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Abstract

A long-lasting goal in the field of artificial intelligence is to develop agents that can perceive

and understand the rich visual world around us. With the improvement in deep learning and

neural networks, many previous difficulties in the computer vision area have been resolved. For

example, the accuracy in image classification has even exceeded human being in the ImageNet

challenge. However, some issues are still attractive in the community, like action recognition

and its application in multi-view videos.

Based on a large number of previous works in the last few years, we propose a new Dividing

and Aggregating Network (DA-Net) to address the problem of action recognition in multi-view

videos in this thesis. First, the DA-Net can learn view-independent representations shared by

all views at lower layers and learn one view-specific representation for each view at higher

layers. We then train view-specific action classifiers based on the view-specific representation

for each view and a view classifier based on the shared representation at lower layers. The view

classifier is used to predict how likely each video belongs to each view. Finally, the predicted

view probabilities from multiple views are used as the weights when fusing the prediction scores

of view-specific action classifiers. We also propose a new approach based on the conditional

random field (CRF) formulation to pass message among view-specific representations from

different branches to help each other.

Comprehensive experiments are conducted accordingly. The experiments on three bench-

mark datasets clearly demonstrate the effectiveness of our proposed DA-Net for multi-view

action recognition. We also conduct the ablation study, which indicates the three modules we

proposed can provide steady improvements to the prediction accuracy.
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Chapter 1

Introduction

Action recognition is an important problem in computer vision due to its broad applications in

video content analysis, security control, human-computer interface, etc. Recently, significant

improvements have been achieved, especially with the deep learning approaches [44, 39, 53,

37, 60].

Multi-view action recognition is a more challenging task as action videos of the same person

are captured by cameras from different viewpoints. It is well-known that failure in handling

feature variations caused by viewpoints may yield poor recognition results [64, 65, 50].

1.1 Motivations

One motivation of this thesis is to learn view-specific deep representations. This is different

from existing approaches for extracting view-invariant features using global codebooks [45, 32,

33] or dictionaries [65]. Because of the large divergence in specific settings of viewpoint, the

visible regions are different, which makes it difficult to learn invariant features among different

views. Thus, it is more beneficial to learn view-specific feature representation to extract the most

discriminative information for each view. For example, at camera view A, the visible region

could be the upper part of the human body, while the camera views B and C have more visible

cues like hands and legs. As a result, we should encourage the features of videos captured from

camera view A to focus on the upper body region, while the features of videos from camera

view B to focus on other regions like hands and legs. In contrast, the existing approaches tend

to discard such view-specific discriminative information.

1
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Figure 1.1: The motivation of our work for learning view-specific deep representations and
passing messages among them. The features extracted in different branches should focus on
different regions related to the same action. Message passing from different branches will help
each other and thus improve the final classification performance. We only show the message
passing from other branches to Branch B for better illustration.

Another motivation of this thesis is that the view-specific features can be used to help each

other. Since these features are specific to different views, they are naturally complementary to

each other in encoding the same action. This provides us with the opportunity to pass message

among these features so that they can help each other through interaction. Take Fig. 1.1 as an

example, for the same input image from View B, the features from branches A, B, C focus on

different regions and different angles of the same action. By conducting well-defined message

passing, the specific features from View A and View C can be used for refining the features for

View B, leading to more accurate representations for action recognition.

Based on the above two motivations, we propose a Dividing and Aggregating Network

(DA-Net) for multi-view action recognition. In our DA-Net, each branch learns a set of view-

specific features. We also propose a new approach based on conditional random field (CRF)

to learn better view-specific features by passing messages to each other. Finally, we introduce

a new fusion approach by using the predicted view probabilities as the weights for fusing the

classification results from multiple view-specific classifiers to output the final prediction score

for action classification.
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1.2 Contributions

To summarize, our contributions are three-fold:

1) We propose a multi-branch network for multi-view action recognition. In this network,

the lower CNN layers are shared to learn view-independent representations. Taking the shared

features as the input, each view has its own CNN branch to learn its view-specific features.

2) Conditional random field (CRF) is introduced to pass message among view-specific

features from different branches. A feature in a specific view is considered as a continuous

random variable and passes messages to the feature in another view. In this way, view-specific

features at different branches communicate and help each other.

3) A new view-prediction-guided fusion method for combining action classification scores

from multiple branches is proposed. In our approach, we simultaneously learn multiple view-

specific classifiers and the view classifier. An action prediction score is obtained for each

branch, and multiple action prediction scores are fused by using the view prediction proba-

bilities as the weights.

1.3 Organization of the thesis

The rest of this thesis is organized as follows. Chapter 2 introduces recent methods that

are related to deep learning and action recognition, especially the methods for multi-view

action recognition. Chapter 3 illustrates the definition of our newly proposed Dividing and

Aggregating Network (DA-Net). The structure of our DA-Net is described as a combination

of three modules. Our implementation of the DA-Net for training and testing is described in

Chapter 4. The experimental results on different datasets are summarized in Chapter 5. We have

conducted experiments in two settings, including the cross-subject setting to predict videos from

different subjects and the cross-view setting to predict videos from unseen views. Finally, we

conclude our design in Chapter 6.
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Chapter 2

Literature Review

The problems related to action recognition have been studied for decades, and the techniques for

action recognition could be described in three aspects. The first aspect is to treat the actions as

stacks of pictures. From this point, the works in convolutional neural networks mainly for image

classification could be utilized. Secondly, the video signals perform in time sequence, which

enables the techniques like trajectory methods [49], recurrent neural network [12] and attention

mechanism [1] in the action recognition problems. Besides, specific techniques like conditional

random field (CRF) [66] can bring insights into specific multi-view action recognition problems.

For the literature review, the basic deep learning methods will be first introduced, followed

by specific methods for action recognition. The methods for multi-view action recognition and

usage of CRF will also be discussed afterward.

2.1 Deep Learning Structures

For this section, the structures for neural networks (i.e. deep learning) are summarized, in-

cluding the Convolutional Neural Networks (CNN) for image classifications and the Recurrent

Neural Networks (RNN) for sequence modeling problems. Both of these structures are widely

used in action recognition problems.

2.1.1 Convolutional Neural Networks and Back-propagation

The early version of convolutional neural networks (CNN) was introduced in 1982 as Neocog-

nitron [11], where the authors introduced the hierarchy model to distinguish written digits. The

5
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idea of this paper [11] comes from the findings in the visual nervous system of the vertebrate,

which consists of two kinds of cells as simple cells and complex cells that process different

levels of information. However, this structure only provides a forward computing. Later in

1986, Rumelhart et al. [56] published a paper and proposed a computing method called back-

propagation. By defining a loss function at the end of the network and by conducting chain

rule, the result could be propagated back to every neuron and update the parameters. This is the

mathematical background knowledge of all neural networks.

One milestone is a back-propagated convolutional neural network structure called LeNet

[22] proposed by LeCun et al. in order to classify the written zip code MNIST dataset [21]. The

structure contains five layers of filters (called ‘kernels’), and the number of filters is different in

different layers. The convolutional computation is conducted by traversing the filters over the

output of the previous layer (called ‘feature maps’). After each convolutional layer, a pooling

layer performs to select the focused points in the feature map. The structure has influenced

the other works in deep learning. For example, in 2012, Krizhevsky et al. established one

powerful neural network on two GPUs and won the ImageNet Challenge [8], and the result

outperformed the rest methods by a large margin. The network is called AlexNet [20]. The

differences between AlexNet and LeNet are mainly in the network structure and optimization

procedures. In AlexNet, overlapping max pooling was utilized instead of average pooling in

LeNet. AlexNet also used ReLU as activation function instead of Sigmoid in LeNet. Besides,

AlexNet contains more neurons than LeNet, which increases the capacity of the model.

At present, the frequently used structures in computer vision community are VGG [38],

Inception [43] and ResNet [15] combined with different tricks, such as Dropout and Batch

Normalization [17]. BN-Inception [17] serves as an example, which is similar to GoogLeNet

[43] but did changes in the number of filters and method of pooling. In the paper of BN-

Inception [17], the authors proposed an idea that when the data within the different mini-batches

could be transformed into one normal distribution, the parameters learned in each neuron would

be more steady and contain more semantic information. Supposing the situations that the

original distribution could provide good enough output, another layer after this normalization is

added to enable the network to compute reversely. The results are good for image classification

and action recognition, and this network is utilized in later works like the temporal segment

network (TSN) [53].
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2.1.2 Recurrent Neural Networks and LSTM

Another pattern of neural networks is called recurrent neural networks (RNN), in which the data

are treated as time sequences instead of time independent signals in CNN. The goal is achieved

by the hidden layer in RNN, which could store the state of each time step and pass the state to

the next time step.

A crucial problem has been discovered by using RNN, which is the network could only store

states for a short term, and the states of the previous stages could be vanished or exaggerated

after several steps. To solve this problem, an advanced version of RNN is proposed by Hochre-

iter et al. [16], which is called Long Short-Term Memory (LSTM) structure. The LSTM block

exploits a more complex memory cell to store all the previous hidden states, and the forget gate,

memory gate, and output gate are all learned accordingly. This method is proved to be useful in

sequence modeling problems.

A common method of using LSTM in action recognition is to use CNN to extract features

from raw images and the features are fed into LSTM to encode time-based information and

generate the predicted class of action for the output. In [61], the authors used GoogLeNet to

extract features and used stacked LSTM to conduct prediction based on the feature. To be

more clarified, the stacked LSTM contains five layers, and each layer contains 512 memory

cells. Following the LSTM layers, a softmax classifier makes a prediction at every input frame

feature. In [9], the authors proposed a similar structure with a single-layer LSTM. They also

expanded the structure to visual captioning tasks in which the output of LSTM are sequences

of words forming into natural sentences. However, the performances of such structures are

not as impressive as the methods based on CNNs, so we didn’t use RNN-based methods for

multi-view action recognition.

2.2 Methods in Action Recognition

Researchers have made significant contributions in designing effective features as well as clas-

sifiers for action recognition [29, 49, 54, 52, 42]. Wang et al. [48] proposed the improved Dense

Trajectory (iDT) feature to encode the information from the edge, flow and trajectory. The iDT

feature became dominant in the THUMOS 2015 Challenge [13]. This method is an expansion

of optical flow in which the descriptors of each frame are counted and combined together to
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form into a large feature. HOF, HOG and MBH descriptors are utilized, and the final length of

one trajectory is 436. One video will contain many trajectories and these trajectory features are

used to train a support vector machine for each action.

In the deep learning community, Tran et al. proposed C3D [44], which designs a 3D CNN

model for video datasets by combining appearance features with motion information. Sun et

al. [41] applied the factorization methods to decompose 3D convolution kernels and used the

spatio-temporal features in different layers of CNNs.

The recent trend in action recognition follows two-stream CNNs. Simonyan and Zisser-

man [39] first proposed the two-stream CNN to extract features from the RGB keyframes and

the optical flow channels. Wang et al. [52] integrated the key factors from iDT and CNN and

achieved significant performance improvement. Wang et al. also proposed the temporal segment

network (TSN) [53] to utilize segments of videos under the two-stream CNN framework. The

TSN network reported the state-of-the-art results on UCF101 dataset [40] with the accuracy of

around 95%. In this work, the authors proposed a two-stream CNN network, which takes RGB

images as inputs for one stream and optical flow images for the other stream. The two CNN

network both use BN-Inception [17] as the backbone, and the final scores of each video are the

fusion of the results from two streams. Small but effective tricks are use in TSN. For example,

to utilize the models that are pre-trained using RGB images from ImageNet [8] to optical flow

images, the authors resampled the optical flow images to 256-level grayscale images and merged

the three color channels of the pre-trained model to one channel to match the grayscale images.

Our network uses TSN as the baseline and uses the corresponding tricks.

Researchers also transform the two-stream structure to the multi-branch structure. In [10],

Feichtenhofer et al. proposed a single CNN that fuses the spatial and temporal features be-

fore the final layers, which achieves excellent results. Wang et al. proposed a multi-branch

neural network, where each branch deals with different levels of features and then fuse them

together [54]. These works define multi-branch structures to deal with different modalities of

videos instead of videos from different viewpoints. Therefore, they do not learn view-specific

features for multi-view videos or use the prior to fuse the classification scores from multiple

branches as in our work. We use the multi-branch structure in order to deal with the videos

from different viewpoints, and the two-stream structure is conducted at the same time to handle

the two common modalities, i.e. RGB and optical flow.
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2.3 Methods related to Multi-view Action Recognition

2.3.1 Multi-view Action Recognition

For the multi-view action recognition tasks where the videos are from different viewpoints, the

existing action recognition approaches may not achieve satisfactory recognition results [64, 50,

27, 28]. The methods using view-invariant representations are popular for multi-view action

recognition. Wu et al. [57] and Turaga et al. [45] proposed to construct the common space as

the multi-view action feature space by using global GMM or Grassmann and Stiefel manifolds

and achieved promising results.

In recent works, Zheng et al. [65], Kong et al. [19] and Hossein et al. [33] designed

different methods to learn the global codebook or dictionary to better extract view-invariant

representations from action videos. By treating the problem as a domain adaptation problem,

Li et al. [24] and Mancini et al. [26] proposed new approaches to learn robust classifiers or

domain-invariant features.

Different from these methods for learning view-invariant features in the common space,

we propose to directly learn view-specific features by using multi-branch CNNs. With these

view-specific features, we exploit the relationship among them in order to effectively leverage

multi-view features.

2.3.2 Conditional Random Field (CRF)

CRF has been exploited for action recognition in [46] as it can connect features and outputs,

especially for temporal signals like actions. Chen et al. proposed L-CORF [5] for locating

actions in videos, where CRF was used for modeling spatial-temporal relationship in each

single-view video. CRF could also exploit the relationship among spatial features. It has

been successfully introduced for image segmentation in the deep learning community by Zheng

et al. [66], which deals with the relationship among pixels. Xu et al. [59, 58] modeled the

relationship of pixels to learn the edges of objects in images. Recently, Chu et al. [6, 7] have

utilized discrete CRF in CNN for human pose estimation.

Different from the previous applications using CRF, our work is the first to use CRF for
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action recognition by exploiting the relationship among features from videos captured by cam-

eras from different viewpoints. Our experiments demonstrate the effectiveness of our message

passing approach for multi-view action recognition.

2.4 Summary and Discussion

The basic ideas of convolutional neural networks and recurrent neural networks are first in-

troduced, which are the mainstream methods in nowadays action recognition. Some specific

methods for action recognition are reviewed, including methods based on iDT and two-stream

CNNs. As for multi-view action recognition, the previous works are reviewed. Specifically,

the previous applications of CRF are introduced, and to the best of my knowledge, it was not

previously used in multi-view action recognition problems.

By conducting comparisons between the traditional methods (e.g. iDT) and the deep learn-

ing methods (e.g. TSN), we could find some similarities and dissimilarities in dealing with

videos and action recognition problems. The optical flow is a powerful feature, for it can encode

the spatial and temporal information at the same time. In that case, the two-stream networks

utilize the optical flow feature to build a separate stream, and we use the widely used two-stream

network TSN [53] as our backbone. Besides, researchers have used ideas from the traditional

methods in the neural networks. For example, when extracting optical flow features from frames

in the work of Wang et al. [48], the camera motions and human motions are detected to fine-

grain optical flow in order to indicate better real motions. This technique is used in TSN [53] to

define the wrapped optical flow. Our usage of CRF also follows this philosophy by moving the

method from the graphical models to neural networks for better performances.



Chapter 3

Dividing and Aggregating Network (DA-Net) for

Multi-view Action Recognition

3.1 Problem Overview

In the multi-view action recognition task, each sample in the training or test set consists of

multiple videos captured from different viewpoints. The task is to train a robust model by using

those multi-view training videos, and perform action recognition on multi-view test videos.

Let us denote the training data as {(xi,1, . . . ,xi,v, . . . ,xi,V )|Ni=1}, where xi,v is the i-th

training sample/video from the v-th view, V is the total number of views, and N is the number

of multi-view training videos. The label of the i-th multi-view training video (xi,1, . . . ,xi,V )

is denoted as yi ∈ {1, . . . , K} where K is the total number of action categories. For better

presentation, we may use xi to represent one video when we do not care about which specific

view each video comes from, where i = 1, . . . , NV .

To effectively cope with the multi-view training data, we design a new multi-branch neural

network. As shown in Fig. 3.1, this network consists of three modules. (1) Basic Multi-branch

Module: This network extracts the common features (i.e. view-independent features) for all

videos by using one shared CNN, and then extracts view-specific features by using multiple

CNN branches, which will be described in Section 3.2. (2) Message Passing Module: Based

on the basic multi-branch module, we also propose a message passing approach to improve

view-specific features from different branches, which will be introduced in Section 3.3. (3)

View-prediction-guided Fusion Module: The refined view-specific features from different

11
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Figure 3.1: Network structure of our newly proposed Dividing and Aggregating Network
(DA-Net). (1) Basic multi-branch module is composed of one shared CNN and several
view-specific CNN branches. (2) Message passing module is introduced between every two
branches and generate the refined view-specific features. (3) In the view-prediction-guided
fusion module, we design several view-specific action classifiers for each branch. The final
scores are obtained by fusing the results from all action classifiers, in which the view prediction
probabilities from the view classifier are used as the weights.

branches are passed through multiple view-specific action classifiers and the final scores are

fused with the guidance of probabilities from the view classifier that is trained based on view-

independent features.

3.2 Basic Multi-branch Module

As shown in Fig. 3.1, the basic multi-branch module consists of two parts: 1) shared CNN: Most

of the convolutional layers are shared to save computation and generate the common features

(i.e. view-independent features); 2) CNN branches: Following the shared CNN, we define V

view-specific branches, and view-specific features can be extracted from these branches.

In the initial training phase, each training video xi first flows through the shared CNN, and

then only goes to the v-th view-specific branch. Then, we build one view-specific classifier to

predict the action label for the videos from each view. Since each branch is trained by using

training videos from a specific viewpoint, each branch captures the most informative features

for its corresponding view. Thus, it can be expected that the features from different views are

complementary to each other for predicting the action classes. We refer to this structure as the

Basic Multi-branch Module.
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3.3 Message Passing Module

To effectively integrate different view-specific branches for multi-view action recognition, we

further exploit the inter-view relationship by using a conditional random field (CRF) model to

pass message among features extracted from different branches.

Let us denote the multi-branch features for one training video as F = {fv}Vv=1, where each fv

is the view-specific feature vector extracted from the v-th branch. Our objective is to estimate

the refined view-specific feature H = {hv}Vv=1. As shown in Fig. 3.2(a), we formulate this

problem under the CRF framework, in which we learn a new feature representation hv for

each fv, and also regularize different hv’s based on their pairwise relationship. Specifically, the

energy function in CRF is defined as,

E(H,F,Θ) =
∑
v

φ(hv, fv) +
∑
u,v

ψ(hu,hv), (3.1)

in which φ is the unary potential and ψ is the pairwise potential. In particular, hv should be

similar to fv, namely the refined view-specific feature representation does not change too much

from the original representation. Therefore, the unary potential is defined as follows,

φ(hv, fv) = −αv

2
‖hv − fv‖2, (3.2)

where αv is a weight parameter that will be learnt during the training process. Moreover, we

employ a bilinear potential function to model the correlation among features from different

branches, which is defined as

ψ(hu,hv) = hv
>Wu,vhu, (3.3)

where Wu,v is the matrix modeling the relationship among different features. Wu,v can be

learnt during the training process.

Following [34], we use mean-field update to infer the mean vector of hu as:

hv =
1

αv

(αvfv +
∑
u6=v

(Wu,vhu)). (3.4)

Thus, the refined view-specific feature representation {hv|Vv=1} can be obtained by iteratively

applying the above equation. For the detailed derivation, please check the Appendix A.
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Figure 3.2: The details for (a) inter-view message passing module discussed in Section
3.3, and (b) view-prediction-guided fusion module described in Section 3.4. Please see the
corresponding sections for the detailed definitions and descriptions.

From the definition of CRF, the first term in Eqn.(3.4) serves as the unary term for receiving

the information from the feature fv for its own view v. The second term is the pair-wise term that

receives the information from other views u for u 6= v. The Wu,v in Eqn.(3.3) and Eqn.(3.4)

models the relationship between the feature vector hu from the u-th view and the feature hv

from the v-th view.

The above CRF model can be implemented in neural networks as shown in [66, 7], thus

it can be naturally integrated with the basic multi-branch network, and optimized based on

the basic multi-branch module. The basic multi-branch module together with the message

passing module is referred to as the Cross-view Multi-branch Module in the following sections.

The message passing process can be conducted multiple times with the shared Wu,v’s in each

iteration. In our experiments, we perform only one iteration as it already provides good feature

representations.

3.4 View-prediction-guided Fusion

In multi-view action recognition, a body movement might be captured from more than one

viewpoint and should be recognized from different aspects, which implies that different views

contain certain complementary information for action recognition. To effectively capture such

cross-view complementary information, we therefore propose a View-prediction-guided Fusion

Module to automatically fuse the prediction scores from all view-specific classifiers for action

recognition.
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3.4.1 Learning view-specific classifiers

In the cross-view multi-branch module, instead of passing each training video into only one

specific view as in the basic multi-branch module, we feed each video xi into all V branches.

Given a training video xi, we will extract features from each branch individually, which

will lead to V different representations. Considering we have training videos from V different

views, there would be in total V × V types of cross-view information, each corresponding to

a branch-view pair (u, v) for u, v = 1, . . . , V , where u is the index of the branch and v is the

index of the view that the videos belong to.

Then, we build view-specific action classifiers in each branch based on different types of

visual information, which leads to V × V different classifiers. Let us denote Cu,v as the score

generated by using the v-th view-specific classifier from the u-th branch. Specifically, for the

video xi, the score is denoted as Ci
u,v. As shown in Fig. 3.2(b), the fused score of all the results

from the v-th view-specific classifiers in all branches is denoted as Sv. Specifically, for the

video xi, the fused score Si
v can be formulated as follows,

Si
v =

∑
u

λu,vC
i
u,v, (3.5)

where λu,v’s are the weights for fusing Cu,v’s, which can be jointly learnt during the training

procedure and shared by all videos. For the v-th value in the u-th branch, we initialize the value

of λu,v when u = v twice as large as the value of λu,v when u 6= v, as Cv,v is the most related

score for the v-th view when compared with other scores Cu,v’s (u 6= v).

3.4.2 Soft ensemble of prediction scores

Different CNN branches share common information and have each own refined view-specific

information, so the combination of results from all branches should achieve better classification

results. Besides, we do not want to use the view labels of input videos during the training

or testing process. In that case, we further propose a strategy to fuse all view-specific action

prediction scores {Sv|Vv=1} based on the view prediction probabilities of each video, instead of

using only the one score from the known view as in the basic multi-branch module.

Let us assume each training video xi is associated with V view prediction probabilities
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{piv|Vv=1}, where each piv denotes the probability of xi belonging to the v-th view and
∑

v p
i
v = 1.

Then, the final prediction score T i can be calculated as the weighted mean of all view-specific

scores based on the corresponding view prediction probabilities,

T i =
V∑

v=1

pivS
i
v. (3.6)

To obtain the view prediction probabilities, as shown in Fig. 3.1, we additionally train a view

classifier by using the common features (i.e. view-independent feature) after the shared CNN.

We use the cross entropy loss for the view classifier and the action classifier, denoted as Lview

and Laction respectively.

The final model is learnt by jointly optimizing the above two losses, i.e.,

L = Laction + Lview, (3.7)

where we treat the two losses equally and this setting leads to satisfactory results.

The cross-view multi-branch module with view-prediction-guided fusion module forms our

Dividing and Aggregating Network (DA-Net). It is worth mentioning that we only use view

labels for training the basic multi-branch module and the fine-tuning steps after the basic multi-

branch module and the test stages do not require view labels of videos. Even the test video

comes from an unseen view, our model can still automatically calculate its view prediction

probabilities by using the view classifier, and ensemble the prediction scores from view-specific

classifiers for final prediction (see our experiments on cross-view action recognition in Section

5.3).



Chapter 4

Using DA-Net for Training and Testing

4.1 Network Architecture

We illustrate the architecture of our DA-Net in Fig. 3.1. The shared CNN can be any of the

popular CNN architectures, which is followed by V view-specific branches, each corresponding

to one view. Then, we build V × V view-specific classifiers on top of those view-specific

branches, where each branch is connected to V classifiers. Those V ×V view-specific classifiers

are further ensembled to produce V branch-level scores using Eqn.(3.5). Finally, those V

branch-level scores are reweighed to obtain the final prediction score, where the weights are

the view probabilities generated from the view classifier, which is trained after the shared CNN.

We build our network based on the temporal segment network(TSN) [53] with some modi-

fications. In particular, we use the BN-Inception [17] as the backbone network for experiments.

The shared CNN layers include the ones from the input to the block inception_5a. As

shown in Fig. 4.1, for each path within the inception_5b block, we duplicate the last

convolutional layer (shown in red in Fig. 4.1) for multiple times for multiple branches and

the previous layers are shared in the shared CNN. The rest average pooling and fully connected

layers after the inception_5b block are also duplicated for multiple branches. The corre-

sponding parameters are also duplicated at the initialization stage and learnt separately (i.e.,

the weights in the branches are not shared). Similarly as in TSN, we also train a two-stream

network [39], where two streams are learnt separately using two modalities, RGB (referred to

as the RGB-stream) and dense optical flow (referred to as the Flow-stream), respectively. In

the testing phase, given a test sample with multiple views of videos, (x1, . . . ,xV ), we pass each

17
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Figure 4.1: The layers used in the shared CNN and CNN branches in the inception 5b block.
The layers in yellow color are included in the shared CNN, while the layers in red color are
duplicated for different branches. The layers after inception 5b are also duplicated. The
ReLU and BatchNormalization layers after each convolutional layer are treated similarly as
the corresponding convolutional layers.

video xv to two streams and obtain its prediction by fusing the outputs from two streams.

4.2 Training Details

Like other deep neural networks, our proposed model can be trained by using popular optimiza-

tion approaches such as stochastic gradient descent (SGD) algorithm. We first train the basic

multi-branch module to learn view-specific feature in each branch, and then we fine-tune all the

modules by additionally adding the message passing module and view-prediction-guided fusion

module. Without using this two-step approach (i.e. we learn the whole network in one step), the

accuracy will drop because the network starts to pass messages before the branches are ready

to encode view-specific features.

The training of our DA-Net has the same starting point of TSN in order to keep consistency

with TSN and other works. The initialization is the same as the steps in TSN. We use the

parameters of BN-Inception [17] pre-trained on ImageNet [8] as the initialization for the RGB-

stream. For the Flow-stream, we follow the cross modality pre-training technique introduced

in TSN [53], where we average the weights of the first convolutional layer across the three

channels in RGB-stream and duplicate the averaged weights by the number of optical flow

channels (which is 10 in our work). Following TSN [53], we also use the TVL1 algorithm [62]

to extract dense optical flow. The input to the Flow-stream contains 10 channels, including 5

consecutive grayscale optical flow images in x-direction and 5 grayscale optical flow images of

the same time in y-direction.
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Our network is built on Caffe [18] and can be trained on one NVIDIA GeForce GTX1080

Ti graphical card. The batch size is 32 for both RGB-stream and Flow-stream in the training

stage of the basic multi-branch module and the fine-tuning stage of the whole DA-Net. For the

datasets with smaller sizes (like the dataset NUMA [51] and IXMAS [55] in Chapter 5), the

base learning rate is set as 0.001 for both streams, which will be divided by 10 after every 30

epochs, and the total epoch for training is 100. For the datasets with larger sizes (like the dataset

NTU [35] in Chapter 5), we use smaller base learning rate as 0.0001 and smaller total epoch as

50 for both streams, and the learning rate will also be divided by 10 after every 16 epochs.

Like in TSN, the input to the networks are segments of videos. We use three segments for

videos by default. For videos that are very short (e.g. some videos in the dataset NUMA [51]),

we select the segments with overlaps. For the rest settings, we use the default values. We use 0.9

for the rate of momentum, and 0.0005 for weight decay. The network may suffer the explosion

in gradient values, so we use the clip gradient mechanism in Caffe [18]. We set the upper bound

of the gradients as 20 and 40 for Flow-stream and RGB-stream respectively, which are the same

setting as TSN [53].

4.3 Testing Details

Our testing stage also follows the steps of TSN [53]. For each video, 25 frames are evenly

extracted from the video and fed into the RGB-stream and 25 flow stacks are fed into the Flow-

stream. The scores are computed according to the 25 images for each stream and the final scores

are combined by using a manually defined rate. We use the default combination rate from TSN

[53], which are 1 and 1.5 for results from RGB-stream and Flow-stream respectively.

When dealing with videos that are too short that contain fewer frames than 25 (e.g. some

videos in the dataset NUMA [51]), the total numbers of frames taken for testing are different.

We use 8 frames for both RGB-stream and Flow-stream in our experiments, which will provide

acceptable performances.

Since we define and train a view classifier for videos from multiple viewpoints in the training

stage, the view labels are not needed for testing. Instead, the videos will go through every branch

and the view classifier will generate the view prediction scores for each video, which are used

for the fusion of the action recognition results from all branches.
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Chapter 5

Experiments on DA-Net

In this chapter, we conduct experiments to evaluate our proposed model by using three bench-

mark multi-view action datasets. We conduct experiments on two settings: 1) the cross-subject

setting, which is used to evaluate the effectiveness of our proposed model for learning from

multi-view videos, and 2) the cross-view setting, which is used to evaluate the generalization

ability of our proposed model to unseen views.

5.1 Datasets and Setup

NTU RGB+D (NTU) [35] is a large-scale dataset for human action recognition, which contains

60 daily actions performed by 40 different subjects. The actions are captured by Kinect v2 in

three viewpoints. The modalities of data including RGB videos, depth maps, and 3D joint

information, where only the RGB videos are used for our experiments. The total number of

RGB videos is 56, 880 containing more than 4 million frames.

Northwestern-UCLA Multiview Action (NUMA)[51] is another popular multi-view ac-

tion recognition benchmark dataset. In this dataset, 10 daily actions1 are performed by 10

subjects for several times, which are captured by three static cameras. In total, the dataset

consists of 1, 475 RGB videos and the correlated depth frames and skeleton information, where

only the RGB videos are used for our experiments.

1The 10 actions are pick up with one hand, pick up with two hands, drop trash, walk around, sit down, stand
up, donning, doffing, throw, and carry.

21
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IXMAS [55] is a widely used multi-view action recognition dataset. Following the exper-

imental setting in the existing works [55, 45], we conduct the experiments by using 11 daily

actions performed by 10 subjects2. Each action is performed 3 times (each time of each action

is referred to as one trial) by each person with different orientations, which leads to in total

330 trials. Each trial is recorded by 5 different cameras from different viewpoints, so the total

number of videos from all viewpoints is 1, 650.

According to the previous works on multi-view action recognition [55, 45, 51, 35], the

released versions of these datasets contain multiple modalities, such as RGB frames, binary

silhouette images (in IXMAS only) and skeleton coordinates (in NUMA and NTU). We only

utilize the RGB frames without knowing the ground-truth background images in our experi-

ments. Since the optical flow is extracted from the original RGB images, we only use the RGB

images compared with other works (See Table 5.1).

5.2 Experiments on Multi-view Action Recognition

The cross-subject evaluation protocol is used in this section. All action videos of a few subjects

from all views are selected as the training set, and the action videos of the remaining subjects

are used for testing.

For the NTU dataset, we use the same cross-subject protocol3 as in [35]. We compare our

proposed method with a wide range of baselines, among which the work in [35, 36, 2] include

3D joint information, and the work in [3, 25] used RGB videos only. We also include the

TSN method [53] as a baseline for comparison, which can be treated as a special case of our

DA-Net without explicitly exploiting the multi-view information in training videos. The results

are shown in the third column of Table 5.1. We observe that the TSN method achieves much

better results than the previous works using multi-modality data, which could be attributed to

the usage of deep neural networks for learning effective video representations. Moreover, the

recent works from Baradel et al. [3] and Luvizon et al. [25] reported the results using only

RGB videos, where the work from Luvizon et al. [25] achieves similar performance as the

TSN method. Our proposed DA-Net outperforms all existing state-of-the-art algorithms and

2The 11 daily action classes are check watch, cross arms, scratch head, sit down, get up, turn around, walk,
wave, punch, kick, and pick up.

3The subject IDs in the training set are 1, 2, 4, 5, 8, 9, 13, 14, 15, 16, 17, 18, 19, 25, 27, 28, 31, 34, 35, 38 and
the remaining subjects are reserved for testing.
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Table 5.1: Accuracy comparison between our DA-Net and other state-of-the-art works on the
NTU dataset. When using RGB videos, our DA-Net, TSN [53] and the work from Zolfaghari et
al. [67] use optical flow generated from RGB videos while the rest works do not extract optical
flow features. Four methods additionally utilize the pose modality. The best results are shown
in bold.

Methods Modalities Cross-Subject Accuracy Cross-View Accuracy
DSSCA-SSLM [36] Pose+RGB 74.9% -
STA-Hands [2] Pose+RGB 82.5% 88.6%
Zolfaghari et al. [67] Pose+RGB 80.8% -
Baradel et al. [3] Pose+RGB 84.8% 90.6%
Luvizon et al. [25] RGB 84.6% -
TSN [53] RGB 84.93% 85.36%
DA-Net (Ours) RGB 88.12% 91.96%

the baseline TSN method.

For the NUMA dataset, we use the 10-fold evaluation protocol, where videos of each subject

will be used as the test videos each time. To be consistent with other works, we report the

video-level accuracy, in which the videos of each view are evaluated separately. The average

accuracies are shown in Table 5.2, where our proposed DA-Net again outperforms all other

baseline methods.

For the IXMAS dataset, we adopt the same leave-one-subject-out training scheme as in [45,

55]. For each time of training, all the videos of one same subject are treated as the test set, and all

the rest videos from the other subjects are used as the training set. To keep the consistency with

previous works, the final results are generated by fusing scores from all synchronized five views

for each trial. We averagely fuse all the five video prediction scores for one trial. Considering

all ten actors acting each of the eleven actions for three times, the total number of trials should

be 330 (10 × 11 × 3), and the accuracy is the total correctly-predicted trial number divided

by the total number of trials. We report the results and compare them with the corresponding

state-of-the-art works in Table 5.3.

According to Table 5.3, our network achieves better performance than the previous methods

as well as the baseline TSN itself although the dataset is almost saturated. For trial-level

performance, only three out of 330 instances are wrongly predicted. Two incorrect videos

from ‘Check Watch’ are predicted as ‘Punch’ because the body movements in the videos are
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Table 5.2: Average accuracy comparison (the cross-subject setting) between our DA-Net and
other works on the NUMA dataset. The results are generated by averaging the accuracy of each
subject. The best result is shown in bold.

Methods Average Accuracy
Li and Zickler [23] 50.7%
MST-AOG [51] 81.6%
Kong et al. [19] 81.1%
TSN [53] 90.3%
DA-Net (ours) 92.1%

Table 5.3: Accuracy (%) comparison between our DA-Net and other works on the IXMAS
dataset. The numbers in brackets indicate the way how accuracy is computed, by computing
the proportion of correctly-predicted trial number and the total number of trials. The total trial
number is 330, and only three of 330 are predicted wrongly in our DA-Net.

Method Accuracy
Weinland et al. [55] 93.33 (308/330)
Turaga et al. [45] 98.78 (326/330)
Wu et al. [57] 90.6 (299/330)
Burghouts et al. [4] 96.4 (318/330)
TSN [53] 98.48 (325/330)
DA-Net (ours) 99.09 (327/330)

more intense compared with other ‘Check Watch’ actions. One video from ‘Scratch Head’

is predicted as ‘Wave’ because the video stops once the hand reaches the head so that less

information could be figured out. For video-level performance when considering the videos

from different views separately, the baseline TSN could reach accuracy to 95.7% and DA-Net

outperforms it by decreasing error rate by around 30%, to the accuracy of 97.0%.

The results on these datasets clearly demonstrate the effectiveness of our DA-Net for learn-

ing deep models using multi-view RGB videos. By learning view-specific features as well

as classifiers and conducting message passing, videos from multiple views are utilized more

effectively. As a result, we can learn more discriminative features and our DA-Net can achieve

better action classification results when compared with previous methods.
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Table 5.4: Average accuracy comparison on the NUMA dataset [51] (the cross-view setting)
when the videos from two views are used for training and the videos from the remaining view
are used for testing. The best results are shown in bold. For the fair comparison, we only report
the results from the methods using RGB videos.

{Source}|Target {1,2}|3 {1,3}|2 {2,3}|1 Average Accuracy
DVV [63] 58.5% 55.2% 39.3% 51.0%
nCTE [14] 68.6% 68.3% 52.1% 63.0%
MST-AOG [51] - - - 73.3%
NKTM [32] 75.8% 73.3% 59.1% 69.4%
R-NKTM [33] 78.1% - - -
Kong et al. [19] - - - 77.2%
TSN [53] 84.5% 80.6% 76.8% 80.6%
DA-Net (ours) 86.5% 82.7% 83.1% 84.2%

5.3 Generalization to Unseen Views

Our DA-Net can also be readily used for generalization to unseen views, which is also known as

the cross-view evaluation protocol. We employ the leave-one-view-out strategy in this setting,

in which we use videos from one view as the test set, and employ videos from the remaining

views for training our DA-Net.

Different from the training process under the cross-subject setting, the total number of

branches in the network is set to the total number of views minus 1, since videos from one

viewpoint are reserved for testing. During the testing stage, the videos from the target view

(i.e. unseen view) will go through all the branches and the view classifier can still provide the

prediction scores of each testing video belonging to a set of source views (i.e. seen views).

The scores indicate the similarity between the videos from the target view and those from the

source views, based on which we can still obtain the weighted fusion scores that can be used

for classifying videos from the target view.

For the NTU dataset, we follow the original cross-view setting in [35], in which videos

from view 2 and view 3 are used for training while videos from view 1 are used for testing. The

results are shown in the fourth column of Table 5.1. On this cross-view setting, our DA-Net

also outperforms the existing methods by a large margin.

For the NUMA dataset, we conduct three-fold cross validation. The videos from two views
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Figure 5.1: Average recognition accuracy in each class on the NUMA dataset under the cross-
view setting. All the three methods do not utilize the features from the unseen view during the
training process.

together with their action labels are used as the training data to learn the network and the videos

from the remaining view are used for testing. The videos from the unseen view are not available

during the training stage. We report our results in Table 5.4, which shows our DA-Net achieves

the best performance compared with other works. Our results are even better than the methods

that use the videos from the unseen view as unlabeled data in [19]. The detailed accuracy for

each class is shown in Fig. 5.1. Again we observe that DA-Net is better than nCTE [14] and

NKTM [32] in almost all the action classes.

From the results, we observe that our DA-Net is robust even without using videos from the

target view during the training process. A possible explanation is as follows. Building upon

the TSN architecture, our DA-Net further learns view-specific features, which produces better

representations to capture information from each view. Second, the message passing module

further improves the feature representation on different views. Finally, the newly proposed

soft ensemble fusion scheme using view prediction probabilities as the weight also contributes

to performance improvement. Although videos from the unseen view are not available in the

training process, the view classifier is still able to be used to predict probabilities of the given

test video resembling each seen view, which are useful to obtain the final prediction scores.
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Table 5.5: Accuracy for cross-view setting on the NTU dataset. The second and third columns
are the accuracies from the RGB-stream and Flow-stream, respectively. The final results after
fusing the scores from the two streams are shown in the fourth column.

Method RGB-stream Flow-stream Two-stream
TSN [53] 66.5% 82.2% 85.4%
Ensemble TSN 69.4% 86.6% 87.8%
DA-Net (w/o msg. and fus.) 73.9% 87.7% 89.8%
DA-Net (w/o msg.) 74.1% 88.4% 90.7%
DA-Net (w/o fus.) 74.5% 88.6% 90.9%
DA-Net 75.3% 88.9% 92.0%

5.4 Component Analysis

To study the performance gain of different modules in our proposed DA-Net, we report the

results of three variants of our DA-Net. In particular, in the first variant, we remove the view-

prediction-guided fusion module, and only keep the basic multi-branch module and message

passing module, which is referred to as DA-Net (w/o fus.). Similarly in the second variant, we

remove the message passing module, and only keep the basic multi-branch module and view-

prediction-guided fusion module, which is referred to as DA-Net (w/o msg.). In the third variant,

we only keep the basic multi-branch module, which is referred to as DA-Net (w/o msg. and fus.).

Specially in DA-Net (w/o msg. and fus.) and DA-Net (w/o fus.), since the fusion part is ablated,

we only train one classifier for each branch, and we equally fuse the prediction scores from all

branches for obtaining the action recognition results.

We take the NTU dataset under the cross-view setting as an example for component analysis.

The baseline TSN method [53] is also included for comparison. Moreover, we further report

the results from an ensemble version of TSN, in which we train two TSN’s based on the videos

from view 2 and the videos from view 3 individually, and then average their prediction scores

on the test videos from view 1 for prediction results. We refer to it as Ensemble TSN.

The results of all methods are shown in Table 5.5. We observe that both Ensemble TSN and

our DA-Net (w/o msg. and fus.) achieve better results than the baseline TSN method, which

indicates that learning individual representation for each view helps to capture view-specific

information, and thus improves the action recognition accuracy. Our DA-Net (w/o msg. and

fus.) outperforms the Ensemble TSN method for both modalities and after two-stream fusion,
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which indicates that learning common features (i.e. view-independent features) shared by all

branches for DA-Net (w/o msg. and fus.) will possibly lead to better performance.

Moreover, by additionally using the message passing module, DA-Net (w/o fus.) gains

consistent improvement over DA-Net (w/o msg. and fus.). A possible reason is that videos

from different views share complementary information, and the message passing process could

help refine the feature representation on each branch. The DA-Net (w/o msg.) is also better

than DA-Net (w/o msg. and fus.), which demonstrates the effectiveness of our view-prediction-

guided fusion module. Our DA-Net effectively integrate the predictions from all view-specific

classifiers in a soft ensemble manner. In the view-prediction-guided fusion module, all the

view-specific classifiers integrate the total V × V types of cross-view information. Meanwhile,

the view classifier softly ensembles the action prediction scores by using view prediction prob-

abilities as the weights.

5.5 Visualization

We use the toolbox DeepDraw [30] to visualize our DA-Net model and compare it with the

TSN [53] model. We use the model from the RGB-stream to conduct visualization, as it contains

more visual semantics. The following pages are the visualization results of the classes in the

NTU dataset [35] and the NUMA dataset [51].

By comparing the visualization results from TSN and our proposed DA-Net, we have the

following observations.

First, our DA-Net performs better than TSN in capturing visual cues of meaningful parts and

actions as shown in Fig. 5.2. For example, in the class ‘tear up paper’ in the NTU dataset, the

action of hands is highlighted in our approach while TSN does not capture this visual cue. We

have similar observations for the classes of ‘walking towards each other’ in the NTU dataset,

and the classes of ‘pick up with one hand’ and ‘carry’ in the NUMA dataset.

Second, our DA-Net is able to generate representations from more diverse viewpoints for

better descriptions of multi-view visual cues, which finally lead to better results. For example,

DA-Net captures actions with more diverse viewpoints than TSN for the actions of ‘sitting

down’, ‘sneeze/cough’, ‘touch back (backache)’ and ‘walking apart from each other’ in Fig. 5.3.
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tear up paper (in NTU)

Sample Frame TSN DA-Net

walking towards each other (in NTU)

Sample Frame TSN DA-Net

pick up with one hand (in NUMA)

Sample Frame TSN DA-Net

carry (in NUMA)

Sample Frame TSN DA-Net

Figure 5.2: Visualization results of different actions in the datasets. For ‘tear up paper’ in the
NTU dataset, our DA-Net can capture the details in hands. For ‘walking towards each other’
in the NTU dataset, our DA-Net can better represent the relationship of people, who are facing
to the center. For ‘pick up with one hand’ in the NUMA dataset, our DA-Net can capture the
movement of human body instead of just focusing on the bottle to be picked up as in TSN. For
‘carry’ in the NUMA dataset, our DA-Net can enhance the key information of the carried stuff.
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sitting down

Sample Frame TSN DA-Net

sneeze/cough

Sample Frame TSN DA-Net

touch back (backache)

Sample Frame TSN DA-Net

walking apart from each other

Sample Frame TSN DA-Net

Figure 5.3: Visualization results in the NTU dataset. In these four classes, our DA-Net better
integrates information from different viewpoints.
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Conclusions

In this work, we have proposed the Dividing and Aggregating Network (DA-Net) to address

action recognition in multi-view videos. The network contains three modules. The basic multi-

branch module is able to learn view-independent representations and view-specific representa-

tions. The message passing module between every two branches is used to integrate different

view-specific representations and generate the refined features. We also use the view-prediction-

guided fusion module to fuse the prediction results from all view-specific classifiers.

The comprehensive experiments have demonstrated that the newly proposed deep learning

method DA-Net outperforms the baseline methods for multi-view action recognition. Through

the component analysis, we demonstrate that view-specific representations from different branches

can help each other in an effective way by conducting message passing among them. It is also

demonstrated that it is beneficial to fuse the prediction scores from multiple classifiers by using

the view prediction probabilities as the weights.
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Appendix A

Details on CRF

First we define a continuous conditional random field (CRF) to model the conditional distri-

bution of the original view-specific feature F = {fv}Vv=1 and the refined view-specific feature

H = {hv}Vv=1 [31].

P (H|F,Θ) =
1

Z(F)
exp{E(H,F,Θ)}, (a1)

where Z(F) =
∫
H

exp{E(H,F,Θ)}dH is the partition function for normalization, and Θ is

the set of parameters. E(H,F,Θ) is the energy function which is defined as

E(H,F,Θ) =
∑
v

φ(hv, fv) +
∑
u,v

ψ(hu,hv), (a2)

where φ is the unary potential and ψ is the pairwise potential. As defined in Chapter 3,

φ(hv, fv) = −αv

2
‖hv − fv‖2, (a3)

ψ(hu,hv) = hv
>Wu,vhu. (a4)

This is a typical formulation of CRF, which could be solved by using mean-field inference.

Under the mean-field theory, the approximation of P (H|F) can be Q(H|F) =
∏V

v=1Qv(hv|F)

which minimizes Kullback-Leibler (KL) divergence between P and Q, and can be written as

below [34],

logQv(hv|F) = Eu6=v (logP (H|F)) + const. (a5)

33
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The logQv(hv|F) in (a5) could be written as follows when P (H|F) is replaced by the terms in

(a2)-(a4):

logQv(hv|F) = −αv

2
‖hv − fv‖2 + h>

v

∑
u6=v

(Wu,vhu) + const. (a6)

After we rearrange the expression above into an exponential form, use the expansion form of

the unary term and omit the constant terms, the distribution Qv(hv|F) could be derived into

Qv(hv|F) ∝ exp(−αv

2
(‖hv‖2 − 2h>

v fv) + h>
v

∑
u6=v

(Wu,vhu)). (a7)

The above formulation could be rewritten as below,

Qv(hv|F) ∝ exp

{
−αv

2

(
‖hv‖2 − 2h>

v

(
fv +

1

αv

∑
u6=v

(Wu,vhu)

))}
,

∝ exp

−αv

2

∥∥∥∥∥hv −

(
fv +

1

αv

∑
u6=v

(Wu,vhu

)∥∥∥∥∥
2
 , (a8)

which indicates that the posterior distribution of hv follows a Gaussian distribution, and its

mean vector could be written as:

hv =
1

αv

(αvfv +
∑
u6=v

(Wu,vhu)). (a9)

Thus, the refined view-specific feature representation {hv|Vv=1} can be obtained by itera-

tively applying the above equation. The result is the same as Eqn.3.4 in Chapter 3.
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