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Chapter 0

Introduction

In this thesis we are going to study the evolution of hypersurfaces embedded in Euclidean
and Riemannian space by mean curvature flow and Brendle-Huisken G-Flow.

We begin by introducing mean curvature flow. We consider a compact, smooth immer-
sion of an n-dimensional hypersurface in Euclidean space without boundary Fy : M — R**1
with n > 2. The evolution of My = Fy(M) by mean curvature flow is the one parameter
family of smooth immersions F : M x [0,T) — R"*! satisfying

&P = —H@.Ovp0), pEM, 120

F(’O) = FO(p)

The motion of surfaces evolving by their mean curvature was initially studied by Brakke
in [14], however the problem can be traced back to Mullins work in [83] to model the be-
haviour of grain boundaries in annealing pure metal. Motivation to study mean curvature
flow arose from its geometric applications to obtain classification results for surfaces which
satisfy certain initial curvature conditions. Another well studied flow with similar applica-
tions is the Ricci flow in which we study the evolution of the metric on manifolds. Ricci
flow is defined by the following geometric evolution equation

0 .
Egij = —2Rlcij.

There is a strong interplay between Ricci flow and mean curvature flow. Many results
for mean curvature flow also hold true for Ricci flow. Moreover most techniques and ideas
that can be applied to one flow can also be applied to the other. So when a breakthrough or
new technique is discovered for one, it is exported and modified so that it can be applied to
the other to yield a similar result. An example of this in recent times is when Colding and
Minicozzi adapted results from Perelmans work on Ricci flow in his proof of the Poincaré
conjecture [84] [86] [86] for mean curvature flow [21].

In the same way it appears that results from mean curvature flow can be exported over
to Brendle-Huisken G-flow by using the same or modified techniques. Inspired by Andrews
work on harmonic mean curvature flow [4], Brendle-Huisken introduced the following flow
[16]. Fixing n > 3 consider a closed, embedded hypersurface My in an (n + 1)-dimensional
manifold N*1, where Mg is k-2-convex i.e. A\; + Aa > 2k, where A\ < --- < \,, denote the



principal curvatures. The evolution of My = Fy(M) by G-flow flow is the one parameter
family of smooth immersions F : M x [0,T) — N satisfying

0

5L 0:t) = —Grelpth(p,t), peM, t20
F(-,0) = Fo(p)
where
-1
G, = !

SNt A -2k

This flow has the advantage of preserving 2-convexity in the Riemannian setting which
unfortunately mean curvature does not. This greatly limits our ability to work with mean
curvature flow in the Riemannian context.

Having given some context to the reader we continue by providing an outline of structure
and contents of the thesis. The first two chapters focus on work done by Brendle, Evans,
Head, Huisken, Lauer, Sinestrari and Spruck among others. In these chapters apart from
extensively covering work already done for mean curvature flow, we also explore and develop
our techniques, hoping to use and apply similar techniques later for Brendle-Huisken G-flow.

In the Chapter 1 we will restrict our attention to convex hypersurfaces. These are
surfaces whose second fundamental form can be diagonalised such that all of our principal
curvatures are strictly positive.

We begin by covering [58] in which Huisken showed that a uniformly convex, compact
surface smoothly embedded in Euclidean space undergoing mean curvature flow shrinks
to a round point in finite time. Moreover the normalised flow will converge to a sphere
as t — oo. Huisken also showed the same is true for a surface embedded in a general
Riemannian manifold with some restrictions [59]. We also discuss the two types of solutions
to the mean curvature flow equation, type I and type II singularities. In [61] Huisken was able
to show that singularities of the first type are asymptotically self-similar using his famous
monotonicity formula. We finish dealing with the convex case for hypersurfaces embedded
in Euclidean space by looking at Huisken and Sinestrari’s paper [68] on ancient solutions
for convex mean curvature flow. In it they give various conditions which are sufficient to
ensure that a closed convex ancient solution is a shrinking sphere.

In the Chapter 2 we take the next natural step, which is to weaken our convexity as-
sumption. In it we study two-convex hypersurfaces embedded in Euclidean space: these are
surfaces where the sum of the smallest two principal curvatures must be strictly positive. In
[67] Huisken-Sinestrari were able to classify surfaces undergoing mean curvature flow using
the surgery algorithm Hamilton used for Ricci flow in [49]. Head [55] and Lauer [71] were
then each able to independently show that as we take our surgery parameter to infinity, the
curvature at which we do the surgery on the neck, that it will converge to the weak solution
of level-set mean curvature flow as studied by Spruck-Evans in [36] and by Chen, Giga and
Goto in [19] among others.

Ideally one would then like to extend the surgery algorithm to the Riemannian setting.
However, as stated earlier in the introduction, two-convex mean curvature flow does not
preserve two-convexity in the Riemannian setting. Instead we substitute it with the Brendle-
Huisken G-flow, which does preserve two-convexity. In their paper [16] they were then able



to use the Huisken-Sinestrari surgery algorithm for mean curvature flow for the Huisken-
Brendle G-flow in both the Euclidean and Riemannian setting.

In Chapter 3 we explicitly develop the details implied in [16], and address some adapta-
tions which must be made to the arguments from [67]. In order to do so adjustments have
to be made to the gradient estimate from [16]. We are then required to make some more
adjustments to prove the Neck Detection Lemma. The arguments of Section 7 and 8 from
[67] then carry over unchanged with the exception of the proof of the Neck Continuation
Theorem. To prove this theorem we would also need a lower bound for the time needed
between two consecutive surgeries which we provide.

In the Chapter 4 we describe a level-set approach to G-flow. We are unable to derive an
explicit level-set equation, however we show that for any extrinsic flow we can repeat this
process and obtain a similar result. Suppose we have have a flow evolving by

0
aF(p, t)=—-Av

then

where

0%u  Ou Ou

is the infinity Laplacian which has well known unique viscosity solutions which have recently
been shown by Evans and Smart to be everywhere differentiable [32]. We leave the adap-
tation of Lauer’s method [71] in Appendix 5.4 until a unique viscosity solution to G-flow is
constructed.



Chapter 1

Mean Curvature Flow for
Convex Hypersurfaces

In this chapter we cover some classic results from Huisken and Sinestrari’s work on mean
curvature flow in the convex hypersurface setting. The sources which provide the results
and proofs are obtained from [58] [61] [65] and [68]. The proofs and results are not original
work, they are included for completeness and we expand on the details of the calculations
and proofs as an exercise to develop techniques required for studying geometric evolution
equations.

1.1 Preliminaries

In this section we introduce notation and give a description of mean curvature flow. We also
give some proofs and details about its main properties. Principal sources for this chapter
are [58] [80].

Let Fy : M — R™"! be a compact, convex, smooth immersion of an n-dimensional
hypersurface in Euclidean space without boundary, n > 2. The evolution of My = Fy(M)
by mean curvature flow is the one-parameter family of smooth immersions F' : M x [0,T) —
R"*! satisfying

0

aF(p,t) =-AF(p,t), peM, t>0

F(-,0) = Fo(p)

where A; is the Laplace-Beltrami operator on the manifold M given by F(-,t).
We will use the following notation for the traces of the second fundamental form on M:

(1.1)

H = gijhij and |A‘2 = gijgklhikhjl.

By (-,-) we denote the ordinary inner product on R**1. If M is given locally by some F,
the metric and second fundamental form can be computed as follows:

(L) = <8F(f) (")F(f)> , hii(Z) = <zx(f) O°F () > , & e RV

9 8.131' ’ 8xj ’81)2‘8]}]‘




We also have the Gauss-Weingarten equations

»PF  _, OF
axiaxj B ijaixk - _hijy (1.2)
o e OF
axi = hzlg axk (1.3)

kE 1 ki o) 9 9
where Fij =39 (ngjl + ngil - ngij)

Now working with (1.1) we can see that a short calculation gives

. 0%F OF
—g¥ | ——— Tk
AF g (8:&35% Y al‘k>

[ O?F OF
v - R
g (8;@8:&] Vlc’)x])

G 0°F \"
g Baziﬁxj

—H=_—Hv

where H(p,t) and v(p,t) are the mean curvature and outer normal respectively at the

point F(p,t) on the surface M; = F(-,t)(M) and the signs are chosen such that —Hv = H
is the mean curvature vector and the mean curvature of a convex surface is positive.
It follows that the covariant derivation on M of a vector X is given by

% 9 % 4 k

Moreover, the Riemann curvature tensor, the Ricci tensor and the scalar curvature are
given by Gauss’ equation

Rijri = hirhji — hyhji
Rir, = Hhyy, — hig" hyy,
R=H?— A
With this notation we can obtain, for the interchange of two covariant derivatives
VZVJX]C - VJVZXk = lelek = (hikhjl — hilhjk)glek
ViViYi = ViViYe = Rijug"™ Yo = (hixhji — hihji) 9" Yo

And the Laplacian of a tensor given by

AT}y, = g™V Vi T,

whereas the covariant derivative of T" is denoted by VI = {VlVT;k}.
The following lemma will be useful.

Lemma 1.4. For any (0,2) tensor T;; we have

ViViTiy = ViViTiy — Ry Ting — Ry Tim.-



Proof. We always work in geodesic coordinates i.e. Vy,; = 0. Moreover (T5;); = 0l(T5;).

ViViT = ViV, T = Vi Vi(T;;da’ @ da?) — V|V (Tijdz' @ sa?)
= Vi (( ”)ldx’dxj + T”Vldx ® da? + T”dx ® Vldx])
- Vi(( zj)kdacldgc] + TZJdex ®@da? + dex ® dex])
ijvkvldx ® da? + ijdx ® Vi Vida’
— T}V Vida' @ do? — Tyjda’ @ V,Vida?
ij(vkvl — ViVi)dz' @ do? + Tyjda' @ (Vi V) — V;V},)dx?
= TR}, de™ @ dz? + TRilm?ds’ @ dz™
= — (BT + Ry Tim).

O

We denote the Weingarten operator by W = {hf } and the principal curvatures by
A1 <Ay < -2 < Ay All of these quantities depend on (p,t) € M x [0,T).
We can now move on to prove our first theorem.

Theorem 1.5.

/divMXdu:/ H(X,v)dpu.
M M

Proof. Let X = aF‘ |t=0. Choose a coordinate system s.t. at a point x it is orthonormal i.e.,

i (0) = dij.

Then 0 | 0 %%
ot 7= = Bt \ oy 0, /|,y

F F
= <vaFtX, at> + <vaFtX, at>
os; 0% az;  0x;

since the z; and ¢ derivatives commute,

% OF; =0
825’81‘1‘ N

This allows us to calculate the following

P detg;;g" <<V2F, X, gft > + <ngt X, ‘g? >)
55 /et = ;
= (divpmX) \/detg;;

Putting it all together gives, %Area(Ft)h:o = [y divaXdp.




To obtain the other side, let X™ denote the tangential component of X,
O (09X ORN | /0X OF,
8tg” =0 8@’ 8xj 8Ij’ 811
0 OF 0 OF 0*F
= X, — — (X, — ) —2( X, —
8x1< ’8xj>+8xj< 781'1> < ,a$i$j>

d OF d oF oF
= XM — ({xM —ork { xM 2h:i (X, V).
axi< ’axj>+azj< ’axi> ”< ’azk>+ P (Xo0)

Where in the last step we used the Gauss-Weingarten equation, 6‘?:5 - = Ffng}; — hyjv.
iLj

Let w be the 1-form defined by w(Y) = g(F*(X™),Y). We can rewrite the above as

| - 8())]‘ + 8wi
Gijlt=0 = axZ P}

- — 20w, + 2hij (X, v)

= Viwj + Vj(.di + thj <X, V>

Then,

%m _ Vdetg; g (Viw; +2iji + 2hi (X, v))
= /detgy; (diva XM + H(X,v))

Putting this all together we obtain

gArea(Ft)h:o :/ (divm XM + H(X,v))dp
ot M

:/ H(X,v)dy Stokes’ Theorem
M

Remark 1.6. Alternatively one could use integration by parts on the tangential part to

obtain a proof.

Lemma 1.7. We have the following identities.
(i) Ahy; =V;V;H + Hhyg™hmj — |APhy;  (Simon’s Identity)
(it) 3A|A[ = (i, ViV H) + VAP + H(g" g* g™ hikhum by ) — | Al
Proof. Using Lemma 1.4 we have

ViViTi; = ViViTijy — Ry Ty — Ry Tim (1.8)

We will also use the Gauss equations

rig = 9" (hijhis — hyjhis) (1.9)
;g = 9" (hishit — hihis) (1.10)



As well as the Codazzi equation
Vihg = Vihyg = Vihie. (1.11)

Then

Ahi, =gV Vihyj

=g"' Vi Vihji by (1.11)
=g"ViVihji — R ihmi — Rihim by (1.8)
=g"MViVihji — 9" g™ (hijhis — hishis)hm

— g™ g™ (hishit — hgihis)hjm by (1.9)

="V, Vi + " haahisg P — 6" Pies g ™ Rt hij
+ 9" 9" hihishima — 9% 9" hishithjm
=ViV,;H + Hhig" ™ hp; — | AP hij.
Make note that hz = g"*hj, h'9 = g"*gIthg and |V A|? = g7 g7g"V;h;,V, hs. So we
contract Simon’s identity with h%.
KV hij = h9NiV jh + h" Hipyg* hyy — h7| AP hy;
= hV,;V,;H + Hg" g hghirg" hyj — |A]*
= hV,V;H + Hhihin, — | A%
Now using the fact that |A]? = h;hf, we can obtain
AJAP? = g"'V e Vi(hT"hi,)
= 2h],Vh" + gV bV, + gF RV b,
By Ricci’s Lemma Vg = 0, so we obtain that Ahj" = gmkAhkj and V;h7" = g™"V,h,;.
Whence,
A|A|2 _ gjkgmihkmAhij +gkigmsgjrvkhsjvihrm
= gkinggjsvihrjvkhsm
= 2hY Ah;; + 2|V AP

So the result follows.
O

We will also at times need to bound the gradient of the mean curvature by the gradient
of the second fundamental form. To do this we will make use of the following Lemma.

Lemma 1.12.

|[VH|? < n|VA?



Proof. Without loss of generality pick ¢¥ = §%, then
IVH|* = [Vg" Ay
= |97 (VA)]
= (VA
< 7”L(|(VA)11|2 ot |(VA>nn)|2
< n|VAP?

Where we have just applied Cauchy’s inequality.

10



1.2 Mean Curvature Flow for Convex Hypersurfaces in
Euclidean Space

In this section we summarise results and proofs from Huisken’s paper [58]. In it he shows that
a compact, uniformly convex, hypersurface embedded in R**! without boundary shrinks
down to a point in finite time. By strictly convex we mean that the eigenvalues of the second
fundamental form are strictly positive everywhere. In fact they satisfy a pinching condition
which we will make explicit after the statement of the main theorem for this section.

While undergoing mean curvature flow the surface M; will begin to look like a sphere
quickly as the eigenvalues of the second fundamental form approach each other before shrink-
ing to a point and no prior singularities will occur.

There is also an argument described in Section 9 [58] in which a normalisation procedure
is carried out. In it, for any fixed time ¢ > 0 such that a solution of F(-,t) exists, we let
¥(t) be a positive factor chosen such that M, is given by

has total area | My|. More precisely, for all ¢ we have

[ ai=1mil.
My

After choosing a new time variable #(t) = fg Y2(7)dr F will satisfy

0 ~ -~

F('7t):FO

[ H2dji
n [y dii

These surfaces with fixed area will approach a round sphere as t — oo and these surfaces
are just homothetic expansions of our original mean curvature flow solution. This will not
be covered here, but for more details refer to Section 9 [58].

Theorem 1.13 (Theorem 1.1 [58]). Let n > 2 and assume that My is a uniformly convez,
compact hypersurface without boundary. Then the evolution equation (1.1) has a smooth
solution on a finite time interval 0 < t < T, and the M;’s converge to a single point O as
t—T.

We will go through some notation and background before outlining how to prove this
Theorem.

If M;; is a symmetric tensor, we call M;; nonnegative, M;; > 0, if all eigenvalues of M;;
are non-negative. Since we have assumed that all our eigenvalues of the second fundamental
form of My are strictly positive, then there exists some € > 0 such that the inequality

hij > €Hgi; (1.14)

holds everywhere on My, this is our pinching condition.
Now we can go on to prove the following. These are essential later in proving that as
the flow continues and ¢ — T our eigenvalues will all approach the same value.

Lemma 1.15 (Lemma 2.3 [58]).

11



(i) H(g"g" g™ highimhag) — A" = n@ H2(|AP — 1)
(i) |Vihi H — viHhkl|2 > %62H2|VH|2.
Proof. (i) This is a point wise estimate, we can assume that g;; = d;; and

At

"
0

An

In this setting we have,

H(g"9 g" g™ highimhng) — |A[* = gliflhi;g” ¢* g™ hixhimhng — (67 g hixhj)?

() (59)-(24)

(o] -y

i<j i<j
=D AN - )
1<j
> EH?Y (A — )’
I<j

and the result follows since,
|A]? — H72 = 12()\ —\)?
n  n<t T
1<J
(ii) We begin by looking at the quantity
1 1
Vil H — ViHhy|* = |Vihu H — i(viHhkl + ViHhy) — E(ViHhkl — ViHhy)|?
1 1
= |VihwH — §(ViHhkl + ViHhy)|? + Z|V1-Hhkl — ViHhg|?

1
> IViHhw = Vi Hha*.

Since V;hy; is symmetric in (¢k) by the Codazzi equations. Now we only have to
consider points where the gradient of the mean curvature does not vanish. Around

12



such a point pick an orthonormal frame e, ..., e, such that e; = %. Then

V. H = {l)vﬁi ; =1 (1.16)
) 1 -

in these coordinates. Therefore

1 1 1
1 > (ViHhy — Viha)? > 7 (Vitha — VoHhig)? + 7 (V2Hhi2 = ViHhg)®
ikl

1
Bl VH

Y

1
562H?|VH|2

since any eigenvalue, and hence any trace element h;; is greater than ¢H.
O

We also have the following lemma which will be useful when trying to find a bound on
|VH|.

Lemma 1.17 (Lemma 2.2 [58]).

. VH|?
(i) [VA]? > %

g 2 |VH|? 2(n—1)|VA|?
(ii) |[VA]? — = > T

Proof. For a proof refer to Lemma 2.2 of [58]. O

1.2.1 Evolution Equations

Here we continue to examine our mean curvature flow equation (1.1).

Since this equation is parabolic we know the the evolution equation has a solution M,
for a short time with any smooth compact initial surface M = Mg at t = 0. For a proof of
short time existence to (1.1) refer to Section 7 [40]. Therefore it makes sense to study how

some of our important quantities also evolve under mean curvature flow, which we look at
below.

Lemma 1.18. If M, evolves by mean curvature flow, the associated quantities above satisfy
the following equations:

(i) $9ij = —2Hhi

(it) Zdp=—H*dp

(iii) Sv=VH

(iv) Lhij = Ahy; — 2Hhijg"™ homj + |A|?hy;
(v) &H =AH+|APH

N D i Api i
(vi) Gph' = Ah% + |A*h%.

13



(vii) Z|A2 = AJAP? —2|VA|]? + 2|A]%

Proof.

(i) The vectors % are tangential to M, and thus,

VOEN g =0, 08N _ /9 OF
78,131' o N 8331' 761‘]‘ o 6xj 78332' '

From this we obtain

0
0 oOF 0 oF
- <am<‘H”>’ a> * <3%<—Hu>, a>
0 oF oF 0
—‘H<axi”’axj> ‘H<aa>
= —2Hhij

(ii) If dps = pe(z)de is the measure of My, then p, = /detg;;, so the result follows from
a short calculation using the above.

ilu _ %detg”tr(%g”)
dt \/detgij
1
= 5 detgijtl“(—2Hhij)
= —HQILL

(iii) 9,0, 08N OF 4
at” = \ot” oz; ) 0x;?

_ [, DOF\OF
~ \"otox,; / 0x;7

0 oF ..
= _ 19
<l/7 8:51 (HV)> axjg

o _OF .
= _— H—g¥
8:5,» al'jg

=VH

14



(iv) We will make use of the Gauss Weingarten equations here.
O -0 OF
at E 3t 8xiaxj’
0? oF? 9
= o (= =
<ehnaxj( 10’”> <£h%8xj’8ty>

8? OF? 0 oF .
= A a V) — a. 9. 7H79
O0x;0x; O0x;0x; Ox; Oz

0? o, 0 O*F 0 0
- H+H 2 - a7
Ox;0x; + <8mi (aacj v), V> <6mi8xj’ ox; axmg

0? ) OF OF
= H+ H( =—(hjijg'm=— —(TF —— — hjv, —
dz;0z; + <8mz( a9 6xm)71/> < "7 Oy, v
9? d OF
= _—— H-TY —H+ Hhjpg™ (T9=— — hav,
0z,;0z; Q. T RmY ( "o, v V)

F
=V,;V;H — Hilglmhmj using <g,u> =0.
To

Now recall Ah;; = V;V;H + Hhiyig" hy,j — |A|?hi;, and so the result follows.

(v) Using part (i) we have

0 0, .
Yoo Yiiig
ar = (97 i)
) o .
) . — (Y L.
=g 8t(h”)+8t(g )hu

To find %(gij ) we use the fact that g;sg°/ = 6{ and differentiate both sides.

o .
il 8T —
o (9is9™) =0

o . o

g NgSI (8T =

57 (9is)g™ + 9is 5,(97) = 0
Which yields that

o . 9 ‘
P S1y — . ¥
gzsat(g ) (%(gzs)g

and so

0
ot

So using the above and part (iv) we obtain the result.

(vi) Using parts (iv) and (v) above.
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(vii)

0 o .. .
— AP = = (g% g7 hihyl
= 4hG™ g g7 by b + 297 g7 hiy (Ahi; — 2H iy g™ hinj + | A2 hij)
= 2¢"% g7 hyy Ahy; + 2| A*
Now

AJAP? = g"V Vi (h]hi,)
= 2h), VhI" + "'V Vb, + gM ViV ki,
= 207" B g ™" Vhjn + g¥ g™ g Vkhsi Vihmi + g7 g™ 'V ih; sV ihim,
= 21" Ahy; + 2|V AP
= 2g"* g7 hys Ahy; + 2|V A%

So 2% githy Ah;; = A|A]? — 2|V A|2. The result follows.
O

The evolution equations give us the following corollary which guarantees that the mean
curvature will remain positive if initially positive and that the area of our hypersurface
will continue to shrink as it undergoes mean curvature flow. However since H,;, is not a
differentiable function of time, but differentiable a.e. we will need the following theorem.

Theorem 1.19 (Theorem 2.1.1 [80]). Assume that g(t), fort € [0,T), is a family of smooth
Riemannian metrics on some manifold M. Let u: M x[0,T) — R"" be a smooth function
which satisfies the following

ou
N < Agyu+ (X(pu, Vu,t), Vu) ) + b(u)
where X is a continuous vector field and b a locally Lipchitz function.
Then, suppose that for every t € [0,T) there exists a 6 > 0 and a compact subset
K C M\ OM such that at every time t' € (t — 0,¢t +0) N[0,T) the mazimum of u(-,t') is
attained at aat least one point of K.
Setting umax(t) = maxpe s u(p,t) we have that the function umax s locally Lipchitz,
hence differentiable at almost every time t € [0,T] and at every differentiability time,

dtmax (t)
dt

Therefore if h : [0,T") — R is a solution of the ODE

W(t) = b(h(t))
h(0) = umax(0),

forT' < T, thenu < h in M x [0,T").

< b(Umax(t))-

Corollary 1.20 (Corollary 3.6 [58]).
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(i) If dpy = pi(z)dx is the measure on My and the total area |My| of My is decreasing.

(ii) If the mean curvature of My is strictly positive everywhere, then it will be strictly
positive as long as the solution ezists.

Proof. (i) This follows straight from (i) and (ii) from Lemma 1.18.

(ii) Follows from Lemma 1.18 (v) and the maximum principle.

We argue by contradiction. Suppose there exists some interval (to,¢;) C RT such that
Hpin(t) < 0 and Hpin(to) = 0, where Hyin(0) > 0 and H,yjy, is continuous in time.

In this interval let |A|? < C. Then

OH
Z— = AH + H|A]?
ot +H|A]" =

a]{min
> CHmin
ot~

for a.e. t € (to,tl).

Integrating this in [s,t] € (to,t;) we obtain that Hpin(t) > €€~ Hyin(s). Letting
s — t(‘)" we conclude Hpyin(t) > 0 for all ¢ € (to, t1).

Since H > 0 we get,
oH
— = AH + H|A)?
5 + H|A|
3
> am+ 2
n

Applying Theorem 1.19 with u = —H, X =0 and b(z) = % then, if Hyin(0) = 0 the
solution is always zero, so if at some positive time Hyin(7) = 0, we have H(-,7) is
constant zero on M;. However we know that there are no compact hypersurfaces with
zero mean curvature. Therefore under mean curvature flow H;, is increasing and H
is positive on all of M; for every t > 0.

O

1.2.2 Preserving Convexity

Using Hamilton’s maximum principle for tensors on manifolds [48], we will show that our
pinching condition
hij 2 EHgij
holds as long as solutions to (1.1) exists.
Before we begin we say that a polynomial satisfies a null eigenvector condition if for any
null eigenvector X of M;; we have Ninin > 0.

Theorem 1.21 (Theorem 9.1 [48]). Let u* be a vector field and let g;j, M;; and N;; be
symmetric tensors on a compact manifold M which does not necessarily depend on t. As-
sume that N;; = p(M,;, i) is a polynomial in M;; formed by contracting products of M;;
with itself using the metric. Supposing that on 0 <t < T the evolution equation

9

ot
holds, where N;; = p(M;j,gi;) satisfies the null eigenvector condition. If M;; > 0 att =0,
then it remains so on 0 <t < T.

M;; = AM;; + u*V M;; + Ny

17



Corollary 1.22 (Corollary 4.2 [58]). If h;; > 0 at t =0 then it remains so for 0 <t <T.

Proof. Set M;; = hyj, u* =0 and Nij = —2Hhilglmhmj + |A|2hij then it follows from the

above Theorem and the evolution equation for h;;.

O

Theorem 1.23 (Theorem 4.2 [58]). If eHg;; < h;; < BHg;j, and H > 0 at the beginning

for some constants 0 < € < % < B < 1, then it remains so on 0 <t < T.

Remark 1.24. Why the value of % 2 This value comes from contracting the pinching con-

dition, we have

hij Z EHgij
H >eHn
1

=e< —.
n

Proof. To prove the first inequality, we wish to apply Theorem 1.21 with

hij k_ 2
Fj—ﬁgi]w ut =g Vil

Nij = QEHhij — thnlgmlhlj.

M;j =

With this choice the evolution equation in Hamilton’s Theorem is satisfied since

9 (hig\ _ FilhiiH — giH(hij))
ot \ H H?

— 2hi1g" ™ M

We can also evaluate A (}}IJ) using the following rule:
1 2
A (f> =-Af— %Ag - -V (f) Vg.
) ) g g )
Letting f = h;; and g = H, we obtain that

hij  HAhy —hiH 2 hij
Su T wt Vi )

(1.25)

(1.26)

It just remains to check that IV;; is nonnegative on the null eigenvectors of M;;. Assume

that for some vector X = {X'}, that h;; X7 = eHX;.
Then we derive,
Ny X X9 =2eHhij X X7 — 2h;0,9™ hy; XX
=2 H?| X |? — 2 H?| X |2
=0

The second inequality of the theorem follows from the same method after changing signs. [

18



1.2.3 The eigenvalues of A

In this section we want to show that along the flow all the eigenvalues of the second fun-
damental form, our principal curvatures, will approach the same value at the points where
the mean curvature tends to infinity.

We look at the following quantity:

H? 1
AP = — =~ D=y

i<j
which measures how far the principal curvatures A; diverge from each other. The idea is to

show that the difference between |A|? — HTQ becomes small compared to the square of the
mean curvature H2.

Theorem 1.27 (Theorem 5.1 [58]). There exist constants § > 0 and Cy < oo depending
only on My, such that

H2
|A]® — o < CoH??

for all times 0 <t < T.

Our goal is to bound the function

2 H?
_lap-£

9o = 2o
for sufficiently small o.

Proof. For a proof refer to Section 5 of [58]. We omit the proof in this section as a very
similar proof is shown in Section 1.4 for mean convex surfaces. O

Theorem 1.28. A surface My undergoing mean curvature flow with initial conditions as
in Theorem 1.13 has solutions on a finite time interval, T < co..

Proof. Using the evolution equation for H Corollary 1.20(i), we are able to show that T' < occ.

3
a—H:AH+H|A|22AH+H—.
n

ot
We introduce ¢ to be the solution to the ODE
9 _ ¢
- = — 0) = Huin(0) > 0.
5 = o 0 (0) >

If we consider ¢ as a function on M x [0,T), we get
0 1
—(H —¢) > A(H - —(H? - $°
5 (H —¢) 2 AMH —9) + ©°)

such that by the maximum principle H > g on 0 <t < T.
Solving explicitly for ¢ we have
Hmin 0
olt) = w__
1—(2)Hz,, (0)t

and since ¢ — 0o as t — %H_Q (0), the result follows.

min
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1.2.4 A bound on |VH|

If we want to compare the mean curvature at different points of the surface M;, we will
need to compute a bound on |VH|.

Theorem 1.29 (Theorem 6.1 [58]). For any n > 0 there exists a constant C depending on
1, Mg and n such that

\VH|?> <nH*+C.
We will do this by bounding the function

VH|? 1
f = % + N <|A|2 — nH2> H+N03‘A|2 —?7H3

for some large N depending only on n 7. To do this we will need to find bound for the
evolution equations which appear on the right hand side.
First we need the evolution equation for the gradient of the mean curvature.

Lemma 1.30 (Lemma 6.2 [58]). We have the following evolution equation,

%\VHP =A|VH|? - 2|VZH|? + 2|A]?|VH|*+
+ 2(ViHhpj, V;HV hin) + 2H(V, H, V| A]?).
Proof.
) d, i
ZIVHI? == (¢¥V.HV.H
+299V,(H|AP)V;H
=2H (h;j, V:HV;H) + 29 V,(AH)V;H
+ 29V, HV ;H|A|> + 29" HV ;| A]*V; H.
Now we also have that
A|IVH]? = g™V, VgV HV ; H
= g™"(2¢"V,, V., V;HV ;H 4+ 29"V ,,V;V,,V;H).

With
9" G WV ViH = g™ gV, ViV H
= gmnvivmvnH — RiminViH
= gmnvzvmvn - gmn(hllhmn + hznhml)le
This completes the proof. O

Corollary 1.31 (Corollary 6.3 [58]).

d
&\VH\Q < A|VH? = 2|VZH? + 4| A2 |VH|? + 2H(V,;H, V;|A]%).
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Proof. Using Lemma 1.30 together with the following relations yields the result,

AIVH|? = 2¢"A(V.H)V,H + 2|V*H|?
A(ka) = Vk(AH) + gljvzH(Hhk_/ - hkmgmnhnj)-

Lemma 1.32 (Lemma 6.4 [58]). We have the inequality

2 2 §
9 <|VH| ) <A (WH' ) +3|Af? <v§ > +2(ViH, Vi|A]?).

ot H H

Proof. Using the result from before we have,

0 (IVH]?\ &IVH|> - H> - |VHP*SH
oo\ H ) H?
(AIVH]> = 2|V2H > + 4|A*|VH|? + 2H(V;H,V;|A]*)) H

< 72

|VH|?>(AH + |A|>H)
H2
_ HA|VH|? — |VH]?AH N 3JAZIVH|? 2|V2H|?
H? H H
+2(V:H,V;|AP).

So, it remains to show

(1.33)

HAWVH]? — |VHPAH _2V?HP? _  (|VH]?
H? H - H

Using (1.25) we obtain

s(2)=tar-Lar- 25 ()
g g g g g

VHPN 1o [VHP, 2 (|VH]
¢A< 7 ) = FAIVH] T AH — =V (S | VH

AlVH|?H — |[VH]?AH _ (|VHJ? 2 _ (|VH]?
= e =A fi + EV i VH.

So that the LHS of (1.33) becomes

HZ\ 2 HP? 2|V2H|?
A ('VH| >+Hv ('VI{') VH - WT‘ (1.34)

Looking at the second last term of (1.34) we can obtain

2 (|VH? 2 ([ |VHP]? o A(V,V;H,V;HV;H)
H ( H )VH_H<_ gz ) (VH) H?
__2[VH|'  AV’H|VHP
<-=5E e
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Where in the last line we have just applied Cauchy-Schwartz. Therefore

IVH2\ 2|VH|* 4|V2H|VH|?> 2|V2H|?
1.34) < A - -
(134) < ( H m H? H
|VH|?
<A
<a (g

where we have applied ab < # with

H|H VH|?
azu and b:| 3|
H> H>

and the result follows. O

To prove the main theorem of this section we still require two more evolution equations.
Lemma 1.35 (Lemma 6.5 [58]).
(i) &£H3 = AH® — 6H|VH|? + 3|A|*H>.

(i) 5 (AP = ZyH) < A (AP = £)H) - 25D HIVAP + G VAP
+3JAPH(|A]? - L),

n

Proof. (i)

d
aH3 =3H?AH + 3|A*H? (1.36)

Now,

AH? = H*AH + HAH? + 2VHV H?
= H?*AH + H2HAH +2(VH)*) +2VH (2VH - H)
= H*AH +2H*AH +2H(VH)? + 4H(VH)?
=3H?AH +6H(VH)?
= 3H*AH = AH® —6H(VH).

Plugging into (1.36) the result follows.

o ((1ap = 2ae ) m) = a ((1ap - 1) 1) <2t (jvap - L vap)

—2 <ViH, \Z <|A|2 - 71H‘2>> + 3|APH <|A|2 - im) )
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Now using Theorem 1.27, g, < H? and the following relations,
1 1
ab < D62 + ~ % and RO 1> = (|A]? — —H? | = g, H>°.
2 27 Y n
using the Leibniz rule we can estimate

1
2|(V:H,V,(|A]? - 5H2)>| = 4|(ViHhY,, Vi)
< 4|VH||hY,||VA. (1.37)
Now

[VH| = V9" hij| = g Vhij < |g7]|Vhij| < n|VA]

1
and  |hQ)|> < CoH?0 = |nY,| < CZH'"%.

= (1.37) <4nCEH'-3VAP?
2(n—1
< 2=V 1A 4 olap
3n
where C' depends on n, Cy and 0. The result then follows from Lemma 1.17(ii).
O

We are now ready to bound f and prove the Theorem 1.29. From Lemma 1.32 and
Lemma 1.35 we obtain
of

- = 2
5 =OF +314] (

[VH|?

) +2(V,H, V| A?)

2(n—1
%HWAF ANy A"

+3N|A*H <|A|2 - :LH2> — 3n]A|PH?.

+6nH|VH|> = N

Since
H2
— < |AP < H? |VH? <n|AP andn < 1
n
we can choose N depending only on n large enough such that
of
t

H2
n n

By Theorem 1.27 we obtain
1
ONC3H* +3NH? <|A2 - H2> < 2NC3H* + 3NCo H>?
n
3 o5
<-nH>+C
n

where the constant C' depends on 7,d,n,Cy and C3. and hence % < Af 4+ C, where C
depends on 7 and M.
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This implies that max f(¢) < max f(0) + Ct and since we already have a bound for T, f
is bounded by some constant C' depending on 7 and M.
Therefore

\VH|?> < nH* + CH < 2nH* + C(n, M)

which proves Theorem 1.29 since 7 is arbitrary.

1.2.5 Higher Derivatives of |A|

For this section, we only state the theorems and lemmas as stated in [58], for detailed proofs
or more information please refer to Section 7 in [58].

We write S T for any linear combination of tensors formed by contraction on S and T'
by g.

Theorem 1.38 (Theorem 7.1 [58]). For any m we have the following

%|VmA|2 =A|VTAP — 2| VLA

i+j+k=m
where the m-th iterated covariant derivative of A is denoted by V™ A.

Proof. Refer to Section 13 of [48]. O

Lemma 1.39 (Lemma 7.2 [58]). If T is any tensor and if 1 < i < m — 1, then given a
constant C' depending onn and m which is independent of the metric g and the connection
T we have the estimate

/|V’T dp < Cmﬁx|T\2(%)/|VmT\2du.

Proof. Refer to Section 12 of [48]. O
Theorem 1.40 (Theorem 7.3 [58]). We have the estimate

0
—/ V™ APdp + 2/ V™ A2dp < Cmax |A)? / V™ APdp.
ot Jm, M, M M,
Proof. Integrate the identity from Theorem 1.38 and apply the generalised Holder’s inequal-
ity. Then apply the Lemma 1.39 from above.
For more detail refer to [58]. O

1.2.6 The Maximal Time Interval

Theorem 1.41 (Theorem 8.1 [58]). The solution of equation (1.1) exists on a mazimal
time interval 0 <t < T < oo and maxpq, |A|?> becomes unbounded ast — T.

For a detailed proof refer to section 8 of [58].

Now we wish to compare the values of Hyayx and Hpi, as t — T. Since |A|? < H?
Theorem 1.41 tells us that H,,,, becomes unbounded as t — T.

Huisken inspired by Hamilton’s work uses Myers Theorem to prove the following result.
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Theorem 1.42 (Theorem 8.4 [58]). % —1last—T.

Below is Myers theorem and a necessary lemma to prove the result, the details can be
found in Section 8 [58].

Theorem 1.43 (Theorem 8.5 [58]). [Myers] If R;; > (n—1)Kg;; along a geodesic of length
greater or equal to K™% on M, then the geodesic has conjugate points.

Lemma 1.44 (Lemma 8.6 [58]). If hy; > eHg;; holds on M with some 0 < e < 1 then
Rij Z (Tl — 1)€2Hgij.
Theorem 1.42 leads us to the following result.

Theorem 1.45 (Theorem 8.7 [58]).

T
/ Héax(r)dT = oo.
0

Proof. The following DE:

% - Hﬁlaxg with g(0) = Hrax(t) (1.46)

has a solution since H2,, is continuous in .

Furthermore Lemma 1.18 (v) gives us

d
—H<AH+H?> H
gt =AMt

max

0

= o (H —g) <AH - g) + H;

max(H - g)

Applying the maximum principle we obtain H < g for 0 <t < T.
Therefore returning to (1.46)

/Ot H2, (7)dT = log (g((é))) —ocast—T.

where we have used the fact that Hyax — 00 [58].

Corollary 1.47.
T
/ H2, (1) dr = 0.
0

Proof. Combine Theorem 1.42 and Theorem 1.45. O

fo, H%dp

Corollary 1.48 (Corollary 8.8 [58]). Let h = T —a
Jamy O

Then fOT h(T)dr = o00.
Proof. Follows from the Corollary 1.48 and Corollary 1.48. O
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Corollary 1.49 (Corollary 8.9 [58]).

Al?
ﬁ — E —0ast—T.
Proof. Consequence of Theorem 1.27 since Hy,i, — oo by Theorem 1.45. O

We now have enough to prove Theorem 1.13. Since the surfaces are shrinking under
the flow it is clear that M, stays in the region R"*! and is bounded by My, for t; > to .
Moreover g‘“‘“ — 1 as t = T so we know the diameter will tend to 0 as t approaches the

. . min
singular time 7.
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1.3 Type I and Type 1II Singularities

In this section we discuss the two types of solutions to (1.1). A key starting point for
singularity analysis is Huisken’s monotonicity formula which he derived in [61]. He then
went on to show that the first type, type I singularities, are asymptotically self-similar.

As in [61] we begin by providing a basic lower bound for the blow up rate of the curvature.

Lemma 1.50 (Lemma 1.2 [61]). The function U(t) = max, |A|* is Lipchitz continuous

and satisfies U(t) > ﬁ

Proof. Tt is clear that U is Lipchitz continuous so long as |A|? is bounded. We recall the
evolution equation from Lemma 1.18 (vii) and the maximum principle we obtain

%w2 = AJA]? - 2|VA|? +2|A]%

using this evolution equation and the maximum principle we obtain

Dt < 2wy

0

=5 (U (1) 2 2.

We can apply Theorem 1.41 to see that U~1(t) — 0 as t — T and we obtain

O

For this section as in [61] we will assume that the blow-up rate of the curvature satisfies
an upper bound of the form

Co

T=D (1.51)

U(t) = max |A]? <
My

In order to keep the curvature of our surface M bounded as ¢t — T it will be useful to
perform a rescaling for our surface near these singular points.
Now 1.51 tells us that for two times 7,¢t with 0 <7 <t <T

t
Ft) = Pl < [ 1Bl < Co (-0t =@ - 0)})
for all points p € M. Therefore F(-,t) converges uniformly as ¢ — T', which motivates the

following definitions.

Definition 1.52. Define x € R"*! to be a blow-up point if there is a p € M such that
F(p,t) > x ast = T and |A|(p,t) becomes unbounded ast — T.

Definition 1.53. Given a blow-up point x € R"*!, we define a rescaled immersion F(p, s)
by

Fps) = (200~ 1)} Fp.1),  s() = —% log(T — #).
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These rescaled surfaces My = F(-,s)M are defined for —2logT < s < oo and satisfy

L F(p,s) = H(p,) + F(p, )

where H in the mean curvature vector of /\;ls.
These definitions lead us to consider the following.

Definition 1.54 (Type I Singularity). If there exists a positive constant C > 0 such that

C
AP < ——

max| A" < o5

then we say that the flow undergoes a type-I singularity.

Definition 1.55. If for the above definition no such C exists, then we say that the flow
undergoes a type-1I singularity.

We will not study type-II singularities but we would also like to describe an example of
one first conjectured by Hamilton for Ricci flow, described in Section 3 of [45].

It is possible to obtain a surface in the shape of a dumbbell in the following way.

For any A > 0,

pa(z) = (1 =) (a2 +N), —-1<z<1

where A describes the radius of the neck.
Then for n > 2, we define M* to be the n-dimensional hypersurface obtained by rotating
the graph of ¢, in R2. Then [1] showed it is possible for the following to occur

(i) If X is sufficiently large then M; will become convex and shrink to a point in finite
time.

(ii) If X is sufficiently small the M7 we will obtain a standard neck pinch singularity which
will be described in the two-convex case in Chapter 3.

(iii) There exist some range of value for A between case (i) and case (ii) such that M} will
still shrink to a point in finite time and has positive mean curvature up to the singular
time 7" but will never become convex. Moreover the maximum curvature occurs at the
two points where the surface meets the axis of rotation. This is a singularity of type
II.

Returning to type-I singularities, we stated in the introduction that the main tool for
studying these is Huisken’s monotonicity formula. He showed that the flow is asymptotically
self-similar near a given singularity and thus, is modelled by self-shrinking solutions of the
flow.

Theorem 1.56 (Theorem 3.1 [61]). Let p(x,t) be the backward heat kernel at (0,t),

I S SR
P = iy — 1) p(4w—w>

fort <tg. Then if My is a surface satisfying (1.1) for t < to, we have the formula
0 1 2
g )y = — J‘H —FL‘d ,
oy /Mt p(@, t)dp /Mt p(, )| H + o it

where F* is the normal component of F and T = (ty — t).
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Proof. Refer to Section 3 of [61]. O

Theorem 1.57 (Theorem 3.5 [61]). Any type I blow-up limit of a mean convezx flow about
a type I singularity satisfies

H = (z,v)

where x s the position vector, H is the mean curvature and v is the outward pointing unit
normal.

Proof. Integrate the monotonicity formula over the blow-up sequence, refer to [61] for a full
proof. O

It is interesting to look at surfaces of positive mean curvature as those surfaces will
continue to have positive mean curvature on M, as long as a solution to (1.1) exists. In
[61] Huisken proved that for n > 2 the sphere is the only compact hypersurface of positive
mean curvature moving under self similarities.

Theorem 1.58 (Theorem 4.1 [61]). If M, n > 2, is compact, with nonnegative mean
curvature and satisfies H = (z,v), then M is a sphere of radius v/n.

Proof. We begin by taking an orthonormal frame ey, es,...e,. Differentiating
<€i,V> =0 = hij = e;l;. (159)

We differentiate the expression (v,v) = 1 to obtain that (v;,v) = 0 to see that v; can be
expressed as a linear combination of tangent vectors

= v=adle;.
Scalar multiplication with ey together with (1.59) gives us

(viyer) = ajejek

j k
=a’d;, =a”.

Therefore

ak = hij and hijek

= Viv = hjje;.
So differentiating
H = (z,v)
we obtain

V.H = (Vz,v+ (z,V,v)
= (z, en)hy;

since V,;z is perpendicular to v.
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We will also use Gauss’ equation here Vie; = —h;iv.
ViVjH = Vi<l‘, 6l>hlj
= <Vi.%', 6l>hlj + <!E, Viel>hzj + (:c, €l>vlhij
= (ej, enhyj + (x, —hyv)hi; + (z,e1)Vihy;
= hij — Hh“hlj + <l‘, €l>vlhij.
Contracting with g;; and h;; respectively we obtain
AH = AH — HIAP? + (z,e;)Vih; (1.60)
higVViH = [A]P — Htr(A%) + (x, e)hijVihi;. (1.61)
Applying Simon’s identity from Lemma 1.7 to 1.61 we obtain
AJA]2 = 2|VA]? +2|AP? — 2|A[* + 2(x, e1)hi; Vihij.

Applying the strong maximum principle to (1.60) we see since M; is a closed, compact

manifold we have the strict inequality H > 0. Since if there existed a point p € Mg such

that H(p) = 0 then the strong maximum principle would imply that H = 0 everywhere.
Simon’s identity applied to (1.60) implies that

H? ) " HY
— 2HV| APV H + 3|A\2\VH\2).

AP 2 2 42 4 L 2772 2
Al = H?|A| +§<x,el>vl|A\ H? — H|A|*(z,e;)V H

Using
\hi; Vi H — Vihi;HI? = |APIVH> + |VA|?H? — HV,HV,|AJ?
we get that
A <A|2) =llhiszH — Vihi H|* + 1(2|A|2|VH|2 — HV,|A*’V.H
H? H* H*
.+ %H2<x,el)vl|A|2 - \A|2<x,egHVlH).

Moreover we have

2 . 2 2
o <A|) VAR ARG

H? H? H3
such that
AP 2 2 2 A2
A 2

Since M is compact, we apply the strong maximum principle to the equation above to
obtain that there exists a fixed constant a > 0 such that

|A]? = aH?.
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together with (1.62) this tells us that
‘hileH — Vlhin‘ =0 (1.63)

on M.
Now splitting (1.63) together with the Codazzi equation lets us obtain

|hi; Vi H — hyV;H| =0

And so if e; = % (chosen such that it points in the direction of the gradient of the mean
curvature) we have

\hi;ViH — hyViH|> = 2|VH*|A|? — 2h;jhyV HV ;H

where e; is the only direction H changes sol =j =1 and e¢;H = 0 for i > 2.

Thus at each part of M we either have |A|? = >  h? or [VH|? =0. If [VH?=0 it
follows immediately that M is a sphere.

So suppose there is a point in M such that |[A]> = Y"1 | hZ, since

AP =h3, +2) b3+ > 0
i=2 i,j#1

this would only be possible if h;; = 0 unless i = k = 1. Then |A|*> = H? at this point and
therefore everywhere on M. Integrating (1.60) we obtain

0= AHdp = H — H|A]? + (x,¢))V,Hdpu
My My
= H— H? 4 (z,¢,)V,Hdu
My
= H3dy = Hdy + / (z,e)V Hdp
My My My

= Hdy—n Hdu—i—/ (z,v)H?dp.
M, M, M,

Since (z,v) = H, we derive
(n—1) Hdp =0,
M,

which is a contradiction for n > 2. This completes the proof. O

Huisken then goes on to prove the following theorem, the proof of which we omit, but
can be found in Section 5 of [61].

Theorem 1.64 (Theorem 5.5 [61]). Let M3 C R? be a two-dimensional rotationally sym-
metric hypersurface with positive mean curvature, defined by a graph along the whole x4,
axis. Then the solution of mean curvature flow develops a type I singularity as t — T for
0<t<T < oco. Moreover at any blow-up point the rescaled surfaces M, converge to a
cylinder of radius 1.
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1.4 Convexity Estimates for Mean Curvature Flow

In the second chapter we will need to extend the flow past a singularity, in order to do this
we will need to obtain results related to the singular behaviour as ¢ — T. Huisken and
Sinestrari were able to achieve this by studying the elementary symmetric functions of the
principal curvatures and deriving new a priori estimates for them using only the assumption
of nonnegative mean curvature. They were then able to conclude that points where our
mean curvature tends to infinity, have almost positive definite second fundamental form.

These surfaces are referred to as mean convex and do not necessarily satisfy a pinching
condition, we require that the mean curvature is positive at all points, but not that each
principal curvature is positive. The results and proofs in this section can be found in [66]
[65] and [96].

Definition 1.65. For any k=1,2,...,n we set

Sp(\) = > Ais iy - i,

1<i1<ia< - <ip<n
forall X = (A1,..., \p) € R,

It is clear from the definition that S; = H. Moreover we set Sop = 1 and S}, = 0 for
k> n.
The main Theorem from [65] is as follows.

Theorem 1.66 (Theorem 1.1 [66]). Suppose Fy : M — R™*1 is a smooth closed hypersur-
face immersion with nonnegative mean curvature. For each k, 2 < k <n and everyn > 0
there is a constant C,, 1, depending only on n,k,n and the initial data such that everywhere
on M x [0,T) we have the estimate

Sy > —nH" — Cp 1.

Before we proceed we would like to describe the rescaling procedure for singularities in
a bit more detail than done in Section 1.3, this is essential for a better understanding of
Corollary 1.68.

In order to study the singular behaviour of hypersurfaces evolving geometric flows, tech-
niques from PDE theory are applied. Solutions near a singularity are rescaled suitably so
as to approach a non-trivial limit, we can then deduce the asymptotic profile of a surface
near a singularity.

This process is described by Hamilton ([45], Section 16), and depends on the type of
singularity.

We proceed as follows, with the only difference being in the choice of sequence chosen.

For a type-I singularity we can take any sequence of times {tx} with ¢, — T and pick
pr € M such that

A2 (pr, tg) = Al?.
| A (pr, i) Ij{lftlf\ |

For a type-II singularity we pick a sequence (pg,tx) for any k > 1 such that for t; €
[0, — 1] and pr € M we have

AP e 1) (T 1) = max [AP@.) (T -7 1)
k <71 k

peEM
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Now for both types of singularities we set

1
Lp = |A|2(pk?7tk)a ap = —Lgte, wi = Ly (T —tp — t) ,

then for any k we have the family of rescaled immersions,

B = VE(F (W +0) = Fontn)) 7w

Ly,

it is clear that My, » = F,(M, T) evolve by mean curvature flow.
We then have the following properties.

Lemma 1.67. As k — oo,
ty — T, Lk—>OO, Q. — —00, wk—>Q

where

0< Q< oo, for a type-1 singularity

Q= o0, for a type-II singularity
Moreover, for any Ty, Ty such that —oo < Ty < Ty < 0o and k sufficient large, the surfaces
M.+ have uniformly bounded curvature for T € [To, T1].

Proof. Refer to Lemma 4.4 [66]. O

It is then possible to show that a subsequence of the flows M, ; converges smoothly to
a limit evolving surface M. defined for 7 € (—o0, 2). This allows us to obtain the following
corollary to Theorem 1.66.

Corollary 1.68 (Corollary 1.2 [66]). Let ./\:/lt be the limit rescaling of a flow My of closed
mean convexr surfaces. Then the surface M, are convexr and the flow is defined for T €
(—00,00).

This follows from the main Theorem, as near a singularity .S; = H becomes unbounded
and each Sj becomes nonnegative after rescaling. For more information on the rescaling
procedure refer to [45][66][65][95] and [89].

Following from Section 1.23 we look for an upper bound for the function

|A|2 _ H2
H2—o

for some small positive o. However, the argument of [58] does not carry over unchanged as
it relies on some estimates which hold only for convex surfaces as opposed to mean convex
surfaces. To overcome this we introduce a new parameter 7 and study the function g, ,. The
proof which is described in detail below is an extremely powerful tool for mean curvature
flow, similar proofs have been tried and tested by Huisken and Huisken-Sinestrari in many
of their papers and obtained some very strong results.

Before we state the main theorem, we introduce the De Giorgi Iteration Lemma as in
Lemma 4.1.1 [96]. This will be essential in proving the required result.
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Lemma 1.69 (De Giorgi iteration Lemma).

Let p(t) be a non-negative and non-increasing function on [ko, 00) satisfying p(h) < (%) (o(k))?
for all h > k > ko for some constants M > 0, > 0,8 > 1. Then there exists d > 0 such

that p(h) =0 for all h > ko + d.

Proof. Set ks = ko +d— 2% for s =0,1,2,---, with constant d to be determined. Then our
assumption implies the recursive formula

Ma2(s+1)a

S (e(k)” 5=0,1,2,- (1.70)

‘P(kS-I-l) <

From this we can prove by induction

¢(ko)

T-S

w(ks) < $s=0,1,2--- (1.71)

with constant r to be chosen. Once this is proved, letting s — co we obtain ¢(ko +d) =0
and the conclusion of the Lemma holds since ¢(t) is non-increasing. So, for our proof by
induction, suppose that (1.71) is valid for s, then using (1.70) we obtain

Ma2(s+1)a
plkasn) € = (p(k))”

@(kO)Ma2(5+1)a B-1
< e (Pko)

Now picking = 25-1. Then

af
ko) M*25-1 _
P(kst1) < sa(?l;Jr—lda (ko))" 1.

From this, we see that if d > 0 satisfies

afB
M*25-1 _
T (p(ko))’ " <1

ie. d> M2 FoT (cp(ko))%, so that (1.71) is also valid for s replaced by s+ 1.

O

To prove the main theorem for general k refer to [65] where Huisken-Sinestrari prove the
result using induction, the method will be similar to the one described in Section 2.13 of
this thesis, however we do not go into great detail.

We follow Section 8 of [97] and Section 3 of [66] and prove the theorem for k = 2.

We do this by introducing the function

AR (4 pH?
- H2-0o !

The motivation for this function should be clear from the definition of S, for k = 2 as

(1.72)

Yon

H?> = (M +A+-+A2)
= |A]* — 25,.
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We need a uniform upper bound for (1.72) for some sufficiently small ¢ > 0. To do this
we first compute the evolution equation of g .

9o _ ZIA? — (1+n)2H% _(2-0)|AP - (1 +n)H?*0H
ot H2-° H3-c ot
~AJAP2 —2|VAP? 4 2|A|* — 2(1 +n)H(AH + |A?H)

H2—0o
AP — (1 +n)H?
e I;H LN TP

VilAP? —2(1 +n)HV,;H |A? = (1 +n)H?
vigg)" = H2—o o (2 o U) H3—o

)i

1
Agoy =7r2=5 (AIAP —o(1+n)HAH + (1 +n)o(o - 3)|VH|?)

_H27a'
VZH 2—0 2 2 2
22— 0) T Vigo + e (APIVH (o — 1) — HIAPAH)
Thus,

99o.n

o (c(1+n)HAH — (1+n)o(oc —3)|VH> - 2|VA|? +2|A*

1
:Agg’n + ﬁ
V.H
—2(1+n)H(AH + |A?H)) +2(2 — o)

H
2 —
C ) (o~ 1)IAPIVH] - HIAPAR)

AP — (1 +n)H?
H370'

2(1 — 1

%viﬂvigﬂ,,7 + F[QHVZ-HVAAF —4(1+n)H*|VH|?

=22 = 0)[(JA = (L+n)H*)|VH* = (1 +n)o(o — 3)H*|VH|?

—2HAVAP? + 2H?|A* —2(1 +n)H*|A? — (2 — 0)(0 — 1)|A*|VH|?

—(2=0)(|A = (L +n)H*)H?|A[]

2(1—-o0)

Vidon

- (2-0) (AH + H|A]?)

=Yo,n +

[VH|?

=Agon + i V:HV 9o +0(0 — 1)907,]? + O Gom Al
2
= 7=y (APIVH? = HV:RVi|A]? + HAVAP).
So that we get,
99, 2(1 — o) o(1— o)
atn :Agmn + TViHVigo-m — TQU,T]|VH|2
2
— fize hisViH = VihisH? + 0| AP go. (1.73)

In particular when o = 0, |A|? < CoH? on M x [0, ] for
Co = maxge m (| A2 (x,0)/H?(x,0)) by the maximum principle.

Unfortunately when o > 0, the last term in evolution equation (1.73) is positive and we
cannot achieve our goal using just the maximum principle. Instead we will first establish
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the LP-estimate and use the De Giorgi type iteration argument to derive the upper bound
for g5, with o > 0.
In the following, we always assume o, € (0,1). We observe that

AR (s pE?
a.n H2—0o

< CyH".

For simplicity denote g, = g and g4 (z,t) = max{g(z,t),0}.

Lemma 1.74 (Lemma 3.4 [65]). There exist constants Cy,Cs depending only on n,Co such
that

P

9 » p(p—l)/
Z <_BP=2 d H|d
at/thdu_ 7 “*|VglPdu — C » H2 UIV *du

p,

MH4<7

|HV ;hiy — viHhMPdqupa/ |A|2gh dp

My
forp > Cj.

Proof.

9 . L A
= = —F — H?¢"
ot /M,, g dp /Mt ( ot gy ) dn

:—p(p—l)/M 92Vl dp+2(1 - o) /

)dp

t

H2

+ pa/ |A[g5 du
M,

Note that the — fM H2g dp is not important.
Moreover

VH? g
fa(lfa)/ VA pgldp —2p + — |hi;ViH — Vihi H|*dp.
M, M,

/ pg ' Ag = —p(p— 1)/ 9% Vgl?,
M, My

where we have used integration by parts and Stokes Theorem (since we are on a closed
manifold [ ¢Vg = — [V fVyg).
Also note that
1
|hijle - VghinQ‘ > 1|hijle — hleiH|2
1
= S(APIVH]® = [ViHhi; *).
Now in suitable coordinates, we have

\ViHhi;|? = |[Vii|? < A2 VH|?.
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Thus,

n—1
1
|hijVih — Vihi; H|? > 3 Z A2|VH|?

B 2v2 |VH|?
= ZAZ)\H 2z

n—1 n

|VH|

=1 j=i+1

Y

2

H 2
; Aid\j 2(n|Yl)||A|2 using Cauchy-Schwartz

o
~ dn(n — 1)2\A|2|VH|

n2H2
>_ 17
~ 4n(n —1)2Cy

| \/

[VH?

That i 18, |hUV1H VIthH| = m‘vH‘
Now, defining a constant C' such that C' > W allows us to obtain
gt
C’H? o
9+

9+

—|hi;ViH — VihijH> > |VH|?

1 g+
(HQU + HQC())

using the fact that g+ < CoH°.
Applying Cauchy-Schwartz again we have,

p—1 p—l
2(1 - 0)p™—(VH, Vg) <2pT— |V H||Vy|
p 2 2
<——>=L|VH 2
<3¢ HQIV * +2CoCpg? % Vgl
p—1
g plp—1) -
ng-Z o—|h”Ljle Vlh'LJH|2 ng- 2‘V9|2
—1
—pQC’;I%|VH|2 provided p > max{2,1 +4Cy}.
where for the second inequality we have applied ab < # where a = |VH |g”/ 2 and
—2
b= |Vg|g+
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Therefore we obtain

9 gt 2
= Py < Vgl2du — VH|*d
5 1< g2 Vgl dp C/MtHg_al |“dp

pl

—D H4 U|hwle VihijH]| du—!—po/ |A|2gf_d,u

My
O

To absorb the positive integral on the right hand side of (1.73) we derive the following
Poincare inequality.

Lemma 1.75 (Lemma 3.5 [65]). There exists a constant Cs depending only on Cy such that

1 P - g
& Arsdn < By | wolan o) [ G iHra
C3 M ﬁ M H
g
+ 7Hzfa |h”le - Vlhin|2du
My

for any B> 0 and p > 2.
Proof. Recall Lemma 1.7 (ii),

—A|A|2 (hij, ViV;H) + VAP + H(g" g™ g™ hixhimhnj) — |A*
where  H (g7 g" g™ hixhimhnj) — |Al* = Htr(A%) — |A|*  on{g(z,t) > 0}.
= —2(H(g"¢" g™ hixhimhn;) — |A[*) = 2(|A[* — Htr(A%))

> 2(|A* - |A]H)
> 2(AP(V1+n-1)H
T+n(y/1T+n—1)|APH?

> n|APH?

Now we compute the Laplacian of the function g as,
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1

H2 o

—2(2-0)
2 2

H2 o H270'

- M(V-H Vig) + L( —2HV,HV;|A]? +4(1 +n)H?*|VH|?

H k3 ) ) H4_0_ (3 7

+22-0)(|A> = (1 +n)H*)|VH|? + 2H?*|VA* —o(1 + n)H?AH

+ (1 +n)o(oc—3)H*VH|? + (2 —0)((c — 1)|APIVH|* - H\A|2AH)>
2

Ag=——(AJAP —o(1 +n)HAH + (1 +n)o(o — 3)|VH|?)

V.H 2 —
H H4o‘

(hij, ViV H) + ——(H (9" g" g™ higshimhng) — |A*)

Z(APIVH* (e = 1) — H|APAH)

2 -
H4 a<h7f.77v v H> H27o' (H(gmgklgmnhlk?hlm n]) |A| )

2(1-o0) |VH|? 1 9
— S VH Vig) + 01— 0)g s + s ( — 2HV,HV,|A|

+20AP|VH| + 2H|VA!2) + —2(1+ ) HPAH — (2— 0)H*"gAH).

i
Thus we obtain

2
<5 (hij, ViV)jH) +

Ag:H2

(Hg" g* g™ hiphimhng) — |A]Y)

2 VH 2
by ViH — Vihy |+ 01— o)

H2
- @(vlﬂ, Vig) — <(2;‘)g +2(1+ W)Hll_g> AH.

2
H2~o

We multiply this equation by ¢4 H~7 and integrate by parts to obtain

ZD

L 1o 2
fp/ — g VylPdp+o | == (ViH, Vig)dp
wm HEH M, H1+
g L —
=—2/ pﬁ(hj,vigijWM—Q/M ﬁ|VH| dp

+4 (hij, ViV, H>g+d,u+/

2
M, HS 7(H(9”gkl9mnhzkhlm ng) — 4] )

2
My H
p—1

+/ —4|HileH—Vlhin\ggﬁdu—i—a(l—a)/ L |VH|*du
My H My H

p—1

95 g
2(en) [ ZVHPds 20 ) [ 9T (ViH Vg
Mt Mt
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Thus we have

_QQi
Mt H2

g g
:p/ ﬁWgPdu—Qp/ %(hl],V1V]H>

D
+ H3 (h”, V.V, H)du + 2/ %\hileH — VihiH|*dlmu
M{ t

(H(gljgklgmnhzkhlm m) ‘A| )

J: g
[, (@i w2t | (9, Vg

gp+1 gp gp
) 4 + 2+ ) | [VHd
M

Using Cauchy-Schwartz and the fact that ¢ < CoH? we obtain that for any 5 > 0,

_29-7- ij kl _mn
™ H2 (H(g g g hzkhl'rn nj) |A|)

2Co + 1 -
< Cy (p+ (0))/ g5 % Vgldu
CoB M,

p—1
+ (403 + 2pCo(er + 1)5) / I?H \VH|?du

P

+2C) H4

h,Jle Vlh”H’ dp.

Where we have also looked at the term (V;H, V,;g), and applied ab < GZ;bQ with
p—1
g 2 p—2

Then by Lemma 1.7 we obtain the Poincaré type inequality. O

The combination of Lemma 1.74 and Lemma 1.75 gives the following LP-estimate for
the function g.

Proposition 1.76 (Proposition 3.6 [65]). Given any n € (0,1) there are constants Cy,Cs
depending only on n,Cy such that forp > Cy, 0 <o < (C’5p)_%

0

*/ (go)idp < 0 for0<t<T.
Ot Jog, 0

1

Proof. Choose 8 ~p~2 and 0 ~ Cp~2. O

Now we can use a De Giorgi type iteration argument to derive an upper bound for g,
and prove Theorem 1.27.
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Proof of Theorem 1.27. Denote ko = sup,¢o 1 SUp vy, (9o,n)+ for any k > ko we set

V= (goy— k)2 and A(k,t) = {z € M;|v(z,t >)0}.
By the same proof as in Lemma 1.74 we obtain for p large enough
§Up/ |A2v%dp
My
< Coop | H?gE,dp,

My

We also have the following Sobolev inequality due to Michael and Simon [81],

</ vzqd,u> ' < C(n)/ |Vo|2du
Mt Mt
+C(n) (/ H"d,u) </ v2qdu) "
Ak t) M,

where ¢ = 5 if n > 2 and an arbitrary number greater than 1 if n = 2.
By Proposition 1.76 and denoting ¢’ = o + % we have

2 2
/ Hdp| <k=" / H"g?, du
Ak,t) A(k,t) ’
2

B (kou +k|M0|))f.

Thus we fix k1 > ko large enough such that for any k£ > k1,

1
8/ 2 1 </ 2 >q 2
— vidy + —— v | < 2Coap/ H=gP du
Ot Jpm, Cn) \Jm, Alk.t) "

This is

1
1 T 1 T
sup / vidp + / (/ qudu> ’ dt < QCOJp/ Hng,du dt.
[0,00] J M, cn) Jo \Jm, o Jm,
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Now we use the interpolation inequalities for LP-spaces to obtain that,

L 1-a
</ UZQOd/Jl> S (/ U2qd'U/> </ Uquu) 7
Mt Mt Mt

Wherel<qo<q,q%z%+k%fora:qi0:27%andq>2.
q
Thus

1

T a0 T 04%0 (1—a)qo %
([ L) ([ ()™ (L))
0 M 0 My My
=% [ T N
< (sup/ v2du> (/ (/ v2qdu) )
[0,71J M, 0 M,

T
< 2Coap/ H2g§777 dp dt
0 Mt

=

1-1 T
< 2C'OapHA(k,t)H </0 » H* gPr Ty dp dt)

where for the last line we applied Holder’s inequality with r a positive number to be chosen

T
and [[A(k, t)[| = fo fMt dp dt.
This implies that

T 1—-L T %
// deudtSHA(k,t)H © // V290 dy dt
0o JM, A(k,t)
§2COUpHA(k,t T // HQ'gMdudt
A(k,t)

Let l<y=2— % — % with r large enough and p, o are suitably large.
For all h > k > k1 we have

T
|hfk|p~HA(h,t)H§// vidp dt
0 M
T
§2000p<// Hz’gondudt> HAktH
o JAkb)
1
T B Y 7" 2
= 2Cyop // g2, rdu dt HAk,tH c =0+ =
’ <o Aty (k:2) ( p)

.
< Clo,p. T, Mo, ko)| | Ak, 1) |
Thus by the De Giorgi Iteration Lemma we conclude

HA(k,t)H =0, Vk>k +d,
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y—1

where d = C(o, p, t,| Mo, ko)pQﬁ’ A(k,t)|| © . Therefore g,, < ki +d on M, for

0 <t < T. This proves the k = 2 case.
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1.5 Ancient Solutions for Convex Hypersurfaces Under-
going Mean Curvature Flow

In this section we summarise the results and proofs from Huisken and Sinestrari’s paper
on ancient solutions [68]. In it they give various conditions ensuring that a closed convex
ancient solution is a shrinking sphere. Ancient solutions arise in the study of singularities
and of high curvature regions; an ancient solution to mean curvature flow is a solution
defined for ¢ € (—o00,0). Eternal solutions are solutions defined for all ¢t € (—o0, +00).

The simplest possible convex ancient solution for mean curvature flow is the shrinking
sphere. Take M, t < 0 to be the sphere of radius v/—2nt, then M; < 0 is the only compact,
convex self-similar solution to the mean curvature flow.

We also mention Haslhofer and Hershkovits paper, [53] in which they show the existence
of ancient solutions that for ¢ — 0 converge to a round point but for ¢ — —oo have the
following structure

(i) Near the centre they have asymptotic shrinkers modelled on the round cylinder S7 x
R"J and;

(ii) near the tips have asymptotic translators modelled on Bowl/ T x R*=7-1,

this result applies for hypersurfaces M that are uniformly n — j + 1- convex, A\; + --- +
An—jt+1 = agH for some ag > 0 and not strictly convex hypersurfaces which we consider in
this section.

Another interesting result is that of Angenent, Daskalopoulos and Sesum who show that
compact convex ancient solution to (1.1) as has unique asymptotic as t — —oo. It is hoped
that this result will result in a uniqueness result for ancient ovals with O(k) x O(l) symmetry,
where k 4+ [ = n + 1, unique up to time translation and parabolic rescaling of spacetime.

An ancient oval is any ancient, compact, non-collapsed solution to mean curvature flow
that is not self similar. For example, the Haslhofer and Hershkovits paper mentioned above
prove the existence of an ancient solution that has O(k) x O(l) symmetry [53].

1.5.1 Main Result and Preliminaries

We begin by stating some preliminaries and definitions which will be required to prove the
main theorem.

Definition 1.77. If Q C R"*! is a compact set with non-empty interior, the inner radius
and out radius of € are defined as

p—(Q) = max{r > 0| VB, s.t. B, C Q}
p+(Q) = min{R > 0| VBg s.t. 2 C Bg}.

Definition 1.78. The width of Q in the direction of a unit vector v € R™1 is given by
w(v, Q) = max{(y — z,v)|z,y € Q}.
We can then define
w_(Q) = min w(v,Q); w4 (Q) = maxw(v, Q).

lv]=1 lv[=1
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It is easy to see that
w4 () = diam(Q). (1.79)
We also have the following inequalities, where Q C R*+1,

w4 ()
\/5 ’

We also denote by diam;(M) the intrinsic diameter of M, computed using the Riemannian
distance on M induced by the immersion, in contrast to the extrinsic diameter diam(M),
which is defined in terms of the distance in R**!. These definitions lead us to the following
if M is convex

w_ ()
n+2

p+(82) < p—(9) = (1.80)

V2p4 (M) < diam(M) < diam;(M) < mpo(M). (1.81)

Throughout this section we will assume that the surface M has n > 2 and defined for
t € (—00,0). Where 0 is assumed to be the singular time of the flow, and the surfaces M
shrink to a point as t — 0 as seen in Section 1.1 .

The strong maximum principle for tensors applied to Lemma 1.18(vi) implies that all
principal curvatures are strictly positive everywhere. Moreover if we consider Lemma 1.18(v)
together with the inequalities

H2
AP < i, (1.82)
n
we obtain,

Hmin S \/ﬁ ) H, !
—2t —2t

Vt € (—00,0). (1.83)

Comparison with evolving spheres, along with the property that p_(M;) — 0 as t — 0,
yields the following bounds for M:

p_ (M) <V=2nt < p (M), YVt € (—0,0). (1.84)

Lastly we will require Hamilton’s Harnack estimate in the appropriate form for ancient
solutions. We obtain this estimate by replacing ¢ with ¢ — ¢y in the original estimate found
in [50] and taking the limit as ¢t — —oo,

OH  |VHJ?
—_— = > 0. .
5 72 0 (1.85)

The above tells us that H is pointwise non-decreasing. This tells us that solutions have
a uniformly bounded curvature on any time interval of the form (—oo,Ty], with 77 < 0.
Since H is the speed of our evolving solutions, we deduce for each solution the existence of
a constant K > 0, s.t.

pr(My) < K(1+t]), Vt <O0. (1.86)

We can now state the main result for this section.
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Theorem 1.87 (Theorem 1.1 [68]). Let M C R™"! be a smooth, closed embedded n-
dimensional hypersurface, we consider the compact set £ such that M = 0Q M;. Moreover
M. is a closed convex ancient solution of mean curvature flow. Then the following properties
are equivalent:

(i) My is a family of shrinking spheres.

(i1) The second fundamental form of M, satisfies the pinching condition h;; > eHg;; for
some € > 0.

(iii) The diameter of M, satisfies diam(M;) < C1(1 + /—t) for some Cy > 0.
(iv) The outer and inner radius of My satisfy p4+(t) < Cap_(t) for some Cy > 0.
(v) My satisfies Huyax < CsHpin for some C3 > 0.
(vi) M, satisfies the reverse isoperimetric inequality |M|"T1 < Cy4|Q|™ for some Cy > 0.

(vii) My is of type I, that is, limsup,_, . v/ —tHmax < 00.

1.5.2 Pinched Solutions

When looking at ancient solutions to convex mean curvature flow we will be considering
ancient solutions that satisfy a pinching condition

hij > €Hgi; (1.88)

for some € > 0 independent of ¢. In this section we will show that a solution that satisfies
this property must necessarily be a family of shrinking spheres.

We consider the same function as in Section 2 of this chapter, which is only zero at
umbilical points.

_ AP - +n)H?

go‘:"] H270- i (1.89)

with 0,7 > 0. The result we desire will follow as a simple corollary from the following
integral estimate which depends only on the pinching estimate and lifespan of the solution.

Theorem 1.90 (Theorem 3.1 [68]). Let My, with t € [Tp,0) be a solution to the mean
curvature flow such that M, is closed, convex and satisfies 1.88 for some € > 0, and which
becomes singular ast — 0~. Then there exist c1,ca,c3 > 0 depending only on n, e such that,
for every p,o > 0 satisfying

C2
p Z C1, g S ) po > n,
VP
we have

2

op c3
gpdt> < — —
(/Mt 7 | To|' "7 — |t|* 7>

for all t € [Tp,0).
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Proof. We know from Chapter 2 that M, is convex and satisfies the pinching condition for
all times ¢, 0 <t < T that a solution exists. O

The following Corollary to the above will give the equivalence between (i) and (ii) in
Theorem 1.87.

Corollary 1.91 (Theorem 3.2 [68]). Let M, with t € (—o0,0), be an ancient solutions to
the mean curvature flow such that every My is closed, convexr and satisfies equation 1.88 for
some € > 0 independent of t. Then My is a family of shrinking spheres.

Proof. Arguing as in Lemma 5.5 of [58], which for the readers reference is similar Lemma
1.76 of this thesis we can obtain

0
= / ghdp < —po | H?gbdu
ot My M

Using (1.82) we see that 0 < g < H? and therefore

9 1+23 .,
3t/M godp < —po (/M gﬁdu> |My|” %7 (1.92)

using Holder’s inequality. Gauss-Bonnet tells us that,

H"dp < e " Kdu=C
My My

where C' depends on € and n. This in conjunction with the evolution equation for du, Lemma
1.18 (ii), allows us to bound the |M;| term in equation (1.92).

) B . .
a\Mt\ = —/ H%dp > — </ H"du) M0 > Ol M| n (1.93)
My My

where C' depends on € and n.
Integrating the inequality over [t, s] with Ty <t < s < 0 we obtain,

IM|" = M| ® > —c(s — ).

Recall Theorem 1.13 from Section 1.1 tells us that |[Mg| — 0 as s — 0, this yields,
M| < C(—t)% (1.94)

as s — 0.
Therefore (1.93) and (1.94) tell us that

/ gﬁd/L)fp > O(—t)" . (1.95)

for any ¢ so that fMt gPdp > 0. If fMt gPdp > 0 then [, gPdu > 0 for all s < t. Therefore
if we take t € [Tp,0) such that fMt g2dp > 0 then we are able to integrate (1.95) over the
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interval [Ty, t] to obtain,

5 [Tol
</ ggdu) > / godp >0 | + C'/ T ondr
M, Mo, It]

|To| n
>C T v
[t]

> C(Tol' ™77 — [t]'~77)

where op > n. This proves the case when fo g2dp > 0. The case fMt g2dp = 0 is trivial,
as if fMt gPdu = 0 then M, must be a sphere. O

Theorem 1.96. Let M, with t € (—00,0) be an ancient solution to mean curvature flow
such that every My is closed, convex and satisfies (1.88) for some € > 0. Then M; is a
family of shrinking spheres.

Proof. Let Ty — oo in the previous theorem. Then [ M, gPdu is zero for every ¢t < 0 having
chosen the appropriate ¢ and p. This implies that every M, is a sphere, as the only closed
convex surfaces which contain only umbilical points are spheres. O

This proves the equivalence between (i) and (ii) in Theorem 1.87.

1.5.3 Solutions with a Diameter Bound

Huisken and Sinestrari first show that a growth bound of the order O(v/) on the diameter
of the solution gives us control over the variation of the curvature at any fixed time.

Lemma 1.97 (Lemma 4.1 [68]). Let M; with t € (—00,0) be a closed, convex ancient
solution of the mean curvature flow. Then the following are equivalent:

(i) There exists a constant C1 > 0 such that
diam(M;) < C1(1 4+ v/—t) (1.98)
orallt < 0.
(i1) There exist constants C',C" > 0 such that

O/ C’//
<H<
V=t~ T V=i

(1.99)

on My for allt < 0.

Lemma 1.100. Integrating 1.85 we obtain the following classical type Harnack inequality:

diam3(M;, ))

) (1.101)

H(p1,t1) < H(pa, ta2)exp (

for any p1,p2 and t1 <ty <O0.
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A derivation of this result can be found in the appendix 5.15.
First we show that (i) implies (ii). Observe that property (1.81) tells us that the intrinsic
diameter of our surfaces satisfies
diamj(./\/lt) S 7Tp+(Mt)
Tw (§2)

< T
= C’l%(l +V) (1.102)

for all ¢t < 0. Moreover we also have

diamz(M;) < ev/—t (1.103)

for all ¢ < 0 and a suitable constant ¢ > 0. In fact, for ¢ close to zero this follows from the
convergence of M; to a round point, whilst away from zero it follows from (1.102).

Now for any ¢ < 0 we apply Lemma 1.101 together with equation (1.103), with ¢; = ¢
and t9 = % to obtain

<2 t
Hmax(t) § €2 Hmin 5 .

Using Hpin < \gt we obtain

o
N‘N

n
Hmaxge' 7

Now we can apply Hpyax > \/%Qt and replacing ¢ by 2t we obtain

2

Hoin(t) > €72 Hpax (21)

for all ¢t < 0.

The above inequalities imply (1.99).

Suppose now instead that (1.99) holds. Since M; shrinks to a point as t — 0, we find a
pair of points p,q € M; such that

0 0
IF(p,t)—F(q,t)IS/t H(p7T)dT+/t H(q,T)dr

0
dr
§2C"/
e

— 4"V

which implies (1.98).

Before we move onto the next part we state the Cheeger-Gromov convergence theorem
and definition [51]. This is a notion of convergence for Riemannian manifolds stronger than
Gromov-Hausdorff convergence. It will be used to prove Theorem 1.106.
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Definition 1.104. A sequence (M, g;) of closed Riemannian manifolds Cheeger-Gromov
converges to a closed Riemannian manifold (M,g) with regularity C*< if there erists a
sequence of diffeomorphisms ¢; : M — M, such that ¢}g; — g in CF.

Theorem 1.105 (Cheeger-Gromov Compactness Theorem). If (M;,g;) is a sequence of
closed Riemannian manifolds with uniform bounds

|sec(M;)] < K Vol(M, g;) <V and diam(M, g;) < D

for constants K,V and D > 0. Then there exists a subsequence (M, ,g:,) that Cheeger-
Gromov converges to a closed Riemannian manifold (M, g).

Theorem 1.106 (Theorem 4.2 [68]). Let My, with t € (—0,0) be a closed convex ancient
solution of the mean curvature flow satisfying (1.98) or (1.99). Then M; is a family of
shrinking spheres.

Proof. Argue by contradiction that (1.88) does not hold.. In general for a contradiction, we
take a sequence, rescale the singularity and look for what goes wrong.

Since (1.88) does not hold, then there exists a sequence of points and times {(p, tx)},
with ¢, — —oo and

(Al(pkvtk)

— 0 as k — oo.
H(pkatk)>

1

Vit

in time, we obtain a sequence of flows defined for ¢ € [—2,—1]. The previous Lemma

Considering the flow M; for ¢t € [2t;, tx] and rescaling it by a factor of

in space and

1
tr
éu;rantees curvature and diameter bounds from above and below, whilst results from [29]
guarantee bounds on all derivatives of the curvature for ¢t € [f%, —1]. This limit solution is
convex and compact but contains a point Ay = 0 at £ = —1. Using Lemma 5.8, we see that
the limit solution must split containing a flat factor (i.e. an infinite cylinder), contradicting
the diameter bound. Therefore the original solution M, must satisfy (1.88) and we obtain
the result from Theorem 1.96. O

Corollary 1.107 (Corollary 4.3 [68]). If our ancient solution My satisfies either of the two
properties

p+ (M) <Cp_ (M) V<0
Hmax S CHmin V t < 0
for a constant C > 0, then My is a family of shrinking spheres.
Proof. Starting with (1.81) we see that

diam(M;) < mpy (My)
< Crp_(M;) (using our current hypothesis)

< Crn(v—2nt) by (1.84)
this gives us our diameter bound as in (1.98).

Whilst our second assumption on the mean curvature, implies that (1.99) holds. There-
fore for both cases we obtain our conclusion using the previous theorem. O
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Recall that M satisfies a uniform reverse isoperimetric estimate if there exists a constant
C > 0 such that

M "< Ol (1.108)

for all t < 0. Where |M;| and |€2| denote the n and n+1-dimensional measure of M; and €,
respectively. This constant C' will be greater than the optimal constant in the isoperimetric
inequality achieved by the sphere. The following lemma will show that such an assumption
implies a uniform bound on the ratio between the outer and inner radius.

Lemma 1.109 (Lemma 4.4 [68]). Let M; C R"*! be a closed convex n-dimensional hyper-
surface. Then for any n > 1 and C1 > 0 there exists a constant Co > 1 depending on C
and n such that

IM[" < il

where § is the region enclosed by M. Then the outer and inner radius p4 and p_ satisfy
the following inequality

P+ <.

Proof. Without loss of generality we can assume that the direction achieving minimal width
w_(M) is in the 2,41 axis, and we denote by 3 the orthogonal projection of M onto the
{Zn+1 = 0} hyperplane and |X| its n-dimensional measure. Then we can estimate

] < w (M) and [M] > %]
= 3] < Crw_(M)™ (1.110)

Moreover if p and ¢ are any two points in M and p’,q’ are their projections onto the
{Zn+1 = 0}-hyperplane, then by Pythagoras’ Theorem we know that

p—al <P = d|+w-(M).
Moreover recalling that wy (Q) = diam(Q) tells us that
diam(X) > diam(M) —w_(M) =wy —w_. (1.111)
In the case n = 1, diam(X) = |X| and hence (1.110) and (1.111) give,
wi (M) < (C1 + Dw- (M)

which by (1.80) obtains the result.

In the case that n > 1, we take an (n + 1)-dimensional ball By of radius p_ (M) C Q
and let By C X be its projection onto the {x,,11 = 0}-hyperplane with p; € ¥ its centre.
Then there exists some point p; € ¥ such that |p; — pi| > diam(X)/2.

Intersecting By through p; orthogonal to the direction ps — p; we obtain the (n — 1)-
dimensional ball of radius p_ (M)

By ={pe€ B |{p—pi,p2 —p1) =0}.

Now py € ¥ and By C X, moreover it is convex and contains the cone K with basis Bs,
vertex py and height |ps — p1| > diam(X)/2.
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Therefore

diam (X)wy, -1

) > K] >
2n

p— (M)

where wy,_1 is the volume of the unit (n — 1)-dim ball. Applying (1.80) and (1.111) we can

deduce

1w (M) (w0 (M) = w_ (M)
2n(n + 2)7—1

=) > = Koo (M) (@ (M) — w_ (M)

where k,, is a constant which depends only on n. Applying (1.110) we obtain
Cro— (M) > iy (wi (M) = w_ (M)

which yields

Wi (M) < (1 + fi) w_(M).

Applying (1.80) we obtain the desired result. O

Corollary 1.112 (Corollary 4.5 [68]). Suppose that there exists a constant C > 0 such that
the uniform reverse isoperimetric estimate (1.108) holds. Then My is a family of shrinking
spheres.

Proof. Combine Corollary (1.107) with Lemma (1.109). O

To conclude this Chapter we define a type I singularity for ancient solutions to mean
curvature flow and show that closed convex solutions must be a family of shrinking spheres.

Definition 1.113. An ancient solution to the mean curvature flow is of type I, if there exist
constants C' > 0 and Ty < 0 such that

Hypax H(,1) < ——= (1.114)

for all t < Ty.

Proposition 1.115 (Proposition 4.6 [68]). A closed convex ancient solution of the mean
curvature flow of type I is a family of shrinking spheres.

Proof. The results from Section 1.1 imply that (1.114) also holds for ¢ € [Ty, 0). Arguing as
in Lemma 1.100 we can obtain that a type I solution satisfies the estimates of Lemma 1.100
and so we can conclude using Theorem 1.106. O
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1.6 Mean Curvature Flow for Convex Hypersurfaces in
Riemannian Manifolds

1.6.1 Preliminaries

We will look at at summarise the results from Huisken’s paper [59] in which he takes the
next natural step and studies compact, convex, hypersurfaces M", n > 2 without boundary,
which are smoothly immersed in a Riemannian manifold AN™t!. Let M™ = M, be given
locally by some diffeomorphism

Fyo:UCR"™ = Fy(U) € Mo c N

As before we move Mg by its mean curvature vector so that it satisfies equation 1.1.

However we will need to impose certain conditions on our ambient manifold At as
it may interfere with the motion of our surfaces M;. By imposing these conditions we are
able to prove a Theorem similar to Theorem 1.13.

Let Rm = {Ragws} and VRm = {V,Rup,5} denote the curvature tensor of N and
its covariant derivative. Moreover o, (P) denotes the sectional curvature of a 2-plane P at
x € N and i,(N) denotes the injectivity radius of N at x.

Theorem 1.116 (Theorem 1.1 [59]). Letn > 2 and N1 be a smooth complete Riemannian
manifold without boundary which satisfies uniform bounds

7K1 S(fx(P)SKQ Kl,KQZO (1117)
IVRm]*<L?* L>0 (1.118)
iz (N) > (W) > 0. (1.119)

Let My be a compact connected hypersurface without boundary which is smoothly immersed
in N, and suppose that it satisfies the following pinching condition

n2
H
Then 1.1 has a smooth solution My on a finite time interval 0 < t < T and the M;’s
converge uniformly to a single point O ast — T.

Hhij > nKlgij + Lgij. (1120)

Remark 1.121.

(i) (1.120) does not depend on K, so positive sectional curvature in the ambient Rieman-
nian manifold works to contract under the flow, whereas negative sectional curvature
will slow down the contraction. If N is locally symmetric (V Rm = 0) then L = 0

1
and condition (1.120) is satisfied if the principal curvatures are bigger than K2 . If in
addition the sectional curvature in the ambient manifold is nonnegative, then Theorem
1.116 is identical to Theorem 1.183.

(i) Condition (1.120) implies that
H>nK;. (1.122)

We state without proof the following lemmas.
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Lemma 1.123 (Lemma 2.1 [59]). The following identities hold true.
(i) Ahij = ViV;H + HhyHj — |A*hij + HRowj — hij Ry’ + hjr R, ™
+ha R, ;™ = 2hm RY™ 5 + V Ryt 4+ ViR,
(i) 3AJAP = (hij, ViViH) + VAP + H(hixhfh'") — |AP + Hh Ry
—|APRy + 207 by R, ™ — 2R hlleimj + h(V; Ry, + ViRy;!).
Proof. This is just an extension of Simon’s identity as seen in Lemma 1.7. O

We will also need an extension of Lemma 1.17. We introduce the quantity {w;}, the
vector with components w; = ROlil7 w is the projection of Ric(v,-) on M.

Lemma 1.124 (Lemma 2.2 [59]). For any n > 0 we have the following inequalities
(i) VAP > (325 =) IVHP = 325 (2507 = 32 ) Wl

(ii) VA2 — VHE

n

n—1 2n
2n+1 |VA|2 T (n—D)(2n+1) |OJ‘2

>
> =L |VA? - C(n, K1, Ka).

Proof. To prove (i) we decompose the tensor VA = {V;h;, = E;;i + F;ji} where

1 2
Eijy = ——(ViHgx + V;Hg; Hgij) — —————wig,
it = g (ViHgin + ViHga + ViHgy) = mye—y«idin
n
T T (s et )

Then E;;;, has the same trace as V;h;;, due to the Codazzi equations and <Eijk, Fijk> =0.
Moreover the definition of E;;; implies that

3
——|VH* +

Ef?
n+2

2n 9 4
W 5w, Vil
mrmon @l TR Vi)

3 2 n 2
> _ HI? _ -1 2
(n+2 77)|V | +n—|—2<n—1 nt2! >|w|

this proves part (i). Part (ii) follows from the first inequality with n = Z((Z:_;)) O

In a general Riemannian manifold N"*! we take the indices a, p, o to refer to a local
coordinate system y®. Then we can express the Gauss-Weingarten equations as follows

OPF* L OF® . OFF9F°

— Tk = —hv®
8xi31’j K axk po axl 8:1:j J
O OFP L 0F (1.125)
87]' + pUaTj’U = hjig %
and the evolution equation (1.1) becomes
0 ra
—F%x,t) = —H(x,t)v(z,t)
ot (1.126)
OFP OF° . :
= A F(x,t) + < o -— ”) (x,1)
P7 Qx; Ox;j

54



Lemma 1.127 (Lemma 3.1 [59]). If the initial surface My is smooth, then (1.126) has a
smooth solution on some mazximal open time interval 0 <t <T < co.

Proof. Since this is a quasi linear parabolic system we can obtain a smooth solution on at
least some short time interval. O

Since (1.126) is parabolic, we are able to obtain an avoidance principle for mean curvature
flow which describes how two surfaces moving by their mean curvature will not overtake
each other.

Lemma 1.128 (Lemma 3.2 [59]).

(i) Let My, and Ma, be two smooth closed surfaces moving by their mean curvature for
0<t<ty. If My and My are disjoint for t = 0, they remain disjoint on the whole
mterval 0 <t < ty.

(i) If M1, is embedded for t =0, then it remains so for 0 <t < ;.

Proof. We argue by contradiction and assume that the surfaces M7 and M are intersecting
at some time t, 0 < ¢t < t;. This implies that there exists a time tg at which the surfaces first
touched at some point p € A/. Let S be a fixed reference surface with the property that it is
tangential to both M ;, and M3, at p and assume that we have Gaussian coordinates in
a neighbourhood of S, i.e. y°(q) is the length of the geodesic arc perpendicular to S through
q and y'(q) = z;(q) are the coordinates of the base point of the geodesic in S.

Then locally around p we can write M; ; and My, for t € (to — €,t9 + €) as graphs of
functions wu; (¢) and ug(t) on S.

The unit normal to M;, i = 1,2 is then given by

1 0 -0
o 1 12) 3 . .
vi = (14 |Viu|?) <1, (%Cluz,..., 51‘””1)

with wu; satisfying the evolution equation

1
%'LLZ’ = — (1 + |Vui\2)_§ IT[Z (1129)
At the point (p, tg) we have that Vu; = Vug = 0, which makes (1.129) a uniformly parabolic
equation in some small neighbourhood (p,ty). Without loss of generality we assume that
uy(t) > ua(t) for t < tg, however by applying the strong parabolic principle this leads us to
a contradiction. Since w; is more convex and should be moving faster, this would contradict
to being the first time that they touched.

The proof for the second part of the lemma is similar. O

1.6.2 Evolution Equations

Now as in Section 1.1 we’ll need to obtain evolution equations for mean curvature flow in
this more complex setting. We assume that at (zo,?o) we have g;; = d;; and that the normal
coordinates ¥y, 0 < o < n for A/ are normal coordinates at F(xq,to). Moreover they are
chosen such that v = —§§ and % = 65*. They have been chosen in such a way so that all
Christoffel symbols of the connection I' will vanish at F(x, tg) and leave only the derivatives
of the Christoffel symbols which will lead to curvature terms appearing along the way.
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Lemma 1.130. We have the following evolution equations,
(i) 5:9i; = —2Hhi;.
(ii) S = —H?puy.
(iii) Lv=VH.
(iv) Shij = Ahij = 2Hhyhls + |APh; + hi_jROlOl - h_ﬂleim
= ha R+ 20 R = VRt — ViR,
(v) £H = AH + H(|A> + Ric(v, nu)).
(vi) Z|Al> = AJA]> — 2|VA]2 +2|A]? (|[VAJ? — Ric(v,v))
— 4(hijh§”Rm”l — hiptmR
= 2h% (ijOh'l + vl]'_zoz'jl)

milj)

(vii) 2 (|A\2 - HT) —A(JA? - 1H?) —2 (|VA\2 - @)
42 (|A|2 - HT) (A2 + Ric(v, nu))
— 209 (ViRy! + ViRy,;') — AW R, — W7 R R, ).
where Ric(v,v) = Ry,
Proof. (i) Similar to the Euclidean Case.
(ii) Follows from part (i).
(iii) Similar to the Euclidean Case.

(iv) From (1.126) and (1.125) we derive

0 /0 (= OF /= OF ov
(C)thij:_g<8t(vgzaxi’>’y>_g<vgi%’(%>'

Since we are using normal coordinates the last term vanishes, since % is tangential

and the spatial derivative is normal. So

Oy [0 (PF g OFPOFY O
ot = "IN\ ot \om0x; T P 0wy 0y 0y~ )Y

Since f‘gy terms vanish, we only need to look at the derivatives.
0 _/0*(—Hv) 0, OFPOFY 0
Shii=—9 55—t 5— 55"
ot O0x;0x; ot Ox; Oxj Oy“
0?(—Hv) __OFPOFY 9
=g(—————-HV,[j —_—,
g< 0z;0z; P dx; dxj Oy~ V>

At the point (zg,to) the Weingarten equation gives us

0% b OF«

(‘)xi * (’)xj
&?ve  OhY 9F° Y Y ) o
Or;0x;  Ox; Oxy I 90y, ox; Ox;

and
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With (81, ,v)y=0and v = O‘ai Therefore,

0% % OF# 0
g — W —g pa O e 9 LN
g<6:ci3xj’y> hili g<V 5P oy 8ya’y>

Expanding yields,

0 O’H OFP oFY _— ., OFF 0
By N — Hhi hF — re g v
8thl] axlaxj hlkh] <<v By axl 8.TJ Vaafi B 8Zj v ) 7l/>

(2, v ) 2 OE0E
“I\\ Gy BT Vs ") ow; ox;

This matches the definition of the Riemann curvature tensor, Ra 86
R, . . Therefore

injn

« OFP OFY 5§
Ve oa; d:c]V -

0 _
¢ his = ViViH + Hhahl; + HRoyo;.
and the result follow from Lemma 1.123.

gtH <§t > hij + g% (gthij)
= QHQHhslgl]th +g (V ViH — Hh; lhl + HROlO])
=2|A’H + AH — |A]PH + g% (HRy,;)
CARH £ AH AP + ()
= 2|A|’H + AH — |A]>H + HRic(v,v).

o ap=o
t

(gikgjlhijhkl)

—4Hg”” 1 G D it + 29 g7 by (A — 2Hhﬂh§)
+ |APhij + hij Ry — huR™,,™ — ha B!
+ 2hm R = Vi Ry — ViR,

=A|A]? — 2|VA[® +2|A]? (\A|2 + Ric(v, 1/))
+2¢" g by (—hj R ™ — ha R ™ + 2him RE™; — Vi Ry, — ViRg,j))

=A|A]? = 2|VA]® + 2|4 (JA]* + Ric(v,v))
— 4(hY B R, — W R, )

— 21" (V;Ro + ViR, .

m ]

(vii) Combination of the above identities.
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1.6.3 A Lower Bound for the Eigenvalues of A

Here we show that (1.120) and (1.122) are preserved under the flow. In view of (1.120) there
exists some €1, €5 > 0 such that

H? > n?K, + ne, H? (1.131)
2
n
Hhij > nKlgij + ﬁLgij + €1(H2 — nQL)gij (1132)

hold on M. Since |A|? > HTQ and Ric(v,nu) = Ry,,' > —nK; we can obtain that

%H = AH + H|A]? + Ric(v, nu)

H2
ZAH—I—H(—RKl)
n

>AH+H (Tll(nQKl + neg H?) — nK1>
> AH + e H?
Therefore by the maximum principle we know that Hy,i,(0) is increasing. So
H? —n*K; > e;H?
on My. Therefore by the above we know that
(1—e)H? > n’K,

for 0 <t < T since H is increasing. So it remains true under the flow.
In view of this we obtain the follow lemma.

Lemma 1.133 (Lemma 4.1

_—

59]). If (1.181) holds on My, then it remains true on M, for
-1

0<t<T and we have T' < 3¢, H5,(0).
Proof.
aI—Imin
3 Z 8t€2
1 -2
— g = 22t — Hi, (0)
H< ! .
262T - H;?n(o)

Now we derive a lower bound for the eigenvalues of | A|.

Theorem 1.134 (Theorem 4.2 [59]). If for some 0 < €1 < % the inequality

hij n(l —ney) n?
Hhi; > # —€9ii — — gz K195 — gl

is valid of My, then it remains true for My, 0 <t <T.
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Proof. We show that all eigenvalues of

hij n(l — nep)
H T g
remain nonnegative. First of all we need an evolution equation for M;;. Using Lemma 1.130
(iili) and (v), we obtain

2
n

0 1 ! J—
aﬁ = _Ha—‘rl (AH+H(|A| +R1C(V7l/)))
—aAH @ —
= ot ﬁ(|A|2 + Ric(v,v))).
Moreover we have the following identities

1 -

V (m> = —inl‘[ (1136)
1 « ala+1) 5

We will derive the second of these estimates later in this Section. Rearranging and substi-
tuting into the above gives,

a1 1 ala+1) 5 P—
% =A (H"‘>_ fa+? |VH] —HQ(\A| + Ric(v, v))

=A (;J + % <le, v (;a)> by (1.136)
1

Ha+2
We can derive as in Section 1.2.2. of this chapter that

9
ot

—afa—1) IVH? - % (JA]? + Ric(v, v)) by (1.137).

2
M;; = AM;; + E<VZH’ ViMij) + Nij.

with
2n(1 — ney) 2n2

Nij = 72h7lh,§ + 261Hh1'j +
2n(1 — neyp)
T

1 — — — l = 5 , = 5
+ 5 (2himR,™; — by R™ — ha R, ™) — = (ViRo' + ViR,

2n(1 — ne 3n? =
+ (( 7z 1)K1 + H3L> (JAJ* + Ric(v, nuw)) gs5.

2 6n° 2

And we can continue the argument as in Section 1.2.2. of this Chapter or as stated in
[48] Theorem 9.1. Since Rm is smooth then the argument still holds. We are only required
to check that N;;v'v? is nonnegative the first time ¢, where at some point p € My a zero
eigenvector v = {v'} occurs. Choosing an orthonormal basis (e1,...,e,) for T, M, such
that h;; becomes diagonal. Let us assume that v = e;. Then from M;; = 0 it follows that

n(l— nel)Kl N an

)\1 = 61H + H H2

L. (1.138)
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Since M1; = 0 we can use (1.135) to obtain

At hn n(l — nep) n?
7wt T tn T gmhn

= (1.138).

We wish to obtain a better expression for N;;. We will do this using the following identities,

1

E(2hllelm1 - hlllelm - hlllelm)
1 _ _ _
:E(thRlll1 +2hoo R22 + -+ 2k RY, ™)
UL 2
= Ruu()\l )‘l)ﬁ
1=2
2 < . . .
> — Klﬁ Z()\l — A1) since A; is the smallest eigenvalue
1=2
2
= — KIEAI(H — ’I’L/\l)

2n n(l — neyp) n?
=—-2K K, — H+ ——K, + =L
1A1 + 1H)\1 (61 + 1% 1+H2

Using |A|? > HTQ and Ric(v,nu) > —nK; we got
2n(1 — neq) 3n? H?
<H2K1 Tt e e

lastly using |VoRgqs0| < L,

1 _ _ 2
—ﬁ (V1R011 + ROlll) Z _EL

Also applying the identity from Lemma 1.133 we obtain our final expression for N;;,

i j n n3
Nz‘j’UU =N11 ZEL—ﬁLKl 20
This completes the proof. O
1.6.4 The Pinching Estimate

Just as in Section 3 of the previous Chapter, we want to show that the eigenvalues of the
second fundamental form approach each other as the mean curvature gets very large.

Theorem 1.139 (Theorem 5.1 [59]). There exist constants 6 > 0 and Cy < 0o depending
only on Mo and our curvature bounds Ky, Ko, L and i(N) such that

H2
|A|2 - < COHQ—(S
n

holds on 0 <t < T.
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The proof for this is very similar to the calculation in Section 1.4 and Section 5 of [58].
We outline some extra remarks needed for this computation that were not present in the
previous section. For full details please refer to Section 5 of [59].

Lemma 1.140. We have the following identity,
h (V; Ry + leOijl) =ho (vjﬁoul + leOijl) )
where h?J = h;j — %gij is the traceless second fundamental form.

Proof. We take the trace of both sides and check that it is zero. This is clear for the right
hand side. For the left hand side we have

ﬁJ‘Rom + ﬁlRom = ijOljl + vJ'R(:)llj
= ijoljl - VjROZjl'

Lemma 1.141.

1 4

§A\A|2 > (hij, ViV;H) + H (hyhfhY) — |A|* + |VA]> = CH? - C
where C' is a constant depending on n, K1, Ky and L.

Proof. Recall the following identity from (ii) Lemma 1.123
1 . o
S AP =(hij, ViV H) + VAP + H(highth'") = |AP? + HRY Ry,
- |A|2R010l + thjhlelmim - thjhllez‘mj + h¥ (ijOlil + leOijl)'

Then we just need to look at the negative terms. Also remember that our curvature bound
implies a sectional bound which gives us a tensor bound.
Then we just use the following algebraic manipulation

M+-+A)=H
M+C)+ -+ (A +C)=H+nC
using A+ + A2 =A< C+CH?
This completes the proof. ]

Lastly we will require a Sobolev inequality derived by Hoffman and Spruck from [57],
for submanifolds of Riemannian manifolds. This is where our injectivity radius condition is
required.

Lemma 1.142 (Lemma 5.7 [59]). Let v be a Lipchitz function of M. Moreover take « to
be a free parameter, 0 < a < 1, wy, to be the volume of the unit ball and

po = Ky "arcsin(Ka(1 — @)% (w, *suppo) ™).

n—1
(/ |v|nn1du> <C, </ \Vv|du+/ H|v|du> ,
Mt Mt Mt

if K2(1— o)~ (wy|supp o) & < 1. and 2py < i(N). With

Then

1 — 1 n -1
C, =7m2" o 1(1704) nn_lwn”.
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1.6.5 The Gradient Bound

The same gradient estimate for the mean curvature as in the Section 1.1.4 is also valid in
this context.

Theorem 1.143 (Theorem 6.1 [59]). For any n > 0 there exists a constant C, < o0
depending on n,Cy,§, Mgy, K1, Ko,n and L such that

\VH|> <nH* + C,,.
We will require the following lemma.
Lemma 1.144. We have the following identities
(i) A(ViH) =V (AH) + ¢V, H(Hhij — hinjg™ " hn + Ricn)-
(ii) Vi(Ric(v,v)) = V; Ryl + 2R, hi".

Proof. (i) We will make use of the following identities V;V;T}, — V;V,; T}, = Rlijka and
Rik)jl = Rikjl + hijhkl - hilhkj~ Then we have

A(ViH) = ¢V, V;ViH = ¢V ,;V,VH
=g"(VyV,V;H) + ginlikjle)
= Vi(AH) + g7 g"V H (hijhin — hinhis + Rigj)
= Vi(AH) + ¢""V H(Hhgn — hing”? hi; + Ry,,)-

(ii) We know that
V;(Ric(v,v)) = ViRyo' + 2Ric(Viv, v).

Now (V,v, gTF) = h;j let

OF

l l

ViV = aii@xl = aigjl = hij
= al = by g,

Therefore V,;v = hijgjm(%—Fm and the result follows.

O
Lemma 1.145 (Lemma 6.2 [59]). We have the evolution equation
0
&\VH\Q =A|VH|? - 2|V2H|? + 2|AP|VH> + 2(V;Hhpnj, V;Hhip,)
+2H(V;H,V;|A]®) + 2Ric(v,v)|VH|* = 2R, ;V'HV'H
+2H(V;Ryy, ViH) + 4H(R, ,;0,h", Vi H).
Proof. Since
0 0, i
—|VH|? = = (¢"V;HV,;H).
we can use the evolution equations for g% and H to obtain the result. O
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Corollary 1.146 (Corollary 6.3 [59]). We have the estimate

%NHP <A|VH> = 2|V2H|* + 6|AP|VH|* + 2H(V,H, V;|A]?)
+C|VH* + CH?
where C' depends on K1, Ko and L.
Proof. We apply the following bounds to the previous lemma,
2(ViHhmj, ViHhin) < 2|A?|VH|?
2Ric(v,v)|VH* < C|VH|?
2R, V'HV'H < C|VH|?
2H(V;Ry,!, ViH) < C|VH|H
AH (R, o' h" V H) < AHhV H
< 4H? +4|AP|VH|.

Lemma 1.147 (Lemma 6.4 [59]). We have
(i) £H3 > AH® — 6H|VH|? + 3e2H®

(ii) 2 (H (|A|2 - HT)) <A (H (|A|2 - HT)) — 2L H|VAP?
+Co| VAP + Gy H® + 3|APH (|4 - 22)
Proof. (i) Using
%HS = AH? — 6H|VH|* + 3H? (|A]> + Ric(v,v))

and the fact that |A|? > HTZ the first inequality holds due to Lemma 1.133.
(i)
0 , H? - 9 = , H?
o <H (|A - n)) f(AHqL H (JA]? + Ric(v, y))) AP - =
2 2
+ H(A (|A|2 - H) 2 <|VA|2 - 'VH|>
n n
H? —
+ 2 <|A2 — n> (|A|2 =+ RiC(V, 1/))

— 217 (V;Roy' + ViRoy') — 4 (VR Ry = hR™ Ryp) >

It is clear that the first part
2 2
<A (H (|A|2 - H)) -2 <|V|A|2 - |VH|> H
n n
H2
—2 <VZ-H7 \Z <A|2 - )>
n
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where the last term is a consequence of the Laplacian. o s
The rest is then bounded by CH?3, since we have a bound on Ric, R and VR. All we
need is a bound on the second fundamental form, the h;;’s. That we have since

H2
|A|2 S 7+0H2—U
n
H2
<—+C+H?
n
H2
— +CH?
n

IN

since H has a lower bound.
So we can obtain that

2 2 2
0o 2)) 2 oo 2)) s -2
ot n n n
2 2
- 2wur, v (1 - D)y aapa (1ap - )

+ CH?.

where C' depends on K1, Ky, L and H_

min

H2
‘<V¢H7 Vi <|A|2 - n)>‘ = 2|(V;Hhy;, Vihi)|

< 2[VH||hy, ||V A]

! (0). Using Theorem 1.139 we can estimate

1
< 2nC2Hl—%|VA|2
n —

< .MVAP+CWAP
2n + 1

where C' depends on n,Cy and § and we have applied the following
H2
n
= Y, <nCPH-3
and  [VH| = V|g7hij| = g7 Vhi; < |97]|Vhij| < n|VAP.

[hRl* = AP ~

Now the result follows as a direct consequence of Lemma 1.124 (ii). O

Now we study the function
H|? H?
f= WH' +P (|A|2 ) + PCy| AP —nH®
where P depending only on A is large and C4 > 0 depends on Ky, K5,l and Cy. Using
Corollary 1.146, Lemma 1.147 and Lemma 1.130(vi) we obtain that

af
at =

where C' depends on n, Mg, Cg, d, K1, K,1 and €. This proves Theorem 1.143.

<Af+C
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1.6.6 Contraction to a Point

Here we follow as in Section 7 of [59]. Let 0 < ¢ < T be the maximal time interval where
the smooth solution of (1.126) exists.
Then we have the following Theorem.

Theorem 1.148 (Theorem 7.1 [59]). The quantity maxuy, |A|? becomes unbounded as t —
T.

Proof. Argue by contradiction assuming that there exists some constant C5 such that

max |A|? < Cs.
My

For more details refer to Theorem 7.1 in [59]. O

We will also require a lower bound for the intrinsic Ricci curvature R;; of the surfaces

M.
Lemma 1.149 (Lemma 7.3 [59]). The intrinsic Ricci curvature R;j of My satisfies
Rij > (n— 1)€1€2H29ij.
Proof. The Ricci curvature on M is given by the Gauss equation
Rij = Ry' + Hhij + haht.

Suppose that R;; is diagonal at the point of consideration, then le is the sum of (n — 1)
sectional curvatures and therefore larger than —(n — 1) K.

Any eigenvalue of Hh;; — hilhé is larger than (n;I)AlH, but we know from (1.120),
(1.131) and (1.132) that

H)\l 2 61(712K1 + HEQHZ) -+ nKl — 71261K1
and so the result follows. O

Theorem 1.150 (Theorem 7.4 [59]). Zmax 1 g5t — T.

min

Proof. Arguing as in the previous Chapter, combining Theorem 1.143, Theorem 1.148 and
Lemma 1.149. O

Using Theorem 1.148 it follows that Hyax and Hpyi, tend to co as ¢ — T and so the
diameter of My tends to zero. Since the injectivity radius is bounded from below we know
that there exists some § < T such that My C B,(p) = {q € N|dist(p,q) < p} where p is
small compared to the injectivity radius and (K; + K3) L.

The elliptic maximum principle then ensures that the M,’s stay in B,(p) for all <t <
T. As Hyi;n — oo as t — T, Theorem 1.139 ensures that the principal curvatures approach
the same value. Therefore for ¢ close to T, M; is an embedded sphere bounding a convex
region. For to > t; > 0 the region M., is enclosed by My, since the surfaces are shrinking
under the flow and so the M,’s shrink to a single point as t — T.
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Chapter 2

Mean Curvature Flow for
Two-Convex Hypersurfaces

In this chapter we take the next step and consider what happens if we loosen our convexity
assumption. Here we will require that our initial surface is 2-convex rather than strictly
convex. This means that A\; + Ay > agH for some ag > 0.

2.1 Mean Curvature Flow with Surgeries of Two-Convex
Hypersurfaces

The results and proofs of this section originate from [67], when we use results from elsewhere
this will be explicitly stated.

The two-convexity assumption presents a new challenge as Huisken and Sinestrari had
to develop a surgery procedure for mean curvature flow [67], similar to that which Hamilton
developed for Ricci flow in [49] and [45]. The focus was to be able to continue the flow
past the first singular time 7' in a way that would allow us to keep track of the topological
changes that occur and allow us to classify all possible geometries for the initial manifold.
This is in contrast to weak solutions which succeeded in continuing the flow but did not
yield a classification result, refer to [14], [19],[1] and [36]. To do this a surgery procedure is
constructed and the flow is restarted after our first singular time.The surgery is controlled
in terms of a few parameters which depend only on our initial manifold M . Huisken and
Sinestrari then went on to show that this procedure will terminate after finitely many steps
after all components are recognised as being diffeomorphic to copies of S™ or 7! x S'.

The main result of Huisken and Sinestrari’s paper is as follows.

Theorem 2.1 (Theorem 1.1 and Corollary 1.2 [67]). Let n > 3 and Fy : M — R"*! ¢
smooth immersion of a closed, 2-convex n-dimensional hypersurface. Then there exists a
mean curvature flow with surgeries starting from Mg which terminates after a finite number

of steps. Moreover any such initial surface My is diffeomorphic to S™ or a finite connected
sum of S*1 x SL.
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2.1.1 Preliminaries
We begin this section by stating some results which are unique to the 2-convex setting.

Lemma 2.2 (Lemma 2.3 [67]). Let M be a smooth n-dimensional hypersurface such that
51,82, ..., Sy > 0, where Sy, is defined in Section 1.1.4. Then A\y + Ao > 0.

Proof. Argue by induction. O

Although the following definition may not be immediately intuitive it is required in order
to study the flow in the 2-convex case. These classes of surfaces are controlled by a few
parameters which remain invariant under the flow and surgery construction.

Definition 2.3. For a positive set of constants R, g, a1,y we denote by C(R,«) with
a = (ag, a1, az) the class of all smooth and closed hypersurface immersions F : M — R"+1
satisfying the estimates

(’L) A+ A > agH
(ZZ) H > OqR_l
(iii) | M| < azR"

R is our scaling parameter and makes « scaling invariant. R is chosen such that |A|? <
R~? on the initial surface M. This is only required on the initial surface as this property
will not be preserved by the flow.

Proposition 2.4 (Proposition 2.6 [67]).

(i) Given any smooth, closed, weakly 2-convexr hypersurface immersion My, the solutions
M of mean curvature flow is strictly convex for each t > 0.

(i) For every strictly 2-convex, smooth closed hypersurface M we can choose R and «
such that M € C(R,«) and |A]?> < R™2 everywhere on M.

(i1i) Each class M € C(R, «) is invariant under smooth mean curvature flow.

Proof. For a full proof refer to Proposition 2.6 of [67]. To prove (i) we use the maximum
principle for tensors found in Section 5.1.3. looking at the evolution equation for the compo-
nents i) of the Weingarten operator. To prove (ii) define sup |A|?> < R~2 then the existence
of a’s follows from compactness of M. The last part follows from evolution equations for
dp and H found in Lemma 1.18. O

To be able to extend the flow past a singular time for two-convex hypersurfaces, we
introduce the mean curvature flow with surgeries algorithm. The idea is to combine mean
curvature flow with surgeries like Hamilton did for Ricci flow in [49]. Huisken and Sinestrari
describe the process as follows:

[Section 2, [67]] Mean curvature flow with surgeries algorithm
Mean curvature flow with surgeries is determined by an algorithm that assigns to each initial
smooth closed two-convex hypersurface immersion Fp : M — R™*! in some class C(R, ) a
sequence of intervals [Ty, Th], [T1, T2], ..., Tn—1, T'v, & sequence of manifolds M;, 1 <i < N
and a sequence of smooth mean curvature flows FY : M; — R"*1 ¢ € [T;_1,T;] such that
the following is true:
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(i) The initial hypersurface for the family F! is given by Fy: M; — R+

(ii) The initial hypersurface for the flow Fj : M; — R"™' n [T;_1,T;] for 2 < i < N is
obtained from F}:}l by the following 2-step procedure:

ypersurface Fi- ! is obtained from Fi b : M;_; — y standard surgery,
1) Ah face F; ", is obtained from Fj. ' : M R"™*! by standard
replacing finitely many necks with disjoint spherical caps.

(2) Finitely many disconnected components are removed from the surface Fii, | that
are recognised as being diffeomorphic to S" or §*~! x S, resulting in Fj, on
[T;—1, T3]

2.1.2 Necks and Surgery

In order to do surgery on a neck it will be essential for us to be able to detect necks in the
first place. To do this we introduce the notion of a curvature neck and a geometric neck. A
curvature neck is a region with intrinsic curvature resembling that of a cylinder. It relates
to the pointwise nature of curvature. By contrast a geometric neck has an actual cylindrical
parametrisation with metric close to standard cylinder. In [49] Hamilton showed these two
are essentially the same. A large enough curvature neck possesses a suitable subset with
can be parametrised as a geometric neck. This is discussed in more detail in the appendix
5.3.

This is important, in order to perform surgery on necks for two-convex surfaces under-
going mean curvature flow we need both notions of a neck. In order to detect necks we
will require a priori estimates on curvature quantities satisfied by solutions to the flow, so
curvature necks are required. However, in order to perform surgery we will need regions
which are diffeomorphic to a cylinder and so geometric necks are required.

Definition 2.5 (Extrinsic curvature necks). Let M™ — R"*! be a smooth hypersurface and
pEM™.

(i) We say the extrinsic curvature is e-cylindrical at p is there exists an orthonormal frame
at p such that

[W(p) —W(p)| <e (2.6)

where W (p) is the Weingarten map on the tangent space to S*~! x R — R"*! jn q
standard frame.

(i) We say the extrinsic curvature is (e, k)-parallel at p if

VW (p)| <e forl1<Il<k. (2.7)
(11i) We say the extrinsic curvature is (e, k, L)-cylindrical around p if it is e-cylindrical and
(e, k)-parallel at every point in the intrinsic ball of radius L around p.

(iv) We say that p lies at the centre of a (e, k, L) extrinsic curvature neck if it is (e k)-
parallel € Br(p) and the extrinsic curvature is (€, k, L)-hypothetically cylindrical around

p.
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Proposition 2.8 (Proposition 3.5 [67]). Let k > 1. For all L > 10 there exists e(n,L) > 0
and ¢(n, L) such that any point p € M which lies at the centre of a (e,k,L)-extrinsic
curvature neck with 0 < € < e(n, L) has a neighbourhood which after appropriate rescaling
can be written as (cylindrical) graph of a function u: S"~! x [-(L —1),(L — 1)] = R over
some standard cylinder in R™t! satisfying

[lul|gr+z < e(n, L)e.
Proof. Refer to Section 3 of [67]. O

Definition 2.9 (Geometric Neck). The local diffeomorphism N : S"~1 x [a,b] — (M, g) is
called an intrinsic (e, k)-cylindrical geometric neck if it satisfies the following conditions:

(i) The conformal metric § = r=2(z)g satisfies the estimates
9-gla<e [Dgly<e forl<j<k (2.10)
uniformly on S"~1 x [a, b].

(i) The mean radius function r : [a,b] — R satisfies the estimate

’<§Z>j log (2)

for all 1 < j <k everywhere on [a,b].

<e (2.11)

Moreover we can say that N is an (e, k)-cylindrical hypersurface neck if in addition to the
above assumptions we also have:

Wi(q) —7(2)"'W| <er(z)™' and (2.12)
VW (q)] < er(z2)7'7Y, 1<I<E, (2.13)

for all g € S"~! x z and all z € [a, b].

Hamilton was then able to show that so long as we were sufficiently far from the bound-
ary and if we were to choose € and k appropriately that every geometrical (e, k) neck is
diffeomorphic to a normal neck which is unique up to isometries of the standard cylinder.

Definition 2.14. We call an (¢, k)-cylindrical hypersurface neck N a maximal normal (e, k)-
cylindrical hypersurface neck if N is normal and if whenever N* is another such neck with
N = N* o G for some diffeomorphism G then the map G is onto.

We are now able to obtain uniqueness and existence among other properties on (e, k)-
cylindrical hypersurface necks.

Theorem 2.15 (Theorem 3.12 [67]). Let F': M — R"! be a smooth closed hypersurface
with n > 3.

(i) For any § > 0 we can choose € > 0, k and N : S"™1 x [a,b] — M to be an (e, k)-
cylindrical hypersurface neck with b —a > 35. Then we can find a normal neck N*
and a diffeomorphism G of the domain cylinder of N* onto a region in the domain
cylinder of N containing all points at least § from the ends, such that N* = N o G.
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(ii) For any § > 0 and any (€', k') we can choose (e, k) so that the normal neck N* in (i)
is an (€, k')-cylindrical hypersurface neck.

(i1i) For 0 < e < e(n) sufficiently small and k > 1, take N1 and Ny to be normal necks
which are (e, k)-hypersurface necks. If there is a diffeomorphism G of the corresponding
cylinders such that No = G o N1, then G is an isometry in the standard metrics on the
cylinders.

(iv) For k > 1 and any A > 0 there is €(A,n) > 0 such that any two normal (e, k)-
hypersurface necks N1, Ny with 0 < € < &(A,n) that overlap on some collar S*~1 x
[20, 20 + A] agree on that collar up to isometries of the standard cylinder and can be
combined into a common (e, k)-hypersurface neck.

(v) The normal neck N* constructed in (i) is contained in a mazimal normal (e,k)-
hypersurface neck unless the tangent hypersurface M is diffeomorphic to S*~1 x St.

Theorem 2.16 (Theorem 3.14 [67]). For every (e, k, L) with L > 10 there exist (¢, k') such
that if the extrinsic curvature is (€', k', L)-cylindrical about p € M then p lies at the centre
of a normal (€, k)-cylindrical hypersurface neck N : S*~! x [—(L — 1), (L — 1)] — M, which
is contained in a mazimal normal (e, k)-hypersurface neck unless the target hypersurface M
is diffeomorphic to S*~1 x S,

Proof. By Proposition 2.8, we see that p has a neighbourhood which after rescaling can be
written as graph over the standard cylinder S"~! x [—(L — 1), (L — 1)] which is C**2-close
to the standard cylinder. Then by the Theorem 2.15 (i) yields a normal parametrisation
and (v) gives the extension to a maximal normal hypersurface neck. O

We now move on to describe the standard surgery for a maximal normal (e, k) hyper-
surface neck N : S~ ! x [a,b] — M. Let zy € [a,b] be at a sufficient distance from either
end of the neck i.e z € [a — 4A, b — 4A] for some A > 0.

[Section 3 [67]] Given a pair (N, zo) we have surgery parameters 0 < 7 < 1 and B > 10A
with A > 10. Denote by C,, : S""1 xR — R"*! the straight line cylinder best approximating
M at ¥, with radius r(z9) = 9. A point on its axis is given by the centre of mass of X,
with its induced metric, and its axis is parallel to the average of the unit normal field to
3,,- The standard surgery with parameters 7 and B is performed as follows:

(a) The surgery takes place in the middle of the neck and leaves the ends S"~! x [a, 29 — 3A]
and S™~! x [z9 + 3A, b] unchanged.

(b) It replaces the two cylinders N(S™™1 x [z9 — 3A, z0] and N (5™~ x [29, 20 + 3A]) with
two n-balls attached smoothly to the cross sections X, 34 and X, +34. Without loss of
generality we describe the procedure for the left side of the neck [z —4A, zp]. From now
on we let zgp — 4A = 0 and consider a normal parametrisation N : S~ x [0,4A] — M.

z—A
inwards so that it is strictly convex on S"~1 x [2A,3A] for 0 < 7 < 1:

(c¢) Define the function u(z) = ¢ exp (f B ) on [A,3A] for B > 10A to bend the surface

N(w,z) := N(w, 2) — Tu(2)v(w, 2).

(d) Now we need to blend this surface into an axially symmetric one. Pick a smooth
transition function ¢ : [0,4A] — RT with ¢ =1 on [0,2A] and ¢ = 0 on [3, A, 4)\] with
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¢ < 0. Taking C,, = C,, — Tu(2)v(w, z) defined on ™! x [0,4A] we interpolate to
obtain

N(w,2) = p(2)N(w, 2) + (1 = ¢(2))Cx,-

(e) Now we extend the function u to a suitable function @ defined on [3A, 4A] to guarantee
that 7i(z) — r(20) = ro as z approaches some z; € (3A,4A], such that C, [3A,4A]
is a smoothly attached axially symmetric and uniformly convex cap. Since the last
deformation occurs only on [3A,4A] only concerns the axially symmetric case, it can be
made for each pair 7, B of parameters in such a way that on the attached convex cap
there is an upper bound for the curvature and each of its derivatives, independent of
A > 10 and the surgery parameters 7, B.

We now want to look at how the bending of a neck affects its curvature. For a neck
N :S"! % [0,4A] = M C R™"! in normal parametrisation we take

B

u(z) =rof(z) = roexp (_Z—A) .z €[A4A], (2.17)

where ro = r(2z9) = r(4A) and B > 1 large enough.

Theorem 2.18 (Theorem 3.19). For any 6 > 0 and A > 10 we may choose k > 1 and
0 <€ <e€o, and then fix 0 < 79 < 1 small enough such that the second fundamental form of
the deformed surface N™(p) = N(p) — morof(2)v(p) satisfies

(i) |hiy = (hij + 1060} f" = Toro fhahl)| < Ororo f”,
(i) |i~z;°’ - (h; + Torog”csjl-f” + Torofhfhé-ﬂ < 97’07"0_1f”

on [A,4A] for any (e, k)-cylindrical neck N : S"~! x [0,4A] — M C R"*! with normal
parametrisation.

Proof. Refer to Theorem 3.19 of [67]. O

Taking an orthonormal frame eq, ..., e, which diagonalises the second fundamental form
at some point of the neck with e; the smallest eigenvalue yields the following result.

Corollary 2.19 (Corollary 3.21 [67]). For any A > 10 we may choose ko > 1,0 < €9,0 <
7 < 1 and B large enough such that for all 0 < € < €9,k > ko large enough the deformed
surface N satisfies:

(i) H>H, A + X2 > M\ + Xa, V/detg < \/detg on [A,4A],
(i) M\ > 310D1D1(rou), A1+ A2 > A1 + Ao + 270D1 D1 (rou) on [2A,4A],
(iii) M1+ Xo/H > \i + X+ 2/H on [A,4A],
(iv) H > H + LroD1 D1 (rou), v/detg < \/detg(1 — trouH) on [2A,3A].
Proof. Refer to Remark 3.20 in [67]. O
The following theorem show that the class C(R, «) remains invariant under the surgery

construction.
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Theorem 2.20 (Theorem 3.22 [67]). For any A > 10 we may choose ko > 1,0 < €9,0 < 79
small enough and B large enough such that for all o and R > 0 the class C(R,«) is

invariant under standard surgery with parameters o, B on a normal (e, k)-hypersurface neck
N :S" 1 x [—4A,4A] — M, for all 0 < € < g, and k > ky.

Proof. In the region [A,2A] the claim follows directly from Corollary 2.19 (i) and the fact
that on a cylinder \s > %H .
In the region [2A, 3A] we can ensure the interpolated surface

N(‘*}’Z) = @(Z)N(w’ Z) + (1 - @(Z»é(w’ z)

is approximately close to N in any norm if £ > 1 and € are chosen appropriately. Therefore
N will also satisfy the estimates of H, A\ + A2 and +/detg.

Finally by making an appropriate choice of & we can smoothly attach the strictly convex
cap in [3A,4A]. Increasing the curvature and decreasing the area. O

We conclude this section we look at how Huisken and Sinestrari showed that the topolog-
ical properties of M before the surgery can be recovered from the properties of the surface
M after the surgery.

The following proposition will not be proved as it is a direct consequence of our surgery
construction.

Proposition 2.21 (Proposition 3.23 [67]). There exist parameters A > 10, 0 < € < ¢
and k > 0 depending on n, such that the following is true. Suppose we perform a standard
surgery procedure on a normal (e, k)-hypersurface neck N : S"~1 x [—4A,4A] — M in some
connected smooth closed immersed hypersurface F : M — R which results in a new
smooth hypersurface M.

Then there exist three possibilities.

(a) M is connected and M is diffeomorphic to the manifold obtained from M by a standard
connected sum with itself.

(b) M is disconnected y]ith two components Ml and Mg. Then M is diffeomorphic to the
connected sum of My and M.

(c) M is disconnected and My is diffeomorphic to S™, then My is diffeomorphic to M.

Huisken and Sinestrari then prove the following lemma which in fact holds for k-convex
surfaces and not just the 2-convex case.
It shows that embedded 2-convex surfaces in R™*! are still embedded after surgery.

Lemma 2.22 (Lemma 3.24 [67]). Let M"™ = M C R""! with n > 3 be a smoothly embedded,
closed connected hypersurface. Now suppose in addition that M 1is strictly k-convex. Let
E" = E C R be the hyperplane transverse to M such that ) # X" 1 =Y =ENM is a
smooth closed hypersurface of E. Then each component of X is strictly k-conver and bounds
a region in E that does not contain another component of 3.

Proof. Refer to Lemma 3.24 of [67]. O

We now introduce the notion of a solid tube enclosed by a normal hypersurface neck along
with some of its characteristics. This will be essential throughout this chapter, including
when we show that the flow with surgeries converges to the weak set flow.
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Proposition 2.23 (Proposition 3.25 [67]). Given a normal (e, k)-hypersurface neck N :
S % [0,L] — M™ C R*"" with parameters L > 20 +8A > 100, 0 < € < €9 and k > ko
depending on n, there exists a unique local diffeomorphism

G: B} x[0,L] — R™!
such that
(i) G (restricted to the cylinder) agrees with N;
(ii) Each cross-section G(B} x{z}) C R"*! is an embedded area minimising hypersurface;
(iii) G restricted to each slice BT x {z} is a harmonic diffeomorphism; and

(iv) G is e-close in C*¥*1-norm to the standard isometric embedding of a solid cylinder in
R,

Proof. Refer to Proposition 3.25 [67]. O

Theorem 2.24 (Theorem 3.26 [67]). There is a range of parameters A > 10,0 < € < ¢
and k > ko depending only on n such that the following is true. Suppose M C R**1 n >3
is a connected, smooth, closed and embedded hypersurface which is strictly 2-conver. Let U
be the closed bounded region enclosed by M.

(i) If standard surgery is performed on a normal (e, k)-hypersurface neck N : S"~' x
[—4A, 4A] — M then the resulting hypersurface M is again embedded.

(i) IfM s connected with the resulting bounded region U, then the region U is diffeomor-
phic to a connected sum of U with itself. If U is disconnected consisting of two disjoint
bounded region U' and U?, then U is diffeomorphic to the connected sum of U' and
U2. In particular, if U? is diffeomorphic to a standard closed disc BY C R™ !, then
U is diffeomorphic to U'.

Proof. Refer to Theorem 3.26 [67]. O

2.1.3 Convexity Estimates in the Presence of Surgery.

Continuing on from Section 1.4.4., we want to show S,,, > —6H"™ — Cs on M; still holds for
mean curvature flow with surgeries in class C'(R, «), provided surgery is done on (e, k)-necks
with £ > 2, 0 < € < ¢y small depending only on n. We have to split it up into two cases,
m =2 and m > 2.

Theorem 2.25 (Theorem 4.1 [67]). Let My,t € [0,T) be a family of smooth closed n-
dimensional surfaces immersed in R"T! evolving the mean curvature flow. Suppose that
Mg has positive mean curvature. Then for any § > 0, there exists Cs > 0 where Cs depends
only on My such that for all m =2, ...,n we have

Sm > —0H™ —Cs  on M for allt €[0,T) (2.26)

We want to show that this estimate still holds for mean curvature flow with surgeries in
a class C(R, o).
For the m = 2 case we follow the proof as in [66]. We begin as in [66] by introducing the
function,
AP — (L +n)H?
Gon = H2-¢c !

(2.27)
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Theorem 2.28 (Theorem 4.3 [67]). My a closed n-dimensional surface such that
H > B1|Al >0 on My (2.29)

for some 1 > 8 > 0, M, smooth evolution, then there exists c1,co > 0 depending on n,n, 5
such that for any o < % and p > %, the integral

/ (9on) s dpe

t

is a decreasing function of t.
Proof. Refer to Remark 4.4 of [67]. O

We also want to show that the integral defined above cannot increase under standard
surgery with surgery parameters defined as in the previous section.

Proposition 2.30 (Proposition 4.5 [67]).

(i) We can choose g > 0,m9 > 0 and o9 > 0 small enough such that (gon)+, is non-
increasing under standard surgery with surgery parameters as in the previous section
on a normal (e, k)-hypersurface neck for any 0 < o < 09,0 < n < ny and any 0 <
€ < €0,k > 2. By this we mean that (g,,)+ is non-increasing in the region [0,3A] of
the surface modified by surgery and it is zero on the regions such as [3A,4A] which is
added by the surgery.

(i) The statement of the above Theorem holds for mean curvature flow in a class C(R, a)
with surgeries as determined in (i).

Proof. On an approximate cylinder |A|? 2 —L-H?. Since n > 3 it follows that for sufficiently
small ¢y the function (g, )+ vanishes everywhere on the region affected by surgery proving
(1).

(ii) Follows from part (i) as the inequality H > $1|A| for 1 > 1 > 0 is not affected by
surgery and therefore the constants ci, co of Theorem 2.26 do not change. O

The rest of the proof follows much like [66], if M; is a flow with surgeries we only
require (2.29) and the monotonicity of the LP norm, and these properties are preserved by
the surgeries.

In the case when m > 2 an induction procedure is used. As in [66] we define the quotient
Qm+1 := Sm+1/Sm and consider a perturbation of the second fundamental form

bijip,0 = hij + (pH + D)g;; foragiven0<p<1/n,D >0

as the quotient may not be well-defined given that S, is not guaranteed to be nonzero by
our assumption (2.29). Using a similar procedure to the m = 2 replacing g, with the
perturbed

b b
g . _Qerl;p,D - an,D
onp,Dp = 7 b _
’ (‘E[p,D)1 7

will lead us to the following result for our initial surface in the class C(R, «):
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Theorem 2.31 (Theorem 4.6 [67]). Let Mo € C(R, ) be a surface satisfying |A|*> < R72.
Then for any § > 0 there is a constant B, depending on n,d and « such that a solution
M, t €10,T), of mean curvature flow with initial data Mo and with surgeries satisfies the
estimates

Sz —0H™ — g R™™.

2.1.4 Cylindrical Estimates

We want to show that any rescaling near a singularity which is not strictly convex must
be cylindrical, [61]. In order to do so we make use of both 2-convexity and estimates from
Theorem 2.31.

Want to show that points where A; is small have curvature close to the curvature of a
cylinder.

Theorem 2.32 (Theorem 5.3 [67]).

(i) Let My, t € [0,T) be a smooth solution of mean curvature flow in C(R, ) with n >3
and initial data satisfying |A|? < R™2. Then for any n > 0 there exists a constant
C,, = Cy(n,a) > 0 such that

1
2 2 2 -2
|A] ——n_lH <nH*+CyR

on My for any t € [0,T).
(i) We define

AP — (1 + m)H?
Jon = H2-0o :

Then for all A > 10 we can choose kg > 2,eq > 0, surgery parameters B, Ty, as well
as parameters ng > 0,00 > 0 such that (9,,71)+ id non-increasing under standard
surgery on a normal (e, k)-hypersurface neck for any 0 < o < 09,0 <n < 19 and any
0 <e<ey,k>ky. For mean curvature flow with surgeries and parameters o < m,1qg
we then have the same estimate as in (1).

Notice that g, is slightly different to before. The factor in front of the H? is chosen
such that if 7 = 0, the function vanishes on a cylinder. Moreover if n = 0 and A = 0, then
the numerator is nonnegative and vanishes if and only if Ao =--- = A,,.

To prove this we argue as usual for g .

The above, together with

1
-1 n —

A]? =~ D (AaX)? + Aans = 2H)

1<i<y

yields the cylindrical estimate.

Theorem 2.33 (Theorem 1.5 [67]). [Cylindrical Estimate] For a given smooth closed two-
convex initial hypersurface My in R"t1 n > 3, the parameters of standard surgery can be
chosen in such a way that the solution My, t € [0,T) of mean curvature flow with surgery
satisfies the following estimate: for any n > 0, there exists Cy, = Cy (M) > 0 such that at
every point we have the property

M| <nH = [N — N> <c(n)nH? +C,), Vi, j>2.
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2.1.5 Derivative Estimates for the Curvature

Another key tool in the study of geometric evolution equations are bounds on the derivatives
of our curvature terms. In this section we will derive a pointwise derivative estimate for
the curvature for 2-convex surfaces along mean curvature flow, it will depend on the mean
curvature at a point instead of some maximum value of curvature.

Theorem 2.34 (Theorem 6.1 [67]). [Gradient Estimate] Let M; in C(R,a) be a solution
to mean curvature flow with surgery and normalised initial data. Then there is a constant
o depending on n and a constant v3 depending on n and o such that for suitable surgery
parameters as in Sections 2.1.53. and 2.1.4. the flow satisfies the uniform estimate

VA < yo|A|* + 3R
1 p2
for every t > IR

Proof. Define g; = a;H? — |A|* + C;R™2. Where g1 = (735 + 1), g2 = ni% come from
Theorem 2.32. And C; and Cy are chosen such that g; and g are strictly positive.
We then use Theorem 2.32 to find a C,, depending on n,n and « such that g; > C,, R™2.
2
Using the relevant evolution equations we want to estimate the following function %
using the maximum principle.

Taking combinations of derivatives we are able to arrive at

2 2 2
i ()2 ()~ (eev ()
ot \ 9192 9192 92 9192

Al?|A)? 2 |VA]?
9192 3n g192
where x,, = 1 (niu — —L-) and ¢, is as defined by Theorem 1.38.

First con51der the case without surgeries. Then in view of Proposition 2.7(v) in [67] we
obtain that at time to = (1/4)R~2 we have an upper bound |VA|?> < moR™* where mg
depends on n and a. Applying the maximum principle and recalling that g; g2 > R™%, we

obtain
A? r
|V A% Smax{mo, 3n(c, +4)
9192 2K,2(n + 2)
completing the proof.

For the case with surgeries we pick = k,, in the definition fo g;. On an exact cylinder
we have |A|? — ﬁH 2. by our surgery construction, and taking suitable surgery parameters

we have the estimate #H2 —|AJ]2 > —tn 2H in the region of the surface affected by surgery.
3nﬂ H?

Therefore, in such a region we have g1 > ”‘"2 A2 and go =

Moreover given any (e, k)-neck with k& > 1, the fact that [VAI? = 0 on a standard
cylinder implies |[VA|? < H*.

For a given choice of transition function ¢ and of convex cap in steps (d) and (e) of
the surgery construction there is a fixed constant ug depending only on n such that for all
surgery parameters considered we have the uniform estimate |VA|? < pgH* on the region
altered by surgery and hence

|VA|2 4po
9192 3f<62 '
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Iterating the argument in every time interval between two surgeries we find

3n(cn +4) 4po
0" 2k2(n+2)"3k2 [

|VA?|
g192

< max{m

Since we only chose 7 = Ky, the corresponding constant C), depends only on n,a. Thus,
9192 < H* 4+ C,R™*
and so the above estimate implies
IVAI? < c(n)|AI* + C, R,
O

It is also interesting to note Remark 6.2 from [67] which states that on a neck we have,
up to lower order terms, g; ~ nH? and so on a neck gradient estimate |VA|? < cg;g» implies
that |VA|? < enH* + C.

Theorem 2.35 (Corollary 6.4 [67]). Let M; in C(R, ) be a solution to mean curvature
flow with surgery and normalised initial data. Then there is a constant v} depending only on
n and v" depending on n and « such that for suitable surgery parameters as in the previous
two sections we have the estimate

‘aththF < 7/|A|4h+2m+2 + ,Y//Rf(4h+2m+2)
for all h,n > 0 such that 2h +m < ky.

Here we abuse notation slightly by writing 9; A with the convention that at a surgery
time we are taking one sided time derivatives.

We are also able to obtain the following as a special case, which will be useful for the
analysis of regions with large curvature.

Corollary 2.36 (Corollary 6.5 [67]). Let M; be a mean curvature flow with surgeries staring
from a surface in C(R,a). Then we can find ¢ > 0, H* > 0 such that, for all p € M and
t >0,

H(p,t) > H* = |VH(p,t)| < #H*(p,1), |0, H(p,t)| < *H(p, 1) (2.37)
where ¢ depends on n and H#* = hoR™' with hy depending on n and a.

Lemma 2.38 (Lemma 6.6 [67]). Let F' : M — R"*! be an n-dimensional immersed surface.
Suppose that there are ¢, H” > 0 such that |VH(p)| < ¢ H%(p) for any p € M such that
H(p) > H?. Let py € M satisfy H(po) > yH?" for some v > 1. Then

H (po) H (po)
H(q) > > or all
@ =1 + c#d(po, ¢)H (po) ~ I !
such that
¥y—1 1
d(po,q) < .
o) < " )
Proof. Refer to Lemma 6.6 [67] or the analogous proof for G-flow in Lemma 3.17. O
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2.1.6 Neck Detection

We want to show that the surgery procedure can be used to alter mean curvature flow before
a singular time whilst keeping the mean curvature bounded. Unless surface is convex or of
type S*~! x S™ in which case it will be discarded. We do this by showing if we are close
enough to a singular time and the surface is not uniformly convex, then the regions with
largest curvature are necks where we perform the surgery. In this section and the following
section we will omit proofs and not go into extensive detail, the reasoning behind this is
that we will prove similar results for the G-flow in Chapter 3, however for completeness of
this thesis it is important to state the results here for the mean curvature flow case.

Definition 2.39. Given t,0 such that0 <t—60 <t <Tp, we define the backward parabolic
neighbourhood of (p,t) by,

P(pa t7 T, 0) = {(qa S)|q € Bg(t) (p7 T)v s € [t - 97 t}} (240)
where By (p, 1) C M is the closed ball of radius v with respect to the the metric g(t).

We now extend the definition of a backward parabolic neighbourhood to the case of a
flow with surgeries. We have a family of flows F? : M; x [T;_1,T;] — R"*, where Ty = 0
is the initial time and < 77 < --- < T, < oo are the surgery times. The neighbourhood
Byw)(p,r) € M; corresponding to the interval [T;_1,T;] containing t. At a surgery time
t = T; we write g(t—) and g(t+) to denote the manifold before and after the surgery. As
per convention ¢(t) = g(t—), at a surgery time our flow is continuous from the left. This
motivates the following definition.

Definition 2.41. Let F': M; x [T;_1,T;] — R i =1,2,....,n be a mean curvature flow
with surgeries. Let (p,t) € M; x [T;—1,T;] for some i and 6 € (0,T] and r > 0. We say that
By (p,r) has not been changed by surgeries in the interval [t — 0,t] if there are no points
of By (p,7) which belong to a region changed by a surgery occurred at a time s € (t0,t]. In
this case we define the backward parabolic neighbourhood P(p,t,r,0) as in the smooth case.
We also describe this behaviour by saying that P(p,t,r,0) does not contain surgeries.

Remark 2.42. The above definition allows for the presence of surgeries in the time interval
(t — 0,t] provided they are performed on parts of the surface disjoint from By (p,r).

We define the following to simplify the analysis of necks.

n—1

Ao PBtL0) = Pt ), 7 (. 1)), (2.43)

Fp,t) ==

Then if (p, t) lies on a neck, then 7(p, t) is approximately equal to the radius of the necks.

Moreover if we rescale the flow in space and time such that #(p,t) = 1 then P(p,t, L,0) =
P(p,t,7(p, 1), 7(p, 1)?6).

The following lemma will prove useful. In particular (ii) tells us that if H(p,t1) >

H(q,t) where (p,t1) is any point and (g, t2) is a point modified by previous surgeries, then
a suitable backward parabolic neighbourhood of (p,t) will be surgery-free.

Lemma 2.44 (Lemma 7.2 [67]). Let ¢, H* be as defined in the previous section. Define
d# := (8(n — 1)2¢#)~L. Then the following properties hold.
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(i) Let (p,t) satisfy H(p,t) > 2H#. Then, given any r,0 € (0,d?) such that P(p,t,r,0)
does not contain surgeries, we have

H(p,t)
2

< H(g,s) <2H(p,1)

for all (q,s) € P(p,t,r,6).

(ii) Suppose that, for any surgery performed at time less than t, the regions modified
by surgery have mean curvature less than K, for some K > H¥. Let (p,t) satisfy
H(p,t) > 2K. Then the parabolic neighbourhood

plpt L !
Pt S # K RAK?

does not contain surgeries. In particular, the neighbourhood ﬁ(p,t,d#,d#) does not
contain surgeries and all points (q, s) contained there satisfy (1).

Proof. Both estimates are obtained from integrating the estimates for Corollary 2.36. For
more details refer to Lemma 7.2 [67] or the analogous proof for G-flow in Lemma 3.21. O

Definition 2.45. We say that a point (po, to) lies at the centre of a (e, k, L, 0)-shrinking cur-
vature neck, if after setting ro = 7o(po,to) and By = By, (po,roL), the following properties
hold:

(i) The parabolic neighbourhood 75(p0,t0, L,0) does not contain surgeries;

(ii) For everyt € [to — 130+, t0], the region By, w.r.t. the immersion F(-,t) multiplied by
the scaling factor p(ro,t —to) ™1, is e-cylindrical and (e, k)-parallel at every point.

The notation tg — r20+ means the limit from the right where to — 726 is a surgery time.
Definition 2.45 says that at any point of P(po, to, roL, r36) the Weingarten operator of our
surface and its spatial derivatives, up to order k, are € close to that of a standard cylinder
after a possible rescaling.

In order to define a flow beyond a singular time using our surgery procedure we want to
show that the surface develops large curvature as the singular time is approached.

Lemma 2.46 (Lemma 7.4 [67]). [Neck Detection Lemma] Let My, t € [0,T) be a mean
curvature flow with surgeries as in the previous sections, starting from an initial manifold
My € C(R,a). Let €,6,L > 0, and k > ko be given (where kg > 2 is the parameter
measuring the reqularity of the necks where surgeries are performed). Then we can find
1o, Ho with the following property:

Suppose that pg € My and tg € [0,T) are such that:

(ND1) H(po,to) = Ho, 312255 < 1o

(ND2) The neighbourhood P(po,to, L,0) does not contain surgeries.
Then

(i) The neighbourhood ’p(po,to,L, 0) is an (e, ko — 1, L, 0)-shrinking curvature neck;
(ii) The neighbourhood P(po,to, L—1,0/2) is an (e, k, L—1,0/2)-shrinking curvature neck.
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With constants no(c, €,k, L,0) and Hy = hoR™* where hy depends on o, e, k, L and 6.

Proof. We argue by contradiction based on a rescaling procedure. To prove (i), we assume

that for some ¢, L, 6 the conclusion is not true, no matter how we choose 79, Hy. Then we

can find a sequence {M;} of solutions to the flow, a sequence of times ¢;, and a sequence

of points p; € M/, such that by setting Fj = ”T_Jl we have

(a) Each flow starts from a manifold belonging to the same class C(R, @), and therefore
satisfies the estimates of the previous sections with the same constants;

(b) The parabolic neighbourhood P7(p;,t;,#;L, f?@) is not changed by surgeries;
(c) Hj = 00, A1 jH; = 0 as j — oo;
(d) (pj,t;) does not lie at the centre of an (¢, kg — 1, L, §)-shrinking neck.

We then perform a parabolic rescaling of each flow such that the H(p;,t;) = n — 1 and
translate the point to the origin and ¢; becomes 0. We know by (b) that such a neighbour-
hood contains no surgeries, and the aim is to show that the restrictions of the rescaled flows
converge, up to a subsequence, to a limit flow which is a portion of the shrinking cylinder.
This will yield the contradiction. Part (ii) is proved similarly. For the whole proof refer to
[67]. O

Remark 2.47 (Remark 7.5 [67]). Lemma 2.46(i) concerns the whole parabolic neighbour-
hood which is surgery free, but can be arbitrarily close to surgery, the points of the neigh-
bourhood are even allowed to be modified by a surgery at the initial time to — 0r3. Therefore
the description goes up to kg — 1 derivatives. Part (ii) is concerned with a smaller parabolic
neighbourhood, where we can apply interior parabolic reqularity and as many derivatives as
we wish.

Corollary 2.48 (Corollary 7.7 [67]). Given €,0 > 0,L > 10 and k > 0 integer, we can find
Mo, Ho > 0 such that the following holds. Let po,to satisfy (ND1) and (ND2). Then

(i) The point (po,to) lies at the centre of a cylindrical graph of length 2(L —2) and C*+2-
norm less than €;

(i) The point (po,to) lies at the centre of a normal (e, k, L — 2)-hypersurface neck.

The next lemma shows us that the shrinking curvature necks obtained by Lemma 2.46
are equivalent to hypersurface necks for any given time, even surgery times.

Lemma 2.49 (Lemma 7.9 [67]). In the Neck Detection Lemma, Lemma 2.46 we can choose
the constants ng, Hy so that the additional following property holds. Suppose that L > 10
and that 0 < d¥. Denote as usual

n—1
H(p,1)

Then for any t € [to—0r3+,t0], the point (po,to) lies at the centre of a (e, ko—1)-hypersurface
neck Ny C By, satisfying the following properties:

) BO = Bg(to)(p()vTOL)'

(i) The mean radius r(z) of every cross section of Ny is equal to p(ro,t —to)(1+ O(e));
(i1) The length of Ny is at least L — 2;
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(iii) There exists a unit vector w € R"™1 such that |v(p,t) - w| < € for any p € N;.
Proof. Refer to Lemma 7.9 [67] or the analogous proof for G-flow in Lemma 3.35. O

Assumption (ND2) is essential in the proof of the Neck Detection Lemma. However
modifications to the lemma have to be made for some cases. The next result ensures that
(ND2) will follow from our other assumptions in the Neck Detection Lemma so long as
the curvature at the point (p,t) is large compared to the curvature of regions previously
modified by surgeries.

Lemma 2.50 (Lemma 7.10 [67]). Consider a flow with surgeries satisfying the same as-
sumptions of Lemma 2.46. Let d¥ be as before and let €, k, L, 6 be given with § < d#. Then
we can find ng, Hy with the following property. Let (po,to) be any point satisfying

A1(pos to)
H(po,to) ~

where K is the mazimum of the curvature at the points changed in the surgeries at times
before tg. Then (po,to) satisfies hypothesis (ND2) and the conclusions (i) and (i) of Lemma
2.46. In addition, the neighbourhood

n—1 (n—1)2
t L L
P (pOa 05 H(po,to) ) K2 > )

H(po,to) > max{Hy,5K}, 7o

which is larger in time than (ND2) does not contain surgeries.
Proof. Refer to Lemma 7.10 [67] or the analogous proof for G-flow in Lemma 3.36. O

Definition 2.51. We say that the parabolic neighbourhood P(po,to,r,T) is adjacent to a
surgery region if it has not been changed by surgeries, but there erists p € M such that
dg(te) (P, po) = 7, and which belongs to the boundary of a region changed by a surgery at a
time s € [tg — T, to]. We say that a hypersurface neck N' C M is bordered on one side by a
disc if one of the two components of ON is also the boundary of a closed domain D C M,
which is diffeomorphic to a disc and has no interior points in common with N .

[Section 7, [67]] For the next result we assume that our flow with surgeries satisfies
certain properties, which we will list below:

(s1) Pick a fixed value K* > 2H#, all surgeries will take place at cross-sections Y., of

_ (n-1) '

normal necks with radius r(zg) = r* o

(s2) On normal necks where the surgery has taken place we will have two portions with
the following properties. One of the portions will belong to a component which will
be discarded after the surgery. On the other portion, the part of the neck which has
been left unchanged by the surgery has the following structure: the cross section which
coincides with the boundary of the region changed by surgery satisfies r(z) < (11/10)r*,
on the last section r(z) > 2r* and in the sections in between r* < r(z) < 2r*.

(s3) Surgery is responsible for removing regions with curvature larger than 10K*. For
example, looking back at a previous surgery, we will find the components which were
discarded to have curvature larger than 10K™*, so if they surgery had not taken place
it would have not been disconnected from the surface.
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Combining (s1) and (s3) tells us that the regions with largest curvature are the discarded
components with known topology and not ones removed by the surgery construction. Prop-
erty (s2) guarantees that the surgery procedure takes place a certain distance away from
the end of the neck such that there is a portion of the neck left which has a radius twice as
large. This leftover part will be necessary for the next lemma.

Lemma 2.52 (Lemma 7.12 [67]). Consider a flow with surgeries satisfying our usual as-
sumptions, and in addition properties (s1)-(s3) above. Let L,6 > 0 be such that § < d¥,
where d¥ is as defined previously, and that L > 20. Then there exist ny, Hy such that the
following property holds. Let (po,to) satisfy properties (ND1),(ND2). Suppose in addition
that the parabolic neighbourhood 75(]90, to, L, 0) is adjacent to a surgery region. Then (po,to)
lies at the centre of a hypersurface neck N of length at least L — 3, which is bordered on one
side by a disc D. The mean curvature on N'UD at time tqg < 5K*, where K* is as defined
in (s1).

Proof. Refer to Lemma 7.12 [67] or the analogous proof for G-flow in Lemma 3.37. O

Just like we dealt with the special case that (ND2) does not hold we will also have to
deal with the special case that (NDI) does not hold. In this case we require a result for
when the point under consideration % may not be small. This is a general property of
hypersurfaces and not related to geometric flows, so the proof is exactly as in [67].

Theorem 2.53 (Theorem 7.14 [67]). Let F : M — R™ ™! withn > 1, be a smooth connected
immersed hypersurface (not necessarily closed). Suppose that there exist ¢, H* > 0 such
that [VH (p)| < ¢c#* H?(p) for all p € M such that H(p) > H#. Then for any no > 0 we can
find g > 0 and vy > 1 depending on ¢ and ny such that the following holds. Let p € M
satisfy A1 (p) > noH (p) and H(p) > voH™. Then either M is closed with A\ > noH > 0
everywhere, or there exists a point ¢ € M such that

(i) M(q) <moH(q),

(ii) d(p.q) < 75,

(i1i) H(q") > H(p)yo for all ¢ € M such that d(p,q") < %; in particular, H(q) > Hw(f).

Proof. Refer to Theorem 7.14 [67] or the analogous proof for G-flow in Theorem 3.38. [

To conclude this section we can state a result about the existence of necks before the
first singular time is approached.

Corollary 2.54 (Corollary 7.15 [67]). Let M; be a smooth mean curvature flow of two-
convex hypersurfaces. Given neck parameters e, k, L, there exists H* (depending on initial
data) such that if Huymax(to) > H™*, then the hypersurface at time to either contains an
(e, k, L)-hypersurface neck or it is convez.

Proof. We combine Corollary 2.48 and Theorem 2.53. Since we assume the flow is smooth,
the parabolic neighbourhood in hypothesis (ND2) trivially does not contain surgeries. [

There are more results from Section 7 of[67], which are essential in proving the Neck
Continuation Theorem stated in the next part. However, the theorems and proofs are
omitted as a similar proof will be covered for the Brendle-Huisken G-flow introduced in
Chapter 3.
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2.1.7 The Flow with Surgeries

Theorem 2.55 (Theorem 8.1). Let Mg € C(R,«) be a smooth closed two-convex hyper-
surface immersed in R" ™1, with n > 3, satisfying |A|> < R™2. Then there exist constants
H, < Hy < Hjz and a mean curvature flow with surgeries starting from Mgy with the
following properties:

e Fach surgery takes place at a time T; such that Huyax(T;—) = Hs.

o After the surgery, all the components of the manifold satisfy Humax(Ti+) < Ha, except
for those diffeomorphic to spheres or to S*T1 x S!, which are neglected afterwards.

e Each surgery starts from a cross section of a normal hypersurface neck with mean

radius r(z,) = %=1,

o The flow with surgeries terminates after finitely many steps.

The constants H; can be any values such that Hy > w1 R™', Hy = woH; and Hy = w3 H?2,
with w; > 1 depending only on the parameter o.

Proof. Refer to Theorem 8.1 [67] or the analogous proof for G-flow in Theorem 3.45. [

[Section 8, [67]] In proving the Theorem 2.55, we will define the surgery algorithm such
that the following properties are satisfied:

(S) Each surgery is performed on a normal (eg, ko)-hypersurface neck. The surgery is per-
formed at times T; such that Hpax(T;) = Hs. After the surgeries are performed,
and we remove suitable components whose topology is known and we are left with
Hpnax(Ti+) < Hy. In addition, all surgeries satisfy properties (s1)-(s3) with K* = H;.

We state without proof the Neck Continuation Theorem which is required to prove the
Theorem 2.55. The proof relies heavily on the results of Section 7 of [67]. For a detailed
proof refer to [67].

Theorem 2.56 (Theorem 8.2 [67]). [Neck Continuation Theorem] Suppose that M, with
t € [0,to], is mean curvature flow with surgeries satisfying (S), and let maxn, H > Hj.
Moreover let pg be such that

H(po,to) > 10Hy, i (po,to) < niH (po,to), (2.57)

where ny, Hy are as defined in (P0)-(P7), [Section 8, [67]] (these conditions will also be
stated in Chapter 3 for the g-flow case). Then (po,to) lies on some (eg, ko)-hypersurface
neck No in normal form, which either covers the whole component of My, including po or
has a boundary consisting of two cross-sections X1, Yo, each of which satisfies either of the
two following properties:
. . 2(n—1)
(i) ¥ has mean radius =5
(i) The cross-section of X is the boundary of a region D, diffeomorphic to a disc where the
curvature is at least H/©. The region D lies after the cross-section ¥ and is disjoint

from Ny.
Proof. Refer to Theorem 8.2 [67] or the analogous proof for G-flow in Theorem 3.49. O

Huisken and Sinestrari are then able to prove Theorem 2.55. Again a proof of this is
omitted as a similar proof will be presented in Chapter 3 for the Brendle-Huisken G-flow.
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2.2 Reconciliation Between the Flow with Surgeries and
the Weak Solution

2.2.1 Level-Set Mean Curvature Flow

Here we study the level-set formulation for mean curvature flow as described by Evans and
Spruck in [36].
We begin by considering a smooth function v = u(x, t) such that Du = (%, (%"2, cee 6%’2)

does not vanish on some open subset of R™ x [0, 7).
Assume further that each level-set of u smoothly evolves according to mean curvature
flow. We focus our attention on any one such level-set, and consider its zero sets given by

Iy ={x e R" | u(z,t) =0}
Then the mean curvature vector field is given by div(v)r and the point x evolves accord-
ing to the ODE:
& = [—div(v)v]|(z(s),s) (s > t)

[ o= Lanopia .

Fixing s € [0,T'), we know that since x(s) € T's for s > t, @(x,s) = 0 for all s > ¢ and so
0= i&(x(s) s) (2.59)

~ds ’ ’
= —[(D(a)v)div(v)](z(s), s) + a(z(s), s). (2.60)

Setting s = t we obtain
u = (D@ - v)div(v)

at (z,t). Choosing v = % we get

_ .. [ Du
ty = |Duldiv (|Dﬂ|)

Then we have @(x,t) = 0 is a level surface of dimension n.

(331,...,$n+1,t) — (1‘1,...,mn+1,a($1,...,$n+1,t))
. We wish to change a(x1,...,Zn41,t) to u(zy...,2n41) —t = 0. Looking at the mapping
T1y.eeeyTnat,t) = (x1,...,Tny1,U) the Jacobian is
( + +
dito A
0 In+1

= t = ¢(x1,...,2n,0). But taking the level-set & = 0 = ¢t = ¢(z1,...,2n41). SO
= {x e R""|a(x,t) = u(z) —t = 0}.

It remains only to check that u(z,t) — ¢ still satisfies the mean curvature flow equation.
This is the same calculation as before with u; = —1.
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Therefore rearranging we will obtain the mean curvature flow equation for u:

{ div (IDU\> T (2.61)

u‘ag =0

Expressing this in terms of our coordinates we can calculate

|Du|d1v<D >:|Du| <V, (gﬂ;a’g;z -.76621) 2>
() () ()
o\, 0 (o 0 ( e
= (5 (180) o (1) =+ o ()
Now
9 e
T ) ()
8%u u 8 8%u
_ Er B 9z; Da; Dx:0x;
B () e (87 () ()" (2)°)
Therefore
1= 5)&597’; 0?u
- |Du|d1v(|D |) <5ij— Duf? ) 92:07,; (2.62)

Conversely assume that u is a solution of (2.61) or equivalently (2 62). Fixing t > 0,
we look at the ODE (2.58). Differentiating v w.r.t s and using v = |Du\’ we obtain (2.60),
and since u solves (2.61), we deduce that u(z(s),s) = 0, the zero sets evolve by their mean
curvature. Similarly, the level-sets of u will evolve according to their mean curvatures.

In Section 3 of [36], Spruck and Evans were able to prove uniqueness of a weak solution
and in Section 4 they proved existence. Please refer to [36] for more details.

The following definition will be useful later when we go through Head’s method on
showing that the mean curvature flow with surgeries converges to the weak solution.

Definition 2.63. Given u € C%1(Q) such that |Du|™' € L*(Q), u > 0 on Q, and {u =
0} = 909, we say that u is a weak solution of 2.61 on Q) if

/Q(IDuI |Du I) /Q(|DU| Du |)dm Ju(v)-

for any Lipchitz continuous function v on Q such that {u # v} CC Q.

To give some justification for this definition we take a small perturbation v = u + ew for
€ < 1 and take the derivative %Ju(v)kzg
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Du(£(Dv)) _ w|Du|
=0 | Do| | Du|? -

((Du)(Dw) w >

d v
D
<' o= |Du>

|Dv|  |Dul?
_ (Du)(Dw)  w
Dyl | Du|?

This gives us

d [ (Du)(Dw) w
deJu(U”E:O_/Q_ Du] @ / Dup ™

Du
wD(——)dx / ——dx using IBP
/ |Dul o |Dul

Du 1
= D(—— —_— =
(Do) " ul
Du 1
S Dy
Du]) =~ 1D

Remark 2.64. Why is it true that for a vector field X we have

/ XDw dV, = — / div(X )w dV,
Q Q

Since D is over a manifold we need to change from V ox X toV 2 X.

Taking a compactly supported partition of unity ,oj such that Zj 1p; = 1 and using
normal coordinates such that dV, doesn’t contribute curvature terms we just apply Stokes

Theorem which says
/ da = / a=10
Q oQ

since 0S) is empty. So we have

/XDde
- [ 33
_A;ggzzxww/zpjlzaz

=1

—/ div(X)w dVy
Q

: 9p;
since Yy 724 = 0.
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From now on we denote the weak solution of the level-set flow by u; and define

r Hr e Qurp >t} forallt <T
) forallt > T

to be the t-slices of uy,.
For more information on how to construct a weak solution to the mean curvature equa-
tion, refer to Section 2 of [36].

Theorem 2.65 ([36]). [Properties of Weak Solutions] Let @ C R" ™! be open and bounded
such that 02 has nonnegative mean curvature flow. Then there exists a unique weak solution
ur, of 2.61 such that

(i) Ty agrees with the smooth solution M, of mean curvature flow starting from Mg = 0Q
if and as long as the latter exists, and

(i) if My, t1 <t < tg, is any smooth, compact mean curvature flow with positive mean
curvature then

Mtlﬂrtl =0 = MtﬂFt:@foralltlgtgtg.

It is easy to see that (i) implies 2 dist(M;,T) = 0.

Definition 2.66. U C R"*! is an open set. E C R™*! is outward minimising in U if for
the reduced boundary O*E and 8*F (refer to Chapter 15 [76]) we have

|0*ENK| <|0*FNK| (2.67)
or any F D F such that F'\ E is relatively compact in U and any compact set K D (F\ E).

Remark 2.68. In the future we will use A CC B to denote a set A which is relatively
compact in B.

Proposition 2.69 ([94]). [Outward Minimising] Let Q C R"*1 be open and bounded and
suppose O has non-negative mean curvature. Then the sets Qy = {ur, >t} enclosed by the
level-sets of the weak solution of mean curvature flow generated by 2 are outward minimising
in Q.

Proof. For a proof or more information refer to [94]. O

2.2.2 Head’s Method

As described at the beginning of this chapter there are two well-known solutions to the
mean curvature evolution of a smooth, closed, two-convex hypersurfaces in Euclidean space,
the Huisken-Sinestrari surgery algorithm and the weak solution of the level-set flow. Head
and Lauer were able to provide a reconciliation between these methods in [55] and [71]. In
this section we go through Head’s method which rely on geometric estimates for certain
LP-norms of the mean curvature. The results and proofs of this section are as in [55] and
direct references are given for these.

The problem with the Huisken-Sinestrari surgery algorithm is that it relies on a non-
canonical modification of the surface at each surgery time. As we saw in the previous section
it is controlled by a set of parameters Hy, Ho, H3, which determine when the surgery occurs.

87



We stop when H.x = H3 and perform the surgery so that the curvature drops by some
fixed amount to Ho.

Since these surgery parameters are not unique, Head looked at an increasing sequence
of parameters { Hi, H, Hi} for which the surgery times grow and the necks being modified
become increasingly thin. As these values of H increase more surgeries are required and
we want to make sure that only finitely many are needed and we are not faced with an
accumulation of infinitely many surgeries to perform.

Head was able to show that as we take the limit Hi, H, H — oo that the surgery con-
struction and weak solution agree in a precise quantitative sense. He did this by combining
his geometric estimates for LP-norms, a geometric barrier argument and Brakke’s clearing
out Lemma.

Integral Estimates for smooth Mean Curvature Flow

Now we may use the evolution equations found in Lemma 1.18(v),(iii) as well as the Cylin-
drical Estimate from Theorem 2.32 to compute the following,

0

H
i delu/:p Hp_lai—f—/ H
M, ot M, ot

dt Jam,

:/ pHP™N(AH + |A*H) — HP2dy
My

——plp=1) [ IVHPH s [ AP - 1)
Mt Mt

n—1—-p

<—plp-— 1)/ IVH|?HP2dp + (pn — ) HP2dy,
M,y M,y

n—1

+pC,R™2 | HPdp.
M

We restrict our attention to p < n — 1. More formally, let e >0 and fix p=n—1—e.

We then choose an appropriate 7, = m Henceforth we write C,, in place of C,_.

If our € is not small enough to satisfy n < 7 we instead take

n:min{2(n—l)(7€1—l—e)’2}

in the cylindrical estimate from Theorem 2.32.
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‘We obtain

d €
— HPdu < —p(p—1 VH??HP2dy — ——— HP2g
dt Jm, n<—plp )/Mt V] a 2(n —1) Ja, :

+pC.R™? HPdp
M
p—2

€

M e e OO

+pC.R™> HPdp (Holder’s inequality)
M

< pp—1) /M VHHPdy

H”du) " 1pCR? | HPd

€ 2 _on
af R7» (
My

S 2(n—1) Ms

where we have used the definition of class [Mo| < asR™2. Let

pCe
=exp | — t HPdp.
v P < R? ) M :
We have now proved ¢ is non-increasing under the smooth evolution in the two-convex
setting for all p < n — 1.

Lemma 2.70. Let M; be a smooth solution of mean curvature flow starting from My €
C(R,«a) and fit p =n —1—e. Then there exists a constant C. = C. depending on (M)
such that

d

pCe 2 T2
— < — 71 _ t V4
iy 0 )exp< 7 >/MVH HP ™ dp

p+2
€ 2 o pCe pCe o
_ maz R™ 7 exp (— 2 t) exp (— 2 t » HPdp .

for all e > 0 as long as the solution remains smooth.

Hence and LP-norm of the mean curvature is bounded under smooth mean curvature
flow on any finite time interval for all p < n — 1. In fact, solving the ODE

d € —2 _op 2C, p+2
< - P I3 P
@’ Tamon@ B eXp(RZ‘ t)d’

we conclude that

- € 2C, B
o= (=) (o0 () )

We have arrived at an LP-estimate for the mean curvature flow which will behave like
1
t—2 for small values of ¢.

P
2
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Theorem 2.71 (Proposition 2.4 [55]). [Smooth LP-estimate] Let My be a smooth solution
of mean curvature flow starting from Mg € C(R,«) and set p=n—1—¢. Then there erists
a constant Ce = C, depending on (My) such that

1 _n—p C. € 2C,
Iy < b7 o ( £51) (r—prtow () 1)

for all e > 0 and for alt > 0 as long as the solution remains smooth.

1
2

Integral Estimates for Mean Curvature Flow with Surgeries

We will now devote our attention into obtaining an LP-estimate across surgery and combine
it with the above Theorem to obtain one for mean curvature flow with surgeries.

Lemma 2.72 (Lemma 3.4 [55]). [LP-estimate Across Surgery] For each p > 0 the following
property holds. We can choose L depending on (n) sufficiently large such that

HPdy — HPdp > C(rg)" P
M= M+

where C' depending on n and L, M™ denotes the hypersurface obtained from M~ after
performing standard surgery, and ro is the mean radius.

Proof. Let N~ : S"~1 x [0,L] - M~ — R"*! be an (e, k)-hypersurface neck with mean
radius 7o in normal form. Choosing e sufficiently small we can arrange that

H(p) > 1—90("%01) for all p = (w, z) € N~ such that z € [0, L].

Let U~ C M~ be the subset of M~ altered by the given surgery and U™ C M™ replacing
U~. We then estimate |U~| > (9/10) L wy,—1 ()™, where w,,_1 is the area of the standard
unit (n — 1)-sphere.

Remark 2.73. The 19—0 estimate arises from Proposition 3.4 in [67]. As will the % further

on.

Using the estimate for |[U~| we have

HPdp > Cy Lry ™"
U-
for some C7 depending only on n. Without loss of generality we focus on the left hand side
of the neck. As described in the surgery procedure we pinch the neck on the interval [\, 3)]
and attach a convex cap on [3\;4)\]. We choose our parameter 7 so that in the surgery
construction our curvature remains close to that of the cylinder on [A, 3)\], such that

%(”T_Ol) <H(p) < %("T_Ol) for all p = (w,z) € NT such that z € [\, 3)\].

Similarly the curvature of the convex cap attached can be made as close as we like to that
of the standard sphere:

1%(%) <H(p) < %(%) for all p = (w,2) € NT such that z € [3)\,4)].

We apply the same analysis to the right hand side of the neck. We decompose Ut such
that U;" denotes the bent cylinder and U, denotes the convex cap attached to Nzx. We
can rearrange to obtain % Awp_1 (ro)™ < |U1+| < 15—1 A wp—1 (ro)™ and
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Cal(ro)" P < fU+ HPdp < C3A(ro)" "

for constants Cy and C3 depending on n. Finally we can modify the capping off such that
(36) wn (10)" < US| < (1) wn (ro)" and

Cy(ro)" P < HPdu < Csry P
Uy
for constants Cy and C5 depending only on n. Making an appropriate choice for A depending
only on n we can obtain L = C'+8A > 20+ 8A depending only on n. It is chosen sufficiently
large such that for each p > 0 we have

/deu22/ HPdp.
_ U+

This completes the proof. O

Theorem 2.74 (Theorem 3.6 [55]). [LP-estimate for Flow with Surgeries] We can choose
L depending only on n, sufficiently large such that the following property holds. Let Mgy €
C(R,«) with n > 3 and fit p =n — 1 — €. Then the solution My of mean curvature flow
with surgeries starting from My satisfies

T
C HPdy > deu—i—p(p—l)/ / |VH]?HP2dy dt
M 0 M

Mo
€ T 4o
+7// HP™dy dt
2n=1)Jo Jm,

for all e > 0 and for all 0 < T < Ty < oo, where Ty denotes the final surgery time. The
constant C' depends on €, T and My.

Proof. The proof of Theorem 2.71 relies only on Theorem 2.32. Since the cylindrical estimate
survives surgery without any modification the constants, we conclude Lemma 2.70 applies
to each smooth time interval, [0, T1], [T1, T3], ..., [Tn—1,Tn]. Therefore we can integrate on
each time interval and sum the contributions. Furthermore exp(—pC.R™2t) is continuous
in t and from Lemma 2.72 we have

/

for each p > 0 and for all j > 0. Hence we simply disregard any contribution made by the
components discarded at surgery time. This completes the proof. O

de,u>/ HPdp
_ Mt

Tit1 j+1

Number of Surgeries

There are two arguments that show the flow must terminate after a finite number of steps.
The first combines the evolution equations for H and du with the two-convex inequality
|A]? < nH? which yields & < 6H + nH?.

Comparison with the associated ODE yields a uniform lower bound 67 > C(n, «)(Hz) ™2
on the time interval 0T separating two consecutive surgery times. Since the mean curvature
has to increase from Hs to H3 = w3Hy > Hs during this time, the number of surgery times
satisfies the bound N < C(n, a)R%(H)?. Refer to Remark 7.17 in [67] for more details.
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The second argument is as follows. By the definition of a class of two-convex surfaces we
know that there exist constants o = (a1, a2, a3) and R where max g, |A|?> < R™2, such that
M| < asR™. Therefore each time surgery is performed the area of the surface decreases by
some fixed multiple of (Hy)™", (k = 1,2,3). It follows that N < C(Hy)", for some constant
C depending only on n. This is sufficient to show that mean curvature flow with surgeries
must terminate after a finite number of surgery times for each finite choice of Hy.

However the estimate on the number of surgeries needed in the surgery procedure to
obtain the reconciliation result between the solution to mean curvature flow with surgeries
and the weak solution of level-set flow, after taking appropriate limits, needs to be bettered.
Otherwise the size of his time-translation Nt,, needed to prove the lower barrier result, seen
later, blows up.

Now the second argument outlined is applied to the higher LP-norms of the mean cur-
vature. It follows from Theorem 2.74, the definition of class and the above remarks on the
number of surgeries, that there exists a uniform constant C' > 0 depending on n,e and «
such that

anlfe < C«RlJrE
M, B

on [0,Tx]. In addition Lemma 2.72 guarantees that each surgery consumes

Hn—l—ed'u _ Hgn—1l-e > CL(HI)—l—e
u- u+

Hence there exists a constant C' depending on n,e, L and Mg such that the number of
surgeries is bounded,

N < C(Hy)'e. (2.75)

Mean Curvature flow with surgeries and the weak solution

Let Q C R™*! such that 9Q is 2-convex where 9Q = My € C(R,a). Then we have
M, t € [0,Tn], with surgery times Ty,Ts,...,Tn and surgery parameters {Hq, Ho, H3}.
Mt—{ZEGQ|U—t} fort¢T1,T2,...T .

Consider any surgery time T}. Let ET_ be the enclosed domain bounded by MT— and

+ be the open set in R™*! enclosed by ./\/lT+

t forall z € M;
Y=Y Ty forallz € B, \ Fpr
J J

We define the following: M- = d(int{x € Qu > T;}), M+ = 0{z € Qu > T;}. It
J J

will also be convenient to define the following 3 := {u > t} and ¥, := int{u > t}. We will
often have to consider the regions €2; := {uy, > ¢} enclosed by the level-sets I'y = 99, of the
weak solution.

Theorem 2.76 (Theorem 4.3 [55]). [Convergence to a weak solution] Let My € C(R, )
with n > 3 such that Mg = 0Q for some open, bounded Q C R**1. Let uy, be the solution of
weak level-set flow on ), and denote by wu; the level-set functions representing the solutions
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M of mean curvature flow with surgeries starting from Mg with parameters Hi, HS, HAi.
Then for all sufficiently small € > 0 we have

sup [u; —ur| < C(Hp)
Q

where C' depends on n, e and My.

Note: As i increases, the necks become thinner and our surgery parameter H; at which
we do surgery increases.

Barrier Result

We want to compare the Huisken-Sinestrari mean curvature flow with surgeries procedure
to the weak solution obtained using the level set method. It is clear that before the first
surgery time M¢ and 'y agree. The first step in doing so will be to show u; is bounded from
above by uy, for each 1.

It is clear that at the first surgery time Mé? C ET; = Q7,, but what happens for
t>1T.

We will use the Tearing Apart Lemma discussed in Section 4 of [34], which, as the name
suggests, states that two surfaces which agree except for on some subset, must separate
instantaneously under the smooth evolution.

Lemma 2.77. Let W C ]R”Jil be open and bounded. Consider a subsel W C W. Suppose
that Mo = OW and Mo = OW are smooth and mean-convex with My C W and Mo # Mo.
Then the corresponding solutions My, M, of mean curvature flow satisfy

Mt N Mt - (Z)
fort >0 as long as they remain smooth.

Therefore M! is trapped inside Q; for all + > Tj. This corresponds to the following
global barrier result.

Lemma 2.78 (Lemma 4.4 [55]). Let Q,u’ and uy, be as in Theorem 2.76. Then for each i
we have

ui(z) < up(z)

for all z € €.
Proof. My =T'q = 092 which tells us that M§ CC Q for all § > 0. Therefore 4 dist(M], ,T;) >

0 as long as M}, ; remains smooth. However this is clearly preserved by the Huisken- -
Sinestrari surgery construction.
Now recall the definition of a solid tube as in Proposition 2.23. Each standard surgery

is performed on an (e, k)-hypersurface neck Ny of length L which encloses a solid tube
Gy : B} x [0, L] — R™"L. Denote the two regions diffeomorphic to discs introduced by each
standard surgery by Ut. Then by construction it follows that UT C Go(B} x [0, L]) so it
follows:

= /WT; CE -

= MZT;JHS CC Qr,

= M;;M CC Qg
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In fact dist(/\/lf; Y I';) is non-decreasing across each surgery time 7).
And

/\/liHﬁFt:@ = .Mi+6 CCQtVt>0.

Since there are only finitely many surgeries and w; and uy, are both continuous, the result
follows. O

Time shifting the weak solution

We have established that u; < uz, on  for each i. Now we want to translate uy, vertically
in time until it sits below u;. We will then use the Clearing Out Lemma [26] to obtain the
necessary result.

As usual let 9Q = My € C(R, ) and the flow with surgeries M¢ for a given choice of
surgery parameters.

At the first surgery time, T, , M agrees with the classical and weak solutions. The idea
is that we “freeze” M;,l, and run the weak solution a little longer until

PTI +t, CC ETI

This allows the weak solution to vacate the regions modified by surgery. This must happen
for some constant t,, due to the 2-convexity assumption.

Then show that ¢, can be controlled explicitly in terms of the surgery parameters. Next
we perform surgery on MiT; after which

/\/liip1+ NTr 4, =0
and restart both evolutions. Now suppose that at any surgery time 7} we have
MZ'Tj+ NTr4je, and Tr4j, CC S,
then the avoidance principle guarantees

Mz N Ft—i—jtw[b on [Tj+, T:

+1) by avoidance.

We will not need to keep track on the distance between the two solutions. At each
subsequent surgery time 7)1, we again freeze ./\/lT1 ) and apply an additional translation.
J

Proposition 2.79 (Proposition 4.6 [55]). Q,u; and uy, as before. We can choose L = L(n)
sufficiently large such that for each i we have

ur(x) — Nt, <ui(z) Vo eQ, (2.80)

where t,, satisfies t, < CL?(Hi)~2 for a constant C depending on n and N is the number
of surgeries times associated with u;.

We will also require the Clearing Out Lemma stated below. It guarantees that if the
surface has a small area ratio with respect to a ball of given radius, then the solution of
mean curvature flow must clear out a smaller concentric ball in a controlled way.
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Lemma 2.81 (Theorem 4.7 [55]). There exist constants 6 and C' depending on n such that
for all zg € R™* ! and p > 0, the estimate

ITio N By(o)| < 0p"
értﬂBg(Io) =0

where t — tg < Cp2.

We first deal with regions that are directly affected by the surgery procedure. The point
z € R"! is modified by the surgery procedure if it belongs to the part of a solid tube G
which is changed by surgery, i.e. © € G(B} x [A, L — A]).

Lemma 2.82 (Lemma 4.9 [55]). [Regions modified by surgery procedure] Suppose n > 3 and
let Q € R™*! be an open, bounded set such that 0Q € C(R, «) for some R,a. We can choose
L depending on n sufficiently large such that the following holds. Let T, j € {1,...,N}, be
a surgery time for u; and assume that to > T; > 0 is such that H"(T'y,) = H™(0*Qy,)
and I'y, C EZTJ Then there exist constants C1,Cy depending only on n such that I'y 17 N
B (z) =0 for all z € ZiTj modified by the surgery procedure, where pg = C1L(H})™!
t < CoL?(HY)~2.

and

Proof. Consider any x € Go(B} x [A, L — A]), where G : B} x [0, L] — R"*! is the solid
tube enclosed by a neck Ny with scale ré and centre pg. Since Go can be made as close
as we wish to the standard isometric embedding of a piece of the solid cylinder in R™*1!,
therefore we can arrange that at each such x we have

AN w1 (rE)"™
[No 1 By ()] < 2 0n1 ()"

< An—i = 4Aw, 1 (re)"™.

We then choose A, L sufficiently large such that

€

n—1

T <

NS

n—

-

which implies that
[No N By, ()] < O(Arg)™.
Given this choice of A set,

(n—1)A
=
1
Now we verify that a weak solution trapped inside Ny satisfies
‘Fto n Bpo(x” < opg

The result then follows from the Clearing Out Lemma.
We can now use Proposition 2.66, the area minimisation property of the weak solution,
direct comparison of the set €y, N Gy with the perturbation 2., U G¢ yields the estimate

[Tty N Go) N By, ()] < [No N By (2)]-
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To complete the proof, we need to confirm that no other part of the surface can interfere
with B, (), i.e. By, (x) N (S, \ Go) = 0.

We let, By (p,7) = {q € M"|dgt)(p,q)<r € M™}. Consider a spacetime point (po,T})

such that pg lies at the centre of the neck Ny C /\/lifJ and set R = H(’;ng;) and B_ =
sLg
Bg(Tj) (pOa ROL)

From the Huisken-Sinestrari surgery construction we know that the solutions to the flow
with surgeries is a family of smooth flows FJ : M; x [Tj_1,T;] — R™""1. As long as we are
not close to a surgery time , the ball Bg(t)(p7 1) belongs to the manifold M corresponding
to the interval [T;_q,T;] containing ¢. If ¢ corresponds to a surgery time we will need to
distinguish between the manifolds before and after the surgery procedure.

Assume that surgery has not taken place at any points in the ball Bg(Tj)(p7 r) for times
between T} — r3w and T;. However surgery may have occurred elsewhere during this time
interval, but must be disjoint from B, (Fy, RoL).

Huisken and Sinestrari showed that any point in P(pg, T}, RoL, R3w) the Weingarten
operator of the surface and its spatial derivatives are e-close to the corresponding quantities
associated with the standard shrinking cylinder. Furthermore, for any ¢ € [T} — wR2, T, il
we know that the point (po,t) lies at the centre of an (e, kg — 1)-hypersurface neck N; C By
of length at least L — 2. Let

o(r,s) = (r* = 2(n — 1)5)%

for s < 0. We let o(r, s) denote the radius at time s of a standard n-dimensional cylinder
along mean curvature flow. We then know that the mean radius r(z) of every cross section
of Ny is given by o(Ro,t — T;)(1 + O(e)) and that there exists a unit vector x € R"! such
that | < v(,p,t),x > | <eforallp € N;.

We able to choose w = C'L? where C' depends only on n, sufficiently large to ensure that
B,,(z) is completely contained in the solid tube enclosed by the hypersurface neck at an
earlier time [T} — wrg]. Since the surgery scale is less than Hi no surgery can interfere with
N; on the time interval [T; —wR3, T;]. By the curvature assumption on the initial data, each
point = € R"*! satisfies « € I'y for at most one ¢. This ensures that the ball does not touch
any part of the weak solution outside the neck Ny and therefore completes the proof. O

The proof of Theorem 8.1 in [67] (as well as the proof of Theorem 3.45), establishes that,

at each surgery time, the regions with mean curvature exceeding H4 are contained in one of
2(n—1)

finitely many disjoint regions A;. Let r§ = =%==. Each A; must admit one of five possible
1

structures:
(i) A; is uniformly convex and diffeomorphic to S™;

(ii) A; is the union of a neck Ny with two discs and forms a connected component diffeo-
morphic to S™;

(iii) \A; is a maximal hypersurface neck Ny which covers an entire connected component of
M.~ and is diffeomorphic to S~ ! x ST,
i
(iv) A; is the union of a neck Ny with a region diffeomorphic to a disc and has one boundary
component with mean radius 7j;

(v) A; is a neck Ny with two boundary components (each of which has mean radius r%)
and is therefore diffeomorphic to S*~1 x [0, 1].
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Components of known topology are discarded at the surgery time. In addition, one
standard surgery is performed at the cross-section nearest to each boundary component with
mean radius r{ = "H—’lil, forming a component diffeomorphic to S™ which is also discarded.
It is necessary to deal with the points affected by step two of the surgery procedure. Let
T; be the surgery time. Consider any A; C Mﬁfj and the corresponding domain G; ¢ R*+!
enclosed by A;. Let S C G; be the open set in R"™! enveloped by a component removed
at the surgery time 7. The following lemma will provide us with an upper bound on the
extinction time Tg = sup{t > 0|’y # (0} of the weak solution generated by S.

Lemma 2.83 (Lemma 4.10 [55]). [Discarded Components] Suppose n > 3 and let Q C R
be an open, bounded set such that 9 € C(R, ) for some R < a. Let Mt be the solution of
the flow with surgeries starting from 0Q and with the parameters Hi, Hi, Hi. In addition,
let T; be any surgery time for M} and consider any discarded component 8S produced by
the solution M} at time Tj. Denote by S C R™! the open set enveloped by 0S and let
ugs : S — R be the weak solution generated by the domain S. Then there exists a constant
C > 0 depending only on n,«a such that Ts < CL?*(H})™2, where Ts denotes the extinction
time of ug.

Proof. Discarded components must be diffeomorphic to S™ or S?~! x S!. The only case in
which the latter occurs is in the form of a maximal normal (e, k)-hypersurface neck without
boundary. An argument similar to Lemma 2.82 together with the clearing out Lemma
yields the estimate. This argument can be applied to any neck which arises as a subset of
a discarded component.

In the remaining cases 0S5 is diffeomorphic to S™, therefore we have three different
possibilities.

(1) As a uniformly convex component,
(2) As the union of a hypersurface neck with two regions diffeomorphic to discs or

(3) as a component which becomes disconnected from the rest of the surface as he result of
surgery.

If two surgeries are performed on a region A4; with two boundary components then the
resulted connected component satisfies the estimate by the argument above.

In case (1) we can use the curvature bound from Theorem 2.53 in combination with
Myers Theorem and an appropriate spherical barrier to obtain the appropriate estimate.

We are now left to deal with the remaining convex regions diffeomorphic to discs. Huisken
and Sinestrari showed that a neck can either close up with a convex cap or border a disc
which was inserted by a previous surgery. In either situation we use a straight cylinder as
a smooth barrier.

By Theorem 2.56 the curvature of this cylinder is bounded below by H? up to a constant.
We know that after a time bounded above by C;(n)(H}) 2 the weak solution must clear out
the bordering neck. By the curvature assumption, it cannot re-enter the collar of the neck.
Then by comparison with the smooth evolution of a standard cylinder, the weak solution
disappears completely after an additional time bounded above by Cs(H})~2 where Cs is a
constant depending only on n. Choosing C' = max{C1,Cs} + C5 complete the proof. O

Proof of Proposition 2.79. We have M} =T = 0N and therefore I's CC Q2 for § > 0. The
avoidance principle guarantees that dis(I'st+, M}) is non-decreasing in ¢ for all § > 0 and for
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all 0 < ¢t < T, until the first surgery time for M¢ - that is, as long as M? remains smooth.
Therefore

Doy CCXL 0<t<T, and TspyCcCXl, 0<t<T,

for all 6 > 0. Let ts =6 + 1.

We will now show that I'y; 1, CC X4, for all § > 0 where ¢, < CL?*(H})~? for a constant
C depending on n and «a. Let dS; denote the finitely many components discarded by the
solution M! at time 7;. Applying Lemma 2.82, we obtain I'y, . ; CC (ETli U (U);S;) for all
small § > 0, where ¢ < CL?*(H{)~2 for a constant C' depending only on n. The avoidance
principle for weak solutions yields I'y, 1+, CC Ei'Tl for all § > 0, where ¢, = { +max; T, and
Ts, denotes the extinction time of the weak solution generated by S;. Using Lemma 2.83,
we conclude that max; Ts, < CL?(H{)~2 where the constant C' depends on n and «.

We then invoke the avoidance principle on the next smooth time interval and iterate the
argument finitely many times. This establishes that I'y. |, CC X} for all ¢ > 0 and for all
small 6 > 0, where t5 = 6 + Nt,,. The proposition then follows from the continuity of the
level-set functions u;, u;. O

Proof of Theorem 2.76. Combine Lemma 2.78, Proposition 2.79 and (2.75). O

2.2.3 Lauer’s Convergence Method

Lauer was able to also prove that the surgery process converges to level-set flow as we take
the limit of our surgery parameter. Whilst Head obtained and used explicit estimates to get
the result, Lauer was able to prove the same result using a maximum principle argument.
The results and proofs are as in [71].

Definition 2.84 (Weak Set Flow). Let K C R"™! be closed and {K;}+>0 a one parameter
family of closed sets such that the spacetime track U(K; x {t}) C R"*2 is closed. Then
{Ki}i>0 is a weak set flow for K if every smooth mean curvature flow ¥, on [a,b] we have
K,NY,=0=K;N% =0 for allt € [a,b].

Definition 2.85 (Level Set Flow). The level-set flow of a compact set K C R’i“‘l, is the
maximal weak set flow. K C Rt s level flow flow if for any weak set flow K we have
K C K; for allt > 0.

The existence of a maximal weak set flow is verified by taking the closure of the union
of all weak set flows with given initial data. If K is the weak set flow of K, we denote by
K the spacetime track swept out by K;. That is,

K = UtzOKt X {t} C R 2,

Let ¥y C R™2 denote the spacetime track swept out by the hypersurfaces. Here we
use Hs to denote our surgery parameter.

We work with regions bounded by the evolving hypersurface. Let K C R"*! be a
compact domain such that 0K is a two-convex hypersurface. Then if 0K g is mean curvature
flow with surgeries, we define Ky C R"*2 to be the region of spacetime such that t = T
time-slice of Ky is the compact domain bounded by (0K g)r.
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Theorem 2.86 (Theorem A [71]). Let K C R with n > 3 be compact with OK two-
conver. Then for H sufficiently large, let Ky be the result of mean curvature flow with
surgeries performed with parameter Hsz, and initial condition (Kg)o = K. Then

lim Ky =K.

H—o0
The key ingredient in proving this theorem is the following lemma.

Lemma 2.87 (Lemma 2.2 [71]). Given € > 0 there exists Hy > 0 such that if H > Hy, T
a surgery time and x € R such that

B.(z) C (Ku)7 = Be(z) C (Ku)F.

where we use (0Ky)p and (0Kpy)F to refer to the pre- and post-surgery hypersurfaces at
surgery time T and (Kg)7 and (Kp)4 to the regions they bound.

Proof. Refer to the proof in [71], it just relies on the surgery construction from [67]. O
Recall the definition of Hausdorff distance.

Definition 2.88. X and Y two non-empty subsets of a metric space (M,d). Then

disty (X,Y) = max{sup inf dist(z,y),sup inf dist(x,y)}. (2.89)
reX YEY yey rzeX

Equivalently

distg (X,Y) = inf{e > 0|X C Y. andY C X.} where
Xe = Ugex{z € M|dist(z,x) < €}.

The intuitive way to think of this is what is the largest ball we can attach to any point
x € X such that the ball remains in Y.
We now are able to prove the Theorem 2.86.

Proof. Given an € > 0 sufficiently small let . > 0 be the time such that
dist(OK,0K;,) = e.

Such a time exists since 0K is two-convex. Let . C R"™2 be the level-set flow K; . We
now claim that Q). C Ky for all H > H.

We pick our € large enough depending on Hy, such that at the first surgery time 7' for
Ky, Q. has vacated the region affected by surgery, we know such an € exists as the region is
two-convex. Now since the distance between the weak set flow and mean curvature flow with
surgeries is non-decreasing on the interval [0, T") we know that d((Qe¢)r, (0Kg)7) > €. By ap-
plying Lemma 2.87 and the definition of Hausdorff distance we know that d((Q.)r, (0Kx)+) >
€. Since (0K H); is a smooth hypersurface we can repeat this argument for each subsequent
surgery time. This proves our claim.

Since lim Q, = K , the claim implies that K C lim K g as the limit of closed sets is

e—0 H— o0
closed.

Lastly, since each mean curvature flow with surgeries is also a weak set flow for K, we
have lim Ky C K.

H—o0 R

99



Chapter 3

The Surgery Procedure for
Brendle-Huisken G-Flow

In the first chapter we began by outlining Huisken’s results for mean curvature flow in
the convex Euclidean setting. He was then able to extend his classification result to the
Riemannian setting with some extra restrictions.

Taking the next natural step Huisken and Sinestrari weakened the convexity assumption
and used their surgery algorithm to study two-convex surfaces in the Fuclidean setting.
Ideally the next step would then go on to prove a similar result for mean curvature flow
of two-convex hypersurfaces embedded in a Riemannian manifolds. However in this setting
2-convexity is not preserved by the flow. Inspired by Andrews work on harmonic mean
curvature flow, [4], Brendle-Huisken introduced the following flow which has the advantage
of preserving 2-convexity in the Riemannian setting.

Fixing n > 3 consider a closed, embedded hypersurface My in R*t!. M, is k-two-
convex if Ay + Ao > 2k, where \; < --- < )\, denote the principal curvatures. We evolve
M with normal velocity

—1
1

Ge= S
j)\i+)\j_2fi

1<

This is called Brendle-Huisken G-flow, but we will sometimes abbreviate it to G-flow. Bren-
dle and Huisken were able to extend the surgery algorithm of Huisken and Sinestrari to
this G-flow in both the Euclidean setting and Riemannian setting. In order to do this they
obtained a convexity estimate, cylindrical estimate and gradient estimate for the flow which
is described in Section 3.1.

The main theorem of this chapter is as follows.

Theorem 3.1. Let M, be a smooth Brendle-Huisken G-flow of a closed, compact 2-convez
hypersurface. Given our neck parameters, there exists a constant G* depending on M,
such that if Gmax(to) = G*, then the hypersurface at time to either contains an (e, k, L)-
hypersurface neck or is convex.

When studying this flow in the Euclidean setting it suffices to check the k = 0 case. In
order to argue as in Section 2.1.6 for this flow, adjustments have to be made for the gradient
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estimate from [16]. Unfortunately we are not able to integrate the gradient estimate in its
current form to obtain results relating to our backward parabolic neighbourhoods being
surgery free as in Lemma 2.44. This is crucial in our proof of the Neck Detection Lemma.
Some small adjustments will also be required in our proof of the Neck Detection Lemma for
this setting.

After making these changes we can follow Section 2.1.6. and Section 7 of [67] to obtain
the other necessary results for when certain conditions in the Neck Detection Lemma are
not met. Firstly we may not know that the backward parabolic neighbourhood about a
point is surgery free, in this case we can obtain the required result as long as the curvature
at our point is large enough compared to the curvature of the regions changed by previous
surgeries. We must also deal with the case when % is not small, however the proof here
does not rely on gradient estimates and is instead a general property of hypersurfaces as
shown in Theorem 2.53.

We also wish to prove the following result analogous to Theorem 2.55, which relates to
the existence and classification of surgically modified flows.

Theorem 3.2. Let Mg be a smooth closed two-conves hypersurface immersed in R*H1, with
n > 3. Then there exist constants G1 < Go < G3 and a G-flow with surgeries starting from
Mg with the following properties:

e FEach surgery takes place at a time T; such that Guax(T;—) = Gs.

o After the surgery, all the components of the manifold satisfy Gumax(Ti+) < Ga, except
for those diffeomorphic to spheres of to S™t! x S1, which are neglected afterwards.

e FEach surgery starts from a cross section of a normal hypersurface neck with mean

radius r(z,) = %

e The flow with surgeries terminates after finitely many steps.

The constants G; can be any values such that Gy > w1,Go = wGy and Gz = w3Ga, with
w; > 1.

In order to prove this theorem and cover the arguments of Section 8 from [67] we need
to obtain a lower bound for the time between surgeries, which we do in Section 3.3.
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3.1 Evolution Equations and Necessary Estimates

In this section we go over some preliminary results obtained from Brendle and Huiskens
paper on G-flow [16]. We will need the evolution equation for G, convexity estimate, cylin-
drical estimate, as well as our new gradient estimate which allows us to control the size of
the curvature in the neighbourhood of a given point.

Firstly we give some introductory results regarding G-flow, stated by Brendle and
Huisken in [16].

Proposition 3.3. Given G as above we have the following properties:

(i) G, < C1H, where Cy > 0 depends only n.

(ii) 0 < ggﬁ_ < Cagij, where Cy > 0 depends only on n.
ij

Proof. (i) Clear.

(ii) This is equivalent to observing % being bounded for each i, because

0G  0G O
Ahy, O\ Ohyy

Now
(i) = O(hy)OT

for some orthogonal matrix O. Expanding

A = ohion

k.l
LN
ahkl = Ok 015
Therefore
0G 06
ahkl - - a)\l ik Ol
oG oG
= — = oT.
s =0 (o)
. 8G .
Now calculating o, we obtain,
oG - -1
=G~ Z 2
O ks Qi+ Ak
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The above line together with two-convexity gives me the lower bound. To obtain the
upper bound observe that this is less than

n

1
el I
k=1 ki (Ai +Ax)

< G72G? again using two-convexity
=1

Now we are able to obtain the necessary evolution equations for G.

Lemma 3.4. If M, evolves by G-flow, the associated quantities above satisfy the following
equations:

(i) 5:9i; = —2Ghi;
(it) 2g" =2Gh"
(iii) &v=VG
(iv) Lhij = DiDjG — Ghag" ™ hom;
(v) §G = §Z(DiD;G + hixhjG)
(i) ZH = A|G| + |h*G
(vii) %du < f%zd,u.
Proof. (i)

9 JOF OF
atg” - a oz O;

8F 0 oF
<8x1 ]>+<8xj( Gv), 3:172>

0 oOF oF o
G<ax@ aj>‘G<axxa%”>

= —2Ghy;

(ii) Obtained by differentiating g;; g% = 55
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(iii)
" ~\ot" o) 02,7

__[, Q0F\OF ;

=\ otox,; / 0x;7

0 oF ..
= _— e e— l]
<V, oz, (GV)> oz,

g _OF
= 2, 0, ?
= VG.

El _<a 8F>6F y

ij

(iv) In this proof we will make use of the Gauss-Weingarten equations.

Oy 5< o°F V>
ot N ot 6581‘(93"7',
0%F
<axlaxj axlaxj at”>

G oF .
8:618% ax &nj o0x; 8xmg
0

2
axzaij+G<a - (ai > > <aiaxj aingxiglm>
(9x10ij+G<8x, ( ) V>

<F§3§F hijv, 5~ 9 & axm “">
B p;;(,f G+ Gy (Tl b

:DiDjG — Ghilg hmj.

(v) Here we just use the fact that %—? = g}g gt h? as well as part (ii) and (iv).

(vi)
0 0 iy
— — .at)
atH at (hzjg )
8 1
=g" g is T 2GhY
= ¢"(D;D;G — Ghuglmhmj) +2Gg* g by

= AG + |h|?G.

(vi)) Zdp = 1,/detg;;tr(—2Gh;;) = —GHp. Using Proposition 3.3(i) the result follows.
O
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We will also often make use of the following proposition which states that on any given
bounded time interval, the mean curvature is bounded from above by a constant multiple
of G. We often use this assumption without statement.

Proposition 3.5 (Proposition 2.4 [16]). We have G > BH for allt € [0,T) where 8 is a
positive constant that depends only on T and M.

Proof. Refer to Proposition 2.4 from [16]. O

The convexity estimate, is necessary in order to know that the nearly singular regions
of the surface become asymptotically convex as a singular time is approached.

Theorem 3.6 (Corollary 7.7 [16]). (Convezity Estimate) Suppose that My, t € [0,T) is a
surgically modified G-flow starting from a closed, embedded, 2-convezx hypersurface Mg then
for any 6 >0

A >6G—-C
where C' is a positive constant that depends only on 6,n and T.

Next we need a cylindrical estimate which implies that at points where Ay is small, we
have curvature close to the curvature of a cylinder.

Theorem 3.7 (Theorem 3.1 [16]). (Cylindrical Estimate) Let M, be a family of closed,
two-convex hypersurfaces moving with speed G, then for all n > 0 there exists a constant
C > 0 depending on 0,T and n such that

(n—1)2(n+2)
4

H< (1+6)G + Cy 1.

The following is the gradient estimate.

Theorem 3.8 (Theorem 7.12 [16]). (Gradient Estimate) For a closed, embedded, two-convex
hypersurface Mo = 6Qq. We can find a constant G¥#, depending only on My such that the
following holds: Suppose that Q, t € [0,T), is a one-parameter family of smooth open
domains with the property that the hypersurfaces My = 9§ form a surgically modified flow
starting from Mg with surgery scale G, > G#. Then we have

QG 2|Vh| +a*G73|V3h| < A (3.9)

for all points in spacetime satisfying G > G#. Here o is a constant depending on T and n
is the constant in Proposition 7.8 ([16]), and A is a constant depending on T and n is the
constant appearing in Corollary 7.11 [16].

Now we want to modify this gradient estimate using the following lemma, in order to
allow us to integrate our gradient estimates and obtain necessary results related to the
backward parabolic neighbourhood as done in Lemma 2.44.

Theorem 3.10. Let M be a G-flow with surgeries. Then the inequalities a*?G~2|Vh| < C
and oG ~3|V?h| < C from Theorem 8.8 allow us to find ¢ > 0,G# > 0 such that for all
peE M andt >0,

G(p,t) > G >0 = |[VG(p,1)| < FG*(p,1), 0,G(p,t)| < 7 G (p, ), (3.11)

where ¢ only depends on the dimension of n,T.
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Proof. For the n-dimensional case we look at the following. We know that

det(/\I — h”) = (/\ — /\1)(/\ — /\2) s ()\ — )\n)
A—hyp ... —hin
= det : : SP LD Lkt 0 VI SRS ED L) [NEPPRED VINRR Wt
—hp1 oo A—hpn
Here we will need to introduce some notation. Let Qg (h;;) denote a k-degree polynomial

in terms of of hy;’s, such that no lower degree can appear. Using a degree argument and
equating terms on either side we will obtain

N Qup(hig) = NPXI . (3.12)

This guarantees that we can rewrite our principal curvature values in terms of the second
fundamental form. Rewriting G as follows,

[Lic; (A + )
Zi<j ﬁ Hi<j ()‘i + )‘j)

applying the result of (3.12) to our rewritten G we see that we can write out the AP using
our hj; terms,

G =

(3.13)

G = Qn(hij)
Qn—1(hiz)
Moreover from our definition of G, (3.13) and 2-convexity, we can see that
A1+ A2
n

<G <At A (3.14)

Moreover from Proposition 3.5 we know that H < 3G for some constant C. This tells us
that

M+ + A =H < [G
= XN < /G
= |hij| < [B2G]| (3.15)
for some constants 1, 82 depending on n. The last step is clear as we know (h;;) = O()\;)OT,

where O is an orthonormal matrix and ();) is the diagonal matrix of principal curvatures.
So,

Q1(Vhij)Qn—1(hij)Qn-1(hi;) — Q1(Vhij)Qn—2(hij)Qn(hi;)
Qan—2(hiz)

VG| =

Q1(Vhi;)Qan—2(hij)
Q2n—2(hij)

B3G"2Q1(Vhyj)
BsG*n—2

BG?

o?

IN

by (3.15) and (3.14) where (3, 54 are constants.

= VG| < |
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were by equality we refer to equality in the degree and in the last line we have applied
Theorem 3.8. This proves (i).
Now we prove part (ii). From 3.4 (v) we know that

oG
0G = —(V;V,;G — hijh; Q). (3.16)
8hij
We can control aaTC; using Proposition 3.3(ii).
Next by applying (3.15) we can bound the h;;h;xG term by BG® for some constant 3.
Lastly V;V ;G will give terms of the form VZhij and Vh;;G. Using (i) as well Proposition
3.8 we see that |0,G| < |KG3| for some constant K. This completes the proof of (ii). O

These estimates allow us to control the size of the curvature in a neighbourhood of a
given point.
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3.2 The Neck Detection Lemma

Using our new gradient estimate we will now obtain an result analogous to Lemma 2.38
relating to the size of the curvature in a neighbourhood of a given point. For the ease of
understanding the proofs of these results will follow the template set out by Huisken and
Sinestrari in [67] Section 7, with only the necessary modifications, we are able to follow their
template due to our new gradient estimate (Theorem 3.10) .

Lemma 3.17 (Analogous to Lemma 2.38 and Lemma 6.6 [67] ). Let F': M — R"*! be an
n-dimensional immersed surface. Suppose that there are ¢, G# > 0 such that |VG(p)| <
c*G2(p) for any p € M such that G(p) > G*. Let py € M satisfy G(py) > 7G* for some
v > 1. Then

G(po) - Gpo)

G(Q) > 1+ C#d(po,q)G(po) I

for all q

such that

¥y—1 1
d(po, q) < .
(pO Q) o G(po)

Proof. Consider points ¢ € M such that G(q) < G($O). Take go to be a point with this

property with minimal distance from p, and set do = d(po, q0)G(po) and 6y = min{dy, 70#1 .

Now for any point ¢ € M with d(po, q) < , let £:1]0,d(po,q)] = M be a geodesic from

G(p
Do to gq.
Then from our definition of 6y it follows that G(&(s)) > > G¥ for any s €
[0, d(po, ¢)]. Then we can apply Lemma 3.8 to obtain [VG(&(s ))\ G2 (&(s)) and

G(E( ) > —c*G*(&(s))
for all s € [0,d(po, q)] since it is a geodesic. Integrating this inequality we obtain

G(po)

G > — 2, s€|0, d ) )
(5(8)) =1 +C#8G(p0) [ (p() q)]
which implies
G(po) G(po)
G(q) > > . 3.18
= T o, 0G) T+ c#6, 319
This holds for all ¢ such that d(pog,q) < G(p 5 Now suppose dg < 15, then dy = 0y and
(3. 18) holds for ¢ = qo. But that anhes G(qo) > G(p o) which is a Contradlctlon. Therefore
do > , which implies 0y = # , which proves (3. 18)
In the case where G(q) > 50 for all ¢ € M, then we have |VG| < ¢#G? everywhere,
and our result follows more directly from the same argument. O

Next we introduce a backward parabolic neighbourhood. This will be essential in dealing
with necks.
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Definition 3.19. Given t,0 such that 0 < t—0 < t < Ty, we define the backward parabolic
neighbourhood of (p,t) by,

P(pa t,r, 9) = {(Q7 S)|q € Bg(t) (pa 7’), ERS [t - 07 ﬂ} (320)
where By (p,) C M is the closed ball of radius r with respect to the metric g(t).

Before we go on to prove the next lemma, analogous to Lemma 2.44, we need to define
Fo = % and Pg = P (p,t,fg(p, t)L, 7% (p, t0)). If (p,t) lies on a neck then 7g(p,t)
is approximately equal to the radius of the neck.

Lemma 3.21 (Analogous to Lemma 2.44 and Lemma 7.2 [67]). Let ¢c* and G# be the
constant from Theorem 3.10. Define
d* = (2(n — 1)2(n — 2)%c#)~1. Then the following properties hold.

(i) Let (p,t) satisfy G(p,t) > 2G#. Then, given any .6 € (0,d#] such that Pg(p,t,r,6)
does not contain surgeries, we have

G(p,t)
2

< G(g,s) < G(p,t) (3.22)

for all (q,s) € ﬁg(p,t,r, 6).

(i) Suppose that for any surgery performed at time less than t, the regions modified by
surgery have G-curvature less than K, for some K > G#. Let (p,t) satisfy G(p,t) >
2K. Then, the parabolic neighbourhood

1 1
P (p, ey iy o K2> (3.23)

does not contain surgeries. In particular, the neighbourhood Po ( Jt,d7 d#) does not
contain surgeries and all points (q, s) contained there satisfy (1).

Proof. First we prove (ii).

Suppose the neighbourhood in (3.23) is modified by surgeries. Take a point (g, s) which
is modified by surgery, with s the maximal time at which we can find such a point. Then
by assumption we have G(q, s+) < K. Integrating the estimate on §;G from Theorem 3.10,

t t
/g—?g/c#at
1 1

_ < 7t —
0t g S ¢
1 1
> — 27 (t—5) > ——
G2(q,t) = G2(q, ) (t=9) = 7

where in the last line we used our assumption on H(q, s) and that t — s < W. Then we
integrate along a geodesic from ¢ to p at time ¢ and use the estimate on VG

1 1
>

4/3-1 . 1
G(p,t) — G(g,t

8K 2K’

) - C#dg(t)(pa (]) >
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where in the last line we used our estimate on G?(g,t) and that dgy < SC%K. This contra-
dicts our assumption that (3.23) contains surgeries since G(p,t) > 2K.

In this argument in order to apply the results of Theorem 3.10 we have had to assume
that G > G* along the integration paths. If this were not the case, we could choose the
last point along the path with G < G and integrate from that point onwards, obtaining a
contradiction using the same argument.

Now we use the definition of d# to see that 75g(p,t, d#, d#) is contained in the neigh-

bourhood (3.23),

(n—1)(n—2)d* 1 1
< <
2G(p,t) ~8K(n—1)(n—2)c# ~ 8c#K
— 1)2(n — 2)24#
and (n—1)%(n—2)%d < 1 < 1 .
2G(p, t)? 16 K2c# — 8c# K2

Therefore Pg(p, t,d#,d#) does not contain surgeries and part (i) can be applied to this
neighbourhood.

To prove (i), we integrate the same inequalities and use the assumption that Pg is
surgery free. O

Lemma 3.24 (Analogous to Lemma 2.46 and Lemma 7.4 [67]). [Neck Detection Lemmal
Let Myt € [0,T) be G-flow with surgeries, starting from an initial manifold My. Let
€0,L >0, and k > ko be given (where kg > 2 is the parameter measuring the regularity
of the necks where surgeries are performed). Then we can find n9, Go with the following
property:

Suppose that pg € My and to € [0,T) are such that:

A1(po,
(ND1) G(po,to) > Go, gkese) <o

(ND2) The neighbourhood P(po,to, L,0) does not contain surgeries.
Then,

(i) The neighbourhood 75(p0,t0,L, 0) is an (e, ko — 1, L, 0)-shrinking curvature neck;

(ii) The neighbourhood P(po,to, L—1,0/2) is an (e, k, L—1,0/2)-shrinking curvature neck.
With constants ng and Go depending on «, €, k, L and 6.

Proof. Here we argue by contradiction. Suppose that for some values of ¢, L, § the conclusion
does not hold. No matter how we pick 7y or Gy. Take a sequence {Mj7};>1 of solutions to
the flow. Then a sequence of times t; and points p; such that

(a) A1+ A2 > oG, this is clear from (3.14).
(b) The parabolic neighbourhood P7(p;,t;,#; L, f?@) is not changed by surgeries.

)\ .
i 5 0 as

(¢c) G; — oo since curvature of the flows uniformly bounded at ¢ = 0 and e

Avj ;
7o 0asj— oo.

j — oo. Equivalently

(d) (pj,t;) does not lie at the centre of an (e, ko — 1, L, §)-shrinking neck.
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where , H;, G, A1 ; denote the values of H, G and A\; at F(p;,t;) € ./\/liJ We now continue
with a parabolic rescaling such that H(p;,t;) = 1 and p; is translated to the origin 0 € R7*1
and t; becomes 0. We define
Flp,7) = 2 [F (057 +1;) = Fly, 1)
J

where MZ denotes our rescaled surface.

Moreover by Theorem 3.8 we know that the first and second derivatives of the second
fundamental form are bounded. Therefore the rescaled flows converge to a smooth limit
flow ]\Zf;’o Moreover by (c) since /\éf — 0 we know there exists a point on the limit flow
where Ay = 0. '

2

Now passing to the limit in the cylindrical estimate yields H — ("_1)4%6' <0.

Scaling by H we know that the principal curvatures on a cylinder are Ay = 0 and
)\j:ﬁforalljZQ

=H=1
=G = <(n1)(n1)+(n_1)(”—2)(n_1)>

:<m—n3n+m)1. 2 2

On a cylinder H — %G = 0.
We want to see, G(0,a1,...,an—1) < G(0, ﬁ, ey ﬁ) with equality when the a;’s are
equal.

Picking from (0, ay, ..., an—1) we know,

1 1 1
Gl=_—-4.. M1 — ce g,
ot +an_1+zai+aj+ (1—ai+-+am1)

where X is the Lagrange multiplier with the constraint that ) ajs = 1. Taking partial
derivatives to find a local maximum we see that for any two i, k,

oG™! 1 1

da; a? ; (a; +a;)?

oG~1 1 1

o = @ 2 faayr 20
k k £k k J
11 1 1

S + —0

o o j;k (a; +a;)” J;k (ax + ;)2

= a; = ay and all a}s are equal. Now on the boundary when a; — 0 for some [ > 1 tells us
that G — 0 and we have a minimum, therefore we have a maximum when they are equal
on the interior. This tells us that G = CH for some constant C' depending on n, so on the
limit we see that the fully nonlinear G-flow is the same as mean curvature flow. This allows
us to argue as in Lemma 7.4 [67] and Theorem 5.1[62] to obtain that M on P>°(0,0, d, d)
is a portion of a shrinking cylinder.
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Now we can continue as in the proof of Lemma 7.4 [67]. We iterate the procedure to
that the neighbourhoods 75]‘4>O (0,0,L,0) of the rescaled flow converge to a cylinder. From
the first step we know that, for j large enough, the curvature on 75]‘-”(070,d, d) is close
to the curvature of a unit cylinder. Then, using the gradient estimates we have uniform
bounds on Gj also on some larger neighbourhoods, i.e. ”p;»’o(0,0,Zd, 2d), we can repeat
the previous argument to prove convergence to a cylinder there. After a finite number of
iterations we can obtain convergence of the neighbourhoods 75;?0 (0,0,L,0). The immersions
converge in the C*~1-norm and this ensures that for j large enough, the neighbourhoods
are (€, kg — 1, L, 0)-shrinking necks. This contradicts assumption (d) and proves part (i) of
the Lemma.

To prove part (ii) of the Lemma we argue in a similar fashion. Again we argue by
contradiction and take a sequence of rescaled flows. Consider the smaller parabolic neigh-
bourhoods P(0,0,L — 1, g) and apply interior regularity results from [29] to find bounds in
the C¥*1 norm as well. This yields compactness in the C*-norm, which gives the desired
result. O

Remark 3.25. Once we know that H = CH for some constant C depending only n we
could argue as in Proposition 3.8 [16]. Looking at the evolution equation for G Lemma
3.4(v) and the upper bound of the evolution equation for H found in Lemma 3.2 of [16] we
have:

0 oG
e DD B
8tG 8}11]( i JG-i-hmhjkG)

and
0 oG 1 |Vh|?
—H < —(D;D;H whicH) — — .
ot —ahij( iDiH + hahsiH) = =7

Since H = CH, we can conclude that the second fundamental form is parallel, i.e. |Vh|*> =0
at each point in spacetime, therefore M, is contained in a cylinder.

Remark 3.26. Alternatively one could also argue as in in the proof of the Neck Detection

Lemma in [16]. In which they look at the sequence of manifolds Mgf) and replace condition
(b) with
A1(po,to) _ 1
Gpg,tx) >k and —————— < —.
( k k) G(po,to) L
Since this is true for all values of k there exists a point such that A1 (pg,tr) < 0. Then we
can apply Proposition 3.8 from [16] analogous to the above remark to obtain the result.

Remark 3.27. Here we wish to briefly show why we cannot prove the neck detection lemma
in the same way as in Lemma 7.4 [67]. Arguing as in Section 3 [65] we take P(W) a
symmetric polynomial of degree o« where W is the Weingarten map, then

oP
VquP = Vp <8hlquhlm)
o?pP oP
= (57— VohatVohim + 7—V,Vohim
(6hlmahabvp bvq tm 8hlm vaq : >
oP %P
= mvz;vthm == (VquP - ahhnahabvphabvthm> (328)
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Now
oP OP Ohyy,

ot~ Ohy, ot
op (3.29)

= o (ViViG + higchmiG)

Since G = G(hi;) we have

oG
ma = ar mh
ViVG =V, (ahpqv pq)

92G Ble.
gDy \ s Vil + 52

092G e,
BhgBhag \ HiabVimltpg +

ViV lipg (3.30)

Ohypq

VpVehim wusing geodesic and Codazzi.

Using (3.28) and (3.29) we obtain

oP  9G 2P

== P —V,haVahim
Ot Ohpg (V”Vq DBy * PMabValt )
oP 092G

Oim \ OhpgOhap

(3.31)

vlha,bvrnh/pq + hlkhmkG) .

Substituting Q,, = SS: for P into (3.831) we obtain

8@ o oG 62Q
E _8hlm (VZVmQ mvlhabvmhpq
oQ 2*G
ah’lm (8hpqahab VIhabvmh'pq + h’lk:hmkG> .

It follows that to apply the mazximum principle for the convex case it remains to show
that

_ oG 0%Q . 0Q  0°G >0
Ohym, 6hpq8hab Ohym 8hpq8ha;, =

This is equivalent to showing that

oG 9%Q Q 0°G

F = —— —_— .

However we have currently not been able to show that this is true.

_ Without this we are unable to argue as in the proof of Lemma 7.4 [67] to show that
@, =0 and hence \; = 0.

Corollary 3.32 (Analogous to Corollarly 7.7 [67]). Given ¢,0 > 0,L > 10 and k > 0 an
integer, we can find ng, Gy > 0 such that the following holds Let po,ty satisfy (ND1) and
(ND2) of Lemma 3.24. Then

(i) The point (po,to) lies at the centre of a cylindrical graph of length 2(L —2) and C*+2-

norm less than €;
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(i) The point (po,to) lies at the centre of a normal (e, k, L — 2)-hypersurface neck.

Proof. Using Proposition 5.17 and Theorem 2.16 both properties are true is (po,to) lies at
the centre of a (¢/, k', L — 1)-curvature neck for suitable €', k’. Therefore it is clear that the
properties hold if (pg,to) lies at the centre of a (¢/, k', L — 1, g)-shrinking curvature neck.
It remains to apply Neck Detection Lemma(ii) with parameters (¢/,k’, L,60) and use the
corresponding values of 79, Go. O

The next lemma shows us that the shrinking curvature necks obtained by Lemma 2.46
are equivalent to hypersurface necks for any given time, even surgery times.

We will require the following concept and notation. A point (p,t) lies at the centre of a
neck if p € M lies at the centre of a neck with respect to the immersion F(-,¢). We want
a formula for the radius at time s of a standard n-dimensional cylinder evolving by G-flow,
to do this we introduce the following for s < 0,

p(rys) =+/r2—=2(n—1)s (3.33)
where the radius is equal to r at time s = 0. Moreover we have
r < p(r,s) < 2r for all s € [d¥ 72, 0] (3.34)
otherwise the cylinder would violate Lemma 3.21.

Lemma 3.35 (Analogous to Lemma 2.49 and Lemma 7.9 [67]). In Lemma 3.24, we can
choose the constants 1y, Gy so that the additional following property holds. Suppose that
L > 10 and that 0 < d#. Denote

(n—1)(n—2)

Bo = B L).
G Do o(to) (Po, T L)

ro =

Then for any t € [to — 0r, to], the point (po,t) lies at the centre of a (e, ko — 1)-hypersurface
neck Ny C By, satisfying the following properties:

(i) The mean radius r(z) of every cross section of Ny is equal to p(ro,t —to)(1 + O(€));
(ii) The length of Ny is at least L — 2;
(iii) There exists a unit vector w € R such that |v(p,t) - w| < € for any p € Ny.

Proof. Proved in the same way as part Lemma(i) 3.24. By contradiction, we take a suitable
1o, Go, then our parabolic neighbourhood is as close as we wish to an exact cylinder evolving
by G-flow over the same time interval. The cylinder has radius o at the final time, hence
it has radius p(rg,t — to) at previous times.

At the final time, C}, is a neighbourhood of radius 7oL of pg. Let By, C C be the set of
points of C having intrinsic distance less than L from pg. Clearly, By, cannot be written in
the form S"~1 x [a, b] for any a,b,. However, it is easy to see that for L > (72 4+ 1)/2, then
S x[—(L—1),(L—1)] € By C S" ! x[~L, L]. Using this logic, we can see Cy, contains a
sub-cylinder of length 2(L —1). The same sub-cylinder is contained in C; for ¢ < to; however
since the scaling factor is given by p(rg,t—tg) rather than rg, then length of the sub-cylinder

%. Recalling (3.34), we see the sub-cylinder has length at least 2(L — 1) for

the times under consideration. Since we can make our parabolic neighbourhood as close as
we wish in the (kg — 1)-norm to the cylinder C; we can find a geometric neck parametrizing

becomes
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the part of the neighbourhood corresponding to the sub-cylinder found above, and this neck
will satisfy properties (i) and (ii). Property (iii) follows from choosing w to be the axis of
our cylinder C;. O

Just as before in the mean curvature flow case, we rely on (ND2) and seen it is an
essential assumption in the proof of the Neck Detection Lemma. The next result ensures
that ND2 will follow from our other assumptions in the Neck Detection Lemma so long
as the curvature at the point (p,t) is large compared the curvature of regions previously
modified by surgeries.

Lemma 3.36 (Analogous to Lemma 2.50 and Lemma 7.10 [67]). Consider a flow with
surgeries satisfying the same assumptions of Lemma 3.24 excluding (ND2). Let d” be as
before and let e, k,L,0 be given with 8 < d*. Then we can find 19, Gy with the following
property. Let (po,to) be any point satisfying

A1(po, to)
— LK
G(po,to) — 1o

where K is the maxzimum of the curvature at the points changed in the surgeries at times
before to. Then (po,to) satisfies hypothesis (ND2) and the conclusions Lemma 3.24 hold.
In addition, the neighbourhood

G(pOa tO) Z maX{GOa 5K}7

(n—1)(n— Q)L (n—1)2(n— 2)2d#> ’

t
P <p07 05 2G(p0,t0) ) 4K2

which is larger in time than (ND2) does not contain surgeries.

Proof. Let €k, L, be given, with § < d#. The constants 719, Gy depend continuously on
the parameters L, measuring the size of the parabolic neighbourhood. Thus, if Ly > L
and 02 > 67 > 0 it is possible to find ng, Hy which apply to any L € [L;, Lo] and 6 € [0, 62].
Thus we can find values 79, G such that the conclusions of the Neck Detection Lemma hold
for our choice of (¢, k, L, 0), and also if we replace L with any L’ € [d7, L]. In addition, we
can also assume that Gy > 2G7. We claim that such values of 19, G satisfy the conclusions
of the present lemma.

By our choice of 179, Gg, the conclusions fail only if (ND2) is not satisfied, i.e.’p(po, to, L, 0)
contains surgeries.

By Lemma 3.21, at least the neighbourhood 75(po, to,d”,0) does not contain surgeries.
Therefore, if (ND2) s violated, there exists a maximal L’ € [d#, L] such that P(po, to, L, 0)
does not contain surgeries. We apply the Neck Detection Lemma to this neighbourhood and
deduce that it is an (e, ko — 1, L', 8)-shrinking neck. In particular G(pg,to)(1 + O(e)) > 4K
for all p such that dg,)(po,p) < #(po,to)d”. But then Lemma 3.21 shows that the larger
neighbourhood ﬁ(Po,to,L’ + d#,6) does not contain surgeries as well, contradicting the
maximality of L’. This proves (ND2) holds and that the Neck Detection Lemma can be
applied to the whole neighbourhood 75(p0, to, L, 0).

To obtain the last claim, take any ¢ such that

(n—1)(n-2)
2G(po, to)

By the previous part of the statement, G(q,t0) = G(po,to)(1 + O(€¢)) > 2K. Then,
Lemma 3.21(ii) implies that ¢ has not been affected by any surgery between time ¢y —

dy(t)(q,P0) <
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(n — 1)2d#/K? and t(. Since this holds for any ¢ in the neighbourhood, the statement is
proved. O]

[Section 7, [67]] For the next result we assume that our flow with surgeries satisfies
certain properties, which we will list below:

(g1) Pick a fixed value K* > 2H# all surgeries will take place at cross-sections Y., of

normal necks with radius r(zg) = r* = (7}(%1)

(g2) On normal necks where the surgery has taken place we will have two portions with
the following properties. One of the portions will belong to a component which will
be discarded after the surgery. On the other portion, the part of the neck which has
been left unchanged by the surgery has the following structure: the cross section which
coincides with the boundary of the region changed by surgery satisfies r(z) < (11/10)r*,
on the last section r(z) > 2r* and in the sections in between r* < r(z) < 2r*.

(g3) Surgery is responsible for removing regions with G-curvature larger than 10K*. For
example, looking back at a previous surgery, we will find the components which were
discarded to have G-curvature larger than 10K, so if they surgery had not taken place
it would have not been disconnected from the surface.

If the neck parameter €g is chosen small enough, then (g1) tells us that the areas modified
by surgery will have G between K*/2 and 2K* after the surgery. (gl) also implies that
r(z) < (11/10)r* on the first cross section. Property (g3) is a natural assumption as we
wish the reduce the curvature by a certain amount each time we perform surgery. Whilst
(gl) and (g3) together imply that the regions with largest curvature are not the ones affected
by surgery but the ones that become disconnected from the surface and removed as they
have known topology. Lastly, property (g3) tells us that surgeries are actually performed at
a certain distance away from the ends of the neck, this will be useful in the next lemma.

Lemma 3.37 (Analogous to Lemma 2.52 and Lemma 7.12 [67]). Consider a flow with
surgeries with our usual assumptions, and (g1)-(93). Let L,0 > 0 be such that § < d* and
L > 20. Then there exist ng, Go such that the following property holds. Let (po,to) satisfy
(ND1) and (ND2) of the Neck Detection Lemma, and suppose in addition that the parabolic
neighbourhood ﬁg(po, to, L, 0) is adjacent to a surgery region. Then (po,to) lies at the centre
of a hypersurface neck N of length at least L — 3, which is bordered on one side by a disc D.
The value of G on NUD at time tg is less than 5K*, where K* is defined above in property

(91).

Proof. Begin by applying Neck Detection Lemmaf(i) to find 7,Go such that any point (p, to)
satisfying (ND1) and (ND2) lies at the centre of a (e, kg — 1, L, #) shrinking curvature neck.
By refining the choice of ny, Go we can also obtain that for all times under consideration
the neck can be parametrised as a geometric neck. Let us also set

(n—1)(n-2)

2G ’ By = {p eM | dg(to)(pvpo) < TOL}

To =
Our assumptions are that By is not modified by any surgery for t € [tg — 0r2,to], but that
there is a point gy € 9By and a time so € [tg — 073, to] such that gq lies in the closure of
a region modified by surgery at time syg. Our aim is to now show that the structure is not
affected by the other surgeries which may occur between time sg and tg.

116



Let us denote by D* the region modified by the surgery which includes ¢ in its closure,
and let N* be the part of the neck left unchanged with the properties described in (g2). Let
us denote by X3 and X3 the two components of IN* having mean radius less than (11/10)r*

and greater than 2r* respectively. By (g2), X = dD*, and so ¢y € X7. It follows that the
(n—1)(n—2)
2G(go,s0)

G(p, s0) > =002 (10/11 + O(e)) = K*(10/11 + O(e)) for all p € By, because the fully
non-linear curvature G is constant up to O(e) on By at any fixed time.

We claim that By must be contained in N*. In fact, we know that By has not been
changed by the surgery at time sg, and so it has no common points with D*. If By were
not contained in N*, then it would intersect the other component ¥3 of O/N*. But this is
impossible, since at time sy the points in By and in X3 have a value of G respectively greater
than (10/11)K*. and less than K*/2 up to O(e).

Let z € [z1,22] be the parameter describing the cross-sections of N*, where z = z;
corresponds to XF. Then we can find a maximal interval [a,b] C [z1, 22] such that the neck
corresponding to z € [a, ] is centred at py and is contained in By. Let us denote by Ny this
neck. Arguing as in Lemma 3.35, we can see that Ny has a length at least L — 2.

Let us now denote with N’ the part of N* corresponding to z € [z1,a]. Then we have
that pg belongs to Ny, which is a normal kg-hypersurface neck of length at least L — 2, and
which is bordered on one side by the region N’ U D*, which is diffeomorphic to a disc. This
is the statement of our theorem, except it holds at time sg rather than the final ¢g.

It remains to show that, if there are any surgeries between time sg and tg, they do not
affected the region Ny U N’ U D*. Observe that in this region G(p, sg) < 2K* for any p in
this region. By our choice of D#,G* we have G(p,t) < 4K* for any p € No U N’ U D*
and t between sg and either ¢y or the first surgery time, if it exists, that affect this region.
But this shows that there cannot be any such surgery. Since Ny is contained in By, which
by assumption is not changed by surgeries in [sg, o], the neck Ny disconnects the region
D* U N’ from the rest of the manifold. By (g3), if a surgery changes this part, it must
disconnect a region contained in Ng U N’ U D* here the maximum of the curvature is at
least 10K*. This contradicts the bound on the curvature we just found, which proves that
the topology of the region does not change up to time ¢y, and that the curvature remains
below the value 5K* in this region.

To conclude the proof, it suffices to parametrise the geometric neck Ny in normal form
at the final time tg, using the property that Nog C By which is an (e, kg — 1) curvature neck
at any fixed time. O

mean radius of X7 is equal to up to an error of order O(e). Then we know that

Just like we dealt with the special case that (ND2) does not hold we will also have to
deal with the special case that (ND1) does not hold. In this case we require a result for
when the point under consideration % may not be small. This is a general property of

hypersurfaces and not related to geometric flows, so the proof is exactly as in [67].

Theorem 3.38 (Analogous to Theorem 2.53 and Theorem 7.14 [67]). Let F: M — R" 1,
with n > 1 be a smooth connected immersed hypersurface (not necessarily closed). Suppose
that there exist ¢, G# > 0 such that |VG(p)| < ¢#G%(p) for all p € M such that G(p) >
G7#. Then, for any ny > 0 we can find ag > 0 and g > 1 depending only on c* and ng,
such that the following holds. Let p € M satisfy A1 (p) > noG(p) and G(p) > 4G#. Then
either M is closed with A1 > ngG > 0 everywhere, or there exists a point ¢ € M such that

(i) M(q) < noG(q)
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(i) d(p.q) < &%

(ii) G(¢') > % for all ¢ € M such that dist(p,q") < %; in particular, G(q) > Gv(f).

Proof. Given ag > 0, set 79 = 1 4 c¢# . For a given p € M, let us set
Myp.ao = {g € M|d(p,q) < ap/G(p)}. By 3.17, we obtain that, if G(p) > v G#, then

G(p) G(p)
2 T, a0 =

for all ¢ € M qa,-

To prove the theorem suppose now that p € M is such that G(p) > 4G# and that
Ai(g) > noG(g) for all ¢ € My, o, We claim that is ap is suitably large, these properties
imply that M coincides with M, o, and is therefore compact with A; > 199G everywhere.

To prove this, we show that the Gauss map v : M, o, — S™ is surjective. Take any
w € S™ such that w # +v(p). We consider the curve v as the solution of the ODE,
i = ﬁ;% with 7(0) = p, where for any ¢ € M,w” (q) = w— (w, v(p))v(q) is the component
of w tangential to M at ¢. Since |y| = 1, the curve v will be parametrized by arc length.
The curve can be continued until |w? (y)| # 0, i.e. v(y) £w. As long as (s) is contained
in My, o,, which is the case if s € [0, 9/G(p)], we can use the property A\; > 199G to derive
some estimate.

Namely, if we take an orthonormal basis ey, ..., e, of the tangent space to M at point
~(s), we have

%<V7W> = Z<’y,€i><v6il/,UJ> = wiThij<w»ei><waej>

i=1
1
> FU0H|WT|2

=noG+/1 — (v,w)?,

which implies % arcsin(v, w) > noG.
Now suppose that y(s) exists for s € [0, a9/G(p)]. Then we have

7 > arcsin <u (7 (GOE;))) ,w> — arcsin(v(p), w)

ao/G(p)
Zm/ G (y(s))ds
0

a0/ G(p) ds
> %
= 770/0 G(p)~1 + c#s

"o
= 7 In(1 + c*ayp).

Thus, if «g is large enough to have

#7\'
a0 > & (exp(£E) — 1)

we obtain a contradiction. Therefore there exists s* € (0, ag/G(p)] such that either
(v(y(s)),w) — 1 or (v(v(s)),w) — —1 as s — s*. Since arcsin(v,w) is increasing, only
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the first possibility can occur. This shows that v(s) converges, as s — s*, to some point
q* € M, o, such that v(¢*) = w, as desired.

It remains to consider the case when w = +v(p), when w trivially belongs to the image of
the Gauss map. If instead we have w = —v(p), it suffices to replace p with another point p’
sufficiently close to p: by convexity, we have v(p’) # v(p) = —w and the previous argument
can be applied.

Thus, we have proved that the Gauss map is surjective from M, o, to S™. Since A; > 0
on My, o, the Gauss map is also a local diffeomorphism. Then, since S” is simply connected
for n > 1, it follows that the map is a global diffeomorphism. O

Putting all this together, we are able to provide a result about the existence of necks
before a first singular time is approached.

Corollary 3.39 (Analogous to Corollary 2.54 and Corollary 7.15 [67]). Let M be a smooth
G-flow of closed 2-convex hypersurfaces. Given neck parameters €, k, L there exists G* (de-
pending on Mg ) such that, if Giax(to) > G*, then the hypersurface at time tq either contains
an (e, k, L)-hypersurface neck or it is convez.

Proof. Combine Lemma (3.37) with Theorem (3.38). Since we assume the flow is smooth,
the parabolic neighbourhood in hypothesis (ND2) trivially does not contain surgeries. [J

Before we move onto the next section, we will need to prove two more results which are
required to prove the main theorem in the Section 3.2. The results here are analogous and
as described in the latter part of Section 7 from [67].

Let N be an (¢, k)-hypersurface neck contained in a closed hypersurface M, with k& > 1
where z is the parameter along the neck. We know that locally N can be represented as
a cylindrical graph, we pick a point py € N such that pg is at the centre of a cylindrical
graph N; C N on a C'-norm less than €; > 0. Next we choose a unit vector w such that w
is parallel to the axis of N7 which we will denote by z,11, moreover we orient w such that
it points in the direction of increasing z,11. We then set y = z,41 and assume pg lies on
the y = 0 plane, we call the vertical direction the direction of the y-axis and any direction
which is orthogonal to the y-axis horizontal.

There are two different parametrisations for Ny; the cylindrical graph and the one in-
duced by the normal parametrisation of N. The two are very similar, with the exception
that where z is constant, y can vary by as much as O(e) and vice versa. Note that z is
scale invariant, whilst y is not, so as we increase Ay in the y-coordinate corresponds to an
approximate increase r(z)Ay in the z-coordinate. We assume an orientation in such a way
that the directions of increasing y and z agree.

The key object to look at in this setting is w - v and how it will vary over N. If (w,v)
is small at some point on N we know that the axis of IV is almost parallel w. Moreover if
(w,v) > 0 then we can deduce that the radius of our neck is getting smaller.

To study this quantity we will introduce an ODE. Let ¥y be the intersection of the
cylindrical graph N; with the y = 0 plane. Then by construction, we have |w - v(p)| < ¢
for all p € ¥y. Let us consider, for any p € ¥, the curve v(p, 7) satisfying the equation

. wi(y)
{7 = ey 720
1(0) =p

where 4 = -£~. Moreover we have that y(y(p,7)) = 7 for all p € 3, thus we can write
~(p,y) instead of v(p,7) since 7 and y coincide along 7. Without loss of generality we will

(3.40)
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consider (p,y) for v > 0. We will follow the trajectories until w is not orthogonal to 7, it
is at this point that they are no longer well defined, this is longer than they remain inside
Nj or N. Since we are studying the flow for compact surfaces this is only valid for a finite
value of ¥ = Ymaz > 0 such that y(p,y) is defined for all p € Xg and y € [0, Ymaz), and such
that wT (7(p,y)) — 0 as ¥ — Ymaz at least for some p.

For all points § € (0,Ymaz), we set L5 = {y(p,7)}p € Xo}. We are able to deduce
that ¥y is a smooth (n — 1)-dimensional surface contained in the y = y hyperplane. This
surface is diffeomorphic to ¥y under the flow and hence diffeomorphic to S"~'. We are then
able to compare two different surfaces by considering their projections on a fixed horizontal
n-dimensional hyperplane. We will say that the surfaces 3, are shrinking if the projection
of ¥, is contained in the subset of the hyperplane enclosed by the projection of 3, for any

Y2 = Y1

Proposition 3.41 (Analogous to Proposition 7.18 [67]). Under the above hypothesis, sup-
pose in addition that A\ > o > 0 everywhere on N. then

(i) For any p € Yo we have that |w*(y(p,y))| is bounded away from zero as long as
v(p,y) € N. Therefore, any curve y(p,y) is well defined as long as it is contained in
N.

d

(ii) Along any trajectory v(p,y) we have d—y(v,w> > « as long as vy is contained in N.

(iii) The axis of the neck N is approximately equal to w everywhere. More precisely, any
representation of a subset of N as a cylindrical graph of Ct-norm of size O(¢€) has an
azis @ such that 1 — (w,®) = O(e).

() If for some y > 0 we have v(q) -w > 0 for all ¢ € X, then the surfaces ¥, are
shrinking as long as they are contained in N.

Proof. To prove (ii) we proceed as in the proof of Theorem (3.38). We find that

dily<u, W) =3 (el (Vev,w) = ﬁ S higlw eidw, ) > At > o (3.42)

i=1 i,j=1

To prove (iii) we use the fact that |(v,w)| < e; on ¥y by construction , by (ii) we know
that (v,w) is non-decreasing and therefore we have that (v,w) > —e; along any trajectory
~v(p,y) as long as it stays inside N. Suppose on that @ is the axis of any cylindrical graph
representation of a subset N C N. Then |v(q) -&| = O(e) for every g € N. If w # @, let us
define

v=w — (W, D).

Then |v| = /1 — (w,©)? # 0 and v is orthogonal to @. On an exact cylinder with axis @ we
can find points where the normal is :tl%\' Since N is close to a cylinder, we can find ¢ € N

such that |v(q) + o= O(e). Then we have

<o) w= (s + ) e < VIS @B+ 0fe)

which shows that /1 — (w,@)2 = O(e). We can choose the orientation of & such that
(w,@) > 0, then the above estimate shows that (w,&) =1 — O(e) proving (iii).
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Property (i) follows straight from property (iii). It remains to prove (iv). Consider the
projections of ¥, on a horizontal hyperplane. The exterior normal is given by v — (w, v)w
up to a normalising factor. We can see that the horizontal component of 4 points towards
the interior of X, provided (w,v) > 0 by the following,

(v = {w,v)w) = |w" |72 (W v = (w,v)w)
= w72 (W, v) = (w, v)(w",w))

= —(w, V).

Also, if (w,v) > 0 for some value of y, the same holds for all greater values of y by using
(i). O

To conclude this section we provide one more lemma which will be useful when we study
the trajectories of v(p, y) once they leave the neck N. In particular, if all submanifolds X,
have a small diameter, then the whole surface foliated by the ¥,’s has large G-curvature.

Lemma 3.43 (Analogous to Lemma 7.19 [67]). Let ¢c#,G# be as in Theorem 3.10, and set
O =1+ (2+m)(n—1)c*. Let us define the trajectories v(p,y) as in the previous Lemma.
Suppose that, for some 0 < y1 < Y2 < Ymax, we have A1 (y(p,y)) > 0 for all y € [y1,y2],
p € 3o and that w - v(p) > 0 for all p € ¥,,. Suppose also that ¥, has a diamater equal
to 2(n — 1)/K for some K > ©G#, and that G(p) > K for all p € ¥,,. Then we have

G(v(p,y)) = K/© for ally € [y1,y2], p € Xo.

Proof. Using our assumptions and Lemma 3.37 we obtain that w-v > 0 along all trajectories
v for y € [y1,y2]. Then by Proposition 3.41(iv) we know that for all y € [y, y=2] the surfaces
¥, are shrinking. By assumption, ¥, is enclosed by an (n — 1)-dimensional sphere of G-
curvature K and of radius R := (n—1)(n—2)/2K. Therefore we know we can find a round
cylinder with radius R and axis w which encloses Uy ¢y, y,)2y-

Firstly lets consider when y2 — 31 < R. Then given any p € ¥, we can find a p’ € ¥,
such that d(p,p’) < 2R. From Theorem 3.10 we obtain

K
G0 2 T 5n —1ye
Now suppose that yo—y1 > R. Given any y € [y1,y2], let ¥’ be such that y € [y, ¥’ +R] C
[y1,y2]. We take a portion of a cone C having circular section, axis w, lower and upper basis
in the y = 3 and y = 3’ + R hyperplanes respectively. By a suitable choice of the radii
Ry, Ry < R of the upper and lower basis we can obtain that C' touches Uy, 4 rj2y from
the outside at some point ¢ not lying in the y = ¢y’ and y = ¢y’ + R-planes. Then G(q) is
greater than the G curvature of C' at ¢, which is greater than K. Now, given any p € 3, it
is easy to see that d(p,q) < (2 + m)R. It follows that

K

02 T m - e

O

Before we continue onto the next section, we will require the following bound between
surgery times.
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Theorem 3.44. LetM be a G-flow with surgeries. Then the assumption that between two
surgery times Th and Ts the curvature must increase from Gx to aGx yields the following
lower bound
T > Laf-1 1

'S one a2 G2

where  is a constant depending only on n.

T5 —

Proof. We know the evolution equation for G Lemma 3.4(v) is given by

0 oG
EG = %(DZDJ-G + hikhjiG).

Using the fact that % < C1g;; for some constant C; depending on n yields

0
7.0 = C19i(DiD;G + hirhjiG).
We know that for two positive-definite matrices tr(AB) > 0, this also tells us that tr(A(—B)) <
0.

Now applying the maximum principle we obtain that D;D;G is negative and we can
bound g;;hiihji by CyG? for some constant Cy depending only on n. Therefore

0
~G< 3
LG <G

for some constant ¢ depending only on n. A standard comparison results yields the desired
estimate
1 a?-11

T —T > —————.
2 I_ZnC a2 G3
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3.3 The Flow with Surgeries

Now that we have obtained all our results regarding neck detection, we can continue as in
Section 2.1 or [67] to prove the following theorem. The proofs of this section will only need
minor modification to those presented in Section 8 of [67] now that we have Theorem 3.44.

Theorem 3.45 (Analogous to Theorem 2.55 and Theorem 8.1 [67]). Let Mg be a smooth
closed two-convex hypersurface immersed in R"T1, with n > 3. Then there exist constants
G < G < G3 and a G-flow with surgeries starting from Mg with the following properties:

e FEach surgery takes place at a time T; such that Guax(T;—) = Gs.

o After the surgery, all the components of the manifold satisfy Guax(Ti+) < Ga, except
for those diffeomorphic to spheres or to S"T1 x S, which are neglected afterwards.

e FEach surgery starts from a cross section of a normal hypersurface neck with mean

radius r(z,) = %

o The flow with surgeries terminates after finitely many steps.

The constants G; can be any values such that Gu > w1,Go = wGy and G3 = w3Ga, with
w; > 1.

[Section 8 [67]] To prove this theorem we want to apply the Neck Detection Lemma
in an iterative way. Given €, k, L the Neck Detection Lemma will give us an 79, Gy such
that any point (pg,to) with G(po,to) > Go and A1 (po,to) < 10G(po,to) lies at the centre
of a (& k, L)-neck. In particular, any point p in the neck satisfies G(p,to) =~ G(po, to) and
A1(p,t0) < eG(p,to). In general n is much smaller than €; thus the information on A; in a
general point of the neck is weaker than the hypothesis at the centre py.

However, we can let 1g play the role of € in a further application of the lemma. Namely we
can find n{G{ such that any point (po,to) with G(po,to) > G{, and A1 (po,to) < niG(po,to)
lies at the centre of an (1o, 1, L)-neck. We can choose Gjj > Gy. Then any point p of the
(no, 1, L)-neck centred at py will satisfy G(p,tg) > HGO and A (p,to) < noG(p,to), thus is
is the centre of an (e, k, L)-neck.

Here we define how to choose our parameters for the surgery procedure depending only
on the initial manifold M. This choice of parameters is very similar to those described by
Huisken and Sinestrari in Section 8 of [67].

(G1) (Choice of the neck parameters) We have defined a surgery procedure on (e, ko)-
hypersurface necks in normal form of length L, where ¢y must be suitably small,
ko > 2 is any integer, and L > 10 4+ 8A, where A is the length parameter in surgery.
We also assume that L > 20+ 8A and that € is small enough so that, if A/ is a normal
(€0, 1)-hypersurface neck of length 2L then the G-curvature at any two points of N
can differ by a factor of most 2.

(G2) (Summary of known parameters) We define ¢#, H# as in Theorem 3.10, d# as in
Lemma 3.21 and © as in Lemma 3.43.

(G3) (First application of the Neck Detection Lemma) Choose g, Ky such that if (pg, to)
satisfies

G(p,to) > Ko, Mi(p,to) < 1n0G(p,to), (3.46)
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and if P(p, t, L', 0') does not contain surgeries for some L' € [L/4, L], ¢ € [d# /1600, d#],
then P(p, to, L'#') is a shrinking neck and (p, to) lies at the centre of a normal (e, ko )-
hypersurface neck of length at least 2L" — 2. We also require that 79, Ky are such that
if (po, to) satisfies 3.46 and in addition H(p,tg) > 5k, where K is the maximum of the
G-curvature in the regions inserted in the surgeries, then the conclusions of Lemma
3.36 apply.

Finally, we also require that 79, Ko are such that Lemma 3.37 can be applied to the
parabolic neighbourhood P(p,t, L’,6").

(Second application of the Neck Detection Lemma) Next we set €; = (n—1)10/2. We
apply Corollary 3.32(ii) to find 71, K7 such that if (p,to) satisfies

H(p,to) > K1, Ai(p,to) <mH(p,to) (3.47)

and the parabolic neighbourhood 75(p, to, 10, d* /1600) does not contain surgeries, then
(p,to) lies at the centre of a cylindrical graph of length 5 and C'-norm less than ¢y,
We will then choose 71, K; such that K; > Ko, K; > G# and 1, < 1.

(Application of Pinching Theorem 3.38 Now we choose g such that if G(p, o) > voG*
and A1 (p,to) > mG(p,to) then either A\; > m G everywhere on My, or there exists ¢
such that A1(q,to) < m1G(q,to) and such that G(¢',t9) > G(p,to)/vo for all ¢’ with
diy (¢, 1) < diy (g, p)-

(Third application of the Neck Detection Lemma) Let us set
62 = (10%n°CO%3) 1,

where ( is the constant from Theorem 3.44. Then let us choose Ka,72 such that if
G(p,to) > Ko, if A1(p, to) < n2G(p,tg) and if75(p, to, 10, 62) does not contain surgeries,
then (p,to) lies on a cylindrical graph of length 5 and C'-norm less than ¢;. We also
require Ko > Kj.

We finally define G; to be any value such that G; > 40 K5, and then G5, G3 by
G2 = 10’)/0G1, G3 = 10G2.

To have a definitive value of these constants, one can simply pick G; = 4©K5. How-
ever, it is useful to note that the Gjs can be also chosen arbitrarily large.

All of the constants chosen only depend on the parameters describing the initial surface.
In proving the main theorem, we will define the surgery algorithm such that the following
properties are satisfied

(S) Each surgery is performed on a normal (eg, ko)-hypersurface neck, The surgery is per-
formed at times T; such that Guax(T;) = Hs. After the surgeries are performed, and
suitable components whose topology is known are removed, we have Guax(Ti+) < Gs.
In addition, all surgeries satisfy properties (s1)-(s3) with K* = G;.

The proof of Theorem 3.45 will consist of a finite induction procedure. We start with
a G-flow starting from our initial manifold My, either smooth or with surgeries satisfying
(S), defined up to some time ¢y such that max g, G = G3. We then show we can perform
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a finite number of surgeries at time ¢y which also satisfy (S). We can then conclude that
such a flow much terminate after a finite number of steps.

Before we go on to prove Theorem 3.45, we will need to obtain a lower bound between
surgery times, using the property (S) and applying Theorem 3.44 to our case when G5 =
10G2 and G2 = 10vG1 we obtain that

102-1 1 49

Tir1 — Tk > > .
MRS 02 20¢G2 T 10000 2GR

(3.48)

Theorem 3.49 (Analogous to Theorem 2.56 and Theorem 8.2 [67]). [Neck Continuation
Theorem] Suppose that M, with t € [0,%o], is a Brendle-Huisken G-flow with surgeries
satisfying (S), and let maxq,, G > Gs. Moreover, let py be such that

G(po,to) > 10G1,  Ai(po,to) < mG(po,to), (3.50)

where n1, Gy are as defined in (G1)-(G7). Then (po,to) lies on some (e, ko)-hypersurface
neck Noy in normal form, which either covers the whole component of My, including py or
has a boundary consisting of two cross sections X1, g, each of which satisfies either of the
two following properties:

. . (n—1)(n—2)

(i) ¥ has mean radius ~—g—

(i) The cross-section of X is the boundary of a region D, diffeomorphic to a disc where the
curvature is at least G/©. The region D lies after the cross-section ¥ and is disjoint

from Ny.
Proof. Take pg such that 3.50 is satisfied.

G(po,to) > 10Ky > 10Ky,  A(po,to) < mG(po,to) < noG(posto).

Therefore at (po,tp) we can apply neck detection at the e;-level (G3) and at the eg-level
(G2).

Let us consider the ep-level first. We know that previous surgeries occurred on necks
with curvature close to G; and thus K = 2G; is a bound from above for the curvature in
the regions modified by surgeries. It follows that we can apply Lemma 3.36 with K = 2G;.
Since G(po,to) > 10G1, we know from definition (G2) and Lemma 3.36 we can ensure that
’p(po,to, L,d#) does not contain surgeries and that (po,to) lies at the centre of a normal
(€0, ko)-hypersurface neck containing pg. If Ny covers the whole manifold then the proof is
complete. Otherwise we need to show that starting from pg, we can move in both directions
and find a cross section of Ny which satisfies either (i) or (ii).

Let z be a parameter of the neck in its normal parametrization. We choose it in such a
way that the cross section containing pg corresponds to z = 0. Without loss of generality
we follow the neck in the direction of increasing z, the argument is the same in the other

(n—1)(n—2)
G1

direction. If there is a cross section with average radius again we would be

done. So instead we assume that no such cross section exists, i.e. r(z) < % for
all z € [0, zmax), Where zpmax is the last section of the neck. This also implies G > G,/4
everywhere, until the last section of the neck. We need to show that in this case the neck is
bordered by a disc.

How do we approach this problem? Well the Neck Detection Lemma ensures the neck
can be continued as long as
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(i) G is sufficiently large.

(ii) % is sufficiently small.

(iii) A suitable backward parabolic neighbourhood is surgery free.

Now since the neck must end one of these properties must fail. However the first cannot
fail since G > %. If the second fails then the neck must close up until it ends with a
convex cap. If the third is violated then we will use Proposition 3.37 to conclude the neck
is bordered by a disc inserted by a previous surgery.

To add some rigour, we define a closed subset {2 C Ny of our neck as follows. We say a

point p € Q if
(1) Ai(p,to) < noG(p,to)

(©2) The backward parabolic neighbourhood P (p, to, (n—12)c(;n—2) L, (n_(;zfcg?);mz d#> is surgery

free.

We want to show that points of {2 satisfy the hypothesis of the Neck Detection Lemma,
therefore the neck cannot end as long as it contains such points. It will follow that the last
part of Ny does not contain points of 2, and this will be later exploited to infer information
on the last part of the neck.

Firstly using Lemma 3.36, a point that satisfies (21) but not (£22) is necessarily such
that G(p,to) < 10G;. In particular, our starting point belongs to Q. Moreover we recall
that all points p € Ny on the side where z > 0 satisfy G(p, to) > &1

Therefore B
(n—12n-2? _ (n—1)*(n-2)?
(80)2G(p,to) — (20G4)?
. d* n—1)(n-2)_ (n—12n-2)>2
> 7 (o o) < (w0 S ).

Therefore (G2) tells us that any p € 2 lies at the centre of a normal (e, ko)-hypersurface
neck of length 2L — 2. Thus since the neck ends when z = z,.x, at least the sections with
2 € [Zmax — L 4+ 1, Zmax| do not contain any point of €.

Let us define z* to be the maximal value of z with the following property; the cross
section of z* contains a point p; € 2, while there are no points of Q for z € [z*, z* 4+ 10].
We can then consider the following cases

(a) There exists one point ps with z € [z*.2* + 10] satisfying (£21).
(b) All points z € [2*, 2* + 10] do not satisfy (Q1).

First let us consider case (a). This will be the case where we can find points which have
been modified by previous surgeries and we can apply Proposition 3.37. However we first
need to check that the hypothesis of Proposition 3.37 is satisfied. By definition, ps does not
satisfy (22), that is

(n—1)(n— 2)L (n—1)2(n— 2)2d#>

t
P <p27 0, 2G(p2,t0) ) (20G1)2

(3.51)
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is modified by some surgery. Recall that, by (G1), G can vary at most by a factor of 2 in
the part of the neck containing p; and p;. Therefore we have

G(p1,to)

G(p2,to) > 5

and

(n-1)(n-2) _(n-1)(n-2)
2 (pa. to) 8G(p2, to)

0= D-D L (1= -

=P <p2,t0, 2G (pa, to) 4’ (20G4)? d#>

(n—1)(n— 2)L (n—1)2%(n— 2)2d#>.

dy(to)(P1,p2) < 2(nGy)

t
C P <p17 05 2G(p1,t0) ) (20G1)2

The neighbourhood on the right hand side does not contain surgeries because p; € €2, this
forces the neighbourhood on the left hand side to also not contain surgeries. Using continuity
we can replace the L in 3.51 with a suitable L’ € [L/4, L] to obtain a neighbourhood which
is not modified by surgeries, but is adjacent to a surgery on the side of increasing z.

If we set ©' = %’i"))jd# we can denote such a neighbourhood as 75(p2, to, L', 0").

Since % < G(p2,to) < 10Gy, we have that %2 < @' < d#. Using (G2), we can apply
Lemma 3.37 to conclude that (pa,?o) lies in a hypersurface neck N bounded on one side
by a disc D. The same lemma tells us that the G-curvature on N U D is strictly less than
10G;. The hypersurface neck N can be combined with Ny to form a unique neck. The side
bordered by D must be in the direction of increasing z, otherwise N should include all of
the neck Ny which is impossible since Ny contains py which satisfies G(po, to) > 10G;. Thus
the theorem is proved in this case.

Now we consider case (b). Assume that all points in Ny with z € [2*, 2* 4 10] satisfy
A1 > noG. We will show that this convexity property suffices to ensure the neck begins to
close-up. Here we will be required to use the fact that py lies on an €;-neck. We continue
by proving the (z* 4+ 10) cross section bounds a region which is convex and diffeomorphic
to a disc.

Before using our information on the region z € [2*, z* 4+ 10], we have to go back to the
starting point py of our neck on the z = 0 section. Using the property that A\;(pg,to) <
mG(po,to) we know pg lies on a cylindrical region with parametrisation €; finer than ¢
Rather than pg, it will be useful to consider the last part of the neck with this property, i.e.
the largest such z, then we will also know that A\; > 1;G at that point.

More precisely let Z € [0, 2*] be the largest value of z such that the corresponding cross
section contains a point ¢ with A\; < 71G. We claim that 75(q’7 to, 10, %) does not contain
surgeries. From our definitions we can deduce that there exists a point ¢ € Q with z
coordinate in [z — 10, z].

Then it is clear that

- d# (n—=1)(n-2) (n—1)>%*n-2)?
7 (o 20.3555) 7 (o0 oy = )

which does not contain surgeries, by definition of Q2. Then (G3) tells us that there exists a
region I' € Ny centered at § which can be written as a cylindrical graph with C'-norm less
than ;.
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We can now reuse some of our analysis from the last part of Section 3.1. We let w be a
unit normal vector parallel to the axis of I'. Moreover we assume that w is parallel to the
y-axis, where we have set y = x,,11. We normalise y such that F(q,%o) lies on the {y = 0}-
hyperplane. For any p € Xy consider the curve y — 7(y,p) which solves 3.40 for y > 0.
Denote by ¢max the supremum, of the values for which v(y, p) is defined for all p € ¥y and
set Xy := {7(y,p)|p € Lo} for 0 <y < Ymax. Also given 0 < y1 < Y2 < Ymax, set

Y(y1,y2) = U{Ey, 11 <y < ya}

Let us denote by N{, the part of Ny corresponding to z € [z, z*+10]. The z = Z cross section
contains the point § and so is very close to ¥y. By definition of zZ, we have \; > mG > 0
on the part of N} with z € [z,z*]. In the part containing z € [z*,2* 4+ 10] we have the
stronger convexity property A\; > noG > 0. Therefore, Nj is a convex region. Then by
Proposition 3.41, the axis of Ny is approximately w everywhere. Moreover the trajectories
of (3.40) are defined as long as they are contained in N/. It follows that there exists a
smallest value y' < Ymae such that y(y',p) € ON{ for some p € 3. By construction, we
have |(v(p),w)| < € for all p € ¥y, since g C I'. Recalling (3.42), we know that along
curves 7y we have d%(u,w} > A1 > 0, which implies that (v(p),w) > —e; for all p € X(0,y’).

Now we exploit the property that A\; > ngH on the cross sections of Ny corresponding
to z € [2*,2* + 10]. Let us set R* = r(*) to denote the mean radius of the z*-section and

let G* = @ﬂ By assumption we have that G* > %* Since the axis of the neck is
close to w we can assume that the y-coordinate is almost constant on each cross section.
The y-coordinate on the z = z* and z = z* + 10 section differ by approximately 10r* due to
our normalisation F. It follows that the points of ¥(y’ — 57*,%/), thus from 3.42, we know

that along any curve v with y € [y — 5r*,¢/]

*

d

1 1 T2 G
@<V7w> = TR D hijlw, e (w, e5) > WUOGW " =m0

ij=1
Thus for any p’ € ¥/, i.e. p' =~(y/,p) for some p € ¥y, we obtain

U G*
(v(p),w) = (v(v(y' — 5, p)),w) +/ Z wwydy > —e + 57 2 S dey.
y —5r* dy 2

The positivity of (v,w) on ¥,/ means that the neck is closing up as the value of z
increases. The idea is to show after ¥,/ our surface is a convex cap. To show this we need
to look at the curves y(y, p) for y > y’. The region swept out by these curves is no longer a
neck as y grows. Nevertheless the curves continue to be well defined until some value Y ax,
which by definition is the first value that v(vy(y,p)) — fw for some p as y — ymax. We are
guaranteed that such a value exists due to the compactness of our surface and that all our
curves converge to the same point as ¥ — Ymax-

We need to show that for all y € [y, ymax] the following properties hold along all trajec-
tories of (3.40):

(i) [{rw)| <1
(ii) A >0

(i) G > &t
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(iv) (v,w) > €.

By definition we know that (i) holds in ¥ € [¢/, Ymax|- The other inequalities hold for y close
to ¢/, if they did not hold in the whole interval then there exists a smallest y € (', Ymax)
where it becomes an equalities, we denote this value by y#.

Firstly we know that (iv) holds for y = y#, moreover since (ii) holds for y € [y, y™) we
know that v - w is increasing along any trajectory of (3.40) on this y interval. Thus (iv) still
holds at y = y#. On the other hand since (iv) golds in y € [/, y*] implies that (iii) holds
at y#. In fact ¥,/ has diameter less than 4("%)1("72), whilst by (G3) and (G6) we know
that G; > 40G7 and so we can apply Lemma 3.43.

Now suppose that (ii) fails at y = y#, then there exists a point p#* € ¥, # such that
A1 (p*?) = 0. By the definition of #, in (G5) we know that

(n—1)*(n —2)
(2G(p#, t0))?

16(n — 1)%(n — 2)2©2 1
4G2 10*n¢y2GY

62 <0,

Recalling our estimate between surgery times (3.48), we see that the backward parabolic
neighbourhood centered at 75(]9#, to, 10, 62) does not contain surgeries. By (G5), we deduce
that a portion of the surface around p# can be written as a cylindrical graph with C'*-norm
less than €;. Then we denote the axis of this graph by @, however this @ must be different
to w , otherwise we would have a contradiction with (iv). Now let us define v = w — (w, &)@,

then since v is orthogonal to & we can find a point ¢# close to p# such that ‘v(q#) + ﬁ ‘ < €.

But from (iv) we know that

s < (et = ((va?)+ ) ) = () S0 - VIZ @

which gives us a contradiction. Therefore (i)-(iv) hold for any value of ¥ < ymax-

Now that we know there exists at least a trajectory v* of (3.40) such that v*(y) — p*
as Y — Ymax for some p* € M, such that (v(p*),w) = 1. Moreover we know by (iv) that
(v,w) cannot tend to —1. Let us define

By = {, 1M y(y, plp € To)}-

We want to show that 3, reduces to a single point p*, this implies that all trajectories
of v tend to the same point p* as ¥y — ymax and shows that after the neck region we are
left with a convex cap. To see this observe that v(p*) -w = 1 and so the tangent plane to
M, at p* is the plane y = ymax. Since the second fundamental form is positive definite at
p*, locally M lies below the plane ¥ = Ymax. On the other hand, X, _ is the limit of the
convex surfaces ¥, and so is also convex. And so we obtain a contradiction unless X
consists only of the point p*. This completes the proof.

Ymax

O
We can now prove the main theorem.

Proof of Theorem 3.45. Consider a flow defined on [0, ¢o], which is smooth or has had surg-
eries satisfying (S) at times before ty. Assume that ¢y is the first time after the last surgery
such that Gnax(to) = G3. We show that we can perform a finite number of surgeries on
M, which satisfy (S) and that after these surgeries the maximum curvature drops such
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that Gmax < G2 everywhere except for regions diffeomorphic to S™ or S?~! x 8! which will
be discarded after the surgery.

Let us consider any point pg such that G(po,to) > Go, we first deal with the case for
which A1(pg,to) < 11G(po,to), then we can apply the Neck Continuation Theorem to see
that pg belongs to a neck Ny. Let us denote by A the region of the neck Ny together with
one or two discs as occurring in case (ii) of the theorem. Then we deduce that A contains
the point pg and has one of the following structures.

(a) It has two boundary components and is diffeomorphic to S"~! x [-1,1].
(b) It has one boundary component and is diffeomorphic to a disc.

(¢) Tt contains no boundary and coincides with the connected component of M containing
po and is diffeomorphic to S™ or S?~ ! x S1t.

In all of these cases O.A (if non-empty) consists of one of two cross sections of the neck Ny
with mean radius equal to % and so with G ~ %

If instead A1 (po,to) > 11 G(po,to) we apply Theorem 3.38 to find a point gy such that
A1(qo,to) < mG(qo,to) and that G(q,tg) > G(po,to)yo for all ¢ such that di, (g, po) <
di(go,po). In particular we have that G(qo,to) > % > 10G1. Then we can proceed as
in the first case and define a region 4 containing the point gg consisting of a neck with a
possible union of one or two discs at the ends. Moreover we claim that pg € A, if this were
not the case then any path from pg to go must intersect the boundary of A. At the points

of A however, we know G is close to % But we also know that along the geodesic from py

to qo we have G > W > 10G; which yields a contradiction.

In both cases we are able to define regions of A containing py. We continue to do this all
over our surface until we cover all points with curvature larger than G5. However we need
to make sure that any two regions defined in such a way are disjoint, otherwise the surgeries
would interfere with each other. To show this, recall that 9.A consists of cross sections of
a neck with mean radius equal to % This means that, if we meet one such cross
section in the application of the Neck Continuation Theorem we stop as we have achieved
property (i) of Theorem 3.49. Therefore our two regions can at most overlap on boundary
points.

The area of any such regions is bounded by a fixed multiple of (G1)~". Therefore , we
find a finite collection A, A, ... A%*) which covers all points of My, with G > G&.

After having identified the regions with large curvature, we proceed with the surgeries.
The A’s with no boundary components are diffecomorphic to S™ or S”~! x S! and can be
discarded. In the other ones we proceed to do surgery near each boundary component as
follows: We know that any such component is a cross section of a neck with mean radius
%(1"72). Such a cross section surely exists by continuity because the contains the point
Do, Or qo, where the curvature is at least Gy > 10G;. We then perform a standard surgery
centred at the cross section (¥, If the boundary 0.A®%) has two components we proceed
with surgery on both sides. Notice that these surgeries performed on different regions are
independent from each other because the A(®)’s can touch only at boundary points, while
the surgeries are performed at cross sections inside the interior A(®)’s, where the mean radius
is half the one on the boundary.

In both the cases, the surgeries created a connected component diffeomorphic to a sphere
which includes all points of A® with G > G5. Such a component is neglected when we
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continue with the flow and so the maximum curvature has decreased to below G4 after this
procedure.

Tt is easy to see that surgeries performed in such a manner satisfy (S) and (g1) — (¢3)
with K* = G1 and r* = % This construction ensures that each surgery takes place
on a cross section with mean radius 2r*. Moreover each surgery is essential from removing
a component of the surface when the G ax > Go.

Afterwards we can restart the flow and continue until we reach a time when G.x = G3
and repeat the procedure. There can only be a finite number of surgery times, because the
area of the surface is decreasing under smooth flow and each surgery decreases the area by
a fixed multiple of (G1)~™. This implies that the whole surface is removed in the surgery
procedure as pieces are identified as diffeomorphic to ™ or S?~! x S, O
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Chapter 4

Level-Set Construction for
Brendle-Huisken G-Flow

4.1 The Level-Set Equation for Brendle-Huisken G-Flow

Like in the mean curvature flow case, we begin by considering a smooth function u = u(z, t)
such that Du = (8877;1, 8%2, ceey 687") does not vanish on some open subset O of R™ x [0,T).
Assume further that each level-set of u smoothly evolves according to the G-flow. We

focus our attention onto any one such level-set, and consider its zero sets given by

Iy ={x € R" | u(z,t) =0}

for t > 0. Let v = v(x,t) = % be the unit normal vector to {I';};>¢ evolving according
to the evolution equation
oF
— = —Gr. 4.1
o v (4.1)
Take e; = g—i then
oF
<Dtl/a ei> = - <V7 Dtaxz >
_ [, 00r
- ’ a.%'l ot
0
=— — (-G
<V’ o, V)>
oG
=D.G
Now (4.1) also implies that
Dy =D_qgv

= (D,v,e)) = -G 'D,,G.
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Looking at u(x,t) = 0. For some fixed s > 0, we obtain that

0= Lala(s),s)
= —GuDi(x(s), s) + G (x(s), s)

Setting s equal to t we obtain

ﬂt = GvDu
ii; = |Di|G (4.2)

Now arguing as in the mean curvature case we make the transformation a(z(t),t) —
u(z) —t =0 to see that

|Du|G =1 (4.3)
So
log(G) + log |Du| =0
= Dlog(G) + Dlog|Du| = 0. (4.4)
Since D1og(G) = G~ DG we obtain that
Dlog|Du|+ D, logG -v=D,v (4.5)
where

1
DylogG=—-—=D_g,logG

this lets us express (4.5) as

1
Dlog|Du| — Dyv = — () v (4.6)
t
Plugging in v = \lD?izl we evaluate D, v,

D, (Du)|Du| — (Du)D,|Dul|

D,v=

Dup?
Dy~ %%(Du)(Du) — (Du)Dx~ %%'DM
- [Du? -
Now,
9 &y O*u 0%u
A (Du) = d
ox; ( U) (8%181‘1" 8%28.’1,‘1" ’ 0x,0x; an
du _d%u du _d%u ou  9%u
9 |D’LL‘ _ Oz Oz, 0x; Ox; Oxo0x; +oot Ox; Ox1ndx;
O | Dul
Bu 9%

| Dul
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Therefore

ou ( 8%u 8%u ) du du _9%u (@ ou )
Ox; \ Ox10x;’ """ Ox,0x; Ox; Oxj OxjOx; \ Oxy’ " "7 Oxp
D,v= _
|Dul? | Dul*
Now,
DIDu (@ 9%y o 9%u )
u Ox; Ox10x;’ " "7 Ox; Oxyp,Ox;
Dlog |Du| = =
glDul =50 | Dul?
And we obtain
ou ou  O%*u 1
= —— D - = - 4.7
Ox; 0x; Oz 07, (G)t v (4.7)
Plugging v = UID)—ZI we obtain the following level-set equation
|DulA . (45)
U u=——=1 . .

The PDE Ao u is known as the infinity Laplacian and was first derived by Aronsson [8]
[9] [10] and [11] as the governing equation for the so-called absolute minimizer u of the L>
variational problem of minimizing

I [v] := ess — suppU|Dv|. (4.9)

It is a highly degenerate and highly nonlinear elliptic PDE and has been studied in
detail by Spruck, Jensen, Arronson, Smart, Barron and Savin among others [31] [32] [69],
[12]. To overcome the difficulties of this PDE Jensen [69] used the weak solutions of Crandall
and Lions [24], also known as viscosity solutions, in conjunction with some arguments using
integration by parts to show that (4.9) is the unique viscosity solution of the infinity Laplace
equation. Solutions to the infinity Laplacian are also known as infinity harmonic functions.

Moreover in 2008 Evans and Savin were able to prove C1® regularity for dimension 2
and proposed a method for n > 3, however their result depends on conjectured gradient
estimates [31]. More recently in 2011 Evans and Smart were able to show that an infinity
harmonic function are everywhere differentiable [32]. However it still remains an open prob-
lem to determine if infinity harmonic functions are necessarily continuously differentiable
for dimensions n > 3.

However at this time we are unable to obtain the level-set equation for G-flow explicitly
and cannot apply Lauer’s method in Appendix 5.4.

Remark 4.10. For any extrinsic flow we can complete this process and obtain a similar
result. Suppose we have have a flow evolving by

0
aF(p, t)=—-Av

then

|Du|Asou = — (;)t

will guarantee that each level-set of u will evolve by A, in regions where u is smooth and
|Du| non-vanishing.
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Chapter 5

Appendix

5.1 The Maximum Principle

In this section of the appendix we discuss a very important tool used regularly in Geometric
Analysis, The Maximum Principle. The sources for the arguments and proofs presented
here are [43] and [88].

5.1.1 Weak Maximum Principle

Definition 5.1. An elliptic differential operator is of the form,
Lu = a"(z)Dju + b*(z) Diju + c(x)u, where ™ = a’* > 0. We will also denote by \ the
smallest eigenvalue of a”. Moreover we will assume % <C < .

Theorem 5.2 (Theorem 3.1 [43]). (Weak Mazimum Principle) Let L be elliptic in the
bounded domain . Suppose that

Lu>0(<0)c=0, in Q
with u € C?(Q) N C°(Q). Then the mazimum of u € Q is achieved on 05, that is

Sup u = sup u infu=infu|.
Q 90 Q o0

The conclusion will remain true if ‘b—;l is only locally bounded in Q, if for example a,b’ €
C°(Q). If u is not assumed continuous in 2, then the conclusion can be replaced by

supu = lim supu infu = lim infu
Q z— 00 Q z—00

Proof. If Lu > 0 in Q then the strong maximum principle holds, i.e. w cannot achieve
an interior maximum in €. If there was such a point zg, Du(rg) = 0 and the matrix
D?u(x) < 0, but the matrix [a¥(z)] > 0 since L is elliptic. By the definition of elliptic
function this leaves us with Lu(zo) = a* (z0)D;;ju(zo) < 0, a contradiction.

By our assumption we know that % < C and since a'' > )\, there is a sufficiently large
~ for which

Le?™ = (v2a! + 4b1)e™ > A(y? — vbg)e?™ > 0.
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Hence for any € > 0, L(u + ee?™) > 0 in 2 s.t.

sup(u + ee?*1) = sup(u + ee?*1)
Q 0

by the above. Letting € — 0 finishes the proof. O

If we assume more generally that ¢ < 0 in € and consider the subset QT C Q where
u > 0, we see that if Lu > 0 in Q, then Lou = a” Djju + b'Dju > —cu > 0 in Q7. And
hence the maximum of u on O+ mst be achieved on 90+ and hence also on 9. Thus we
can obtain the following corollary, where we let u™ = maz(u,0) and v~ = min(u,0):

Corollary 5.3 (Corollary 3.2 [43]). Let L be elliptic in the bounded domain ). Suppose
that in Q, Lu >0 (<0), ¢ <0, withu € C°(Q). Then

supu < supu™ (infu > inf u> .
Q FlY) Q oQ
If Lu =0 in Q, then
sup |u| = sup |u|.
Q Q
In this corollary, we cannot relax the condition that ¢ < 0. This is clear from the
existence of positive eigenvalues for the problem Au + Au =0, u = 0 on 9f.

Theorem 5.4 (Comparison Principle). Let L be elliptic in Q with ¢ < 0 in 2. Suppose
that u and v are functions in C*(Q) N CY(Q), satisfying Lu = Lv in Q, u=v on 0. Then
u=wvin Q. If Lu> Lv in w and u < v on 9Q then u < v in Q.

5.1.2 Strong Maximum Principle

Lemma 5.5 (Lemma 3.4 [43]). Suppose that L is uniformly elliptic, c =0 and L > 0 in Q.
Let x¢ € 99 such that:

e u 1s continuous at xg.
o u(zg) > u(x) Vel
o 0N satisfies an interior sphere condition at x.

Then the outer normal derivative fu at xq, if it exists, satisfies the strict inequality

P
8%(950) > 0.

If ¢ <0 and £ is bounded, then the same conclusion holds provided u(xo) > 0. Moreover if
u(xg) = 0 the same conclusion holds irrespective of the sign of c.

Proof. Since (2 satisfies the interior sphere condition at g, there exists a ball B = Br(y) C Q
with z, € 0B. , ,
For 0 < p < R we introduce the function v = e®" — e where r = |z — y| > p and «
is a constant yet to be determined. We can then obtain,
Lo(z) > e [a*a (z; — yi)(x; — ;) — 20(a” + V(2 — )] + e
> e [4a2A(2)r? — 2a(a’ + |blr) + ], b= (b',...,b").
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By assumption GT’ ‘—f\l and § are all bounded. Hence o may be chosen large enough
such that Lv > 0 through the annular region A = Bgr(y) — B,(y). Since u — u(zo) < 0
on 9B, (y) there exists € > 0 such that u — u(zo) + ev < 0 on 9B,(y). Thus we have
L(u—u(xo) + ev) = Lu — L(u(xo)) + L(ev) > —cu(xo) > 0 in A, and v — u(xo) + ev < 0 on
OA. The weak maximum principle now implies that v — u(xg) + ev < 0 through A.

Taking the normal derivative at xg, we obtain as required,

0 0 /
O—Z(xo) > 768—:)(:100) = —ev'(R) > 0.
For c of arbitrary sign if u(z) = 0 the preceding argument remains valid if L is replaced

everywhere by L — c™T. O

Theorem 5.6 (Theorem 3.5 [43]). [Strong Maximum Principle] Let L be uniformly elliptic,
¢=0 add Lu > 0 (< 0) in a domain Q which is not necessarily bounded. Then if u achieves
its maz (min) in the interior of Q, u is constant. If ¢ <0 and § is bounded, then u cannot
achieve a non-negative mazx (non positive min) in the interior of Q@ unless it is constant.

Proof. Arguing by contradiction we assume that « is non-constant and achieves its maximum
M > 0 in the interior of €2, then the set 2~ on which v < M satisfies Q= C Q and
N~ NQ #D. Let o be a point in Q™ that is closer to 9Q~ than to I and consider the
largest ball B C Q~ having z( as centre. Then u(y) = M for some point y € 9B whilst
u < M in B. The Lemma 5.5 implies that Du(y) # 0, which is impossible at the interior
max y. O

If ¢ < 0 at some point, then the constant of Theorem 5.6 is obviously zero. Also, if
u = 0 at an interior max (min), then it follows from the proof of the theorem that v =0
irrespective of the sign of c.

5.1.3 Tensor Maximum Principle

For this section we will denote by N a compact manifold with metric g = {g;;} and V' a
vector bundle over N.

Lemma 5.7 (Section 4 [49]). Suppose % = Af+ ¢(f). Let s(f) be a convex function on
the bundle invariant under parallel translation whose level curves s(f) < c are preserved by
the ODE % = ¢(f). Then the inequality s(f) < c is preserved by the PDE for any constant
c. Furthermore if s(f) < ¢ at one point at time t = 0, then s(f) < ¢ everywhere on M for

all t > 0.

Proof. Let h be a function on M with s(f) < h < ¢ If s(f) < ¢ at some point p we can
make h < ¢ at that point. Then we solve the system for the pair (f,h)

of oh
S A4, 5 =Ah
The set X = {(f, h)|s(f) < h} is closed and convex since if s(f1) < hy and s(f2) < ho,
s <f1 +f2> < s5(f1) + s(f2) < -f—hz7
2 2 - 2

and X is invariant under parallel translation. Therefore X is preserved,, and s(f) < c. If
h < c at one point at ¢t = 0, then h < ¢ everywhere for ¢ > 0 by the strong maximum
principle, so s(f) < ¢ for ¢ > 0. O
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Lemma 5.8 (Lemma 8.2 [49]). Let M be a symmetric bilinear form on V. Suppose M
satisfies a heat equation %—Af = AM + ¢(M), where the matriz ¢(M) > 0 for all M > 0.
Then if M > 0 at time t = 0, it remains so for t > 0. Moreover there exists an interval
0 <t < 0 on which the rank of M is constant and the null space of M is invariant under
parallel translation ,invariant in time and also lies in the null space of ¢(M).

Proof. M is a symmetric bilinear form on V, i.e. M = M;je] ® ej*, where e; forms an
orthonormal basis for V. Thus the convex cone M > 0 is invariant under parallel translation,
since angles and lengths preserved we know orthonormal basis preserved and ) M;; stays
non-negative. And if ¢(M) > 0 then the ODE % = ¢(M) preserves the cone M > 0. Hence
so does the PDE. Let m; < mso < ---m,, be the eigenvalues of M. Then m; +---+my is a
concave function of M and is invariant under parallel translation, since

my + -+ mg = inf{trM|P : P C C is a subset of dimension k}.

Note that dim M > k <— my+---+mgp = 0. If my +--- +my > 0 at one point at
t = 0, by Lemma 5.7 it will be greater than 0 everywhere at subsequent times. It follows
that the rank M remains constant on some interval 0 < ¢ < § (rank finite and discrete so
this is clear).

Let v be any smooth section of V in null M on 0 < ¢t < 4. Then

0

P

0
Ma[gvavﬁ) = ( Mag) ¥ +2Mopgv®——.

0 ot ot

Since Mygv® = 0 the last term disappears and we obtain,

0= %(Maﬂvavﬁ) = (%Ma/g)vavﬁ.
Also
0= A(Ma,gvavﬁ) = (AMQB)UQUB + 4glekMa,3vo‘Dlvﬁ (5.9)
+ 2MagglekU°‘Dlv’B + 2Ma5U°‘Avﬁ.
and again the last term disappears. Lastly
0 = Dp(Mapv®) = (Drx Mag)v® + MogDypv®. (5.10)

Now (5.9) and (5.10) give us,

(AMaﬁ)vavﬂ = nglMaﬂDkvaDlvﬁ.
Substituting into the evolution equation, we obtain,

2M, 59" Dyv® DivP 4 ¢(M)v*o” = 0.

Since M > 0 and ¢(M) > 0, we must have v € ¢(M) and Dyv* € M for all k. This
shows that M C (¢(M)). Since Dyv® € M this implies that M is invariant under parallel
translation. i.e. Suppose that fivy + -+ frvr = 0 we want to show that D, (fivi +--- +
fror) = 0 with f1(0) =1 and f;(0) =0 for all ¢ > 2.

D—y(fl’Ul + o+ frog) = f1,111 + fDyvy + -+ = 0, letting f;D,v; = a;;v; we obtain
> fivi + >_i; aijv; = 0 this reduces to the first order ODE fi + >_;jaij = 0 which can be
solved, proving our assertion.
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Now to see that M is also invariant in time, note first that Av® lies in M, since it is
invariant under parallel translation. Then

0 = g™ Dyp(MosDiw®) = g" Dy, Mo s Div® 4+ MogAv®
= ¢"DM,s D™ = 0.

Then
0 = A(Mapv®) = AMo50° + 26 Dy, Mg Div®™ + Mg Av®
and hence (AMyg)v® = 0. Then

o™

0 o
0= (Mapv®) = Map =5~

T + (AMap + ¢(M)ap)v™.

Now M C ¢(M), so ¢(M)apv® = 0 also. Thus Mag% =0, and % lies in M whenever v
does. This shows M is invariant in time. O
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5.2 Hamilton’s Harnack Inequality

One of the main estimates used in understanding the long time behaviour of solutions to
mean curvature flow, Ricci flow and other types of geometric flows is the differential Harnack
estimate. We take a look at the Harnack inequality as derived by Hamilton in [50], and
look at what form this takes in the strictly convex and ancient case. The ancient case will
be of particular interest to us for the section on ancient solutions to mean curvature flow in
Section 1.5.

Theorem 5.11 (Theorem 1.1 [50]). For any weakly convez solution to the mean curvature
flow with t > 0 we have

0H H
E+f+2<VH Vy+H((V,V) >
for all tangent vectors V.
Proof. For a proof refer to [50]. O

Corollary 5.12. For any weakly convex solution to the mean curvature flow with t > 0 we
have

t
H(pa,t2) > H(Pl,h)\/ tj exp(—A/4)
1
for any two points p1,p2 € M and times t1,to with 0 < t1 < to, with
d
A—inf/‘7 dt
dt | v

where the infimum is taken over all 7 : [t1,t2] — R™ with v(t) € X(t)m, v(t:) = z; and

%Z = ‘;—Z — <‘(11¥ >1/ 1s the length of its component tangent to the surface M.

M
Proof. Move along any path v(t) = F(X(t),t) and in the Harnack inequality, let V = %d—x

to obtain
OH H dX dX dX
H, -H >
+ <v >+ ( o dt) 0

8t dt
Moreover we know that
H X
d— =D,H + <VH d >

dt dt
dH dX dX H
= > _C .
dt — dt dt 2t
If our surface is convex have the following identity
H(V,V) < HIV|?.
This lets us obtain
d 1dX 1
—log(H) > —= |—| — =
= g lo8lH) = ’ di | 2t
H(pa,12) 1 ta 1 / dvy
log ————£ > ——1 =) —= ] |=
= 08 H(SCl,tl) - 2 8 tl 4 dt
and so the result follows after exponentiating. O
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Corollary 5.13. For strictly convex solutions to the mean curvature flow, hi; > 0, Hamil-
ton’s differential Harnack estimate takes the form

OH H |VHJ?

ot 2t H
VH

Proof. To obtain this expression, we make a clever choice for V. We pick V = —~ and
plug it into Theorem 5.11. O

> 0.

Corollary 5.14. For ancient, strictly convex solutions to the mean curvature flow, Hamil-
ton’s differential Harnack estimate takes the form

2

on_ (g,

ot H ~
Proof. In Corollary 1.101 replace ¢ with ¢ — to and take the limit as ty — —oc. O
Corollary 5.15. For any strictly conver ancient solution to the mean curvature flow, t <0
we have

diam7(M,,)
H(py,ty) < H(pa, t —
(p1,t1) < H(pa, 2)eXP( 1t — 1)

for any points p1,p2 € M and t; < ts <O0.
Proof. As before take any path «(t) = F(X(t),t), from Corollary 5.14 we know that

OH |VH|?
—_—— >0
ot H ~
and again we know that
dH dX
— =DH H,— ).
dt e <V T dt >

Putting these together we see that

dH dX |VH|?
> i
dt — <VH’ dt >+ H

Dividing both sides by H and completing the square

1 dH dX||VH| |VH?
T > | = +
H dt — dt || H H?
VH| _1]dX\®_1]dX "
“\H 2| dt 4| dt
And hence
d 1|dX |”
—log(H) > —= |—
g 1os(H) = 4’ dt
H(pa, t2) 1
1 —= =) > ——(ty —t1)A
- og( P1,t - 4(2 )
and the result follows after exponentiating and the definition of diam? (M, ). O
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5.3 Neck Detection and Construction

5.3.1 Uniqueness and Existence of Necks

In this section of the appendix we are dealing with mean curvature flow with surgeries of
two-convex hypersurfaces [67]. The main focus is to expand on the discussion in Section
2.12 we will do so using the arguments presented by Hamilton in [46].

Firstly we establish how the Neck Detection Lemma allows us to detect necks where the
cross sections will be diffeomorphic to S?~!, refer to Lemma 2.46.

We then show how we are able to glue these cross sections together with full control on
their parametrisation - for this we will show we can use a harmonic spherical parametrisation
[46]. We then introduce the notion of a normal and maximal necks, this allows us to
obtain uniqueness, existence and overlapping properties for normal parametrisations on
(¢, k)-cylindrical hypersurface necks. Lastly given a neck N : S~ x [a,b] — M we show
that in the case that either a = co or b = oo that this forces them to both to be co and we
are left with a solid tube S™~! x S'.

Lemma 5.16 (Lemma 2.46 and Lemma 7.4 [67]). Let My, t € [0,T) be a mean curvature
flow with surgeries as defined in [67]. Starting from an initial manifold M € C(R,«) for
some R,a. Let €,60,L > 0 and k > ko > 2 be given. Then we can find 19, Hy with the
following property. Suppose that pg € M and t € [0,T) are such that

A1(po,t
(ND1) H(po,to) > Ho, 35 <o

(ND2) The neighbourhood ’ﬁ(po,to, L,0) does not contain surgeries.
Then
(i) The neighbourhood ﬁ(po,to,LG) is an (e, ko — 1, L, 0)-shrinking curvature neck;
(ii) The neighbourhood 75(p0, to,L—1,0/2) is an (e, k,L—1,0/2) shrinking curvature neck.

The constant 1y depends on «, e, k, L and 0), whilst Hy = hoR™', where hy depends on
a, ek, L and 0.

We can combine Lemma 5.16 with the following proposition found in [46] C3.2, to find
that there is a closed cross section with tightly pinched Riemannian curvature. This tells us
that there is some diffeomorphism of this cross section to that of a standard sphere S™~1,
[64].

Proposition 5.17 (Proposition 3.5 [67]). Let k > 1. For all L > 10 there exists e(n, L) > 0
and c¢(n, L) such that at any point p € M which lies at the centre of a (e,k,L) extrinsic
curvature neck with 0 < € < €(n, L) has a neighbourhood which after appropriate rescaling
can be written as a cylindrical function v : S*~1 x [-(L — 1),(L — 1)] — R over some
standard cylinder in R™"Y, satisfying

ullrse < eln, L)e
Proof. The proof of the above can be found in [67] Proposition 3.5. O

Once we know these cross sections are (¢, k) spherical by Proposition 5.17, we can obtain
a harmonic spherical parametrisation, Theorem C1.1 in [46].
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Definition 5.18. A spherical parametrisation of M™ is a local diffeomorphism P : S™ —
M™ of the sphere to M.

Definition 5.19. A harmonic spherical parametrisation is of the form P* = PF where we
want

F(S",9) = (5", 9)
to be harmonic from the standard metric g to the pull-back metric g.

Theorem 5.20 (Theorem 1.1 [46]). If there exists a geometrically (e, k) spherical parametriza-
tion of M, then there also exists a harmonic spherical parametrization. If n > 3 it is unique
up to rotation.

Remark 5.21. Forn = 2 it is unique up to a conformal transformation, and hence unique
up to a rotation if we also require that the centre of mass of the pull-back metric g on
S™ C R™! lies at the origin 0. This makes the n = 2 case more complicated to deal with.

This theorem from [46] improves on our parametrisation by giving us a harmonic one.
This makes the parametrisation rigid and close to the standard parametrisation of the sphere
in angular directions, the only freedom left now is the rigid rotation of the standard S™~!
in each cross section of the neck. That is, the z coordinate does not matter, we will have
the same rotation.

To obtain a unique z-coordinate along the neck, we can use the Implicit Function The-
orem to make the cross sections of constant mean curvature and then label them by the
volume between them, this is shown in the proof of the next lemma. Since this is an elliptic
equation we can get our cross sections even closer to the standard round sphere in higher
norms than the first cross sections we found at the beginning. To do so we first need to
define a normal neck.

Definition 5.22. A topological neck N in a manifold M is a local diffeomorphism of a
cylinder into M

N : 8" x [a,0] = (M, g)
The neck is called normal if it satisfies the following conditions:
(i) Each cross section ¥, = N(S"~! x {z}) C (M, g) has constant mean curvature.

(ii) The restriction of N to each S"~1x{z} equipped with the standard metric is a harmonic
map to X, equipped with the metric induced by g, and

(iii) in case n = 3 only, the centre of mass of the pull-back of g on S* x {2} considered as
a subset of R3 x {z} lies at the origin 0 x {z}.

(iv) The volume of any subcylinder with respect to the pullback of g is given by
Vol(S" ™t x [v,w], g) = O’n_l/ r(2)"dz.
(v) For any Killing vector field V on S~ x {2} we have that

[ avwdu=0
Sn—1x{z}

where U is the unit normal vector field to 3, in (M, g) and du is the measure of the
metric g on the standard cylinder.

143



The following lemma and proof from [46] C2.1 tells us how to fit all the cross sections
together with complete control on their parametrisation.

Lemma 5.23 (Lemma 2.1 [46]). There ezists (¢, k) so that if N1» and Ny are necks in the
same manifold M and are both normal and geometrically (e, k) cylindrical. Then if there
exists a diffeomorphism F of the cylinders such that No = F Ny, then F is an isometry in
the standard metrics on the cylinders.

Proof. For any smooth constant mean curvature hypersurface, there exists a unique one-
parameter family of nearby constant mean curvature hypersurfaces by the Implicit Function
Theorem. The map F takes an end of one cylinder to an end of the other. Since these
constant mean curvature hypersurfaces agree under F, so do all the nearly ones; and we can
pursue this all the way from one end to the other. Referring to the Definition 2.45 condition
(i) guarantees that F' preserves the foliation by horizontal spheres.

Given the foliation, condition (ii) together with the geometric closeness to the standard
metric makes F act by isometry on each horizontal sphere S"~! x {z}.

Condition (iv) forces the vertical height functions z to differ by an isometry of R.

Lastly condition (v) ensures that the possible rotations in the harmonic spherical parametri-
sation of each individual cross section are glued together in such a way that there is only one
rotation of the standard S™~! left to choose for the whole neck; because by parts (i),(ii),(iv)
we are dealing with a map of the cylinder to itself which preserves the height and acts on
each horizontal sphere by rotation, and if it is perpendicular to the rotations it must be
constant. O

It is this rigidity of the parametrisation along the neck that ensures that we are not just
somehow diffeomorphic to S"~1 x [a, b] in the neck, but also extremely close (up to rescaling)
to the standard metric and parametrisation of the cylinder. In particular this ensures that
there is a diffeomorphism unique up to a rotation and close to an isometry between the two
cross sections at the ends of a neck.

We now have uniqueness. For existence of normal necks refer to Theorem C2.2 in [46].

5.3.2 Overlapping Properties

Next we combine normal necks which are cylindrical enough and overlap more than a little
bit near the ends into a single neck. Unfortunately Lemma 5.23 is not enough. It tells us that
if a diffeomorphism exists then we have isometry, but it does not guarantee the existence
of this diffecomorphism F. The next theorem and proof from [46] C2.4 will guarantee the
existence of such a diffeomorphism and give us the overlapping properties we require.

Theorem 5.24 (Theorem 2.4 [46]). For and 6 > 0 we can choose € > 0 and k with the
following property. If N1 and No are two normal necks in the same manifold M which are
both geometrically (e, k) cylindrical, and if there is any point Py in the domain cylinder of
N1 at standard distance at least § from the ends whose imagine in M is also in the image
of Na, then there exists a normal neck N which is also geometrically (e, k) cylindrical, and
there exist diffeomorphisms Fy and Fy such that Ny = NFy and Ny = NF5, provided n > 3

Proof. If n > 3 then the cylinder S™~! x [a, b] is simply connected. Let P, € S"~1 x {22} be
a point in the cylinder Ny whose image P = Ny P, in M is the same as the image P = N, P,
of the given P; € S"~1 x {z1}. We claim that we can find a map

G:8" M x {z)} = 5" x {z}
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such that N1G = Ny and GP, = P;. To see this we take any path ~5 from P, to any point
Q2 € S" 1 x {23}. Let v = Noyq be its projection in M, we then lift v to a path 4 in the
first cylinder with v = Njy;. The point P; is well in the interior, so we can lift this path
until we reach a point 1 with N1Q1 = @ = NaQ»s.

Sn—1 % {Zl} M

v =Nim

G v = Naya

Sn—l X {ZQ}

The only case where this would fail would be if «; ran into the boundary of the first
cylinder. But we claim this won’t happen as 7, is nearly horizontal. The metric (M, g) will
pull back onto metrics (N1, g1) and (Na, g2), both of which are close to the standard metrics
g1 and g2 on the two cylinders.

The horizontal spheres on the standard cylinders are where the Ricci curvatures of the
product metric are all n — 1, while in the vertical direction they are 0. For £ > 0 the
curvatures of g; are close to g; and go are close to those of go. The Ricci curvature in the
direction of 7o is close to n — 1 since it is in S®7!, and the Ricci curvature of g; in the
direction of 1 is equal to that of go in ~2. Therefore =y; is close to horizontal. As long
as the path ~2 is not too long and (e, k) are chosen well enough, the path v; cannot exit
the cylinder since its length is about the same. Since S”~! is simply connected the map G
taking Q)2 to @1 is uniquely defined by this process and the choice of P, and Ps.

The image of S~ ! x {2} under the map G will be another constant mean curvature
sphere as locally G extends to an isometry from g» to gi, this new constant mean curva-
ture sphere will be nearly horizontal and pass through P;. Applying the Inverse Function
Theorem, we know that such spheres are unique.

This tells us that the image of S"~! x {25} under G is exactly the sphere S"~1 x {2},
so that ~; stayed exactly horizontal.

It remains to check whether the orientations of the normal bundles in the cylinders to
the two spheres agree in their images in M. If they do not we can flip one of the cylinders
and continue the argument. Then the sphere S"~! x {23 + p} will map to the sphere
S7=1 % {21 + p} under the obvious extension of G using similar lifts, for y near 0 and hence
for p in some interval. This process lets us patch our cylinders together using G, which
must be an isometry from g, to ¢; using the Lemma 5.23. O
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5.3.3 Maximal Normal Necks

Lastly we will define a maximal neck and show that all our (e, k)-cylindrical geometric necks
can be classified as either a maximal normal neck of finite length or that our manifold M
is diffeomorphic to a quotient of S?~! x R.

Definition 5.25. An (e, k)-cylindrical hypersurface neck N is a maximal normal (e, k)-
cylindrical hypersurface neck if N is normal and if whenever N* is another such mormal
neck with N = N*F for some diffeomorphism F then the map F is onto.

We finish by showing a result from [46] C2.5. We will show that we can classify our
necks as finite maximal normal necks or S~ ! x S*.

Theorem 5.26 (Theorem 2.5 [46]). For any § > 0 we can choose € > 0 and k so that
any normal neck defined on a cylinder of length at least 36 which is geometrically (e, k)
cylindrical is contained in a maximal normal (e, k) neck; or else the target manifold M is
diffeomorphic to a quotient of S~ ! x R by a group of isometries in the standard metric.

Proof. Since the neck N has a domain cylinder of standard length at least 36, a point P in
the middle has standard distance at least ¢ from either end. If there is any other normal
neck N* which is geometrically (e, k) cylindrical with N = N*F for some F', then Theorem
5.24 allows us to extend the definition of N to a longer cylinder, and this extension N is
unique, and now N* = NF for a map F.

Take the largest extension N if N. It will be defined on "~ x B! for some interval
B! Cc R. If B! is of the form [a,b] with —0o < a < b < co we have a maximal (e, k) neck.
If we have an interval (a, b], (a,b] or (a,b) with —co < a < b < oo, we have enough bounds
to extend the neck to the endpoints, so the original was not the largest.

If a = 0o but b < oo or vice-versa, then there must be two points P, and P> in the
domain cylinder at different heights z; and z, with the same image in M, because M has
a finite volume and N is clearly a local isometry so there must be considerable overlap. In
fact we can make P; and P, at least § from the finite end. Then Theorem 5.24 shows that
the neck N must repeat itself, so both ¢ = oo and b = cc. O

Remark 5.27. When we detect S"~1 x S' we haven’t glued together the cross sections
St x {a} and S"~1 x {b}, this is a more complicated case. What has happened is we
have detected a return to the same cross section in M, and due to uniqueness of these
cross sections Lemma 5.28 no twisting/rotation can occur and we return with the same
orientation.

Remark 5.28. Given a cylinder ST~ x [a, b] it is possible to glue the ends together S™~1 x
[a,b]/¢ where ¢ is an orientation reversing homeomorphism ¢ : S"~1 x {a} — S"~1 x {b}
such that this structure is topologically equivalent to S~ x S*. Regardless of the rotation
of the cross sections at the ends S~ x {a} and S"~! x {b}.

We can verify this as follows. We can think of this as a two-step process. We want choose
an orientation of S~ x [a, b] such that we have an orientable manifold in the end. Suppose
we want to glue {p} x{a} to {q} x{b}. Then a small neighbourhood of {p} x {a} in S™x{a}
should be identified with a small neighbourhood of {q} x {b} in S"~1 x {b}. These are two
oriented discs, and we identify them by any orientation reversing homeomorphism. Then
the resulting identification space is an oriented manifold with boundary. The boundary is a
(n — 1)-sphere. Hence glue to this an oriented ball, again identifying the boundary spheres
by any orientation reversing homeomorphism. The result is homeomorphic with S?~1 x S*.
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What we have done is attached a n-dimensional 1-handle to S™~! x [a, b] with attaching
region in different components of the boundary, and then attached a n-dimensional n-handle.
We need only to make sure we attach with the right orientations. From this, we can define
a homeomorphism with the standard S"~' x S'. The manifold will have a natural smooth
structure at all points except at corner points, the union of which coincides with the boundary
of the handle’s base. This structure can be uniquely extended to a smooth structure on the
entire manifold. Such extension is called smoothing of corners, refer to [90].

This can go wrong if we fail to choose the Tight orientation when attaching the 1-handle.
For example in dimension 3 when we choose an orientation preserving homeomorphism,
then a loop running along the 1-handle and then connecting {p} x {a} and {q} x {b} in
S? x [a, b] would have the neighbourhood of a solid Klein bottle, not a torus.

Now since the € closeness is true even on the spacetime region of the neck we are able
to control the diffeomorphism type of the neck in a backward parabolic neighbourhood.
Moreover we can also control it in cases where surgery has occurred at an earlier time on a
region adjacent to the neck. This is needed in the proof of Lemma 2.52, required to prove
the Neck Continuation Theorem, Theorem 2.56.

After we have completed the surgery process as described in section 2.1. we have attached
a convex region diffeomorphic to the standard disc to a neck. This allows us to see that after
each surgery the surgered region together with the long neck it is attached to is diffeomorphic
to a standard disc.

Lastly in the proof of the neck continuation Theorem [67], Huisken and Sinestrari shows
that in the case a neck does close, it does so to a standard convex cap diffeomorphic to a
disc that is attached in the standard way to the standard neck. This shows that a neck type
which ends in both directions will be diffeomorphic to the standard sphere S™ because it
consists of the standard cylinder glued to two standard discs without sphere twisting.
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5.4 Reconciliation Between the Flow with Surgeries and
the Viscosity Solution

This section depends on obtaining a viscosity solution for G-flow which we were unable to
do. Once this has been obtained however we can follow the method Joseph Lauer used for
mean curvature flow explained in Section 2.2.2 and [71].

As mentioned before the surgery process depends on a surgery parameter Gs. Its role
is to initiate a surgery when the maximum of G of the evolving hypersurface becomes G35,
and to control the scale at which each surgery is performed. We are now able to prove that
as G3 goes to infinity the surgery process converges to the level-set flow.

Definition 5.29. Let K C R™™! be closed and {K;}t>0 a one parameter family of closed
sets such that the spacetime track U(Ky x {t}) C R"*2 is closed. Then {K;}i>0 is a viscosity
set flow for K if for every G-flow ¥; on [a,b] we have K,NY, =0 = K, N%; =0 for all
t € la,b).

Definition 5.30. The level-set flow of a compact set K C R”ﬂ, is the maximal-viscosity
set-flow. K C R"*! is level flow if for any viscosity set flow K we have K C K; for all
t>0.

The existence of a maximal-viscosity set flow is verified by taking the closure of the
union of all viscosity set flows with a given initial data. If K is the viscosity set flow of K,
we denote by K the spacetime track swept out by K;. That is,

K = UtzOKt X {t} - R 2,

Let ¥ C R"2 be the spacetime track swept out by the hypersurfaces, and as in previous
sections let G3 denotes our surgery parameter.

We work with regions bounded by the evolving hypersurface. K ¢ R™t! compact domain
such that 0K is a two-convex hypersurface. Then if 0K is G-flow with surgeries we define
Kg C R"2 to be the region of spacetime such that t = T' time-slice of K is the compact
domain bounded by (0K g)r.

Before we move on to a statement of the main theorem, we state the Jordan-Brouwer
Separation Theorem which will be essential in proving Lemma 5.33.

Theorem 5.31 (Jordan-Brouwer Separation Theorem). Let M C R™ be a connected, com-
pact, orientable smooth hypersurface. Its complement R™\ M has two connected components,
the exterior Uy and the interior Us. Moreover the closure of Uy is a compact manifold with
boundary OU, = M.

Proof. For a proof of the theorem or more details please refer to [75]. O

Theorem 5.32 (Analogous to Theorem 2.86 and Theorem A [71)). [Main Theorem] Let
K c R"™ with n > 3, be compact with OK two-convex. Then for G sufficiently large, let
K¢ be the result of G-flow with surgeries performed with parameter Gs3, and initial condition
(Kg)o =K. Then

lim Kg =K.

Gl—r>noo ¢

The key ingredient in proving this theorem is the following lemma.
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Lemma 5.33 (Analogous to Lemma 2.87 and Lemma 2.2 [71]). Given € > 0 there exists
Go > 0 such that if G > Go, T a surgery time and x € R"*! such that

B(z) C (Kg)7 = Bc(z) C (Kg)+.

where we use (0Kg)7 and (0Kg)F to refer to the pre- and post-surgery hypersurfaces at
surgery time T and (Kg)7 and (Kg)F to the regions they bound.

Proof. Let K¢g be the G-flow with surgery.

As seen in Section 3.3. we know that there exists a finite collection of subsets {A;}1%,
which cover the regions of (0K¢g); with G > G3. Then we know there are three possibil-
ities for the structure of each A; depending on the number of boundary components. For
completeness we state them again.

(a) It has two boundary components and is diffeomorphic to S"~! x [-1,1].
(b) It has one boundary component and is diffeomorphic to a disc.

(¢) Tt contains no boundary and coincides with the connected component of M containing
po and is diffeomorphic to S™ or S?~ ! x S1t.

As long as it contains at least one boundary component we perform a surgery.
Now we know there exists an embedding N : S~ x [a,b] — A; such that each X, =

N(S™"! x {z}) has constant G = % everywhere, where rg is our mean radius. In
general the boundary 0.A; will always contain at least one of ¥, or ¥ and on those boundary
components G = %

Without loss of generality suppose that 2, C 9.A; and pick a point zy € [a, b] sufficiently
close to a such that G = G; on X, and a < zp — 4A < 2o + 4A < b for sufficiently large
A > 10.

For convenience let zg := 0. Then we can extend the map N to a local diffeomorphism
as stated in Proposition 2.23 to obtain a solid tub

T : By x [-4A,4A] — R

We call it T here to avoid confusion with the G-flow. The surgery procedure then removes
our two collars N(S"~! x [=3A,3A]) replacing them with two convex caps contained in
F (B} x [-3A,3A]) resulting in a smooth embedded hypersurface.

Now we can apply the Jordan-Brouwer Separation Theorem for hypersurfaces to see that
if we have a point € (Kg)y \ T(B} x [=3A,3A]) then z remains in the interior of the
surface after standard surgery.

Since K is €g-close to a standard tube and A > 10 is sufficiently large we can pick our
surgery parameter G large enough such that if G > G3 then

Be(z) C (Kg)p = Be(x)NT(B} x [-3A,3A]) =0
= Bg(x) C (Kg);
Therefore B.(x) lies in the region bounded by the hypersurface after surgery. Moreover,
at any surgery time 7" finitely many surgeries occur, however these surgeries do not interfere
with each other as the solid tubes associated with each surgery are disjoint.

It remains to prove the discarded components of the surgery procedure do not bound a
ball of radius e. Recall that the discarded components take one of the following forms:
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(i) No boundary components: Then A; is diffeomorphic to S™ or S"~1 x S! and is dis-
carded.

(ii) One boundary component: Then A; is diffeomorphic to a ball. In this case the cur-
vature does not decrease significantly along one direction of the neck and only one
standard surgery is performed. After, the surgery the end of the cylinder with high
curvature will be diffeomorphic to S™ and discarded.

(iii) Two boundary components: Then surgery occurs on each component and we end up
with two capped cylinders and a component diffeomorphic to S, which is discarded.

In each case the surgery procedure guarantees that for the discarded components G > %
Now suppose that X is one such hypersurface and z lies in the region bounded by ¥ with
d(x,X) > €. Then if y € ¥ realises dist(z, ) then G|, < 4§ < 2 since ¥ Nint(Bgy(z)) = 0.
This gives a contradiction as long as Hz > 627”1, where w; is defined in Theorem 3.45. O

Now we are able to prove Theorem 5.32.

Proof. Given an € > 0 sufficiently small, let £ > 0 be the time such that
dist(0K,0K;,) = e.

Such a time exists since K is two-convex. Let . C R"*2 be the level-set flow K, .

We now claim that Q. C Kg for all G > Gs.

We pick our € large enough depending on G35 such that at the first surgery time T for
K¢, Q. has vacated the region affected by surgery, we know such an € exists as the region is
two-convex. Now since the distance between the viscosity set flow and G-flow with surgeries
is non-decreasing on the interval [0,T") we know that d((Q)r, (0K¢g)7) > €. By applying
Lemma 5.33 and the definition of Hausdorff distance we know that d((Qe)r, (0Kg)F) > e
Since ((“)Kg); is a smooth hypersurface we can repeat this argument for each subsequent
surgery time. This proves our claim. .

Since lim 2, = K, the claim implies that K C lim K¢ as the limit of closed sets is

e—0 G—o0
closed.
Lastly, since each G-flow with surgeries is also a viscosity set flow for K, we have
lim Ko C K.
G—o0
O
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