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Abstract

Atherosclerosis is characterised by the deposition of lipids in the arterial wall, which

triggers an inflammatory response. Leukocytes migrate into the area of injury and release

heme-peroxidase myeloperoxidase (MPO) into the extracellular matrix (ECM) milieu,

which converts hydrogen peroxide (H2O2) in the presence of halides or pseudohalides,

chloride (Cl-) and thiocyanate (SCN-), to generate oxidants hypochlorous acid (HOCl)

and hypothiocyanous acid (HOSCN), respectively. There is considerable evidence that

these oxidants, particularly HOCl, modify and damage surrounding cells and ECM

proteins at the site of inflammation, and therefore have been suggested to play a role in

the pathophysiology of cardiovascular disease (CVD). HOCl is a highly reactive oxidant

and has been observed to modify and oxidise lipids, proteins, DNA, and RNA, which

subsequently leads to cellular dysfunction. In contrast, HOSCN is much less reactive

compared to HOCl and has a high specificity for cysteine (Cys) residues. Oxidation

by HOSCN is generally reversible by endogenous antioxidant mechanisms but can be

irreversibly damaging at high concentrations. The ECM harbours several important

proteins including fibronectin (FN), which plays a role in matrix assembly, remodelling,

and assists in cell functions. FN possesses functionally important epitopes including:

cell binding fragment (CBF), heparin binding fragment (HBF), and extra domain A

(EDA). The proximity between FN and MPO-derived oxidants makes it a likely target

for oxidation and modifications. Therefore, this project aims to elucidate the effects of

HOCl, and HOSCN on ECM protein, FN, and whether SCN- concentrations can modulate

the extent of modifications causes by HOCl.

In the first study, commercially-derived human plasma FN was exposed to increasing

concentrations of reagent HOCl for 2 hr at 37°C. Human plasma FN exposed to
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HOCl resulted in fragmentation and aggregation (or formation of altered species) of

FN, particularly at greater than 50x molar ratios as seen with sodium dodecyl sulfate

polyacrylamide gel electrophoresis (SDS-PAGE), silver staining and Western blotting.

HOCl targets methionine (Met) and tryptophan (Trp) residues in a dose dependent

manner, but not tyrosine (Tyr) residues. Methionine sulfoxide (MetSO), a by-product

of Met oxidation, was observed to be present in native FN and treatment with HOCl.

MetSO was likely to be further oxidised with treatment of higher concentrations of HOCl.

The FN CBF and HBF epitopes were targeted and modified by HOCl as seen with loss

of antibody recognition using enzyme-linked immunosorbent assay (ELISA) and Western

blotting. Human coronary artery endothelial cells (HCAEC) exposed to HOCl-modified

FN were observed to lose adhesion with impaired cell spreading, and a reduction in cell

metabolic activity. Furthermore, HCAEC exposed to HOCl-modified FN were observed

to up- and down-regulate genes associated with ECM and adhesion molecules. HOCl was

also observed to target and modify cellular-derived FN in HCAEC-derived whole ECM

extract causing loss of antibody recognition for the CBF, HBF and cellular-derived FN

EDA epitopes. These data support the hypothesis that HOCl targets and modifies FN,

which subsequently leads to biological dysfunction of HCAEC exposed to HOCl-modified

FN.

In the second study, commercially-derived human plasma FN was exposed to increasing

concentrations of reagent HOSCN derived from lactoperoxidase (LPO)/SCN-/H2O2 and

incubated for 2 hr at 37°C. Modifications by HOSCN to human plasma FN were observed

to be less extensive than what was observed with HOCl. HOSCN was observed to

structurally modify human plasma FN starting at 10x molar ratio with minor formations

of fragments and aggregates (or altered species). HOSCN was observed to target and

oxidize Cys (thiol) residues as examined using a ThioGlo assay, which is in-line with the

knowledge that HOSCN has a specificity for Cys residues. The functional CBF epitope

on FN was observed to be modified by HOSCN but to a lesser extent compared to

HOCl. Subsequent biological functional assays for cell adhesion and metabolic activity
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for HCAEC exposed to HOSCN-modified FN showed no changes. However, these HCAEC

were observed to up- and down-regulate certain ECM and adhesion molecules, although

fewer changes were examined when compared to HCAEC exposed to HOCl-modified FN.

Exposure of HCAEC-derived whole ECM extract to HOSCN resulted in no significant

changes to the functional CBF, HBF, and EDA epitopes, and no major structural changes

were observed in Western blots. These data support the hypothesis that HOSCN does

modify FN but to a lesser extent compared to HOCl, suggesting that the presence of

HOSCN over that of HOCl may lead to less FN damage.

In the third study, human plasma FN was exposed to an enzymatic MPO/Cl-/H2O2

or MPO/SCN-/H2O2 system, which would better simulate the reaction that occurs in

vivo. Exposure of human plasma FN to the enzymatic MPO/Cl-/H2O2 system resulted

in extensive modifications to the structure of FN as observed with silver staining and

Western blotting. The functional CBF and HBF epitopes on FN were both observed

to be targeted and modified by the enzymatic MPO/Cl-/H2O2 system. Furthermore, a

HOCl-generated epitope was observed with increasing concentration of H2O2. A decrease

in HCAEC adhesion and proliferation were observed when HCAEC were exposed to FN

modified by the enzymatic MPO/Cl-/H2O2 system. In contrast, exposure of human

plasma FN to the enzymatic MPO/SCN-/H2O2 system resulted in minor modifications

to the protein structure and functional CBF, and HBF epitopes. HCAEC adhesion

and proliferation were not significantly affected when incubated on treated FN. These

data support that oxidants derived from the enzymatic MPO/Cl-/H2O2 modifies the

structure of human plasma FN resulting in loss biological function. The extent of

modification by MPO/SCN-/H2O2 system on human plasma FN was minor compared

to the MPO/Cl-/H2O2 system and resulted in no changes to cell adhesion or metabolic

activity.

The final study examined the competition between Cl- and SCN- as a substrates

for MPO and their modifications on human plasma FN. At physiologically relevant

concentrations of 100 mM of Cl- and absent or low concentrations of SCN-, FN is
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modified resulting in protein fragmentation and aggregation (or altered species), and loss

of antibody recognition of the functional CBF and HBF epitopes on FN. Furthermore,

a formation of HOCl-generated epitopes were also observed. Addition of increasing

concentrations of SCN- resulted in a shift of structural modifications that were specific to

MPO/Cl-/H2O2 to those observed with treatment using the enzymatic MPO/SCN-/H2O2

system. The addition of increasing concentration of SCN- also mitigated the loss of

antibody recognition, returning it back to levels similar to control. This supports the

hypothesis that addition of SCN- assists in mitigating damage derived from the enzymatic

MPO/Cl-/H2O2 system.
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Chapter 1

Introduction

1.1 General Overview

This chapter will provide background information on myeloperoxidase (MPO),

extracellular matrix (ECM), and their role in the immune response and in the basement

membrane. It will also include a literature review on the current knowledge of the

relationship between MPO and ECM proteins, and their role in the inflammatory disease

atherosclerosis.
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1.2 Chronic inflammatory disease and atherosclerosis

Atherosclerosis is a common chronic inflammatory disease that is characterized by

the accumulation of lipids in the arterial wall, in particular those derived from low

density lipoprotein (LDL) (Figure 1.1) [1]. LDL is necessary for lipid transport and

is derived endogenously in small quantities within the body, but high levels can occur

with poor dietary intake, leading to increased risk of cardiovascular disease [2]. Increased

circulating levels of LDL leads to increase occurrences of LDL deposits in the arterial walls

with evidence of extensive LDL modifications by enzymatic mechanisms (lipoxygenase,

myeloperoxidase, NADPH oxidases, and nitric oxide synthase), reactive nitrogen/oxygen

species, free radicals and two-electron oxidant [3–5]. Such modifications have been

suggested to contribute to LDL retention [3, 4, 6]. An inflammatory response occurs

against modified LDL, with un-regulated uptake by macrophages leading to formation

of foam cells [7–9]. Oxidised LDL is seen to express a number of pro-atherogenic and

atherosclerotic effects including changes to the arterial wall proteins [5].

MPO is a leukocyte-derived haem-peroxidase that produces reactive oxidants during

inflammation [11]. These oxidants are proposed to structurally modify the ECM of

the arterial wall basement membrane. Structurally modified ECM protein may lose its

function, which can alter metabolism and cause endothelial dysfunction. Further changes

can occur when MPO and its oxidants, interacts with smooth muscle cells (SMC) during

the development of atherosclerosis [12, 13]. Inflammatory cell and SMC infiltration [14],

accumulation of intracellular/extracellular lipids [1, 15], and endothelial dysfunctions [16]

are all hallmark characteristics of plaque formation in atherosclerosis.

Moreover, occlusion of the vessel in combination with arterial calcification results in

hardening and inflexibility in advanced lesions, which leads to an increased pressure

on arterial walls [17]. As with any wound healing or formation of lesions, the process of

fibrosis occurs, which is highly dependent on the basement membrane (and corresponding

ECM) to generate a fibrous cap for a more stable lesion. Mortalities and complications
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Figure 1.1: Schematic diagram demonstrating the progression of atherosclerosis. EL is extracellular
lipid, NC is necrotic core, FC is fibrous cap, and Th is luminal thrombi. Adapted from Virmani, 2000
[10]
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from chronic heart disease (CHD), as well as cerebrovascular disease (i.e. myocardial

infarction and stroke, respectively) have been associated with rupture of lesions and

subsequent stenosis of the blood vessels, rather than the presence of an atherosclerotic

lesion itself [18]. The likelihood of rupture is determined by the composition of the plaque;

thin fibrous caps with higher levels of inflammatory cells are more likely to rupture than

a plaque with a thick fibrous cap [1]. Thus, structural modifications and/or damage to

the basement membrane and the associated ECM can make the plaque prone to rupture.

Therefore, it is pertinent to understand how such modifications may come about and

there is substantial evidence that oxidants produced during inflammation (notably those

derived from MPO) contribute to this damage.
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1.3 Myeloperoxidase and its oxidative reactions

During the ”respiratory burst”, activated leukocytes convert diatomic oxygen to

superoxide radical (O2
•-) [19, 20]. O2

•- can subsequently undergo spontaneous or catalytic

(by superoxide dismutase enzyme) dismutation to generate the antimicrobial agent

hydrogen peroxide (H2O2) (Figure 1.2) [19, 20]. MPO is also released extracellularly into

the extracellular milieu (via degranulation of activated leukocytes) or are transcytosed

from plasma through the endothelium, and has been found to co-localise with fibronectin

(FN) in the ECM [21, 22].

MPO is a dimeric protein of approximately 146 kDa, made up of two monomers of 73 kDa

linked by a disulfide bond. Each identical monomer are functionally independent and are

composed of a heavy (58.5 kDa) and a light (14.5) chain [23]. The active site on MPO is

only easily accessible to H2O2 and small anions [24]. Reaction between H2O2 and ferric

MPO converts the enzyme to compound I by two electron oxidation (Figure 1.3) [25].

MPO compound I, in the presence of H2O2 and halides (chloride - Cl-, bromide - Br-,

iodide - I-) or pseudohalides (thiocyanate - SCN-) catalytically converts these substrates

to hypohalous acids, hypochlorous (HOCl), hypobromous (HOBr), hypoiodous (HOI),

and hypothiocyanous (HOSCN) acid, respectively via a two electron reduction [26]. This

process reverts MPO back to the ferric enzyme state [26]. MPO have reactivity rates

for substrates in the preference order of I- ∼ SCN- > Br- > Cl- (Table 1.1) [27]. Other

heme enzymes also exist such as eosinophil peroxidase (EPO) and lactoperoxidase (LPO).

EPO is an eosinophil-derived granule that play a role in allergies and parasitic infections

[28], and LPO is found to be present in higher concentrations in saliva, milk and tears

[29]. LPO preferentially generates HOSCN, while EPO has previously been found to

preferentially generate both HOBr and HOSCN over HOCl [26, 30].

Hypohalous acids generated via the MPO halogenation cycle are one of many reactions

that can cause oxidation. MPO is also capable of generating radicals via its peroxidase

cycle to produce other reactive species. MPO compound I, via a one electron oxidation,
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Table 1.1: Second-order rate constant of halide and pseudohalide substrates.

Substrate Second-order rate constant

SCN- 9.6 ± 0.5 x 106 M-1 s-1

I- 7.2 ± 0.7 x 106 M-1

Br- 1.1 ± 0.7 x 106 M-1

Cl- 2.5 ± 0.3 x 104 M-1 s-1

converts to compound II, oxidizing free radical O2
•- and nitric oxide (NO•). The MPO

peroxidase cycle generates nitrogen dioxide radical (NO2
•) tyrosyl radicals from the

oxidation of nitrite (NO2
-) and Tyr, respectively [26]. O2

•- is particularly known to

react with Tyr residues (free or present on peptides) to form crosslinks such as di-Tyr

[31].

Figure 1.2: Schematic diagram demonstrating the synthesis of MPO-derived oxidants generated via the
two electron oxidation halogenation cycle. Superoxide is generated from NADPH oxidase, which converts
to H2O2 spontaneously or enzymatically via superoxide dismutase. H2O2 reacts with degranulated MPO
in the presence of physiological concentrations of halides to produce HOCl, HOSCN, and HOBr.

Generation of bactericidal oxidants occur in inflammation invoked against foreign

pathogens [32]. In cases of chronic inflammation, generation of high concentrations of

these reactive oxidants can be damaging to host cells and molecules (lipids, proteins,
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peptides, DNA), such as may occur in atherosclerosis [33]. The presence of MPO has

been associated with endothelial cell (EC) dimorphism and dysfunction [34]. Moreover,

the localisation of MPO and the release of oxidants within the endothelium has been

associated with ECM protein fragmentation, cross-linking [35], and modifications to

amino acids [33, 36].

Figure 1.3: Schematic diagram demonstrating the MPO catalytic cycle. Image from Davies, 2011 [26]

High levels of plasma MPO have been clinically correlated with a prevalence of coronary

artery disease (CAD) [37], with an even greater prevalence in individuals presenting with

diabetes [11], and a history of smoking and hypertension [38]. Moreover, deficiency in

MPO plasma levels have been correlated with a reduced rate of cardiovascular disease [39].

Previous studies have correlated high systemic levels of MPO with plaque erosion, which

is another mechanism that can lead to thrombus occlusion as opposed to the commonly

known plaque rupture [40, 41]. Plaques that are susceptible to erosion are associated with
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absent or small lipid cores and elevated SMC, whereas plaque ruptures are associated

with a lipid rich core, higher levels of migrated inflammatory cells, with greater evidence

of matrix degradation and formation of thinner fibrous caps [40, 41]. Plaque erosion

have been shown to primarily occur in premenopausal women with coronary thrombosis

[42, 43]. MPO, being a cationic compound, has been shown to co-localize in the sub-

endothelial matrix with negatively charged proteins such as glucosaminoglycans (GAG)

and also FN [21, 22]. Thus, MPO-derived oxidant damage may be one mechanism that

modifies the vessel, and is a contributor to unstable plaque formations in atherosclerosis.
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1.3.1 Hypochlorous Acid

The physiological concentration of Cl- is known to be around 100 mM in humans [44].

Due to higher concentrations of Cl- compared to other halides, cytoxic HOCl is the

key component generated in host anti-microbial defense [32]. HOCl is known to be

highly reactive and acts on several oxidisable groups including: unsaturated fatty acids,

sulfur-ethyl group, sulfhydryl groups, haem groups and iron-sulfur centers [8, 45–48];

by-products generated during oxidation of these groups have been observed in chronic

inflammatory diseases. HOCl has been shown to oxidize proteins, peptides, lipid, DNA,

RNA, carbohydrate chains and antioxidants [49, 50].

HOCl reacts with amino acid side chains in proteins with a kinetic preference order

of: Cysteine (Cys) > Methionine (Met) > Cystine ∼ Histidine (His) ∼ α-amino ∼ >

Tryptophan (Trp) > Lysine (Lys) > Tyrosine (Tyr) ∼ Arginine (Arg) > Glutamine (Gln)

∼ Asparagine (Asn) [49, 51]. The action of HOCl on Cys residues results in the formation

of unstable sulfenyl chloride intermediate, which can react with water to yield cysteic

acid (RSO3H) [49]. Furthermore, sulfenyl chloride can also form dilsulfide crosslinks by

reacting with other Cys residue or with other thiol groups [49]. Reaction between HOCl

and Met has been found to commonly generate methionine sulfoxide (MetSO), a common

oxidation species of Met and has been linked to oxidative stress [51, 52]. Depending on

the availability of other amino acids, it’s likely that HOCl will react with Tyr and Trp

residues [26]. This reaction has previously been shown to produce strong di-Tyr and

di-Trp crosslinks, which are known to form non-reducible aggregates [53, 54].

HOCl can react with nitrogen containing compounds, such as free α-amino groups or

lysine residues found on proteins to form chloramines. In the presence of biological

reductants (e.g. Met, ascorbates, and thiols), chloramines can revert back to their parent

amines but have also been shown to readily degrade in vivo to form aldehydes (Figure 1.4)

[55–57]. Decomposition by decarboxylation of chloramines tend to form unstable imines,

which can further lose their ammonia group via hydrolysis [49]. The ammonium ion can
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cycle back to react with HOCl to form monochloramines and further react with other

groups. Furthermore, chloramines can transfer chlorine to Tyr (also His and Lys) residues

[58], leading to formation of 3-chloroTyr and subsequently to 3,5-chloroTyr, which are

notably long-lived biomarkers of HOCl modifications [48, 59].

Figure 1.4: Mechanism of rearrangement in nitrogen-centred radicals. Image from Hawkins, 2003 [49]

These mechanisms of HOCl oxidation are commonly investigated to elucidate the reaction

of HOCl with ECM-derived proteins. Chlorinated Tyr residues, 3-chloroTyr and 3,5-

chloroTyr, have been used as biomarkers to indicate MPO activity (Figure 1.5) [48,

60–62]. Chlorinated Tyr are a minor product but are more stable (particularly in acidic

conditions) compared to chloramines, and thus can serve as a biomarker for HOCl-

mediated modifications [48, 56, 57]. These products can therefore be detected with

sensitive and quantitative analytical methods (although they are invasive and destructive

to cells and tissues) [57]. However, chlorination can occur in the stomach likely by Cl2,

which is in equilibrium with HOCl, thus chlorinated Tyr can form non-enzymatically

in these highly acidic conditions (Figure 1.5) [56]. Other analytical detection methods
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that have been used are immunohistochemistry (IHC) or Western blotting utilising an

antibody that was originally raised against HOCl-oxidized LDL, known as clone 2D10G9

[63]. This antibody is found to bind to an un-identified HOCl-generated epitope, and

has been detected in intermediate and advanced lesions. Localization of 2D10G9 was

associated with long thin cells, suggestive of SMC or fibroblasts supported by positive

staining of phosphotungstic acid haemotoxylin (PTAH), an SMC marker [8, 63].

In previous studies, it was also found that HOCl targets and modifies ECM proteins

as investigated in human atherosclerotic lesions and pig aortae [64]. ECM derived

from healthy pig aortae exposed to HOCl resulted in increased levels of oxidized amino

acids detected, such as increased formations of di-Tyr, o-Tyr, 3-chloroTyr, and L-3,4-

dihydroxyphenylalanine (DOPA) [64]. The exposure of SMC-derived ECM to HOCl

resulted in the rapid consumption of the oxidant and immediate formation of chloramines

and chloramides, which were found to degrade over time [65]. Furthermore, HOCl was

found to mediate fragmentation of SMC-derived ECM as seen with increasing detection

of radio-labeled amino acids released [65].

Figure 1.5: Chlorination of Tyr residues by HOCl to form 3-chloroTyr and 3,5-chloroTyr. Adapted
from Winterbourne and Kettle, 2003 [56].

GAGs, such as heparin/heparan sulfate (HS) and chondroitin sulfate (CS), are

polysaccharides that are covalently attached to a core protein to form proteoglycans.
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These GAGs have been previously shown to be modified and damaged by HOCl [66]. HS

such as found on proteoglycan perlecan, are an important protein ligand (as discussed

later in this chapter), and due to being highly anionic has been found to bind to MPO

[67]. HOCl was found to not directly modify HS chains despite its highly reactive (N-

unsubstituted) glucosamine (GlcNH2) residues. However, it was proposed to mediate

MPO-derived HOCl damage on the protein core of perlecan leading to loss of EC adhesion

[67]. This damage was found to be attenuated with the addition of heparin, which

blocked the binding of MPO [67]. GlcNH2 residues, GlcNAc (N-acetylglucosamine), and

GlcNSO3 (glucosamine-N-sulphate) have previously been found to form chloramines/di-

chloramines, and N-chlorosulfonamides and chloramides, thus it was interesting to see

that this was not the case with whole perlecan protein [68, 69]. Hyaluronic acid and CS

exposed to HOCl were also found to form chloramides [70]. These chloramides were found

to react with O2 and mediated fragmentation of the GAGs [71]. Moreover, exposure of

SMC-derived whole ECM to HOCl was found to release uronic acid, which is a sugar

acid found on GAGs [65]. This suggests that HOCl may react directly with GAGs but in

whole protein, it has been found to direct the damage to certain locations on the proteins

due to binding and proximity of MPO.

Deposition of fatty acids and cholesterol in the vascular wall is met with oxidation by

HOCl leading to formation of chlorohydrins, which has been detected in atherosclerotic

plaques [72, 73]. HOCl has a higher reactivity with proteins compared to fatty

acids/cholesterols, and therefore resulted in lower levels of chlorohydrins detected [73].

The formation of these species, particularly oxidized LDL, which exhibits proatherogenic

properties, can cause downstream effects inducing cellular changes [72], ATP depletion,

human myeloid cell toxicity [74], and promotes the development of atherosclerosis [75,

76]. Furthermore, oxidized LDL itself is deleterious within plaques, however it can be

taken up by cells, such as migrated leukocytes or EC, leading to damage to perinuclear

proteins [76, 77].

HOCl has been found to also oxidize DNA and RNA, in particular guanine, which has the
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lowest standard reduction potential compared to the other bases [78]. Oxidation of DNA

leads to formation of several products, such as 8-hydroxyguanine and 8-hydroxyadenine,

which have been detected in lesions [79]. Moreover, it can also lead to formations of semi-

stable chloramines (and subsequent radicals), which have been found to further react with

DNA to form crosslinks [49, 80]. Chloramine formation on DNA have been previously

shown to occur more rapidly with uridine and thymidine bases (3.0 x 104 M-1 s-1) [80].

The mechanism of oxidation are shared between DNA and RNA, whereby exposure of

RNA to oxidants commonly formed 8-hydroxyguanosine by-products [81]. The formation

of 8-hydroxyguanosine can lead to mutations on the transcription level if they pair with

adenine over cytosine in RNA [82]. Exposure of DNA and RNA may lead to defective

protein synthesis due to modifications on base pairs that may cause improper pairing and

this can be particularly deleterious in EC and SMC in the progression of atherosclerosis

[83–85].

Antioxidants generally scavenge or degrade oxidants and prevent further oxidation.

Antioxidants, such as glutathione (GSH), are highly reactive with oxidants, and thus

react rapidly to scavenge oxidants leading to formation of stable derivatives [86]. In

certain situations, antioxidants can be oxidized by HOCl to form chloramines, albeit

at a lower kinetic rate compared to Met and GSH residues [87]. GSH is a common

agent for preventing intracellular oxidative damage, and exposure of resting neutrophils

to HOCl was found to lead to loss a of both protein thiols and GSH levels [88]. Moreover,

exposure of human umbilical vein ECs (HUVECs) to low concentrations of HOCl was

found to have similar results with loss of protein thiols and GSH levels [89]. Flavonoids

are plant-derived polyphenol antioxidants [90], and the flavonol subclass has been found

to react with HOCl [91]. Exposure of flavonols to low or moderate concentrations of

HOCl was found to slightly increase the antioxidant activity; however exposure to high

concentrations of HOCl resulted in the loss of antioxidant activity by the flavonols [91].

As can be seen from these previous studies, HOCl is promiscuous and has been found

to react widely with many components of the sub-endothelium and plasma. This leads

13



to modifications and damage, which can subsequently lead to cellular dysfunction. The

vascular environment is highly dependent on the healthy functioning of cells and proteins

and thus investigations into the effect of HOCl on ECM proteins would be highly valuable.

Current experiments were designed to expand and better shape our understanding of these

changes by characterising the mechanism of action of HOCl upon specific and key ECM

proteins.
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1.3.2 Hypothiocyanous Acid

HOSCN is produced by enzymatic reactions between MPO and SCN- [26], but can

spontaneously occur as a reaction between HOCl and SCN- [92, 93]. SCN- is present

in varying physiological concentrations within the body with high levels detected within

the oral cavity, which is converted to HOSCN by antimicrobial LPO despite substantial

excess of chloride [94]. The physiological plasma concentration of SCN- ranges between

20-40 µM (0.01-3 mM in other areas of the body [95], with elevated plasma concentrations

detected in smokers, which can range between 80-400 µM [96–99].

HOSCN has been found to be an effective antimicrobial agent against invading pathogens

due to its specificity for sulfhydryl/acidic thiol groups, such as Cys residues [100, 101].

However, in situations where thiol groups are depleted or inaccessible, HOSCN has been

found to react with Trp and Lys residues [26, 102]. The reaction between HOSCN

and thiol groups have been observed to form unstable thiosulfenyl thiocyanate (RS-

SCN), a transitory derivative that can further react with water to generate sulfenic

acid intermediates (RS-OH) [94, 103]. These intermediates have been implicated in

protein aggregation forming dilsulfide crosslinks and fragmentation [94, 104–107]. As a

consequence of the unstable nature of these products, there is a lack of useful biomarkers

that can be used to detect HOSCN-derived modifications, limiting investigations with

regards to clinical samples. However, fluorometric ThioGlo assay can be used as an

alternative in vivo method to investigate the loss of thiol groups [57, 108]. This method

utilizes a fluorometric compound that binds to free thiol groups that have not been

modified/oxidized [57].

The biochemistry of SCN-/HOSCN is complex, with conflicting studies suggesting that

SCN- can be damaging and others suggesting that it can act as an antioxidant in some

inflammatory diseases, such as cystic fibrosis or CVD [93, 99, 109]. MPO has a higher

specificity for SCN- than Cl- by almost 730 fold (Table 1.1) [98, 110]. Thus, it has been

proposed that at elevated levels of SCN-, up to 50% of H2O2 is converted to HOSCN
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with the remaining reacting with other halides such as Cl- [98, 110]. Young individuals

with highly elevated levels of plasma SCN- presented with greater deposition of LDL and

increased presence of fatty streaks in the aortae [111]. Furthermore, high plasma levels

of SCN- were associated with increased carbamylation leading to increased formations of

homocitrulline, which has been found to have damaging effects in atherosclerosis [112,

113]. However, with regards to CVD, increased plasma SCN- levels resulted in smaller

plaque formations compared to control in mice [114]. Moreover, moderate elevations of

SCN- in combination with low levels of MPO correlated with decreased mortality rate

[99].

The effects of HOSCN on ECM proteins are expected to be different to those examined

with HOCl due to the oxidants specificity for thiol groups. The mechanism has not been

characterized and thus further investigations can assist in elucidating the potential effects

of HOSCN on ECM-derived proteins. Furthermore, there is potential in SCN- acting as

an antioxidant and may be able to grant protection from the damaging effects of HOCl.
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1.3.3 Other potential oxidants

HOCl and HOSCN are primarily MPO-derived oxidants produced during inflammation.

However, other oxidative species exists that elicit their own specific modifications such as

seen with hydroxyl radicals (HO•), HOBr or HOI, radicals generated in the peroxidase

cycle (NO2
• and TyrO•), and peroxynitrite (ONOO-/ONOOH) [26, 115, 116].

H2O2 is produced by the conversion of O2
- by superoxide dismutaste [117, 118]. It has

previously been implicated as an oxidant and is suggested to interact with proteins as

well, and is readily broken down by catalase to oxygen and water [26, 119]. Activity of

H2O2 is linked with conversion to HO•, which is known to be highly reactive and is able

to damage proteins, amino acids, and lipids [115, 116, 120]. Generation of HO• occurs

either by a catalytic breakdown of H2O2, through photolysis or by a Fenton method

which uses a Fe(2+)-EDTA catalysis to simulate reduction by trace iron or copper irons

[26, 115, 116, 119, 121, 122]. However, there are low levels of trace ions. Thus, it is

likely that modifications are hypohalous acid-derived due to a high reaction rate between

MPO, halides, and H2O2 [26, 123]. It has been found that at least 40-70% of H2O2,

in the presence of Cl-, is converted to HOCl [26, 98, 124]. Furthermore, reactions with

H2O2 and O2
•- are very slow [116], thus the major contribution of oxidation is likely from

hypohalous acids.

Plasma levels of Br- and I- have been found to be around 20-100 µM [44] and < 1 µM

[27], respectively. Due to the similarities between Cl- and Br-, the effects of HOBr has

been found to be on par with HOCl [26]. Both of these halides are known to have

higher second-order rate constants with MPO and thus have the potential to generate

HOBr/HOI over HOCl [27]. HOBr is known to be highly reactive with several oxidisable

group analogous to those examined with HOCl but also have been found to react with

functional thiol and amine groups [125, 126]. Treatment of GAGs with HOBr was found

to yield N -Bromo derivatives [127], similar to those found with HOCl treatment [68, 71].

With regards to HOI, there are limited studies investigating the generation and effects
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of HOI with early studies observing iodination on extracellular proteins [117]. A more

recent study has investigated the effects of I- as a species to mitigate damage from HOCl

[128].

The formation of ONOO-/ONOOH is due to a rapid reaction between NO• (derived from

nitric oxide synthase enzymes; e.g. iNOS/eNOS) and O2
•- [129]. The oxidants ONOOH

and TyrO•/NO2
• have both been found to mediate Tyr nitration resulting in formation of

nitrated Tyr, 3-nitroTyr or 6-nitroTyr [129, 130]. These nitrated Tyr residues have been

used as biomarkers to indicate nitration induced damage [129]. In recent studies, these

reactive species have been shown to modify key amino acids on ECM proteins leading to

cellular dysfunction [130–132].

The generation and modifications by different types of oxidants are broad and certain

mechanisms are favoured over others depending on the location and the type of

inflammation.
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1.3.4 Antioxidants

Oxidative damage can be minimized by various physiological antioxidants, which

scavenges oxidants by rapidly reacting with them and preventing damage to host cells

[86, 133]. There are many groups of antioxidants, both endogenous and taken up through

dietary supplementations [86, 133]. These include: enzyme inhibitors, limiting oxidant

production, MPO binding agents, and supplements of vitamins or other compounds.

There are various ways of removing oxidants, particularly H2O2, O2
-, and

ONOO-/ONOOH; this is possible due to the endogenous antioxidants available within

the body. O2
- can be consumed by superoxide dismutase and converted to H2O2, as seen

previously in section 1.3 [19, 20]. H2O2 can be scavenge and decomposed by catalase,

breaking down the oxidant into water and oxygen [134]. This can subsequently decrease

the conversion of H2O2 in the presence of physiological halides, to the more damaging

hypohalous acids [134].

There are currently no known antioxidant agent that can directly remove HOCl. This

poses a problem as HOCl is commonly generated in inflammation and is known to be

rather damaging to host cells and proteins [49, 50]. Oxidation by HOSCN has been found

to be reversible but can subsequently form non-reversible products [94, 103]. Other

than removing the upstream oxidants (H2O2 and O2
•-), there has been some recent

studies examining reduction of HOSCN by thioredoxin reductase [135]. Thioredoxin is a

redox protein and in conjunction with thioredoxin reductase may be capable of reducing

HOSCN and mitigating subsequent damage [135, 136]. It was proposed that HOSCN

acts on the sulfur-thiol group on thioredoxin reductase, thus reducing the oxidant.

Furthermore, HOSCN has been observed to be reducible by mammalian thioredoxin

reductase but not bacterial thioredoxin reductase; this makes HOSCN less damaging

in humans particularly in areas with high concentrations of SCN- such as in the lungs

[135]. There is risk of inactivation of redox enzymes by these oxidants but it was been

observed that addition of seleno-compounds (e.g. selenocysteine) resulted in preventing
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the inactivation of thioredoxin reductase [137]. These selenocysteine residues are highly

advantageous as they are resistant to over-oxidation, whereas their sulphur counterparts

are more prone to overoxidation leading to formation of irreversible modifications [137,

138]. This suggests that during inflammation, antioxidants may help to mitigate the

oxidative damage induced by HOCl, HOSCN, and other oxidants.
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1.4 Extracellular Matrix Overview

The ECM is a complex network of multifunctional proteins with each playing an

important role in providing a versatile scaffold, and regulating functions between cell-

cells and cells-protein (Figure 1.6) [139, 140]. These vital processes are regulated by

interactions of the matrix proteins with cytokines and growth factors, as well as the

binding to cell surface integrins and mediating downstream intracellular signalling [141,

142]. The ECM provides a biological scaffold and homeostatic maintenance in a variety

of organs within the human body [139, 143]. Furthermore, ECM proteins in both their

native and non-native state are vital in instigating inflammation, and subsequent wound

healing [144–146].

During the progression of atherosclerosis, extensive vascular remodelling, regeneration,

and repair occur in the arterial wall [147, 148]. The ECM can be triggered by nearby cells

to initiate extensive turnover, especially when ECM proteins are detected to be damaged

by cells [18, 149]. Cells, such as EC and SMC, can up-regulate matrix degrading enzymes

such as matrix metalloproteinases (MMPs) and in conjunction with tissue inhibitor of

metalloproteinases (TIMPs), works to regulate the degradation of ECM [150]. Moreover,

cells can up-regulate gene expressions to activate production of new ECM proteins into

the milieu [151]. Modifications to ECM proteins can lead to improper binding to other

proteins and/or cells, and can trigger an inflammatory response [131, 152]; these responses

have been associated with a variety of inflammatory diseases including those observed

in the lungs [153], bones [154], different types of cancers [150], and the cardiovascular

system, such as in atherosclerosis [148].

Vascular ECM found in in arterial basement membrane includes: proteoglycans (proteins

decorated with GAGs), structural proteins and specialised proteins. The composition is

highly dependent on the location within the body, as each protein possess differentiated

and specialised structures and properties.
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Figure 1.6: Schematic diagram demonstrating the structure of an artery wall. This includes the EC
layer with the sub-endothelial basement membrane located underneath the EC layer. SMCs are located
in the arterial media layer with corresponding basement membrane located beneath the SMC layer. The
necrotic core in the arterial wall is characterized by fatty deposits and infiltration of inflammatory cells
and develops in the sub-endothelium space. Adapted from Yurdagul et al, 2016 [155].
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1.4.1 Proteoglycans and Glucosaminoglycans

Proteoglycans are proteins decorated with GAGs, which are long un-branched

polysaccharides containing disaccharide repeating regions composed of amino sugar, d-

galactosamine or d-glycosamine, and uronic acid, d-glucoronic acid or l-iduronic acid

[156, 157]. These GAGs have net negative charges due to the variable sulfated side chains

[21]. In addition, the rigidity of proteoglycans provides structural integrity and provides

passageways between cells allowing cell migration [158, 159]. GAGs include heparan,

chondroitin, dermatan, and keratan sulfates, as well as hyaluronic acid. Proteoglycans

are not confined to being decorated with one type of GAG, instead heterogeneity of sugars

can exist in the make-up of these proteoglycans. Proteoglycans can be post translationally

decorated with HS and CS GAGs within cells at the rough endoplasmic reticulum via

O-linked glycosylations by glycosyltransferases [156]. The sulfation of HS has been found

to have sites with variable high and low sulfated regions with transitional regions in

between [160]. Hyaluronic acid (or hyaluronan) is unique as it is the only GAG that is

not sulfated and is not covalently attached to proteins forming a proteoglycan and are

the largest polysaccharides produced by vertebrate cells [161].

Proteoglycans can be grouped according to their GAG characteristics, which also defines

their function in the ECM (Table 1.2).
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Table 1.2: Types of GAGs present on different proteoglycans and their role in the body.

Type of GAGs Proteoglycan Role References

Heparan Sulfate Perlecan - Pro-angiogenic [162, 163]
- Matrix maintenance
- Turnover and repair
- Cell signaling

Syndecan - Growth factor binding [164, 165]
- Matrix adhesion
- Cell-cell adhesion

Type XVIII Collagen - Regulator of angiogenesis [166]
- Vascular function

Chondroitin Sulfate Versican - Wound healing [154, 158]
- Angiogenesis
- Vascular disease
- Tumour growth

Aggrecan - Osmotic pressure in cartilage [157, 167]
- Provides compression resistance

Dermatan Sulfate - Interacts extensively with CS [168–170]
- Role in neuronal development
- Role in cancer progression

Keratan Sulfate - Hydration of cornea and cartilage [171]
- Structural stability in bone

Hyaluronan - Viscosity in cartilage [161, 172]
- Lubricates interstitial space
- Regulates inflammation
- Remodelling of ECM
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1.4.2 Collagen, Elastin, and Laminin

Structural proteins, such as collagen and elastin, are important in providing the integrity

and strength to the overall extracellular environment to provide tensile support and to

its neighbouring cells [139]. This is particularly important in the basement membrane of

the arterial wall as these matrix proteins play a role in maintaining homeostasis and in

the progression of atherosclerosis [139, 140, 148].

1.4.2.1 Collagen

Collagen is the most abundant protein in mammals with several extensive studies on its

properties, functions and location. It has a large helical structure composed of three left

hand helices super coiled into a right hand helix, called collagen microfibrils. In terms of

its composition, there are high levels of glycine, proline and two uncommon amino acids,

hydroxyproline and hydroxylysine [173]. Furthermore, maturation of collagen fibrils has

been observed to be mediated by lysyl oxidase (LOX), which forms cross-links between

collagen fibrils [174]. This is vital in forming stable collagen fibrils in the basement

membrane [174]. ECs predominantly reside on type IV collagen rich basement membrane

in the intimal layer, while smooth muscle cells are surrounded by types I and II collagen

in the medial layer [175, 176]. Collagen fibres have been heavily studied with focus

on natural remodelling. Further research examines diseases such as atherosclerosis, and

collagen’s vulnerability to proteolytic degradation by endogenous enzymes (proteases such

as MMPs) [173].

1.4.2.2 Elastin

Elastin, another important matrix protein, similarly provides structural integrity, largely

in its role to regulate elasticity of the tissue through stress and strain [177]. It is
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composed of an assembly of soluble tropoelastin protein and when cross-linked together

by desmosine and isodesmosine, it makes a complex insoluble protein molecule [177, 178].

Elastin does not have a high turnover rate like some other matrix proteins [179]. Due

to this fact, the degradation of elastin has been suggested to be a contributory factor in

aging and many diseases such as atherosclerosis [180, 181].

In the vascular wall, elastin is localised within in the arterial intima, and is important in

regulating the mechanical stress and strain due to fluctuations in blood pressure [148]. It

is synthesized primarily by elastogenic cells, such as fibroblasts and SMC, and released

into the ECM milieu and it self-assembles into the functional monomeric fibrils [182, 183].

Cross-linking of elastin has been observed to be facilitated by LOX, similar to collagen

[184]. As atherosclerosis advances, a reduction or fragmentation of elastin was associated

with increased risk of plaque rupture [185].

1.4.2.3 Laminin

Laminin plays a key role in cell survivability and maintenance by providing a base for

cellular anchorage and mediating cellular proliferation, differentiation, migration and

adhesion [186]. It is a heterotrimeric protein composed of alpha (α-), beta (β-), and

gamma chains (γ-). Different combinations of αβγ chains give rise to the sixteen currently

identified laminin isoforms found in vivo [186]. A murine embryonic epithelium-derive

laminin-111 (α1, β1, γ1) is commonly used in studies and has been found to be present in

adult humans, specifically in cranial blood vessels [142]. The sub-endothelium and medial

layer of blood vessels in humans have been observed to have a prevalence of laminin α4

chain, such as found in laminin 8 (α4, β1, γ1) and laminin 9 (α4, β2, γ1) [187, 188]

In atherosclerotic lesions, it has been observed that there is an abundance of different

laminin chains detected in both mice and humans [189]. Early studies investigated

the attraction between laminin and neutrophils [190], and others emphasised on how

laminin/elastin receptors contributed to atherogenesis [191, 192]. Due to the abundance
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of laminin endothelial basement membranes, it has been suggested to be a likely target

for oxidation during atherosclerosis [131, 132]. However, there are limited studies

investigating this reaction between laminin and oxidants, with some recent studies

examining the effects of peroxynitrite on basement membrane and laminin [131, 132].

In a few recent studies, investigations observed that oxidised laminin was capable of

increasing the attachment of monocytes and ECs [193, 194]. These studies suggests the

importance of native and modified laminin in the arterial wall during atherosclerotic

lesion development.
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1.4.3 Fibronectin

1.4.3.1 Structure and function

FN is a dimeric glycoprotein of approximately 460 kDa in size, is composed of two nearly

identical monomer subunits ranging between 220-270 kDa and is bound by disulfide bonds

at the carboxy-termini [149, 195, 196]. There are two identified types of FN; soluble

plasma FN, produced mainly by hepatocytes and released into plasma, and cellular FN,

produced by various cells (such as EC, SMC, and fibroblasts) [149, 195, 196]. Plasma

and cellular FN share a number of functional regions, but there are regional differences

due to alternative splicing that give rise to their different activities [197].

FN contains three main modules: type I1-12, type II1-2 and type III1-17, and also a non-

homologous variable sequence [149, 196]. Specific functional domains are featured on

these larger subunits, and when FN is folded, these functional domains are exposed [198,

199]. Cellular FN possesses extra domain A (EDA) and extra domain B (EDB), which

are alternatively spliced type III modules that are absent on plasma FN [200]. The EDA

and EDB regions are proposed to be important cellular receptors that play a role in

matrix assembly, although there are limited studies and research into these domains are

ongoing [200].

There are several functional domains on FN including: two heparin binding sites, two

fibrin binding sites, collagen binding sites, as well as specific cellular integrin sites [149,

196]. The majority of the type I module is located at the amino-termini with a small

section located at the carboxy-termini; the two fibrin binding fragments, and the heparin

binding fragment (HBF) I are located in this module [196, 202]. The type II module is

the smallest of the three and possesses the collagen binding fragment [202]. The type III

module consists of the cell binding fragment (CBF) including the RGD motif (Arg-Gly-

Asp), where the α5β1 and αVβ3 integrin are also located [203]. A complex relationship

exists between type III9 and type III10, which provides a synergistic effect allowing ready
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Figure 1.7: Schematic diagram of a FN monomer chain. The diagram indicates Type I-III modules,
the location of important binding fragments and the alternatively spliced variant domains. Adapted
from Wang et al, 2008 [201].

access to integrins (e.g. α5β1) [204, 205]. The HBF II on the carboxy-termini has been

shown to bind to syndecan-2, and due to the high affinity of this fragment, it has been also

found to bind to GAGs on proteoglycan, such as HS and CS [206, 207]. This interaction

has been proposed to play a key role in matrix assembly and formation of insoluble fibrils

[208]. The alternatively spliced type IIICS (also called variable or V) has been found to

code for a further two integrin binding sites (α4β1 and α9β1) [200], and has been shown

to be involved in heparin binding [209].

The type II module possesses only sixty amino acids in length with several cysteine

residues involved in disulfide bonds [202]. This domain is found to play an extensive role

in collagen binding and assembly [202, 210]. The type I module at the amino-termini has

been observed to play a role in wound healing through fibrin and Factor XIIIa binding.

Moreover the absolute or partial deletion of the type I1-5 has been shown to impair FN

incorporation into the ECM [211, 212]

As can be derived, FN is a key matrix protein in mediating development and maintenance

in the vascular wall.
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1.4.3.2 Biological Properties

The complex structure of FN gives rise to its multifunctional properties and allows

important interactions with an array of ECM proteins, enzymes, and cells.

Studies have shown extensive interaction between FN and proteoglycans, such as

syndecan and versican [164, 213, 214]. Adhesion and spreading of particular cells on

syndecan is mediated by the HBF present on FN [206–208]. This process can be seen

with vinculin associated focal adhesions of fibroblast cells to FN, which was demonstrated

in the presence of heparan sulfated syndecan [164, 165]. This assistance of adhesion and

spreading was thought to be due to the active HBF on FN [164, 165]. It was suggested

that this particular pathway was due to the recruitment and activation of protein kinase

C, a protein that is heavily involved in cell signaling pathways [22]. An interaction with

FN, vascular endothelial growth factor (VEGF), and the G3 domain of versican promotes

angiogenesis, particularly in brain tumour growth [215, 216].

In addition, ECM assembly and cell adhesion are also regulated and dependent on the

important relationships that exists between FN and collagen [217, 218]. Collagen is

known to bind to the type II and adjacent type I module of FN, this interaction has

been examined extensively in literature. It is suggested that FN assists in mediating

binding of collagen to mannose receptors [210]. Mannose receptors are present primarily

on macrophages, which acts in both innate and adaptive immune systems, intracellular

signaling, and regulating responsive inflammatory molecules [219, 220]. This interaction

between FN and collagen also mediates cellular response, whereby studies have shown

this interaction can promote cellular migration, improve cell contractibility [221], increase

cell proliferation, and healthy cell morphology [222, 223]. The incorporation of collagen

into the matrix and proper collagen assembly is dependent on FN binding and assisting in

the process [221, 224, 225]. Furthermore, collagen I and FN complexes were also observed

to decreases MMP secretion when compared to FN in the absence of collagen, though

the mechanism is not completely elucidated [226].
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FN also interacts with EC, and SMC via the CBF, which is also known to bind

to particular groups of integrins [196, 227], mediating their function and morphology

[228–230]. FN in healthy vessels have been shown to assist in regulating vascularization

[231], via binding of the integrin to the CBF including the RGD site [232–234]. In vascular

tissue, FN anchors EC to the basement membrane providing structural integrity along

with also assisting with homeostatic cell functioning in adhesion, proliferation, migration

and capillary tube formation [231, 235, 236]; when FN is modified or damaged, such as

during inflammation, there is an impairment to FN’s ability to support cells [236]. This

was seen with the loss of healthy fibril assembly, by inhibition of FN polymerisation, which

resulted in inhibition of SMC growth and proliferation [147]. Furthermore, inhibition of

type III1, which is known to mediate FN-FN binding and matrix assembly, resulted in a

similar inhibition of vascular SMC growth and proliferation [237]. These studies support

the important of health FN in mediating cellular growth and proliferation.
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1.4.4 Modulation of ECM, particularly fibronectin, in atherosclerosis

The ECM plays an important role in various areas of the body by providing structural

support to overlying tissues and assisting in a multitude of cellular function. If ECM

proteins in the arteries are damaged through improper production or modified in diseases,

it can lead to detrimental effects causing morbidity or even mortality. Previously, it was

observed that perlecan-null mice were found to develop cardiovascular malformations and

ruptures of blood vessels [238]. This suggests that perlecan plays an important role in

cardiovascular development and likely maintains normal vascular architecture. Perlecan

expression was markedly increased in the fibrous caps and in the plaque core of advanced

lesion mice models when compared to healthy murine aorta [239]. Furthermore, exposure

of perlecan to HOCl and HOBr resulted in extensive modifications to the protein core,

which led to a reduction in cell adhesion [67]. Peroxynitrite was observed to alter both

the HS chain and protein core of perlecan, which resulted in concentration dependent

fragmentation and aggregation of proteoglycan [240].

Collagen has been known to play an important role in fibrous cap formation in

atherosclerosis [148]. Fragmentation of fibrillar types I and III collagen resulted in a

shift of SMC phenotype from contractile to synthetic [176]. Surrounding ECM was

found to be structurally affected in these atherosclerotic lesions and led to changes in

fibrous cap organisation, and subsequently plaque stability [176]. MMP-2 and MMP-9

have been detected in atherosclerotic lesions of mice [241], and these proteolytic enzymes

have been found to degrade collagen [242, 243]. While there is greater emphasis on the

action of MMP [241–244], collagen has been observed to undergo glycation [245, 246]

and glycoxidation [247], particularly in regards to complications arising from diabetes.

In contrast, there are limited studies examining the effects of MPO-derived oxidants

on collagen with one particular studying focusing on modifications to collagen II by

hypochlorite [248]. Exposure of collagen to hypochlorite was observed to oxidise and

fragment the protein but this was not examined extensively in detail [248].
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Laminin is a large basement membrane protein with several functional domains that

play a role in cell adhesion, migration, and regulates matrix mediated assembly and

signaling [186]. Laminin has been shown to be important in cell-matrix adhesion, via the

localisation of the α4 subunit with αvβ3 integrin-rich focal adhesion [249]. Furthermore,

interaction of laminin with collagen, nidogens and HSPGs were found to mediate laminin

deposition and matrix assembly [250, 251]. Nidogen is a sulphated glycoprotein and its

interaction with laminin is known to stabilise ECM [250, 251]. Nidogen-/- mice were

found to have a decreased expression of laminin-411 and abnormal and disorganised

basement membrane [252]. In more recent studies, diabetic monocyte-derived oxidant

was observed to carbonylate laminin-111, resulting in decreased monocyte attachment

and migration [193]. Furthermore, HUVEC exposed to laminin-111 oxidised by ferrous

ammonium sulphate resulted in up-regulated expression of ICAM-1 which subsequently

increased monocyte adhesion [194]. As can be derived, laminin is important to several

ECM functions, and modifications to this protein can further disrupt healthy vascular

function particularly in atherosclerosis.

In addition to these previous ECM proteins, FN has also been shown to be highly

important in maintaining homeostasis of a healthy vasculature, but in inflammatory

diseases, such as atherosclerosis, this property of FN can become impaired due to

modifications to the protein.

Early studies on FN have shown that inactivation of FN gene resulted in a cessation

of development during embryognesis [253]. These mice models were observed to lack

EC that could form healthy blood vessels, suggesting the importance of FN in blood

vessel development [253]. Furthermore, defects or deficits in important integrins (e.g.

α5 or β1) resulted in lethality during embryogenesis [253–256]. Formation of FN

during matrix assembly is important in atherosclerosis, whereby the reduction or absence

resulted in decreased collagen deposition, thinner arterial layers (intima and media), and

increased inflammatory cell infiltration [257]. Inhibition of the collagen/gelatin binding

fragment with an anti-60k Fab’ antibody (specific for the binding fragment) resulted in a
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reduction of both collagen and FN deposition [258]. This suggests the importance of FN-

collagen interaction for formation of fibrillar structures in the ECM [258]. Furthermore,

interactions between FN, cell surface receptors and integrins are important in initiating

matrix assembly [197].

FN plays a large role in matrix assembly by interacting with other ECM proteins, but

also interacts with cells (e.g. EC and SMC) to contribute to formation and function

of the endothelial intima layer and SMC media layer [14, 259]. Surface coated with

FN has been observed to enhance EC adhesion and was able to sustain adhered cells

for up to four days [235]. FN exposed to oxidants that are commonly associated with

atherosclerosis (such as HOCl and peroxynitrite) were observed to decreased EC adhesion

and impaired cell spreading [22, 130, 260, 261]. A certain mechanism of de-adhesion in

EC was found to be triggered by an external signal causing intracellular changes to Src

and phosphorylaton of Tyr-118 of paxillin [22]. This suggests that mitogenic processes for

vascular regeneration are dependent on FN binding growth factors, and the interaction of

FN with other ECM proteins. This is demonstrated by consecutively coating the surface

with collagen followed by FN and heparin, which resulted in greatly increasing binding

of mitogenic glycoprotein and heparin binding growth factor (HBGF) [262].

Collagen and thrombospondin-1 (THBS-1) deposition is highly dependent on the presence

of intact FN in the matrix [225]. THBS-1 has been observed to be important in mediating

cell-matrix and cell-cell adhesion [263]. Matrix structure and cellular function is highly

dependent on the structural integrity of the basement membrane. Deficiency in plasma

FN resulted in lower levels of SMC migration into the atherosclerotic plaque, reduction

in collagen deposition, and the formation of thinner fibrous caps [264]. Migration of SMC

into the atherosclerotic plaques have been reported to be important in generating stable

fibrous caps, however FN also promotes lipid retention, and increased inflammatory cell

infiltration [265]. Furthermore, it was reported that degraded FN resulted in increased

leukocyte migration/chemotaxis across the EC layer [266, 267], and increased neutrophil

degranulation [268]. In support of this, inhibition of FN assembly resulted in a reduction
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in inflammatory response in atherosclerosis [147, 269]. FN plays an important role in

ECM stabilisation and together with other ECM proteins provides strong substrata for

EC and SMC. Thus, these studies demonstrate the importance of FN in regulating cell

function and ECM assembly within the basement membrane.

During inflammation, the production of MPO has been linked with the co-localisation and

binding to ECM proteins [21, 22, 270]. MPO has been shown to bind to GAGs [21, 270],

but recently shown to also bind to FN [22]. The co-localisation may suggest ECM FN to

be a possible target of MPO-derived oxidant due to their proximity [21, 22]. A number of

studies have examined the detrimental effects of hypochlorite on FN such as fragmentation

of the protein [22, 260], loss of cell adhesion, loss of specific antibody recognition [22, 261],

amino acid changes, and oxidative by-products [46, 64, 271]. Studies have also shown that

the reduction of plasma FN levels is associated with lower levels of SMC migrating into

atherosclerotic lesions, resulting in plaques that are more prone to rupture as they have

decreased collagen and thinner fibrous caps [264]. These studies support a major role for

FN in atherosclerotic lesion development [22, 260, 271], and support investigations as to

how structural alterations to FN, such as via oxidation, which may alter the function of

FN. Furthermore, the deletion of spliced EDA exons of cellular FN showed a reduction

in the size of atherosclerotic lesions in mice with atherosclerosis [272, 273]. These studies

indicate modifications or absence of either the whole protein or of particular regions can

affect the development of an atherosclerotic lesion.

As described, the ECM is important to both the structural integrity of the basement

membrane, providing binding sites and harbouring molecules for healthy cell function.

Thus, it can be seen how crucial it is to understand how modifications on these particular

proteins can have a downstream consequences to the stability of the overlying tissue,

particularly in the progression of inflammatory diseases such as atherosclerosis.
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1.5 Thesis hypothesis and aims

In light of the current data available, FN is present in vascular walls and mediates

remodeling both in healthy matrix turnover but also in inflammatory diseases such

as atherosclerosis [18, 148]. It is hypothesised that MPO-derived oxidants (HOCl

and HOSCN) will modify ECM-derived proteins particularly FN, which will result

in structural and functional changes to the vascular basement membrane. Moreover,

modifications induced by HOSCN would be less extensive compared to HOCl due to its

specificity. These ECM alterations affect EC behaviour and will result in endothelial

dysfunction leading to the subsequent development of atherosclerosis.

This hypothesis will be addressed by the following specific aims:

1. To investigate the structural changes (fragmentation and aggregation) induced by

HOCl, on human plasma FN and cellular FN in HCAEC-derived whole ECM

extract, and whether it leads to consequential biological dysfunction with regards

to cell adhesion, proliferation and gene expression.

2. To investigate the structural changes (fragmentation and aggregation) induced by

HOSCN (a more specific oxidant), on human plasma FN and cellular FN in HCAEC-

derived whole ECM extract and whether the modifications are as extensive as

observed with HOCl.

3. To investigate whether the changes induced by reagent HOCl and HOSCN are

observed with treatment utilizing MPO enzyme, H2O2, and halides (Cl- and SCN-).

4. To determine the extent of modifications on human plasma FN in a mixture of Cl-

and SCN- utilizing the enzymatic MPO/H2O2 system.

5. To determine the occurrence of modified matrix components in human

atherosclerotic lesions.
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Chapter 2

Materials and Method

2.1 Materials

All products were sourced from Sigma Aldrich (St. Louis, MO, USA) unless otherwise

noted. Water used in preparation of solution and use in experiments were filtered through

a four-stage Millipore MilliQ system (“MilliQ water”). Chelex was used to remove trace

metal ions from buffer solutions and was obtained from Bio-rad (Hercules, California,

USA). LPO (from bovine milk; 427489) was purchased from Merck (Darmstadt,

Germany). Phosphate buffer saline (20x PBS) was obtained from VWR (Solon, OH,

USA). Pierce BCA protein assay solution (23223) was obtained from Life Technologies

(Slangerup, Denmark) or Thermo Scientific (Rochford, IL, USA). For SDS-page and

Western blot experiments, Xcell Surelock Mini-cell sodium dodecyl sulfate polyacrylamide

gel electrophoresis (SDS-PAGE) tank (EI0001), NuPAGE™ 3-8% Tris-Acetate Protein

Gels 1.0mm (10 wells, EA0375BOX; 12 wells, EA03952BOX; 15 wells, EA03755BOX),

NuPAGE™ Reducing buffer (NP0009), NuPAGE™ LDS sample buffer 4x (NP0007),

HiMark™ pre-stained High Molecular Mass standard (LC5699), HiMark™ Unstained

Protein standard (LC5688), NuPAGE™ Tris-Acetate SDS Running buffer 20x (LA0041),

iBlot 2 Gel Transfer Device (IB21001), and iBlot 2 polyvinylidene fluoride (PVDF)

Regular stacks (IB24001) were purchased from Life Technologies (Slangerup, Denmark).

Trypsin (R001100), Hoechst 33342 (H1399), ActinRed 555 Ready Probe (R37112)

Nuclease-Free water (AM9939) were also purchased from Life Technologies (Slangerup,
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Denmark). Western lighting PLUS ECL (NEL104001) solution for developing Western

blots was sourced from Perkin Elmier (Waltham, MA, USA). HCAEC, HCAEC Growth

Medium (095212), Endothelium Cell Basal media without phenol red (210PR-500; Endo-

Basal Media) was obtained from Tebu-bio (Roskilde, Denmark). CellTiter 96® Aqueous

One Solution Assay (G3580), was acquired from Promega (Nacka, Sweden). RNAse Zap

(79254), RNease Mini Kit (74104), RT2 First Strand Kit (330404), and RT2 SYBR Green

ROX qPCR Mastermix were obtained from Qiagen (Copenhagen, Denmark). ThioGlo 1

fluorescence thiol reagent (HC9080) was acquired from Berry and Associate (Michigan,

USA).

MPO enzyme was purchased from Planta (Vienna, Austria). Both bovine and human

plasma FN was sourced from Sigma Aldrich (St. Louis, MO, USA). Whole human ECM

was harvested from HCAEC.
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2.1.1 Primary antibodies

Mouse monoclonal antibody probing for FN CBF (clone A17; ab26245) and FN EDB

(clone C6; ab154211) were purchased from Abcam® (Cambridge, UK). Mouse monoclonal

antibody against FN HBF (clone A32) was obtained from Life Technologies/Thermo

Scientific (CSI0053202; Slangerup, Denmark). Mouse monoclonal antibody against FN

EDA (close 3E2; F6140) was sourced from Sigma Aldrich (Louise, MO, USA). Mouse

monoclonal antibody targeting a HOCl-generated epitope was appreciatively donated by

Prof. Ersnt Malle and Prof. Astrid Hammer from Medical University of Graz, Austria

[63] (Table Table 2.1).

Table 2.1: List of primary antibodies and dilutions used in experiments.

Epitopes Clone Dilutions
ELISA WB

FN; Cell Binding Fragment (CBF) A17 1:50 000 1:10 000
FN; Heparin Binding Fragment (HBF) A32 1:1000 1:2000

FN; Extra Domain A (EDA) 3E2 1:1000 1:2000
FN; Extra Domain B (EDB) C6 N/A 1:2000

HOCl-generated epitope 2D10G9 1:50 N/A
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2.2 Methods

2.2.1 Reagent and enzymatic oxidant synthesis

2.2.1.1 Hypochlorous Acid

HOCl stock solutions were commercially purchased and regularly checked by diluting

in NaOH and using UV-Vis spectrophotometry at 292 nm and a coefficient of 350 M-1

cm-1 . Stock solutions were generally made to the same molar concentration. HOCl was

prepared by diluting stock reagent HOCl in milliQ water to an initial concentration of

50 mM; this solution was then serially diluted accordingly to the required concentrations

to form the molar ratio required in each experiments (Table Table 2.2). For 1 µM of FN

in Western blotting experiments, a 1:5 dilution was performed to acquire the necessary

molar ratio (Table Table 2.2).

Table 2.2: Diluton of HOCl for required molar ratio in experiments. This example was prepared for
a 1:5 dilution in Western blotting experiments for 1 µM of FN.

Concentration Total Vol. (µL) Vol. of higher conc. (µL) Vol. NaPhosbuffer (µL) Molar Ratio

50000 100 100 0 10000x
25000 100 50 50 5000x
5000 100 20 80 1000x
2500 100 50 50 500x
1000 100 40 60 200x
500 100 50 50 100x
250 100 50 50 50x
125 100 50 50 25x
50 100 40 60 10x
25 100 50 50 5x

2.2.1.2 Hypothiocyanous acid

Aliquots containing 50 µL of 45 µM LPO were previously prepared. Exactly 850 µL of

10 mM pH 6.6 potassium phosphate buffer was added to dilute the LPO aliquot. To

this solution, 200 µL of 150 mM sodium thiocyanate (NaSCN) was utilised to produce
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HOSCN. H2O2 was added in 10 µL of 75 mM H2O2 every minute to a final total of 50

µL while the sample was kept on ice. Samples were quickly inverted to mix the solution,

followed by incubation for 15 mins on ice. After incubation, 0.1-0.2 mg of bovine liver

catalase was added and incubated for 5 min at 21°C to quench any remaining H2O2 in

solution. Catalase enzyme was removed by filtering through a 10k cutoff Nanosep Omega

filter system followed by centrifuging at 12,000rpm for 5 min 4°C.

To check the concentration of HOSCN, 5-thio-2-nitrobenzoic acid (TNB) assay was

utilised to spectrophotometrically determine the optical absorbance at 412 nm using the

extinction coefficient, ε412 14150 M-1 cm-1. 5,5′-Dithiobis(2-nitrobenzoic acid) (DTNB)

stock was prepared by diluting 2 mg of DTNB in 250 µL of 1 M solution of sodium

hydroxide (NaOH), and allowed to mix for 5 mins at 21°C. This was then mixed with

4,750 µL of milliQ water in a glass bottle. DTNB reagent was diluted by combining 200

µL of DTNB stock in 9800 µL (9.8 mL) of 0.1 M pH 7.4 sodium phosphate buffer to

give diluted DTNB (dilDTNB). The solution was checked using a UV-Vis spectrometer

or compatible plate reader against 0.1 M pH 7.4 sodium phosphate buffer as a reference.

For most efficient reading, absorbance should be between 0.4-0.6 absorbance.

When determining concentration of HOSCN, 5 µL of HOSCN was diluted in 995 µL

dilDTNB (1:200); this was calculated against a control of 5 µL of 10 mM pH 6.6 potassium

phosphate buffer also diluted in 995 µL dilDTNB (1:200). Samples were transferred to

spectrometric cuvettes (Grenier Bio One; Frickenhausen, Germany) and measured at 412

nm on a Shimadzu UV-vis (Kyoto, Japan), with 0.1 M pH 7.4 sodium phosphate buffer

as a reference. Alternatively, measurements can be made using a Greiner UV-Star 96 well

plates (M3812) and quantified using a plate reader at 412 nm. Samples were measured

in triplicates to obtain an average reading, and the concentration was calculated using

the formulae in Figure 2.1.

Once concentration of HOSCN was determined, HOSCN was diluted to an initial

concentration of 1 mM in milliQ water. This solution was then serially diluted down
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Figure 2.1: Formula for calculating the concentration of HOSCN. The ex. coefficient of TNB (ε412)
was taken as 14150 M-1 cm-1,

to the desired concentration and concurrent molar ratio (Table Table 2.3). Below is an

example prepared for 1 µM of FN in Western blotting experiments, where a further 1:5

dilution was made to acquire the desired final molar ratio.

Table 2.3: Diluton of HOSCN for required molar ratio in experiments. This example was prepared
for a 1:5 dilution in Western blotting experiments for 1 µM of FN.

Concentration Total Vol. (µL) Vol. of higher conc. (µL) Vol. milliQ (µL) Molar Ratio

1000 100 40 60 200x
500 100 50 50 100x
250 100 50 50 50x
125 100 50 50 25x
50 100 40 60 10x
25 100 50 50 5x
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2.2.1.3 Enzymatic synthesis of oxidants

To produce HOCl enzymatically, MPO enzyme was used in samples in accordance to the

known mechanism of MPO reacting with existing Cl- and H2O2. Samples had sodium

chloride (NaCl) added to obtain a final concentration of 100 mM followed by addition

of MPO enzyme to acquire the desired concentration (check the concentration used in

experiments). H2O2 was added in consecutive additions to prevent high concentration of

H2O2 from inactivating the MPO enzyme. Cl- can be substituted for SCN- to generate

HOSCN. For more precise concentration and details of MPO in reactions, please refer to

corresponding methodology.
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2.2.2 ELISA

A stock solution of 1 mg/ml of purified human plasma FN was diluted to a final

concentration of 10 µg/mL in 0.5 M pH 7.4 of sodium phosphate buffer, and milliQ

water for a final buffer concentration of 0.1 M pH 7.4 sodium phosphate buffer. In a

high protein-binding 96-well plates, 50 µL of the 10 µg/mL (concentration rounded to 2

decimal places; 0.02 µM) FN solution was coated onto each well, followed by an overnight

incubation at 4°C on a rocker. Maximum FN binding was previously determined using

a serial dilution of decreasing FN concentration and a micro-BCA was performed to

determine maximum concentrations of bound FN. It was found that there was minimal

loss at this concentration and therefore future experiments were based on these results.

On the next day, the 96-well plate was washed twice with 200 µL of 1x PBS. Each well was

treated with 50 µL of oxidant by taking the concentration from Table 2.2 or Table 2.3

and diluting to the appropriate molar ratio or concentration in 0.1 M pH 7.4 sodium

phosphate buffer (refer to Table 2.4). Plates were then incubated for 2 hr at 37°C before

being washed twice again with 1x PBS. Primary antibodies were prepared by diluting

the respective antibody (Table 2.1 in 0.1% (w/v) casein 0.1% (w/v) Tween-20 PBST.

Human plasma FN treated with HOCl, HOSCN, enzymatic reactions were probed for

CBF (1:50000), HBF (1:1000), and HOCl-generated epitope (1:50). Furthermore, whole

ECM extract which contains cellular FN was probed for CBF (1:50000), HBF (1:1000),

and EDA (1:1000). After an incubation overnight, plates were washed twice with 200

µL of PBST before being incubated with either horse peroxidase (HRP)- or alkaline

phosphatase (AP)- linked secondary antibody for 1 hr at 21°C. This was followed by four

times washes with PBST, prior to development. Working ABTS solution was prepared

fresh by addition of H2O2 (1:1000) into pre-made ABTS solution and 100 µL was added

into each well. The absorbance was immediately read at 405 nm, followed by another

reading at 5 min, 10 min, 30 min, and 60 min.

In the enzymatic experiments, surface-bound human plasma FN (0.02 µM) on 96-well
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plates (prepared as above overnight at 4°C on a rocker) was washed twice with TBS and

exposed to 50 µL containing: 10 µL of 0.5 M pH 7.4 sodium phosphate buffer, 1 µL of

1 µM of MPO (0.02 µM), 5 µL of 1 M Cl- (100 mM), and increasing concentrations of

H2O2 (0, 4, 8, 16, 24, 32 µM) in batch additions (maximum of 0.2 µL of 2 mM H2O2 stock

solution) (Figure 2.5), and milliQ water for 2 hr at 37°C. Procedure followed as above post

treatment substituting the changes as follows: AP-linked antibodies were used in place

of HRP-linked antibodies, and 1x Tris-buffered saline (TBS) was used instead of PBS

in these experiments. Development of plates was with 100 µL of Alkaline phosphatase

Yellow (pNPP) Liquid Substrate (p7998; Sigma), with a stopping solution of 3 N NaOH

(25 µL per 100 µL). The absorbance was measured at 405 nm immediately, followed by

another measurement at 5 min, and 10 min. Stopping solution was added at 10 min and

measured once more immediately after addition.

Table 2.4: Concentration of oxidants as a molar ratio of human plasma FN for ELISA results.

FN (µM) Concentration of (µM)

0.02 0
5
10
25
50
100
200

Table 2.5: Concentration of H2O2 as a molar ratio of human plasma FN for ELISA results.

FN (µM) Concentration of H2O2 (µM) Molar Ratio

0.02 0 0x
4 200x
8 400x
16 800x
24 1200x
32 1600x
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2.2.3 Treatment of purified protein and whole ECM extract for

SDS-PAGE

Purified human plasma FN (stock 1 mg/ml) was prepared by diluting it in 0.5 M pH

7.4 sodium phosphate buffer and milliQ water following Table 2.6 to give the desire

concentration of human plasma FN in sample. For control samples, oxidants were replaced

with milliQ water (FN only control). Prepared samples were then incubated for 2 hr at

37°C, followed by samples being split in half prior to addition of SDS-PAGE reagents

so that samples can be ready for loading for protein separation. Samples were split in

half as to retain the same treatment conditions when preparing samples for reducing or

non-reducing conditions.

Whole ECM extracted from HCAEC was calculated for samples to supposedly contain 1

µM of FN (450 kDa) with the assumption that there’s a majority of FN in samples for a

final mass of 10 µg. FN concentration was not determined and thus a molar treatment

used. Oxidant dilution was appropriately adjusted for 1:10 dilution for sample treatments

(Refer to Table 2.2 and 2.3).

The concentrations (and molar ratio) of treatment of human plasma FN with enzymatic

MPO/Cl-/H2O2 experiments were based on a previous study by Vissers et al. (Table 2.8)

[260].

Table 2.6: Preparation of human plasma FN as 1 µM with treatment with HOCl or HOSCN.

Solution Example for six reactions (µL)

1 mg/ml FN 6
0.5 M pH 7.4 Phosphate buffer 2.66

MilliQ water 2
Oxidant (1:5 dilution) 2.66

Total Volume 13.32
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Table 2.7: Preparation of HCAEC-derived whole ECM extract as 1 µM with treatment with HOCl
or HOSCN.

Solution Example for eight reactions (µL)

Stock HCAEC-derived whole ECM X
0.5 M pH 7.4 Phosphate buffer 6.67

MilliQ water Total minus X
Oxidant (1:10 dilution) 3.33

Total Volume 33.33

Table 2.8: Preparation of human plasma FN as 0.2 µM with enzymatic treatment using MPO, Cl-,
and H2O2.

Solution Example for eight reactions (µL)
0.2 µM MPO 0.8 µM MPO

1 mg/ml FN 5 5
0.5 M pH 7.4 Phosphate buffer 10 10

MilliQ water Total to 50 Total to 50
MPO (5 µM stock) 1 4
NaCl (1 M stock) 5 5

H2O2 (10 mM stock) 0, 0.2, 0.4, 0.6, 0.8 0, 0.2, 0.4, 0.6, 0.8

Total Volume 50 50

Table 2.9: Preparation of human plasma FN as 0.2 µM with enzymatic treatment using MPO, SCN-,
and H2O2.

Solution Example for eight reactions (µL)
20 µM SCN- 500 µM SCN-

1 mg/ml FN 5 5
0.5 M pH 7.4 Phosphate buffer 10 10

MilliQ water Total to 50 Total to 50
MPO (5 µM stock) 1 1

NaSCN (5 mM stock) 0.2 5
H2O2 (10 mM stock) 0, 0.2, 0.4, 0.6, 0.8 0, 0.2, 0.4, 0.6, 0.8

Total Volume 50 50
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Table 2.10: Preparation of human plasma FN as 0.2 µM with competitive enzymatic treatment using
MPO, Cl-, SCN- and H2O2.

Solution Example for eight reactions (µL)
0.2 µM MPO 0.8 µM MPO

1 mg/ml FN 5 5
0.5 M pH 7.4 Phosphate buffer 10 10

MilliQ water Total to 50 Total to 50
MPO (5 µM stock) 1 4
NaCl (1 M stock) 5 5

NaSCN (5 mM stock) 0, 0.2, 1, 2, 3, 4, 5 0, 0.2, 1, 2, 3, 4, 5
H2O2 (10 mM stock) 0, 0.8 0, 0.8

Total Volume 50 50

2.2.4 SDS-PAGE

Samples were then prepared for separation using 1-dimensional SDS-PAGE under

reducing or non-reducing conditions. For reducing samples, 10x NuPAGE reducing

solution was added in a 1:10 dilution to the final volume depending on sample prep,

and in non-reducing samples, milliQ water was added in place of. All samples had 4x

NuPAGE sample buffer added in a 1:4 dilution of the final volume. All samples were then

heat denatured for 10 min at 70°C, then the appropriate volume of samples were loaded

onto 3-8% (w/v) 1 mm NuPAGE® Tri-acetate gels which were electrophoresed at 160 V

for 70 min in 1x Tris-Acetate SDS-Running buffer. HiMark™ Pre-stained high molecular

mass protein standard was used as a molecular mass marker with a reference range from

30-460 kDa. Once separation has occurred, gels were visualised using silver staining, or

were transferred onto a PVDF membrane by an iBlot 2 system for further Western blot

analysis.

Table 2.13 can be used for all enzymatic MPO experiments including the competitive

study (Table 2.9 and 2.10).
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Table 2.11: Preparation of treated human plasma FN for SDS-PAGE.

Solution (µL) Reducing
+ −

Protein sample from Table 2.6 6.67 6.67
10x NuPAGE reducing solution 2.4 0

4x NuPAGE sample buffer 6 6
MilliQ water 12.27 14.67

Total Volume 24 24
Volume loaded 4.8 (0.25 µg of protein per lane) 4.8 (0.25 µg of protein per lane)

Table 2.12: Preparation of treated HCAEC-derived FN for SDS-PAGE.

Solution (µL) Reducing
+ −

Protein sample from Table 2.7 16.67 16.67
10x NuPAGE reducing solution 6.4 0

4x NuPAGE sample buffer 16 16
MilliQ water 8.9 15.3

Total Volume 64 64
Volume loaded 16 (1.25 µg of FN per lane) 16 (0.25 µg of FN per lane)

Table 2.13: Preparation of enzymatically treated human plasma FN for SDS-PAGE which were used
with both concentration of MPO experiments.

Solution (µL) Reducing
+ −

Protein sample from Table 2.8 25 25
10x NuPAGE reducing solution 4 0

4x NuPAGE sample buffer 10 10
MilliQ water 1 1

Total Volume 40 40
Volume loaded 8 (0.5 µg of protein per lane) 8 (0.5 µg of protein per lane)
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2.2.4.1 Silver stain

Silver staining was used to visualise structural changes to protein samples such as

aggregation or fragmentation. Gels were first removed from casing, and were then

fixed in 50% (v/v) ethanol, 10% (v/v) acetic acid for a minimum of 30 min. Once

gels were fixed, they were rinsed in 5% (v/v) methanol for 15 min, followed by three 5

min consecutive washes in milliQ water. After the gels were washed, it was submerged in

freshly prepared 0.02% (w/v) sodium thiosulfate for 2 min, then washed in milliQ water

for 2 min. Gels were incubated in ice cold 0.2% (w/v) silver nitrate for 25 min, then

washed in milliQ water for 5 min. Gels were subsequently washed and silver containing

liquid discarded according to standard laboratory protocol. Developer solution of 3%

(w/v) sodium carbonate, 0.0004% (w/v) sodium thiosulfate (prepared from previously

made solution), and 0.05% (v/v) formaldehyde, was poured over the gel until submerged.

Developer solution was changed after 2 min, and once bands started appearing, gels were

immersed in a stopping solution of 1.4% (w/v) EDTA. Over development of bands were

prevented by adding a stop solution before the preferred band density formed.

2.2.4.2 Western blotting

Once separation was performed, gels were transferred onto PVDF membranes using an

iBlot 2 gel transfer device (Life Technologies) and ran at 160 V for 70 min. The PVDF

membranes were blocked in 1% (w/v) BSA in TBS with 0.1% (w/v) Tween 20 (TBST)

for 1 hr on a shaker at 21°C, followed by an incubation with the desired antibody 2.1 at

4°C overnight on a rocker. The next day, membranes were rinsed for 5 min with TBST

at 21°C on a shaker, prior to incubating with the respective secondary antibody diluted

in 1% (w/v) BSA in TBST for 1 hr at 21°C on a shaker. Membranes were then washed

in TBST for 1 hr with a change in washing solution every 15 min, then rinsed in TBS,

and left in TBS solution until development.
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Membranes were developed using Western lighting PLUS ECL reagents (1:1 ratio of

reagent A to reagent B). Membranes were covered in the reagents, and developed on a

Bio-rad® Chemidoc™ (California, U.S.A.) system or Syngene G:Box XR5 (Cambridge,

UK).
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2.2.5 High Performance Liquid Chromatography

Bovine plasma FN samples were treated with HOCl and prepared by following the

treatment described in 2.14. Samples were prepared in inscribed hydrolysis vials to a

total volume of 200 µL from a stock solution of 90 µL of stock 5 mg/ml bovine plasma

FN (final concentration of 5 µM) diluted in 40 µL of 0.5 M pH 7.4 Phosphate buffer, and

30 µL of milliQ water. Each vial was then treated with a 40 µL of oxidant, followed by

an incubation for 2 hr at 37°C. Sample vials were delipidated and precipitated by the

addition of 25 µL of 0.3% (w/v) deoxycholic acid and 25 µL of 50% (w/v) TCA, which

was incubated for 5 min on ice. The samples were spun down at 9000rpm for 2 min at 4°C

to form a protein pellet. The protein pellet was washed with ice cold acetone four times

with protein pellet being spun down again at 9000rpm for 2 min at 4°C between washes.

Remnant acetone was carefully dried off with nitrogen gas. Once samples were dry, the

protein pellets were re-suspended in 150 µL of MSA containing 0.2% (w/v) tryptamine,

then each samples were transferred to respective pico-tag hydrolysis vials. The pico-tag

vials were evacuated three times by alternating 10 secs of nitrogen, followed by 30 secs of

evacuation (VWR gas pump), then a final evacuation was performed for 1-2 min, before

being incubated overnight (16 hr, keeping each experimental time consistent) at 110°C

in an oven. The next day, the vacuum vials were released to check that pico-tag vials

were sealed properly before being allowed to cool to 21°C. Samples were neutralized by

addition of 150 µL freshly prepared 4 M of NaOH (16% (w/v) NaOH in milliQ water; 1:1

ratio to MSA). Samples were filtered by centrifuging at 10000rpm for 2 min, through 0.2

µm Nanosep filters (Pall). Samples were diluted 10-fold into milliQ water, before 40 µL

of the diluted samples were transferred to respective HPLC vials with 200 µL inserts.

Amino acid standard (A9781; Sigma-Aldrich), and 500 µM methionine sulfoxide for

analysis was obtained commercially and prepared to 12.5 µM in milliQ water. The

standard mixture was diluted further to create a linear standard from 0 to 50 pmol

in increments of 10 pmol in milliQ water per 6 µL injection. Standard mix was also
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Table 2.14: Preperation of bovine plasma FN as 5 µM and treated with HOCl for amino acid analysis
using HPLC.

Solution (µL) Example for one reaction vial

Stock protein (5 mg/ml) 90
0.5 M pH 7.4 Phosphate buffer 40

MilliQ water 30
Oxidant (1:5 dilution) 40

Total Volume 200

filtered through 0.2 µm Nanosep filters (Pall) at 10000 rpm for 2 min, then 40 µL of

each standard was transferred to their own HPLC vial with 200 µL inserts in duplicates.

Activated fluoraldehyde o-Phthaldialdehyde (OPA) reagent solution was prepared with

20:1 dilution to 2-Mercaptanol. The auto-injector was programmed to inject samples

with 20 µL of activated OPA.

Table 2.15: Preperation of amino acid standard derivatisation.

pmol per 6 µL injection 12.5 µM standard stock (µL) MilliQ water

0 0 120
10 24 96
20 48 72
30 72 48
40 96 24
50 120 0

The separation of amino acids was completed using a gradient buffer of low to high

percentage organic solvent. Buffer A was comprised of 20% (v/v) methanol, 2.5% (v/v)

Tetrahydrofuran (THF), 50 mM pH 5.3 sodium Acetate in milliQ water. Buffer B was

comprised of 80% (v/v) methanol, 2.5% (v/v) THF, 50 mM pH 5.3 sodium acetate in

milliQ water. Both buffers were prepared and filtered through a 0.2 µm Nanosep filters

(Pall) using a vacuum apparatus.

Shimadzu HPLC machine was set-up with an auto-sampler programmed to derivatise

each sample with 20 µL, followed by samples being mixed 3 times with incubation for

1 min. A Shimadzu Shim-pack xR-ODS, 4.6 mmid x 100 mm column was used, with a

gradient elution between buffer A and buffer B (Table 2.17). The flow rate was adjusted
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Table 2.16: Method to prepare HPLC buffer A and buffer B.

Solution Buffer A (ml) Buffer B (ml)

1M sodium acetate pH 5.3 200 200
THF 50 50

Methanol 400 1600
MilliQ water 1350 150

to 1.2 mL/min with the initial buffer A concentration starting at 100% and buffer B at

0%. The percentage of buffer B was increased to 25% slowly over 6 min and maintained

at 25% for 1 min, before a steep increase to 62% in 30 sec, and was maintained for 2.5

min. Buffer B was then ramped up to 100% over 2 min, and maintained for 1 min, before

buffer A was increased all the way back up to 100% for 3.5 min. The fluorescence of

the derivatised amino acid was measured at 340 nmex, and 440 nmem using a Shimadzu

RF-AXS20 fluorescence detector.

A chromatagram of observed amino acid elution was used as seen in figure 2.2.

Table 2.17: HPLC buffer ratios.

Time (min) Flow Buffer A (%) Buffer B (%)

0 1.2 100 0
6 1.2 75 25
7 1.2 75 25

7.5 1.2 38 62
10 1.2 38 62
12 1.2 0 100
13 1.2 0 100

13.5 1.2 100 0
17 1.2 100 0
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Figure 2.2: Chromatogram of amino acid elution for HPLC.

2.2.6 Thiol Assay

Bovine plasma FN sample solution was prepared at 5 µM according to table 2.18. Samples

were either untreated or treated with 1x, or 50x molar ratio of HOCl or HOSCN to a final

sample volume of 50 µL with a 96-well clear bottom plate. Samples were treated with 0,

5, and 250 µM of HOCl or HOSCN and was incubated for 2 hr at 37°C. An anhydrous 2.6

mM stock solution of ThioGlo (Berry and Associates; HC9080) was prepared following

the manufacturer’s instructions, which was stored in the dark at 4°C for use.

Table 2.18: Preperation of bovine plasma FN as 5 µM with treatment with HOCl for Thiol analysis.

Solution (µL) Example for one reaction vial

Stock protein (5 mg/ml) 22.50
0.5 M pH 7.4 Phosphate buffer 10

MilliQ water 7.5
Oxidant (1:5 dilution) 10

Total Volume 50

A 5 µM GSH standard stock was prepared in milliQ water by making a 0.5 mM GSH

solution in milliQ in a volumetric flask. This 0.5 mM GSH solution was diluted 1:100 to

form the final 5 µM GSH solution. A linear standard was made from 0 to 5 µM in an

integer of 1 µM according to table 2.19, and then 50 µL was transferred to the 96-well

plate in triplicates. Working solution of ThioGlo was prepared by diluting the stock
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solution 1:100 in 1x PBS and then 50 µL was transferred into each standard and sample

well. The plate was mixed briefly on a plate shaker and incubated for 10 min in the dark

at 21°C. The fluorescence was measured at 384 nmex, and 513 nmem.

Table 2.19: Method to prepare GSH standard for Thiol Assay.

Concentration of GSH (µM) 5 µM stock (µL) MilliQ water

5 400 0
4 320 80
3 240 160
2 160 240
1 80 320
0 0 400
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2.2.7 Cell Adhesion

Clear bottom 96-well plates were prepared the same way as an ELISA plate when

performing assay using crystal violet and calcein-AM; refer to section 2.2.2. Once plates

have been treated they were proceeded under the respective methodology.

2.2.7.1 Cell adhesion – Crystal Violet

Treated plates were rinsed twice with 200 µL of sterile PBS before being blocked with

100 µL of 3% (w/v) BSA in DPBS for 1 hr at 37°C in a cell culture incubator. While

plates were being blocked, HCAEC were prepared and re-suspended in 1% (w/v) BSA in

Endo-Basal media. Plates were rinsed again twice with 200 µL, followed by being seeded

with 50 µL of 2.5 x 105 cells/ml per well (12,500 cells), and incubated for 1.5 hr at 37°C in

a humidified atmosphere containing 5% carbon dioxide (CO2) . Any cells that were not

adhered were rinsed off twice with 200 µL of sterile DPBS, and remaining adhered cells

were fixed with 100 µL of 10% (v/v) formaldehyde in DPBS for 15 min at 21°C. Once

cells were fixed, plates were washed four times with 200 µL of deionized water, followed

by air drying the plate for 1 hr at 21°C. A 200 µL solution of 0.1% (w/v) crystal violet in

200 mM MES at pH 6.0 was used to stain each well and left for 20 min at 21°C. Excess

crystal violet was washed off the plate with four times washes with 200 µL of deionized

water before being allowed to air dry for 1 hr at 21°C. The crystal violet taken up by cells

were re-solubilised in 200 µL of 10% (v/v) acetic acid, and absorbance was measured at

590 nm.

2.2.7.2 Cell adhesion – Calcein-AM fluorescence

Plates were similarly washed, and blocked with 3% (w/v) BSA in PBS for 1.5 hr at 37°C.

HCAEC were trypsinised off the flask and re-suspended back in sterile 1% (w/v) BSA in
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Endo-Basal media in a small sterile tube, and incubated with 5 µM per 5 x 106 cells/ml

for 30 min at 37°C in a humidified atmosphere containing 5% CO2. Cells were washed

once with warm 1% (w/v) Endo-Basal Media, before being seeded onto twice washed

with DPBS plates with 50 µL of 2.5 x 105 cells/ml per well (12,500 cells), followed by

incubation at 1.5 hr at 37 °C in a humidified atmosphere containing 5% CO2. Plates

were carefully washed four times with 200 µL of 1% (w/v) BSA in Endo-Basal media by

swirling, and blotting excess media on paper towel. Once relatively blotted dry, add 200

µL of DPBS into each well and the fluorescence was measured at 492nmabs, and 517nmex.

2.2.7.3 Cell adhesion – Immunocytochemistry

Cultureslide Lab-Tek II Chamber 8 well (VWR) were coated with 250 µL of 10 µg/ml

(0.02 µM) of human plasma FN and BSA used as control at the same concentration,

and incubated overnight at 4°C. The next day, chambers were washed twice with 500

µL of sterile PBS before treatment with 250 µL of oxidant (refer to Table 2.4), followed

by incubation for 2 hr at 37°C. After incubation, chambers were washed with 500 µL of

sterile PBS, then blocked with 500 µL of 3% (w/v) BSA in PBS for 1 hr at 37°C. The

chambers were rinsed again with 500 µL of sterile PBS, then HCAEC was seeded with

250 µL of 2*105 cells/ml (50,000 cells) into each well, and incubated for 1.5 hr at 37°C

in a humidified atmosphere containing 5% CO2 to allow cells to adhere. Any un-adhered

cells were washed off twice with 500 µL of sterile PBS, and fixed with fixing solution

of 7.56% (v/v) of 38% formaldehyde, 0.72% (w/v) sucrose in PBS for 15 min at 37°.

Chambers were washed twice with PBS to remove excess fixing solution, then cells were

permeabilised with permeabilising solution, 10.30% (w/v) sucrose, 0.292% (w/v) NaCl,

0.476% (w/v) HEPES, 0.5% (v/v) Triton X-100 in milliQ water for 5 min at 4°C to

allow fluorescence probes to permeate into cells. Each well was rinsed with 500 µL of

0.5% (w/v) Tween-20 PBST before being blocked with 1% (w/v) BSA in PBS for 1 hr at

21°C. Chambers were twice washed with 500 µL PBST, and were incubated overnight at

4°C with 250 µL of 1x rhodamine-phalloidin diluted in 1% (w/v) BSA in PBS to stain
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F-actin fibres within cells.

The next day, chambers were washed with 500 µL of PBST, followed by incubation with

250 µL of Hoechst 33342 (H1399; 1:2000 dilution to get a final DMSO concentration

of 5 µg/ml) in PBS for 15 min in the dark at 21°C, whereby the stain can permeate

into the nuclei. Chambers were washed twice with 500 µL of PBS to remove any excess

stain, and left in PBS. When ready to image, remove the plastic chambers, apply one

drop of SlowFade Diamond Antifade (S36963; ThermoFisher Scientific) to help mount the

slide prolong the fluorescence, then clean the coverslip prior to imaging on a fluorescence

microscope.
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2.2.8 Cell Metabolic Activity

HCAEC metabolic activity plates were prepared the same way as HCAEC adhesion

experiment. After plates have been seeded and incubated with 12,500 HCAEC for 1.5

hr at 37°C in a humidified atmosphere containing 5% CO2, the plate were twice washed

with 200 µL sterile PBS. They were incubated with fresh HCAEC growth medium for

48 hr at 37°C in a humidified atmosphere containing 5% CO2. This method can also be

completed post cell adhesion using Calcein-AM protocol by leaving plates for 48 hr with

200 µL fresh HCAEC growth media. After 48 hr, 20 µL of CellTiter 96® Aqueous One

Solution Assay (G3580; Promega) was added into each sample well, and the absorbance

was measured at 490 nm, 0 hr, 1hr, 2hr, 3hr, and 4hr. Analysis of data was made on

data collected at 2 or 3 hr.
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2.2.9 RNA expression

Sterile 6-well culture plates were coated with 2 ml of 20 µg/ml (0.04 µM) of human

plasma FN overnight. On the next day, each well was either untreated (0.1 M sodium

phosphate pH 7.4 buffer) or treated with 1250x molar ratio (50 µM) of HOCl or HOSCN

diluted in 0.1 M sodium phosphate buffer pH 7.4, in triplicates for 2 hr at 37°C. HCAEC

were seeded into each well at a density of 5 x 106 and incubated for 72 hr at 37°C in

a humidified atmosphere containing 5% CO2. Medium was discarded and each well was

rinsed with sterile PBS to wash off any remaining serum and media. Using a Qiagen

RNeasy Mini Kit, the HCAEC was harvested by adding 350 µL of RLT buffer and a

scraper was used to remove all cells from well surface. The lysates were transferred to

sterile eppendorf tubes and the cell pellet was broken up using a 25 gauge syringe and

pipetting up and down. To the samples, 350 µL (1:1 ratio to RLT buffer) of 70% ethanol

was added to precipitate out DNA and RNA, and the total sample was spun through an

Rneasy Mini Spin column for 15 sec at 8000g. The flow-through was discarded before

DNA was digested by adding 350 µL of RW1 to the RNeasy column, followed by a

centrifuge for 15 sec at 8000g, with the flow-through being discarded. For each sample,

DNase 1 working solution was prepared by combining 10 µL of stock solution to 70 µL

buffer RDD (1:8 dilution) and gently inverting to mix, followed by a quick centrifuge. To

each sample, 80 µL of DNase 1 was added directly to the RNeasy column membrane and

incubated for 15 min at 21°C. The RNeasy column was washed with 350 µL of RW1, with

the flow-through being discarded, followed by another wash with 700 µL of RW1 with

centrifuge for 15 sec at 8000g. Each sample tube was spun down with 500 µL of RPE for

15 sec at 8000g, discarding flow-through, followed by another wash with 500 µL of RPE

and centrifuged for 2 min at 8000g. The flow-through was discarded, and the RNeasy spin

column was transferred to a new sterile 2 ml collection tube. The column was centrifuged

for 1 min at full speed to dry off the membrane. The collection tube was discarded, and

the RNeasy column was placed into a new sterile 1.5 ml collection tube. To each sample

tube, 30 µL of RNase-free water was directly added to the membrane of the RNeasy spin
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column, and centrifuged for 1 min at 8000g to elute out RNA. If concentration of RNA

was expected to be greater than 30 µg, another 30-50 µL of RNase-free water can be

spun through or the previous eluate can be spun through the column again.

RNA samples were then tested for purity by using a NanoDrop machine or a SpectraDrop

micro-volume 24-well microplate, and measuring the spectrum absorbance of samples.

When using a SpectraDrop micro-volume 24-well microplate, 2 µL of each sample was

pipette into each 0.5-mm spacers sample well, this was measured against RNase-free

water. Spectral absorbance measurements were made at 260 nm, 280 nm, 230 nm, and

320 nm. To analyse sample contamination, ratio between 260:230 (organic contamination)

and 260:280 (DNA contamination) were calculated 2.20. Nucleic concentration was

calculated as the optical density for absorbance at 260 nm (OD260) was 1, which was

equivalent to 40 ng/µL of nucleic acid.

Table 2.20: Absorbance for determining different components in RNA prepped samples.

Absorbance Ratio for high purity RNA

Abs 260 Abs260/Abs280
Nuclein Acid concentration - 1.8 for DNA purity

OD260 = 1 = 40ng/µL 1.8 - 2.1 for RNA purity

Abs 230 Abs260/Abs230
Detects organic contaminations <1.8

for example: phenol, trizol

Abs 280 Abs260/Abs320
Protein detection 1.8 - 2.2

Abs 320
Non-nucleic acid or protein contaminant

Nucleic acid concentration was calculated for each sample for total yield and volume

required for 400 ng of nucleic acid for cDNA synthesis using RT2 First Strand Kit

(330404: Qiagen). Reagents were thawed out from the kit and briefly centrifuged to

settle the solutions. For each sample, genomic DNA elimination (DNA-elim) mix was

prepared by combining RNA with Buffer GE, and Nuclease-Free water (Table 2.21). The

DNA-elim mix was incubated for 5 min at 42°C, then immediately put onto ice for a

minimum of 1 min. The Reverse-Transcriptase (RT) mix was prepared by combining 5x
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Buffer BC3 (2:5), Control P2 (1:10), RE3 RT-mix(1:5), and Nuclease-Free water (3:10)

to a total volume of 10 µL per reaction (Table 2.22).

Table 2.21: Preparation for elimination of DNA.

Component (µL) Volume (µL)

RNA sample X (equal to 400ng of RNA)
Buffer GE 2

Nuclease-free water 10 - X

Total Volume 10

Table 2.22: cDNA synthesis preparation method.

Component (µL) Volume (µL) per reaction

5x Buffer BC3 4
Control P2 1

RE3 RT-mix 2
Nuclease-free water 3

Total Volume 10

Into each sample tubes containing 10 µL of DNA-elim mix, 10 µL of RT-mix was added

and gently mixed. Samples were incubated in a thermal cycler for 15 min exactly at 42°C,

then the RT was inactivated with an immediate incubation for 5 min at 95°C. Samples

were centrifuged briefly to spin down any condensation, then 91 µL of RNase-free water

was gently mixed in. Samples were placed on ice to continue real-time PCR or stored in

-20°C until ready for use.

An RT2 Profiler PCR Human Extracellular Matrix and Adhesion molecules (330231;

QIAGEN) was used for analysing a multi-array of genes associated ECM and adhesion,

housekeeping genes, and controls for genomic DNA, RT-transcriptase controls, and

positive PCR control. First, RT2 SYBR Green Mastermix was centrifuged for 10-15

sec to settle the contents. Sample PCR mix was prepared in sterile 2 ml eppendorf tubes

by adding in 51 µL of 2x RT2 SYBR Green Mastermix, and 43 µL of RNase-free water

to the 8 µL of cDNA synthesis reaction for a total of 102 µL. This allows for an excess

of 6 µL for pipetting errors; samples can be prepared at higher volume for greater error

capacity. Pipette tips were changed for each well to avoid cross contamination, and 10 µL

63



was added to each well. An adhesive plate cover was used to cover each plate, followed

by centrifuging for 1 min at 21°C at 1000g to minimise any bubbles present in samples.

RT2 Profiler PCR Array was kept on ice prior to performing PCR. PCR cycling was

programmed as per Table 2.23 using ViiA-7 instrument with ViiA-7 Software v1.2 (Life

Technologies).

Table 2.23: Setup for thermocycler for qPCR.

Stages Time Temperature (°C) Temp Change Cycles

Hold 10 min 95 1.6 1
PCR 15 sec 95 1.6 40

1 min 60 1.6
Melt Curve 15 sec 95 1.6 1

1 min 60
15 sec 95 0.05

The threshold was defined with the log view of the Y-axis of the amplification plots, and

set to 0.02, which should sit above the background signal but should sit in the lower third

when examining the amplification plot linear phase. Using the linear plot phase of the

Y-axis, the baseline should be set to where the first amplification was visible starting from

cycle 2 but no further than cycle 15; amplifications were usually visible around cycles

14 to 18. The threshold should remain the same between all RT2 Profiler PCR Array

to ensure consistent analysis. CT values were exported to a blank Excel sheet and data

analysis can be performed using SABiosciences PCR Array Data Analysis Template and

Web-based analysis software (www.SABiosciences.com/pcrarraydataanalysis.php).
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2.2.10 Immunohistochemistry of Human Atherosclerotic Lesions

Aortae or aortae abdominalis sections were obtained from subjects who have died from

cerebral haemorrhage. Lesions obtained this way were classified according to Stary’s

system to microscopically identify normal to thickened intima (lesion type II-III), to

prominent calcified atheroma (lesion type IV). Samples were obtained within 12 hr of

post mortem. Tissue were immediately frozen in cryostat (Microm HM500 OM; Microm,

Walldorf, Germany) using tissue freezing medium (Tissue Tec OCT-compound; Miles,

Elkhard, Ind., USA). Glass slides were used to collect 5 µm of serial cryosections which

were air dried for 2 hr at 21°C, followed by fixing with acetone for 5 min at 21°C. Samples

were stored at -80°C until required for further analysis.

Acetone fixed tissue sections were thawed for 5 min at 21°C, and PBS was used to

rehydrate sections, followed by blocking with Ultra V block for 10 min (Lab Vision,

Fremont, CA, USA). Once samples were blocked, they were incubated with primary

monoclonal anti-FN or polyclonal anti-FN antibody for 30 min which were diluted with

antibody diluent (Dako), followed by a wash with PBS. Sample slides were incubated in

appropriate secondary antibodies; Polyclonal anti-FN incubated sections were incubated

with HOCl-generated epitope antibody, and monoclonal anti-FN sections were firstly

blocked with normal mouse serum (1:25) for 15 min, followed by incubation with Cy-3

labelled anti-HOCl generated epitope antibody in dark moisture chambers at 21 °C.

Sections were mounted with Moviol (Calbiochem-Novabiochem, La Jolla, USA), and

analysed with a confocal laser-scanning microscope in sequential mode (Leica SP2, Leica

Lasertechnik GmbH, Heidelberg, Germany). Settings used in analysis for Cy-2 (green

staining) incubated samples were 488 nmex, and 500-540 nmem, and for Cy-3 (red staining)

were 543 nmex, and 560-620 nmem
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Chapter 3

Modifications to fibronectin by HOCl

3.1 Introduction

FN is a dimeric glycoprotein of approximately 460kDa in size and composed of two

monomer subunits (220-270kDa) bound by two disulfide bonds at the carboxyl termini

[149, 195, 196]. There are two defined types of FN; soluble plasma FN, which is produced

primarily by hepatocytes and released into blood plasma, and insoluble cellular FN, which

is produced by various cells, such as fibroblasts and EC, and is present in the basement

membrane of tissues [149, 195, 196]. Plasma FN plays a key role in wound healing by

interacting with fibrin and causing a coagulation cascade to form blood clots. Cellular FN

interacts with the surrounding extracellular matrix (ECM) to create a complex network

providing structure and assisting in cellular functions, such as adhesion, proliferation and

migration [140, 274]. Furthermore, FN has been found to initiate matrix assembly in

response to certain functional sequences (CBF or HBF) by interacting with cell surface

receptors and integrins [149, 197].

The integrity of atherosclerotic plaques is highly dependent on vascular remodelling,

ECM deposition, and vascular smooth muscle cells (SMC) migration. Changes to a

number of these factors can result in smaller, thinner plaque caps, which have been found

to be more unstable and have higher risk of rupturing [1]. Plaque ruptures causes a

coagulation cascade, forming luminal clots and subsequently myocardial infarction or
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strokes [1]. The importance of FN is notable in the development of atherosclerosis and in

several other diseases [1, 140, 253, 274]. In the progression of atherosclerosis, increased

expression of FN has been found localised within areas of injury and plaque development

[275–277]. Patients with coronary artery disease (CAD) were demonstrated to have

elevated plasma FN levels [278–280]. However, other studies have shown that circulating

plasma FN levels do not correlate with occurrence of CAD [281, 282]. Circulating FN is a

potential contributor to CAD development, but it is likely to act in conjunction with other

atherosclerosis promoting factors. For example, deficiency of plasma FN in apoE-/- mice

was found to result in a smaller number and sizes of atherosclerotic plaques, with reduced

levels of monocyte recruitment [264]. However, the plaques that formed were found to

have decreased matrix protein deposition, decreased vascular SMC infiltration into injury

area, and were thinner and more unstable, which would indicate higher susceptibility to

plaque rupture in humans [264]. Furthermore, FN is also known to stimulate EC growth,

whereby EC incubated on FN were found to have sustained adherence of up to four days

[235]. These important functions are accompanied with increased levels of inflammatory

cells, and lipoprotein retention [265]. These findings suggests the importance of FN in

plaque development and progression.

Atherosclerotic plaques have been reported to have high levels of inflammatory cells

with particularly large numbers of macrophages in the shoulder region of lesions [283].

This means that FN, and other ECM species, are in close proximity with inflammatory

oxidants released by activated leukocytes, which suggests that they would be likely targets

of these reactive oxygen or nitrogen species [21]. Myeloperoxidase (MPO), is a haem-

peroxidase that produces certain reactive oxygen species (ROS) [11]. Hypochlorous acid

(HOCl) is one of the major reactive oxygen species to be produced by MPO in response

to inflammation, and in high concentrations it has been found to target host proteins,

such as ECM molecules, and cells, such as ECs [50, 57, 152, 284]. HOCl is highly

reactive and oxidises a range of targets, including: iron-sulfur centres, sulfide (thioether)

groups, sulfhydryl groups and unsaturated fatty acids [8, 45–48]. Furthermore, it has
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been demonstrated that in vitro exposure of FN to HOCl, causes several structural

and functional modifications [22, 64, 65, 260, 261]. HOCl has previously been found to

fragment FN and cause protein aggregation [65, 260], whereby these structural changes

have been proposed to cause loss of FN epitopes important for function and survival [22,

261, 271]. Inhibition of the gelatin binding site with an anti-50k antigen binding fragment

(Fab’) resulted in a decreased deposition of collagen type I, pro-collagen type III and FN,

suggesting that the fibrillar structures formed between the two proteins are important

[258].

These data suggest that FN is important in vascular architecture in arterial remodelling

and in the initiation and progression of certain diseases. Taking these previous findings

into consideration, it was hypothesised that human plasma and cellular FN would be

targeted and modified by HOCl. These modifications would cause structural changes to

FN, leading to aggregation, fragmentation, and subsequent biological dysfunction of cells

incubated on HOCl-modified FN.

3.2 Aims

The experiments carried out during these studies were aimed at elucidating the effects

of HOCl on isolated human plasma FN and cellular-derived FN in whole ECM extracts.

The structural modifications of FN by HOCl and the subsequent effect on antibody

recognition of the FN epitopes important to its function were investigated. Amino acid

analysis was performed to examine changes to amino acids using HPLC and ThioGlo.

Furthermore, biological changes were examined using HCAEC exposed to HOCl-modified

FN, by measuring cellular adhesion, cell metabolism, and gene expression. Lastly, these

experiments investigated the occurrence of FN and an HOCl-generated epitope in human

atherosclerotic lesions.
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3.3 Results

3.3.1 Effect on human plasma fibronectin epitope with HOCl

modification

Modifications occur through oxidation by HOCl, leading to structural changes in FN, and

the subsequent loss of epitope recognition, and further biological dysfunction. Monoclonal

antibodies were utilised to detect sites of functional interests on plasma FN including the

CBF, HBF, and the presence of HOCl-generated epitopes. The CBF is very important

for cell adherence to the sub-endothelial basement membrane, whereby the loss of this

particular interaction could lead to a dysfunctional arterial matrix and wall, while the

HBF interacts with heparin and heparan sulfates, which functions to stabilise the matrix

and cell adhesion [149, 195, 196]. The 2D10G9 antibody used to detect HOCl-generated

damage was originally raised against HOCl-oxidised LDL and binds onto an unidentified

HOCl-generated epitope [63]. Measurements were made on plated FN exposed to oxidant,

before using an ELISA method to quantify antibody recognition. The types of chemical

modification and favoured region cannot be identified using this particular method.

In initial experiments, 50 µL of 10 µg/ml of FN (0.02 µM) in 0.1 M of pH 7.4 phosphate

buffer was coated on high-binding protein ELISA plates overnight at 4°C. The sample

wells were then washed with 1x PBS to remove any unbound FN, and were treated with

50 µL of corresponding concentrations of reagent HOCl (0, 5, 10, 25, 50, 100, 200 µM)

diluted in 0.1 M of pH 7.4 phosphate buffer (refer to Table 2.4). Plates were incubated

for 2 hr at 37°C, followed by a wash with 200 µL of 1x PBS to remove any excess

HOCl or secondary products to prevent artefacts or other by-products. Plates were then

blocked with 100 µL 0.1% (w/v) casein in PBS to prevent any non-specific binding,

subsequently washed and incubated with 50 µL primary anti-CBF, anti-HBF, and anti-

HOCl epitope antibodies. Sample plates were incubated overnight at 4°C on a rocker to

ensure even binding of primary antibody, followed by a wash with 200 µL 0.1% Tween 20
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in PBS (PBST) and incubation of respective secondary antibody for 1 hr at 21°C on a

rocker. Sample plates were washed four times with 200 µL PBST, and were subsequently

quantified with 100 µL of freshly prepared ABTS solution by adding H2O2 in a ratio of

1:1000 of stock ABTS. Quantifications were made at 405 nm at 30 min.

Exposure of surface-bound human plasma FN to HOCl was observed to have

modifications to the CBF epitope, showing a statistically significant loss of epitope at

500x molar ratio of HOCl (Figure 3.1A). There was approximately 60% loss of recognition

at 1250x molar ratio of HOCl and complete loss of the epitope at 2500x molar ratio

(Figure 3.1A). FN HBF also showed statistically significant loss at 500x molar ratio with

almost complete loss at 2500x molar excess (Figure 3.1B). This loss of recognition was

accompanied by the increasing presence of a HOCl-generated epitope detected using the

2D10G9 antibody reaching statistical significance at 2500x molar excess (Figure 3.1C). At

higher concentrations, there was a decrease in the presence of HOCl-generated epitopes,

likely due to further modifications leading to destruction or aggregation of the protein

resulting in regions where the antibodies cannot penetrate.

This result has shown that HOCl modifies FN, particularly at the CBF and HBF

functional epitopes, causing loss of antibody recognition. In light of this, further

experiments were carried out to investigate potential structural changes to FN using SDS-

PAGE, including examination by Western blotting to examine the structural damage of

those functional epitopes.
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Figure 3.1: ELISA of human plasma FN treated with increasing concentrations of HOCl. Each well
was coated with 0.5 µg (0.02 µM) of human plasma FN in 0.1 M phosphate buffer and either left
untreated (control) or treated with HOCl (0, 5, 10, 25, 50, 100, 200 µM), and incubated for 2 hr at 37°C.
FN epitope was detected by using a mouse monoclonal A) anti-FN CBF antibody (A17; 1:10000), B)
anti-FN HBF antibody (A32; 1:1000), C) anti-HOCl generated epitope (2D10G9; 1:50), and conjugated
with anti-mouse HRP secondary antibody (1:1000). The data are presented as a percentage of the
relative absorbance of control (no oxidant; 0 µM treatment). Error bars are ± SD from three technical
triplicates obtained from each of three independent experiments. Statistical analysis was performed using
one-way ANOVA with Tukey’s multiple comparison post hoc tests to determine significance. Statistical
significance was identified as follows: * = p < 0.05, ** = p < 0.01, and **** = p < 0.0001.
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3.3.2 Effect of HOCl on the structure of human plasma fibronectin

To further investigate HOCl-induced modifications of FN, structural changes were

examined using SDS-PAGE separation followed by silver staining and Western blotting

of treated proteins to probe for alterations to functional epitopes leading to modifications

unrecognised by antibodies. Smaller molar ratios of FN:HOCl were used as to identify

minor structural changes of FN (and corresponding functional epitopes) at concentrations

lower than the concentration where complete loss of antibody recognition was observed

(i.e. < 1250x molar ratio). Silver staining was used to detect protein bands, including

the parent dimer band (black arrow) at around 460 kDa (Figure 3.2) and the parent

monomer band (white arrow) at 230 kDa (Figure 3.2). SDS-PAGE was used to identify

whether there were changes to protein mass arising from HOCl-induced modifications or

whether oxidant exposure led to fragmentation or aggregation of FN protein. By having

non-reducing and reducing samples, information can be obtained on the possible presence

of higher aggregates based on whether they contain new inter-chain (reducible) disulfide

bonds or are aggregating by other chemical bonds.

Human plasma FN (2.5 µg at 1 µM) in 0.1 M pH 7.4 phosphate buffer was treated

with increasing molar ratios of reagent HOCl (0, 5, 10, 25, 50, 100, 200 µM) diluted

in 0.1 M pH 7.4 phosphate buffer, prior to separation on the basis of molecular

mass by SDS-PAGE. Gels were subsequently fixed with 10% (v/v) acetic acid and

50% (v/v) methanol solution, and protein bands were detected with silver staining.

The data obtained under non-reducing conditions showed increased detection of dimer

and decreased detection of monomer bands, with increased presence of both higher

aggregates and fragments in a HOCl dose-dependent manner (Figure 3.2A). The samples

electrophoresed under reducing conditions showed increasing detection of the monomer

band, with dimers/higher aggregates appearing following incubation with high (> 200x)

HOCl molar ratios (Figure 3.2B).

After SDS-PAGE separation, protein bands were transferred onto PVDF membranes
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Figure 3.2: Silver staining of SDS-PAGE gels showing structural changes to human plasma FN treated
with increasing molar ratios of HOCl. Human plasma FN (1 µM) in 0.1 M phosphate buffer was either
untreated (control; 0x oxidant treatment) or treated with increasing concentrations of HOCl (0, 5, 10,
25, 50, 100, 200 µM), and incubated for 2 hr at 37°C. Samples were separated using 3-8% Tris-acetate
SDS-PAGE gels under A) non-reducing or B) reducing conditions. Gels were then fixed, and visualised
with silver stain and referenced against HiMark™ pre-stained high molecular mass standards. Bands are
labelled as follows: black arrow = parent dimer, white arrow = parent monomer band, Aggs. = higher
aggregates, and Frags. = fragments.

using an iBlot 2 transfer system and probed for the presence of functional epitopes.

PVDF membranes were blocked with 1% (w/v) BSA in 1x TBS and 0.1% (v/v) Tween

20 (TBST), followed by incubation with primary antibody overnight at 4°C. Excess

primary antibody was removed by washing with TBST, then the samples were incubated

with a HRP-conjugated secondary antibody followed by four washes with TBST

before development with ECL reagent and acquisition of blot images with an imaging

machine. Western blots were performed and probed for FN CBF under non-reducing and

reducing conditions. HOCl-treated FN samples showed an increased detection of both

dimer/higher aggregate (black arrow) and monomer (white arrow) bands under non-

reducing conditions (Figure 3.3A). Higher mass aggregates and fragments that possessed

the CBF were also detected in a dose-dependent manner at higher HOCl molar ratios

(Figure 3.3A). Samples electrophoresed under reducing conditions were found to show

the presence of dimer/higher aggregate at high HOCl to FN molar ratios (Figure 3.3B).

Fragments of FN were also detected with increasing fragmentation occurring at high
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molar ratios of HOCl to FN (Figure 3.3B).

Figure 3.3: Western blotting showing structural changes to human plasma FN treated with increasing
molar ratio of HOCl. Samples were separated on SDS-PAGE under A) non-reducing or B) reducing
conditions and transferred onto PVDF membranes. PVDF membranes were probed with mouse
monoclonal anti-FN CBF antibody (A17; 1:10000), and conjugated with anti-mouse HRP secondary
(1:2000). Blots were developed with ECL-plus reagent. Bands are labelled as follows: black arrow =
parent dimer, white arrow = parent monomer band, Aggs. = higher aggregates, and Frags. = fragments.

Structural changes on the proteins are usually caused by modifications to the amino

acid side chains, leading to changes in interactions between each other, that can cause

aggregation, or modifications to the peptide backbone resulting in fragmentations. Thus,

amino acid analysis was utilised to assist in identifying what amino acids were targeted

on FN during exposure to HOCl.
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3.3.3 Amino acid analysis of HOCl treated bovine plasma fibronectin

HOCl is known to target and modify certain amino acids on protein, and by analysing

which amino acids are affected, sites of modifications can be identified. Amino acids that

are major targets of HOCl in decreasing kinetic order are Cys > Met > His > Cystine >

Trp> Lys> Tyr [51]. FN was treated with varying concentrations of HOCl and incubated

for 2 hr at 37°C which was then precipitation by adding 0.3% (w/v) deoxycholic acid and

50% (w/v) TCA and incubated for 5 min on ice (Figure 3.4). Samples were spun down

to form a protein pellet, which was washed four times with ice cold acetone, with any

remaining acetone being removed with N2 gas. The protein pellet was then hydrolysed

with the addition of 0.2% (w/v) tryptamine in MSA in pico-tag hydrolysis vials, under

vacuum, and incubated overnight at 110°C to release the free amino acids. Vials were left

to cool to 21°C the next day and neutralised with 4 M NaOH, and subsequently filtered

through 0.2 µm Nanosep filters (Pall). Quantifications were made with HPLC with

fluorescence detection after being tagged with OPA. This particular method is unable

to measure changes to Cys/cystine residues and other methods are needed to define

these residue modifications. Bovine plasma FN (P07589; Uniprot data), closely related

to human FN in structure (90% sequence similarity; Uniprot data), was used for these

experiments as this was easier to obtain in the amounts required needed for experiments.

Amino acids were separated using a gradient buffer and a Shimadzu Shim-pack xR-ODS

column, following method used previously [130].

Amino acid analysis of bovine plasma FN treated with HOCl showed that methionine was

heavily modified with a dose-dependent decrease of the parent amino acid. This decrease

was statistically significant with a 200x molar ratio and HOCl, and a complete loss of the

parent was detected at a 1000x molar ratio (Figure 3.5A). Methionine sulfoxide (MetSO)

is commonly regarded as the major product of methionine oxidation [50]. Analysis of FN

showed that there was some MetSO present in the untreated samples, and no statistically

significant increase was detected with increasing molar ratios of HOCl (Figure 3.5B).

75



Figure 3.4: Methodology used to prepare bovine plasma FN for amino acid analysis using HPLC.
Bovine plasma FN was treated with increasing concentration of HOCl, prior to being precipitated and
hydrolysed to released free amino acids, which were tagged with OPA, and quantified using HPLC with
fluorescence detection.
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However, at 1000x molar ratio, there was a statistically significant decrease in MetSO,

which was likely due to secondary oxidation of the sulfoxide to the sulfone which cannot

be detected in this method.

Trp and Tyr residues are also reactive targets of HOCl [49]. It was demonstrated that

when FN was treated with HOCl, there was a decrease in Trp in a dose-dependent

manner, with statistically significant loss starting at 200x molar ratio (Figure 3.5C).

However, although Tyr is also known to be oxidised by HOCl, there was no changes to

the parent Tyr residues of FN when exposed to increasing concentrations of HOCl. This

may be due to its low reactivity and the abundance of alternate targets in FN. Other

amino acids (Asp, His, Ser, Glu, Arg, Gly, Thr, Ala, Val, Phe, Ile, Leu, Lys) were not

found to be targeted by HOCl in these studies and thus were omitted from these results.

Furthermore, a ThiolGlo assay was performed to analyse the modifications to thiol

residues on FN treated with HOCl. Treatment with 1x molar ratio of HOCl resulted

in no significant changes to the concentrations of thiols (Figure 3.6). Increasing the

treatment to HOCl 50x resulted in a loss of thiols of close to 50% (Figure 3.6).

Having identified that FN was structurally modified by exposure to HOCl, likely through

changes to certain amino acids or the structural peptide backbone, it was proposed that

loss of FN structural integrity would lead to a biological dysfunction. Thus, biological

assays were utilised to identify cellular function.
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Figure 3.5: Amino acid analysis of bovine plasma FN treated with increasing molar ratio of HOCl.
Bovine plasma FN (5 µM) was treated with the indicated molar ratio of HOCl (0, 5, 50, 1000, 5000
µM) then hydrolysed and derivatised for detection after separation using HPLC. Data analysis showed
changes in A) Met, B) MetSO, C) Try, and D) Tyr. The data are presented as a percentage relative to
control (no oxidant 0x treatment). Error bars are ± SD obtained from three independent experiments.
Statistical analysis was performed using one-way ANOVA with Tukey’s multiple comparison post hoc
tests to determine significance. Error bars are ± SD from three independent experimental triplicates.
Statistical significance is identified as follows: * = p < 0.05, ** = p < 0.01, *** = p < 0.001, and ****
= p < 0.0001. Other amino acids were not mentioned here as there was an were no changes detected.
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Figure 3.6: ThioGlo analysis of thiol levels on bovine plasma FN treated with HOCl. FN (5 µM)
was treated with increasing molar ratios of HOCl (0, 5, 250 µM) in a 96-well plate for 2 hr at 37°C
then ThioGlo reagent was added to each well. Concentration was measured against a GSH standard
to determine absolute concentrations. Statistical analysis was performed using one-way ANOVA with
Tukey’s multiple comparison post hoc tests to determine significance. Statistical difference is identified
as follows: * = p < 0.05.

3.3.4 Effect of cell adhesion on HOCl-modified human plasma

fibronectin

In light of the structural changes identified above, further investigations into the biological

effects that modified FN has on HCAEC activity were undertaken. The CBF is important

as it acts as a ligand to integrins on cells to mediate cell adhesion. Experiments were

prepared by coating 96-well plates with FN (0.02 µM), and treated with increasing

concentration of HOCl for 2 hr at 37°C, followed by a wash with sterile PBS to remove any

excess HOCl or by-products to prevent direct interactions with cells. Plates were blocked

with 3% (w/v) BSA in PBS, washed with sterile PBS, then HCAEC were incubated

onto each plate with 12,500 cells per well, for 1.5 hr at 37°C in a humidified atmosphere

containing 5% CO2. HCAEC were fixed with 10% (v/v) formaldehyde and stained with

crystal violet. Plates were then washed with subsequent air drying four times, and cell

stained with crystal violet were re-solubilised with acetic acid for the absorbance to be

read at 590 nm.
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Figure 3.7: Methodology used to prepare HCAECs incubated on HOCl-modified FN for quantification
with crystal violet. Human plasma FN was coated on a 96-well and exposed to increasing concentration
of HOCl. It was then blocked and incubated with HCAEC, which were fixed and stained with crystal
violet. Acetic acid was used to re-constitute crystal violet to measure absorbance at 590nm.

The experiment demonstrated a loss of cell adhesion, which was seen by a dose-dependent

decrease in cell adhesion with increasing concentrations of initial HOCl, with statistical

significance detected with a 500x or greater molar excess of HOCl (Figure 3.8). This loss

of cell adhesion corresponded with loss of recognition to the CBF of FN as demonstrated

by the ELISA experiment examining epitope antibody recognition (Figure 3.1A).

In light of these promising data indicating a loss of cell adhesion when HCAEC are left

to adhere to HOCl-modified FN, further experiments were carried out in which HCAEC

morphology were examined using immunocytochemistry (ICC) to identify cell integrity.

An 8-well glass chamber slide was coated with FN (0.02 µM) overnight in 0.1 M pH 7.4

phosphate buffer, then the slides were washed with PBS, treated with HOCl, prior to

blocking with sterile 3% BSA in PBS to reduce non-specific binding. The wells were

seeded with 50,000 cells and incubated for 1.5 hr at 37°C in a humidified atmosphere

containing 5% CO2, and any un-adhered cells were washed off with sterile PBS. Cells

were fixed (7.56% (v/v) of 38% formaldehyde, 0.72% (w/v) sucrose in PBS) for 15 min at

37°, then permeabilised by adding permeabilising solution (10.30% (w/v) sucrose, 0.292%

(w/v) NaCl, 0.476% (w/v) HEPES, 0.5% (v/v) Triton X-100 in milliQ water) for 5 min
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Figure 3.8: Crystal violet staining of HCAEC adhesion on HOCl-modified human plasma FN. Human
plasma FN (0.02 µM) was treated with increasing concentrations of HOCl (0, 5, 10, 25, 50, 100, 200 µM)
and incubated for 2 hr at 37°C before being fixed, stained with crystal violet, and re-solubilised with
acetic acid. The data are presented as a percentage relative to control (no oxidant; 0x treatment). Error
bars are ± SD from three technical replicates obtained from each of three independent experiments.
Statistical analysis was performed using one-way ANOVA with Tukey’s multiple comparison post hoc
tests to determine significance. Statistical significance was identified as follows: **** = p < 0.0001.

on ice to allow fluorescent dye to penetrate cells, washed with PBST, then blocked with

1% BSA in PBS for 1 hr at 21°C. Each well was incubated with rhodamine-phalloidin

diluted in 1% BSA in PBS overnight at 4°C, which stains F-actin fibres red. Plates were

washed with PBST, then subsequently incubated with Hoechst 33342 for 15 min at 21°C,

which stained cell nuclei blue. Slides were mounted using SlowFade Diamond antifade,

and imaged using a fluorescence microscope.

The chosen concentrations for ICC were based on the concentration/molar ratio where

significant loss of recognition of the antibody or decrease in cell adhesion were observed

on ELISA and crystal violet results. FN treated with 500x, 1250x, 2500x molar ratio of

HOCl demonstrated decreased number of HCAEC attached onto the treated FN with less

nuclei (DAPI blue fluorescence) stained, when compared to untreated control (0x oxidant

treatment) (Figure 3.10). Loss in cell numbers were also accompanied by impaired cellular

spreading as seen with the reduction in F-actin filaments spreading (red fluorescence),
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Figure 3.9: Methodology used to prepare HCAECs incubated on HOCl-modified FN for quantification
with immunocytochemistry. FN was coated on at 8-well slide and exposed to HOCl. Each sample
wells were blocked, and incubated with HCAEC. Bound HCAEC were permeabilised and stained with
rhodamine-phalloidin, followed by staining with Hoechst. Slide was mounted with SlowFade Diamond
Antifade prior to imaging with fluorescence microscope.
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whereby cells incubated on FN treated with higher concentrations of HOCl were unable

to spread into contact with adjacent HCAEC (Figure 3.10).

Figure 3.10: Immunocytochemistry of HCAEC adhesion on HOCl-modified human plasma FN. Human
plasma FN (0.02 µM) was coated on an 8-well glass chamber slide treated with increasing concentrations
of HOCl (0, 10, 25, 50 µM) for 2 hr at 37°C before being fixed then stained with rhodamine-phalloidin
for F-actin (red) and Hoechst 33342 for nuclei (blue) for fluorescence microscopic imaging.

Although cells may retain their ability to adhere to HOCl-treated FN, not all adhered

cells are metabolically active. Cell metabolism was therefore investigated to determine

whether these adhered cells are still metabolically active.
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3.3.5 Effect of cell metabolic activity on HOCl-modified human

plasma fibronectin

To further examine the biological effects that HOCl-modified FN has on ECs; cell

metabolism was measured using a live cell MTS assay which involves the reduction of MTS

tetrazolium to a coloured formazan. This reduction is thought to occur intracellularly

of metabolically active cells through the NAD(P)H-dependent dehydrogenase enzymes

[285]. Experiments were performed following the same method used for cell adhesion

(Figure 3.7). Instead of fixing cells, endothelial growth media was re-introduced into

the wells to allow the HCAEC to recover over 48 hr before cell metabolic activity was

quantified by addition of MTS reagent to each sample well. The absorbance of each

sample well was measured at 490 nm at 3 hr.

When compared to untreated control (0x), HOCl-modified FN showed a decrease in

cell metabolic activity in a dose-dependent manner. There was a statistically significant

decrease of almost 50% cellmetabolic activity at 2500x molar excess, with an even greater

decrease observed at 5000x and 10000x molar excess of HOCl compared to untreated

controls (0x) (Figure 3.11). This greatly reflects that a decreased in cells attached would

also caused a decrease in cell metabolic activity.

Both cell adhesion and metabolic activity were observed to be affected when HCAEC

were incubated on HOCl-treated FN. In light of this, real time qPCR was performed to

further investigate cellular responses to HOCl-treated FN by examining gene expression

in HCAEC.
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Figure 3.11: MTS assay of HCAEC metabolic activity on HOCl-modified human plasma FN. Human
plasma FN (0.02 µM) was treated with increasing concentrations of HOCl (0, 5, 10, 25, 50, 100, 200
µM) and incubated for 2 hr at 37°C before adding MTS reagent to each well. The data are presented
as a percentage relative to control (no oxidant; 0x treatment). Error bars are ± SD from three technical
replicates obtained from each of three independent experiments. Statistical analysis was performed using
one-way ANOVA with Tukey’s multiple comparison post hoc tests to determine significance. Statistical
significance was identified as follows: **** = p < 0.0001.

3.3.6 Effects of HOCl modified human plasma fibronectin on HCAEC

gene expression

Quantitative real-time PCR (qPCR) was performed to measure changes to gene

expression in HCAEC adherent on HOCl-treated human plasma FN. Surface bound FN

on 6-well plates were either left untreated (control; 0x oxidant treatment) or treated

with a 1250x molar ratio (50 µM) of HOCl, for 2 hr at 37°C. The wells were then

washed with sterile PBS to remove any excess HOCl or by-products to prevent their

interactions directly with HCAEC. HCAEC (500,000 cells) were seeded into each well and

incubated for 72 hr, prior to collection and extraction using a Qiagen RNeasy Mini Kit.

A Qiagen RT2 Profiler PCR Human Extracellular Matrix and Adhesion molecules Array

(330231; QIAGEN) was used to analyse a multi-array of genes associated with ECM and

adhesion, housekeeping genes, and controls for genomic DNA, RT-transcriptase controls,

and positive PCR control. Data analysis was performed using SABiosciences PCR Array
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Data Analysis Template and Web-based analysis software (www.SABiosciences.com/

pcrarraydataanalysis.php). Fold regulations were calculated using data compared to

control with normalisation within each sample set; significance was taken at p-value <

0.05. A table consisting of all genes examined are listed below (Table 3.1) with a following

table showing genes that showed significant changes in gene expression when compared

to untreated (0x oxidant treatment) control (Table 3.2).

Certain types of genes that were found to be up- or down-regulated were ADAMTS,

growth factors, integrin chains, adhesion molecules (CTNN and selectins), matrix

metalloproteinases (MMP), thrombospondin (THBS), ECM proteins such as collagen

chains, FN, laminin chain, versican, and ECM promoter. ADAMTS13, collagen chains

(5A1, 6A1), CTGF, CTNN (A1, B1, D1), integrin chains (A2, A7, B3, B4), MMP (11, 2),

SELL, SELP, SPG7, THBS (2, 3), TIMP (1, 2), ECM1, FN1, LAMA2 chain, and VCAN

genes were observed to be down-regulated with statistical significance (p < 0.05), when

HCAEC was incubated on HOCl-treated FN (Table 3.2). Certain genes were observed to

be significantly up-regulated under the same condition, such as integrin alpha 4 (ITGα4),

MMP1, and SELE (Table 3.2). The changes to integrin chains α4, β3 are important to

FN as they form the basis for cell binding.

The effects of HOCl on both the structure of plasma FN and the biological effects of

HOCl-modified FN on HCAEC were established, however cellular FN produced in the

subendothelial matrix may interact differently with HOCl. Cellular FN possesses variant

splice sequences on each chain, which are pertinent to matrix assembly and function. The

next experiments were designed to investigate the changes on the structure of cellular FN

exposed to HOCl in a whole ECM mixture harvested from HCAEC.
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Table 3.1: Gene expression investigated for ECM and adhesion molecules.

Genes Description

ADAMTS Type I, Type 13, Type 8 von Willebrand factor-cleaving protease
CD44 CD44 antigen; cell-cell interaction
CDH1 E-cadherin

CLEC3B Tetranectin
CNTN1 Contactin 1

[COL]1A1, 5-8A1, 11-12A1, 14-16A, 4A2, 6A2 Collagen chains
CTGF Connective Tissue Growth factor

[CTNN]A1, B1, D1, D2 Catenin α1, β1, δ1-2
ECM1 Extracellular matrix 1

FN1 Fibronectin
HAS1 Hyaluronan Synthase 1

ICAM1 Intercellular Adhesion Molecule 1
[ITG]A1-8, B1-5, AL, AM, AV Integrin chains

KAL1 Anosmin 1
[LAMA] A1-3, B1, B3, C1 Laminin Chains

[MMP]1-3, 7-16 Matrix Metalloproteinases 1-3, 7-16
NCAM1 Neural cell adhesion molecule 1

PECAM1 Platelet EC cell adhesion
SELE, SELL, SELP E-selectin, L-selectin, P-selectin

SGCE Sarcoglycan ε
SPARC Secreted protein acidic and cysteine rich

SPP1 Secreted phosphoprotein 1
TGFB1 Transforming growth factor beta induced

[THBS]1-3 Thrombospondin 1-3
[TIMP]1-2 TIMP metallopeptidase inhibitor 1-2

TNC Tumor Necrosis Factor
VCAM1 Vascular cell adhesion protein 1

VCAN Versican
VTN Vitronectin

ACTB, B2M, GAPDH, HPRT1, RPLP0 House keeping genes
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Table 3.2: Gene expressions of HCAEC incubated on human plasma FN (0.04 µM) pre-treated with
a 1250x molar ratio (50 µM) of HOCl.

Genes Function Fold Regulation P-Value

ADAMTS13 von Willebrand factor-cleaving protease -2.00 0.008
COL12A1 Interaction between collagen I fibrils and matrix -5.09 0.011
COL5A1 Type V collagen pro-α1(V) chain chain -1.30 0.005
COL6A1 Type VI α1(VI) chain -1.86 0.022
CTGF Connective Tissue Growth Factor -1.12 0.009

CTNNA1 Plays a role in cell adhesion -1.24 0.020
CTNNB1 Adherens conunctions protein -1.39 0.018
CTNND1 Armadillo protein for signal transduction adhesion -1.21 0.048
ITGA2 Integrin α2 partial chain receptor to ECM proteins -1.24 0.026
ITGA4 Integrin α4 partial chain receptor for FN 1.69 0.008
ITGA7 Integrin α7 partial chain laminin -3.90 0.046
ITGB3 Integrin β3 partial chain for ECM & cell adhesion -1.81 0.003
ITGB4 Integrin β4 partial chain for laminin -3.10 <0.001
MMP1 Cleaves collagen 1.33 0.021
MMP11 Weakly degrades ECM; control of cell proliferation -1.89 <0.001
MMP2 Degrades ECM and signal transduction molecules -1.35 0.002
SELE CAM important in inflammation 1.91 0.004
SELL CAM between ECs and lymphocytes -5.39 <0.001
SELP CAM on ECs -5.37 <0.001
SPG7 Paraplegin; regulator of cell and proteins -1.17 0.002

THBS2 cell-cell & cell-matrix interactions -1.86 0.023
THBS3 cell-cell & cell-matrix interactions -1.76 0.016
TIMP1 MMP inhibitor -1.58 0.002
TIMP2 MMP & EC proliferation -1.52 0.004
ECM1 ECM formation & angiogenesis -1.88 0.026
FN1 Formation of plasma & cellular FN -1.26 0.007

LAMA2 Laminin α2 chain -1.56 0.045
VCAN Versican protein -1.47 0.021
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3.3.7 Effect of HOCl on cellular-derived fibronectin epitopes

Plasma and cellular FN are both shown to be present in atherosclerotic plaques [18,

148]. Cellular FN possesses spliced variants which gives rise to their specific vessel and

matrix assembly functions such as the detectable EDA and EDB. However, the EDA and

EDB region is proposed to be important in wound healing, thrombosis, and maintaining

vascular wall integrity [286–288]. Whole ECM consists of a mixture of proteins, which

are bound to each other by specific functional epitopes. By using whole ECM extract

in samples, we can examine whether FN is a target when present amongst a mixture of

proteins.

HCAECs were cultured over a week in 96-well plates to establish an ECM into each well.

HCAECs were removed with ammonium hydroxide and washed with PBS. The sample

wells now containing HCAEC-derived ECM was then treated with varying concentration

of HOCl (0, 5, 10, 25, 50, 100, 200 µM) diluted in 0.1 M pH 7.4 phosphate buffer for 2

hr at 37°C. Excess HOCl was washed off with PBS and blocked with 0.1% (w/v) casein

in PBS to prevent non-specific binding, before being incubated with primary antibody

overnight at 4°C. Unbound antibody was then washed off with PBST, and the sample

wells were subsequently incubated with secondary antibody, and developed using ABTS

solution. The absorbance was measured at 405nm.

It was observed that FN CBF epitope was targeted, which resulted in a statistically

significant loss of epitope recognition at 5 µM excess (Figure 3.12A). A greater loss

of epitope recognition was detected in a dose-dependent manner of increasing HOCl

concentrations to FN (Figure 3.12A). The HBF epitope was also detected to be modified

by HOCl, with a statistically significant loss of epitope recognition detected at 5 µM excess

of HOCl (Figure 3.12B). Increasing the concentration of HOCl resulted in a proportionate

loss of antibody recognition to HBF epitope (Figure 3.12B). The loss of recognition to the

CBF and HBF epitope, which are shared between cellular and plasma FN, were found to

be similarly modified by HOCl as observed on plasma FN (Figure 3.1). The EDA epitope
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found on cellular-derived FN was found to significantly lose antibody recognition upon

exposure to 10 µM excess of HOCl (Figure 3.12C). No further loss in epitope recognition

was observed when increasing concentration of HOCl.

Investigating the structural changes on cellular FN followed this experiment as

modifications to the functional epitope would suggest modification to the structural

integrity of the protein.
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Figure 3.12: ELISA of HOCl-modification of whole ECM-derived from HCAEC. HCAEC-derived
whole ECM on 96-well plates were treated with increasing concentrations of HOCl (0, 5, 10, 25, 50, 100,
200 µM). FN epitope was detected by using a mouse monoclonal A) anti-FN CBF antibody (A17;
1:10000), B) anti-FN HBF antibody (A32; 1:1000), C) anti-FN EDA antibody (3E2; 1:1000), and
conjugated with anti-mouse HRP secondary (1:1000). The data are presented as a percentage relative
to control (no oxidant; 0 µM treatment). Error bars are ± SD from three technical replicates obtained
from each of three independent experiments. Statistical analysis was performed using one-way ANOVA
with Tukey’s multiple comparison post hoc tests to determine significance. Statistical significance was
identified as follows: * = p < 0.05, and **** = p < 0.0001.
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3.3.8 Effect of HOCl modification on cellular-derived fibronectin

To investigate changes to the structure of cellular FN by HOCl, Western blotting was

performed and probed for the important CBF, HBF and EDA functional epitopes. Whole

ECM was extracted from HCAEC, and diluted to ”1 µM” (not actual concentration) FN

which was then treated with increasing concentration of HOCl. Samples were run on SDS-

PAGE under reducing conditions, and then was transferred onto a PVDF membrane prior

to Western blotting.

A loss of epitope recognition was detected on the CBF of FN when treated with increasing

concentration of HOCl. There was a notable loss of antibody recognition of the monomer

band (white arrow) beginning at 25x molar ratio excess of HOCl, and greater loss detected

at higher concentrations of HOCl (Figure 3.13A). Formation of aggregates or altered

species (black arrow) were detected at 100 µM and 200 µM excess of HOCl (Figure

3.13A). The changes to HBF were found to be similar with loss of antibody recognition

of the monomer band (white arrow) detected at 50 µM of HOCl, and aggregates (black

arrow) appearing at 100 µM and 200 µM excess of HOCl (Figure 3.13B).

The cellular-derived FN EDA region loss epitope recognition of the monomer band (white

arrow) with increasing molar excess of HOCl. This loss was detected upon exposure to

25x molar ratio or greater of HOCl (Figure 3.13C). When incubated with a 100 µM or

200 µM excess of HOCl, aggregates were detected with smearing of bands noted from

the monomer band (white band) up to 460 kDa (Figure 3.13C). Binding at 190 kDa was

also detected, which loss recognition when treated with higher concentration of HOCl,

and was not detectable at 200 µM excess of HOCl (Figure 3.13C).

Due to the effects of HOCl-induced modifications on both plasma and cellular FN,

investigations into the presence of FN within atherosclerotic lesions were investigated.

IHC analysis was performed to identify the presence and location of FN and HOCl-

generated damage.
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Figure 3.13: Western blot showing structural changes to whole ECM-derived from HCAEC treated
with increasing molar ratio of HOCl. Samples that were separated on SDS-PAGE under reducing
conditions and transferred onto PVDF blots and probed with mouse monoclonal A) anti-FN CBF
antibody (A17; 1:10000), B) anti-FN HBF antibody (A32; 1:2000), C) anti-FN EDA antibody (3E2;
1:2000) and conjugated with anti-mouse HRP secondary (1:2000). Blots were developed with ECL-plus
reagent and data is labelled as follows: black arrow = dimer/higher aggregates, and white arrow =
monomer band.

3.3.9 Presence of native and modified fibronectin in human

atherosclerotic lesions

IHC analysis was performed to elucidate whether FN exists in advanced atherosclerotic

lesions, whilst simultaneously examining the presence of a HOCl-generated epitope. By

identifying and examining where they are situated and whether they are co-localised,

it would further support the finding that FN is targeted by HOCl. FN plays several

keys roles in the healthy functioning of the arterial wall in blood vessels and has been

previously detected in atherosclerotic lesions. Human atherosclerotic lesions (Type II-III),

identified using the Stary’s system of classification, were cryosectioned onto glass slides

at 5 µm. Sections were incubated with either polyclonal anti-FN, or monoclonal anti-FN

CBF antibody with Cy-3 labelled anti-HOCl generated epitope. Sections were mounted

with Movial (Calbiochem-Novabiochem, La Jolla, USA), before analysis using a confocal

laser-scanning microscope in sequential mode (Leica SP2, Leica Lasertechnik GmbH,

Heidelberg, Germany). Data in this section include sample processing and imaging was

obtained in collaboration with Professor Ernst Malle from Institute of Molecular Biology

93



and Biochemistry, Centre of Molecular Medicine, at Medical University of Graz, Austria,

and Professor Astrid Hammer of the Institute of Cell Biology, Histology, and Embryology,

Centre of Molecular Medicine, at Medical University of Graz.

Examination using polyclonal anti-FN antibody provides an overall distribution of FN

located within lesion tissues, whereas FN CBF monoclonal antibody binds specifically

to the CBF of FN assists in identifying specific areas where FN-CBF may be critically

targeted, which may be modulated and damaged during the progression of atheroslcerosis.

Advanced type II-III atherosclerotic lesions were shown to contain high abundance of

FN, which was this found to be localised particularly in the basement membrane of ECs,

with some detected in the deep media layer of the arterial sections (green fluorescence,

Figure 3.14A and 3.14D). Polyclonal anti-FN antibody detected a large distribution of

FN throughout the arterial wall, with greater abundance at the intima layer, and in

certain areas in the medial layer (green fluorescence, Figure 3.14A). In polyclonal anti-FN

antibody lesion samples, Cy-3 labelled 2D10G9 antibody (which binds to HOCl-generated

epitopes) was found to be highly abundant within the intima layer of the arterial wall,

with lower abundance detected throughout the medial layer (red fluorescence, Figure

3.14B). Merging of polyclonal anti-FN antibody and HOCl-generated epitope showed co-

localisation of these two species localised at the intimal layer, but was also present within

the medial layer (yellow fluorescence, Figure 3.14C).

Detection of FN using anti-FN monoclonal antibody showed a high abundance of FN in

the intima, with some presence in the medial layer (green fluorescence, Figure 3.14C),

but at lower intensity of fluorescence compared to polyclonal anti-FN antibody samples

(green fluorescence, Figure 3.14A). HOCl-generated epitope was detected throughout the

whole lesion sample with higher abundance on the intimal layer, and with lighter presence

also detected through the medial layer similar to the polyclonal anti-FN antibody sample

(red fluorescence, Figure 3.14A and 3.14E). Merging monoclonal anti-FN and HOCl-

generated epitope showed co-localisation of these two epitopes with localised distribution
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within the intima, with some distinct areas of co-localisation in the medial layer (yellow

fluorescence, Figure 3.14F). Co-localisation in the medial layer was much less intense in

fluorescence signal in comparison to the samples which were incubated with polyclonal

anti-FN antibody (yellow fluorescence, Figure 3.14C).

Figure 3.14: IHC of advanced human atherosclerotic plaque showing localisation of FN and HOCl-
generated epitope. Advanced human atherosclerosis lesions sections were incubated with either A)
polyclonal anti-FN or D) monoclonal anti-CBF of FN (green), while a HOCl-generated epitope was
detected with B, E) 2D10G9 antibody (red). Images were merged to identify areas of C, F) colocalisation
(yellow).

Furthermore, protein extracted from human atherosclerotic lesions were investigated

by separation on SDS-PAGE under reducing conditions and transferred on PVDF

membranes by Western blotting. Membranes were probed for using anti-FN EDA and

anti-FN EDB antibodies to look for epitopes specific to cellular FN. Both epitopes were

found to be present with FN bands detected at around 460 kDa and around 230-240

kDa (Figure 3.15) similar to what has been found previously with HCAEC-derived ECM

(Figure 3.13). Moreover, fragments of FN were found to be present at lower molecular

mass with greater intensity particularly at 140 kDa (Figure 3.15).
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Figure 3.15: Western blots of advanced human atherosclerotic lesions from two donors. Advanced
human atherosclerosis lesions from two different donors were electrophoresed on SDS-PAGE under
reducing conditions and transferred onto PVDF membranes. Membranes were probed for A, C) anti-FN
EDA antibody (3E2; 1:2000) or B, D) anti-FN EDB antibody (C6; 1:2000) found on cellular FN, which
were conjugated with anti-mouse HRP secondary (1:2000). Blots were developed with ECL-plus reagent
and data is labelled as follows: black arrow = dimer/higher aggregates, and white arrow = monomer
band.

These results evidentially support the presence of FN and HOCl-generated epitope in

advanced human atherosclerotic lesions and that they are a likely target for modifications

by HOCl.
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3.4 Discussion

FN plays a pivotal role as an ECM protein in maintaining the integrity of the basement

membrane to provide a stable environment for cells, such as arterial ECs. FN possesses

a variety of functional sites, equivalent to those of other ECM proteins, such as the

collagen and heparin binding epitopes. More importantly, FN contains a CBF, which

contains a well known RGD cell binding site via α5β1 and αBβ3 integrin [196]. Changes

to ECM proteins can lead to a disruption in cellular activity and cause downstream

negative effects. HOCl is a known oxidant to be produced during inflammation, and

high concentrations in a localised area has been known to cause damage to host cells

and proteins. The proximity of FN in the arterial wall to areas of plaque formation

make it important for investigating the changes that can occur during the progression

of atherosclerosis. In the studies reported here, it was found that plasma and cellular-

derived FN were both targeted and modified by HOCl leading to structural changes and

loss of antibody recognition to biologically critical epitopes. These modifications were

also found to cause biological effects leading to loss of cell adhesion and metabolic activity,

and causing changes to gene expression of HCAEC.

The structure of FN was shown to be susceptible to oxidation and modification by HOCl.

These modifications result in the fragmentation and formation of larger aggregates on

FN, causing subsequent changes to functional epitopes. It was observed that structural

changes to FN occur at as low as 5x molar ratio as observed on silver staining (Figure

3.2), whereby both aggregation and fragmentation were observed with increasing molar

ratio of HOCl. Protein aggregation (or an altered species) (black arrow) were formed

and observed under non-reducing SDS-PAGE (Figure 3.2A), which are likely formed by

the oxidation of sulfhydryl groups, producing di-sulfide crosslinks or shuffling of existing

disulfide bonds leading to formation of tetramers. It may also be possible that changes to

protein charge due to oxidation may also lead to altered electrophoresis through the gels.

HOCl had been shown previously to target these reactive sulfhydryl groups, oxidising
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them to sulfenic acids (R-SOH), which readily react with other free sulfhydryl group to

form disulfide crosslinks causing protein aggregation [49, 289, 290]. When samples were

processed under reducing conditions (Figure 3.2B), a majority of these dimers/higher

aggregates were reduced, supporting the fact that those examined under non-reducing

conditions were formed by disulfide crosslinks. Although some crosslinks were reduced to

their disulfide forms to recover the native monomer, some dimers/higher aggregates were

still present, which could be formed by other stronger intermolecular covalent bonds, such

as di-Tyr and di-Trp [53, 54]. These non-reducible aggregates are likely produced by the

formation of di-Tyr crosslinks, a secondary species resulting from the dimerisation of two

Tyr phenoxyl radicals [64, 291]. These protein aggregation have been observed previously

with FN treated with HOCl [260], which coincided with the formation of di-Tyr [64]. Thiol

oxidation and consequential formation di-Tyr formation has been found to be associated

with inflammatory oxidation, and are co-localised in atherosclerotic plaques [130, 292,

293], along with the increasing presence of chlorinated Tyr residues (3-chloroTyr), di-

Tyr, o-Tyr, and DOPA [64]. Aggregation of FN can lead to certain functional epitopes

becoming buried and undetectable due to the nature of protein folding, and fragmentation

of FN, particularly within functional sequences, which can lead to a decreased or total

loss of recognition by cells or other ECM proteins.

Reducing samples were shown to present with decreased protein fragment intensity. The

reduction of samples were previously performed as to reduce the occurrence of re-oxidation

by alkylating the proteins [294]. Furthermore, the decreased in fragment intensity could

be explained by the alteration of Cys/Cystine residues in samples by the reducing agent,

such as DTT [295]. This alteration would change the way FN electrophoreses through the

gel leading to a decrease in the fragment bands observed under non-reducing conditions.

This would be the case for the silver stains and the Western blots in each of the following

chapters.

FN possesses 27 Met and 63 Cys residues, with only 3 of of the Cys residues not present

in the form of disulfides [296]. These amino acids are known to be targeted by HOCl, and
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have been found to be highly reactive and readily oxidised by this oxidant [50, 51]. FN

possesses only 2 free thiols (Cys residues), which have been found to be buried within the

protein [297]. Due to this knowledge, it was thought that HOCl would not be targeting

these free Cys residues prior to the other more readily available amino acids. Met on FN

were found to be oxidised by HOCl with increasing loss detected by amino acid analysis

with increasing HOCl treatment concentration (Figure 3.5A). MetSO is readily formed

by Met oxidation [50], which was shown to be present in non-treated samples of FN, and

increased a small amount with increasing molar ratios of HOCl (Figure 3.5B). MetSO is

a common oxidation product associated with inflammatory processes and is believed to

contribute to biological aging [298, 299]. Available Met on protein have been proposed

to be targeted by oxidants as an antioxidative mechanism to prevent modifications on

other species [300, 301]; although the slow reduction rate of MetSO to the native Met

may make it an ineffective antioxidant [302]. It was previously shown that the addition

of Met to samples treated with HOCl correlated with an inhibition of crosslinks [260].

The data obtained in the current study showed a decrease in MetSO concentration at the

highest molar ratio of HOCl (Figure 3.5B), which can be explained by further oxidation

of MetSO to the corresponding sulfone MetSO2 which was not analysed/quantified here.

MetSO formation has been suggested to precede the formation of carbonyls [303]; protein

carbonyls are common biomarkers for oxidative stress. In vivo, the body contains a family

of MetSO reductase enzymes which helps in reducing the MetSO formed; these reductase

enzymes have been reported to be at low levels in certain pathologies and thus enable

the accumulation of MetSO [304]. In certain cases, instead of the two-electron oxidation

which produces MetSO, a one-electron oxidation is also a possible mechanism that leads

to the formation of methionine radial cations [304]. Each species is produced by different

mechanisms and each induces specific secondary effects. The formation of MetSO at

certain active sites on protein can lead to an inactivation and a loss of functional binding

epitope; an example of enzyme inactivation due to MetSO formation is α1-proteinase

[305].
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Other amino acids that are also susceptible to HOCl are Tyr residues leading to formation

of chlorinated Tyr, and free amine groups or lysine residues leading to formation of

chloramines and secondary products [64, 65, 306]. Tyrosyl residues readily react with

HOCl forming 3-chloroTyr, and 3,5-chloroTyr, which are long-lived products and common

biomarkers of HOCl modification [48, 59]. These have been shown to be present in

atherosclerotic lesions, though only in small quantities but significantly elevated over

control samples [64]. Chloramine formation is also highly likely in these experiments, and

further modifications may be induced by chloramines over longer periods of incubation.

A common mechanism of chlorinated Tyr formation is the transfer of chlorine from

chloramines to Tyr residues [49], which have been shown to cause further reactions on

the parent, and the decay of chloramines has been correlated with increased levels of

carbonyls [49, 59].

Protein carbonyls are a non-specific biomarker associated with protein oxidation and

oxidative stress. Previous experiments with bovine FN treated with HOCl in the same

manner, have shown that carbonyl formation occurs readily with this oxidant as detected

with a protein carbonyl Western blotting technique (Siriluck Vanichkitrungruang,

Honours thesis, 2013). The overall increased levels of carbonyl content in HOCl-treated

ECM correlated with an increased occurrence of aggregation and fragmentation [260].

These results are consistent with previous studies which examined hypochlorite treatment

of P388D1 cells, which showed increased levels of carbonyls and a corresponding drop in

cell viability, thiol levels, and protein Met and Trp residues [46]. Amino acid analysis of

Tyr residues in bovine FN were found to be unchanged upon exposure to increasing molar

ratios of HOCl (Figure 3.5D); suggested that this detection method was not sensitive

enough to pick up small changes. Further experiments need to be performed to investigate

the formation of chlorinated Tyr in samples as possible by-products of FN oxidation by

HOCl.

Chloramines have been found to have a varible stability with this dependent on time and

temperature as shown in in vitro experiments [260, 307]. Chloramine decomposition
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has been shown to induce chlorination of Tyr [308, 309], and these species are also

known to be a major driver for protein fragmentation [310]. Chloramine decomposition

produces nitrogen-centred radicals, which along with hydrolytic reactions have been found

to lead to fragmentation of proteins [307, 311]. The actions of chloramines have been

previously observed by detection with EPR and SDS-PAGE, to cause fragmentation of

plasma proteins [307]. Furthermore, this was observed on ECM proteins using radio-

labelled amino acids [65]. In vivo, chloramines are susceptible to reduction by biologically

occurring reductants, particularly Met, ascorbate, and thiols such as glutathione [310].

Formation of chloramines may be reduced by Met residues on FN, supporting the loss

of Met in HOCl-treated plasma FN samples (Figure 3.5A). Elevated levels of chlorinated

Tyr, in particular 3-chloroTyr have been found to be present in LDL isolated from human

atherosclerotic lesions [312, 313]. Furthermore, modified Tyr residues were found in

atherosclerotic ECM samples derived from human atherosclerotic plaques, which was

not the case in healthy human and pig aorta [64], as well as in other inflammatory

diseases [314, 315]. High concentrations of 3-chloroTyr can be subsequently converted

to 3,5-chloroTyr, which has also been found to be a biomarker for atherosclerosis [48,

59]. Lastly, Trp residues which were found to be targeted by HOCl (Figure 3.5C), have

previously been found to be modified in FN during treatment with HOCl [260]. Trp have

also been found to form crosslinks as a by-product of oxidation, but there are limited

studies on the nature of such crosslinks and the relevance of specific species - this area is

worthy of further investigation [316]. The mechanism of fragmentation and amino acid

modifications on FN should be further investigated, along with elucidating the location

of these modifications. This would assist in defining areas of susceptibility and what

functional epitopes are targeted that lead to a loss of functionality with other ECM

proteins or cells.

FN possesses 100 Tyr and 39 Trp residues (Uniprot data; P02751); 56 of these Tyr

residues and all of the Trp residues are located in functional sites [130]. The CBF, which

contains the RGD site, is situated in the region 1267-1540 of the amino acid sequence and
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possesses 1 Met, 3 Trp, and 10 Tyr. The HBF II is situated between residues 1721-1991

of the amino acid sequence and possesses 3 Met, 3 Trp, and 11 Tyr residues (Uniprot

data; P02751). Two neighbouring Cys residues are positioned on 1232 and 2136, which

present as disulfide bonds (Uniport data; P02751). Based on the amino acid analysis of

FN, it was found that Met and Trp parent amino acids were modified by treatment with

HOCl (Figure 3.5). This suggests that the modifications on these residues may impact

on the integrity of these functional sites, and subsequently cause a loss of the antibody

recognition and changes to biological activity of HCAEC on HOCl-modified FN.

It was found that FN CBF was susceptible to modifications by HOCl, leading to loss of

epitope recognition (Figure 3.1A and 3.3) and loss in cell adhesion (Figure 3.8). These

results corresponded with previous findings that showed that the CBF and collagen

binding fragments were susceptible to modifications upon exposure of the sub-endothelial

matrix to HOCl [261]. Furthermore, it was shown that ECs derived from umbilical cord

vein were lower in number as viewed under contrast microscopy, and cell spreading was

impaired as noted by the rounding of cells, which indicated that these cells adhered less

well on matrix that was exposed to HOCl [261]. This was similarly observed in HCAECs

incubated on HOCl-modified FN (Figure 3.10).

The collagen-binding domain was also found to be modified by HOCl, which led to a

decrease in epitope recognition, albeit to a lesser extent compared to the CBF [261].

The HBF II that is recognised by the antibody used (clone A32) is positioned in the

third domain of FN; HBF interacts with heparin/heparan sulfate, and it has been found

that modifications to amino acids within this domain led to decreased heparin binding

to FN [317]. This supports the current data where it was found with that the HBF was

modified by HOCl which led to loss of epitope recognition (Figure 3.1B). Matrix assembly

is highly dependent on the interactions between ECM proteins; the loss of integrity of

this complex mixture can affect the production of ECM by cells, and lead to an unstable

plaque formation during the progression of atherosclerosis.
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These structural modifications causing aggregation and fragmentation have been

demonstrated to also cause HCAEC to behave differently. HCAEC incubated on FN

exposed to HOCl were shown to have decreased binding capacity to FN and an inability

to spread their F-actin to adjacent cells (Figure 3.10). This inability for cells to adhere

onto oxidatively modified FN is consistent with previous studies [22, 130, 261], which

supports the notion that changes to FN structure leads to decreased cell adhesion. It has

also been previously shown that low concentrations of HOCl can cause small changes

to protein folding leading to an increase affinity to certain antibodies, while higher

concentrations of HOCl caused a decrease in recognition [271]. Furthermore, knock-out

of the EDA exon of FN has been implicated in a reduction of atherosclerotic lesion size

in apoE-/- mice [272, 273]. EDA in conjunction with the Toll-Like Receptor 4 (TLR-4),

which is a signalling molecule for an inflammatory cytokine pathway, have been shown to

promote dose-dependent NFκB-mediated inflammation [318]. Therefore, these modified

FN in lesion sites may not only cause biological function changes, but also activate

an inflammatory response [225]. It has been observed previously that degraded FN

promotes leukocyte migration and chemotaxis to the injury site [266, 267], and increases

neutrophil degranulation [268]. Additionally, the inflammatory response was observed to

be lower when FN assembly was inhibited [147, 269], supporting the importance of FN

in mediating inflammation-induced leukocyte recruitment. This may suggest that FN is

modified by HOCl-mediated damage, causing vascular remodelling, cellular dysfunction

and promotion of leukocyte recruitment to the injury site. This positive feedback loop

may lead to further damage, and subsequently a detrimental cycle in the development of

atherosclerotic plaque.

HCAECs incubated on HOCl-modified FN were found to cause changes to HCAEC

gene expressions (Table 3.2). The genes examined were specific for ECM and adhesion

molecules, some of which are expressed exclusively by EC, while others are also expressed

by other cells, such as leukocytes. A complex and balanced homeostatic relationship is

required between MMP, ADAMTs, and TIMPs in normal turnover of basement membrane
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ECM. It was found that MMP-2, MMP-11, and MMP-14 had decreased gene expression

when HCAEC were incubated on HOCl-modified FN (Table 3.2). MMP-2 is normally

expressed during vascular formation and remodelling, and has been found to promote the

formation of atherosclerotic lesions, with MMP-2 deficient apoE-/- mice found to have

reduced atherogenesis [319]. Furthermore, up-regulation of MMP-2 has been associated

with aortic atherosclerotic lesion development [320], accompanied by a thin fibrous cap

which increases risk of plaque rupture and intra-plaque haemorrhage [321]. Down-

regulation of MMP-2 gene expression in HCAEC exposed to HOCl-modified FN could

suggest that in an acute injury, there are attempts at preservation of remaining intact

ECM and vasculature (Table 3.2).

Both MMP-11 and MMP-14 have been found to be elevated in atherosclerotic plaque;

particularly in areas with increased risk of rupture [322, 323]. MMP-11 weakly degrades

matrix protein, and preferentially targets serum proteinase inhibitors [324] and signal

transduction molecules [325]. The degradation of serum proteinase inhibitors have been

correlated with increased neointima formation, and fibrotic scarring on blood vessels

[324]. Furthermore, MMP-11-/- mice models showed extensive degradation of the internal

elastic lamina accompanied by abundant levels of intimal cells [324]. In addition, MMP-14

cDNA, expressed from adenovirus vector, is linked to focal adhesion kinase degradation,

and was examined to cause rounding of cells along with decreased cell adhesion of Baboon

aortic VSMC, which was not dependent on integrin levels [326]. In contradiction, there

have been mixed findings where previously MMP-14 expression has been suggested to

increase thickness of fibrous cap to promote plaque stability by its promotion of VSMC

migration and proliferation into the area [327].

It has been found that MMP-2 expression is due to presence of membrane type MMP

(such as MMP-14); the activation of MMP-2 is correlated to an up-regulation of MMP-14

[328, 329]. Down-regulation of MMP-14 could suggest the subsequent down-reglation of

MMP-2 in HCAECs incubated on HOCl-modified FN (Table 3.2. It was shown that FN-

derived synthetic peptides up-regulate the expression of MMP-9, MMP-2, and MMP-14 in
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human T lymphocyte cell lines [330]. This suggest that response of HCAECs incubated

on HOCl-modified FN are down-regulating MMP-2 and MMP-14 (Table 3.2). Down

regulation of MMP-14 was found to occur in HCAEC when they were incubated on

HOCl-modified FN, suggesting that loss of FN integrity was unable to upregulate MMP-

14 expression and subsequently activate MMP-2 (Table 3.2). In previous studies, it has

been shown that HOCl activates pro-MMP-7 due to oxidation of Cys residues [331]. In

atherosclerotic plaques, there was an up-regulated expression of MMP-7, MMP-13, and

MMP-3 genes [332]. These gene expressions were not observed to be upregulated in

HCAEC incubated on HOCl-modified FN, which is likely because the activators for these

genes are different or different cells are producing these MMPs in lesions.

TIMPs are inhibitors for MMP, and hence inhibit remodelling of the vasculature; each

TIMP possesses specificity for their respective MMP with possible weaker activity on

others. TIMP-1 effectively inhibits MMP-7, MMP-9, and MMP-14 and MMP-3, whereas

TIMP-2 is more effective at inhibiting and cleaving membrane type MMP-2 [333, 334].

Elevated expression of MMPs are observed in atherosclerotic plaques with corresponding

elevation of both TIMP-1 and TIMP-2 expressions, which is required to compensate for

the increased activity of MMPs [335]. Low to moderate levels of TIMP-2 are important

for the activation of MMP-2 [336], with TIMP-2-/- mice showing heavily impaired MMP-2

activation [336]. HOCl-modified FN was shown to cause a down-regulation of TIMP-2 in

HCAEC (Table 3.2); decreases in TIMP-2 have been observed in atherosclerotic lesions

when compared to healthy samples [337]. The presence of TIMP-2 has also been observed

to inhibit VSMC migration and proliferation [338]. Furthermore, over-expression of

TIMP-2 resulted in decreased migration of macrophages into the area, and reduced

atherosclerotic plaque size [339]. TIMP-1 has been observed to either be unchanged

[337], or elevated in atherosclerotic plaques [340]. TIMP-1-/- mice were observed to have

increased matrix accumulation in the neointimal area compared to mice that expressed

TIMP-1 [341]. TIMP-1 and TIMP-2 gene expression were both observed to be down-

regulated when HCAEC was incubated on HOCl-modified FN (Table 3.2), which is likely
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a response to the down-regulation of MMPs.

ADAMTS13 are primarily produced in the liver but vascular EC are found to have small

quantities of the mRNA for this enzyme which regulates thrombosis, angiogenesis, and

down regulates inflammation [342]. Past studies have identified von Willebrand factor

(vWF) as the only known substrate for ADAMTS13, which functions in both thrombosis

and inflammation [343–345]. It has been previously shown that ADAMTS13-/- and

vWF+/+ mice resulted in increased leukocyte rolling on unstimulated mesenteric veins

[346]. Furthermore, these knockout mice were also found to have increased leukocyte

adhesion with additional knockout of vWF showing markedly less changes compared to

WT [346]. A later study supported these findings and further showed that mice with both

apoE-/- and ADAMTS13-/- were more prone to developing early atherosclerotic lesions in

the aorta [347]. Moreover, lesions from apoE-/-/ADAMTS13-/- knockout mice were found

to have increased macrophage numbers, and were also found to have a lower content

of collagen [347]. Low levels of ADAMTS13 have been associated with increased risk

of CVD, particularly with increased risk of myocardial infarction in younger patients

that presented with high levels of vWF levels [348, 349]. Although the risk of CVD are

dependent on both ADAMTS13 and vWF levels in individuals, it has also been reported

that there is no direct correlation between ADAMTS13 and vWF levels [349]. The down-

regulation of ADAMTS13 expression in HCAEC incubated on HOCl-modified FN may

suggest an inflammatory response by HCAEC to increase recruitment of both leukocyte

and macrophages to the area of injury.

Cell surface integrins are important in cellular interactions with the surrounding ECM,

and thus modifications to ECM proteins can lead to consequential effects on cell activity.

A wide variety of cells express integrins and within the qPCR array performed, some

were either not expressed by EC or were not identified to adhere to FN [350] and hence

will not be discussed here. The RGD sequence in the CBF of FN is the site of cell

adhesion via integrins α5β1 and αVβ3; the variable region on FN also possesses a site for

binding to α4β1 integrin presented by cells [149, 196, 351, 352]. The down-regulation of
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ITGB3 is likely a response to HOCl-modified FN presenting without an adhesion ligand

for β3 integrin to bind to (Table 3.2). The αVβ3 region plays a role in cell survival,

proliferation and migration [353]. In the early stages of atherosclerosis, elevated levels

of αVβ3 adhesion molecules were found, and might be a response by the EC attempting

to promote cell proliferation and migration [350, 354]. The αVβ3 integrin is found to be

present in arteries, regardless of the presence of an atherosclerotic plaque, colocalised to

both ECs and SMCs within tissues [355]. The α4 integrin chain is expressed on EC for FN,

for initiation of ECM remodelling [356], and is a mechanism for recruiting macrophages

to atherosclerotic plaques [357]. There were no statistically significant changes to αV, α5,

and β1 expression from HCAEC incubated on HOCl-modified FN (Table 3.2). Down-

regulation of β3 was likely a response to the modified CBF on FN, as cells detected loss

of the ligand, thus in response up-regulated α4 attempting to increase HCAEC binding

capabilities to the variable region on FN, and recruit more macrophages to the site of

injury.

Selectins are part of a family of cell adhesion molecules (CAM), and are located as

transmembrane single chain glycoproteins. E-selectin and P-selectin are expressed by

ECs, whereas L-selectin is solely expressed by leukocytes and will not be discussed here

[350]. E-selectin on inactive resting EC is expressed at very low levels, with an up-

regulation occurring in response to inflammatory cytokines/stimuli [358, 359]. It has

been shown that up-regulation of E-selectin occurs in EC from atherosclerotic intima,

but not in non-atherosclerotic control samples [360]. Furthermore, it was also found that

the expression of E-selectin in individuals was exclusively on ECs, and expressed along

with ICAM-1 and VCAM-1 in the neovasculature of atherosclerotic plaques [360]. As

inflammation occurs, inflammatory cytokines IL-1 and TNF-α are released and have been

shown to up-regulate E-selectin expression [361, 362]. The up-regulation of the SELE

gene by HCAEC incubated on HOCl-modified FN is likely an inflammatory response to

promote the migration of leukocytes to the area of injury.

P-selectins (SELP) are expressed on ECs but predominantly on platelets, and plays an
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important role in leukocyte adhesion and recruitment in apoE-/- mice; this functions

to promote inflammation and consequentially atherosclerosis [363]. In the presence of

P-selectin in apoE-/- mice, plaques were found to be bigger with more calcification

and fibrosis [363]. Elevated levels of P-selectin were also found to be correlated with

coronary heart disease risk factors [364], and are found to be associated with thickening

of the intima-media layer, supporting its role in preclinical atherosclerosis [365]. The

expression of P-selectin is associated with an acute inflammatory response, as they are

stored internally in ECs and are able to be released immediately [358, 364, 366]. Down-

regulation of the SELP gene in HCAEC incubated on HOCl-modified FN may be due

to a chronic response to recruit leukocytes to the area by up-regulating SELE instead.

Furthermore, due to the action of P-selectin in recruiting platelets to sites of injury, the

down-regulation of SELP may be a response to decrease platelet binding thus preventing

clotting at the site of injury.

This was a preliminary study looking at gene expression, and further investigations clearly

need to be undertaken to further elucidate these changes, particularly in correlation with

protein expression and whether this reflects their respective gene expression. The changes

of gene expression in HCAEC as a result of acute or chronic injury might be a mechanism

that prevents instability of the ECM of which cells are bound to.

The importance of FN in maintaining vascular integrity is believed to be due to its

interactions with other ECM proteins, and cells, such as ECs, to provide a strong

and tensile ECM. The modifications and degradation of FN can lead to a reduction

in ECM integrity, negatively impacting cellular activity, preventing proper cell adhesion

or proliferation. The loss in healthy cell function and an intact ECM can increase the

likelihood of a thinner and more unstable fibrous cap. These unstable caps are more

susceptible to rupture, consequentially causing thrombosis in the affected area, which

can lead to myocardial infarction or stroke in individuals. These experiments have shown

that FN is susceptible to HOCl modifications, but there are other oxidants known to be

formed by the MPO system, such as HOSCN. HOSCN is highly specific and their effects
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on FN will be explored in the next chapter.
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Chapter 4

Modifications to fibronectin by HOSCN

4.1 Introduction

FN is an ECM protein that exists in the basement membrane of arterial EC. In

combination with other proteins, FN provides a healthy environment and network for cells

[149, 195, 196]. It is important for vascular remodelling during inflammation amongst

other important functions as discussed in Section 1.4.3 and Section 3.1.

Leukocyte migration into the arterial wall occurs as part of an inflammatory response to

the deposition of LDL [5]. MPO is released from leukocytes, which are known to generate

HOCl from H2O2 and physiological concentrations of Cl- [50, 51, 57]. However, it is known

that MPO has a higher specificity for SCN- when compared to Cl- (by almost 730 fold),

and elevated levels of this pseudohalide is found to produce elevated concentrations of

HOSCN [94, 99, 110, 367]. MPO compound I has a rate constant for SCN- of 9.6 ± 0.5 x

106 M-1, with a lower rate constant for Cl-, which is 2.5 ± 0.3 x 104 M-1 s-1 [27]. Elevated

plasma levels of SCN- (80-400 µM [96–99]) have been found to occur in smokers, where

CN- is detoxified to SCN- [98], as a result of ingestion of certain plants, fruits, and nuts

[368], and exposure to drugs such as nitroprusside [369].

HOCl is less specific and has been seen to react widely with several oxidisable groups

[49, 50]. However, HOSCN has previously been shown to specifically target thiols and

cysteine residues leading to reversible products such as RS-SCN adducts, sulfenic acids,
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and disulfides [106, 370]. These products can be reversed via GSH or by enzymes such as

glutaredoxin or thioredoxin reductase [106, 370]. Further oxidation of reversible products

can generate irreversible products such as cysteic acid [106]. The presence of HOSCN

is dependent on MPO and SCN- concentrations, and has been reported to have either a

detrimental or a protective effect [99, 106, 367, 371].

FN has been shown previously to be modified by HOCl (see Chapter 3 and references

therein) leading to structural changes and causing biological dysfunction, however there is

very limited information of the effects of HOSCN on ECM proteins with most studies on

this oxidant having investigated the cellular effects of this species. In light of the current

studies available about HOSCN, it was hypothesised that human plasma and cellular FN

might be targeted and modified by HOSCN but to a lesser extent in comparison to HOCl.

4.2 Aim

The experiments performed in this chapter aimed to elucidate the effects HOSCN has on

human plasma FN and cellular-derived FN in whole ECM extracts. Protein structural

changes and antibody recognition to specific functional epitopes were examined using

SDS-PAGE, Western blotting and ELISA assays. To determine thiol oxidation on FN by

HOSCN, ThioGlo assay was utilised against a GSH standard. Lastly, investigations were

carried out on the biological effects that HOSCN-treated FN has on HCAEC by utilising

cell adhesion and cell metabolic activity assays, and real time qPCR to determine changes

in gene expression.
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4.3 Results

4.3.1 Potential effects of HOSCN on human plasma fibronectin

epitopes

The concentration of SCN- in plasma is generally lower than Cl- but elevated levels

of plasma SCN- have been detected in smokers [99]. By identifying the changes made

by HOSCN on FN, we can elucidate how extensive these modifications are and detect

changes that may occur in these individuals that have elevated SCN- (80-400 µM) levels.

Preparation and treatment of FN using HOSCN followed the method used in Section

3.3.1. HOSCN was prepared by incubation of LPO in the presence of SCN- and H2O2,

prior to being diluted in 0.1 M pH 7.4 phosphate buffer and added to FN samples.

Human plasma FN (0.02 µM) was treated with HOSCN (0, 5, 10, 25, 50, 100, 200

µM) (Table 2.4), and changes to the CBF epitope were measured using ELISA. Human

plasma FN treated with HOSCN showed only minor changes to the recognition of the CBF

epitope with increasing HOSCN concentration (Figure 4.1). Treatment with HOSCN led

to a small loss of CBF epitope recognition with no marked loss with increasing molar

excess (Figure 4.1A). However, a statistically significant loss of epitope recognition was

detected at 2500x and 10000x molar excess (Figure 4.1A).

As these data suggests, there are some modifications caused by HOSCN to the FN CBF,

further investigations were conducted to examine the structural integrity of FN when

treated with HOSCN.
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Figure 4.1: ELISA of human plasma FN treated with increasing concentrations of HOSCN. Each well
was coated with 0.5 µg FN (0.02 µM) in 0.1 M phosphate buffer and either left untreated (control; 0x
oxidant treatment) or treated with HOSCN (0, 5, 10, 25, 50, 100, 200 µM), and incubated for 2 hr at
37°C. FN epitope was detected by using a mouse monoclonal anti-FN CBF antibody (A17; 1:10000), and
conjugated with anti-mouse HRP secondary (1:1000). The data are presented as a percentage relative to
control (no oxidant; 0x oxidant treatment). Error bars are ± SD from three technical replicates obtained
from each of three independent experiments. Statistical analysis was performed using one-way ANOVA
with Tukey’s multiple comparison post hoc tests to determine significance. Statistical significance is
identified as follows: * = p < 0.05.
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4.3.2 Effect of HOSCN on the structure of human plasma fibronectin

FN possesses two disulfide bonds at the carboxyl termini with 2-3 free thiols present on

the protein (Uniprot data; P02751) [296]. Due to the specificity of HOSCN for thiol

residues, it was therefore of interest to investigate whether this oxidant modifies FN

protein structure by using SDS-PAGE. Purified human plasma FN was left untreated (0x

oxidant control) or treated with increasing concentrations (0, 5, 10, 25, 50, 100, 200 µM)

of HOSCN. A lower molar ratio was used to examine the minor structural changes induced

by HOSCN on FN. Samples were then separated by SDS-PAGE under non-reducing or

reducing conditions with added high molecular mass marker, and then silver staining

was performed. Experiments were carried out as described in Section 3.3.2, to examine

potential changes such as aggregation or fragmentation.

Silver staining of human plasma FN samples exposed to HOSCN separated under non-

reducing conditions showed fragmentation of the protein with increasing molar excess

of HOSCN (Figure 4.2A). These fragments can be seen just below the dimer/higher

aggregate band (black arrow), and with the darker silver staining intensity just above

and below the monomer band (white arrow) (Figure 4.2A). Aggregation or formation of

an altered species are particularly evident at higher concentrations of HOSCN just above

the dimer band (black arrow), and evident by the smearing of the samples (Figure 4.2A).

Samples electrophoresed under reducing conditions did not show these fragments or higher

aggregates (or altered species) to such a notable extent (Figure 4.2B). No changes were

detected in the monomer band (white arrow), but there was a slight increase in the dimer

parent band (black arrow) with this being dependent on the molar ratio of HOSCN to

FN (Figure 4.2B).

To further investigate possible damage to FN, Western blotting was performed to detect

structural changes to the CBF epitope (clone A17). Treated samples were separated on

SDS-PAGE and transferred to PVDF membranes using an iBlot2 machine following the

method outlined in Section 3.3.2. Under non-reducing conditions, treatment of FN with
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Figure 4.2: SDS-PAGE with silver staining shows structural changes to human plasma FN treated
with increasing molar ratios of HOSCN. Purified human pFN (in 0.1 M pH 7.4 phosphate buffer) was
either left untreated (control) or treated with increasing concentrations of HOSCN (0, 5, 10, 25, 50, 100,
200 µM), and incubated for 2 hr at 37°C. Samples were separated using 3-8% Tris-acetate SDS-PAGE
gels under A) non-reducing or B) reducing conditions. Gels were then fixed, and visualised with silver
stain and referenced against HiMark™ pre-stained High Molecular Mass standard. Data are labelled as
follows: black arrow = dimer/higher aggregates, and white arrow = monomer band.
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increasing molar excesses of HOSCN resulted in a small loss of epitope recognition of the

monomer band (white arrow) (Figure 4.3A). HOSCN treated FN also showed increasing

evidence of fragmentation, as observed both above and below the monomer bands (white

arrow) (Figure 4.3A). Samples electrophoresed under reducing conditions showed that the

monomer parent band (white arrow) decreased in intensity with increasing molar excesses

of HOSCN compared to control (0x oxidant treatment). Furthermore, there seems to be

a very slight decrease in the intensity level of dimer bands (black arrow) with increasing

concentrations of HOSCN (Figure 4.3B).

Figure 4.3: SDS-PAGE followed by Western blotting shows structural changes to human plasma FN
treated with increasing molar ratios of HOSCN. Samples that were separated on SDS-PAGE under A)
non-reducing or B) reducing conditions and transferred onto PVDF blots and probed with a mouse
monoclonal anti-FN CBF antibody (A17; 1:10000), and conjugated with anti-mouse HRP secondary
(1:2000). Blots were developed with ECL-plus reagent and data is labelled as follows: black arrow =
dimer/higher aggregates, and white arrow = monomer band.

In light of the data found and knowledge known about HOSCN, changes to thiol residues

were next investigated to determine whether these are targeted by HOSCN.
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4.3.3 Thiol assay analysis of HOSCN treated bovine plasma

fibronectin

FN possesses a low number of free thiol groups with 2-3 free thiols on the protein, which

may be targeted by HOSCN during oxidation [296]. Modifications to free thiols can lead

to protein structural changes (possibly via formation of intra-protein disulfide bonds) and

affect biological function. By examining whether free thiols are targeted by HOSCN, a

picture can be formed about HOSCN and its interaction with FN. Bovine plasma FN was

used for these experiments as it was easier to obtain the amounts required, however the

structure of human and bovine FN are closely related (90% sequence similarity; Uniprot

data). Bovine plasma FN (5 µM) bound on 96-well plates in 0.1 M pH 7.4 phosphate

buffer was exposed to increasing concentrations of HOSCN for 2 hr at 37°C. ThiolGlo

solution was prepared as a working solution following manufacturers instructions, and

transferred in a 1:1 ratio to samples and GSH standard. Samples were incubated for

10 min at 21°C on a shaker in the dark. Fluorescence was measured at 384nmex and

513nmem.

Non-treated (control) samples were found to have approximately 80 nM of detectable

thiol concentration. With FN samples exposed to 1x molar of HOSCN, thiol levels were

found to have decreased to 50% of control samples (Figure 4.4). Increasing the HOSCN

concentration to a 50x molar ratio relative to FN, it was observed the thiol concentration

was eventually zero with a statistically-significant loss compared to the control samples

(Figure 4.4).

These data suggests that HOSCN targets thiol residues on FN and causes small structural

changes leading to epitope modifications. As a consequence, further studies were carried

out to examine the biological effects of modifications induced by HOSCN on FN.
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Figure 4.4: ThioGlo analysis of thiol levels on bovine plasma FN treated with HOSCN. FN (5 µM)
was treated with increasing molar ratios of HOSCN (0, 5, 250 µM) in a 96-well plate for 2 hr at 37°C
then ThioGlo reagent was added to each well. Concentration was measured against a GSH standard
to determine absolute concentration. Statistical analysis was performed using one-way ANOVA with
Tukey’s multiple comparison post hoc tests to determine significance. Statistical difference is identified
as follows: ** = p < 0.01.

4.3.4 Effect of cell adhesion HOSCN-modified human plasma

fibronectin

The biological effects of HOSCN-treated FN on HCAEC was further elucidated by

performing a cell adhesion assay. These experiments were performed as described in

Section 3.3.4. Surface-bound FN (0.02 µM) was treated with increasing concentrations

of HOSCN (0, 5, 10, 25, 50, 100, 200 µM) diluted in 0.1 M pH 7.4 phosphate buffer,

followed by washing with PBS to remove excess oxidant to prevent direct interaction of the

oxidant with HCAEC. HCAEC were added to each sample well at a density of 12,500 cells

per well, followed by rinsing with 1% casein in PBS to remove any unadhered HCAEC.

Adhered HCAEC were fixed then stained with crystal violet, which was resolubilised in

acetic acid and absorbance was measured at 590 nm.

Exposure of human plasma FN to HOSCN resulted in minor changes in the ability of

cells to bind when compared to untreated (0x oxidant treatment) FN. However, increasing

HOSCN concentrations showed variable results, with no statistical significance detected
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with increasing concentrations of HOSCN (Figure 4.5).
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Figure 4.5: Cell adhesion of HCAEC on HOSCN-modified human plasma FN. Surface-bound human
plasma FN (0.02 µM) was treated with HOSCN (0, 5, 10, 25, 50, 100, 200 µM) and incubated for 2
hr at 37°C before being fixed, stained with crystal violet and absorbance was measured. The data are
presented as a percentage relative to control (no oxidant; 0x oxidant treatment). Error bars are ± SD
from three technical replicates obtained from each of three independent experiments. Statistical analysis
was performed using one-way ANOVA with Tukey’s multiple comparison post hoc tests to determine
significance. Statistical significance was not found.

To examine changes to the cellular structure, ICC was performed using a Hoechst

nuclei blue fluorescence stain and a rhodamine-phalloidin F-actin red fluorescence stain.

Experiments were carried out as described in Section 3.3.4 (Figure 3.9). Both cell number

and cell spreading can be examined with this method. Surface-bound human plasma FN

on an 8-well slide was treated with HOSCN, washed with PBS, and incubated with

50,000 cells for 1.5 hr at 37°C in a humidified atmosphere containing 5% CO2 before

being stained with Hoechst and rhodamine-phalloidin. The samples were imaged using

fluorescence microscopy.

The changes to the extent and nature of HCAEC adhesion and spreading on HOSCN-

treated FN (compared to controls) were less extensive compared to that induced by

HOCl (Figure 3.8). The number of cells did not fluctuate but appeared to be constant

with increasing concentrations of HOSCN (Hoechst blue fluorescence) (Figure 4.5B).
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The ability of cells to spread and interact with other ECs was observed to be similar to

untreated control (0x oxidant treatment) samples (Phalloidin red fluorescence) (Figure

4.5B).

Figure 4.6: Immunocytochemistry of HCAEC adhesion on HOSCN-modified human plasma FN.
Human plasma FN (0.02 µM) was coated on an 8-well plate treated with increasing concentrations of
HOSCN (0, 10, 25, 50 µM) for 2 hr at 37°C before being exposed to HCAEC, which were subsequently
fixed and stained with rhodamine-phalloidin (red) and Hoechst 33342 (blue) for fluorescence microscopic
imaging.

These data suggests that HOSCN-modified FN may not alter the adhesion of HCAEC,

however the oxidant treatment may still generate other long term changes, which were

subsequently investigated by investigating cellular metabolic activity.
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4.3.5 Effect of cell metabolic activity HOSCN-modified human plasma

fibronectin

Cellular metabolic activity can be affected independently of cell adhesion, and impairment

of this process can be identified using an assay to examine whether cells maintain their

activity. Surface-bound FN was either untreated (0x oxidant control) or treated with

increasing concentrations of HOSCN, then washed to remove excess oxidant following

methods describe in Section 3.3.5. Each well was incubated with 12,500 cells per well,

and any unbound cells were washed away with 1% casein in PBS. Fresh growth media

was then added to each well, and HCAEC were incubated under normal tissue culture

conditions for 48 hr to recover, prior to addition of MTS reagent to measure absorbance

at 490 nm at 3 hr.

HCAEC adhesion on HOSCN-modified FN showed variable changes (Figure 4.5).

However, HCAEC incubated on HOSCN-modified FN showed a constant level of cell

metabolic activity with increasing concentration of HOSCN treatment of the FN (Figure

4.7). No statistically-significant changes were detected and HOSCN-modified FN,

therefore did not significantly affect the ability of the HCAEC to proliferate (Figure

4.7). Decreased cell metabolic activity would be heavily influenced by a decreased in

cells attached to the plate.

Due to the specificity of HOSCN oxidation, certain biological effects may not be severely

effected, but HCAEC may react by expressing different genes to deal with environmental

changes. Real time qPCR therefore was performed in light of the previous data to identify

possible changes in HCAEC gene expression when incubated on HOSCN-treated FN.
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Figure 4.7: MTS assay of HCAEC metabolic activity on HOSCN-modified human plasma FN. Human
plasma FN (0.02 µM) was treated with increasing concentrations of HOSCN (0, 5, 10, 25, 50, 100, 200
µM) and incubated for 2 hr at 37°C before adding MTS reagent to each well. The data are presented as
a percentage relative to control (no oxidant; 0 µM treatment). Error bars are ± SD from three technical
replicates obtained from each of three independent experiments. Statistical analysis was performed using
one-way ANOVA with Tukey’s multiple comparison post hoc tests to determine significance. Statistical
significance was not found.

4.3.6 Effects of HOSCN modified fibronectin on HCAEC gene

expression

Gene expression can be up- or down-regulated as a cellular response to change.

Experiments were carried out as described in Section 3.3.6. Surface-bound FN on

6 well plates were treated with 1250x molar excess (50 µM) of HOSCN for 2 hr at

37°C, prior to incubation with 500,000 HCAEC for 72 hr, followed by sample extraction

using a Qiagen RNeasy Mini Kit. A Qiagen RT2 Profiler PCR Human Extracellular

Matrix and Adhesion molecules (330231; QIAGEN) kit was utilised to investigate

multiple gene expression including ECM and adhesion molecules, housekeeping genes,

and experimental controls (Table 4.1). Data were analysed using SABiosciences PCR

Array Data Analysis Template in conjunction with a Web-based analysis software

from SABiosciences (www.SABiosciences.com/pcrarraydataanalysis.php). Treated

samples were compared against untreated (0x oxidant control) samples (Table 4.2).
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Table 4.1: Gene expression investigated for ECM and adhesion molecules.

Gene Description

ADAMTS Type I, Type 13, Type 8 von Willebrand factor-cleaving protease
CD44 CD44 antigen; cell-cell interaction
CDH1 E-cadherin

CLEC3B Tetranectin
CNTN1 Contactin 1

[COL]1A1, 5-8A1, 11-12A1, 14-16A, 4A2, 6A2 Collagen chains
CTGF Connective Tissue Growth factor

[CTNN]A1, B1, D1, D2 Catenin α1, β1, δ1-2
ECM1 Extracellular matrix 1

FN1 Fibronectin
HAS1 Hyaluronan Synthase 1

ICAM1 Intercellular Adhesion Molecule 1
[ITG]A1-8, B1-5, AL, AM, AV Integrin chains

KAL1 Anosmin 1
[LAMA] A1-3, B1, B3, C1 Laminin Chains

[MMP]1-3, 7-16 Matrix Metalloproteinases 1-3, 7-16
NCAM1 Neural cell adhesion molecule 1

PECAM1 Platelet EC cell adhesion
SELE, SELL, SELP E-selectin, L-selectin, P-selectin

SGCE Sarcoglycan ε
SPARC Secreted protein acidic and cysteine rich

SPP1 Secreted phosphoprotein 1
TGFB1 Transforming growth factor beta induced

[THBS]1-3 Thrombospondin 1-3
[TIMP]1-2 TIMP metallopeptidase inhibitor 1-2

TNC Tumor Necrosis Factor
VCAM1 Vascular cell adhesion protein 1

VCAN Versican
VTN Vitronectin

ACTB, B2M, GAPDH, HPRT1, RPLP0 House keeping genes
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A down-regulation of ADAMTS13, COL5A1, CTNNA1, FN1, MMP8, SELL, SELP was

shown to occur when HCAEC were incubated on FN treated with HOSCN (Table 4.2).

SPARC was shown to be up-regulated in HCAEC incubated on HOSCN-treated FN

(Table 4.2) when compared to native FN.

Table 4.2: Gene analysis of HCAECs incubated on human plasma FN treated with 1250x (50 µM) of
HOSCN.

Gene Fold Regulation P-Value

ADAMTS13 -1.52 0.009
COL5A1 -1.23 0.009
CTNNA1 -1.17 0.019

FN1 -1.25 0.002
MMP8 -9.58 0.050
SELL -1.56 0.009
SELP -1.44 0.039

SPARC +1.18 0.045

In light of these data showing modifications on plasma FN, cellular FN was next

examined as it is a significant component of the basement membrane of the arterial

wall. Furthermore, studies on a mixture of ECM extracted from HCAEC culture was

also examined to assist in establishing whether cellular FN reacts in the same way when

it is present amongst the complex mixture of other proteins similar to what would be

found in vivo.
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4.3.7 Effect of HOSCN on cellular-derived fibronectin epitopes

Cellular FN possesses extra protein domains arising from splice variants with these

extra domain being important in vascular maintenance and matrix assembly; these extra

domain are known as EDA and EDB. Examining the effects HOSCN has on cellular FN

in a mixed ECM sample can give information on whether HOSCN targets FN amongst

other matrix proteins, and whether the important functional sites CBF, HBF and the

cellular EDA are modified. HCAEC were cultured over a week in 96 well plates, before

bound cells were removed and ECM in each well was exposed to HOSCN as described in

Section 3.3.7. Samples were probed for functional CBF, HBF and EDA epitopes using

specific antibodies, with absorbance measured using ELISA.

Whole HCAEC-derived ECM treated with HOSCN samples probed for the CBF (clone

A17) were found to not be targeted by HOSCN and showed no changes with increasing

treatment concentration of HOSCN (Figure 4.8A). Examination of the HBF on FN

showed no statistically significant changes with increasing concentrations of HOSCN

(Figure 4.8B). Probing for FN EDA when treated with increasing concentrations of

HOSCN showed that epitope recognition did not change with increasing concentrations

of the oxidant (Figure 4.8C).

These data establish that there were no changes to these specific FN epitopes when

exposed to HOSCN. However, as changes may also occur at other sites on FN, further

investigations were made to examine changes to FN protein structure within the complex

HCAEC-derived ECM.
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Figure 4.8: ELISA of whole ECM-derived from HCAEC exposed to HOSCN. HCAEC produced
ECM on 96-well plates were treated with increasing concentrations of HOSCN (0, 5, 10, 25, 50, 100,
200 µM). Specific FN epitopes were detected by using a mouse monoclonal A) anti-FN CBF antibody
(A17; 1:10000), B) anti-FN HBF antibody (A32; 1:1000), C) anti-FN EDA antibody (3E2; 1:1000), and
conjugated with anti-mouse HRP secondary (1:1000 dilution). The data are presented as a percentage
relative to control (no oxidant; 0 µM oxidant treatment). Error bars are ± SD from three technical
replicates obtained from each of three independent experiments. Statistical analysis was performed
using one-way ANOVA with Tukey’s multiple comparison post hoc tests to determine significance. No
statistical significance was detected.
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4.3.8 Effect of HOSCN modification on cell-derived fibronectin

The CBF, HBF, and EDA sites on FN are important in maintaining cell and vascular

health and integrity. Whole ECM extracted from HCAEC cultures were treated with

increasing molar excesses of HOSCN, and separated under reducing conditions on SDS-

PAGE. Proteins were then transferred onto PVDF membranes and probed for these three

functional epitopes.

Whole ECM-extracts exposed to HOSCN showed changes to ECM structure with

increasing molar excess of oxidant. The CBF of FN was shown to have slightly decreased

antibody recognition particularly of the monomer band (white arrow) at the higher molar

ratios of HOSCN, such as at 150 µM (Figure 4.8A). This loss of epitope recognition

correlated closely with what was measured in the ELISA examining loss of CBF epitope

recognition of human plasma FN treated with HOSCN (Figure 4.1A), although this loss

was not detected with whole ECM ELISA samples (Figure 4.9A). Examining the HBF of

FN, it was shown that HOSCN induced loss of epitope recognition to the monomer band

(white arrow) with 10 µM to 50 µM of HOSCN with the recognition returning at higher

molar excesses of HOSCN (Figure 4.9B).

The EDA, which is specific to cellular-derived FN, did not seem to be modified by

HOSCN; epitope recognition of the monomer band (white arrow) was not observed to

change with increasing doses of HOSCN (Figure 4.9C). A similar result was found when

an ELISA was performed on whole ECM exposed to HOSCN (Figure 4.9C). Thus, there

does not seem to be any major fragmentation or aggregation changes occurring for these

domains, which could be determined under these reducing gel conditions (Figure 4.9).

However structural changes may have occurred which may not be detected under reducing

gel conditions.

These data suggests that HOSCN acts on FN in lieu of other proteins present, but with

the severity of modifications being less extensive compared to FN exposed to HOCl. The
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Figure 4.9: Western blots showing structural changes to whole ECM-derived from HCAEC treated
with increasing molar ratios of HOSCN. Samples were separated by SDS-PAGE under reducing
conditions and transferred onto PVDF blots and probed with mouse monoclonal A) anti-FN CBF
antibody (A17; 1:10000 dilution), B) anti-FN HBF antibody (A32; 1:2000), C) anti-FN EDA antibody
(3E2; 1:2000), and conjugated with anti-mouse HRP secondary (1:2000 dilution). Blots were developed
with ECL-plus reagent and data is labelled as follows: black arrow = dimer/higher aggregates, and white
arrow = monomer band.

effects that HOSCN has on FN are discussed further below.
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4.4 Discussion

FN is known to play an important role in maintaining vascular integrity and health. It

exists in the basement membrane of ECs and acts as a scaffold by binding to other ECM

proteins and cells [148, 196]. During the development of atherosclerosis, inflammation

takes place and releases oxidants, such as HOCl and HOSCN [33]. The reaction of HOCl

have been extensively studied in previous research [49, 50]. In contrast, the chemistry

and biology of HOSCN, a much more specific oxidant that produces reversible oxidative

products by targeting thiols (RSH, Cysteine), has been studied to a much more limited

extent [94]. This study aimed to examine the effects that HOSCN has on FN, and how

these modifications might affect the biological functions of this protein.

FN exposed to HOSCN was observed to have distinctively less modifications under non-

reducing conditions when compared at the same molar ratio of HOCl. Starting at 5x

molar ratio, FN was found to form specific fragments, which can be seen above 290 kDa,

and above and below the monomer band (white arrow) (Figure 4.3). These fragments are

observed to increase with increasing molar ratios of HOSCN. Furthermore, treatment of

FN with HOSCN was observed to form aggregates under both non-reducing and reducing

conditions (Figure 4.3). This phenomenon is consistent with previous studies that showed

treatment of LDL with HOSCN, which led to a loss of parent protein with subsequent

formation of aggregates and fragments [371]. In previous studies, protein unfolding

and aggregation has been linked to HOSCN treatment, particularly under non-reducing

conditions via formation of disulfide bonds but there are limited studies investigating

protein fragmentation with this oxidant [102, 103].

HOSCN is known to reversibly oxidise Cys residues and GSH, although with a lower

kinetic rate constant compared to HOCl [50, 51]. Reduced:oxidised thiol ratios have

been used as an oxidative stress indicator, whereby changes to this ratio can indicate

high oxidative stress [372]; this particular ratio has been used as a predictor of early

atherosclerosis [373]. As previously stated, HOSCN has been found to react more
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specifically with thiol-containing protein in cells than HOCl using the thiol-specfic

fluorescent probe IAF [374]. High concentrations of HOSCN has been correlated with

depletion of thiol levels, as observed in the plasma of smokers [99]. In support of this,

a decrease in plasma thiol levels were shown to be correlated with increased risk of the

early stages of atherosclerosis [372, 373].

HOSCN treatment of protein thiols are found to form unstable transitory RS-SCN

derivatives, which are found to further react with water to generate sulfenic acid

intermediates (RS-OH) [94, 103]. Further reactions of this species with another thiol can

lead to the formation of disulfide bonds [94, 104–107]. FN possesses 2-3 free thiols, which

are likely to be the first targets for HOSCN depending on their accessibility (Uniprot

data; P02751). The oxidation of these free thiols would be expected to lead to the

formation of new disulfides between protein chains. This would explain the occurrences

of higher aggregates detected as seen a smear above the dimer band (black arrow)

(Figure 4.3). Another potential mechanism for the formation of such species is that

thiol oxidation can lead to thiol-disulfide exchange, whereby disulfide links are broken

and reformed with another Cys residue [105, 107, 375, 376]. Thiol-disulfide exchange can

cause conformational changes to FN which may lead to a shift in the observed molecular

mass on SDS-PAGE due to alterations in the rate of which the protein runs through the

gel. The mechanism leading to fragmentation is not fully understood and requires further

investigation to elucidate this process.

Although Cys residues are likely to be the first targets of HOSCN, this oxidant has also

been found to target Trp and Lys residues, especially if there is a lack of Cys residues

[26, 102]. Treatment of LDL with HOSCN has shown that Cys and Lys residues are

modified [371]. Degradation of HOSCN leads to formation of cyanate (OCN-) which has

been found to act on Lys residues (as well as other residues) to generate homocitrulline

[112, 113]. This process is called carbamylation and has been found to be correlated with

increased risk of CAD, with higher levels of homocitrulline found to be present in human

lesions [112, 113]. Protein carbamylation has been shown to cause HDL dysfunction,
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which would lead to a reduction in efficacy of lipid and partially reverse cholesterol

transport [113]. Furthermore, lipoprotein carbamylation was found to transform LDL

into a macrophage-targeted ligand which is taken up via scavenger receptors, and leads

to increased accumulation of cholesterol and foam-cell formation [112].

The FN CBF domain which involves residues 1267-1540 of the protein sequence possesses

5 Lys and 3 Trp residues, and the HBF domain (residues 1727-1991) possesses 15 Lys and

3 Trp residues (Uniprot data; P02751). There are also two free Cys residues located at

positions 1232 and 2136 (Uniprot data). In light of HOSCN reactivity with these amino

acids, the low levels of free thiols that can be targeted by HOSCN means these Lys or Trp

residues could be modified. The ThioGlo assay identified that free thiols were targeted

by HOSCN leading to a decrease in the levels of thiols detected (Figure 4.4). As certain

thiols may not be accessible to the oxidant and may not be detected, there are limitations

to the current experimental data with regards to the detection of total concentration of

Cys residues. However, it can be seen that there are likely minor modifications induced

by HOSCN to these domains, causing loss of antibody recognition (Figure 4.2, 4.8, and

4.9), with structural changes seen as the formation of aggregates and fragments (Figure

4.3). These effects may also be limited by the conformation of FN where certain areas

are inaccessible to the effects of HOSCN.

Gene expressions in HCAEC incubated on HOSCN-treated FN (Table 4.2) differed

to HOCl-treated FN (Table 3.2) with fewer number of genes altered in their level of

expression compared to control (0x treatment). Unlike the down-regulation of multiple

MMPs in HCAECs exposed to HOCl-treated FN, HCAEC incubated on HOSCN-treated

FN were found to only down-regulate MMP-8 by almost 10 fold (Table 4.2). MMP-8

is an important collagenase alongside MMP-13, which functions to breakdown type I-

III collagens [377, 378]. It has been shown previously that EC treated with condensate

from cigarette smoke had increased expression of MMP-1, MMP-9, and MMP-8 [379].

Furthermore, elevated levels of MMP-8 and MMP-13 have been associated with formation

of unstable plaques due to effects of these enzymes and macrophages on collagen within
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plaque [380–382]. MMP-8-/- and MMP-13-/- in apoE-/- mice were found to have decreased

lesion sizes, with lower macrophage population, and increased collagen content giving rise

to a more stable plaque phenotype [380–382]. MMP-8 has been linked to not only increase

in VCAM-1 expression in EC, but also decreased Ang II levels associated with high

blood pressure, a risk factor for atherosclerosis [380]. The reason that HCAEC exposed

to HOSCN-treated FN down-regulates MMP-8 may be to retain collagen binding and

prevent further collagen degradation along with decreased leukocyte migration to the

site of injury. This may help maintain arterial wall integrity, by forming a more stable

fibrotic plaque with a reduced risk of plaque rupture.

FN with HOSCN-induced modifications have also shown to modulate HCAEC selectin

gene expression (Table 4.2) but less so in comparison to HOCl-modified FN (Table

3.2). SELE was found not to be changed in response to HOSCN treated FN unlike

HOCl-treated FN; however SELP was down-regulated by both treatment. Both of these

selectins are expressed on EC, whereas SELL is solely expressed on leukocytes and hence

will not be discussed further here [350]. Elevated levels of SCN- (80-400 µM), such as in

smokers, have been found to elevate both SELE and SELP, with a corresponding increased

expression of other inflammatory markers such as interleukin-6 (IL-6), and C-reactive

protein [383–385]. Furthermore, HOSCN has been shown to induce up-regulation of

SELE and ICAM-1 expression in HUVECs via the NFκB pathway; this led to an increased

neutrophil adhesion on EC and recruitment of leukocytes [385]. This altered regulation

of SELE shown by HCAEC incubated on HOSCN-treated FN may be a primary reaction

to HOSCN-treated FN, with later responses occurring downstream.

SELP is expressed on both EC and (to a greater extent) on platelets and is found to

assist in leukocyte adhesion and recruitment as seen in apoE-/- mice [363]. As discussed

in Section 3.1, elevated levels of SELP were associated with CVD risk fators [364],

development of fibrotic atherosclerotic plaques [363], and intima-media thickening of

the arterial wall [365]. It may be that HCAEC down-regulates SELP expression in an

attempt to decrease leukocyte migration and reduce inflammation within the affected

132



area. Furthermore, it may be an attempt to also reduce platelet binding, which would

lead to clot formation and possible downstream blockage of the artery.

One gene that was found to up-regulated by HCAEC incubated on HOSCN-treated FN

and not HOCl-treated FN was Secreted Protein Acidic And Cysteine Rich (SPARC).

SPARC has been shown to play a role in ECM synthesis during remodelling, in wound

healing, and functions in cell repair by promoting changes to cell shape [386, 387]. SPARC

interacts with ECM and cytokines, and regulates growth factors to affect cell growth; cell

proliferation can be regulated by SPARC through the G1 phase of the cell cycle [386,

387]. Furthermore, SPARC has been found to cause bovine aortic EC (BAEC) to secrete

less FN, but increase type-1 plasminogen activator inhibitor levels, which is important

for matrix remodelling [388]. High concentrations of SPARC have also been shown to

cause rounding of BAEC [388]. Knockout of SPARC (SPARC-/-) in mice was found to

reduce concanavalin A (Con A)-induced necroinflammation coinciding with a reduction

in TNF-α and IL-6 levels [389]. SPARC-/- mice were also found to have a reduction

in collagen fibers, and necroinflammation with decreased infiltration and proliferation of

CD4+ T cells and subsequently decreased fibrosis in liver [390]. The effects of SPARC is

further supported in previous studies where inhibition of SPARC through knockout using

lentivirus was found to reduce numbers of apoptic cells and increased binding capacity

of human microvascular EC to FN [389]. Inhibition of SPARC also led to decreased

adhesion and migration of lymphocytes across the EC monolayer [389].

This up-regulation in SPARC appears to be linked with the other alterations in gene

expression in HCAEC incubated on HOSCN-treated FN, whereby the cells appear to be

attempting to create collagen fibers within the injury area. Although SPARC has been

found to promote inflammation and migration of leukocytes, its extent of promotion

compared with other inflammatory-based genes may be less and thus minimize the final

total amount of inflammation. Some of the other down-regulated genes are involved in

the prevention of collagen degradation and with the up-regulation of SPARC, these data

could be interpreted as HCAEC are attempting to remodel the basement membrane to
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form a more fibrotic environment.

Curiously, the sequence on FN involved collagen binding which lies between amino acids

308-608, with the critical binding site being residues 464-477, possesses 23 Cys residues

(Uniprot. data; P02751). These Cys are all involved in disulfide bonds (Uniprot. data;

P02751). This region is the foundation for the binding between FN and collagen, giving

structural integrity to the basement membrane and is vital to the linkage between collagen

and cells [202, 222, 391]. Further investigation is needed to elucidate the modifications

induced by HOSCN in the collagen binding epitope on FN. It may be that HOSCN is

modifying this collagen binding fragment, decreasing overall efficacy of collagen binding

between cells and FN. Although, cells were able to maintain binding to FN via the CBF

and corresponding RGD site, it has been found that collagen and FN in combination

helps to in initiate and enhance cell spreading and migration [222]. The importance of

collagen extends to the formation of stable fibrous caps in atherosclerotic lesions, and

reduced plaque rupture.

The differences in expression and regulation fold between HOCl-treated FN (Table 3.2)

and HOSCN-treated FN (Table 4.2) appears to be associated with the severity of the

modifications induced to FN by each oxidant. The extensive modifications caused by

HOCl appears to lead to a greater response, which may be involved with the possible

recruitment of leukocytes and ECM remodelling, and attempts to lay down healthy ECM

and generate new binding ligands for HCAEC. However, the HCAEC plated on HOSCN-

treated FN seem to retain their binding capacity, and appear to induce gene changes that

may be designed to maintain collagen integrity and a ”healthy” basement membrane.

This chapter examined modifications induced by HOSCN on FN in terms of protein

structure and functional epitopes, and how this might affect cellular function. Further

investigations would help to elucidate in greater detail the effects that HOSCN has on FN,

for example through amino acid analysis to identify changes to specific functional side

chains, and examination of other functional epitopes which may harbour more cysteine
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residues that could be targeted, such as the collagen binding fragment. Furthermore,

in vivo conditions may result in less extensive modifications due to the presence of

antioxidants in cells and surrounding ECM [392, 393], such as vitamins C and E, and

GSH, which helps to convert vitamin C and E back into their active form [393, 394].

Further research into the reaction between HOSCN and antioxidants may be of use.

The complex interrelationships between MPO, HOCl, and HOSCN can be seen over these

two chapters. Exposure to HOCl resulted in heavily modified peptides and subsequently

biological dysfunction. HOSCN has been shown to be a much milder oxidant causing

reversible oxidation at lower concentrations, giving rise to lower levels of oxidation than

that found with HOCl, but has been shown to also be somewhat damaging to both

proteins and cells at higher concentrations. The extent of HOCl and HOSCN generation

at sites of inflammation in the body has been shown to be closely correlated with MPO

levels, and thus the experiments reported in the next chapter used the enzymatic MPO

system to examine FN modifications and its downstream biological effects.
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Chapter 5

Effects of modifications to fibronectin by

Myeloperoxidase, Chloride or

Thiocyanate, and Hydrogen Peroxide

5.1 Introduction

MPO generates HOCl and HOSCN during inflammation in atherosclerosis, which are

known to react with lipids, DNA, peptides, and proteins [49, 50]. MPO has been found to

co-localise with ECM proteins mediating MPO-derived damage [21, 22, 395]. Replication

of this mechanism was performed with MPO, in the presence of Cl- or SCN-, and H2O2

to better understand the relationship between FN and MPO-derived oxidants. Exposure

of sub-endothelial matrix or FN to reagent HOCl or MPO/Cl-/H2O2 has previously

been shown to result in structural changes to the protein, chloramine formation, and

a reduction in cell adhesion to these modified matrix proteins [22, 260, 261]. The studies

in this chapter were based on these previous results.
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5.2 Aim

This Chapter aims to elucidate the effects of MPO, in the presence of Cl- or SCN-), and

H2O2, on human plasma FN. Two concentrations of MPO were used to reflect a normal

and diseased state. The modifications were examined with treatments using a lower (0.02

µM) and a higher (0.1 µM) concentration of MPO, physiological concentrations of Cl-, and

a lower (20 µM) or higher (500 µM) concentration of SCN-. Structural modifications were

examined using silver staining and Western blotting, whereby modification to epitopes

were examined using Western blotting and ELISA. Biological functions were investigated

using Calcein-AM assay for HCAEC adhesion and MTS assay for HCAEC metabolic

activity.
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5.3 Results

5.3.1 Effects of myeloperoxidase, chloride, and hydrogen peroxide on

human plasma fibronectin epitopes detected by ELISA

HOCl is enzymatically formed by MPO, Cl-, and H2O2. In these studies the overall extent

of HOCl formation was varied by increasing the H2O2 concentrations. As previously

mentioned, the CBF and HBF epitopes of FN play a key role in maintaining matrix

integrity and cell adhesion. ELISA experiments were carried out following the methods

outlined in Section 3.3.1 while replacing reagent HOCl with MPO enzyme, Cl-, and batch

additions of H2O2. An AP antibody was used instead of HRP secondary to prevent non-

specific interactions between HRP and samples. Samples were developed using a pNPP

solution (p7998; Sigma) and absorbance was measured at 405 nm at 10 min.

Incubation of human plasma FN by the MPO/Cl-/H2O2 system resulted in a statistically

significant loss of recognition of the CBF epitope starting at 800x molar excess of H2O2

in a dose-dependent manner (Figure 5.1A). There was approximately 35% loss of epitope

recognition at 1600x molar excess of H2O2 (Figure 5.1A). Investigation of the FN HBF

showed similar dose-dependent loss of epitope recognition with a statistically significant

loss observed at 800x molar excess of H2O2 and even greater loss of recognition of almost

50% compared to CBF at 1600x molar excess of H2O2 (Figure 5.1B). Modifications to

these functional epitopes were accompanied by a dose-dependent increase in a HOCl-

generated epitope as detected by the monoclonal 2D10G9 antibody (Figure 5.1C).

Statistically significant detection of the HOCl-generated epitope was detected with 800x

molar excess of H2O2 and increasing levels were detected with increasing concentrations

of H2O2 (Figure 5.1C).

Establishing that physiological levels of Cl- (100 mM) along with MPO and H2O2

generates damage to the functional epitopes on FN as well as a HOCl-generated epitope
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Figure 5.1: ELISA of human plasma FN modified using enzymatic treatment with MPO/Cl-/H2O2.
Each well was coated with 0.5 µg (0.02 µM of FN in 0.1 M phosphate buffer) and either left untreated
(0 µM H2O2) or treated with MPO/Cl- and increasing concentrations of H2O2 (0, 4, 8, 16, 24, 32 µM),
and incubated for 2 hr at 37°C. FN epitopes were detected using a mouse monoclonal A) anti-FN CBF
antibody (A17; 1:10000), B) anti-FN HBF antibody (A32; 1:1000), C) anti-HOCl generated epitope
(2D10G9; 1:50), and conjugated with anti-mouse AP secondary (1:1000). The data are presented as a
percentage relative to control (0 µM H2O2). Error bars are ± SD from three technical replicates obtained
from each of three independent experiments. Statistical analysis was performed using one-way ANOVA
with Tukey’s multiple comparison post hoc tests to determine significance. Statistical significance is
identified as follows: ** = p < 0.01, *** = p < 0.001, and **** = p < 0.0001.
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indicates a similar mechanism observed with reagent HOCl (Figure 3.1). Experiments

were subsequently carried out to investigate the structural changes on FN under these

treatment conditions.
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5.3.2 Effects of myeloperoxidase, chloride, and hydrogen peroxide on

the structure of human plasma fibronectin

Structural modifications were investigated using SDS-PAGE with silver staining (Figure

5.2), and epitope structure was examined using Western blotting (Figure 5.3 and 5.4).

Samples were treated with MPO enzymatic system with either 0.02 µM or 0.1 µM of

MPO (Figure 5.2), 100 mM of Cl-, and increasing concentrations of H2O2 (0, 20, 40, 80,

120, 160 µM), prior to performing separation by mass using gel electrophoresis and silver

staining following the methods previously described in Section 3.3.2.

Silver staining of FN treated with MPO/Cl-/H2O2 showed a range of modifications.

Under non-reducing conditions, at 100x molar excess of H2O2, formation of dimers/higher

aggregates (black arrow) were observed when treated with both 0.02 µM and 0.1 µM of

MPO (Figure 5.2A and 5.2B). Increasing presence of higher aggregates were detected as

smearing on the gels with increasing concentrations of H2O2. Samples treated with 0.1

µM of MPO showed similar increasing presence of higher aggregates but also a detectable

loss in both dimers (black arrow) and monomer bands (white arrow) (Figure 5.2A).

Formations of species with higher aggregates or altered structures were also detected

with both 0.02 µM and 0.1 µM of MPO both above and below the monomer bands

(white arrow) (Figure 5.2A and 5.2B). Furthermore, a shift in protein molecular mass

was observed of the dimer bands (black arrow) with the addition of H2O2 compared to

control (no H2O2 treatment) (Figure 5.2A).

SDS-PAGE under reducing condition showed an increasing presence of aggregates with

higher concentrations of H2O2 in a dose-dependent manner (Figure 5.2B). Greater

detection of aggregates were detected when FN was treated with 0.02 µM of MPO and

20 µM of H2O2, which increased with higher intensity of aggregates detected at 600-800x

molar excess of H2O2 (Figure 5.2B). Protein smearing was detected at high concentrations

of H2O2 (600-800x molar ratio) (Figure 5.2B). This formation of aggregates seemed to
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be less with 0.1 µM of MPO treatment but higher aggregate smearing was observed

at 400-800x molar excess of H2O2 (Figure 5.2B). An increasing amount of species with

altered structure was detected with greater intensity at 0.02 µM treatment of MPO just

above the monomer bands (white arrow) (Figure 5.2B). No changes were detected on the

monomer bands when compared to their untreated counterparts.

Western blots of treated samples were used to examine the functional CBF and HBF

epitopes on FN, to obtain complementary data to that found in the silver staining

experiments. Probing for the CBF (clone A17), showed loss of antibody recognition in

a dose dependent manner, with greater loss observed to occur with 0.1 µM treatment of

MPO and 100-800x molar excess of H2O2 where there is a detectable loss in intensity

of both the monomer (white arrow) and dimer (black arrow) bands (Figure 5.3A).

Furthermore, formation of higher aggregates was observed with 0.02 µM of MPO

treatment, and there appeared to be lower levels of aggregates detected with 0.1 µM

of MPO treatment at the same H2O2 concentrations (Figure 5.3A). Under reducing

conditions, there were notable formation of aggregates and smearing of bands with masses

greater than 460 kDa, which can be seen with both 0.02 µM and 0.1 µM MPO treatment,

particularly at 800x molar excess of H2O2 (Figure 5.3B). This was more marked with 0.02

µM of MPO compared to 0.1 µM of MPO.

Repeating this method and examining the FN HBF showed similar modifications as seen

with the CBF antibody (Figure 5.4). Under non-reducing conditions, a loss of antibody

recognition was detected for the dimer bands (black arrow) with increasing concentrations

of H2O2, where greater loss was detected with 0.1 µM of MPO and 800x molar excess

of H2O2 (Figure 5.4A). There were modifications leading to a molecular mass shift of

the dimer/higher aggregates (black arrow) of FN when treated with MPO/Cl-/H2O2.

Under reducing conditions, there was more notable loss of HBF-antibody recognition

of the monomer bands (white arrow) with a greater extent of loss observed with 0.1

µM of MPO (Figure 5.4B). As seen with the CBF results (Figure 5.3B), dimers/higher

aggregates were also detected particularly with 0.02 µM of MPO treatment and at high
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Figure 5.2: Silver staining showing structural changes to human plasma FN treated with
MPO/Cl-/H2O2. Purified human plasma FN (0.2 µM in 0.1 M phosphate buffer) was either left untreated
(control 0x H2O2) or treated with MPO/Cl- and increasing concentrations of H2O2 (0, 20, 40, 80, 120,
160 µM), and incubated for 2 hr at 37°C. Samples were electrophoresed on 3-8% Tris-acetate SDS-PAGE
gels under A) non-reducing or B) reducing conditions. Gels were then fixed, and visualised with silver
staining and referenced against HiMark™ pre-stained High Molecular Mass standards. Data is labelled
as follows: black arrow = dimer/higher aggregates, and white arrow = monomer bands.
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concentrations of H2O2 (black arrow) (Figure 5.4B).

In light of these data showing modifications to FN epitopes, particularly to the biologically

important CBF, further assays were performed to investigate the effects of this oxidant

system on HCAEC adhesion and HCAEC metabolic activity.
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Figure 5.3: Western blotting of structural changes to human plasma FN treated with MPO/Cl-/H2O2.
Samples were separated on SDS-PAGE under A) non-reducing or B) reducing conditions and transferred
onto PVDF membranes and probed with mouse monoclonal anti-FN CBF antibody (A17; 1:10000),
followed by anti-mouse HRP-conjugated secondary antibody (1:2000). Blots were developed with ECL-
plus reagent and data were labelled as follows: black arrow = dimer/higher aggregates, and white arrow
= monomer bands.
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Figure 5.4: Western blotting of structural changes to human plasma FN treated with MPO/Cl-/H2O2.
Samples were electrophoresed on SDS-PAGE under A) non-reducing or B) reducing conditions and
transferred onto PVDF membranes and probed with mouse monoclonal anti-FN HBF antibody (A32;
1:2000), followed by anti-mouse HRP-conjugated secondary antibody (1:2000). Blots were developed
with ECL-plus reagent and data were labelled as follows: black arrow = dimer/higher aggregates, and
white arrow = monomer bands.
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5.3.3 Effects of myeloperoxidase, chloride, and hydrogen peroxide on

human plasma fibronectin cell adhesion

Modifications on human plasma FN with MPO-derived HOCl also led to biological

dysfunction leading to decreased cell adhesion. Surface-bound human plasma FN (0.02

µM) was left untreated (control) or treated with MPO enzyme, Cl- and increasing

concentration of H2O2, followed by two washes with sterile PBS to remove excess MPO

enzyme and H2O2. This prevents any direct interaction of the oxidant system with

HCAEC. HCAEC were pre-incubated with Calcein-AM live cell stain, prior to seeding

12,500 cells into each well. HCAEC were to adhere for 1.5 hr at 37°C in a humidified

atmosphere containing 5% CO2. Calcein-AM becomes fluorescent after hydrolysis by

intracellular esterases and is used as a live cell assay. Fluorescence was measured at λex

492nm, and λem 517nm to determine the number of adherent cells.

Exposure of human plasma FN to 0.02 µM MPO, 100 mM of Cl- and increasing

concentrations of H2O2 resulted in a dose-dependent decrease in HCAEC adhesion (Figure

5.5). A statistically significant loss of cell adherence was detected at 1600x molar excess

of H2O2 with approximately 30% loss in cell numbers when compared to untreated control

samples (0x H2O2 molar excess) (Figure 5.5).

Having established that HCAEC adherence to FN are affected when incubated with an

enzymatic MPO system, further investigations were conducted to examine cell metabolic

activity under the same conditions.
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Figure 5.5: Calcein-AM fluorescence of HCAEC incubated on human plasma FN treated with
MPO/Cl-/H2O2. Surface-bound human plasma FN (0.02 µM) was left untreated (0x H2O2) or treated
with MPO/Cl- and increasing concentration of H2O2 (0, 8, 32 µM) and incubated for 2 hr at 37°C before
incubation with HCAEC pre-stained with Calcein-AM and subsequent detection of fluorescence. The
data are presented as a percentage relative to control (no oxidant 0 µM treatment). Error bars are ± SD
from three technical replicates obtained from each of three independent experiments. Statistical analysis
was performed using one-way ANOVA with Tukey’s multiple comparison post hoc tests to determine
significance. Statistical significance is identified as follow: * = p < 0.05.

5.3.4 Effects of myeloperoxidase, chloride, and hydrogen peroxide on

human plasma fibronectin on cell metabolic activity

It has been shown that human plasma FN exposed to MPO enzyme and H2O2 leads to a

reduction in HCAEC adhesion (Figure 5.5). Certain HCAEC may retain their adhesive

ability but unable to proliferate. By measuring HCAEC metabolic activity, it is possible

to examine whether modified FN further impairs HCAEC functions leading to a reduction

in growth rate of HCAEC. FN was exposed to MPO, Cl-, and increasing concentrations

of H2O2 (0, 8, 32 µM). Excess treatment was washed off with sterile PBS to prevent

interaction of the oxidant system directly with HCAEC. HCAEC were seeded at 12,500

cells per well and left to adhere for 1.5 hr at 37°C in a humidified atmosphere containing

5% CO2, before being washed with sterile PBS to remove any unadhered HCAEC. Growth

media was added back to each samples and these were left to recover for a further 48 hr

period, prior to addition of MTS reagent, and quantification of absorbance at 490 nm
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after a 3 hr incubation.

HCAEC that were incubated on human plasma FN treated with MPO/Cl-/H2O2 resulted

in a decrease in cell metabolic activity with significance detected at 400x and 1600x molar

excess of H2O2 compared to no treatment (0x molar ratio) control (Figure 5.6). A greater

loss of cell metabolic activity was not observed at higher concentrations of H2O2 (Figure

5.6).

Treatment of FN with MPO/Cl-/H2O2 resulted in structural modifications including a

loss of antibody recognition to functional epitopes. This loss of functional epitopes was

found to be reflected in a decrease in HCAEC adhesion and metabolic activity. Further

investigations were therefore conducted with the SCN- system to determine whether

similar modifications and changes would be detected as seen with the MPO/Cl-/H2O2

systems.
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Figure 5.6: MTS assay of HCAEC metabolic activity on human plasma FN treated with
MPO/Cl-/H2O2. Surface-bound human plasma FN (0.02 µM) was treated with MPO/Cl- and increasing
concentrations of H2O2 (0, 8, 32 µM), which was incubated for 2 hr at 37°C. Plates were washed prior
to addition of growth media and HCAEC were left to recover over 48 hr. MTS reagent was added into
each well and absorbance was measured at 490 nm after 3 hr. The data are presented as a percentage
relative to control (0x H2O2). Error bars are ± SD from three technical replicates obtained from each of
three independent experiments. Statistical analysis was performed using one-way ANOVA with Tukey’s
multiple comparison post hoc tests to determine significance. Statistical significance is identified as
follows: * = p < 0.05.
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5.3.5 Effects of myeloperoxidase, thiocyanate, and hydrogen peroxide

on human plasma fibronectin epitopes detected by ELISA

To further elucidate the effects that oxidants have on FN, an MPO enzymatic system

was used to generate HOSCN, using MPO, a low and a high concentration of SCN-,

and increasing concentrations of H2O2 (0, 4, 8, 16, 24, 32 µM). ELISA experiments were

carried out following Section 3.3.1 and Section 5.3.1, with either 20 µM or 500 µM of

SCN-. Samples were then probed for functional CBF, and HBF epitopes, which are

important in cellular functions, matrix assembly, and vascular integrity.

Human plasma FN exposed to 0.02 µM of MPO with 20 µM of SCN-, and 1600x molar

excess of H2O2 showed no changes to the CBF epitope (Figure 5.7A). When SCN-

was increased to 500 µM and exposed to increasing concentrations of H2O2, it was

shown that at 400x molar excess of H2O2 there was a statistically significant increase in

epitope recognition which remained with increasing H2O2 concentrations (Figure 5.7B).

Examination of the FN HBF epitope at 20 µM of SCN- with increasing concentrations

of H2O2, showed no modifications to this functional epitope (Figure 5.7C). At 500 µM of

SCN-, with increasing molar excess of H2O2, it was shown that there was an increased

recognition of HBF epitope at 400x molar excess of H2O2 (Figure 5.7D). Increasing

the H2O2 concentration to 800x molar excess showed a statistically significant loss of

recognition to the HBF epitope which remained constant up to 1600x molar ratio (Figure

5.7D).

Further investigations were then made to examine possible structural changes to these

functional epitopes using SDS-PAGE, silver staining and Western blotting.
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Figure 5.7: ELISA of human plasma FN modified using enzymatic treatment with MPO/SCN-/H2O2.
Each well was coated with human plasma FN (0.02 µM in 0.1 M pH 7.4 phosphate buffer) and was
either left untreated (control) or treated with 0.02 µM of MPO, A, C) 20 µM or B, D) 500 µM of
SCN-, with increasing concentrations of H2O2 (0, 4, 8, 16, 24, 32 µM) and incubated for 2 hr at 37°C.
FN epitopes were detected using mouse monoclonal A-B) anti-FN CBF antibody (A17; 1:10000), C-D)
anti-FN HBF antibody (A32; 1:1000), and AP conjugated secondary antibody (1:1000). The data are
presented as a percentage relative to control (0x H2O2 control). Error bars are ± SD from three technical
replicates obtained from each of three independent experiments. Statistical analysis was performed using
one-way ANOVA with Tukey’s multiple comparison post hoc tests to determine significance. Statistical
significance was identified as follows: * = p < 0.05, ** = p < 0.01, *** = p < 0.001, and **** = p <
0.0001.
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5.3.6 Effects of myeloperoxidase, thiocyanate, and hydrogen peroxide

on the structure of human plasma fibronectin

SDS-PAGE protein separation was performed to further investigate the changes that

MPO-derived HOSCN has on the structure of FN. Human plasma FN (0.02 µM) was

incubated with 0.02 µM of MPO, either 20 µM or 500 µM of SCN-, and increasing

concentrations of H2O2. Samples were separated on SDS-PAGE under non-reducing or

reducing conditions followed by silver staining following the methodology described in

Section 3.3.2.

Exposure of FN to 0.02 µM of MPO, 20 µM of SCN-, and increasing concentrations of

H2O2 resulted in changes to the protein structure (Figure 5.8). At 200x molar excess

of H2O2, there were species of altered structures detected below the dimer band (black

arrow) (Figure 5.8A). Higher mass aggregates or another altered species (> 460 kDa) was

detected above the dimer parent bands (black arrow) and a fragment band was detected

at around 130 kDa (Figure 5.8A). These structural changes became more marked with

increasing concentrations of H2O2. In the presence of 500 µM of SCN-, these species of

altered structure of FN was observed with a smearing of protein bands below the dimer

bands (black arrow) (Figure 5.8A). Increasing intensity of higher mass protein aggregates

or altered species were also formed when treated with 500 µM of SCN-, and were detected

above the dimer bands (black arrow) as well as at the top of the gels in each wells at

200-800x molar excess of H2O2 (Figure 5.8A).

Under reducing conditions, exposure of human plasma FN to 20 µM of SCN- and

increasing concentration of H2O2 did not result in fragments and aggregates that were

previously noted under non-reducing conditions (Figure 5.8B). At 400x molar excess of

H2O2, it was observed that there were dimer/higher aggregates present (black arrow)

(Figure 5.8B). In the system with 500 µM SCN- and 400x molar excess of H2O2, there

was an increasing presence of dimers/higher aggregates (black arrow) compared to the 20
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µM of SCN- condition (Figure 5.8A). At higher concentrations of H2O2, a greater intensity

of aggregates or altered species were detected above the dimer band (black arrow) and

at the top of each well (Figure 5.8B).

SDS-PAGE gels were transferred onto PVDF membranes to be probed for FN CBF and

HBF functional epitopes, to further elucidate the effects of MPO/SCN-/H2O2 on the FN

structure. Examining the changes to FN CBF under non-reducing conditions showed

similar structural changes to these seen with silver staining (Figure 5.9A). Treatments

with 20 µM of SCN-, and starting at 200x molar excess of H2O2 resulted in loss of antibody

recognition to both the parent dimer (black arrow) and the parent monomer band (white

arrow) with a dose-dependent manner with H2O2 concentrations (Figure 5.9A). Exposure

with 20 µM of SCN- resulted in fragments possessing the CBF site below the parent dimer

bands (black arrow), and above and below the parent monomer bands (Figure 5.9A).

Increasing the SCN- concentration to 500 µM, showed loss of recognition to the parent

dimer (black arrow) and the parent monomer bands (white arrow) (Figure 5.9A), but

to a lesser extent compared to 20 µM of SCN- (Figure 5.9A). Fragmentation of FN was

also observed, but more smearing (as opposed to defined bands) was detected with 500

µM of SCN- compared to 20 µM of SCN- (Figure 5.9A). Under reducing conditions, a

minor loss of antibody recognition to the CBF was detected with both concentrations of

SCN- for the parent monomer band (white arrow) (Figure 5.9B). Fragmentation was not

observed, but a decreased recognition of both dimers around 460 kDa and higher mass

aggregates (black arrow and above) were detected with increasing H2O2 concentrations

(Figure 5.9B).

Probing for the FN HBF gave similar results to those seen for the FN CBF. Under non-

reducing conditions, with both 20 µM and 500 µM of SCN-, it was found that there

was a dose dependent loss of recognition to both the parent dimer (black arrow) and the

parent monomer bands (white arrow) at 200-800x molar excess of H2O2 (Figure 5.10A).

Starting at 200x molar excess of H2O2 for both concentration of SCN-, species of altered
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Figure 5.8: Silver staining showing structural changes to human plasma FN treated with
MPO/SCN-/H2O2. Purified human plasma FN (0.2 µM in 0.1 M phosphate buffer) was either left
untreated (0x H2O2) or treated with MPO/SCN- and increasing concentrations of H2O2 (0, 20, 40, 80,
120, 160 µM), and incubated for 2 hr at 37°C. Samples were separated using 3-8% Tris-acetate SDS-
PAGE gels under A) non-reducing or B) reducing conditions. Gels were then fixed, and visualised with
silver staining and referenced against HiMark™ pre-stained High Molecular Mass standard. Data is
labelled as follows: black arrow = dimer/higher aggregates, and white arrow = monomer band.
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structures were observed under the parent dimer bands (black arrow) (Figure 5.10A);

these bands were more notable with 20 µM of SCN-. Samples electrophoresed under

reducing conditions showed variable antibody recognition with increasing concentrations

of H2O2; it appeared that at 20 µM of SCN-, HBF epitope recognition increased with

increasing concentrations of H2O2 (Figure 5.10B). At 500 µM of SCN-, the intensity of

the monomer band (white arrow) did not change with increasing concentrations of H2O2

(Figure 5.10B). Neither fragmentations nor crosslinks were observed for either low or high

concentrations of SCN- under reducing conditions (Figure 5.10B).

These data showed that the overall FN structure is modified by treatment with

MPO/SCN-/H2O2. This result was similarly reflected in the Western blots, though

no distinguishable differences could be determined. Cellular function was further

investigated to determine whether HCAEC incubated on MPO/SCN-/H2O2 treated FN

would modulate HCAEC adhesion and metabolic activity.

155



Figure 5.9: Western blotting of structural changes to human plasma FN treated with
MPO/SCN-/H2O2. Human plasma FN was separated using SDS-PAGE under A) non-reducing or B)
reducing conditions and transferred onto PVDF membranes and probed with mouse monoclonal anti-
FN CBF antibody (A17; 1:10000), followed by HRP conjugated anti-mouse HRP secondary antibody
(1:2000). Blots were developed with ECL-plus reagent and data is labelled as follows: black arrow =
dimer/higher aggregates, and white arrow = monomer band.
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Figure 5.10: Western blotting of structural changes to human plasma FN treated with
MPO/SCN-/H2O2. Human plasma FN was separated using SDS-PAGE under A) non-reducing or B)
reducing conditions and transferred onto PVDF membranes and probed with mouse monoclonal anti-FN
HBF antibody (A32; 1:2000), followed by HRP conjugated anti-mouse HRP secondary antibody (1:2000).
Blots were developed with ECL-plus reagent and data is labelled as follows: black arrow = dimer/higher
aggregates, and white arrow = monomer band.
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5.3.7 Effects of myeloperoxidase, thiocyanate, and hydrogen peroxide

on human plasma fibronectin on cell adhesion

As reported in the previous Sections, HOSCN generated by the MPO system can modify

FN structure. It was therefore important to identify whether modifications to FN CBF

and HBF epitopes would affect HCAEC functions. Surface-bound FN (0.02 µM) was

incubated with MPO, SCN-, and increasing concentrations of H2O2 (0, 8, 32 µM), as

described in Section 5.3.3. After treatment, the wells were washed with sterile PBS to

remove any excess oxidant and prevent direct interaction with HCAEC. HCAEC were pre-

stained with Calcein-AM live cell stain prior to seeding into each sample well at a density

of 12,500 cells per well, and left to adhere for 1.5 hr at 37°C in a humidified atmosphere

containing 5% CO2. Fluorescence was subsequently measured using λex 492nm and λem

517nm to quantify the number of cells adhered to the control and modified FN.

Human plasma FN treated with 20 µM of SCN-, and either 400x or 800x molar excess

of H2O2 showed no statistically significant changes in HCAEC adhesion when compared

to the no oxidant (0x H2O2) treatment control (Figure 5.11A). Experiments using 500

µM SCN-, and either 400x or 800x molar excess of H2O2 also showed no statistically

significant changes in cell adhesion (Figure 5.11B). In light of this data, cell metabolic

activity was further investigated to complement these findings.
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Figure 5.11: Calcein-AM fluorescence was employed to determine the extent of HCAEC adhesion to
control human plasma FN, or FN exposed to MPO/SCN-/H2O2. Surface-bound human plasma FN (0.02
µM) was treated with 0.02 µM of MPO, A) 20 µM or B) 500 µM of SCN-, and increasing concentrations
of H2O2 (0, 8, 32 µM), which was incubated for 2 hr at 37°C. HCAEC were pre-stained with Calcein-
AM and fluorescence was subsequently quantified. The data are presented as a percentage relative to
control (0x H2O2 treatment). Error bars are ± SD from three technical replicates obtained from each of
three independent experiments. Statistical analysis was performed using one-way ANOVA with Tukey’s
multiple comparison post hoc tests to determine significance. No statistical significance was observed.
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5.3.8 Effects of myeloperoxidase, thiocyanate, and hydrogen peroxide

on human plasma fibronectin on cell metabolic activity

HCAEC may adhere to modified FN but nay not retain healthy metabolic activity levels.

To test this hypothesis, surface-bound FN was left untreated or was exposed to 0.02 µM

of MPO, 20 µM or 500 µM of SCN-, and increasing concentrations of H2O2 (0, 8, 32

µM) for 2 hr at 37°C. The treatment was washed off with sterile PBS to prevent direct

interactions with HCAEC, followed by seeding 12,500 cells into each well, which were

left to adhere for 1.5 hr at 37°C in a humidified atmosphere containing 5% CO2. Fresh

endothelial growth media was added back to each sample well, and HCAEC were allowed

to recover over a 48 hr period prior to quantification of MTS absorbance at 490 nm after

a 3 hr incubation.

Treatment with 20 µM of SCN-, and both 400x and 800x molar excess of H2O2 showed

no statistically significant changes to cell metabolic activity compared to untreated (0x

H2O2) controls (Figure 5.12A). Treatment with 500 µM of SCN-, and either 400x or 800x

molar excess of H2O2 also showed no statistical significance in HCAEC metabolic activity

compared to controls (Figure 5.12B).
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Figure 5.12: MTS assay for cell metabolic activity of HCAEC incubated on native human plasma FN,
or FN treated with MPO/SCN-/H2O2. Surface-bound human plasma FN (0.02 µM) was treated with
0.02 µM of MPO, A) 20 µM or B) 500 µM of SCN-, and increasing concentrations of H2O2 (0, 8, 32
µM), which was incubated for 2 hr at 37°C. MTS reagent was added to each sample, and absorbance was
measured after a 3 hr incubation. The data are presented as a percentage relative to control (0x H2O2).
Error bars are ± SD from three technical replicates obtained from each of three independent experiments.
Statistical analysis was performed using one-way ANOVA with Tukey’s multiple comparison post hoc
tests to determine significance. No statistical significance was observed.
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5.4 Discussion

MPO released into the ECM milieu has been known to interact with certain proteins

and proceeds to generate reactive oxidant, which can be damaging to the surrounding

ECM proteins. This chapter aims to elucidate the interaction between MPO and FN,

and simulate the in vivo enzymatic reaction (MPO system) to examine the modifications

on human plasma FN.

High levels of plasma MPO has previously been associated with prevalence of CAD [11,

396], and found to to bind to the sub-endothelial matrix [21, 22, 395]. MPO can be

released into the matrix from leukocytes present in the sub-endothelium, but has also been

found to transcytose through EC from plasma [21, 270, 397]. MPO, as a highly cationic

enzyme, interacts strongly with negatively charged GAGs via electrostatic interactions

[270]. Moreover, MPO has previously been found to co-localise with sub-endothelial FN,

which has been suggested to potentiate MPO activity [21, 22]. This localisation of MPO

to vascular ECM proteins has been linked to increased modifications induced by reactive

species produced by MPO including radicals, chlorinating and nitrating species [21, 22,

395]. Early studies have linked the transcytosis of MPO into the sub-endothelium with

increased levels of nitration on ECM proteins, as indicated by the presence of NO2-Tyr

formation in wild type mice models (vs MPO-/-) and human atherosclerotic lesions [21,

395]. Moreover, co-localisation of MPO- and HOCl-modified proteins with macrophages

has been observed in lesions associated with intracoronary thrombi [398]. The co-

localistion of MPO with sub-endothelial FN has been found to potentiate formation of

di-Tyr [35, 399] and carbonyl compounds [260], damage to FN and subsequent biological

dysfunction [22, 261]. Higher concentrations of FN were found to increase the extent of

MPO binding, with binding of MPO to FN resulting in a reduction in MPO mobility

on gel electrophoresis [270]. The reported close proximity of MPO and FN suggests that

oxidative species produced by MPO are likely targeting FN at specific sequences, however

there are limited studies investigating the binding relationship between MPO and FN.
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Analysis of the effects of MPO/Cl-/H2O2 human plasma FN using SDS-PAGE and silver

staining have shown that formation of aggregates occurs with low (100x molar ratio)

concentrations of H2O2 (Figure 5.2). Aggregates were observed under both reducing and

non-reducing conditions with higher levels detected in the latter case, consistent with

the formation of both reducible and non-reducible crosslinks. This pattern of aggregate

formation is similar to that which was observed previously when FN was treated with

reagent HOCl (Refer to Section 3). These aggregates are therefore likely to be formed

as a result of the generation of HOCl by the MPO system, with this causing structural

modifications on human plasma FN. MPO-derived HOCl is known to react with the

sulfhydryl groups of Cys, leading to the generation of R-SOH, which can subsequently

react with another free sulfhydryl group to form disulfide crosslinks [49, 289, 290]. This

can either be within a single protein structure (intramolecular cross-links) or between

different proteins (intermolecular cross-links); the latter may be the cause of (some of)

observed reducible aggregates [49, 289, 290]. When samples were electrophoresed under

reducing conditions, a considerable proportion of the dimers/aggregates were reduced to

monomers but a certain amount of aggregates were found to be non-reducible (Figure

5.2). These aggregates may arise from the generation of intermolecular di-Tyr or di-Trp

linkages, which contain stronger (non-reducible) intermolecular covalent bonds [53, 54].

As previously discussed in Section 3, di-Tyr crosslinks result from the dimerisation of

two Tyr phenoxyl radicals [64, 291]. These di-Tyr have been shown to form in FN on

treatment with an MPO system, and at greater quantities compared to treatment with

reagent HOCl [260]. Moreover, di-Trp may result from similar reactions of two Trp indolyl

radicals [316].

Fragmentation of FN was found to be similar when treated using the MPO/Cl-/H2O2

system (Figure 5.2) and with reagent HOCl (Figure 3.2). Fragments were more notable at

higher concentrations of reagent HOCl, and it is probably that increased concentrations

of H2O2 would also result in greater fragmentations. Protein fragmentation can arise

as a result of both carbonyl and chloramine/chloramide formation [260, 310]. Nitrogen-
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centred radicals are formed by decomposition of chloramines and chloramides, which are

known mediators of protein fragmentation as is the hydrolysis of the backbone carbonyl

[307, 311] (c.f. discussion on structural modifications induced by HOCl in Section 3.4).

An interesting structural modification of FN that was observed upon treatment with

the MPO/Cl-/H2O2 system was the apparent shift in the molecular mass of FN (Figure

5.2). This was observed only after addition of H2O2 (i.e. not a result of binding of

MPO to FN above), thus it may arise from the interaction of MPO-oxidant and FN, in

combination with a structural change caused by MPO-derived HOCl [22]. MPO-derived

HOCl is known to oxidise certain side chains causing an unfolding of FN protein, which

may result in greater access for MPO or its oxidants to certain sequences on FN, thus

increasing the molecular mass of FN [270, 271]. The shift in molecular mass may also

be due to binding of FN fragments through disulfide bonds or di-Tyr/di-Trp formations,

or increased binding of SDS to the protein as a result of the charge alteration or protein

unfolding [400–402]. Further investigation is needed to define the exact mechanism of

this molecular mass shift.

HOSCN is assumed to be the major oxidative species generated by the MPO system

when SCN- is substituted for Cl-. Treatment of human plasma FN with MPO/SCN- and

increasing amounts of H2O2 (Figure 5.8) resulted in structural modifications that reflect

those observed when FN was treated with LPO-derived reagent HOSCN (see Figure 4.2

and Section 4). As discussed in Section 4.4, HOSCN has a marked specificity for thiol

residues, thus aggregates are likely formed from thiol oxidation leading to formation of

new disulfides [94, 104–107] or as a result of oxidant catalysed thiol-disulfide exchange

[105, 107, 375, 376]. The observed alterations in FN mass on the gels could be a result

of conformational changes or protein fragmentation although there are limited studies

investigating HOSCN-induced mechanisms of protein fragmentation [102, 103].

These structural modifications may explain the epitope changes on FN protein observed

when the protein was treated with the MPO/H2O2 system using either Cl- or SCN-. If
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MPO is binding to FN at a particular location, this may result in a localised damage, and

identification of these sites could assist in identifying the sequence at which FN binding

occurs. Previous studies have shown that treatment of FN with MPO/Cl-/H2O2 system

was associated with decreased adhesion of ECs, along with ECs retracting and rounding

up [22, 261]. This was suggested to occur due to the inability of cells to bind to modified

ECM via an F-actin mediated adhesion pathway [22]. Cell adhesion was similarly found to

be impaired when FN was first treated with MPO/Cl-/H2O2 system prior to the addition

of HCAEC. Treatment of FN using this MPO system has been shown to cause a reduction

in antibody recognition to the CBF, which is important in mediating cell binding (Figure

5.1), and this is consistent with the observed decrease in cell adhesion (Figure 5.5). Thus

MPO appears to be converting H2O2 and Cl- to HOCl, which subsequently modifies FN

at the CBF epitope in a similar manner to what was found with reagent HOCl treatment

(Figure 3.1, 3.8, and 3.10). Treatment of FN with MPO/SCN-/H2O2 system also showed

some limited modifications on the CBF epitope but this was much less than detected

with LPO-derived reagent HOSCN and MPO-derived HOCl. Both LPO-derived and

MPO-derived HOSCN were found to have little effects on FN HBF epitope (Figure 5.7).

Consistent with these data, the results of experiments carried out to examine HCAEC

cell adhesion and proliferation on MPO/SCN-/H2O2-treated FN showed no significant

changes.

The ability for HCAEC to proliferate was also decreased when incubated on FN treated

with the MPO/Cl-/H2O2 system, but not with the MPO/SCN-/H2O2 system. FN has

been found to be a promoter of cell proliferation with cells other than ECs [403–405],

and this reduction is therefore likely to be due to modifications induced on FN by the

oxidants. However, there is little data on the mechanism by which this may occur, but

it may be contributed to by the role that FN plays in cell growth through cell shape

modulation [406], and interaction with certain cell-surface integrins [259, 404].

In addition to the evidence for alterations to the CBF and HBF functional epitopes

induced by MPO/Cl-/H2O2 system, evidence has also been obtained for the formation
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of a HOCl-generated epitope. This epitope was found to be present on HOCl-modified

LDL, which this antibody (clone 2D10G9) was originally raised against [63, 407]. The

presence of this epitope supports the conclusion that HOCl is being produced by this

MPO/Cl-/H2O2 system and is modifying FN. Other HOCl-induced modifications are

also highly likely to be present in these samples (e.g. 3-chloroTyr and di-Tyr), thus it

would be sensible to further investigate and quantify the formation of chlorinated species

and crosslinks [50, 57].

This chapter has provided preliminary evidence to support that MPO, in the presence of

Cl- or SCN- and H2O2, generates the oxidative species, HOCl and HOSCN, respectively,

and that these oxidants modify FN. These enzymatic systems may simulate more closely

to situations that is occurring in vivo than with the reagent oxidant, as there may be

interactions between MPO enzyme and FN protein which could dictate the severity and

location of modifications. The MPO/Cl-/H2O2 system has been found to modify FN

structure, causing alterations to the CBF and HBF epitopes, with subsequent formation

of a HOCl-derived epitope. A loss of cellular adhesion and proliferation were found to

occur with HCAEC when they were incubated on FN pre-treated with MPO/Cl-/H2O2.

Treating FN with MPO/SCN-/H2O2 caused minor structural changes similar to those

observed with HOSCN, but these effects were more limited and this system did not appear

to target the CBF or HBF epitopes, causing no significant changes to cell adhesion or

proliferation.

In light of these interesting findings, further investigations were conducted whereby Cl-

and SCN- were present simultaneously in the reaction system, to determine whether

there is competitive formation of the two oxidants, HOCl and HOSCN, and hence whether

certain oxidative modifications preside over the other. The next Chapter therefore reports

on investigations into the competition between Cl- and SCN- as the substrate for MPO,

to further elucidate the effects of the MPO/Cl-/SCN-/H2O2 system on FN.
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Chapter 6

Analysis of competitive oxidation of

chloride and thiocyanate by

myeloperoxidase

6.1 Introduction

As described in the earlier chapter of this thesis, MPO plays a key role in the generation

of oxidants, such as HOCl and HOSCN, from physiological concentrations of halides (Cl-)

and pseudohalides (SCN-) in the presence of H2O2 [50, 396]. Higher concentrations of

SCN- can divert MPO to produce more HOSCN, and mitigate HOCl-induced damage to

proteins, cells, and other targets.

Past studies have reported that the presence of SCN- have both a detrimental and

protective effect when investigated in in vitro and in vivo experiments [50, 94]. It has

been found that addition of SCN- to MPO/Cl-/H2O2 system attenuated HOCl-induced

damage on LDL [371] and FN [22, 408]. Moreover, SCN- has been found to protect against

cellular injury mediated by MPO, reducing apoptosis in HL-60 cells [409]. The damaging

effects versus the protective nature of SCN- is an important aspect in the development of

atherosclerosis, whereby smokers for example are usually found to have elevated plasma

SCN- levels [98, 99, 410]. This particular dichotomy will be explored more thoroughly.
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6.2 Aim

The studies in this Chapter investigated the effects of adding increasing concentrations of

SCN- to MPO/Cl-/H2O2 treatment of human plasma FN in order to determine whether

this modulates the extent of damage to FN. Epitope recognition was examined using

ELISA which probed for the FN CBF and HBF epitopes as well as a HOCl-generated

epitope. Structural modifications were investigated using both silver staining and Western

blotting for FN CBF and HBF epitopes.
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6.3 Results

6.3.1 Effects of enzymatic treatment with myeloperoxidase, hydrogen

peroxide, chloride, and increasing concentrations of thiocyanate

on functional epitopes of human plasma fibronectin

SCN- has a higher kinetic rate than Cl- for reaction with Compound I of MPO with

these reactions resulting in the formation of the hypohalous acids, HOSCN and HOCl,

respectively [51]. Oxidation caused by HOSCN is highly specific to thiols but is also

more readily reversible than the modifications caused by HOCl. The presence of SCN-

in samples causes the reaction to produce HOSCN over HOCl until either the SCN- or

H2O2 is depleted.

Surface-bound human plasma FN (0.02 µM) on 96-well plates were incubated with 0.02

µM of MPO, 100 mM of Cl-, increasing concentrations of SCN- from 0 µM to 500 µM,

and 32 µM of H2O2 for 2 hr at 37°C. Sample were washed twice with PBS to remove any

excess oxidants or enzymes prior to probing for the FN functional CBF, HBF epitopes,

and a HOCl-generated epitope. An AP bound secondary antibody was used to detect

the epitopes using pNPP solution as described in Section 5.3.1.

The CBF epitope plays an important role in cell binding, and when modified, can lead

to cellular dysfunction and a decrease in cell adhesion (see Section 3). Human plasma

FN (0.02 µM) treated with 0.02 µM of MPO, 100 mM of Cl-, and 1600x molar excess

of H2O2 reduced antibody recognition to FN CBF epitope (Figure 6.1A), replicating

what was found previously (see Figure 5.1A). When 20 µM of SCN- was added into

samples prior to addition of H2O2, this led to a retrieval of epitope recognition of the FN

CBF epitope back to almost the same level as control (Figure 6.1A). Furthermore, an

increase in the concentration of SCN- resulted in no further changes to the CBF epitope

recognition (Figure 6.1A).
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In further experiments, exposure of human plasma FN to 0.02 µM of MPO, 100 mM of

Cl-, and 1600x molar excess of H2O2, resulted in a statistically significant loss of HBF

antibody recognition (Figure 6.1B), similar to what was observed previous (Figure 5.1B).

With the addition of 20 µM of SCN- to similar reaction systems, antibody recognition

of the HBF site returned approximately to the same level as controls (Figure 6.1B).

With further increases in SCN- concentration, no increase or decrease of HBF epitope

recognition was observed (Figure 6.1B).

The HOCl-generated epitope recognised by the antibody 2D10G9 was found to be

present in samples treated with MPO, 100 mM of Cl-, and 1600x molar excess of

H2O2, at levels almost 18-fold higher than present in controls (Figure 6.1C); this is

similar to what was observed previously (Figure 5.1C). With the addition of 20 µM

of SCN- to the treatment system, the HOCl-generated epitope was not detected, with

the absorbance values decreased to control levels (Figure 6.1C). No further changes were

seen with increased SCN- concentrations in the samples. These studies also showed that

HOSCN does not produce any epitope recognised by this antibody clone (Figure 6.1C).

Furthermore, maximal inhibition was found to occur at 20 µM of SCN- as reported for

all epitopes examined.

These data together show that treatment of human plasma FN with MPO/Cl-/H2O2

can lead to modifications that can be reversed with the addition of relatively modest

concentrations of SCN-. Further investigations were therefore conducted to examine

structural changes to FN and the CBF and HBF epitopes using silver staining and

Western blotting.
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Figure 6.1: ELISA of human plasma FN modified following enzymatic treatment with MPO/Cl-/H2O2
and increasing concentrations of SCN-. Each well was coated with 0.25 µg FN (0.02 µM in 0.1 M
phosphate buffer) was either left untreated (control) or treated with 0.02 µM MPO, 100 mM of Cl-,
increasing concentrations of SCN- and 32 µM of H2O2. Samples were incubated for 2 hr at 37°C. FN
epitopes were detected using a mouse monoclonal A) anti-FN CBF antibody (A17; 1:10000), B) anti-FN
HBF antibody (A32; 1:1000), C) anti-HOCl generated epitope (2D10G9; 1:50), and conjugated with
anti-mouse AP secondary antibody (1:1000). The data are presented as a percentage relative to control
(no oxidant treatment). Error bars are ± SD from three technical replicates obtained from each of
three independent experiments. Statistical analysis was performed using one-way ANOVA with Tukey’s
multiple comparison post hoc tests to determine significance. Statistical significance is identified as
follows: **** = p < 0.0001.
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6.3.2 Effects of enzymatic treatment with myeloperoxidase, hydrogen

peroxide, chloride and increasing concentrations of thiocyanate

on the structure of human plasma fibronectin

Having shown that SCN- can retrieve epitope recognition for these particular functional

sites and also decrease the presence of a HOCl-generated epitope, the effects of increasing

SCN- on the structural changes induced by HOCl on FN was examined. Purified human

plasma FN (0.02 µM) was either left unoxidised (MPO only control) or treated with

either 0.02 µM or 0.1 µM of MPO, 100 mM of Cl-, with 160 µM of H2O2, and increasing

concentrations of SCN- from 0 to 500 µM. Samples were then separated on SDS-PAGE

under non-reducing or reducing conditions prior to silver staining to examine possible

structural changes.

Human plasma FN (0.02 µM) was treated with 0.02 µM of MPO, 100 mM of Cl-, with 800x

molar excess (160 µM) of H2O2 and in the absence of SCN-, reflects the modifications

previously found (Figure 5.2A). Under non-reducing conditions, FN parent monomer

bands (white arrow) were found to have decreased in staining intensity when treated

with MPO/Cl-/H2O2 in the absence of SCN- (Figure 6.2A). This treatment was also

found to cause fragmentation of the protein with the formation of additional bands,

particularly those below the monomer bands (white arrow) (Figure 6.2A). Aggregates or

other higher molecular mass species were also detected. With the addition of 20 µM of

SCN-, there are less higher aggregate bands formed but more protein bands were found

to be present with masses between 268-460 kDa (Figure 6.2A). Furthermore, fragments

with a mass of approximately 190 kDa appeared to be more prominent with increasing

concentrations of SCN- (Figure 6.2A). At 400 and 500 µM of SCN-, which is greater than

the concentration of H2O2 added (160 µM), fewer protein bands between 268-460 kDa

were observed (Figure 6.2A).

Treatment with 0.1 µM of MPO under non-reducing conditions, gave similar modifications
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to those seen with the lower concentration of MPO, together with greater loss of the parent

dimer (black arrow) and monomer bands (white arrow) (Figure 6.2A). At 100 and 400

µM of SCN-, aggregates caused by the treatment can be seen as a smear of the protein

bands and at the top of each well (Figure 6.2A). At 500 µM of SCN-, the modifications

detected were found to be similar to those generated by pre-formed HOSCN, particularly

the bands that are found to form above and below both the parent dimer and monomer

(Figure 4.2A).

FN samples treated with 0.02 µM of MPO, 100 mM of Cl-, with 800x molar excess

(160 µM) of H2O2 in the absence of SCN- and electrophoresed under reducing conditions,

resulted in fragmentation of FN with a band detected at approximately 180 kDa. This FN

fragment was observed with concentrations of SCN- between 0 to 100 µM (Figure 6.2B).

However, when the concentration of SCN- was in excess over the H2O2 concentration (i.e

400 to 500 µM of SCN-), the fragment around 180 kDa was not detected (Figure 6.2B).

At 400 µM of SCN-, formation of dimers/higher aggregates were detected (black arrow)

(Figure 6.2B).

Under reducing conditions, treatment with the 0.1 µM MPO system showed modifications

to the monomer bands (white arrow), which were more extensive in the absence of or at

low concentrations of SCN-, and particularly at 20 to 50 µM of SCN- (Figure 6.2B). At 100

µM of SCN-, the modification seems to be minimised, and increasing SCN- concentration

to 400 µM (i.e greater than the concentration of H2O2) did not result in the fragment

at around 180 kDa (Figure 6.2B). Furthermore, there was also an increased presence of

dimers/larger aggregates caused by this treatment, which was observed at 400 µM and

500 µM SCN- (Figure 6.2B).

To further elucidate the structural changes on FN, Western blotting for the FN CBF and

HBF epitopes was utilised. Proteins separated by SDS-PAGE were transferred to PVDF

membranes and were probed for either the CBF (clone A17) or HBF (close A32) of FN.

Under non-reducing conditions, examination of the CBF epitope showed that incubation
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Figure 6.2: Silver staining showing structural changes to human plasma FN treated with
MPO/Cl-/H2O2 and increasing concentrations of SCN-. Purified human plasma FN (0.2 µM in 0.1
M phosphate buffer) was either left untreated (MPO only control) or treated with MPO/Cl-/H2O2 and
increasing concentrations of SCN- and incubated for 2 hr at 37°C. Samples were electrophoresed using
3-8% Tris-acetate SDS-PAGE gels under A) non-reducing or B) reducing conditions. Gels were then
fixed, and visualised with silver stain and referenced against HiMark™ pre-stained High Molecular Mass
standard. Data are labelled as follows: black arrow = dimer/higher aggregates, and white arrow =
monomer bands.
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of FN with only 0.02 µM of MPO (in the absence of SCN- and H2O2) did not show any

changes to the CBF epitope (Figure 6.3A). In the presence of 100 mM of Cl and 800x

molar excess (160 µM) of H2O2 (absence of SCN-) resulted in extensive aggregate and

fragment formation (Figure 6.3A), which were similar to those observed in the previous

Chapter (Figure 5.2A). Moreover, it can be seen that treatment with Cl- and H2O2 caused

a loss of antibody recognition of the monomer (white arrow) and dimer bands (black

arrow) (Figure 6.3A). Addition of 20 µM of SCN- resulted in several notable fragments,

particularly those between the dimer (black arrow) and monomer bands (white arrow)

(Figure 6.3A). Increasing the concentration of SCN- led to a decrease in HOCl-induced

modifications, and were found to produce fragments and aggregates similar to those seen

with HOSCN (compared to figure 4.2 and 4.3) (Figure 6.3A). A notable modification

was observed when FN was treated with only 0.1 µM of MPO (in the absence of SCN-

and H2O2), with additional bands detected above and below the monomer bands (white

arrow); these were not detected with the lower concentration of MPO (Figure 6.3A).

Exposure of human plasma FN to only 0.1 µM of MPO caused a small increase in intensity

of the fragment band below the monomer bands (white arrow) (Figure 6.3B). The addition

of 0.02 µM of MPO and 800x molar excess (160 µM) of H2O2 to human plasma FN

were found to cause non-reducible aggregates and fragments at approximately 170-180

kDa (Figure 6.3B). Low concentrations of SCN- of 20-50 µM resulted in a decrease in

aggregate formation (black arrow and above), and also decreased in intensity of the 170-

180 kDa fragment band (Figure 6.3B). Higher concentrations of SCN- (100 to 500 µM)

resulted in the detection of lower intensity of aggregates compared to controls, but also

prevented the formation of the HOCl-specific fragments observed at approximately 170-

180 kDa (Figure 6.3B). With 0.1 µM of MPO, under the same treatment conditions, the

addition of 800x molar excess (160 µM) of H2O2 led to a greater smearing of FN and

greater intensity of fragments formed below the monomer bands (white arrow) at 170-180

kDa (Figure 6.3B). Moreover, it required > 100 µM of SCN- before these aggregates and

fragments were prevented from forming (Figure 6.3B).
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Examination of blots that were probed for the HBF epitope of FN showed similar

modifications under both non-reducing and reducing conditions (Figure 6.4). Fragments

and aggregates occurred upon exposure to MPO, 100 mM of Cl- and 800x molar excess

(160 µM) of H2O2 (Figure 6.4). Addition of SCN- was found to reverse the formation of

certain aggregates or fragments, however at higher concentrations of SCN-, the fragments

or aggregates that were detected were similar to those observed with MPO-derived

HOSCN (compare Figure 6.4 with 4.3).

Overall, these data indicate that there are interactions between MPO, H2O2, Cl-,

and SCN-, which may determine the relative yields of HOCl and HOSCN formed by

MPO have on the specific modifications that occur on FN. The following (discussion)

section describes the nature of these interactions between the enzyme and its mixture of

substrates in greater detail.
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Figure 6.3: Western blotting for CBF showing structural changes to human plasma FN treated with
the stated concentrations of MPO/Cl-/H2O2 and increasing concentrations of SCN-. Purified human
plasma FN (0.2 µM in 0.1 M phosphate buffer) was either left untreated (MPO only control) or treated
with MPO (0.02 or 0.1 µM), Cl- (100 mM), H2O2 (160 µM) and increasing concentration of SCN-,
and incubated for 2 hr at 37°C. Samples were electrophoresed on SDS-PAGE under A) non-reducing or
B) reducing conditions, transferred onto PVDF membranes and probed with a mouse monoclonal anti-
FN CBF antibody (A17; 1:10000), and conjugated with anti-mouse HRP secondary antibody (1:2000).
Blots were developed with ECL-plus reagent and data is labelled as follows: black arrow = dimer/higher
aggregates, and white arrow = monomer bands.

177



Figure 6.4: Western blotting for HBF showing structural changes to human plasma FN treated with
MPO/Cl-/H2O2 and different concentrations of SCN-. Purified human plasma FN (0.2 µM in 0.1 M
phosphate buffer) was either left untreated (MPO only control) or treated with MPO (0.02 or 0.1 µM), Cl-
(100 mM), H2O2 (160 µM) and increasing concentration of SCN-, and incubated for 2 hr at 37°C. Samples
were electrophoresed on SDS-PAGE under A) non-reducing or B) reducing conditions, transferred onto
PVDF membranes and probed with a mouse monoclonal anti-FN HBF antibody (A32; 1:5000), and
conjugated with anti-mouse HRP secondary antibody (1:2000). Blots were developed with ECL-plus
reagent and data is labelled as follows: black arrow = dimer/higher aggregates, and white arrow =
monomer band.
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6.4 Discussion

MPO is important in the inflammatory response against invading pathogens and its

potential role is to generate reactive bactericidal species to kill pathogens. However,

excessive or inappropriate formation and amounts of oxidants can also be damaging to

host cells and their surrounding ECM. Within the body, Cl- concentrations are typically

in the range of 100-150 mM whereas SCN- fluctuates, with concentrations of 20-250 µM

reported for different individuals [95]. Hence, the relative concentrations of Cl- and SCN-

determine the amount of the two hypohalous acids, HOCl and HOSCN, generated by

MPO at a site of inflammation. With Cl- being more abundant than SCN-, it would be

expected that HOCl is the major species produced although SCN- is the more favoured

substrate for the enzyme [51]. Another known mechanism of HOSCN production is

through a non-enzymatic interaction between HOCl directly with SCN- [92, 93]. This

reaction occurs rapidly (k = 2.34 x 107 M-1 s-1) and spontaneously reducing highly reactive

HOCl concentrations and generating more specific, yet less reactive oxidant HOSCN with

the latter species being specific for thiols [26, 50, 92, 94]. By determining the nature

of interaction between MPO, Cl- and SCN-, in the presence of H2O2 to a biologically

important protein target FN, it was hoped that the extent and specificity of protein

modifications induced by HOCl vs HOSCN could be identified, and the nature of the

modifications induced by these species can be further elucidated.

In the previous Chapter, the modifications of FN induced by MPO/Cl-/H2O2 were

explored. The addition of SCN- at increasing concentrations resulted in the detection

of a greater number of apparent fragments or altered species together with a decreased

intensity of the aggregate bands (Figure 6.2). Previous studies have shown that MPO

has a greater specificity constant for SCN- over Cl- by 730 fold [26, 110]. Furthermore, it

has been reported that at least 40% of H2O2 consumed by MPO under some conditions

reacts with SCN- to generate HOSCN, with a small percentage being used to oxidise other

halides (Br- or I-), with the remaining H2O2 being converted to HOCl [26, 98]. Therefore,
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the presence of lower concentrations of SCN- in the samples is likely to produce small

amounts of HOSCN, which are likely to target Cys residues on FN. However, it is highly

likely that significant amounts of HOCl are still being generated.

In previous studies, MPO in the presence of physiological concentrations of Cl- and SCN-

combined, was found to have a synergistic effect leading to greater oxidation of TNB than

the sum of each separate species [110]. This suggestion was supported by data indicating

that the consumption of H2O2 was greater in the mixed Cl- and SCN- system, with the

rate of consumption proportionate to the concentration of SCN- [110]. The synergistic

generation of oxidant could suggest that in vivo, the mixture of halides is important in

generating a greater inflammatory response, which in turn could modify host proteins

more extensively. This hypothesis may potentially explain why there appears to be a

greater, or altered pattern of modifications on FN with the addition of SCN- to the

MPO/Cl-/H2O2 system.

Increasing the concentrations of SCN- (> 100 µM or approaching 1:1 ratio with 160 µM

of H2O2) resulted in less formation of fragments and aggregates. Furthermore, the loss of

antibody recognition also appears to be mitigated. There appears to be a shift in what

is assumed to be MPO/Cl-/H2O2-derived modifications to MPO/SCN-/H2O2-derived

modifications. The MPO/SCN-/H2O2 system does not seem to modify significantly the

functional CBF or HBF epitopes with no changes in antibody recognition seen in ELISA

or Western blots (Figure 6.1), nor affect the biological functions dependent on these

epitopes as found in previous chapters (Section 4 and 5). This suggests that although

MPO-derived HOSCN is modifying FN in a specific way, it is not targeting CBF or HBF

functional epitopes. HOSCN may target FN at different sequences or epitopes that are

rich in Cys residues which have not been investigated in this study; further investigations

are required to confirm this.

Exposure of FN to MPO, Cl-, and 1600x molar excess (32 µM) of H2O2 was observed to

decrease recognition to both the functional CBF and HBF epitopes, with a corresponding
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increase in presence of a HOCl-generated epitope (Figure 6.1). The addition of 20 µM

of SCN-, which is similar in concentration to the amount of H2O2 present, resulted in

a complete return of recognition to the CBF and HBF epitopes. Moreover, addition of

SCN- led to the disappearance of the HOCl-generated epitope recognised by 2D10G9

with the absorbance levels returning to those found in the controls (Figure 6.1). It may

be likely that MPO in the presence of 20 µM of SCN- and 1600x molar excess (32 µM)

of H2O2 is producing more HOSCN than HOCl, mitigating the damage to the functional

CBF and HBF epitopes, and reducing the formation of the HOCl-generated epitope.

The ELISA results repeated in this chapter in the presence of SCN- did not show a

greater modifications to these FN functional sites (as seen on the gels and by Western

blotting) but rather a return of epitope recognition with the addition of increasing

concentrations of SCN- (Figure 6.1), unlike what was observed earlier in the silver staining

and Western blotting results. There are several reasons why this may not be detected

with the ELISA treatment. Firstly, 1600x (32 µM) of H2O2 was used instead of 800x

molar excess (160 µM) of H2O2. Higher concentration of H2O2 will inevitably lead to a

greater formation of oxidant, and oxidation observed in the silver stain and Western

blot experiments, and less in the ELISA experiments despite the lower molar ratio.

Moreover the ratio of H2O2:SCN- was different between the two sets of experiments

thus the ratio of oxidants (HOCl:HOSCN) is likely to be different between the two sets of

experiments. Interestingly, a ratio of 5:8 (SCN-:H2O2) which was common for both ELISA

and silver staining/Western blotting experiments, a decreased MPO/Cl-/H2O2-derived

modifications, and a shift to what appears to be MPO/SCN-/H2O2-derived modifications

was observed. What may be happening in this case is that the presence of SCN- at a

concentration close to H2O2 is either diverting MPO production to HOSCN instead of

HOCl or SCN- is scavenging HOCl [26, 110]. This suggestion is supported by the presence

of a HOCl-generated epitope when FN was treated with MPO/Cl-/H2O2 in the absence

of SCN-, but the addition of 20 µM of SCN- led to a reduction in the levels of the HOCl-

generated epitope back to levels close to those levels observed in controls (Figure 6.1).
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This would suggest that at 0.02 µM of MPO, 100 mM Cl-, 20 µM of SCN-, 32 µM of

H2O2 the major oxidising agent that gives rise to the detectable modifications on FN

using the approaches examined here is HOSCN.

One limiting factor in these experiments was that it could not determine whether HOSCN

was produced or whether SCN- was scavenging HOCl. Due to time constraints, it

was difficult to create a larger set of experiments. In future experiments, the use of

monochlorodimedon would help to determine whether HOCl was generated in this process

[411]. The use of monochlorodimedon would decrease the reaction between MPO and Cl-,

and thus determine whether HOSCN was produced or whether HOCl was scavenged by

SCN-.

This chapter has shown that the modifications induced on FN by treatment with a

MPO/Cl-/H2O2 system can somewhat be attenuated by the addition of SCN-. The

addition of low concentrations of SCN- was found to potentially increase structural

damage on FN, possibly as a result of damage to a limited number of critical Cys

residues, whereas higher concentrations of SCN- resulted in the change from HOCl-

derived modifications to less damaging HOSCN-derived modifications. By elucidating

the relationship between MPO, Cl-, SCN-, and H2O2, a greater understanding can be

obtained as to the role of SCN- in the progression or prevention of atherosclerosis.
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Chapter 7

Discussion and future directions

7.1 Overview and Summary

FN is a key ECM protein in maintaining basement membrane homeostasis through

protein-protein and protein-cell interactions. FN dimeric protein consists of two nearly

identical monomers bound by two disulfide bonds present near the carboxy-termini [149,

195, 196]. There are two types of FN: soluble plasma FN and insoluble cellular FN, which

are both reported to be found within the arterial wall sub-endothelial matrix [149, 195,

196]. The two types of FN are similar, with the exception that cellular FN possesses

additional EDA and EDB domains, which have been proposed to play a role in matrix

assembly and atherogenesis [140, 273, 274]. FN possesses several functional domains that

interact with other ECM proteins and integrin binding sites on cells [149, 197].

Deposition of LDL in the sub-endothelial matrix is believed to initiate an inflammatory

response leading to the migration of leukocytes and a release of inflammatory species [1].

MPO, a heme-peroxidase that can be detected in plasma, has been shown to transcytosed

into the sub-endothelial matrix, or are released at this location by activated leukocytes

that have migrated into the site of inflammation [21, 270, 397]. High levels of circulating

MPO have been linked to an increased prevalence of CAD in the population [11, 396],

and a deficit was previously linked with a reduced rate of CVD [39]. MPO converts

H2O2 in the presence of physiological concentrations of Cl- and SCN- to generate HOCl
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and HOSCN, respectively [26]. High concentrations of these reactive oxidants have been

shown to modify and damage host lipids, DNA, peptides, and proteins [49, 50].

In Chapter 3, it was shown that exposure of human plasma FN to reagent HOCl caused

fragmentation and aggregation of FN, leading to a loss of antibody recognition of the

functional CBF and HBF epitopes, and increased detection of a HOCl-generated epitope.

HOCl was found to target Met, Trp, and free thiol residues with further oxidation of

MetSO occurring leading to subsequent by-products. Exposure of HCAEC to HOCl-

modified FN resulted in a loss of HCAEC adhesion and metabolic activity. Furthermore,

HCAEC incubated on HOCl-modified FN were found to modulate the expression of

several ECM and adhesion genes in response. Reagent HOCl was also found to damage

HCAEC-derived cellular FN CBF, HBF, and EDA epitopes leading to a loss of antibody

recognition to these functional sites. Furthermore, FN was shown to be present in

advanced Type II-III human atherosclerotic lesions, and were found to co-localise with a

HOCl-generated epitope as seen with IHC.

In Chapter 4, the results of analogous experiments reported in which human plasma FN

was exposed to reagent HOSCN (generated using an LPO/SCN-/H2O2 system). This

treatment resulted in minor modifications (when compared to those observed with HOCl

exposure) with limited fragmentation, aggregation or changes in gel mobility due to

protein unfolding. FN thiols were found to be modified upon exposure to HOSCN, which

is consistent with the known specificity for thiol residues by this oxidant. There were

limited modifications induced on the FN CBF epitope by HOSCN, and this treatment

did not cause any changes to HCAEC adhesion nor metabolic activity. However, HCAEC

incubated on HOSCN-modified FN were found to show altered expression of certain genes

which were different to those induced by HOCl-modified FN. Exposing HCAEC-derived

cellular FN to HOSCN did however induce small changes to the functional CBF, HBF,

and EDA epitopes. This may have arisen from HOSCN targetting key Cys residues in

other domains with this resulting in subsequent changes to these functional epitopes,

which are known to be lacking in these residues.
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In Chapter 5, human MPO/H2O2 with either 100 mM of Cl- or 20 or 500 µM of SCN-

was used to treat human plasma FN. This enzymatic reaction system should more

closely replicate the reaction that is occurring in vivo. Exposure of human plasma FN

to MPO/Cl-/H2O2 system was found to induce structural changes with formation of

fragments, aggregates, and altered mass species possibly arising from protein unfolding.

Moreover, exposure of FN to MPO/Cl-/H2O2 resulted in modifications to the functional

CBF and HBF epitopes causing a loss of antibody recognition, and subsequent exposure

of HCAEC to modified FN was found to decrease HCAEC adhesion and metabolic

activity. Exposure to MPO/SCN-/H2O2 was found to induce minor structural changes

to human plasma FN when compared to MPO/Cl-/H2O2. MPO/SCN-/H2O2 treatment

of FN resulted in minor modifications to the CBF and HBF epitopes, and when HCAEC

were incubated with this modified FN, HCAEC adhesion and metabolic activity was not

affected.

In Chapter 6, human plasma FN was exposed to MPO/Cl-/SCN-/H2O2 to investigate

the competitive generation of HOCl and HOSCN. As expected on the basis of the above

data, exposure to MPO/Cl-/H2O2 system resulted in extensive modifications to FN. The

addition of SCN- mitigated HOCl-derived modifications and at higher concentrations

of SCN-, modifications consistent with the MPO/SCN-/H2O2 system were detected.

Furthermore, the addition of SCN- was found to retrieve antibody recognition of the

functional CBF and HBF epitopes, with a corresponding decrease of the HOCl-generated

epitope recognised by 2D10G9, which was generated in samples where SCN- was absent.

These results are consistent with previous studies examining changes to ECM proteins

by reactive oxidants [22, 64, 65, 130, 260, 261]. The proximity of FN to the arterial

wall cells and the importance of FN for vascular ECM integrity makes it an interesting

target to investigate with respects to whether it is targeted and modified by HOCl and

HOSCN. Modifications to FN can lead to subsequent loss of biological function, and

particularly its ability to interact with other ECM proteins, and cells (ECs and SCMs)

[22, 130, 131, 261]. It would therefore be insightful to investigate changes to other ECM
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proteins, other functional epitopes on FN, the possible protective mechanism of SCN- or

other antioxidant species that may protect against modifications to FN.
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7.2 The implication of modifications to FN by HOCl or HOSCN, and

their interactions with other ECM proteins and cells

FN possesses functional epitopes including those that are important in interacting with

cells (e.g. via the CBF), collagen/gelatin, fibrin and heparin (the latter two have two

domains on FN) [196]. Modifications to the CBF on FN are known to have a drastic

effect on cellular adhesion [22, 130, 261], thus modifications to other functional epitopes

may identify what effect modified FN may have in vivo [130, 258, 318, 412].

The FN collagen binding fragment is known to bind to collagen [217, 218], with a greater

specificity to the denatured form (gelatin) than the native form [258]. This suggest that

FN may be binding with gelatin to initiate degradation of collagen peptides through

activation of collagenases [413]. Some studies have found that collagen triple helices

unfolds at physiological temperatures, which may increase the interaction between native

FN and collagen in vivo [414, 415]. The importance of collagen to FN assembly has

previously been shown in Mov13 mice, whereby inactivation of COL1A1 gene resulted in

sparse assembly of shorter FN fibrils [416]. Furthermore, FN and collagen have been

observed to co-localise, and when FN assembly in SMC culture was inhibited using

an anti-α5β1 integrin antibody, this subsequently inhibited collagen assembly [417].

Blocking the gelatin binding site on FN was also found to prevent deposition of both

collagen and FN fibrils in fibroblast cell culture [258]. These studies support the important

nature of the interactions between FN and collagen, and support the hypothesis that

modifications to the collagen/gelatin binding fragment by oxidants can have a profound

effect on collagen deposition and ECM assembly [418].

In previous studies, it has been proposed that procollagen, which can be cleaved

intracellularly to collagen may interact with FN prior to excretion into the ECM [419,

420]. If this were the case, the collagen/gelatin binding fragment may be occupied,

and FN may be in an altered or unfolded state, thus it may change what sequence is
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susceptible to HOCl or HOSCN modifications. In recent studies, investigations have

examined the mechanical forces between ECM proteins and cells; it has been shown that

FN-collagen interactions were important in reducing load-bearing on FN and decreased

cell mediated stretching of FN (compared to FN-only) [391]. The interaction between

FN and collagen would mean that FN would be less strained, which may modulate some

of the modifications generated by HOCl and HOSCN, which are dependent on protein

conformation and accessibility to epitopes. The amino acid sequence of the collagen

binding fragment is located between 308-608, which posses 23 Cys residues (Uniprot.

data; P02751). The reaction of oxidants in this region may be important due to the high

reactivity of HOCl and the specificity of HOSCN to thiol residues [50]. If this region

were to be modified by either HOCl or HOSCN, this may affect the interactions between

FN and collagen, resulting in improper FN-collagen (and subsequently matrix) assembly

[418].

The fibrin binding fragment in the Type I module of plasma FN plays an important role

in wound healing by binding to fibrin and platelets, providing a strong clot scaffold [197].

Formation of the fibrin-FN clot is mediated by coagulation factor XIII binding to the

N-terminus on FN [421]. Furthermore, the incorporation of FN into clots has been found

to be important in cellular function of platelets [422, 423], and activation of fibroblasts

[424]. Fibroblast binding and activation is mediated by the FN cell binding domain (type

III9-10), a variably spliced domain (type IIICS), in combination with HBF (which alone

does not result in cell adherence) [424]. Cellular FN is then deposited by cells, and both

plasma and cellular FN stimulate the deposition of collagen leading to granulation of

injured tissue and fibrosis [197, 425]. Plasma FN deficiency and FN+/- (expression of

half the amount of FN) in mice were observed to have delayed thrombus formation and

slower rate of arterial occlusion [426, 427]. Infusion of rat plasma FN in FN+/- mice was

found to retrieve the thrombotic defect [427]. The fibrin binding fragment is important in

initiating wound healing, and this may be important in the case of a plaque rupture [428,

429]. Furthermore, if this fragment were to be modified, it may affect the interaction
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between FN and fibrin and subsequent collagen formation for fibrosis (particularly in

plaque cap development).

The FN HBF plays in a myriad of roles, one of which is binding to cell-surface heparan

sulphate proteoglycans (HSPG) [164, 430]. There are two HBF domains in both forms

of FN, HBF I is located at the N-termini and has a weaker binding affinity than HBF

II which is located near the carboxy-termini on the type III12-14 module [196, 431]. This

type III13 domain is known to play a pivotal role in binding Syndecan-2 [207, 432]. Due

to its high binding affinity, it has been found to also bind to GAGs and particularly

CS, although perhaps not as strongly as to heparin [206]. Furthermore, it has been

previously found that the variable region can be alternatively spliced in the type IIICS

region in cellular FN [209]. The HBF in FN is important in matrix assembly and has

been found to increase the distribution of FN in Chinese Hamster Ovary cells (CHO)

[208]. Furthermore, binding of heparin to FN also increased the binding of collagen

[433]. Modifications on the FN HBF, as seen with exposure to HOCl (Section 3) or MPO

enzymatic system (Section 5), may lead to an inability of binding between FN to heparin

or GAG. This may cause impairment in collagen binding and subsequent loss of integrity

in matrix assembly.

Anastellin is a fragment located on the carboxy-termini of the type III1 domain (amino

acid sequence 627-702) and has been shown to regulate polymerization/fibril formation

of FN [434]. The binding of anastellin to FN is dependent on the protein unfolding

to give access to the binding site [435]. It acts on FN to initiate the formation of

superfibronectin (super-FN), which has increased cell adhesion properties, and suppresses

cell migration [436], and proliferation [434]. Moreover, anastellin has been found to elicit

an anti-angiogenic effect [437], although this mechanism is not fully elucidated. It has

been proposed that perhaps the conformational change may cover up certain domains

such as the EDA domain on cellular FN [438]. This suggest that there may be a

relationship between anastellin and the association between EDA and α4β1 integrin [439].

Modifications to this domain (which possesses 3 Trp, 4 Tyr, and no Met or Cys residues)
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by oxidants (HOCl) may have an implication on FN matrix assembly in vivo. The Tyr-

666 residue is known to be critical in binding for ananstellin and the deletion of Type

III1-3 (amino acid 614-901) was shown to have barely detectable levels of matrix fibrils

[440, 441]. Recent study by another member of the group, has identified that anastellin

Tyr-666 (and Tyr-687 ) residues were targets for chlorination upon exposure to HOCl

and MPO/Cl-/H2O2 system (Tina Nybo, 2018, Unpublished data). This may suggest

that modifications to this Tyr-666 residue would have an implication in the assembly of

FN and super-FN, and may play a minor role in disturbing cellular adhesion between FN

and HCAEC (as seen in Section 3 and 5).

Cellular FN is alternatively spliced during production and thus possesses the additional

EDA and EDB domains which are absent in plasma FN [196]. The EDA region, which

is the more extensively researched of these two domains, has been found to mediate

binding to α4β1 and α9β1 [439, 442]. EDA is particularly important during early

vascular development [443–445], and knock-out of both the EDA and EDB domains

(EDA-/-/EDB-/-) was found to be lethal to mice embryos with these observed to have

defects in embryonic cardiovascular development [446]. EDB-/- mice were observed to

develop normally, but fibroblasts derived from these animals were slow growing and

deposited lower levels of FN [447]. Atherosclerotic plaques have been observed to have

elevated levels of EDA containing FN, and these plaques were observed to be more stable

in apoE-/- mice [412]. Furthermore, apoE-/-/EDA-/- mice developed smaller plaques but

had higher levels of macrophage infiltration, lower levels of collagen deposits, and higher

levels of MMP expression and activity [412]. This suggests that EDA is required to

form thicker fibrous plaques that are likely to be more stable and less likely to rupture.

However, there are relatively few studies on the roles of the EDA and EDB domains, and

the extent of their function is not full understood. From the data available, it appears that

these extra domains are important in matrix assembly and mediating cellular functions.

Oxidation and modifications to these domains such as seen as part of these studies may

lead to the formation of more unstable plaques [318], which are commonly associated
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with decreased levels of collagen deposition, and high macrophage numbers.

The importance of FN in maintaining a healthy vasculature can be seen by how it

interacts with other proteins to form matrix and assist in cellular function. Certain

functional epitopes may be reactive with oxidants (HOCl or HOSCN), and can lead

to cellular dysfunction and also improper matrix assembly. There is current on-

going research investigating which amino acids are targets for HOCl on FN and what

peptides/domains are subjected to significant oxidation and chlorination (Tina Nybo,

2018, Unpublished data) [448]. This method is likely to be replicable in examining the

oxidative effects of HOSCN on FN. Further investigations of protein-protein interaction

can complement these findings by identifying whether particular modifications effect

the ability for FN to interact to other ECM proteins [449, 450]. Immunoprecipitation

or co-immunoprecipitation (Co-IP), which are used for strong or stable protein-protein

interactions may be favoured for well-known and categorised interactions [449]. Quartz

Crystal Microbalance (QCM) is a method that utilises a quartz crystal resonator

to measure changes in frequency; it has been used in determining protein-protein

interactions and also provides data on the affinity between two molecules [451]. Biacore is

another detection method that could be utilised to examine native and oxidant-induced

modifications of protein-protein interactions [452]. This method is based on surface

plasmon resonance (SPR), to measure affinity, kinetic rate constants and thermodynamics

of the interactions between proteins [452]. There are several other methods that can be

utilised, some of which are more preliminary (e.g. protein affinity chromatography or

affinity blotting) and others being more specific [449, 450].

Many of the FN domains have been implicated in playing a role in cellular function, and

these functions should be further examined using cells incubated on modified FN [453]. A

common technique employed for examining cell migration is a scratch test, where a surface

area is scratched free of cells and the migration of cells back into this area is monitored

[454]. A Boyden Chamber assay can also be employ to test cell migration, which is a

technique that utilises a porous membrane sitting within medium containing the species
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of interest such as modified FN [455]. Cells will migrate through the semi-permeable

membrane and are subsequently quantified.

As there are current research identifying sites of modifications induced by HOCl and

MPO/Cl-/H2O2 system (Tina Nybo, 2018, Unpublished data), it would be interesting to

expand this further and investigate the effects SCN-. MS analysis of sites of modifications

can be utilised to identify whether SCN- is able to be reduce or prevent the modifications

induced by HOCl and the MPO/Cl-/H2O2 system. Furthermore, it would be important to

elucidate whether HOSCN and MPO/SCN-/H2O2 targets and modifies specific residues

on FN. If HOSCN does target specific residues, then it can be identified whether these

modifications would lead to dysfunction or whether it may reducible by physiological

reductants such as GSH, or ascorbate [392, 393].

Protein-protein interaction is important in identifying whether particular FN functional

domains are more likely targeted than others. However, a mixture of proteins exist in

vivo with FN bound to other ECM proteins and cells (such as EC and SMC) [18, 196,

456]. This suggests that certain targets may be inaccessible to oxidative modifications

due to being bound to cells or other ECM proteins. In these studies, it was shown that

whole HCAEC-derived ECM exposed to HOCl resulted in cellular FN functional epitopes

(CBF, HBF, and EDA) were modified and less extensively by HOSCN. Examination of

other functional sites that are important in binding to other ECM proteins may elucidate

whether those sites are blocked or whether it is still targeted by these oxidants. Moreover,

examination of other ECM proteins, such as laminin, collagen and perlecan, in whole

HCAEC-derived ECM extract are also targeted by these oxidants and modified.

These future studies can further help to determine the role FN has during development of

atherosclerosis, and whether changes to FN can mediate certain responses. By elucidating

these effects, it would assist in identifying whether FN is a suitable target for developing

treatments or prevention of atherosclerosis.
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7.3 Interaction between fibronectin and cells in healthy and

atherosclerotic blood vessels

Cellular FN, which contains alternatively spliced EDA, EDB, and type IIICS domains

are known to express different types of integrins that can interact with receptors from

different types of cells [196]. In this study, it was observed that the CBF and EDA domain

on FN was modified by MPO-derived oxidants, subsequently leading to loss of adhesion

by HCAEC. Other cells also play a role in the progression of atherosclerosis including

SMC, fibroblasts, and a number of leukocytes. The interactions between FN and cells

may change depending on the structural integrity of FN and their corresponding binding

sites and should be further investigated.

Vascular SMC have been known to play an important role in plaque stability and

subsequent prevention of plaque rupture [14]. It is also known that vascular SMC

both interact and produce FN within the vascular wall [14]. During the development of

blood vessels, SMC has been observed to co-localise with α4β1 receptors on cellular FN,

located on one of the alternatively spliced domains [227]. Mechanical stress and elasticity

within the vascular wall are known to be modified by FN [457], and activate arteriole

SMC response via surface integrins to initiate vasodilation or vasoconstriction [458].

Interactions with FN integrin sites have been shown to mediate SMC migration [459,

460], and proliferation [461, 462]. SMC has been found to interact with β1-containing

integrins (e.g. α5β1), which mediate migration and mobility [459, 460]. Furthermore, the

migration of SMC was observed to occur with αVβ3, both in vivo and in vitro [463–465].

Migration of vascular SMC into the injury site is important in synthesising matrix to

form a strong structural fibrous cap [14]. Inhibition of α5β1 by blocking with an RGD

peptide or mimetic has been shown to cause a reduction in vessel wall thickening in mice

models [466, 467], which may indicate a decrease in fibrotic fibres.

Mechanical stress and stiffness of FN was found to also mediate SMC migration, but not
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so in a FN and laminin mixture [468]. It is known that FN is important in regulating

matrix stiffness by interacting with other ECM proteins and cells [457, 469]. FN has

been observed to regulate SMC cell cycle, whereby SMC incubated on FN remained in

the G0/G1 phase for 6 days with increased cycle D1 expression [470]. The addition of

serum activated the S phase in the cell cycle and these processes were found to be absent

in SMC incubated on laminin [470]. These past studies support the interactions between

native FN and the cellular functions of SMC in blood vessels. Modified FN may lead to

changes in this relationship affecting the ability for SMC to migrate, initiate cell cycle

and respond to new stimulus within the blood vessels.

Another cell type that has been observed to interact with FN are fibroblasts, which

resides in the adventitia of arteries and known to function in angiogenesis [471, 472].

Migration of REF52 fibroblasts has been previously observed to be dependent on the CBF,

HBF, EDA domains, and in particular the α5β1 and αvβ3 integrin on FN [473]. Inter-

and intramolceular cross-linked FN (by glutaraldehyde) resulted in decreased directional

persistence in REF52 fibroblast migration, lower spread area, and an inability to form

polarized protrusions [473], indicating that the access to epitopes was important for

fibroblast migration and cell shape. FN mechanical gradient was observed to mediate

durotaxis of NIH 3T3 fibroblasts, which was found to be absent with laminin or mix FN-

laminin experiments [474]. This indicates that FN plays a role in migration of fibroblasts

but in vivo, this may differ depending on the interaction of ECM proteins between each

other and the availability of epitopes to attract fibroblasts.

Previous studies have observed that interactions between α4β1 and EDA domain on FN

promote stress fibre formation and initiation of fibrosis through FN synthesis, deposition

of matrix, and actin assembly [473, 475]. This suggests that fibroblasts play a role in

the generation of fibrotic fibres at injury sites. This may be important when fibroblasts

differentiate into myofibroblasts in response to injury to initiate fibrosis. The phenotype

of myofibroblast differentiation was found to be determined by the EDA and EDB FN

domains, whereby EDA deposition mediated increased α-SM actin and myofibroblasts
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formation via Transforming Growth Factor β1 (TGF-β1) conversion [476, 477]. This

may indicate that fibroblast migration and differentiation is dependent on FN functional

domains, especially in terms of formation of fibrotic tissue at an area of injury such as

the necrotic core of an atherosclerotic plaque. In this study, it was observed that the

EDA domain was modified by reagent HOCl, thus the dependence of fibroblasts on the

cellular-derived EDA domain and the integrins present on the CBF may suggest improper

migration and differentiation of fibroblasts [473, 476, 477]. This may subsequently lead

to reduced fibrosis and smaller plaque cap formation [473, 475].

Inflammatory cells (such as leukocytes, monocytes, and macrophages) have also

previously found to bind to certain ECM proteins during their adhesion and subsequent

transmigration through the EC layer. The type IIICS domain of FN has been found to

bind monocytes via an α4 integrin in a similar fashion to VCAM-1 [478]. Deamidation

of NGR motifs in FN, was observed to increase U937 monocyte adhesion, and binding

of primary human monocytes mediated by the αvβ3 integrin [479]. Blocking of the type

IIICS domain was found to reduce monocyte adhesion by approximately 20%, suggesting

it may be a minor regulator of monocyte recruitment compared to blocking of VCAM-1

which reduced monocyte adhesion by approximately 80% [480]. Furthermore, inhibition

of α4β1 attenuated recruitment of leukocytes (neutrophils and macrophages) and reduced

neointimal formation in apoE-/- mice [481]. Inhibition of β1 integrin with an antibody

decreased αDβ2 integrin (CD11d/CD18) mediated monocyte adhesion by approximately

50% on FN [482]. EDA deficiency in apoE-/- mice was observed to result in lower levels

of lipid accumulation in macrophages suggesting that the FN EDA domain may also

play a role in foam cell formation [272]. Neutrophils incubated on stiff FN fibres showed

stronger adherence and greater cell spreading than those incubated on looser fibres [483,

484]. Stiffness of FN fibres was determined with different concentrations of FN. Therefore,

FN appears to be important in the binding of inflammatory leukocytes to integrins, but

also in determining different macrophage responses via the EDA domain. These studies

suggest that FN may play a role in the recruitment of inflammatory cells into the injury
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area by providing integrin binding sites. Modifications to the EDA (and possibly other

functional sites), as seen in these studies, may suggests changes to foam cell formation

and recruitment of inflammatory cells [272].

Interactions between cells and ECM proteins are complex, and the interactions between a

mixture of proteins in vivo and purified proteins can differ greatly. Further investigations

are clearly needed to examine the relationships between different cell types and native and

modified FN. Cell adhesion, cell metabolic activity, and migration can be tested utilising

the methods described in Sections 2 and 7.2. Since there are limited studies examining

gene expressions, such investigations may contribute greatly to the understanding

of cellular response to blood vessel changes such as modifications to FN or other

ECM proteins. Gene expression by HCAEC adhered on modified FN generated by

MPO/Cl-/H2O2 or MPO/SCN-/H2O2 systems would contribute to our understanding

of possible changes and comparison of the data obtained to what has shown in the

studies reported here with reagent HOCl and HOSCN could be very informative. The

competitive system using MPO/Cl-/H2O2 with the addition of SCN- may expose different

gene regulations, perhaps to a lesser degree than in the absence of SCN-, and this should

be examined further. Gene expression, such as conducted in this study (Section 3.3.6),

could be complemented by investigating protein expression. Gene expression and protein

expression are not always proportionately up- or down-regulated and thus should be

examined. Protein expression can be examined by probing for specific proteins with

specific antibodies using Western blotting or ELISA. This will assist in visualising the

relationship and pathways between gene expression and protein expression, as inhibition

or stimulation may occur upstream of protein expression.
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7.4 Protective and damaging effects of thiocyanate and other

therepeutics

Lifestyle changes have been used as the first stage of treatment for early and advanced

atherosclerosis. This includes healthier eating habits, increased physical activity, control

of body weight, cessation of smoking, and dealing with any underlying mental health

problems, such as chronic stress. A healthy lifestyle in young adults has been found

to significantly decrease the risk of developing atherosclerosis during middle age [485].

Dietary changes are a factor in implementing these changes. This includes reducing

consumption of fatty foods, and shift to a low-fat vegetarian diet, which can reduce LDL

and cholesterol content and results in regression of atherosclerosis [486]. Previous studies

have reported that antioxidant supplementation does not give rise to any changes in the

risk of CVD in patients [133, 487]. It has been then proposed that diverting conversion

of a highly reactive oxidant such as HOCl, to a more specific and often reversible oxidant

such as HOSCN may help in the treatment of atherosclerosis [99, 114, 410]. The studies

reported previously have shown conflicting results, where a small elevation in plasma

levels of SCN- showed a protective effect, decreasing HOCl-induced modifications [99,

114, 410]. However other studies have reported that highly elevated plasma levels of

SCN- led to irreversible modifications induced by HOSCN [99, 114, 410].

The levels of HOSCN in an individual have been proposed to be highly dependent on the

presence of SCN- substrate. Non-smoking individuals have plasma SCN- levels of 20-40

µM, whereas plasma concentration of SCN- in smokers have been reported to be up to

80-400 µM [96–99]. This is a result of smokers having elevated levels of cyanide (CN-),

which the body detoxifies to form SCN- [98, 488, 489]. Smokers have been shown to have

a higher deposition of apoE and an earlier development of atherosclerosis when compared

to non-smokers [490]. These depositions were accompanied by an increased population

of foam cells (lipid-laden macrophages) in the area of injury compared to non-smoking

counterparts [490]. These effects have been linked to elevated levels of plasma SCN-
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[94]. Aside from smoking, elevated plasma levels of SCN- can also occur as a result of

consumption of food products such as cassava, stone fruits, lima beans, and flaxseed [368].

Certain cyanogenic plants, such as broccoli, cabbage, and sprouts can also give rise to

elevated levels of CN- which is detoxified to SCN- in the body [368].

MPO has a higher specificity for SCN- when compared to Cl- by almost 730 fold,

with studies proposing that up to 50% of H2O2 is converted to HOSCN [98, 110].

However, smokers also have high levels of H2O2 [491], therefore higher SCN- may not

be protective as a higher conversion of H2O2 to HOSCN would be expected compared to

HOCl [98, 110]. Elevated plasma SCN- have been linked to accelerated development

of atherosclerosis in younger people, with these individuals presenting with greater

deposition of oxidised LDL and increased formation of fatty streaks in the aortae [111]. As

previously discussed, individuals with higher concentrations of plasma SCN- have been

suggested to enzymatically convert this to HOSCN, which targets thiols and cysteine

residues, and results in MPO-induced depletion of thiols [99]. Reaction of HOSCN with

certain key Cys residues can lead to enzyme inhibition e.g. of protein Tyr phosphatase

enzymes, and modulate cell signalling [108, 410]. In a previous study, high SCN- levels

were not shown to be correlated with atherosclerosis but rather showed correlation with

increased carbamylation [112]. This process is linked to increased levels of OCN-, which

is formed by decomposition of HOSCN [112, 492]. Carbamylation has been found to

target lysine residues leading to formations of homocitrulline, and found to have several

detrimental effects during the development of atherosclerosis (e.g. dysfunction of HDL)

[112, 113].

Reaction of high levels of HOSCN with thiols has been reported to cause high levels

of irreversible products, such as cysteic acid, via over-oxidation of thiols [106]. High

levels of HOSCN has also been shown to be particularly detrimental by inducing protein

thiol depletion and promoting apoptosis in murine macrophage cells with corresponding

increased levels of cytochrome c being released into the cytosol [374]. Furthermore,

treatment with HOSCN led to a higher number of necrotic cells in comparison to controls
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and treatment with the same concentration of HOCl or HOBr [374]. Plasma SCN- levels

have been reported to be inversely proportionate to 3-chloroTyr concentrations on plasma

proteins, which is a common biomarker for HOCl oxidation [367]. This coincided with

a reduction in di-Tyr levels, and this was found to be significant in both smokers and

non-smokers [367]. It is known that HOCl is converted to HOSCN when there is a high

concentration of SCN- [92], this may lead to a skewing of oxidative biomarker levels such

as 3-chloroTyr, where humans or animals with elevated levels of SCN- would have lower

plasma levels of 3-chloroTyr biomarker [367].

Although SCN- has been found to detrimentally impact certain proteins and enzymatic

processes [94, 371], there have been studies showing that certain concentrations of SCN-

can have a somewhat protective mechanism [22, 98, 367]. This protective mechanism of

SCN- has been linked to low levels of MPO, and results in a decreased mortality rate

[99]. Low levels of MPO were found to produce lower levels of oxidation overall with high

levels of SCN- favouring the generation of HOSCN, a less reactive oxidant, over the more

reactive HOCl [99]. Low levels of HOSCN has been found to cause readily reversible

Cys-derived species, such as RS-SCN adducts, sulfenic acids, and disulfides [106, 370].

These species are repairable by GSH and redox enzymes including glutaredoxins and

thioredoxin reductase [106, 370]. Reversible thiols were more readily formed at low levels

of HOSCN in cells as they possess high levels of protein thiols and GSH [493]. However,

low levels of free thiols are present in the extracellular fluids with less than 10 µM of

low molecular mass, and as low as 600-700 µM on proteins [99, 367]. This may mean

that with higher concentrations of HOSCN, there is a greater likelihood that oxidation of

extracellular thiols may lead to irreversible products by over oxidation and also damage

to other amino acid side chains.

HOCl, a more reactive oxidant is known to target several amino acid chains leading

to highly modified peptides [50, 51]. Increased levels of SCN- and hence HOSCN have

been found to reduce damage on non-thiol targets on BSA, in comparison to HOCl at

physiological concentrations [367]. Met, Trp and Tyr residues, which are targets of HOCl,
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were found to be protected, along with Lys and His residues [367]. Increased HOSCN

formation has also been suggested to be biologically relevant, leading to reduced cell

cytoxicity (e.g. to EC, pancreatic cells, and a neuronal cell line) caused by HOCl, and to

protect against inflammatory diseases, such as cystic fibrosis [93]. Inhibition of apoptosis

and caspase 3 has been reported in human EC at low HOSCN doses, further supporting

the proposed protective mechanism afforded by this oxidant [494]. The protective

capability of HOSCN is highly reliant on the levels of MPO, SCN-, and redox enzymes that

are able to repair the reversible damage, such as glutaredoxin, thioredoxin reductase, and

protein disulfide isomerases [495]. SCN- supplementation may therefore help in decreasing

the necessity for invasive treatments such as percutaneous coronary intervention (PCI)

[496], or coronary artery bypass grafting (CABG) [497], and subsequently reduce the risk

of advanced atherosclerosis. However, these studies are preliminary and only show this

protective mechanism to be present at lower concentrations of SCN-. Elevated levels of

SCN- and long exposure to HOSCN were found to be detrimental rather than protective.

Therefore, further investigations are needed to define the appropriate range of SCN- that

is protective rather than damaging in humans.

There are also other possible therapeutics that are currently being studied such as I-

[128], which is another MPO substrate found at very low concentrations in the body [27],

and seleno-compounds [498]. The second-order rate constant of the reduction of MPO

compound I by I- is 7.2 ± 0.7 x 106 M-1 s-1, which is close to that of SCN- of 9.6 ± 0.5 x

106 M-1 s-1 [27]. These rates are much higher than for Cl-, which is 2.5 ± 0.3 x 104 M-1 s-1

[27]. There are few studies examining oxidation of I- to HOI by MPO and the subsequent

effects of HOI. One study examining the effects of HOCl and halides showed that the

MPO/Cl-/H2O2 system oxidised 2’-deoxyguanosine (dG) [128]. Addition of increasing

concentrations of I- (> 1 µM) attenuated this consumption of dG by MPO/Cl-/H2O2

[128]. However, the typical physiological concentration of I- within the body is < 1 µM,

so the relevance of these higher levels of I- is not known [27]. Ischemic reperfusion (IR)

injury occurs after a heart attack and is known to produce an inflammatory response and
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recruitment of MPO releasing leukocytes [499, 500]. A recent study has reported that

I- supplementation can significantly reduce heart damage, characterised by a reduction

in infarct volume and decreased myocardial infarct protein troponin-1 [501]. Elevated

levels of I- may therefore be a possible treatment that can modulate the development of

severity of atherosclerosis, but clearly further investigations are needed due to limited

studies thus far.

Another therapeutic approach that has been studied recently is seleno-containing

compounds [498]. Sulfur-containing side chains, such as thiols and thioethers residues,

are readily targeted by MPO-derived oxidants and downstream materials such as N -

chloramines [50]. It is known that HOCl and HOSCN have a greater reactivity with

selenium species compared to their sulfur analogues [138, 502], and the oxidation products

from these selenium species are more readily reversible than their sulphur counterparts

[137, 138, 503, 504]. It has been reported that seleno-methionine (SeMet) was effective at

scavenging HOCl, and was also reactive with N -chloramine species [498]. Furthermore,

the product from SeMet - the corresponding selenoxide (SeMetO) has been reported

to be readily reduced by endogenous thiols such as GSH [503, 505]. Selenocysteine

containing thioredoxin has been observed to be resistant to over-oxidation and are

readily reversible unlike their sulfur counterparts [137, 138]. This suggests that selenium-

containing compounds may play a role in scavenging biologically relevant HOCl and N -

chloramines and reduce cellular damage during inflammation in inflammatory diseases,

such as atherosclerosis.

High levels of MPO plays a major role in the progression of atherosclerosis [37], therefore

there has been recent studies investigating inhibition of MPO as possible therapeutics

[506, 507]. There are several types of MPO inhibitors but most aim to inhibit the active

sites and prevent the generation of more damaging oxidants [508, 509]. Hydroxamates

have been previously studied as a potential inhibitor of MPO activity but were found to

poorly inhibit MPO activity [510]. Recent studies investigated the effects of substituted

aromatic hydroxamates to examine their inhibitory performance on MPO [506]. It

201



was observed that higher binding affinity between MPO and substituted aromatic

hydroxamates resulted in inhibition of the MPO halogenation cycle, thus inhibiting

generation of oxidants [506]. An irreversible target inhibitor currently being investigated

is PF-1355 (Pfizer), which has been found to decrease plasma MPO activity in peritonitis

and vasculitis [507]. These studies have primarily been conducted in vitro or in mice

models, thus further investigations are needed before human application.

There is on-going research investigating these possible therapeutics amongst others.

Perhaps a combination of life style changes based on these recent findings may help

to decrease the severity of CVD and subsequently reduce the risk of heart attacks and

strokes as a consequence of atherosclerosis.
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7.5 Concluding remarks

The studies in this Thesis provides an insight into the reaction between MPO-derived

oxidants, HOCl and HOSCN, on ECM protein, FN. It has been shown that human plasma

FN and HCAEC-derived whole ECM were structurally modified by what is believed to

be physiologically relevant concentrations of HOCl and HOSCN (reagent and within an

MPO/halide/H2O2 system) resulting in important functional domains becoming modified

and unrecognisable by specific antibodies. Moreover, exposure of human plasma FN

to reagent HOCl and MPO/Cl-/H2O2 system was observed to form a HOCl-generated

epitope recognised by antibody clone 2D10G9.

Structural modifications to human plasma FN exposed to MPO-derived oxidants were

observed to impair biological function. Reagent HOCl and MPO/Cl-/H2O2 were both

observed to modify the human plasma FN leading to a reduction in HCAEC adhesion and

HCAEC metabolic activity, likely due to changes to the functional CBF. Furthermore,

exposure of HCAEC to HOCl- and HOSCN-modified FN resulted in different gene

expressions compared to HCAEC exposed to non-treated (native) human plasma FN.

However, exposure of human plasma FN to HOSCN or enzymatic MPO/SCN-/H2O2

system also resulted in minor structural modifications but to a lesser extent compared

to the more reactive HOCl. In the competitive study, the addition of SCN- to

MPO/Cl-/H2O2 system was observed to attenuate some modifications and damage

occurring from exposure to HOCl likely generated from the MPO/Cl-/H2O2. This

suggests that FN is targeted and modified by MPO-derived oxidants with low to moderate

levels of SCN- possibly being capable of reducing the severity of modifications. It is clear

that further investigations are needed to fully elucidate the mechanism of damage and

the relationship between FN, HOCl, and HOSCN.

These studies contribute greatly to the current knowledge of oxidative damage to ECM

proteins by MPO-derived oxidants, HOCl and HOSCN. Developing an understanding of

the role of native and modified FN in mediating endothelial dysfunction, and the factors
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that modulate vascular remodelling could greatly expand the current knowledge about

the progression of atherosclerosis. Furthermore, by elucidating the role and relationship

between FN and MPO-derived oxidants, perhaps a novel therapeutic target could be

identified. This could subsequently lead to a decreased risk of vulnerable plaque rupture

or erosion by formation of more stable plaques, and thus reduction in the occurrences of

myocardial infarction and strokes.
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7.6 Appendix

Table 7.1: All gene expressions of HCAEC incubated on human plasma FN (0.04 µM) pre-treated
with a 1250x molar ratio (50 µM) of HOCl or HOSCN.

Genes Fold Regulation P-Value Fold Regulation P-Value

ADAMTS1 1.20 0.062 -1.24 0.138
ADAMTS13 -2.00 0.008* -1.52 0.009*
ADAMTS8 1.55 0.404 1.59 0.196

CD44 1.04 0.718 -1.01 0.861
CDH1 -3.06 0.263 1.04 0.781

CLEC3B 1.12 3.81 2.82 0.961
CNTN1 -2.47 0.353 -1.86 0.413

COL11A1 -1.29 0.913 1.79 0.345
COL12A1 -5.09 0.011*
COL14A1 1.89 0.320 -1.16 0.848
COL15A1 -1.07 0.526 1.37 0.26
COL16A1 -1.91 0.124 1.13 0.376
COL1A1 -1.07 0.526 1.37 0.426
COL4A2 1.08 0.912 1.25 0.539
COL5A1 -1.30 0.005* -1.23 0.009*
COL6A1 -1.86 0.022* 1.25 0.176
COL6A2 -1.10 0.588 1.42 0.634
COL7A1 1.02 0.960 1.60 0.652
COL8A1 -1.12 1.79 -1.12 0.147
CTGF -1.12 0.009* -1.12 0.147

CTNNA1 -1.24 0.020* -1.17 0.019*
CTNNB1 -1.39 0.018* -1.15 0.66
CTNND1 -1.21 0.048* -1.13 0.119
CTNND2 -1.07 0.526 -1.07 0.517

ECM1 -1.88 0.026* -1.08 0.560
FN1 -1.26 0.007* -1.25 0.002*

HAS1 -3.69 0.076 -1.44 0.295
ICAM1 -1.01 0.989 1.03 0.691
ITGA1 -1.26 0.162 -1.10 0.422
ITGA2 -1.24 0.026* -1.42 0.110
ITGA3 -1.09 0.084 -1.18 0.271
ITGA4 1.69 0.008* -1.17 0.549
ITGA5 -1.29 0.202 1.07 0.276
ITGA6 1.09 0.127 1.01 0.799
ITGA7 -3.90 0.046* -1.92 0.211
ITGA8 1.98 0.404 -1.22 0.389
ITGAL -2.01 0.388 1.62 0.814
ITGAM -3.71 0.126 -1.25 0.616
ITGAV -1.11 0.309 -1.25 0.127
ITGB1 -1.15 0.174 1.05 0.350
ITGB2 -1.34 0.583 -6.79 0.536
ITGB3 -1.81 0.003* -1.00 0.981
ITGB4 -3.10 <0.001* -1.05 0.703
ITGB5 -1.06 0.376 -1.06 0.481
ANOS1 7.86 0.0.333 -1.07 0.517
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Genes Fold Regulation P-Value Fold Regulation P-Value

LAMA1 -1.07 0.526 -1.07 0.517
LAMA2 -1.56 0.045* -1.47 0.451
LAMA3 -1.01 0.911 -1.19 0.407
LAMB1 -1.24 0.055 -1.19 0.064
LAMB3 -1.12 0.115 -1.17 0.192
LAMC1 -1.30 0.113 -1.13 0.435
MMP1 1.33 0.021* 1.02 0.583
MMP10 -1.05 0.454 1.07 0506.
MMP11 -1.89 <0.001* -1.20 0.212
MMP12 3.11 0.512 -1.07 0.392
MMP13 -10.12 0.150 -9.02 0.152
MMP14 -1.46 0.061 -1.35 0.226
MMP15 -1.51 0.259 -1.03 0.876
MMP16 -1.26 0.104 -1.19 0.159
MMP2 -1.35 0.002* 1.00 0.945
MMP3 -2.13 0.245 -3.60 0.112
MMP7 -1.58 0.771 -2.03 0.683
MMP8 -3.14 0.129 -9.58 0.050*
MMP9 -2.58 0.239 -2.27 0.316

NCAM1 2.36 0.553 -2.56 0.397
PECAM1 -1.08 0.393 1.16 0.280

SELE 1.91 0.004* -1.06 0.615
SELL -5.39 <0.001* -1.56 0.009*
SELP -5.37 <0.001 -1.44 0.039*
SGCE -1.03 0.693 1.17 0.069

SPARC -1.00 0.943 +1.18 0.045*
SPG7 -1.17 0.002* -1.06 0.479
SPP1 1.05 0.526 -1.07 0.517

TGFBI 1.05 0.781 1.02 0.972
THBS1 -1.03 0.834 -1.10 0.413
THBS2 -1.86 0.023* -1.11 0.679
THBS3 -1.76 0.016* -1.31 0.145
TIMP1 -1.58 0.002* -1.07 0.456
TIMP2 -1.52 0.004* -1.10 0.247
TIMP3 1.46 0.499 1.92 0.285
TNC 1.18 0.500 1.06 0.706

VCAM1 -1.22 0.348 -1.07 0.512
VCAN -1.47 0.021* -1.03 0.702
VTN -1.08 0.811 -2.79 0.171
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Table 7.2: Gene expressions that were up- or down-regulated of HCAEC incubated on human plasma FN (0.04 µM) pre-treated with a 1250x molar
ratio (50 µM) of HOCl or HOSCN.

Genes Function Fold Regulation P-Value Fold Regulation P-Value

ADAMTS13 von Willebrand factor-cleaving protease -2.00 0.008* -1.52 0.009*
COL12A1 Interaction between collagen I fibrils and matrix -5.09 0.011*
COL5A1 Type V collagen pro-α1(V) chain chain -1.30 0.005* -1.23 0.009*
COL6A1 Type VI α1(VI) chain -1.86 0.022*
CTGF Connective Tissue Growth Factor -1.12 0.009*

CTNNA1 Plays a role in cell adhesion -1.24 0.020* -1.17 0.019*
CTNNB1 Adherens conunctions protein -1.39 0.018*
CTNND1 Armadillo protein for signal transduction adhesion -1.21 0.048*
ITGA2 Integrin α2 partial chain receptor to ECM proteins -1.24 0.026*
ITGA4 Integrin α4 partial chain receptor for FN 1.69 0.008*
ITGA7 Integrin α7 partial chain laminin -3.90 0.046*
ITGB3 Integrin β3 partial chain for ECM & cell adhesion -1.81 0.003*
ITGB4 Integrin β4 partial chain for laminin -3.10 <0.001*
MMP1 Cleaves collagen 1.33 0.021*
MMP8 Degrades fibrillar type I, II, and III collagens. -9.58 0.050*
MMP11 Weakly degrades ECM; control of cell proliferation -1.89 <0.001*
MMP2 Degrades ECM and signal transduction molecules -1.35 0.002*
SELE CAM important in inflammation 1.91 0.004*
SELL CAM between ECs and lymphocytes -5.39 <0.001* -1.56 0.009*
SELP CAM on ECs -5.37 <0.001 -1.44 0.039*
SPG7 Paraplegin; regulator of cell and proteins -1.17 0.002*

THBS2 cell-cell & cell-matrix interactions -1.86 0.023*
THBS3 cell-cell & cell-matrix interactions -1.76 0.016*
TIMP1 MMP inhibitor -1.58 0.002*
TIMP2 MMP & EC proliferation -1.52 0.004*
ECM1 ECM formation & angiogenesis -1.88 0.026*
FN1 Formation of plasma & cellular FN -1.26 0.007* -1.25 0.002*

LAMA2 Laminin α2 chain -1.56 0.045*
VCAN Versican protein -1.47 0.021*
SPARC Regulates cell growth via interaction with ECM and cytokines +1.18 0.045*
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