Reads include unmapped mates of pairs that aligned adjacent 

to a reference genome gap on chromosome 30, putative to the location of BBS4 exon 1. 

An asterisk denotes full identity of the nucleotide across species.  

 

Figure S2. Multiple amino acid sequence alignment of partial canine BBS4 protein with 

domestic cat (Felis catus), human (Homo sapien) and mouse (Mus musculus) homologs 

corresponding to exon 1 and 2 only. The canine protein sequence corresponding to 

exon 1 (highlighted in grey) and exon 2 was obtained from translation of genomic 

sequence of a contig produced by manual de novo assembly of canine Illumina HiSeq 

2000 reads. 

The complete mRNA and amino acid sequences for canine BBS4 have been deposited 

in Genbank (KX290494).  
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Table S1. Candidate genes for progressive retinal atrophy in the Hungarian Puli 

dog breed. Candidates were selected from the region with the highest density of SNP 

markers (chromosome 30, 25.3 – 40.0 Mb on CanFam 3.1) that were concordant to a 

recessive pattern of inheritance. All genes have a phenotypic connection to vision as 

indicated by the Mouse Genome Browser.  

Gene CanFam 3.1 Position Ensembl Transcript ID 

CPLX3 chr30: 37,888,801-37,892,561 ENSCAFT00000028507 

CSK chr30: 37,866,652-37,869,289 ENSCAFT00000028485 

STRA6 chr30: 37,332,568-37,346,312 ENSCAFT00000048873 

BBS4 chr30: 36,063,713-36,109,202 ENSCAFT00000028102 

HEXA chr30: 35,838,158-35,843,722 ENSCAFT00000028088 
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GLCE chr30: 33,142,327-33,208,130 ENSCAFT00000046216 

CLN6 chr30: 32,246,411-32,264,240 ENSCAFT00000027690 

SMAD3 chr30: 31,246,313-31,360,098 ENSCAFT00000027577 

MAP2K1 chr30: 30,683,192-30,760,479 ENSCAFT00000043934 

MEGF11 chr30: 30,234,191-30,446,063 ENSCAFT00000027347 

SLC24A1 chr30: 29,967,634-29,996,958 ENSCAFT00000027314 

RAB8B chr30: 27,784,338-27,845,901 ENSCAFT00000026890 

*NR2E3 (chr30: 35,378,421-35,381,822) was excluded as it is a known canine PRA 

gene. A preliminary study (Chew et al., 2017 [Animal Genetics in press]) confirms that 

no putative variants are present in this gene. 
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Table S2. Relationships between 14 Hungarian Puli individuals from the same pedigree 

estimated through proportion of identity by descent (IBD) calculations performed using 

PLINK (Purcell et al. 2007). Relationships were obtained from pedigree records 

(Australian National Kennel Council). 

Individual 1 Individual 2 Relationship  Proportion IBD 

USCF532 USCF347 OT 0 

USCF532 USCF350 PO 0.5 

USCF532 USCF516 OT 0 

USCF532 USCF517 PO 0.5 

USCF532 USCF518 HS 0.244 

USCF532 USCF519 HS 0.1755 

USCF532 USCF520 FS 0.3737 

USCF532 USCF522 PO 0.5 

USCF532 USCF523 HS 0.2037 

USCF532 USCF524 PO 0.5 

USCF532 USCF525 OT 0.1626 

USCF532 USCF526 PO 0.5 

USCF532 USCF521 OT 0.2215 

USCF347 USCF350 OT 0 

USCF347 USCF516 PO 0.5 

USCF347 USCF517 OT 0.0551 

USCF347 USCF518 OT 0 

USCF347 USCF519 OT 0.0577 

USCF347 USCF520 OT 0 

USCF347 USCF522 OT 0 
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USCF347 USCF523 OT 0.1117 

USCF347 USCF524 HS 0.2835 

USCF347 USCF525 OT 0 

USCF347 USCF526 OT 0 

USCF347 USCF521 OT 0 

USCF350 USCF516 OT 0.0656 

USCF350 USCF517 OT 0.3262 

USCF350 USCF518 PO 0.5 

USCF350 USCF519 OT 0.1257 

USCF350 USCF520 OT 0.3004 

USCF350 USCF522 FS 0.4293 

USCF350 USCF523 OT 0.2823 

USCF350 USCF524 OT 0.393 

USCF350 USCF525 OT 0.2628 

USCF350 USCF526 HS 0.2777 

USCF350 USCF521 OT 0.2286 

USCF516 USCF517 OT 0.183 

USCF516 USCF518 OT 0.1856 

USCF516 USCF519 HS 0.3014 

USCF516 USCF520 OT 0.1565 

USCF516 USCF522 OT 0 

USCF516 USCF523 OT 0.1211 

USCF516 USCF524 OT 0.2613 

USCF516 USCF525 PO 0.5 
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USCF516 USCF526 OT 0.1235 

USCF516 USCF521 OT 0.2273 

USCF517 USCF518 OT 0.5 

USCF517 USCF519 OT 0.2414 

USCF517 USCF520 PO 0.5037 

USCF517 USCF522 OT 0.3605 

USCF517 USCF523 OT 0.2289 

USCF517 USCF524 HS 0.3298 

USCF517 USCF525 OT 0.3651 

USCF517 USCF526 OT 0.3112 

USCF517 USCF521 OT 0.3831 

USCF518 USCF519 OT 0.2845 

USCF518 USCF520 PO 0.5 

USCF518 USCF522 PO 0.5 

USCF518 USCF523 HS 0.374 

USCF518 USCF524 OT 0.5 

USCF518 USCF525 OT 0.3875 

USCF518 USCF526 OT 0.3268 

USCF518 USCF521 FS 0.5548 

USCF519 USCF520 HS 0.3208 

USCF519 USCF522 OT 0 

USCF519 USCF523 HS 0.2537 

USCF519 USCF524 PO 0.5 

USCF519 USCF525 PO 0.5 
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USCF519 USCF526 OT 0.1335 

USCF519 USCF521 HS 0.3223 

USCF520 USCF522 OT 0.3634 

USCF520 USCF523 HS 0.2515 

USCF520 USCF524 PO 0.5049 

USCF520 USCF525 PO 0.5 

USCF520 USCF526 OT 0.403 

USCF520 USCF521 PO 0.5 

USCF522 USCF523 OT 0.2233 

USCF522 USCF524 OT 0.3924 

USCF522 USCF525 OT 0.2033 

USCF522 USCF526 HS 0.2459 

USCF522 USCF521 OT 0.2668 

USCF523 USCF524 PO 0.5 

USCF523 USCF525 OT 0.2419 

USCF523 USCF526 OT 0.1263 

USCF523 USCF521 HS 0.3722 

USCF524 USCF525 OT 0.3249 

USCF524 USCF526 OT 0.3451 

USCF524 USCF521 OT 0.5 

USCF525 USCF526 OT 0.2616 

USCF525 USCF521 FS 0.4689 

USCF526 USCF521 PO 0.5 

Samples were genotyped on the CanineHD BeadChip array. Relationships provided by 

pedigree records are consistent with proportion of IBD estimations that were expected 
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depending on the type of relationship. Parent-offspring (PO) relationships have an 

expected IBD = 0.5; full-sibling (FS) relationships have an expected IBD = 0.5; half-

sibling relationships have an expected IBD = 0.25. OT indicates ‘other’ relationships.  
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Appendix IV: Supplementary material for chapter 5 

Table S1. Candidate genes screened in canine individual USCF305 presenting with severe haemophilia A. Genes 

associated with a bleeding tendency phenotype in humans were selected as candidates. 

Gene CanFam 3.1 Position Ensembl Transcript ID Reference 

F2 chr18:42,782,384 - 42,799,459 ENSCAFG00000009122 Archarya et al 2003 

F7 chr22:60,572,511 - 60,582,729 ENSCAFG00000006257 Archarya et al 2003 

F8 chrX:122,897,137 - 123,043,373 ENSCAFG00000019631 Archarya et al 2003 

F9 chrX:109,501,341 - 109,533,798 ENSCAFG00000018998 Archarya et al 2003 

F10 chr22:60,585,600 - 60,596,983 ENSCAFG00000006258 Archarya et al 2003 

F11 chr11:44,466,300 - 44,487,120 ENSCAFG00000007348 Archarya et al 2003 

F13A1 chr35:6,185,898 - 6,347,853 ENSCAFG00000009509 Archarya et al 2003 

F13B chr7:5,674,454 - 5,702,366 ENSCAFG00000011416 Archarya et al 2003 

FGA chr15:52,238,946 - 52,246,920 ENSCAFG00000023178 Acharya and Dimichele, 2008 

FGB chr15:52,220,662 - 52,229,692 ENSCAFG00000008424 Acharya and Dimichele, 2008 

FGG chr15:52,261,220 - 52,270,169 ENSCAFG00000008440 Acharya and Dimichele, 2008 

GPIIIa chr9:9,182,562 - 9,231,046 ENSCAFG00000013735 Nurden, 2006 

ITGA2B chr9:19,050,132 - 19,063,992 ENSCAFG00000014145 Nurden, 2006 

vWF chr27:38,834,909 - 38,972,738 ENSCAFG00000015228 Archarya et al 2003 

 



 

 
213 

Table S2. SNPs detected in the F8 gene in whole genome sequencing data of one Australian Kelpie with 

haemophilia A (USCF305) and in 11 unrelated controls of the same breed. SNPs were genotyped as homozygous 

alternative in affected dog USCF305 and one or more of the 11 control dogs in whole genome sequencing data. Positions 

are relative to the CanFam 3.1 reference genome. Two missense and three synonymous SNPs were identified and have 

been previously reported in dbSNP.  

Chromosome 
CanFam 3.1 

Position Exon 
Reference 

Allele 
Alternative 

Allele Consequence 
Amino  
acid 

Reference 
SNP cluster 

ID 

X 122,938,611 15 G A synonymous N rs852651766 

X 122,956,540 14 G A missense P/L rs852844707 

X 122,957,205 14 C T synonymous E rs851733901 

X 123,043,038 1 G A synonymous D rs852021679 
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Table S3. Improperly paired reads of USCF305 aligning to CanFam 3.1 in intron 22 in FVIII  

Read ID 

Forward read 
mapping 
position 

Reverse read 
mapping 
position Forward read sequence Reverse read sequence 

HWI-ST1213:110: 
C0MHBACXX:7:2215: 
19129:75378 

122,916,994 123,304,842 TNAGCAACGGGGAAG 
CAGTCAGTAGGTAAGA 
AAATACAAAAGAGGCC 
CATCTGACACAGACTC 
CGCCACCAGTCCTGCG 
CACTCACGTGGCTGCC 
TGGAAG  

ATGTAGGCCTGGGCAG 
CTTTCTTACTGTCTTAT 
GACAAGAATGCTTAGG 
AGTTACGGAATGTGACT 
GGTGATAGTATTTGGGT 
TTGGGTTTAAGAAAAAG 
C  

HWI-ST1213:110: 
C0MHBACXX:7:1210: 
13147:51601 

122,917,100 122,917,100 TTCGGAGCCCTAAAAG 
CCTAGTCTAACTTATTG 
CAACAGTGTTAGGGTGT 
ATCCTCCTTTGTAACTTA 
GCTTTTTCTGGTACAAT 
CTTCTCAACCGGAAAT 

GATTCTGTTCATTTATAT 
CTCTAGAGAAATCCAAT 
GCTGCTCATATACCTAA 
CACCAGGGTTTTTGGTA 
ACCTCTCTATATCATCA 
ATGCAAGGAGTTAGA 
  

HWI-ST1213:110: 
C0MHBACXX:7:1210: 
2901:13903 

122,917,016 123,304,874 TAGGTAAGAAAATACA 
AAAGAGGCCCATCTGA 
CACAGACTCCGCCACC 
AGTCCTGCGCACTCA 
CGTGGCTGCCTGGAA 
GGGTCTTTCGGAGCC 
CTAAAAGC 

TTACTGTCTTATGACAA 
GAATGCTTAGGAGTTAC 
GGAATGTGACTGGTGA 
TAGTATTTGGGTTTGG 
GTTTAAGAAAAAGCCTC 
CTTAGGCCTCTGGTCT 
NA  

HWI-ST1213:110: 
C0MHBACXX:7:2215: 
19102:8424 

122,917,020 123,304,874 TAAGAAAATACAAAA 
GAGGCCCATCTGACA 
CAGACTCCGCCACC 
AGTCCTGCGCACTCAC 
GTGGCTGCCTGGAAGG 
GTCTTTCGGAGCCCTA 
AAAGCCTAG  

ACTGTCTTATGACAAG 
AATGCTTAGGAGTTACG 
GAATGTGACTGGTGATA 
GTATTTGGGTTTGGGTT 
TAAGAAAAAGCCTCCTT 
AGGCCTCTGGTCTAANT 

HWI-ST1213:110: 
C0MHBACXX:7:1311: 
3150:27769 

122,917,037 123,304,863 GGCCCATCTGACACA 
GACTCCGCCACCAGT 
CCTGCGCACTCACGT 

TCTTACTGTCTTATGAC 
AAGAATGCTTAGGAGT 
TACGGAATGTGACTGG 
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GGCTGCCTGGAAGGGT 
CTTTCGGAGCCCTAAA 
AGCCTAGTCTAACTTAT 
TGCAACA 

TGATAGTATTTGGGTTT 
GGGTTTAAGAAAAAGC 
CTCCTTAGGCCTCTGG 
TCT  

HWI-ST1213:110: 
C0MHBACXX:7:2109: 
10573:9641 

122,917,058 123,304,942 GCCACCAGTCCTGCG 
CACTCACGTGGCTGC 
CTGGAAGGGTCTTTCG 
GAGCCCTAAAAGCCT 
AGTCTAACTTATTGCA 
ACAGTGTTAGGGTGTA 
TCCTCCTT 

AAGAAAAAGCCTCCTT 
AGGCCTCTGGTCTAAC 
TCCTTGCATTGATGATA 
TAGAGAGGTTACCAAA 
AACCCTGGTGTTAGGT 
ATATGAGCAGCATTGG 
ATTT  

HWI-ST1213:110: 
C0MHBACXX:7:1208: 
6051:65684 

122,917,105 122,917,105 TCATTTATATCTCTAGA 
GAAATCCAATGCTGCT 
CATATACCTAACACCA 
GGGTTTTTGGTAACCT 
CTCTATATCATCAATG 
CAAGGAGTTAGACCA 
GAGGC 

AGCCCTAAAAGCCTA 
GTCTAACTTATTGCAA 
CAGTGTTAGGGTGTAT 
CCTCCTTTGTAACTTA 
GCTTTTTCTGGTACAA 
TCTTCTCAACCGGAAA 
TGTAGG 

 




