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ABSTRACT 

The adoption of automatic milking systems (AMS) as an alternative to conventional milking 

systems continues to increase throughout the world. Although previous research has 

demonstrated that AMS can be successfully integrated with pasture-based systems, 

performance and efficiency levels observed in pasture-based AMS present greater variability 

and are lower in comparison to indoor AMS. Factors specific to pasture-based systems create 

some challenges different from those observed in indoors systems, resulting in a greater 

variation in milking frequency and milking interval among individual cows and days, leading 

to variation in robot utilisation (a key performance indicator in AMS). Therefore, the general 

aim of this thesis was to identify strategies on how to improve system performance in 

pasture-based AMS operating with voluntary traffic. The literature review (Chapter 2) 

explored the current situation in regards to system and cow performance on pasture-based 

AMS. Gaps in knowledge and potential ways of increasing productivity and efficiency in the 

system were identified. The analysis of a 2-year dataset from 17 commercial pasture-based 

AMS farms (Chapter 3) demonstrated that the number of cows milked per robot had a greater 

effect than milking frequency on robot performance or utilisation. This finding, together with 

the high degree of variability regarding individual cow performance arising from the study 

reported in Chapter 2, led to developing a methodology to identify Efficient and Inefficient 

cows based on their combined effect of milking frequency and milk yield (Chapter 4). In this 

study, which was based on a large dataset from two commercial farms, Efficient cows were 

identified in both farms producing on average 9% more milk with 5% fewer milkings per day 

and Inefficient cows producing 10% less milk with a 6% higher milking frequency, both in 

relation to their expected values. The hypothesis that differences in cow behaviour could 

explain, at least in part, the differences observed between levels of efficiency in cow 

performance was confirmed after a field study was conducted for that purpose (Chapter 6). A 

validation of a recently commercially released version of an activity and rumination 

monitoring system was conducted (Chapter 5) to allow differences in cow behaviour to be 

determined (Chapter 6). Efficient cows produced more milk, with no difference in cow traffic 

variables compared to Inefficient cows. The difference in cow performance was therefore 

likely to be partially explained by cow behaviour, as Efficient cows were recorded to have 

longer grazing and rumination times and shorter resting times than Inefficient cows. 

Together, the novel and original studies reported in Chapters 3 to 6 are indicative of the 
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opportunities that exist to increase efficiency in AMS through manipulation of cow behaviour 

and individual animal efficiency.  

The potential to manipulate robot utilisation at whole herd level was then explored in Chapter 

7, in which the results of a field study conducted to evaluate if experienced cows could 

quickly adapt to a short period of voluntary-batch milking, without cow performance being 

affected, were summarised. This constitutes a potential management strategy for periods of 

underutilisation of the robotic equipment, where productivity and efficiency of the system is 

reduced. All combined, the original research presented in this thesis contributes with new 

knowledge to the novel field of pasture-based AMS and research methodology in AMS. The 

research has scientifically validated a (now) commercially available research tool (tags); and 

it has developed a new and innovative method to identify individual animals with above or 

below average level of performance efficiency in AMS, which use and application would be 

hopefully extended by future work. The thesis has also identified, and where possible 

quantified, key indicators that relate to the productivity of AMS, providing evidence that 

questions the most common strategy adopted by AMS farmers globally, namely increasing 

production per cow with moderate or relatively lower number of cows per robot. More 

research in this field is certainly warranted. In summary this thesis makes a significant 

contribution based on novel, original, and scientifically-generated knowledge, that together, 

will help to advance systems and cow performance and efficiency on pasture-based AMS in 

the future.  
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INTRODUCTION 

The majority of Australian dairy farmers have the capacity to grow and graze forage on-farm 

for most of the year, which provides a competitive advantage in the cost of feed (Garcia and 

Fulkerson, 2005). It is estimated that more than 95% of the dairy farmers in Australia rely on 

grazed pasture (Dairy Australia, 2017). This puts the Australian dairy industry in a unique 

position, as it is likely that the demand for dairy products produced from pasture-based 

systems is going to increase, due to the green image associated with cows grazing pasture 

(Von Keyserlingk et al., 2013). 

However, pasture-based systems cannot achieve the same levels of productivity per cow (and 

per unit of land) as those achieved in more intensive production systems (Garcia and 

Fulkerson, 2005). Thus, pasture-based systems need to keep increasing their overall 

efficiency of production to remain viable and competitive (Chapman et al., 2009), but without 

negatively impacting on animal welfare, milk quality or the environment. 

One of the main issues affecting overall production efficiency in the Australian dairy industry 

is labour. The main concern resides not only in the associated costs but also in the difficulty 

to attract and retain new and skilled workers (Nettle and Oliver, 2009, Dairy Australia, 2015, 

Gargiulo et al., 2018). In addition, in line with a global trend, the number of dairy farms in 

Australia continues to decrease whilst the average size of the herd continues to increase, 

which is also affecting the demand for skilled labour (Dairy Australia, 2017). 

The adoption of automation and sensor-based systems is helping some farmers to improve 

labour efficiency, reduce pressure on labour and improve management of large herds 

(Eastwood et al., 2016, Gargiulo et al., 2018). Automatic milking systems (AMS) is one 

example of technologies being increasingly adopted by dairy farmers. First commercially 

introduced in 1992 in Europe, there are now more than 15,000 commercial dairies around the 

world operating with AMS (Rodenburg et al., 2017). 

Automatic milking systems typically operate with voluntary cow traffic, where cows are able 

to move around the farm without requiring human intervention to travel to the milking unit to 

be milked. In addition, milking events are distributed throughout the day and night, removing 

the need for defined milking sessions. Feed is used as the main incentive to motivate cows to 

move through the system (Prescott et al., 1998). This is key for AMS, as success of the 

operation relies on the motivation of cows to visit the milking unit regularly. 
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In spite of being originally designed for indoor systems operating with small herds (typically 

less than 100 cows), AMS was first introduced for pastured-based systems in the early 

2000’s. Since then, more than 60 farms in Australia and New Zealand have adopted this 

technology. Previous research studies have demonstrated that AMS can be successfully 

integrated into grazing systems, and that cows adapt very well to voluntary cow traffic when 

feed is used as the primary incentive (Jago et al., 2002, Davis, 2006).  

However, pasture-based AMS present challenges that are not experienced in indoor systems, 

including longer walking distances, increased opportunities for social synchronisation of 

activities between cows (as cows have more freedom of choice), larger herd size and a greater 

impact of climate (e.g. cow traffic can be severely affected by hot temperature; Wildridge 

2018). As a consequence, lower and more variable levels of system performance are typically 

observed in pastured-based AMS in comparison to indoor systems (Lyons and Kerrisk, 

2017). In spite of this, no previous research has been conducted to evaluate the current level -

and variability- of system performance of pasture-based AMS, and/or identify key variables 

and factors affecting performance. 

Optimising robot performance is deemed critical to achieving farm profitability and is an 

objective for the vast majority of farmers operating with AMS (Sonck and Donkers, 1995). 

There are many factors affecting robot performance, including animal factors (stage of 

lactation, age, previous AMS experience, herd dynamics), management factors (e.g. timing, 

placement and distribution of feed, herd size, traffic system) and environmental factors (e.g. 

climatic conditions) (Lyons et al., 2014). All these factors can interact, which makes 

evaluation of robot performance more challenging. For instance, cow traffic behaviour is 

affected by the interaction between time of the day, location of robot relative to shade and 

distance to milking robot (John et al., 2016). 

In practice, however, farmers operating with AMS have two main strategies to improve 

system performance: increasing milking frequency (MF) whilst maintaining moderate or 

relatively low number of cows per robot; or increasing the number of cows in the herd whilst 

maintaining MF (Woolford et al., 2004). In the future a modelling approach could be useful 

to elucidate the advantages and limitations of these two alternatives. However, current gaps 

in knowledge such as the extent to which the variability in individual animal efficiency can 

affect performance, should be addressed first. This is because, in comparison to indoor based 

AMS, lower and more variable levels of MF and milk yield are typically observed in pasture-
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based AMS (Lyons et al., 2014, John et al., 2016). In addition, there is a significant level of 

variation in relation to the effect of milking interval (MI) on milk yield among individual 

cows, with some cows being able to adapt better to long MI, which are not unusual in 

pasture-based AMS (Lyons et al., 2013). This variability provides the opportunity to identify, 

and potentially, select cows more suitable to AMS and even more specific for pasture-based 

AMS. Yet, no research has been published regarding differences in individual cow 

performance in pasture-based AMS. In particular, the question of what is an ‘efficient’ (or 

‘inefficient’) cow for pasture-based AMS has not been elucidated yet. Developing a 

methodology, together with validating a specific sensor-based tool to be used to assess some 

aspects related to animal ‘efficiency’ in pasture-based AMS, were among the specific 

objectives of this thesis.  

Moreover, the complex interactions between all these factors mean that not all the strategies 

developed from investigations in indoor AMS systems are suitable for pasture-based AMS.  

The general aim of this thesis was therefore to identify strategies on how to improve system 

performance in pasture-based AMS operating with voluntary traffic. The general hypothesis 

was that inefficiencies at both system and cow level could be identified (and in some cases 

quantified) to then address them. The underlying hypothesis being that, if the relationship 

between key variables affecting robot performance were better understood, it would be more 

feasible to develop better strategies to effectively optimise robot performance in pasture-

based AMS. In line with these general aim and hypothesis, the specific objectives addressed 

in this thesis were: 

1. Assess and quantify overall system performance of pasture-based AMS (Chapter 3) 

2. Develop and test a methodology to identify Efficient and Inefficient cows; and 

quantify the extent of possible variation (Chapter 4) 

3. Test a new (now commercially available) technology to monitor aspects of individual 

animal efficiency in grazing conditions (Chapter 5) 

4. Determine factors explaining possible causes of Efficient and Inefficient in cows 

(Chapter 6) 

5. Assess changes in cow behaviour when cows are subject to changes in traffic 

(voluntary vs forced) (Chapter 7) 
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THESIS OUTLINE 

This thesis is composed of a review of the published literature (Chapter 2), five chapters 

arising from five independent studies (Chapter 3 to 7) and a general discussion and 

conclusion (Chapter 8). Each chapter is presented as stand-alone scientific manuscript, 

having their own abstract, introduction, materials and methods, results, discussion and 

conclusion. 

The objective of the literature review (Chapter 2) was to determine the current situation in 

regards to system and cow performance on pasture-based AMS.  Gaps in knowledge and 

potential ways of increasing production efficiency were identified, providing justification for, 

and need of, the research that was subsequently undertaken in this thesis. 

In Chapter 3, data from 17 commercial pasture-based AMS farms were used to investigate 

current levels of system performance and to get a better understanding of the relationship 

between key variables affecting it. 

The positive effect of increasing the number of cows per robot on system productivity 

(Chapter 3), and the high degree of variability regarding individual cow performance 

(Chapter 2) led us to develop a methodology to identify efficient and inefficient cows based 

on their combined effect of milking frequency and milk yield (Chapter 4).  

Chapter 6 summarises the results of a field study aimed at understanding behavioural aspects 

of the individual cows (efficient and inefficient) identified using the methodology developed 

in the previous chapter. In addition, the validation of a recently commercially released 

version of an activity- and rumination- monitoring system was conducted (Chapter 5) to 

enable differences in cow behaviour to be determined (Chapter 6). 

Aspects related to individual animal behaviour and practical changes in management 

practices on farm are reported in Chapter 7, which summarises the results of a field study 

conducted with the aim of evaluating how cows adapt to a short-term change in traffic 

system.  

Lastly, Chapter 8 provides a general discussion of the results on the studies included within 

this thesis, integrating the newly generated knowledge, identifying existing gaps, and 

providing direction for future research to address those gaps. 
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OVERVIEW OF CHAPTER 2 

The adoption of automatic milking systems in Australia continues to increase, with the vast 

majority being integrated into pasture-based farming systems. Chapter 2 explores the 

literature to determine the current situation in regards to system and cow performance on 

pasture-based AMS. Gaps in knowledge and potential ways of increasing productivity and 

efficiency in the system are identified and suggestions for future research are made.
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ABSTRACT 

Research studies conducted over more than 20 years had shown that automatic milking 

systems (AMS) can be successfully integrated with pasture-based dairy farming. However, 

new challenges that are specific of pasture-based AMS, can result in lower and more variable 

levels of system productivity and efficiency than those typically found in indoor AMS. The 

purpose of this review was to compile current knowledge on pasture-based AMS 

performance to identify strategies on how to improve production efficiency. As a 

consequence of the voluntary traffic (a system in which time and frequency of milking is 

decided (within boundaries) primarily by the animal’s motivation to visit the dairy), a greater 

variability in milking frequency (MF) and milking interval (MI) between individual cows and 

also over time is typical in AMS. In addition, there is a significant level of variation in 

relation to the effect of MI on milk yield between individual cows. The present review has 

identified the feasibility of using AMS data from commercial herds for analysis of certain 

individual cow traits, including MF, MI, milking time and average flow rates, among others. 

The review shows that there is a significant opportunity to explore observed variability in 

order to identify, select and potentially breed cows more suitable to AMS, and even more 

specifically, for pasture-based AMS. It was also shown that current levels of robot utilisation 

and milk harvested per robot in commercial AMS are relatively low compared to potential, 

indicating that there is an opportunity to improve overall efficiency and productivity. This 

review has identified gaps in current understanding of the relationship between robot 

performance, cows per robot and MF in pasture-based AMS, which highlights the need for 

further investigations on ways and strategies to improve AMS performance. 
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INTRODUCTION  

Since the first automatic milking system (AMS) was introduced in a commercial dairy farm 

in The Netherlands in 1992, the adoption of this technology in the world has continued to 

increase. Nowadays there are over 15,000 commercial dairy farms around the world 

operating with automatic milking systems (Rodenburg et al., 2017). Although automatic 

milking systems were originally developed for indoor (cows confined in barns) systems, they 

were firstly introduced in pasture-based systems in both Australia and New Zealand in 2001. 

With over 60 commercial farms currently operating with this technology in both countries, 

the technology is now being adopted also in countries where grazing system are predominant, 

such as Ireland, Chile, Uruguay and Argentina, among others.  

The majority of pasture-based AMS operate with voluntary cow traffic, providing cows with 

the freedom, within certain limits, to set their own milking routine. This introduces variability 

in milking frequency (MF; number of milkings per cow per day) and milking interval (MI; 

time between two consecutive milkings) between and across cows and days (Lyons et al., 

2014). In addition, a diurnal grazing behaviour and a greater social synchronisation in 

behaviour are typically observed in grazing dairy cows compared to cows confined in a barn. 

As a result of the combination of these factors, robot performance (defined as the amount of 

milk harvested per day) is typically reduced in pasture-based AMS, compared to indoor-

based AMS.  

Optimising robot performance is critical to achieving farm profitability and is a key objective 

for farmers operating with AMS (Sonck & Donkers, 1995). Therefore, the purpose of this 

review was to compile current knowledge on cow and robot performance to identify 

strategies to, ultimately, improve production efficiency in pasture-based AMS. 

General overview of the Australian dairy industry 

With an annual production of 9,015 million litres of milk and a value of $AUD 3.7 billion in 

2016/17, the Australian dairy industry is the third largest rural industry in the country, behind 

beef and wheat (Dairy Australia, 2017a). During 2016-2017, 37% of Australian milk 

production was exported with the main exports markets being China, Singapore, Indonesia, 

Japan and Malaysia. Australia is the fourth major exporter of dairy products in the world, 

behind New Zealand, the European Union and the United States (Dairy Australia, 2017a) 
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Following global trends, the number of Australian dairy farms has decreased by 29% in the 

last 10 years, together with a 16% reduction in the number of cows. Nowadays there are 

approximately 5,789 dairy farms with an average herd size of 262 cows, each producing 

5,819 litres/lactation on average. With 64% of the total national production, Victoria is the 

largest producer of milk in the country, followed by New South Wales (11%) and Tasmania 

(8%) (Dairy Australia, 2017a). 

Australian milk production is predominantly seasonal, and although irrigation is used in some 

inland dairy regions, production is strongly reliant on annual rainfall. The vast majority of the 

dairy farms are located in the coastal areas of the south-east corner of the country, where 

conditions for growing pastures are favourable. The majority of Australian dairy farms are 

‘pasture-based systems’, defined by Garcia and Fulkerson (2005) “as farms in which grazed 

pasture is the largest single feed stuff in the diet of the animals, or where pasture represents at 

least 50% of the total dry matter intake consumed by cows annually”. It is estimated that 

more than 95% of the dairy farmers in Australia rely on grazed pasture, and that pasture 

accounts for about 65% of the cow’s diet, with a national average of 1.6 tonnes per cow per 

year of concentrate supplementary feeding (Dairy Australia, 2017a). The temperate climate, 

which predominates in key dairying regions, provides farmers with the capacity to grow and 

graze forage on farm for most of the year, and this, combined with relatively inexpensive 

grains, gives Australian farmers a competitive advantage in the cost of feed (Garcia & 

Fulkerson, 2005). However, feed is still the most significant cost on farm, accounting for 

47% of the total operating costs in Victoria and 46% in New South Wales during the 

2016/2017 season (Dairy Australia, 2017c; Dairy Australia, 2017b). Garcia and Fulkerson 

(2005) and Wales and Kolver (2017) have identified the opportunity to improve on farm 

efficiency on pasture-based systems by growing more forage on farm, increasing its 

utilisation and increasing the use and efficiency of supplementary feed. It is widely 

recognised that the volume of home-grown feed on the average Australian dairy farm is well 

below the potential, supporting the suggestion that there is still much to be gained 

economically by identifying practical solutions that allow such efficiency gains to be 

achieved on farm (Garcia et al., 2008; Fariña et al., 2011).  

Several studies have reported that milk produced in pasture-based systems have distinct 

advantages over milk produced in intensive systems, with grazing systems being associated 

with improved animal welfare, improved end-product quality, increased labour efficiency  

and global sustainability gains (O’Brien et al., 2012; Peyraud et al., 2010; Dillon et al., 2005; 



CHAPTER 2 • Literature review 

13 

Macdonald et al., 2008). With an increasing proportion of consumers becoming more 

informed about how their food is produced (Cembalo et al., 2016), the demand for more dairy 

products from pastured cows is likely to increase, associated also with the perception of 

improved animal welfare in these systems (Von Keyserlingk et al., 2013). In comparison to 

many regions of Europe where grazing is rapidly declining (van den Pol et al., 2015), 

Australia is in a relatively unique marketing position as 90% of the national milk volume is 

produced on farms where cows graze pastures for most or all of the year (Dairy Australia, 

2015). 

Labour: a current challenge for the dairy industry. 

Over recent decades, and as a consequence of increasing herd size and farm productivity, the 

workload on farms has increased significantly and the majority of family-owned dairy farms 

are now reliant on employed labour (as opposed to the family members being the entire 

workforce). In Australia it is estimated that more than 98% of the dairy farms are family-

owned, and that 65% of them employ people. Labour accounts for 26% of the total operating 

costs in Victoria and New South Wales (Dairy Australia, 2017b; Dairy Australia, 2017c), and 

is the second highest cost after feeding costs. The difficulty to attract and retain skilled staff 

has been recognised by Australian dairy farmers as one of the main challenges they currently 

face. Prolonged shifts, early morning starts, demanding physical work, and repetitive tasks, 

are some of the characteristics that make working on dairy farms somewhat unattractive to 

prospective employees.  

Milk harvesting is the most time consuming and repetitive task performed on dairy farms, 

and it is estimated that up to 50% of the working day is dedicated to the process (O'Brien et 

al., 2007). Although the adoption of new precision technologies and automation, such as 

automatic cup removers, post milking disinfection and milk plant wash systems, have been 

shown to improve labour efficiency and accelerate the milking process, in the majority of the 

dairy farms the milk harvesting routine is still very labour-intensive. In addition, a recently 

published study by Gargiulo et al. (2018) reported that the adoption of some of the available 

precision technologies in Australian dairy farms is still low, and that farmers with larger 

herds (more than 500 cows) have a greater rate of adoption. The implementation of new 

technologies presents an opportunity to increase farm productivity and address current and 

future on-farm challenges pertaining to labour related issues. 
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Automatic Milking Systems  

An alternative to address some of the above mentioned challenges is through adoption of 

Automatic milking systems (AMS). The first AMS to operate in a commercial farm was 

commissioned in 1992 in The Netherlands, and since then more than 15,000 commercial 

dairies around the world have adopted AMS (Rodenburg et al., 2017) with the majority of 

them located in northern and western Europe (Sandgren & Emanuelson, 2017). The AMS 

was originally targeted at small family farms operating indoor/confined systems, with 

(relatively) high yielding dairy cows, high labour costs and high milk prices (Lind et al., 

2000), with only some farms allowing cows to graze pasture during some parts of the year 

(Ketelaar-de Lauwere et al., 1999).  

In Australia, with over 40 AMS farms operating and at least another 5 being installed at time 

of writing (N. Lyons, personal communication) the adoption of this technology continues to 

increase. Although the rate of adoption is still relatively slow in Australia, mainly due high 

initial cost of investment, Gargiulo et al. (2018) reported that Australian dairy farmers ranked 

AMS among the top 5 technologies to be adopted in the next 10 years, indicating that on-

farm adoption is likely to continue. 

In Australia, the first AMS was commissioned in Gippsland in 2001 (Greenall et al., 2004), 

being a commercial pasture-based operation. In the same year, a research project installed a 

robotic unit, in Waikato, New Zealand (Jago et al., 2002). In 2006, the FutureDairy Project 

commissioned a research farm located in Camden, Australia, (García et al., 2007) with the 

aim of developing a better understanding of integrating AMS into pasture-based systems. 

Although it has been repeatedly reported that production and performance were lower in 

pasture-based AMS compared to those typically achieved in housed systems (Lyons et al., 

2014; Woolford et al., 2004), results from FutureDairy’s research (García et al., 2007; Davis, 

2006) have demonstrated that AMS can successfully achieve high levels of pasture utilisation 

and with relatively high proportions (>50%) of grass in the diet. More recently, several 

research projects including one in Ireland (O’Brien, 2012) and one in the USA (Utsumi, 

2011) have been developed with a clear focus on increasing the understanding of pasture-

based AMS management; an area in which knowledge is still relatively limited.  

Several studies in both, indoor (Mathijs, 2004; Tse et al., 2018; Karttunen et al., 2016) and 

pasture-based systems (Molfino et al., 2014; Shortall et al., 2016) have reported significant 

improvements in labour efficiency, greater flexibility in the organisation of  daily routines 
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and reduced physical workload, compared to conventional milking systems. A positive 

impact on lifestyle was also reported by Molfino et al. (2014) in a study where labour and 

lifestyle audits were conducted in 5 pasture-based farms operating with AMS in Australia. In 

that study it was reported that farmers spend less time in the dairy and more time in the 

computer (checking summary reports, setting auto-drafting for cows that need attention, 

reviewing daily performances, among other tasks) compared to what they did with their 

conventional system. In addition, not needing to schedule the whole day around defined 

milking sessions was reported by farmers as one of the biggest changes. It was also reported 

that AMS provided them with the opportunity to spend more time on the management aspects 

where they can have a greater impact on productivity (e.g. pasture management, nutrition, 

animal health, reproductive performance). On average, the labour efficiency for the case 

studies was 181 cows/FTE (FTE = full time equivalent, a standardised labour unit, calculated 

as 50 hours per week), well higher than the Australian national average (103 cows/FTE). In 

contrast, Karttunen et al. (2016) reported that farmers indicated an increased level of mental 

stress due to the demanding management of the AMS (particularly in relation to the 24-hour 

operation and risk of alarms and breakdowns during the night). It is important to mention that 

the way in which farmers adopting AMS capture the potential benefits in relation to both 

labour and lifestyle, is strongly affected by various factors including, but not limited to, the 

individual farmer’s objectives, scale of the operation, farmer’s personality and approach, 

among other factors.  

General characteristics of Automatic Milking Systems 

There are currently three different types of automatic milking systems commercially 

available: single-boxes, multi-boxes and robotic rotaries. The first type are most common 

globally and consists of one robotic arm attached to a single milking crate and dedicated to a 

single cow at any one time (i.e. only milks one cow at a time). Once the cow has gained 

access to the milking crate, the robotic arm performs all milking related tasks, including teat 

preparation, cup attaching, milking and post-milking activities. These units are able to 

perform between 150-180 milkings per day, normally catering for herds of between 60 and 

80 cows milked between 2 and 3 times per day (de Koning, 2011; Lyons, 2013). Multi-boxes 

can have anything from 2 to 5 milking crates, which are serviced by just one robotic arm 

which allows for more than one cow to be miked at any one time (Lyons, 2013). In 

comparison to single-boxes, multi-boxes can milk more cows per day, but less cows per 

milking crate (Rotz et al., 2003), as the increase in efficiency is not directly proportional. 
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Single-boxes and multi-boxes allow cows to be fed a grain-based supplement during the time 

spent inside the crate. 

The third type is the automatic milking rotary (AMR, Automatic Milking Rotary, DeLaval 

International AB, Tumba, Sweden), an internal 24-bail herringbone platform, with 5 robotic 

arms in the centre (two teat preparation arms, two cup attachment arms and one post-milking 

teat sanitation arm). This high-throughput robotic rotary was co-developed between DeLaval 

and the FutureDairy Project, and was specifically designed for large herds (>500 cows), as it 

has the capacity to perform between 60-90 milkings per hour or to conduct, potentially, up to 

1600 milkings per day (Kolbach, 2012; García et al., 2007). The AMR could therefore be a 

viable solution for farms with large herds (more than 500 cows in the Australian dairy 

industry), which have increased from 3% in 2004 to 9% in 2012. The AMR was also 

designed to operate with both batch and voluntary traffic. Currently there are 12 commercial 

AMRs operating in Europe and 3 in Australia operating in pasture-based systems (Rodenburg 

et al., 2017).  

There are 4 main functionality differences between the single- or multi-boxes and the AMR. 

First, the AMR has no automated washing; therefore, farm staff need to be present on site, at 

least twice-a-day to initiate the system wash of the equipment. Conversely, the washes in the 

boxes are fully automated and can be scheduled to occur at any time of the day or night 

without the reliance on human attendance.  

Second, the boxes have the functionality to rinse milk residue from the unit after an ‘idle’ 

period (time without milkings). This is key to achieve higher-quality bulk milk as milk 

residues sitting in the unit for a long period of time, increase the risk of bacterial 

contamination. The AMR cannot perform automated rinses after idle periods, providing 

instead the option to automatically deactivate bails that have been idle for a settable period of 

time, which can then be deactivated after a full system wash. This could create the challenge 

that in periods of underutilisation, i.e. early hours of the mornings or months with low 

numbers of cows per robot, typical in farms operating with seasonal or split calving patterns, 

a high number of bails could be deactivated for  a few hours (Kolbach et al., 2013). However, 

the potential efficacy of this approach has not been assessed against other practical options 

e.g. batch milking during periods of low utilisation, such as pre-calving in seasonal or split 

calving systems. 
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Third, different from the single- or multi-boxes, the AMR cannot automatically divert milk 

from an individual cow to a separate destination (i.e. ‘abnormal milk’ cows refers for 

example, to cows treated with antibiotic or fresh cows producing colostrum). Thus, cows with 

abnormal milk need to be managed as a separate herd and typically batch-milked twice-a-day, 

before a system wash is activated.  

Fourth, unlike the single- or multi-boxes, feeding concentrate to cows during the milking 

harvesting process is not possible in an AMR, which requires individual feeders to be 

installed close to the dairy 

Given that cows in AMS have an individual electronic identification device, detailed 

individual cow information from milking stations (such as, milking duration, milk yield, time 

of milking, parameters regarding milk quality, MI), automatic drafting gates (such as, gate 

passings, time spent in an specific area) and feeders (such as, amount of concentrate 

consumed, time of feeding) is recorded continuously. This allows the operator to monitor the 

performance (in real time) of not only individual cows but also the system as a whole, by 

regularly accessing information in the management software (de Koning et al., 2002). The 

enormous amount of data recorded by the system, is one of the main advantages of AMS and 

a potentially-very valuable tool that could help famers achieved their targets in an efficient 

way, although it is acknowledged that a new way of management is required to make the 

most of AMS capabilities and functionality (Jacobs & Siegford, 2012). 

Voluntary cow traffic & distribution of milking events 

As a consequence of having equipment that can perform milkings at any time of the day and 

night without any human intervention, in AMS there are no defined milking sessions. The 

majority of AMS operate with voluntary cow traffic, utilising feed as the main incentive to 

encourage cows to move around the different areas of the farm and milk harvesting facility. 

Cows can move throughout the system during the day (24-hour period) with minimal or no 

human intervention. Each cow is fitted with a unique electronic identification, and automatic 

drafting gates are used to guide cow traffic through the different areas of the farm, such as 

feeding areas (feed pad or paddocks), lying or loafing areas, and the milking facility. 

Voluntary traffic relies on the motivation of cows to attend the milking facility, and feed is 

the main incentive used to encourage cows to move through the system and to present 

themselves for milking regularly (Prescott et al., 1998b; Prescott et al., 1998a). With the aim 

of achieving a regular voluntarily attendance of cows to the dairy facility and an even 
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distribution of milking events throughout the 24 hour period, farmers use different feed 

management strategies to manipulate cow traffic (Lyons, 2013). Type of feed, frequency, 

location and feeding time/s are some of the tools farmers can manage in order to encourage 

and manipulate cow traffic and frequency of attendance at milking stations. Automatic 

drafting gates and one-way gates are strategically placed on farm to direct cows between the 

different areas (such as feeding, lying, milking areas) based on the type of traffic system and 

milking settings. 

In systems operating with voluntary traffic, cows have some freedom to choose, within 

management and operator-set software limits, their own MF (and consequently MI) over time 

(24-h period is the most common standard unit of time in AMS). In order to gain access to 

the milking station, a cow needs to have milking permission. Milking permission criteria are 

managed by the operator by establishing the minimum milking interval (MMI), defined as the 

minimum amount of time (in hours) or a minimum expected milk yield (in kg milk/milking) 

since the previous milking event. Cows will be granted milking permission, and therefore 

access to the milking station, if the time or expected yield since the previous milking exceeds 

the limits set by the operator. On the contrary, cows that have already been milked, or that 

have not been granted milking permission, are denied access to the robot and directed to a 

different area. By setting the MMI, the operator is also establishing the maximum amount of 

times cows can potentially get milked in a 24 period. For example, cows with an 8 h MMI 

could potentially have a maximum of three milkings in a day. This gives the farmer the 

opportunity to control MF on an individual cow basis, adjusting the MMI based on stage of 

lactation or milk production level of each cow (Svennersten-Sjaunja & Pettersson, 2008; 

Hogeveen et al., 2001).  

The main purpose of setting the MMI is to maximise the efficiency of use of the robot whilst 

at the same time achieving the most efficient MI and minimising extremely long MI. The 

total amount of time that a cow spends at the robot/station on each milking event is the sum 

of a fixed time and a variable time. The fixed time is similar for every cow and is the time 

required for cleaning, attaching and post-milking disinfecting processes, representing 

between 30-50% of the total duration (Andre et al., 2010). The variable time is associated 

with milking duration, which in turn depends on milk yield but is also affected by factors 

including (but not limited to) individual cow anatomy, physiology and milk let-down rates 

(Koning & Ouweltjes, 2000). Therefore, cows presenting after a short MI (low expected milk 

yield) are likely to have reduced robot harvesting efficiency as the volume of milk harvested 
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per minute of crate occupation will be significantly reduced, compared to cows with longer 

MI and higher milk yields. 

Indoor housed AMS 

There are 3 main types of voluntary traffic systems used in indoor AMS, typically referred as 

free, guided and forced cow traffic (Rodenburg et al., 2017). In free cow traffic systems cows 

are allowed to move between feeding, resting and milking areas without restrictions. Cows 

are encouraged to visit the milking station (robot) by offering them concentrate feed in the 

milking station as a reward (Rodenburg et al., 2017). In forced cow traffic systems cows must 

go through the milking station before being allowed to move from the feeding area to the 

resting area or vice versa. This occurs regardless of time elapsed since previous milking, 

although cows without milking permission will be released from the station without getting 

milked (de Koning, 2011). In guided cow traffic, cows moving between the resting and 

feeding areas are guided to an automatic drafting gate, which will grant access to the robot to 

those cows that have milking permission. Cows without milking permission will be diverted 

away from the milking station (de Koning, 2011).  

Previous studies (Ketelaar-de Lauwere et al., 1998; Ipema, 1997; Bach et al., 2009) suggested 

that the type of traffic system has an effect on daily MF, feed access and also the number of 

times cows need to be fetched to the milking station. Other authors (Alexander, 2015; 

Rodenburg et al., 2017) have reported advantages and disadvantages for each of the traffic 

systems in regards to system performance, cow production, animal welfare and labour 

efficiency, with no clear conclusions about which is the most suitable system. In a recently 

published study, Rodenburg et al. (2017) suggested that high feed intake, good production 

levels and good cow welfare is possible with all three systems. In relation to production, 

however, Tremblay et al. (2016) found that free-cow traffic was associated with increased 

daily production per cow and per robot when compared with forced systems, after analysing 

data form 635 indoor AMS farms across North America. 

Pasture-based AMS 

The successful integration of AMS and pasture-based operations has been previously shown 

in several studies (Lyons et al., 2013b; Jago et al., 2002; Davis et al., 2005). As a 

consequence the interest in, and adoption of AMS in countries where grazing systems are 

predominant, such as Australia, New Zealand, Ireland and Chile has continued to increase 

(Shortall et al., 2018). 
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The majority of pasture-based AMS operate with guided voluntary cow traffic, utilising feed 

as the main incentive to encourage cows to move around the different areas of the farm and 

milk harvesting facility. Cows are allowed to voluntary traffic from pasture to the dairy to be 

milked at any time during the day and night using automatic drafting gates (guided traffic 

system). Cows exiting the dairy after being milked or when denied milking permission, had 

access to one of the two (when operating with two-way grazing, 2WG) or three (when 

operating with three-way grazing, 3WG) pasture allocations offered per day, depending on 

time of day. Each pasture allocation is accessible for cows for a set period of time each day, 

and only one allocation is open at any point in time. For example, under 3WG, access to 

pasture allocations may start at 0800 h, 1600 h and 0000 h. Concentrate is offered in the 

robots during the milking process and in some cases in out-of-parlour feeders located in pre-

milking or post milking areas, depending on the design of the farm or farmer’s preference. 

Cows that fail to return to the dairy from the pasture allocation after a pre-determined number 

of hours are fetched by the operator to minimise extended MI (Lyons et al., 2013b). The 

majority of pasture-based AMS are currently operating with 3WG, as it was shown by Lyons 

et al. (2013b) that offering three pasture allocations per day instead of two, increased cow MF 

by 40%, individual cow production by 20% and also improved system performance.  

In pasture-based AMS, feed pads can be used for several reasons: to replace a pasture 

allocation; to supplement a pasture allocation when pasture is scarce; or to provide a fourth 

allocation (four-way grazing, 4WG). Anecdotal evidence from commercial operations using 

4WG, suggests that this strategy might improve cow traffic; yet, no research has been 

conducted to confirm this. 

In both indoor and pasture-based AMS the traffic system type is generally very consistent 

within farm. This is due in part to the constraints imposed by the facility infrastructure. 

However, it is also likely affected by the lack of knowledge regarding how cows adapt to big 

changes in traffic management system, and the effect that this might have on individual cow 

traffic and performance. In addition, with the commercialisation of the AMR, there has been 

an increasing interest in batch milking, due to the high-throughput capacity (60-90 milking 

per hour), the AMR can operate with both voluntary and batch cow traffic system, or a 

combination of both.  Operating with batch milking traffic system, means that cows are 

fetched to the milking facility for defined milking sessions, thus reducing the need of 

additional infrastructure (i.e. additional laneways, automatic drafting gates). The possibility 

of operating an AMR with batch milking traffic system or a potential combination of both 
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voluntary and batch traffic system to increase efficiency of the AMR has not been 

investigated yet. If the feasibility of this strategy is proven, it will provide farmers with 

another strategy that could be implemented when required. 

Relationship between milking frequency, milking interval and milk production in 

Conventional and Automatic Milking Systems. 

The strong positive relationship between MF and milk yield has been widely studied in 

conventional milking systems (CMS) (Stockdale, 2006; Erdman & Varner, 1995; Bar-Pelled 

et al., 1995). Increasing MF from two to three milkings per day, results in an increment of 

around 15% in milk production and a further 20% when cows are milked 6 times a day in 

comparison to three times-a-day (Stockdale, 2006). Regardless of the existing milk yield, 

increments of 3.5 kg and 4.9 kg for three times-a-day and four times-a-day, respectively, have 

been reported (Erdman & Varner, 1995). 

Inversely, when MF is reduced there is a negative effect on milk yield. In New Zealand, 

several studies have been conducted looking at the effect of once-a-day milking on milk 

yield, with the aim of improving labour efficiency, farmer’s lifestyle and potential benefits on 

animal welfare (Phyn et al., 2010; Clark et al., 2006; Davis et al., 1999). Milk yield losses 

ranging from 22 to 50% have been reported (Clark et al., 2006; Davis et al., 1999) in full 

lactation studies and between 7 and 40% in partial lactation studies (Davis et al., 1999). The 

responses in milk production to changes in MF are dependent on stage of lactation and parity. 

Positive responses to an increase in MF tend to be more significant in early lactation cows in 

comparison to late lactation cows with the magnitude of response declining as days in milk 

increases (Pettersson et al., 2011). In their review of once-a-day milking, Stelwagen et al. 

(2013) reported that production losses due to milking cows once-a-day are relatively greater 

in early lactation in comparison to late lactation cows. Moreover, the authors concluded that 

the reduction in milk production is relatively greater in primiparous cows than in multiparous 

cows. Despite the commonly reported associations between MF and milk yield, it should be 

noted that, in general, milk yield would be expected to increase (over the medium-long term) 

with an increase in MF, only if MF is the most limiting factor. If for instance, nutrition, 

physiological status or genetic potential are the most limiting factors, then an increase in MF 

would not be expected to generate a significant and sustained increase in milk production 

(Bargo et al., 2002; Lyons et al., 2014). 
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All of the above mentioned studies were conducted in CMS, and so were the result of 

applying quite regular intervals between consecutive milkings (e.g. 24 h for once-a-day 

milking, 12 h MI for twice-a-day milking, 8 h MI three times-a-day milking). In AMS, and as 

a result of the voluntary and distributed cow traffic, a large variation in MF and MI within 

and between both cows and days is typical (Lyons et al., 2014; Winter & Hillerton, 1995; 

Lovendahl & Chagunda, 2011; de Koning, 2011). Consequently, in AMS, two cows could 

have the same MF but completely different MI (both average and level of variability in MI). 

In addition, due to the nature of voluntary cow traffic, and in contrast to CMS where cows are 

typically milked twice-a-day, in AMS some cows within a herd will access the robots to be 

milked more often than others, which is in turn a potential advantage of the system compared 

to CMS. In an experiment investigating the impact on daily milk yield when cows were 

milked twice-a-day at different MI, Rémond et al. (2009) reported that when the variation in 

MI increased from 11 h:13 h to 5 h:19 h and 3 h:21 h, daily milk yield was reduced at an 

increasing rate. However, in the same study the authors showed that when comparing cows 

milked twice-a-day (with 11:13 h and 10:14 MI regime), with cows milked with a 7:17 h and 

5:19 h MI regime respectively, daily milk yield was not significantly different showing that 

some cows might adapt to different length of MI. This might indicate a different response 

from individual cows to variable MI (Lyons et al., 2014). Several studies (Knight et al., 1994; 

Schmidt, 1960a) have previously reported a positive effect of MI on milk yield. There is a 

positive albeit non-linear relationship between MI and milk yield in which milk accumulation 

rate in the udder increases up to a threshold when milk secretion rate decreases. Thresholds of 

12 h (Knight et al., 1994), 16 h (Schmidt, 1960b; Lyons et al., 2013a) and 18 h (Stelwagen et 

al., 2008) have been reported in the literature, denoting that there is certain level of variability 

with regards to when the relationship changes. Together with a negative impact on daily milk 

yield, MI longer than 16 h has been shown to increase the risk of developing mastitis 

(Hammer et al., 2012) and reduce secretion rate (Lyons et al., 2013a). At the other extreme, 

Koning and Ouweltjes (2000) reported that reductions in MI were associated with a reduction 

in milk yield. An increased variability in MF and MI was also reported to have a negative 

effect on milk yield (Bach & Busto, 2005). This might explain at least in part why increases 

in milk yield observed in AMS due to cows being milk more frequently are usually lower 

than those obtained in CMS (Lyons et al., 2014; Pettersson et al., 2011). In pasture-based 

systems Lyons et al. (2013a) reported a decreasing response in daily milk yield to 

incremental increases in MF; thus milk yield increased by 33% when MF changed from 1 to 

2 milkings/cow/day but only by 13% when MF increased from 2 to 3 milkings/cow/day. 
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It has been demonstrated that increments in milk yield can be achieved by milking cows more 

frequently in AMS when comparing to CMS (twice-a-day milking). However, a level of 

variability exists among studies, with increments in milk yield of 2% (Wagner-Storch & 

Palmer, 2003), 7% (Svennersten-Sjaunja et al., 2000), 8% (Speroni et al., 2006) and up to 

15% being reported when the increased frequency was maintained throughout the lactation 

(Svennersten-Sjaunja & Pettersson, 2008). In these studies MF with AMS averaged 2.5 

milkings per day in comparison to twice-a-day in CMS. Overall, average responses in milk 

production in AMS due to increments in MF are lower than those observed in CMS, and this 

might be due to the lack of consistency of MF along the lactation, together with a greater 

variability in MI (Lyons et al., 2014). In AMS, in order to achieve high production per cow it 

is evident that regular and consistent MI and MF through lactation must be achieved.  

It is also important to mention that increments in production per cow observed after the 

introduction of AMS might not be due only to an increase in MF, and those increments are 

the result of other factors, such us improvements in management and genetics and adjusting 

of cows to the system (e.g., greater comfort for the animals due to new infrastructure). It is 

evident that with time, better management decisions are made. Veysset et al. (2001) reported 

a higher increment in production per cow in farms that had been operating with AMS for 

more than two years (9%) in comparison to those that had been operating for less than two 

years (3%). In addition, in an retrospective study investigating the economic efficiency of 

AMS analysing a large amount of data (over 6 million test days from 346,349 cows, over 12 

years), Wade et al. (2004) estimated an increase in milk production of approximately 2% 

after the introduction of AMS, and also a large variation among dairy farms, suggesting that 

the magnitude of response is greatly dependent on management. 

Individual variability in AMS 

In AMS, the large individual variability in MF, leads to a high variation in MI, where typical 

MI’s can range between 4 h (for cows that access the robot as soon as milking permission is 

granted) to MI greater than 24 h (generally only occurring when cows are fetched to the dairy 

by the operator) (Jacobs & Siegford, 2012; Lyons et al., 2013a; Andre et al., 2010). In AMS 

indoor systems, the greatest proportion of MI typically range between 6 to 12 h (67%, 

(Gygax et al., 2007)), although short MI (<4) and long MI (>12 h) also occur (Hogeveen et 

al., 2001; Gygax et al., 2007; Abeni et al., 2005). Hogeveen et al. (2001) reported that only a 

very small (4.2%) proportion of MI were greater than 16 h, due to the fact that cows that fail 
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to traffic within a given timeframe are regularly fetched to the milking robot by the operator 

throughout the day. In a study conducted in Australia, Lyons et al. (2013a) reported a large 

variability in MF and MI, with a relatively high proportion (30%) of MI >16 h, when cows 

were milked in a pasture-based AMS. This was one of the few studies conducted in pasture-

based system, with a large number of cows (243 cows) and analysing data from a relatively 

long period of time (2 years). Part of the variability observed in MI and MF, in both indoor 

and pasture-based system has been reported to be due to stage of lactation and parity (Lyons 

et al., 2013a; Lovendahl & Chagunda, 2011; Pettersson et al., 2011; Dzidic et al., 2004). 

Early lactation cows and high yielding cows are more likely to present higher MF, lower 

average MI, and are more motivated and move rapidly through the system in comparison to 

late lactation and lower yielding cows (Jacobs & Siegford, 2012; Lyons et al., 2013a). A 

greater proportion of pasture in the diet, lower pre-grazing pasture covers and longer 

distances between the dairy and paddocks were also identified by Lyons et al. (2013a) as 

factors specific to pasture-based AMS associated with increased MI. In addition, Andre et al. 

(2010) reported a significant level of variation in relation to the effect of MI length on milk 

yield between individual cows. It is, however, apparent that some cows are able to withstand 

longer MI’s without decreasing milk yield as shown in a study by Tol et al. (2013) when data 

from 130 cows milked in commercial indoor AMS was analysed. This variability among 

individual cows in apparent tolerance to MI provide the opportunity to increase the AMS 

efficiency by determining individual optimal MI (Andre et al., 2010). The implementation of 

different management practices might allow optimal MI’s to be harnessed for individual cows 

within a herd.  

It follows from the discussion above that the variability observed among individual animals 

in regards to cow performance and MI, potentially mean that there are some cows that are 

more efficient than others to produce milk in pasture-based AMS. If these differences exist, it 

would be beneficial to identify cows with different levels of efficiency, in order to manage 

them separately or differently to increase the whole farm system performance. Therefore, a 

method to categorise cows in relation to cow performance efficiency and to assess the 

magnitude of the variability in potential efficiency needs to be developed for AMS. As the 

management software of all AMS brands continuously capture large volume of data about the 

individual cows, there is a clear opportunity to use existing datasets from commercial farms 

for such purpose. 
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Several research studies have looked at variation in MF and milk yield due to differences 

among individual cows milked in AMS (Andre et al., 2010; Lovendahl & Chagunda, 2011; 

Gäde et al., 2006; Nixon et al., 2009; Pettersson et al., 2011), however, not all of them 

analysed complete lactations, and none of them were conducted with data from pasture-based 

systems. After analysing data form 664 lactation of cows milked in AMS indoor system, 

Lovendahl and Chagunda (2011) concluded that the variation observed in MF is an attribute 

of the individual cow and that random residual variance remains large and stable throughout 

lactation. Furthermore, an in agreement with Nixon et al. (2009), they concluded that MF is a 

repeatable trait (intermediate repeatability ~ 0.40) and that some of the variability might be 

explained by genetics differences. In contrast, König et al. (2006) reported heritabilities of 

just 0.16 and 0.22 for MF in cows milked in an indoor AMS. Pettersson et al. (2011) reported 

milking frequencies in different lactations for the same cow that demonstrated only average 

repeatability and highlighted the need for more research in this area.  

In addition, Carlstrom et al. (2013) showed that the feasibility of using AMS data from 

commercial herds for analysis of certain individual cow traits, including MF, MI, milking 

time and average flow rates, among others. Thus, there is a significant opportunity to explore 

observed variability in MF and milk yield in order to identify, select and potentially breed 

cows more suitable to AMS, and even more specific for pasture-based AMS. For example, a 

more robust cow, able to handle long MI without milk yield being significantly affected. 

Moreover, a herd comprised of cows that are able to tolerate low milking frequencies and/or 

long MI would allow  more cows to be run per robot (and therefore more milk to be 

harvested) per AMS. However, a simple method that allows managers/operators to quantify 

existing differences among individual cows and identify those more efficient and suitable to 

pasture-based AMS has not been developed yet. This could have a significant impact on the 

economic return on investment for the technology. The ‘typical cow’ in today’s commercial 

dairy herd is the result of decades of selection made for CMS, where cows were herded by 

the operator and milked with rather strict and regular MI. 

System capacity and performance 

Given the large initial capital investment required to commission a milking robot, it is crucial 

for farmers to optimise the amount of milk harvested per robot (kg milk/robot/day) to achieve 

the highest economic return for that investment (Sonck & Donkers, 1995). Milk harvested per 
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robot is the result of the number of milkings conducted per day by the AMS and the milk 

yield harvested at each milking.  

Thus, high levels of robot utilisation, defined as the total amount of time the robot is actually 

milking (generally expressed as % of a 24-h period), is a goal for the majority of farmers 

operating with AMS (John et al., 2016). As the milking robot is not available to perform 

milkings during the full 24 h period (some time is required for technical maintenance, system 

washes, technical failures absence of cows), the upper utilisation level ranges between 20 and 

22 h per day (Lyons et al., 2014; John et al., 2016; Halachmi, 2004). A constant and evenly 

distributed number of cows presented to be milked through the day and night is required to 

obtain high levels of robot utilisation (Van Dooren et al., 2004) and prevent unduly long 

waiting times for cows prior to milking.  

Robot utilisation and therefore milk harvested per robot are affected by factors related to feed 

(feeding system, feed quantity and time of allocation), animal (temperature, herd dynamics, 

physiological status, appetite), management factors (herd size, distance from feed to milking 

robot, number of cows per robot) (John et al., 2016) and environmental factors (climatic 

conditions). In addition, there are arguably only three main strategies to maximise the 

numbers of milkings: increase the number of times each cow visits the robotic unit (if milk 

yield per cow increases accordingly), increase the number of cows per milking robot, and/or a 

combination of both strategies (Pettersson et al., 2011). Whilst the number of cows in the 

milking herd cannot be changed in the short term and it is somewhat predetermined on a day-

to-day basis, increasing milkings per cow can be the focus for short term management 

decisions.  Focussing on highest priority cows – those that will respond more to a decrease in 

MI will likely have greater impact on milk harvested per robot. 

Current status of pasture-based-AMS performance  

In a comprehensive review about robot utilisation conducted by John et al. (2016), 15 

datasets from 13 studies were analysed and categorised based on the predominant feeding 

system (pasture-based AMS, n=8 or indoor AMS, n=7). In that study it was reported that 

although there are some examples of consistent levels of robot utilisation across 24 h in both 

indoor and pasture-based AMS, inconsistent (variable) patterns of utilisation are more 

common. In addition, although in both types of feeding systems robot utilisation was reduced 

during the early hours of the morning (0200 h and 0600h), the reduction was significantly 

greater and more variable in the pasture-based systems.  This is a key area that needs to be 
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addressed if pasture-based AMS are to reach their full potential. In a recently published 

study, Lyons and Kerrisk (2017) analysed current and potential system performance from 8 

commercial Australian AMS farms (7 of them pasture-based) and reported lower levels of 

robot utilisation (13.50 h/day). Furthermore, lower levels of robot utilisation during the early 

hours of the morning were also observed (Lyons and Kerrisk 2017).  

The reduction in voluntary cow traffic occurring during the night that is typically observed in 

pasture-based AMS (John et al., 2016) can be mainly attributed to the diurnal grazing 

behaviour of cows (Gregorini, 2012). Cows typically exhibit  the majority of the grazing 

activity during the day (Granzin, 2003), but even more predominantly during dusk and dawn 

(Gibb et al., 1998; Gregorini, 2012) and in a more synchronised mode compared to 

equivalent feeding patterns of cows housed indoors. In addition, pasture-based AMS tend to 

operate with larger herds than indoor systems, and in order to maintain a high proportion of 

pasture in the diet, cows are often required to walk significant distances (Islam et al., 2015). 

When operating with large herds, distances between pasture and the dairy facilities extending 

out to 3 km are not uncommon in countries like Australia and New Zealand (Jago et al., 

2004). Although Woolford et al. (2004) reported that pasture-based AMS can successfully 

operate with distances of up to 900 m (and with milking frequencies of up to 2.5 

milkings/day), Lyons et al. (2013a) reported increases in MI length when distances were 

greater than 500 m.  Overall increased walking distances divert energy from milk production, 

reduce available grazing time (Sporndly & Wredle, 2004; Islam et al., 2015) and have the 

potential to negatively impact dairy cow welfare (Coulon et al., 1998).  

Lyons and Kerrisk (2017) reported an average of 120 milkings/robot/day and highlighted the 

theoretical potential to increase the number of milkings in Australian AMS farms by a 

maximum of ~60%. Similar results were previously reported by Davis et al. (2005) in New 

Zealand when looking at factors influencing milk harvesting efficiency in pasture-based 

AMS (average of 95 milkings/robot/day).  

There are two key ways to increase the number of total milkings performed by the robot on a 

daily basis: increasing individual cow MF or increasing the number of cows in the herd. Both 

strategies are possible in pasture-based AMS, although they have different implications and 

they implementation or execution is dependent on factors like land size, current stocking rate, 

feed availability, type of calving system, and farmer preferences, among others (Lyons & 

Kerrisk, 2017). These two strategies and factors affecting them are discussed below. 
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Increasing Milking frequency 

Increasing individual cow MF has been highlighted as one of the strategies to increase milk 

harvested per robot (Pettersson et al., 2011). However, the integration of grazing and AMS 

introduces new challenges that tend to result in lower and more variable levels of MF in 

comparison to indoor AMS (Garcia & Fulkerson, 2005; Lyons et al., 2014) as well as reduced 

milk production levels (Lyons et al., 2013a). Lyons et al. (2014) reported a reduction in MF 

of approximately 40% when comparing data from 21 studies where cows were managed in a 

pasture-based AMS (n= 11; MF of 1.61 ± 0.12 milking events/cow per day, range 1.10-2.30 

milking events/cow per day) were compared with studies where cows were managed in 

indoor-based AMS and allowed to graze for less than 24h/d (access times range between 6-15 

h/day) (n=10; MF of 2.64 ± 0.06 milking events/cow per day, range 2.40-2.85 milking 

events/cow per day). This suggests that in some cases it might not be possible for cows in 

pasture-based system to respond to an increase in MF by increasing milk yield since MF is 

not the most limiting factor (Lyons et al., 2014). For example, in pasture-based systems it is 

not uncommon for cows to be restricted in terms of pasture quality by seasonality and in 

terms of pasture quantity by management factors (Hills et al., 2015), resulting in a limited 

intake of dry matter and/or energy (Utsumi, 2011). In addition, long walking distances 

(Lyons et al., 2013a), climatic conditions (Wildridge et al., 2018), and genetic potential may 

be more limiting than MF itself.  

There are several factors affecting MF in pastured-based AMS, and a complex interaction 

between them, resulting in high variability in MF and milk yield within and between cows 

and throughout lactation. It is evident that in pasture-based systems, although possible, it is 

generally more difficult to increase MF on individual cows in comparison to indoor system. 

Lyons et al. (2014) recognised that there are animal related factors such as: cow dominance, 

training and previous experience, cow behaviour; farm management factors such as: pasture 

allocation, supplementary feed and environmental factors such as climatic conditions that all 

play a significant role in the interactions.  

As feed is the main incentive for cows to move through the system, several studies 

successfully focused (Lyons et al., 2013b; Scott et al., 2014; John et al., 2013) on 

manipulating feed (timing, placement and distribution) to encourage cows to move frequently 

around a pasture-based AMS. For example, Lyons et al. (2013b) demonstrated an increase in 

MF (+40%), milk production (+20%) and robot utilisation through the day when cows were 

offered three allocations of pasture over 24 h (3WG) instead of two (2WG). In the study 
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conducted by Lyons and Kerrisk (2017) farms presented an average MF 2.38 

milkings/cow/day, which is considerable higher than that reported in the review conducted by 

Lyons et al. (2014) and comparable to MF obtained in indoor systems, with relatively low 

levels of robot utilisation (56%) and low milk harvested per robot (1,171 kg milk/robot day). 

Although all farms involved in the study conducted were managing three (3WG) or even four 

allocations (4WG) per day, denoting that farmers are adopting recommended strategies to 

increase cow traffic; the majority of them are still not achieving higher levels of robot 

utilisation, and by association milk harvested per robot (Koning & Ouweltjes, 2000). 

Considering that high production per robot is not being achieved currently by most 

commercial AMS in Australia, an alternative approach might be to look at individual 

variability among cows in regards to cow performance and in addition, to select for those 

cows who better respond to increased MI. This will allow farmers to increase robot 

production efficiency.  

Cow welfare also needs to be carefully considered when targeting or achieving high MF, as 

cows would travel greater distances (expending more time and energy) and might spend 

greater times on concrete, increasing the risk of lameness. In addition, cows with a relatively 

high MF may face some trade-offs in their time-budget allocation (increased time away from 

feed and increased time in waiting yards) which might also negatively affect health and 

performance particularly in the medium-long term. As a consequence of high MF, it is also 

likely that some cows will present at the dairy with a relative short MI (low yield), which 

might reduce robot harvesting efficiency as the volume of milk harvested per minute of crate 

occupation will be lower than optimal. This is particular relevant when the AMS if operating 

close to full capacity. The challenge is in deciding when to release a cow unmilked (to 

prevent lower efficiency milking sessions) whilst minimising the risk of causing a longer than 

desirable MI.  Anecdotal evidence indicates that some farmers are utilising nearby holding 

paddocks for ‘short-term-parking’ solutions to address this challenge. 

Increasing cows per robot 

Increasing the number of cows per robot is another strategy to increase the number of 

milkings, and therefore robot performance. In a study where data from 34 single AMS units 

was analysed, Castro et al. (2012) estimated that robot utilisation could be improved from 

72% to 90%, if 17 cows were added, without impairing robot performance and with 33% 

increased in total daily milk volume harvested per robot. The average number of cows of 

those farms was 52.7, with cows producing between 19 and 34 litres/cow/day. In addition, as 
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a consequence of adding more cows, MF would decrease from 2.69 to 2.48 

milkings/cow/day. This decrease in MF when number of cows increases in indoor AMS was 

also reported by Deming et al. (2013) and Artmann (2004) and is frequently associated with a 

reduction in production per cow and an increment in the proportion of cows that required 

fetching  (Rodenburg et al., 2017). With the aim of identifying factors associated with milk 

production in AMS, Tremblay et al. (2016) analysed data from 635 AMS farms from a 4-year 

period, concluding that increasing cow number had a positive effect on robot performance. 

Andre et al. (2010) also reported that robot utilisation could be increased from 64% to 85%, if 

the herd were increased from 60 to 80 cows, increasing milk production per robot by 34%, 

without increasing the MF. In this last study estimations were based on data collected form 

311 cows kept in 5 herds for 1 week. In a study conducted in an indoor AMS where cows 

were allowed to grazed pasture (24 h access), Van Dooren et al. (2004) estimated that robot 

utilisation could increase from 76% to 92% by milking an additional 14 cows, harvesting 

further 336 kg milk/robot/day. It is evident that optimisation of milk harvested per robot 

requires careful fine tuning of cow:robot ratios to ensure that neither production/cow, nor 

cow welfare, is significantly compromised. 

Although these four studies conducted in indoor systems have demonstrated the positive 

effect of increasing the number of cows on robot performance, caution is required in 

extrapolating these results to pasture-based systems, as differences in type of cow (high vs. 

low genetic potential cows) and traffic system (free cow traffic vs guided cow traffic) create 

some limitations.  

Increasing the number of cows per robot and decreasing the number of milkings expected per 

cow was a strategy suggested by researchers for pasture-based AMS in New Zealand for low 

input grazing systems operating with lower yielding cows (Woolford et al., 2004; Jago et al., 

2007) in a bid to optimise milk harvested per robot. Davis et al. (2005) reported a robot 

utilisation rate of 60% with 75 cows per robot, harvesting 1087 kg milk/robot/day and a MF 

of 1.13 milkings/cow/day. In another study Jago and Burke (2010) compared a low feed input 

farmlet (self-contained, 2% feed imported) and a high feed input farmlet (18% feed imported) 

farming system milking 92 and 72 cows per robot respectively. Results from the economic 

evaluation determined that both were financially viable achieving milking frequencies of 1.5 

and 1.8 milkings/cow/day respectively. The average MF observed in the above mention 

studies is significantly lower, and the number of cows is higher than values typically 

observed nowadays in commercial pasture-based AMS (Lyons & Kerrisk, 2017; John et al., 
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2016; Woodford et al., 2015) and might be indicative of changes in the pricing of 

supplementary feeds and milk value. Lyons and Kerrisk (2017) reported an average ratio of 

51 cows per robot (range 14-75), a MF of 2.38 milkings/cow/day, and an average robot 

utilisation of 56%. In this study it was estimated that the difference between current and 

potential system performance, (assuming detailed increases in number of milkings, robot 

utilisation, cows per robot, and milk harvested per robot) could theoretically increase by up to 

~ 60%. John et al. (2016) suggested that although pasture-based AMS are operating with low 

robot utilisation, AMS farmers might be choosing not to increase the number of cows 

significantly, but targeting higher MF instead. This might be explained by the commitment 

and investment that is required to increase the herd size in a commercial farm. It is often the 

case that the herd size is perfectly suited to the size of the farm and availability of feed and 

increasing the herd size just to optimise the utilisation of the AMS might not be the most 

economically viable solution. 

The need for a better understanding on the effect of higher number of cows on robot 

performance was recently highlighted by Rodenburg et al. (2017) and John et al. (2016). It 

might be possible to achieve high levels of robot performance with low levels of MF and high 

number of cows, but this still not clear. If the relationship between robot performance, cows 

per robot and MF in pasture-based AMS is better understood, farmers would be better 

positioned to develop more feasible strategies to effectively optimise MHR. This emphasises 

the need for further investigations into how to improve robot utilisation. 

However, a limitation of this approach is that in farms operating with seasonal calving 

system, the majority of the cows will be in peak lactation at the same time, and the robot 

capacity will be the limiting factor as will not be able to handle large number of cows. This 

will result in a relatively higher proportion of extended MI and potentially in congestions in 

the dairy yards. Additionally, factors like farm size, size of waiting yards or feed availability, 

among others, might limit the possibility of increasing the number of cows per robot, without 

compromising cow welfare. It is recognised that having an understanding of management 

strategies that can allow milk harvesting to be optimised will empower farmers to make 

informed decisions on their own farms. However, those decisions also need to take into 

consideration the likely impact on whole farm system performance (both physical and 

financial) and need to be tailored to the individual operation.  
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Another consequence of integrating AMS with seasonal or split calving patterns is that there 

are some months of the year in which the system will operate with a particularly low number 

of cows. This results in an underutilisation of the milk harvesting equipment during those 

months, reducing overall system efficiency. Furthermore, in some cases it could be difficult 

to achieve and maintain good voluntary cow traffic with low cow numbers where pasture 

allocations are particularly small. This can result in low milking frequency and/or a high 

proportion of cows requiring fetching to the dairy, increasing labour requirements. A 

reduction in labour use efficiency (despite the reduced herd size many tasks still need to be 

done and the operator also needs to on-call 24 h) and issues with milk quality (due to the 

intermittence of fresh milk flushing through the plant) might be also encountered. In addition, 

higher operating costs (particularly power consumption), as a consequence of running the 

dairy continuously during 24 h and low levels of milk being harvested, might be possible. 

In order to maintain a relatively consistent number of cows per robot during this period, 

farms operating with multiple box-robots can address this issue by turning some boxes off. 

With the AMR it is possible to deactivate some of the 24 bails on the platform (Kolbach et 

al., 2013) which might address some of the mentioned challenges, but certainly not all of 

them. Due to the high-throughput capacity (60-90 milking per hour), the AMR provides the 

option to operate with batch milking. In some cases it might be a viable option for farmers to 

batch milked the cows in a defined milking session, for the period of underutilisation. A 

management strategy such as this would provide the operator the opportunity to turn on the 

milk harvesting equipment for defined hours, saving electricity, controlling milking 

frequency of the cows and increasing labour efficiency (it would negate the need for on-call 

staff during the night hours if the dairy was shut down). In addition, having the dairy shut 

down for a period of time creates the opportunity to do major services to the equipment 

before the commencement of the next calving season without negatively impacting cow 

traffic. However, as it was previously mentioned, there is lack of knowledge regarding how 

cows adapt to big changes in the traffic management system, and the effects that this might 

have on individual cow traffic and performance. This issue therefore warrants further 

investigation. 
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CONCLUSIONS AND RESEARCH POSSIBILITIES  

The purpose of this review was to bring together and analyse current knowledge on pasture-

based AMS performance, compared this knowledge with indoor AMS and CMS when 

relevant, in order to identify strategies on how to improve production efficiency in pasture-

based AMS. A number of conclusions can be drawn.  

First, it is clear that automatic milking can be successfully integrated with pasture-based dairy 

farm systems, despite some new challenges not previously encountered in indoor systems, 

including long walking distances, diurnal grazing behaviour, greater social synchronisation of 

activities between cows, large herd sizes and the impact of climate.  

Second, the nature of the voluntary cow traffic in AMS introduces great variability in MF and 

MI between both individual cows and days. Pasture-based AMS present lower and more 

variable average MF and MI values in comparison to indoor based AMS. In addition, there is 

an important level of variation in relation to the effect of MI on milk yield between individual 

cows, with some cows being able to adapt better to long MI, which are not unusual in 

pasture-based AMS. There are no studies analysing the variation in MF and milk yield among 

cows in whole lactations among individual cows in pasture-based AMS. Therefore, there is a 

significant opportunity to explore that variability in order to identify, select and potentially 

breed cows more suitable to AMS and even more specific for pasture-based AMS. It has been 

also shown that using AMS data from commercial herds provides sufficient accuracy to 

evaluate certain cow traits.  

Third, it can be concluded that commercial pasture-based AMS are currently achieving lower 

and more variable levels of robot utilisation and milk harvested per robot in relation to those 

observed in indoors systems and that is room for improvement. Increasing MF whilst 

maintaining moderate or relatively low number of CR; or increasing the number of cows in 

the herd whilst maintaining MF are the two main strategies to improve system performance. 

However, there is a need for a better understanding of the relationship between robot 

performance, CR and MF in pasture-based AMS.  

In addition, pasture-based AMS operating with seasonal or split calving systems, present a 

period of time of underutilisation of the milk harvesting equipment, reducing overall system 

efficiency. Given that the AMR provide the option to operate with batch milking, there is an 

opportunity to address this issue by exploring a management strategy. It might be possible to 
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batch milk cows for a short period of time, or potentially combine voluntary and batch cow 

traffic systems. However, how cows adapt to big changes in traffic management system, and 

the effect that this might have on individual cow traffic and performance has not been 

reported. 
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OVERVIEW OF CHAPTER 3 

The literature review in Chapter 2 has identified current gaps in knowledge in relation to 

pasture-based automatic milking systems (AMS) performance efficiency. Factors like 

individual milking frequency and the ratio of cows to robots are key to optimise production 

per robot. If the relationships between these variables were better understood, farmers would 

be better positioned to develop more feasible strategies to effectively optimise production 

efficiency. In Chapter 3, data from 17 commercial pasture-based AMS farms was used to 

investigate the relationships between these two key variables and other key performance 

indicators. 
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CHAPTER 3: Relationship between milking 

frequency, cows per robot and milk harvested per 

robot in commercial automatic milking farms
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ABSTRACT 

Optimising milk harvested per robot (MHR, kg milk/robot/day) is critical to achieve high 

farm profitability in pasture-based automatic milking systems (AMS). Understanding the 

relationship between MHR, cows per robot (CR) and milking frequency (MF, 

milkings/cow/day) will enable farmers to develop strategies to effectively optimise MHR. 

The initial aim of this study was to analyse the relationship between MHR, MF and CR in 

pasture-based AMS. The second aim was to determine the probabilities of achieving High 

MHR with different levels and combinations of MF and CR. Monthly averaged data from a 

two-year period from 17 pasture-based AMS commercial farms from Australia, New 

Zealand, Ireland and Chile were obtained. On a monthly basis, farms averaged 1,171 kg 

milk/robot/day, 2.22 milking/cow/day, 51 cows per robot and 22.94 kg milk/cow/day. Results 

indicate that although MHR increased (P < 0.001) when either CR or MF increased, CR had 

a greater effect than MF on MHR. In addition, the combination of High levels of MF and CR 

had the potential to negatively affect MHR. Moreover, farms were 4 and 17 times more likely 

(P < 0.001) to achieve High MHR (greater than 1,600 kg milk/day/robot) with High MF 

(>2.5) compared to Mid MF (2-2.5) and Low MF (<2) levels, respectively. In order to 

optimise system performance, alternative approaches (for example, explore individual cow 

performance variability) together with strategies such as increasing CR and increasing 

production per cow, should be explored. 
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INTRODUCTION  

The adoption of automatic milking systems (AMS) in countries where the majority of dairy 

farms are pasture-based such as Australia (Lyons & Kerrisk, 2017), New Zealand (Woodford 

et al., 2015) and Ireland (Shortall et al., 2018), continues to increase. In Australia, currently 

there are over 40 farms operating with AMS and at least another five are being installed 

(Lyons & Kerrisk, 2017). The majority of them operate with voluntary cow traffic where 

cows move from the paddock to the dairy facility to get milked and back to pasture, 

throughout the 24 h period, largely without human assistance. 

Optimising the amount of milk harvested per robot (MHR, kg milk/robot/day) is critical to 

achieving high farm profitability and is a goal for the majority of farmers operating with 

AMS (Sonck & Donkers, 1995). The MHR is the result of the number of daily milkings and 

the amount of milk harvested in each milking. To maximise the number of daily milkings 

performed by the AMS unit, the operator can decide to either increase the number of cows, 

increase the number of times each cow visits the robotic unit (if yield per cow increased 

accordingly) or a combination of both strategies (Pettersson et al., 2011). 

In pasture-based AMS, increasing individual cow milking frequency (milkings/cow/day) to 

optimise MHR comes with many challenges (Woolford et al., 2004). The combination of 

grazing and AMS results in a lower and more variable milking frequency in comparison to 

indoor AMS (Lyons et al., 2014) as well as lower overall production levels (Lyons et al., 

2013a). Pasture-based AMS typically operate with larger herds than indoor systems and in 

order to maintain a high proportion of pasture in the diet, cows are required to walk 

significant distances (Islam et al., 2015). This, together with the greater synchronisation of 

behavioural activities typically observed in pastured-based, could explain the lower milking 

frequencies and why visitation is unlikely to be evenly spread across the day and night. This 

in turn affects occupation rate, defined as the proportion of time the automatic milking unit is 

actually milking per day (Lyons et al., 2013b; John et al., 2016) and by association, MHR 

(Koning & Ouweltjes, 2000).  

An alternative approach to optimise MHR is to increase the number of cows per robot. 

However, operating with a high number of cows per robot increases the pressure on the 

system and requires that the system is managed very efficiently (Lyons & Kerrisk, 2017). In a 

study conducted in Spain that analysed data from 29 commercial AMS farms, Castro et al. 

(2012) reported that an increment in the number of cows per robot (from 52 to 68 cows per 
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robot) increased the milk harvested per robot at a rate of 22.53 kg milk/robot/day for each 

additional cow. However, this was associated with a decrease in milking frequency per cow. 

In that study, farms averaged 1,506 kg milk/robot/day, 52 cows per robot and 2.69 

milkings/cow/day. In a more recent study where data from 635 North-American dairy farms 

with AMS were analysed, Tremblay et al. (2016) also reported a significant positive effect of 

cows per robot on MHR. Farmers harvested on average 1,626 kg milk/robot/day, milking 50 

cows per robot at an average individual milking frequency of 2.91 milkings/cow/day. All of 

the farms in the above two studies had cows housed in indoor systems, with relatively high 

milking frequency and MHR in comparison to the values typically observed in pasture-based 

systems. The different type of cow (high yielding cows vs med/low yielding cows) and traffic 

system typically used in indoor systems (free cow traffic vs guided cow traffic) also create 

limitations in the potential to accurately extrapolate results to pasture-based systems. 

In New Zealand, Davis et al. (2005) as well as Jago and Burke (2010) aimed to optimise 

MHR, by establishing a higher number of cows per robot. The former study reported 75 cows 

per robot, with an average milking frequency of 1.13 milkings/cow/day to achieve only 1,087 

kg milk/robot day. In the latter study, researchers were able to increase cows per robot to a 

maximum of 92 cows, and milking frequency to 1.5 milkings/cow/day, achieving a MHR of 

1,386 kg milk/robot/d. It is important to acknowledge that these two studies were 

implemented on low-input grazing systems, with smaller and lower yielding cows (New 

Zealand Holstein-Friesian strains, Jerseys and Crossbreds). Although these two studies were 

conducted in pasture-based AMS, the average milking frequencies were significantly lower 

than values recently reported by Lyons and Kerrisk (2017). In the study by Lyons and Kerrisk 

(2007), nine Australian AMS farms were monitored on a monthly basis for one year, with an 

average ratio of 51 cows per robot (range 14-75), a milking frequency of 2.38 

milkings/cow/day, and an average MHR of 1,263 kg milk/robot/day. Probably more 

important is the fact that this study also highlighted the difference between current and 

potential system performance, suggesting that milkings per robot per day, cows per robot, 

MHR and milking time could (potentially) be increased by up to 60%. The average potential 

MHR and cows per robot reported in that study was 1,956 kg milk/robot/day and 78 cows per 

robot, respectively. This suggests that there is an opportunity for MHR improvement and that 

the majority of commercial AMS farmers are not maximizing MHR levels.  

While these studies give some reference values in regards to cows per robot, individual 

milking frequency and MHR, most of them either focus on one single low-input farm (the 
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New Zealand studies) or do not analyse the relationship between these variables (the 

Australian study) for pasture-based AMS. If the relationship between MHR, cows per robot 

and milking frequency in pasture-based AMS is better understood, farmers would be better 

positioned to develop more feasible strategies to effectively optimise MHR. Therefore, the 

aim of this study was to analyse the relationship of MHR with milking frequency and number 

of cows per robot for pasture-based systems. The second aim was to determine the likelihood 

of achieving high levels of MHR with different levels (and combinations) of milking 

frequency and cows per robot. 

 MATERIALS AND METHODS  

General information  

Data were obtained from the NSW DPI’s Automatic Milking Systems Key Performance 

Indicators (AMS KPI) Project (N. Lyons, personal communication), which comprised data 

form Australian (year 1 and 2) and from overseas farms (year 2). In year 1, all Australian 

AMS farmers were invited to participate and in year 2 the invitation was extended to include 

AMS farms in New Zealand, Ireland and Chile.  This resulted in nine farms from Australia in 

year one (July 2015-June 2016) and 19 farms (12 from Australia, 2 from New Zealand, 4 

from Ireland and 1 from Chile) in year two (July 2016-June 2017). A total of 20 farms were 

monitored during the 2 years, but only 8 farms participated in both years. Agreeing to 

participate involved extracting reports from the AMS support software on a monthly basis 

(during the first five days of each month). Data collection also included some capture of 

general information about farm characteristics and variables related to the farm system and 

animal performance. More details on this dataset can be found on Lyons and Kerrisk (2017).  

Farm demographics 

Only farms operating with single box robots (average 3 boxes/farm, range 1 - 6) were 

included. Thus data from the two farms operating with a robotic rotary (AMR
TM

, DeLaval 

International AB, Tumba, Sweden) were excluded given that MHR is not directly 

comparable. One Australian farm was an indoor operation with cows confined to the barn all 

year round with a ‘free cow traffic’ system and was also excluded from the study.  

Seven farms had seasonal calving systems (all cows calved within a defined period each year, 

usually late winter to early spring), seven had split calving patterns (cows calved in two or 

three defined periods each year, typically spring and autumn) and three had year-round 

calving patterns (cows calved throughout the year). The majority of the farms analysed in this 
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study milked Holstein Friesians, Brown Swiss, Norwegian Reds or crossbreds 

(predominantly Holstein x Jersey). Nine farms had no out-of-parlour concentrate feeding 

stations and relied on feeding only within the milking station, whilst the other eight had 

between two and six feeding stations allowing cows to consume concentrate in the milking 

stations and/or in the out-of-parlour stations. All farms were pasture-based, operated with 

voluntary traffic and provided between one and four feed allocations of fresh pasture per day. 

Data analysis 

Outcome variables 

The outcome variables of interest in this study were: (1) MHR (kg milk/robot/day) and (2) 

probability of obtaining High levels of MHR. The MHR were categorised as either Low (< 

1000 kg milk/robot/day), Mid (≥ 1000 to < 1600 kg milk/robot/day) or High (≥ 1600 kg 

milk/robot/day). 

Explanatory variables  

Explanatory variables used in the analysis were: calving pattern (as year round, seasonal and 

split), milking frequency (MF, in milkings/cow/day, which was calculated as the average 

number of milkings per cow per day of the herd for that month); cows per robot (CR, cows 

per robot, calculated by dividing the herd size for that month by the number of robots), 

season (as summer, autumn, winter and spring) and milk yield (MY, kg milk/cow/milking, 

calculated as the average yield per milking of all miking events for that particular month). 

Milking frequency was categorised as either Low (< 2 milkings/cow/day), Mid (≥ 2 to < 2.5 

milkings/cow/day) or High (≥ 2.5 milkings/cow/day). Additionally, CR were categorised as 

either Low (< 45 cows per robot), Mid (≥45 to < 60 cows per robot) or High (≥ 60 cows per 

robot). Milk yield was categorised as either Low (< 9.5 kg milk/cow/milking), Mid (9.5 ≥ to 

11.5 < kg milk/cow/milking) or High (≥ 11.5 kg milk/cow/milking). For MHR, MF and CR 

the cut-off values were determined after exploring the distribution of variables within this 

dataset and also in relation to average values observed in the available literature (Castro et al., 

2012; Lyons & Kerrisk, 2017; Andre et al., 2010; Woodford et al., 2015; Tremblay et al., 

2016; Jago & Burke, 2010). For example, Castro et al. (2012) categorised MHR into Low (< 

1500 kg milk/robot/day), Mid (≥ 1500 to < 1944 kg milk/robot/day) or High (≥ 1944 kg); 

however, because that study was conducted in indoor systems, these cut-off values are higher 

than those typically observed in pasture-based systems, therefore new values were 

determined.  
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Statistical analysis 

Data were first summarised using descriptive statistic and numeric variables were checked for 

normality. A multivariable linear mixed model was used to analyse the association of 

explanatory variables with the numerical outcome variable (MHR, kg milk/robot/day), with 

parameter estimates calculated using residual maximum likelihood (REML) (Model 1). Farm 

ID was included as a random effect to account for repeated measures within farms and 

differences between farms. The model included MF, CR, MY, season and calving pattern as 

fixed effects. Interactions between fixed effects were tested. 

In addition a generalised linear mixed model (GLMM) was used for binary data to test the 

association between the explanatory categories (MF and CR) and the probability of achieving 

High MHR (Model 2). Farm ID was included as a random effect to account for repeated 

measures within farms and differences between farms. The model included MF, CR, season 

and calving pattern as fixed effects. Interactions between fixed effects were tested. 

All analyses were conducted in Genstat 16th Edition (VSN International Ltd., UK) and P 

values lower than 0.05 were considered significant. Residual analysis was performed to check 

for normality. Least significant differences were used to determine any significant differences 

RESULTS 

On average, the 17 farms participating in the study produced 3,729 kg milk/day with 4.25% 

Milk Fat, 3.44% Milk Protein and a Somatic Cell Count of 181,000 cells/mL. Average MHR 

was 1,171 kg milk/robot/day, with 51 cows per robot. Individual cows had an average 

milking frequency of 2.22 milkings/cow/day and produced on average 22.94 kg milk/day 

(Table 1). 
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Table 1. Descriptive statistics for the analysed data set for all farms and all months (n=228). 

Variable Mean Minimum Maximum SD
1
 SEM

2
 

Cows in milk (n) 168 38 330 66.8 3 

Number of robots (n) 3 1 6 1 0.06 

Cows per robot (CR, cows per robot) 51 13 81 12.46 0.71 

Milk harvested per robot (MHR,  

kg milk/robot/day) 
1,171 377 2,484 434 25 

Milk Fat composition (%) 4.25 3.23 5.53 0.48 0.03 

Milk Protein composition (%) 3.44 2.98 4.13 0.24 0.01 

Somatic cell count (x1000) 181 25 419 73 4 

Daily milk yield (kg milk/cow/day) 22.94 12.07 36.59 5.79 0.33 

Milk yield (MY, kg 

milk/cow/milking) 
10.41 5.11 16.90 2.28 0.13 

Milking frequency (MF, 

milkings/cow/day) 
2.22 1.51 3.06 0.32 0.02 

Milking time (h/robot/day) 13.26 0.72 21.12 3.36 0.24 

Daily milk production (kg milk /day) 3729 17 9,665 1594 90 

Milkings (milkings/robot/day) 112 5 164 26 1 

Concentrate intake (kg milk/cow/day) 5.41 0.15 11.29 2.22 0.13 
1
Standard deviation  

2
Standard error of the mean 

 

The final linear mixed model (Model 1) to explain the outcome variable MHR included the 

terms MF, season, CR and MY (all significant P<0.001) and calving pattern (not significant, 

P>0.05), as fixed effects. There was a significant interaction between CR and MF (P=0.009), 

between MF and MY (P=0.045) and between CR and MY (P<0.001).  

For the interaction between MF and CR, MHR was lowest when Low MF coincided with 

Low CR whilst the highest MHR occurred with High CR and Mid MF (Table 2). The average 

increment in MHR within each category of CR (10%) was proportionally lower in 

comparison to the increment observed when CR increases for each category of MF (26%). 

Within each category of MY there was no difference when MF increases from Mid to High 

(Table 3).  
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Table 2. Milk harvested per robot (kg milk/robot/day) predicted means for the interaction 

between cows per robot and milking frequency (milkings/cow/day).  

  Cows per robot 

  Low Mid High 

  (< 45) (≥45 to < 60) (≥ 60) 

Milking 

frequency 

Low (< 2) 802
a
 983

b
 1349

d
 

Mid (≥ 2 to < 2.5) 947
b
 1203

c
 1537

e
 

High (≥ 2.5) 984
b
 1310

d
 1426

d
 

a-g
Different letters indicate significant effect (P<0.001) differences between categories. 

Table 3. Milk harvested per robot (kg milk/robot/day) predicted means for the interaction 

between milk yield (kg milk/cow/milking) and milking frequency (milkings/cow/day).  

  Milking frequency 

  Low Mid High 

  (< 2) (≥ 2 to < 2.5) (≥ 2.5) 

Milk  

yield 

Low (< 9.5) 899
a
 999

b
 949

ab
 

Mid (9.5 ≥ to < 11.5) 975
ab

 1220
c
 1281

c
 

High (≥ 11.5) 1260
c
 1468

d
 1491

d
 

a-d
Different letters indicate significant effect (P<0.001) differences between categories. 

Table 4. Milk harvested per robot (kg milk/robot/day) predicted means for the interaction 

between milk yield (kg milk/cow/milking) and cows per robot. 

  Cows per robot 

  Low Mid High 

  (< 45) (≥45 to < 60) (≥ 60) 

Milk  

yield 

Low (< 9.5) 748
a
 1017

c
 1081

c
 

Mid (9.5 ≥ to < 11.5) 867
b
 1201

e
 1408

f
 

High (≥ 11.5) 1117
cd

 1278
e
 1824

g
 

a-g
Different letters indicate significant effect (P<0.001) differences between categories  

The final model for the outcome variable, probability of achieving High milk harvested per 

robot (Model 2) included a significant effect of MF, CR and Season with no significant 

interaction between MF and CR (Table 5). The likelihood of obtaining High MHR increased 

significantly when MF increased. Systems that presented Low MF (<2 milkings/cow /day) 

were the least likely to obtain High MHR and those operating with High CR (≥ 60 cows per 

robot) had the highest chance of achieving High MHR per robot. In spring it was 15 times 

more likely to achieve High MHR than in Winter. 
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Table 5. Final generalised linear mixed model to investigate the association of explanatory 

variables with the outcome variable and the probability of achieving High milk harvested per 

robot. 

Effect Categories Estimate Standard error Odds (95%CI
1
) P-value 

Intercept  -9.61 0.24   

Milking 

Frequency 
    0.033 

 Low (<2) 0 0.64 1  

 Mid (2-2.5) 2.58 0.64 13.19 (11.91, 14.47)  

 High (>2.5) 2.89 0.64 17.99 (16.71, 19.27)  

Cows per 

robot 
    <0.001 

 Low ( <45) 0 0.92 1  

 Mid (45-60) 3.86 0.92 47.65 (45.81, 49.49)  

 High (>60) 7.92 0.92 
2760 (2758.16, 

2761.84) 
 

Season     <0.001 

 Winter 0 0.50 1  

 Spring 2.72 0.50 15.28 (14.28, 16.28)  

 Summer 1.68 0.50 5.40 (4.40, 5.40)  

 Autumn  0.08 0.50 1.22 (0.22, 1.22)  
1
Confidence interval 

DISCUSSION 

The main objective of this study was to investigate the relationships between MHR, MF and 

CR on commercial pasture-based AMS farms. Milk harvested per robot increased when MY, 

CR and MF increased. The second objective was to determine the probability of achieving 

High levels of MHR for different levels of MF and CR. Results indicate that the probabilities 

of achieving High MHR increased when either of those variables increased. 

The average MHR in this study was 1,171 kg milk/robot/day, which is in line with the 

previous 1,271 kg milk/robot/day published in studies involving pasture-based farms (Lyons 

and Kerrisk (2017). These figures are still lower in comparison to results reported from 

indoor housed systems, which range between 1506 kg milk/robot/day and 1883 kg 

milk/robot/day (Castro et al., 2012; Tremblay et al., 2016; Andre et al., 2010). Given the 

average number of cows per robot was fairly similar in all studies (~51 cows per robot), this 
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difference with housed systems may be mostly explained by 2 main factors: the difference in 

MF and MY, which in turn can be explained predominantly by feeding system and walking 

distances; and possibly, genetic potential. In the three studies conducted in indoor systems, 

the mean MF was above 2.5 milking/cow/day, which is higher in comparison to those 

typically observed in pasture-based systems (2.22 milking/cow/day for this study). Pasture-

based AMS typically present lower MF than those observed in indoor systems, as there are 

many factors affecting cow movement including animal factors (stage of lactation, age, 

previous AMS expertise, herd dynamics), management factors (e.g. timing, placement and 

distribution of feed, herd size) and environmental factors (e.g. climatic conditions) (John et 

al., 2016; Lyons et al., 2014). John et al. (2016) also reported that the interaction between 

time of the day, location of robot relative to shade and distance to milking robot, might also 

affect cow traffic behaviour. 

The daily milk yield (DY, kg milk/cow/day) in this study (22.94 kg milk/cow/day) was lower 

in comparison to DY in the studies of  Castro et al. (2012), Tremblay et al. (2016) and Andre 

et al. (2010), who reported 28.52,   31.98 and 30.0 kg milk/cow/day, respectively. This 

difference might be explained by MF, together with other factors like breed, genetic merit 

and feeding system. Tremblay et al. (2016) found that farms milking Jersey cows produced 

216 kg milk/robot/day less than systems operating with Holstein cows, although there was no 

difference between Holstein and other breeds (including Ayrshire, Brown Swiss, Guernsey 

and Crosses). In our study only 10 out of the 17 farms milked only Holstein cows, whereas in 

the other studies the majority, if not all, of the records were from Holstein cows (90% in 

Tremblay et al. (2016), and all records in Castro et al. (2012) and Andre et al. (2010)). No 

information regarding genetic merit was available for any of the studies.  In regards to 

feeding systems, as all farms in our study were pasture-based, on an annual basis the majority 

of the forage is offered as grazed pasture; and although in most of the farms cows received 

additional supplements, like grain based concentrates, cows would have been (as it occurs in 

pasture-based systems) restricted in quantity by grazing management and in quality by 

seasonality, which would typically be expected to limit milk production potential (Hills et al., 

2015).  

The lower values of MF observed in our study means that milking intervals (defined as the 

total time between two consecutives milking events) were increased. Lyons et al. (2013a) 

reported a positive non-linear relationship between milking interval and MY, with 

proportionally lower MY for intervals greater than 16 h. In the study by Lyons et al. (2013a), 
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a wide distribution of MI was reported and 30% of the total milking events had intervals 

greater than 16h. This might lead to (expected) higher MY in pasture-based systems, however 

the MY in this study was no different from the one reported by Castro et al. (2012) (10.4 kg 

milk/cow/milking and 10.6 kg milk/cow/milking, respectively) and it was lower in 

comparison to those presented by Tremblay et al. (2016) and Andre et al. (2010) (12.34 kg 

milk/cow/milking and 12.68 kg milk/cow/milking, respectively). This difference might be 

related to breed, genetic merit and feeding system. 

The fact that MHR did not increase when MF increased from Mid to High levels for each 

category of MY (Table 3), suggests that MF was not limiting production beyond 2 

milkings/cow/day. Other factors like a limitation in dry matter intake, which  typically occurs  

in grazing systems (Bargo et al., 2003); and milk production levels (Lyons et al., 2014) might 

have been greater limiting factors at High MF levels. This is in agreement with Utsumi 

(2011), who suggested that an increase in MF will not produce significant positive effects on 

milk production if dry matter intake and/or energy is limited.  

The highest MHR, which  was found for the combination of High CR and High MY (1,824 

kg milk/robot/day), was still 7% lower than the potential maximum calculated by Lyons and 

Kerrisk (2017) (1,956 kg milk/robot/day). However, to calculate potential maximum MHR, 

Lyons and Kerrisk (2017) assumed certain levels of linearity of response within farm and that 

certain system variables remained constant while others changed. Although this is a valid 

modelling exercise approach, this method denotes the technical capability of the equipment 

and does not take into account the variability that exists in physical commercial operations 

with current farm system management practices and types of cows. However, the highest 

MHR reported by Lyons and Kerrisk (2017) was 2,484 kg milk/robot and is higher than the 

potential maximum. That value was achieved only on one month, on a seasonal calving farm 

in spring with 75 cows per robot and a MF of 2.3 milkings/cow/day. This showed that the 

combination of High CR, cows in early lactation, mid values of MF, spring (assuming high 

quality and quantity of pasture, favourable environmental conditions) and good management, 

commercial farmers are already achieving very High MHR.  

However, this period in which the robot might be the limiting factor, is only for a few months 

of the year (usually spring-summer in farms with seasonal calving systems), and then the 

systems will run at lower than potential utilisation levels for the remainder of the year, so 

there is still an opportunity to find alternatives on how to improve productivity in some 
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months of the year. It is evident from the present study that the main limiting factor for 

achieving high levels of system performance on commercial farms is in having the right 

combination of animal, management and feed factors; rather than in the technical capability 

of the robotic equipment. However, modifying the animal, management and feed factors will 

come at a cost that might be greater than the performance benefits that are trying to be 

optimised. Clearly more research is warranted to elucidate this. 

Castro et al. (2012) and Artmann (2004) reported that when then numbers of CR increased, 

MHR increased together with a declined in MF. The same trend was observed in this study 

(data not shown). This limitation in MF, might compromise individual cow production, as 

they are strongly positively associated (Lyons et al., 2013a). Therefore the optimum or 

efficient number of cows per robot would be the one that will allow the systems to achieve a 

High MHR, with a high individual cow production (not necessarily maximised).  

The optimum CR that will allow farmers to optimise MHR in pasture-based AMS, with cows 

having lower MF and lower individual milk production seems to be higher in comparison 

those observed in indoor systems. However, given that the average CR in this study (~51 

cows per robot) is similar to that of indoor-housed systems studies, it is evident that farmers 

are prioritising an increment in MF rather than an increment in CR, or a combination of both, 

as a strategy to maximise MHR, although they are not achieving it. In a practical way, an 

increment in MF is easier to target in the short term than an increment in CR, which requires 

additional cows (either purchased, retained or reared).  Lyons and Kerrisk (2017) reported 

that in Australian AMS farms there is a potential to increase CR by a maximum 60%. 

However, they also suggested that operating with High CR creates a lot of pressure on the 

system and therefore requires very good management, and this might be a reason to explain 

why the majority of pasture-based AMS operators do not seem to be seeking to achieve High 

CR.  

For the interaction between CR and MF (Table 2), the highest MHR (1,537 kg 

milk/robot/day) was achieved with High CR and Mid MF and increasing the MF from Mid to 

High at a High level of CR, resulted in a decrease in MHR. Moreover, on average the effect 

of increasing CR was greater than the effect of increasing MF for all categories. The same 

was true for MY and MF. An increment in MF from Mid to High did not result in higher 

MHR. Furthermore, it was shown in table 4 that MHR increased significantly when CR 

increased for Mid and High MY levels. These findings indicate that, when operating with 
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High CR, the effect of increasing the amount of times a cow visit the robotic unit on a daily 

basis above 2.5 milkings/cow/day, negatively affect MHR.  Several reasons could potentially 

explain this effect including: (1) at High levels of MF there is a lack of response in milk 

production, as cows start to be limited by other factors (e.g. nutrition, animal genetics), as 

previously mentioned; (2) combined higher levels of CR and MF likely results in longer 

waiting times in the pre-milking area, negatively impacting on cow performance; (3) there is 

an increasing inefficient use of robot time, given that every milking has a fixed 

‘unproductive’ handling time (identification, entry and exit of the cow, cleaning, attaching 

and post-milking disinfecting processes) and a milk-yield related milking time, and that with 

cows getting milking too often, the MY will be smaller.  

Similarly to the results published by Lyons and Kerrisk (2017) there was a significant effect 

of season on MHR. In pasture-based AMS operating with either seasonal or split-calving 

systems (14 out of the 18 farms in this study) higher levels of system utilisation are typically 

observed in spring-summer, whereas during the rest of the year they run at lower than 

potential utilisation levels. This is because farmers typically try to match herd requirements 

and pasture growth (Holmes et al., 2002), therefore most of the cows calve and reach their 

peak production during the periods of highest pasture quality and supply. Conserving surplus 

pasture to feed at other times of the year is costly and time consuming and is minimised 

through the matching of feed supply/demand making this the most profitable farm 

management system unless cheap supplementary feed is reliably available. Moreover, the 

seasonal variability in pasture quality and quantity typically observed in pastured-based 

systems (Chapman et al., 2009; Roche et al., 2009) affects milk production unless cost 

effective supplementary feed is available to negate this seasonal variability. Environmental 

factors such as high temperatures can also have a dramatic impact on voluntary cow traffic 

thereby affecting the full farm system performance (John et al., 2016). In a recently published 

study in which data from 6 pasture-based Australian AMS farms were analysed, Wildridge et 

al. (2018) showed that high temperature-humidity index (THI) conditions were negatively 

associated with milking frequency and daily milk yield. Cold, wet and windy conditions, 

typical in many dairy regions of Australia and New Zealand, affect dairy cow behaviour 

(Webster et al., 2008; Redbo et al., 2001) and it might also negatively affect milk production 

(Bryant et al., 2007).  

Overall, results from this study indicate that CR had a greater effect than MF on MHR. 

Moreover, with current management practices, feeding systems and cow types, the likelihood 
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of achieving High MHR (greater than 1,600 kg milk/day/robot) with Low and mid-levels of 

MF in commercial pasture-based AMS, is low. An alternative approach, also in line with 

strategies such as increasing CR and increasing production per cow, might be to explore 

individual cow variability in order to identify those cows that are more suitable for pasture-

based AMS. Data generated by AMS creates the opportunity to explore individual cow 

variability regarding milking efficiency traits, such as MF, MY, MI, milk flow rate and 

milking time (Carlstrom et al., 2013). Despite the numerous research studies about individual 

cow variability in AMS, the vast majority of them (Lovendahl & Chagunda, 2011; Andre et 

al., 2010; Nixon et al., 2009; Penry et al., 2018) were conducted in indoor-systems. Although 

still relevant for pasture-based systems, the differences between systems (feeding 

management strategies, environmental conditions, herd size, animal related factors) limit 

direct data extrapolation onto pasture-based AMS. More research focusing on pasture-based 

AMS is needed to assist farmers in making more informed decisions on how to improve 

system performance. 

CONCLUSION 

Results from this study indicate that commercial pastured-based AMS are achieving lower 

levels of MHR, together with lower levels of MF and similar levels of cows per robot in 

comparison with those commonly reported in indoor systems. Although MHR increased 

when either MF or number of CR increased, the latter had a greater effect on production per 

robot. Moreover, with current management practices, feeding systems and cow types, the 

likelihood of achieving high levels of milk harvested per robot with Low (<2 )  and Mid (2-

2.5) MF, are currently low. From a robot performance aspect, it would therefore be more 

beneficial for farmers to increase CR, rather than targeting higher MF levels. In order to 

optimise system performance, alternative approaches (for example, exploration of individual 

cow performance variability) together with strategies to increase cows per robot and 

production per cow, should be explored. 
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OVERVIEW OF CHAPTER 4 

Chapter 3 highlighted the positive effect of increasing the number of cows per automatic 

milking unit on both robot and system productivity. The high degree of variability regarding 

individual cow performance observed in pasture-based automatic milking systems (AMS) 

was identified in Chapter 2 as an area with potential for capturing some efficiency gains. 

Linking these key previous findings, it follows that if individual cows could be accurately 

identified and classified according to their efficiency (as defined specifically for AMS), then 

a number of strategies could be developed to capture additional gains by reducing losses 

and/or increasing efficiency, e.g. allocating limited resources like feed tailored to specific 

levels of efficiency (or inefficiency). In Chapter 4 individual cow data from two pasture-

based AMS farms were used to develop and evaluate a methodology to identify efficient and 

inefficient cows based on their combined effect of milking frequency and milk yield. 
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CHAPTER 4: Identifying efficient and inefficient 

cows with regard to milking performance in 

pasture-based automatic milking system
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ABSTRACT 

In pasture-based automatic milking systems (AMS) operating with voluntary traffic, 

anecdotal evidence indicates that there are cows which are more efficient (produce more milk 

from relatively fewer milkings) and some which are less efficient. The aim of this study was 

to a) develop a methodology to objectively identify Efficient and Inefficient cows through 

analysis of milk production and milking frequency data across whole lactations; and b) 

quantify the differences between Efficient and Inefficient cows. Two large historical datasets 

(spanning over a 4-year period) from two commercial farms were collected. Linear mixed 

models were used to determine the effect of stage of lactation and parity and to obtain 

predicted means and residuals for daily milk yield (DY) and milking frequency (MF). 

Relative residuals (RR (%) = residual/predicted mean) were calculated and used to estimate 

the DY and MF of each cow in relation to her predicted mean. Average DY, MF and RR 

were calculated for the whole lactation of each cow. Cows presenting a positive RRDY and a 

negative RRMF were categorised as Efficient and cows presenting a negative RRDY and a 

positive RRMF were categorised as Inefficient. Efficient cows were identified in both farms 

producing on average 9% more milk with 5% less milkings per day and Inefficient cows 

producing 10% less milk with a 6% higher MF in relation to their predicted means (P<0.001). 

These findings demonstrate a) the success of the methodology designed in this study to 

identify Efficient and Inefficient cows as defined specifically for pasture-based AMS cows; 

and b) the magnitude of the differences between Efficient and Inefficient cows, which 

indicate potential for productivity gains. Developing an understanding of the causes of the 

differences will be an important next step which may help to determine the potential to lift 

Inefficient cows into the Efficient category. 
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INTRODUCTION  

The adoption of Automatic Milking Systems (AMS) in Australia continues to increase. In 

2018 there are 40 farms operating and another five are in an installation phase. Most of them 

(87%, N. Lyons pers. comm.) are pasture-based and operate with predominantly voluntary 

cow traffic system (i.e. cows bring themselves to the dairy, get milked and walk back to 

pasture largely without human assistance). The smoother and the more evenly distributed 

(over 24 h) the voluntary cow traffic, the better the utilisation of the milking robots; less time 

spent by cows queuing for a given milking session; the greater the general efficiency of the 

system. Cow movement in voluntary traffic is affected by many factors including (but not 

limited to) animal (e.g. genetics, breed, age, stage of lactation, production level, social 

dominance), management (e.g. timing, placement and distribution of feed) and environmental 

factors (e.g. climatic conditions) (Lyons et al., 2014).  

It is known that in AMS there is a strong positive relationship between milking frequency 

(determined predominantly by voluntary cow traffic) and milk production levels (Lyons et 

al., 2013a; Pettersson et al., 2011). In conventional milking systems, milking frequency is 

controlled by the farm operators and is typically twice-a-day in Australia.  In contrast, AMS 

farms operating with voluntary traffic create opportunity for cows to access the robots and get 

milked more often and therefore the possibility to achieve greater milk yields. However, 

anecdotal evidence suggests that some cows are more ‘efficient’ (produce more milk from 

relatively less milkings) than other cows in the same herd (assuming all influencing factors 

are accounted for). If the ‘inefficient’ cows (those that produce less milk from relatively more 

milkings) were identified, they could be managed separately or differently to increase the 

whole farm system performance.  

A higher proportion of ‘efficient’ cows in a herd will allow an increase in the number of cows 

milked per robot and resultant increased volumes of milk harvested per AMS, thereby 

positively influencing the profitability of the operation (Jago & Burke, 2010). ‘Efficient’ 

cows could also be more suitable for farms milking large herds under pasture-based 

conditions, as every milking session is associated with walking (from paddock to the dairy) in 

which cows spend a considerable amount of time and energy. Increased walking distances 

divert energy from milk production, reduce available grazing time (Spörndly & Wredle, 

2004; Islam et al., 2015) and has the potential to negatively impact dairy cow welfare 

(Coulon et al., 1998). 
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The management software of AMS capture a large volume of data about the individual cows, 

most of which is not readily utilised by the farmer. We hypothesise that some of this data 

could be used to identify cows with different levels of ‘efficiency’ and that the variability 

between Efficient and Inefficient cows is large enough to allow different management 

practices to be implemented on each group of cows. Thus, we used whole lactation data from 

two commercial AMS farms to firstly develop a methodology to identify efficient and 

inefficient cows; and secondly, assess the magnitude of the associated variability.  

MATERIALS AND METHODS 

General information  

The study involved whole lactation data collected automatically by the AMS software on 2 

commercial farms (New South Wales and Victoria, Australia). Farm 1 had 4 single box 

milking units and Farm 2 had 2 single box milking units (both Lely Astronaut, Lely 

Industries, Rotterdam, The Netherlands). Both farms operated as pasture-based systems with 

voluntary cow traffic and were managed with a ‘3 way grazing system’ (cows had access to 3 

allocations of fresh pasture over a 24 h period; Lyons et al. (2013b)) all year round. Cows in 

both herds had access to concentrate feed (allocated based on their production level), during 

milking in the automatic milking unit and automated feed stations after milking. Farm 1 

managed a seasonal (Spring) calving pattern with a Holstein-Friesian herd and Farm 2 

operated with a year-round calving pattern with a mixed-breed herd of Holstein-Friesian 

(90%) and Brown Swiss (10%). 

Data Collection 

Raw data were obtained from the management software of each farm and included cow 

number, parity, days in milk, daily milk yield and milking frequency. Daily milk yield was 

defined as the accumulated milk production of all individual milking events in a given 24-

hour period (DY, kg milk/cow/day) and milking frequency (MF) was defined as the sum of 

all individual milking events per cow in a given 24-hour period.  Historical data from January 

2012 to January 2015 were collected from both farms.  

A total of 238,902 daily records from both farms were collected. The dataset was organised, 

filtered and aberrant values where deleted. A total of 33,015 daily records were discarded 

(13% of the original data). Reasons to discard data included a) daily records from cows with 

<5 and > 310 days in milk; b) milk yield values that were > 50 kg/cow/milking (considered 

outliers) c) milkings with interval > 48 h. The final dataset contained a total of 100,388 daily 
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records from 206 cows from Farm 1 and 105,499 daily records from 179 cows from Farm 2. 

Farm datasets were analysed separately throughout the study. The data capture period 

extended across several years which resulted in some cows contributing to the dataset across 

more than one lactation. 

Due to the variability (between days) of DY and MF typically observed in AMS, seven-day 

averages were used in the analysis.  

The following variables were categorised: parity (5 categories,  lactation number 1=1, 

lactation number 2=2, lactation number 3=3, lactation number  4=4, lactation number ≥5 = 5) 

and days in milk as stage of lactation (SOL as 31 categories using a span of 10 days per 

category).  

Data processing and Statistical Analysis 

A linear mixed model (REML) was used to determine the effect of stage of lactation and 

parity on the two outcome variables DY and MF, to obtain predicted means and calculate 

residual values. In both models, stage of lactation, parity and their interactions were included 

as fixed terms and Cow ID was fitted as a random term. All analyses were conducted using 

Genstat 16th Edition (VSN International Ltd). Residual analyses were performed to 

determine that assumptions of normality were met. 

The model for both analyses was as follow: 

y = constant + Parity + SOL + (Parity*SOL) + CowID + ε 

where, y is daily milk yield (DY; kg/cow/day) or milking frequency (MF; numbers of 

milking/day); parity = effect of parity (LacNo 1, …, 5); SOL = effect of stage of lactation 

(SOL No 1, …, 31); Cow ID = effect of cow and ε = random error. 

For both outcome variables DY and MF, predicted means and residual values resulting from 

the model were used to calculate the relative residual (RR): 

Relative residual (%) = residual value / predicted mean x 100  

The relative residual was calculated in order to estimate how much a cow produced (for DY), 

or how many times per 24 h she was milked (for MF) in relation to her fitted or expected 

value after accounting for the effects of stage of lactation and parity number by the model. 

For example, a cow presenting a Relative Residual of DY of 10% and a Relative Residual of 
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MF of -20% indicates that the cow produced 10% more milk above her expected production 

value with MF 20% below her expected frequency value. 

Categorisation and Lactation data analysis 

In order to categorise cows, lactation curves were constructed utilising DY, MF and relative 

residuals for both variables for each cow,  excluding lactations <290 and >310 days and/or 

lactations with less than 90% of the lactation records available. This criterion was adopted in 

order to enable the comparison of cows with similar volume of data within a given lactation. 

Thus, only 113 lactations from 85 cows were included in the categorisation from Farm 1 

(30% of the total recorded lactations) and 179 lactations from 110 cows from Farm 2 (44% of 

the total recorded lactations). There were 28 cows in Farm 1 and 62 cows in Farm 2 that were 

included more than once (up to 3 lactations).  

For each cow lactation, averages of relative residual for DY (RRDY) and MF (RRMF) were 

calculated for the whole lactation and utilised to categorised cows in 4 categories. Cows 

presenting a positive RRDY and a negative RRMF were categorised as Efficient; cows 

presenting a negative RRDY and a positive RRMF as Inefficient; cows presenting positive 

RRDY and RRMF were categorised as High Production and cows with negative RRDY and 

RRMF were categorised as Low Production. For each category, averages of DY and MF were 

calculated for three periods: whole lactation, early lactation (30-60 days in milk) and late 

lactation (180-210 days in milk).  

A simple ANOVA was used to determine if the differences between the averages of the 4 

categories for each variable were significant (P values lower than P < 0.05 were considered 

significant).  

RESULTS  

Descriptive statistics  

The average daily milk yield was 25.3 ± 9.1 kg/cow per day for Farm 1 and 18.5 ± 6.9 

kg/cow per day for Farm 2. Daily milk yield presented a large standard deviation in both 

farms (Table 1). Average MF was 2.2 events/cow per day for Farm 1 and 2.0 events/cow per 

day for Farm 2, which are within the range of typical values for a pasture-based AMS. Both 

DY and MF were greater in Farm 1 (high input system in comparison to Farm 2). The 

included fixed effects of SOL, Parity and their interaction were all found to be significant 

(P<0.001) for both analysed outcome variables. 
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Table 1. Descriptive statistics for data set for Farm 1 and Farm 2. 
 Item Variable Cows (n) Records (n) Mean SD

1
 

Data 

Source 

F
a

rm
 1

 

Daily milk yield (kg/cow) (24hs) 206 100388 25.3 9.1 Collected 

Milking frequency 

(events/cow) 
(24hs) 206 100388 2.2 0.7 Collected 

Daily milk yield (kg/cow) (7 days) 206 13976 25.2 8.8 Calculated 

Milking frequency 

(events/cow) 
(7 days) 206 13976 2.2 0.5 Calculated 

F
a

rm
 2

 

Daily milk yield (kg/cow) (24hs) 179 105499 18.5 6.9 Collected 

Milking frequency 

(events/cow) 
(24hs) 179 105499 2.0 0.5 Collected 

Daily milk yield (kg/cow) (7 days) 179 13660 18.7 6.8 Calculated 

Milking frequency 

(events/cow) 
(7 days) 179 13660 2.0 0.4 Calculated 

1
SD: Standard Error 

Categorisation 

Relative Residuals of DY and of MF for the whole lactation of each cow are shown in Figure 

1 for Farm 1 (a) and Farm 2 (b). Each dot represents a lactation of one cow. A strong positive 

relationship between RRDY and RRMF was observed in both farms. Whilst considerable 

variation between individual cows existed in both farms, that variation was greater in Farm 2. 

On each farm, cows identified on the upper left quadrant were categorised as Efficient, on the 

lower left as Low Production, on the upper right as High Production and on the lower right as 

Inefficient. On Farm 1, 9 cows (11 lactations) (10% of total lactations) were categorised as 

Efficient and 18 cows (19 lactations) (17% of total lactations) were categorised as Inefficient. 

On Farm 2, 25 cows (29 lactations) (11% of total lactations) were categorised as Efficient and 

12 cows (13 lactations) (7% of total lactations) were categorised as Inefficient.  

In Farm 1, of the 28 cows that presented two lactations analysed, only 2 were categorised as 

Efficient in both lactations and one cow was categorised as Inefficient in both lactations. 

There were no cows categorised Efficient and Inefficient (in different lactations). In Farm 2, 

53 cows were included two times and 8 cows three times, of them 4 cows were categorised as 

Efficient in both lactations and one cow was categorised as Inefficient in both lactations. 

There were 2 cows that were categorised as Inefficient in the first lactation and Efficient in 

the second lactation analysed. 
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Figure 1. Mean Relative residuals of milking frequency and daily milk yield for Farm 1 (A) 

and Farm 2 (B).  

Lactation data  

Lactation characteristics are shown in Table 2. When analysing average relative residual of 

DY and MF for the whole lactation, on Farm 1, Efficient cows produced 8% more milk in 

relation to their expected value (predicted mean) with 7% less milkings; Inefficient cows 

produced 9% less milk with a 7% higher MF. On Farm 2, Efficient cows produced 10% more 

milk in relation to their expected value with 6% less milkings. Inefficient cows produced 

11% less milk with a 5% higher MF.  
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Table 2. Averages of lactation characteristics for each group for Farm 1 and Farm 2. 

 Farm1 

  

All 
lactations 

SE1 Efficient Inefficient 
High 

Production 

Low 

Production 
P-value 

Lactations (n) 113 
 

11 19 37 46 
 

Cows (n) 85 
 

9 18 34 38 
 

Whole Lactation        

           Relative Residual DY (%) -1 0.02 8b -9c 17a -16d <.0001 

           Relative Residual MF (%) 1 0.01 -7c 7b 14a -10c <.0001 

           DY (kg/d) 25.2 0.48 29.7a 22.8b 28.7a 21.56b <.0001 

           MF (events/d) 2.25 0.03 2.13c 2.33b 2.49a 2.05c <.0001 

Early Lactation        

           Relative Residual DY (%) 2 0.01 16a -3b 15a -10c <.0001 

           Relative Residual MF (%) 4 0.02 -4b 16a 16a -7c <.0001 

           DY (kg/d) 36 0.74 44a 33.15b 40.31a 31.77b <.0001 

           MF (events/d) 2.65 0.05 2.52b 2.86a 2.93a 2.37b <.0001 

Late Lactation        

           Relative Residual DY (%) -6 0.03 1b -12c 12a -19d <.0001 

           Relative Residual MF (%) 0 0.01 -10c 5b 11a -8c <.0001 

           DY (kg/d) 19.7 0.45 22.8a 18.15b 23.1a 16.7b <.0001 

           MF (events/d) 2.15 0.04 1.96b 2.24a 2.38a 1.98b <.0001 

 Farm 2 

  

All 
lactations  

SE1 Efficient Inefficient 
High 

Production 

Low 

Production 
P- value 

Lactations (n) 179 
 

29 13 66 71 
 

Cows (n) 110 
 

25 12 47 56 
 

Whole Lactation        

           Relative Residual DY (%) 4 0.01 10b -11c 20a -11c <.0001 

           Relative Residual MF (%) 0 0.01 -6b 5a 9a -7b <.0001 

           DY (kg/d) 19.2 0.4 21.09a 15.01b 22.4a 16.17b <.0001 

           MF (events/d) 2.02 0.02 1.95c 2.08b 2.2a 1.87d <.0001 

Early Lactation        

           Relative Residual DY (%) 1 0.01 7b -20d 16a -11c <.0001 

           Relative Residual MF (%) -1 0.01 -6c 4a 10a -11b <.0001 

           DY (kg/d) 23.2 0.55 25.54a 16.93b 26.9a 19.93b <.0001 

           MF (events/d) 2.08 0.03 2.01b 2.12b 2.33a 1.86c <.0001 

Late Lactation        

           Relative Residual DY (%) 7 0.02 12b -5c 24a -9c <.0001 

           Relative Residual MF (%) 1 0.03 -4b 5a 8a -5b <.0001 

           DY (kg/d) 18.3 0.39 19.74a 15.12b 21.43a 15.36b <.0001 

           MF (events/d) 2.01 0.02 1.93bc 2.05ab 2.16a 1.88c <.0001 
1SE: Standard Error; Different letters (within row) indicate significant differences (P<0.05) between groups. 

In farm 1, average DY for the whole lactation was 30% higher in the Efficient than in the 

Inefficient group with a 9% lower MF. In farm 2 the difference between Efficient and 

Inefficient groups for DY and MF were of 40% and 6% respectively.  
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Efficient and High production cows presented similar and significantly higher average DY 

values than Inefficient and Low Producer cows in early, late and whole-lactation in both 

farms ( P <0.001).   

Milking frequency decreased across lactation in every group in both farms as was expected. 

Due to lower levels of production and MF in Farm 2, differences between groups were 

smaller (although still significant) than those observed in Farm 1. 

Although the differences in MF observed between the groups were relatively small in both 

farms (Table 2), they were significant. Table 3 shows an estimation of what could be 

achievable in Farm 1 and Farm 2 if the milking herd was composed in their totality by cows 

of the same category, assuming the robot performs around 160 milkings per day (occupation 

rate of 80%, fixed duration of a milking of 7 minutes, typical values observed on commercial 

AMS farms under grazing conditions in Australia; K. Kerrisk, pers. comm.). 

Table 3. Estimation of number of cows and extra milking production for Farm 1 and Farm 2. 

 
Category MF

1
 DY

2
 Cow per robot (n) 

MHR
3
 (% change 

compared to average) 

F
ar

m
 1

 

Efficient 2.13 29.7 75 2227 (+24%) 

Inefficient 2.33 22.8 69 1573 (-12%) 

High Production 2.49 28.7 64 1837 (+3%) 

Low Production 2.05 21.5 78 1677 (-6%) 

Average herd 2.25 25.2 71 1789 

F
ar

m
 2

 

Efficient 1.95 21.0 82 1722 (13%) 

Inefficient 2.08 15.0 77 1155 (-24%) 

High Production 2.20 22.4 72 1613 (+1%) 

Low Production 1.87 16.1 86 1385 (-9%) 

Average herd 2.02 19.2 79 1517 
1
MF= milking frequency (events/d); 

2
DY=Daily milk yield (kg/d)  

3
MHR=milk harvested per robot (kg milk/robot/day) 

When comparing milking an ‘efficient’ herd against an ‘inefficient’ herd, on average on both 

farms production per AMS unit increased 18% with a relative increase of only 5 cows per 

robot. A herd of Efficient cows compared to a herd of High production cows (similar milk 

production per cow), increased production per AMS unit by 14% - primarily due to milking 

an additional 9 cows per robot.  

Category & Parity  

In Farm 1, the majority of cows in the Efficient group were in their 4
th

 or 5
th

 lactation (older 

cows) and most of the Inefficient cows were primiparous or cows in their second lactation 
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(Table 4). Conversely in Farm 2 almost half of the efficient lactations were from young cows 

(1 & 2 lactations). It is important to note that of the total lactations categorised more than 

50% in both farms were from cows in their first or second lactations.  

Table 4. Proportion of cows (%) in each category of each parity on each category. 

  Lactation number 

 
Category 1&2 3 4&5 

 

F
ar

m
 1

 

 
Efficient 18 36 46 

Inefficient 42 32 26 

High Production 54 11 35 

Low Production 59 17 24 

F
ar

m
 2

 Efficient 48 18 34 

Inefficient 85 - 15 

High Production 55 9 36 

Low Production 59 7 34 

 

DISCUSSION  

The main objective of this study was to develop a methodology to identify Efficient and 

Inefficient cows through the analysis of whole lactation datasets from two commercial farms. 

This was achieved by comparing data from complete lactations of individual cows with the 

predicted means for each category of parity. Our results showed that on both farms, about 

13% (range 10-16%) of the lactations analysed were identified as Efficient and about 12% 

(range 7-17%) as Inefficient.   

In this study Efficiency was defined as a relationship between DY and MF; the former as it is 

the main output of the system and the latter because it represents a ‘cost’ for not only the cow 

(time and energy, both limited resources) but also the system (power, water consumption, 

etc.). The most efficient operation of an AMS will be an optimisation of milkings/cow/day to 

maximise the number of cows that can be milked whilst minimising any reduction in 

production per cow associated with lower MF. The question becomes; whether it is more 

effective to milk the existing cows more frequently or to milk additional cows through the 

system. This second option might be more suitable for pastured-based systems milking larger 

herds where cows have to walk large distances and the concept of relatively higher per-cow 

production with a reduced MF would likely be very appealing to farmers. The highest level of 

productivity would likely be achieved by combining a high ratio of cows/AMS unit with a 

herd comprised of predominantly Efficient cows. 
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The variability in cow performance (MF and DY) observed among cows in both datasets was 

key and enabled the categorisation of the cows based on their performance. These differences 

may be explained by multiple factors including cow factors (genetic merit, animal behaviour, 

milking characteristics, feeding efficiency, previous experience) and system factors (cow 

traffic, herd dynamics, waiting times, walking distances). 

Although cows were categorised based on the average RRDY and RRMF for the whole 

lactation, data from table 2 showed that cows were in the same category in early and late 

lactation, indicating that a cow could remain efficient / inefficient for the whole lactation. 

This would suggest that efficient and inefficient cows could be identified in early lactation, 

which would in turn increase the potential application of these data to improve system 

performance. However, results of this study also indicate that a cow is unlikely to be 

‘efficient’ for its lifetime as only a low proportion (8%) of cows (which had two or three 

lactations analysed) were categorised as efficient or inefficient across more than one 

lactation.  This suggests that the factors creating ‘efficiency’ (high producing cows with 

relatively less milkings per day, as defined in this study) are generated mostly by 

management/environmental factors, but further investigation is required. 

The strong positive relationship between MF and milk production is well known in 

conventional (Rémond et al., 2004; Clark et al., 2006) and pasture-based AMS (Lyons et al., 

2013a) and it might explain the performance of cows categorised as High and Low 

production cows. However, our results indicate that there are individual animals that depart 

from the above-mentioned relationship, suggesting high individual variability (and therefore 

room for improvement) associated with these factors.  

Milking frequency was identified as a key factor that can be manipulated and that affects 

production efficiency and system utilisation in AMS (Lyons et al., 2014). The aim for every 

AMS operation will be to develop criteria to optimise MF for cows and to maximise the 

capacity of the AMS (Koning & Ouweltjes, 2000). The optimum MF for an individual cow 

should be a result of its production potential and also should consider other factors such as 

cow welfare (Jacobs & Siegford, 2012). 

In a review of MF management in pastured-based AMS, Lyons et al. (2014) summarised the 

key factors affecting MF and the complex interactions between them; including animal 

related factors such as: cow dominance, training and previous experience, cow behaviour; 

farm management factors such as: pasture allocation, supplementary feed and environmental 
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factors such as climatic conditions.  The interaction between all these factors results in a high 

variability in MF and DY within and between cows and throughout lactation and may provide 

some opportunity to identify those cows that better suit the system and those individuals that 

do not perform as expected.  

In the same review Lyons et al. (2014) reported a reduction in MF of around 40% when 

comparing data from studies where cows that were managed in a pasture-based AMS (MF of 

1.61 ± 0.12 milking events/cow per day, range 1.10-2.30 milking events/cow per day) with 

studies where cows were managed in indoor-based AMS and allowed to graze for less than 

24h/d (MF of 2.64 ± 0.06 milking events/cow per day, range 2.40-2.85milking events/cow 

per day). This indicates that it may not be possible for cows in pasture-based system to 

achieve the optimum MF that would be required for them to reach their production potential, 

due mainly to characteristics associated with this type of system (long walking distances, 

climatic conditions, limitation in dry matter intake, among others).  

In a study conducted in Ireland, Foley et al. (2015) reported that there was no reduction in 

milk production or cow voluntary traffic when MF was reduced in mid or late lactation in a 

pasture-based AMS. This strategy is only relevant to Split and All year round calving 

systems, as Seasonal calving systems are limited by the peak lactation period. 

Targeting lower milking frequencies gives the AMS operator the possibility to milk more 

cows per milking unit and may also result in other benefits from the welfare point of view. 

High producing cows with a lower MF (as per Efficient cow definition) would travel reduced 

distances/day and might spend less time in yards with hard surfaces, reducing the risk of 

lameness.  

In AMS, although milking interval is the inverse of MF, two cows with same MF will not 

necessarily have the same milking intervals (MI; example MF = 2, cow A might have MI 18 

hours and 6 hours whilst cow B might have two intervals of 12 hours) and it has been 

reported in several studies that extreme MI’s reduce daily milk production (Lyons et al., 

2013a; Schmidt, 1960) and increase the risk of mastitis (Hammer et al., 2012). Lyons et al. 

(2013a) reported that milk accumulation rate was greatest at 16 hours and decreased on 

average 40% in extended MI (MI>16h) in  a study in which there was a  high prevalence 

(30%) of extended MI.  
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Not all cows are affected by milking intervals in the same way, there is an important 

variability in regards to milking characteristics. Andre et al. (2010) showed great variation 

with regards to the effect of milking interval length on milk yield and Tol et al. (2013) 

reported that some cows are able to handle a longer milking interval without a decrease in 

milk production. In a review about once-a-day milking production systems, Davis et al. 

(1999) indicated that yield loss presented great variability among and between individual 

cows. Holmes et al. (1992) reported a variable response in milk production losses when 

changing from twice to once-a-day milking, ranging from less than 10%, to over 50%. This 

individual variability might be partially explained by several physiological characteristics 

(cisternal milk storage capacity, ease of alveolar drainage, production of a concentrated milk) 

(Davis et al., 1999). Such individual variation might be key to explain the difference in 

performance between Efficient and Inefficient cows. 

Given that in pasture-based AMS operating with voluntary traffic cows can decide where to 

spend their time (within certain limits), it might be possible that some cows spend more time 

on pasture and grazing than others, potentially resulting in higher dry matter intake and 

therefore higher milk production. In addition, the variability among dairy cows in grazing 

behaviour (Phillips & Denne, 1988) and dry matter intake (Garcia et al., 2000) might be also 

affecting cow performance in grazing systems. 

For decades, cow selection was made for twice-a-day milking production systems with 

relatively regular milking intervals, meaning that the cows currently being managed in AMS 

operations were not selected for AMS; there may be a significant opportunity to identify, 

select and breed cows more suitable to AMS conditions and select against those cows which 

are less suited to AMS. Farmers in New Zealand that have been breeding cows more suitable 

for once-a-day milking and culling those cows that were underperforming for more than 3 

years, have achieved increases in milk yield/cow of  about 21% compared to their first season 

(Holmes, 2011). 

Cow dominance might be a factor affecting cow efficiency; Jago et al. (2003) showed that in 

pasture-based AMS social rank influences the frequency of milking. An efficient cow might 

be a high yielding cow that is located in the lowest part of the social rank with relatively less 

access to the milking unit and less motivation to traffic to the dairy due to the experience of 

long waiting times. In the same way an inefficient cow could be a dominant cow that has 
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more direct/prompt access to the milking unit but who is not producing sufficient milk to put 

her into the high production category. Further research to elucidate this is needed.  

Individual milking characteristics like milking speed and time spent in the robot per milking, 

were not analysed in this study but are both recognised as significant factors affecting milk 

harvesting efficiency in commercial AMS herds.  

The individual milk production response to concentrate fed in the dairy is another important 

variable to include in a future wider analysis as it might have an impact on cow performance. 

Although it is recognised that the level of concentrate can directly affect milk production per 

cow, in this particular study all cows in each farm were fed to production levels following the 

same criterion, therefore it was expected that that the average  response was similar. In 

relation to cows’ traffic, regardless of the known positive effects of feeding concentrate on 

voluntary cow traffic in AMS (Prescott et al., 1998a; Lyons et al., 2013), recent  studies 

(Shortall et al., 2017; Lessire et al., 2017) showed that there is no significant effect of the 

level of concentrate on MF on pasture-based AMS. Furthermore, Jago et al. (2007) also 

demonstrated that cows in a pasture-based AMS can be successfully milked with no 

concentrate reward in the milking unit.  

The objective of the estimation and comparison shown in Table 3, denotes the potential 

increases in milk harvested per AMS. However, it is important to recognise that a more 

realistic approach on a commercial farm will likely be to firstly attempt to reduce the 

proportion of inefficient cows present in herd and at the same time increase the proportion of 

efficient cows. Another way of generating a significant impact would be by managing the 

different groups of cows in different ways, and not necessarily eliminating those individuals 

that are not being efficient. 

With current knowledge and the data analysed in this study it could be speculated that 

efficient cows are more profitable and that they might be also in a better position regarding 

health and welfare.  However there is a lack of both evidence and understanding around these 

cows and further research would need to be conducted in order to try to explain the causes.  

A more complete understanding of the different levels of Efficiency is needed as many 

questions about these individual cows still remain. Developing an understanding of the 

causes of the differences will be an important next step which may help to determine the 

potential to lift inefficient cows into the efficient category. Data from this study suggest that 
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the efficiency is not repeatable, which points towards management/environment and or 

behavioural factors playing an important role. Once an understanding of the key factors 

impacting on efficiency is developed the research should focus on how to implement distinct 

management practices on commercial farms that might impact on productivity by reducing 

the prevalence of inefficient cows in the herd. 

CONCLUSION  

This study developed a successful methodology to identify Efficient and Inefficient cows and 

quantified the differences in milk yield and MF between categories. Cows categorised as 

Efficient produced 9% more milk with 5% less milkings per day and Inefficient cows 

producing 10% less milk with a 6% higher MF. There is a potential opportunity to increase 

productivity by managing cows with different levels of efficiency in different ways, but 

further research is needed to improve our understanding of reasons behind the different level 

of efficiency discovered by this present research. 
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OVERVIEW OF CHAPTERS 5 AND 6 

Chapter 4 demonstrated that contrasting performance efficiencies at individual cow-level co-

exist in AMS farms. However, whether these contrasting efficiencies originated from 

management, genetics or other factors is not known. Filling this gap in knowledge is key to 

successfully developing new management practices that could capture the benefit/s of 

contrasting individual animal efficiency. Therefore, a field study was designed (Chapter 6) to 

investigate the comparative efficiency and behaviour of contrasting (Efficient and Inefficient) 

animals and to increase our understanding of factors affecting the differences observed in 

Chapter 4. However, as differences in individual animal efficiency, as defined for pasture-

based AMS, are likely to be related to foraging behaviour, animal sensors that can monitor 

cow activity and rumination behaviour remotely and accurately in grazing systems were 

needed. Such technologies have become commercially available in recent years. Yet, none 

had been properly and independently evaluated for accuracy of key components of grazing 

behaviour under the conditions of pasture-based systems in Australia. Thus, in Chapter 5, the 

validation of a recently commercially released version of an activity- and rumination- 

monitoring system was conducted, in order to have a validated methodology for comparing 

foraging behaviour of ‘efficient’ and ‘inefficient’ cows (Chapter 6). 
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ABSTRACT 

The aim of the present study was to evaluate the accuracy of a newer version of an activity- 

and rumination- monitoring system by comparison against direct visual observations, for the 

following three different types of behaviour: grazing, resting (described as lying or standing 

idle) and ruminating for cows grazing either annual ryegrass or chicory-based swards (two 

pasture types commonly used in NSW dairy farms). Eight non-lactating Holstein–Friesian 

cows were fitted with the sensor tags, and grazed on annual ryegrass pasture for a target 

consumption of 10 kg DM ryegrass/cow.day for 7 days. The experiment was then repeated 

with cattle offered a similar allowance of chicory. Observations were conducted by two 

trained observers in two observation periods each day, to capture the above described 

behaviours. In each period, electronic behavioural measurements were recorded continuously 

by the sensors, while visual observations were also continuous (during observation periods), 

and the two datasets were matched. On average, each cow was visually observed for 87.2 

min/day. For each behavioural state (at 1-min intervals, n = 6963), probability of agreement, 

sensitivity, specificity and positive predicted value were determined for grazing as 98%, 

98.3%, 97.3% and 98.9% respectively, for resting as 80%, 77.5%, 99.1% and 92.9% and for 

ruminating as 87%, 86.9%, 98.4% and 90.68%. Concordance correlation coefficient (CCC) 

and Pearson correlation (r) were used to investigate the relationships between visual 

observations and data generated from the tags. Different behaviours were analysed 

separately. Significant correlations were found for the three behaviours (grazing: CCC = 0.99, 

r = 0.99; resting: CCC = 0.95, r = 0.97; ruminating: CCC = 0.80, r = 0.80), with no 

differences detected between the two forages. We conclude that, under the conditions of the 

present study, the activity- and rumination-monitoring system tag measured grazing, resting 

and ruminating behaviours with high accuracy on the basis of comparison to visual 

observations. 

 

 

 

 

Keywords: behaviour, pasture, precision dairy, sensor. 
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INTRODUCTION  

The predominant behavioural activities of dairy cows, such us ruminating, eating or lying, are 

widely used as indicators related to health, welfare and productivity. Therefore, the ability to 

measure, monitor and detect changes in the behaviour is the key to improving individual cow 

health and performance (Bikker et al. 2014). Health and performance are key parameters that 

have an impact on an individual cow’s longevity in the herd, her contribution to the 

productivity of the operation, and can also be used as indicators of individual animal welfare 

to some degree. From an industry perspective, these parameters are important at both the cow 

and the herd level. 

Generally, these behaviours can be assessed by visual observations, which is one of the most 

reliable methods if conducted properly. This could be undertaken either by direct live visual 

observations or through the analysis of video recordings. However, both methods have some 

limitations (i.e. are labour intensive, time consuming, require qualified personal, a limit in the 

amount of cows that can be monitored simultaneously, require  expensive  equipment  that  

may  also  influence  the behaviour of animals). In addition, visual observations are subjective 

and, when multiple observers are used, there is a potential disadvantage of inter-observer 

differences (Martin et al. 1993; Weary et al. 2009). Nevertheless, previous studies have 

reported that feeding, rumination and activity patterns such us lying, standing and walking, 

can be assessed accurately by direct visual observations (Rutter et al. 1997; Schirmann et 

al.2009; Burfeind et al. 2011; Bikker et al. 2014). 

Recently, several sensor-based technologies have been developed to automatically monitor 

and record different types of behaviours for commercial and research applications. Feeding, 

rumination and activity have been previously monitored with devices such as silicone-tube 

nosebands recording electrical resistance (Rutter et al.  1997), mercury switches (Delagarde 

et al. 1999), microphones (Delagarde et al. 1999; Schirmann et al. 2009) and accelerometers 

(Elischer et al. 2013; Nielsen 2013; Bikker et al. 2014). However, most of these available 

systems are constrained by either the type or number of behaviours that can be measured or 

because they are less suitable for a practical use (Bikker et al.  2014), such as automated 

oestrus detection or early disease detection, creating a limitation in the value for researchers 

and even more so for commercial dairy operations. Many of these technologies have been 

already validated for feeding (Beauchemin et al. 1989; Rutter et al. 1997; Kononoff et al. 

2002) and rumination (Schirmann et al. 2009; Bikker et al. 2014), resting (Bikker et al.  2014) 
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and for oestrus detection (Walker et al.1996), with strong correlations reported between 

visual observations and the technology. However, the majority of these studies were 

conducted in indoor housed systems and results cannot be extrapolated directly to pasture-

based systems (Schirmann et al. 2009; Burfeind et al. 2011), mainly due to the differences in 

cow behaviour and environmental conditions. 

An updated new version of a rumination and activity collar- based sensor monitoring   system 

(SCR HR-LDn, SCR Engineers, Netanya, Israel) was recently introduced to the Australian 

market. A significant change compared with previous models is that rumination is now 

calculated utilising data from the accelerometer and not from a microphone, as in previously 

validated versions (Schirmann et al. 2009; Ambriz-Vilchis et al. 2015). The monitoring 

system categorises the level of activity (low, medium, high) and is also capable of 

distinguishing between eating and ruminating behaviours. 

Although the limits between different levels of activity are not fully clear, the manufacturer 

indicates that resting refers to a cow idling lying or standing, not ruminating, eating or 

drinking. Previous versions of the SCR activity monitor have been validated and are 

recognised as valuable tools for commercial and research application (Schirmann et al. 2009). 

The current version (SCR HR-LDn) is already used in commercial dairy farms, 

predominantly for oestrus detection and to generate health alerts by monitoring cow 

behaviour. There is an opportunity to use this sensor for the development and implementation 

of advanced management practices such as individualised supplementation of  dairy cattle 

(Hills et al.2015) or to predict the day of calving for cows (Clark et al.2015). However, the 

activity-specific accuracy of this new version of the sensor has not been evaluated yet. 

The objective of the study was to test the accuracy of a newer version of the SCR HR-LDn 

activity and rumination monitoring system by comparing the electronic data against 

independent data collected through direct visual observations, for the following three 

different types of behaviour: grazing, resting (described as idling lying or standing) and 

ruminating for cows grazing either annual ryegrass (Lolium multiflorum L.)- based or chicory 

(Cichorium intybus L.)-based swards. Previous studies have shown that the characteristics of 

the pasture canopy affect the grazing behaviour of the cow (Sollenberger and Burns 2001), 

and, therefore, there is a need to test the ability of the device to accurately indicate grazing 

behaviour in different types of pastures. 

 



CHAPTER 5 • Activity and rumination monitoring system validation  

87 

MATERIALS AND METHODS 

The study was conducted at the University of Sydney Corstorphine dairy farm between 2 

April and 15 April 2015. Ethics approval was granted by the Animal Ethics Committee of the 

University of Sydney (Project number 2014/569) before the commencement of the present 

research. 

Cows and experimental design 

Eight non-lactating multiparous Holstein–Friesian dairy cows were allocated to a paddock 

and managed as a single herd. Cows grazed on pasture for a target consumption of 10 kg 

DM/cow.day under a strip-grazing management strategy, with a new strip being made 

available each day at 0700 hours. Pre-grazing pasture biomass was measured every day 

(average 2500 kg DM/ha) utilising a pre-calibrated electronic plate meter (Electronic Plate 

Counter, Farmworks, Fielding, New Zealand) and the area of the strip to be grazed was 

calculated (average 30x20 m
2
) to meet target intakes. For the first seven consecutive days, 

cows grazed an annual ryegrass (Lolium multiflorum L.) pasture, and for the following seven 

consecutive days, cows grazed a chicory (Cichorium intybus L.)-based sward. Data were 

collected during 5-day measurement periods for each forage type. For both periods (pastures), 

the first 2 days were considered as adaptation days to allow cows to become accustomed to 

the forage type, the change in forage and the presence of the observers in the field. Water was 

available for cows at all times in the paddock. 

Activity and rumination monitoring 

Seven days prior to the commencement of the study, cows were fitted with a neck-mounted 

electronic rumination- and activity- monitoring tag (SCR HR-LDn; SCR Engineers). Collars 

were removed two days after the completion of the study. The tag consisted of an 

accelerometer, a microprocessor unit, a memory unit and a transponder; all encapsulated in a 

plastic unit and attached to a collar. On the basis of the continuous data generated by the 

three-axis accelerometer, the microprocessor calculated activity and rumination (utilising 

specifically developed algorithms) and stored the data in the memory unit. Each tag used in 

the present study contained an SD memory card, from which the data were downloaded to a 

computer, utilising the manufacturer’s support software (Data Flow software, SCR 

Engineers) and collated into 1-min intervals. 
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Visual observations 

Direct visual observations were conducted by two independent observers, in two observation 

periods each day, for each of the 5- day monitoring periods. One period was conducted in the 

morning (commencing between 0700 hours and 0800 hours), immediately after the new strip 

of forage was offered, and a second observation period was conducted in the afternoon 

(commencing between 1400 hours and 1500 hours). Observers recorded the different 

behaviours using an electronic application on a laptop computer. Timestamps on observer’s 

computer, electronic tags and the tag software were synchronised before the commencement 

of the study. The observers were trained before the commencement of the study, to ensure 

correct and consistent interpretation of cow behaviour, a high level of agreement between the 

observers and an understanding of the data-recording procedure. Observers stood in the 

paddock at a distance (~20 m) to minimise any disruption to cow behaviour and routine. 

Observers did not communicate during the observation period and were unable to see each 

other’s data- recording device. Each observer was designated approximately half of the 

paddock and observed cows that were located in that area only. Cows were identified using a 

combination of numbers on ear tags, collars and numbers painted on both sides of the thorax 

and rump area in a luminescent colour. Visual observations were not based on a fixed amount 

of time per cow nor the total time spent by a cow on a particular activity within that time, as 

it was not possible for the two observers to capture all the different behaviours of all cows at 

all times. Rather, cows were observed for periods of variable duration with the aim of 

collecting ~1.5 h/day of net total time of captured (observed) behaviour for each cow. On 

average, each cow was observed for 87.2 min/day. During each period, the time the observed 

cow spent performing any of the three behaviours (grazing, resting or ruminating) was 

recorded continuously. Grazing was defined as the behaviour when the cow was actively 

searching or removing pasture from the canopy, which could also include chewing and 

manipulation of feed bolus (Phillips 2002). A cow was considered to be resting if lying or 

standing, not ruminating, eating or drinking with eyes open or closed. Ruminating was 

defined as the period of time when the cow was actively chewing a regurgitated bolus until 

swallowed either standing or lying (Ambriz-Vilchis et al. 2015). The start and finish time of 

each behavioural event was recorded to then match exactly (on 1-min intervals) the activities 

recorded by visual observation with the activity ‘detected’ by the sensor. In total, 6963 1-min 

intervals of visual observations of behaviour were collected. 
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Statistical analysis 

Data from the direct visual observations were collated into 1-min intervals on the basis of the 

predominant behaviour of the cow during the observed 1-min period, so as to compare with 

the data generated by the monitoring tags. Data from the direct visual observations and data 

from the tags were then merged into one file, transitional minutes (minutes when cows 

demonstrated more than one behaviour) were removed, and accuracy was investigated at the 

following two levels: at each 1-min interval and at a session level (total time each cow spent 

performing each behaviour in each of the two observation periods). All analyses were 

conducted in GENSTAT statistical package (16th edn; VSN International, Hemel Hempstead, 

UK). 

Analysis at 1-min intervals 

First, so as to determine the level of agreement between observations and data generated by 

the tags at 1-min intervals, data were analysed as a binary variable using a generalised linear 

mixed model (GLMM) with a binomial distribution and a logit- link function. Type of forage 

and behavioural state were included as fixed effects and cow ID was fitted as a random term. 

The model was as follows: 

y = constant + behavioural state + type of forage + cow ID; 

where y expresses the agreement (1 = agreement or 0 = no agreement), behavioural state = 

observed behavioural state (grazing, resting, ruminating), forage = grazed forage (annual 

ryegrass or chicory), cow ID = effect of cow. 

Second, to measure performance of the tags at 1-min intervals, sensitivity (defined as the 

ability of the tag to correctly identify the true behaviour), specificity (defined as the ability of 

the tag to not report a false behaviour) and positive predictive value (defined as the 

proportion of true behaviours identified by the tag in relation to the total true behaviours 

observed) were estimated for each behavioural state by combining true and false recordings 

(Table 1). 

Table 1. Criteria for evaluation of the system performance  

Criteria Formula
1
 

Sensitivity (TP/(TP+FN)) x 100 

Specificity (TN/(TN+FP)) x 100 

Positive predictive  value (TP/(TP+FP)) x 100 
1
TP= true positive; FN= false negative; 

 FP = false positive, TN = true negative. 
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For example, for grazing behaviour: true positives (TP) equalled the number of observed 

grazing behaviours detected by the tags as grazing behaviour; false positives (FP) equalled 

the number of non-grazing behaviours (i.e. either ruminating or resting) reported by the 

system as grazing behaviour; false negatives (FN) equalled the number of grazing behaviours 

classified by the tag as being non-grazing behaviour (i.e. ruminating or resting), and true 

negatives (TN) equalled the number of non-grazing behaviours (i.e. ruminating or resting) 

detected by the tag as non-grazing behaviour. 

Analysis at a session level 

A Pearson correlation analysis and concordance correlation coefficient (CCC) analysis (Lin 

1989) were performed to evaluate the relationship between the data recorded via direct visual 

observations and data generated by the tags, for each of the behavioural states (P < 0.05 was 

considered significant). Bias correction factor and confidence intervals were also calculated. 

Outlier removal 

Two rumination data points (i.e. ‘sessions’) for the same cow were reported by the electronic 

data to have zero rumination when the visual observers recorded rumination for 23 and 43 

min. The cause of this discrepancy is unknown and may be indicative of a faulty or 

inaccurate tag. However, the same tag recorded six rumination periods that accurately 

reflected the visual observations and, in relation to the total number of sessions, the two data 

points represent only 7% of the average number of observation sessions per cow, or 0.9% of 

the total number of sessions. 

RESULTS 

Analysis at 1-min intervals 

The probability of agreement between visual observations and tags for each behavioural state 

were 98%, 80% and 87% for grazing, resting and rumination respectively. The model also 

provided the probability of agreement on observations conducted on each type of forage, 

being 90% for annual ryegrass and 94% for chicory. 

Sensitivity, specificity and positive predicted value were determined for each behavioural 

state at 1-min intervals, and these were 98%, 97% and 99% respectively, for grazing, 77%, 

99% and 93% for resting and 87%, 98% and 91% for ruminating. 
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Analysis at a session level 

A total of 201 sessions (2.6 sessions per cow per day on average) were included in the 

analysis. Strong and significant correlations were observed between direct visual observations 

and tags in all three behaviours analysed (Table 2, Fig. 1). The strongest correlations were 

generated for grazing and resting behaviours. Although the correlation for ruminating was 

somewhat lower than for the other behaviours, it was still significant at the P = 0.05 level. 

Table 2. Pearson correlation coefficient (r), bias correction factor (Cb), concordance 

correlation coefficient (CCC) and confidence intervals (CI) values between direct visual 

(Actual time) observations and electronic tag recorded time (Tag time). 

 r Cb CCC CI (95%) Actual time Tag time 

     

Mean ± SD 

(min) 

Mean ± SD 

(min) 

Grazing  0.99 0.99 0.99 (0.99-0.99) 49 ± 20 49 ±20 

Resting  0.97 0.98 0.95 (0.92-0.97) 18 ± 18 14± 17 

Ruminating  0.80 0.99 0.80 (0.66-0.87) 20± 12 18± 11 
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Figure 1. Relationship between total time (min/session) measured by observers and time 

measured by the tag for grazing (top), resting (mid) and rumination (bottom). Each point 

represents the amount of time a particular cow was involved in a measured behavioural 

activity, as observed by the observer (X axis) and the tags (Y axis). The broken line 

represents the line of equality and the solid line the equation line. 
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DISCUSSION 

Accurate measurement of different cow behaviour patterns, such as eating, lying and 

ruminating, are now recognised as key indicators in the assessment of health status, cow 

comfort and cow performance (Mattachini et al. 2013; Bikker et al. 2014) of cattle at a farm 

level. Having a device capable of measuring, recording and reporting changes in multiple 

behaviours will aid producers in the effective, timely and individualised management of 

cows. However, it is recognised that the greatest value (on farm) will be realised if 

interpretive software generates accurate and reliable alerts. The majority of technologies 

evaluated for cattle have the capability to monitor only one behaviour at a time. Only one 

study (Bikker et al. 2014) evaluated a technology capable of measuring multiple behaviours 

and concluded that the device was accurate when measuring rumination and resting 

behaviour, and presented slightly lower accuracy levels for eating behaviour (Pearson 

correlation coefficients of 0.93, 0.98 and 0.88 respectively). However, that study was 

conducted with freestall-housed dairy cattle and the SCR HR-LDn has not been evaluated 

under grazing conditions. 

To our knowledge, the present study is the first to evaluate the SCR HR-LDn tag or any 

similar technology (that measures grazing, resting and ruminating time) for grazing cattle. 

This technology accurately quantified grazing, resting and rumination times under the 

conditions of the study. Strong correlations between device-generated data and visual 

observations were established (probabilities of agreement, Pearson correlations and CCC all 

being greater than 0.8). 

Grazing 

The SCR HR-LDn recorded grazing behaviour with a high level of accuracy, at 1-min level 

intervals. The probabilities of agreement between direct visual observations and data recoded 

by the tag were high for both forage types, despite the anecdotal difference in sward height, 

plant architecture and grazing behaviour (cows grazing chicory displayed more active and 

selective grazing behaviour) between the two species. An accurate and practical way of 

measuring daily grazing patterns and total grazing times at both an individual and herd level 

could lead to an improved understanding of the nutrition of herds in pasture-based systems, 

some indication of DM intake and improved efficiency for management of pastures. While it 

is recognised that several technologies have been developed to measure grazing behaviour, 

the majority of them are either expensive, labour intensive (Nielsen 2013), not practical for 
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commercial use, and/or specific for that function only. As an example, Delagarde and 

Lamberton (2015) validated the Lifecorder Plus (LCP, Suzuken Co., Nagoya, Japan), a 

device that measured grazing time with high accuracy, but was limited in that it was not able 

to detect other behaviours (based on a mono-axial accelerometer), which limited the scope of 

the data generated by the device and, therefore, the potential value in a commercial farm 

application. Such a device can likely be coupled with other devices, such as, for example, a 

pedometer (assuming there is no interference) on individual cows for research purposes, to 

generate additional data.  

Resting 

In a previous study, Elischer et al. (2013) evaluated a three- axial accelerometer device 

(Qwes-HR, Lely) and found only moderate correlations for standing-idle and lying 

behaviours (Pearson correlation r = 0.46 and r = –0.57 respectively) in a study were cows had 

access to pasture 24 h a day. To the best of our knowledge, only one study (Bikker et al. 

2014) has reported a validation for ‘resting’ behaviour with high levels of accuracy (r = 0.98, 

CCC = 0.97); however, that study was conducted with cows housed indoors (using a three-

dimensional accelerometer attached to the ear identification tag). Our results, in accordance to 

Bikker et al. (2014), reported high levels of accuracy when measuring ‘resting’ under grazing 

conditions. Postural behaviours, such as lying, are now recognised as valuable indicators of 

cattle comfort and welfare (Elischer et al. 2013). The present study is the first study that has 

reported high levels of accuracy for an electronic-sensor measuring ‘resting’ behaviour under 

grazing conditions. 

Rumination 

The majority of rumination-monitoring devices previously tested have been based on activity 

meters with incorporated microphones. Unfortunately, these have been somewhat prone to 

other audible disturbance. Ambriz-Vilchis et al. (2015) reported a poor performance when 

tested with grazing cattle, potentially due to the background noises typical of outdoor 

environments and by noises caused by activities such as self-grooming and/or drinking. In 

contrast, high levels of accuracy have been reported with accelerometer technology for the 

indication of rumination when tested on cows housed indoors (Borchers et al. 2016). In the 

present study, the accelerometer technology was shown to give accurate indications of 

rumination activity (in accordance with Borchers et al. 2016) when cows were grazing 

outdoors. This suggests that the limitations of the microphone technology can be addressed 

by converting to accelerator-based devices for cows grazing forages. 
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The device evaluated in the present study can monitor multiple behaviours with high levels of 

accuracy under grazing conditions, giving confidence that it could be a valuable tool for use 

in both research and commercial settings. While Bikker et al. (2014) successfully validated a 

similar device (measuring multiple behaviours) for indoor cows, the present study is the first 

successful evaluation (with high levels of accuracy) of such a device in outdoor grazing 

settings. Combining data provided by the sensor evaluated in the present study, together with 

additional automated data, such as individual cow milk production, milk quality and 

bodyweight or body condition score, creates the opportunity to understand, monitor and 

manage individual cows with low labour inputs (Elischer et al.  2013).This is even more 

crucial in large herds under extensive pasture-based conditions where it is difficult to visually 

observe individual animals. The combination of data from multiple devices may allow for the 

generation of computer-guided management strategies, whereby setting parameters such as 

feed allowances, milking permission, breeding and lactation windows could be automatically 

adjusted (on the basis of user-defined limits) to improve productivity of the whole farm 

system. 

CONCLUSIONS 

The present study is the first study that has evaluated the SCR HR-LDn tag, which operates 

without a microphone and with all measures conducted by an accelerometer. In the present 

study, in relation to the net time that individual cows were observed on a particular activity, 

the SCR HR-LDn tag quantified time spent grazing, resting and ruminating with high to very 

high level of accuracy in dairy cows grazing two different forage swards. Further work 

should focus on the use of the data to generate meaningful management guidelines, so as to 

ensure that real value (of the technology) can be captured on commercial farms. 

ACKNOWLEDGEMENTS 

The authors thank Kamila Maciel Dias and the staff from the University of Sydney Dairy 

Science Group for their help with data collection in the field study, Peter Thomson and 

Evelyn Hall for their support with the statistical analysis and SCR Engineers for their 

assistance. This study was supported by the Faculty in Veterinary Science, University of 

Sydney and the FutureDairy project. 

 

 



CHAPTER 5 • Activity and rumination monitoring system validation  

96 

REFERENCES 

Ambriz-Vilchis, V., Jessop, N. S., Fawcett, R. H., Shaw, D. J., and Macrae, A. I. 2015. 

Comparison of rumination activity measured using rumination collars against direct 

visual observations and analysis of video recordings of dairy cows in commercial 

farm environments. Journal of Dairy Science, 98,1750-1758. 

Beauchemin, K. A., Zelin, S., Genner, D., and Buchanansmith, J. G. 1989. An automatic 

system for quantification of eating and ruminating activities of dairy-cattle housed in 

stalls. Journal of Dairy Science, 72,2746-2759. 

Bikker, J. P., van Laar, H., Rump, P., Doorenbos, J., van Meurs, K., Griffioen, G. M., and 

Dijkstra, J. 2014. Technical note: Evaluation of an ear-attached movement sensor to 

record cow feeding behavior and activity. Journal of Dairy Science, 97,2974-2979. 

Borchers, M. R., Chang, Y. M., Tsai, I. C., Wadsworth, B. A., and Bewley, J. M. 2016. A 

validation of technologies monitoring dairy cow feeding, ruminating, and lying 

behaviors. Journal of Dairy Science, 99,7458-7466. 

Burfeind, O., Schirmann, K., von Keyserlingk, M. A., Veira, D. M., Weary, D. M., and 

Heuwieser, W. 2011. Evaluation of a system for monitoring rumination in heifers and 

calves. Journal of Dairy Science, 94,426-430. 

Clark, C. E. F., Lyons, N. A., Millapan, L., Talukder, S., Cronin, G. M., Kerrisk, K. L., and 

Garcia, S. C. 2015. Rumination and activity levels as predictors of calving for dairy 

cows, 9,691-695. 

Delagarde, R., Caudal, J. P., and Peyraud, J. L. 1999. Development of an automatic bitemeter 

for grazing cattle. Annales De Zootechnie, 48,329-339. 

Delagarde, R. and Lamberton, P. 2015. Daily grazing time of dairy cows is recorded 

accurately using the Lifecorder Plus device. Applied Animal Behaviour Science, 

165,25-32. 

Elischer, M. F., Arceo, M. E., Karcher, E. L., and Siegford, J. M. 2013. Validating the 

accuracy of activity and rumination monitor data from dairy cows housed in a 

pasture-based automatic milking system. Journal of Dairy Science, 96,6412-6422. 

Hills, J. L., Wales, W. J., Dunshea, F. R., Garcia, S. C., and Roche, J. R. 2015. Invited 

review: An evaluation of the likely effects of individualized feeding of concentrate 

supplements to pasture-based dairy cows. Journal of Dairy Science, 98,1363-1401. 



CHAPTER 5 • Activity and rumination monitoring system validation  

97 

Kononoff, P. J., Lehman, H. A., and Heinrichs, A. J. 2002. Technical note - A comparison of 

methods used to measure eating and ruminating activity in confined dairy cattle. 

Journal of Dairy Science, 85,1801-1803. 

Lin, K. 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics, 

255-268. 

Martin, P., Bateson, P. P. G., and Bateson, P. 1993. Measuring behaviour: an introductory 

guide. Cambridge University Press. 

Mattachini, G., Antler, A., Riva, E., Arbel, A., and Provolo, G. 2013. Automated 

measurement of lying behavior for monitoring the comfort and welfare of lactating 

dairy cows. Livestock Science, 158,145-150. 

Nielsen, P. P. 2013. Automatic registration of grazing behaviour in dairy cows using 3D 

activity loggers. Applied Animal Behaviour Science, 148,179-184. 

Phillips, C. 2002. The welfare of dairy cows. Cattle Behaviour and Welfare. Phillips, C., 

Second Edition, Blackwell Science Ltd, 19-20. 

Rutter, S. M., Champion, R. A., and Penning, P. D. 1997. An automatic system to record 

foraging behaviour in free-ranging ruminants. Applied Animal Behaviour Science, 

54,185-195. 

Schirmann, K., von Keyserlingk, M. A., Weary, D. M., Veira, D. M., and Heuwieser, W. 

2009. Technical note: Validation of a system for monitoring rumination in dairy cows. 

Journal of Dairy Science, 92,6052-6055. 

Sollenberger, L. and Burns, J. 2001. Canopy characteristics, ingestive behaviour and herbage 

intake in cultivated tropical grasslands. Pages 321-327 in Proc. International 

Grassland Congress. Fealq Piracicaba, Brazil. 

Walker, W. L., Nebel, R. L., and McGilliard, M. L. 1996. Time of ovulation relative to 

mounting activity in dairy cattle. Journal of Dairy Science, 79,1555-1561. 

Weary, D. M., Huzzey, J. M., and von Keyserlingk, M. A. 2009. Board-invited review: Using 

behavior to predict and identify ill health in animals. Journal of Animal Science, 

87,770-777. 

 



 

98 

 

OVERVIEW OF CHAPTER 6 

As described in the Overview of Chapters 5 and 6 (page 82), increasing our understanding of 

factors affecting efficiency or determining why some individual animals are more ‘efficient’ 

(as defined for pasture-based AMS) than others, was considered imperative for developing 

(outside the scope of this thesis) new tools to tailor management strategies to the proportion 

of cows in a herd that are categorised in each efficiency class. Chapter 6 therefore 

summarises the results of a field study aimed at understanding behavioural aspects of the 

individual cows (Efficient and Inefficient). 
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CHAPTER 6: Performance and behaviour of 

Efficient and Inefficient cows in a pastured-based 

automatic milking system 
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ABSTRACT 

In automatic milking systems (AMS) operating with voluntary traffic, dairy cows have some 

freedom to ‘set’ (within management and operator set software limits) their own milking 

frequency across each 24-h period. As a consequence a wide range of milking intervals and 

milking frequencies are typically observed within and between cows and throughout lactation 

in pasture-based AMS, resulting in different levels of efficiency. A field study was conducted 

to compare performance and behaviour of Efficient (EFF) and Inefficient (INEF) cows in a 

pastured-based automatic milking system. It was hypothesised that Efficient cows would 

spend more time in the paddock grazing pasture which might result in higher levels of 

rumination and higher milk production than Inefficient cows in the same herd. Twenty-eight 

Holstein-Friesian cows were selected and classified based on the level of efficiency (as 

defined for pasture-based AMS) regarding cow performance using the methodology 

developed in Chapter 4 (17 cows were identified as Efficient and 11 cows as Inefficient). 

Behaviour and performance were recorded for 7 consecutive days. Efficient cows produced 

more (P < 0.001) milk (EFF = 30.25 kg milk/day versus INEF = 21.63 kg milk/day), with 

similar (P > 0.05) milking frequency (1.9 milkings/day) to their Inefficient counterparts. 

Efficient cows spent 40 min more per day grazing (P = 0.04), 42 min more per day 

ruminating (P < 0.001) and 55 min less resting (P = 0.004) in comparison to Inefficient cows. 

There was no significant difference between Efficient and Inefficient cows for time spent in 

laneways, time spent in dairy and time spent in paddocks. It was concluded that the 

difference in cow performance might be partially explained by cow behaviour, as Efficient 

cows were recorded to have longer grazing and rumination times and shorter resting times. 

Further research should be conducted to elucidate the proportion of increased daily milk 

yield/greater efficiency that could not be explained by changes in grazing and feeding 

behaviour. 
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INTRODUCTION 

In automatic milking systems (AMS) operating with voluntary traffic, dairy cows have some 

freedom to ‘set’ (within management and operator set software limits) their own milking 

frequency across each 24-h period. This is in contrast with conventional milking systems 

(CMS) where cows are milked in defined sessions with milking frequency determined by the 

herd manager. 

Several factors related to pasture-based AMS, such as proportion of pasture in the diet, 

pasture allowance and distance between pasture and dairy facility have an effect on voluntary 

traffic (Lyons et al., 2013a). As a consequence, a wide range of milking intervals and milking 

frequencies are typically observed within and between cows and throughout lactation in 

pasture-based AMS. In addition, there is a significant impact of social synchronisation 

regarding individual cow behaviours such as, lying and feeding (Ketelaar-De Lauwere et al., 

1996, Uetake et al., 1997). This might result in a greater individual cow variability regarding 

cow behaviour, cow performance and how cows distribute time spent in different areas of the 

farm in comparison to CMS. Typically, in pasture-base systems cows spend the majority of 

their time on pasture as they attempt to meet their daily energy requirements by foraging 

which is known to be a time-consuming activity. Grazing typically occurs in bouts which are 

alternated with periods of ruminating and idling (Gibb et al., 1997).  

In a study where 30 cows were monitored over a 16-week period, Melin et al. (2005) 

suggested that each individual cow develops a unique feeding and drinking pattern and that 

the pattern is relatively consistent over time. Previous studies showed a positive relationship 

between dry matter intake (DMI) and milk production (Garcia et al., 2000, Hristov et al., 

2004) and also between rumination time and milk yield (Soriani et al., 2013, Kaufman et al., 

2018). Given that voluntary traffic allows cows to decide where to spend their time, it might 

be possible that in pasture-based AMS some cows spend considerable more time on pasture 

and grazing than others, potentially resulting in greater intake of pasture and consequently, 

greater milk production. 

In Chapter 4, whole lactation datasets from two commercial AMS farms were used to assess 

the magnitude of the variability in cow performance (milking frequency and milk yield) and 

to successfully develop a methodology to classify cows with different levels of ‘efficiency’. 

According to this specific definition of efficiency, ‘Efficient’ cows (which produced more 

milk from relatively less milkings in relation to their expected values); and ‘Inefficient’ cows 



CHAPTER 6 • Efficient and Inefficient cows: performance and behaviour 

102 

(which produced less milk from relatively more milkings in relation to their expected values), 

were identified. The findings in Chapter 4 showed relatively little repeatability between 

lactations for the efficiency categorisation, which suggests that genetics was probably not a 

key factor determining the categorisation.  Since factors such as stage of lactation and parity 

were adjusted for in the methodology developed in Chapter 4, it is likely that differences in 

cow behaviour could explain, at least in part, the differences observed between levels of 

efficiency in cow performance. 

Therefore, the aim of this experimental study was to investigate the behaviour and 

performance of two groups of cows with different levels of efficiency in a pasture-based 

automatic milking system. It was hypothesised that Efficient cows would spend more time in 

the paddock grazing pasture which might result in higher levels of rumination and higher 

milk production than Inefficient cows in the same herd. The development of a more complete 

understanding of the different levels of efficiency between cows may allow AMS farmers to 

implement distinct management practices with the objective of reducing the prevalence of 

inefficient cows in the herd, and therefore increase whole herd/system efficiency. 

MATERIALS AND METHODS 

General farm management  

The study was conducted at the University of Sydney Corstorphine dairy farm in Camden, 

New South Wales, Australia, between 1 October and 17 October 2016.  Ethics approval was 

granted by the Animal Ethics Committee of the University of Sydney (Project number 

2014/569). The milking herd consisted of 298 Holstein Frisians cows (31% first-lactation 

cows, 26% second-lactation cows and 42% more than two lactations; herd average 2.5 ± 0.3). 

At the commencement of the study, the seven-day average (mean ± SD) daily milking 

frequency was 2.03 ± 0.3 milkings/cow/day and the seven-day average daily milk yield was 

26.66 ± 5.95 kg milk/cow/day and the average days in milk (DIM) of the milking herd was 

141 ± 23 days.  

Cows were milked in a 24-bail internal herringbone robotic rotary (RR; Automatic Milking 

Rotary - AMR
TM

, DeLaval International AB, Tumba, Sweden) and were managed with a ‘3-

way grazing system’ (3WG; (Lyons et al., 2013b)). Cows were allowed to voluntary traffic 

from pasture to the milk harvesting facility to be milked at any time during the day and night, 

through 6 automatic drafting gates (DeLaval Smart Selection Gate, Tumba, Sweden) located 

within the dairy. All cows were fitted with an electronic identification transponder attached to 
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a collar, to allow them to traffic through the automatic drafting gates to access different areas. 

This transponder also generated an electronic record of all trafficking events, which were 

captured in the support software.  Using these individual trafficking records, the amount of 

time each cow spent in each area of the dairy and in each of the grazing areas was calculated. 

Cows exiting the dairy after being milked or when denied milking permission, had access to 

one of the 3 daily pasture allocations, depending on the time of the day (Table 1). Cows were 

granted milking permission based on a minimum milking interval of 4 hours or an expected 

yield greater than 6 kg/milking (as calculated by the management software, DelPro, DeLaval, 

Tumba, Sweden). Incomplete milkings (milkings in which the harvested milk yield was less 

than 50% of the expected yield) were automatically drafted back to the AMR for a second 

attempt at milking. Cows that had not returned to the dairy from the pasture allocation were 

fetched by the operator to minimise milking intervals extending beyond 24 h, by ensuring 

that the maximum time any cow could spend in a given pasture allocation did not exceed 21 

hours (Table 1). The furthest paddock was 1.6 km from the dairy and the closest was 0.7 km. 

Table 1. Pasture allocations, time each allocation was open to cows, fetching times and 

targeted DM/cow allocation per paddock.  

Allocation Available 
Fetching 

time 

Total hours of 

access 

Kg of 

DM/cow 

A 10:00-17:00 06:30 20.5 5 

B 17:00-23:00 10:00 17.0 5 

C 23:00-10:00 17:30 20.5 5 

 

Average daily dry matter intake targets (DMI) were 23 kg DM/cow, and feed was offered as 

a combination of grazable pasture (targeting 15 kg DM/cow/day across three allocations) and 

grain based concentrate (GBC). Pastures were comprised of annual ryegrass (Lolium 

multiflorum), white clover (Trifolium repens) and oats (Avena sativa). Cows had access to 

GBC feed after milking in 14 automated out-of-parlour feeders (FSC400, DeLaval 

International AB, Tumba, Sweden) located in an adjacent area. Individualised GBC 

allocation was calculated automatically based on days in milk (DMI). At the commencement 

of the study cows averaged 5.95 ± 2.3 kg DM/cow/day of GBC. 

All cows were fitted with a neck-mounted electronic rumination-and activity monitoring 

device (SCR HR-LDn, SCR Engineers, Netanya, Israel). The tag consisted of an 

accelerometer, a microprocessor unit, a memory unit and a transponder; all encapsulated in a 

plastic casing which was attached to a collar. On the basis of the continuous data generated 
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by a three-axis accelerometer, the microprocessor calculated activity and rumination 

(utilising specifically developed algorithms) and stored the data in the memory unit to then 

automatically transfer the data to a computer located in the dairy. The tag continuously 

recorded time cows spend ruminating, grazing and resting within 24 hours in 2h intervals. 

The SCR HR-LDn tag was validated by Molfino et al. (2017) (Chapter 5) for grazing, resting 

and ruminating behaviours with a high level of accuracy in pasture-based systems. 

Treatment and experimental design 

The study was conducted over a 7-day data collection period. One week prior to the 

commencement of the experimental period, raw electronic data from the previous 8 weeks 

was extracted from the herd management software. That data included cow number, parity, 

days in milk, daily milk yield (DY; defined as accumulated milk production of all individual 

milking events within each given 24-hour period, kg milk/cow/day) and daily milking 

frequency (MF; defined as sum of all individual milking events per cow within each given 

24-hour period) for all cows of the milking herd. 

Following the methodology developed in Chapter 4, all cows managed in the main milking 

herd (n=289) were classified based on their relative residuals for DY (kg milk/cow/day) and 

MF (milkings/cow/day). Relative residuals (RR) estimate how much a cow produced (for 

DY), or how many times per 24 h she got milked (for MF) in relation to her fitted or expected 

value after accounting for the effects of stage of lactation and parity number. Cows 

presenting a positive residual for DY and a negative residual for MF were categorised as 

Efficient (EFF); cows presenting a negative residual for DY and a positive residual for MF as 

Inefficient (INEF). See Chapter 4 for more details.  

It is important to note that in Chapter 4 cows were classified based on the whole lactation 

performance and for this study they were classified based on an 8 week period of data leading 

up to the trial period. In Chapter 4 it was shown that cows that were classified as Efficient or 

Inefficient on the whole lactation, were also in the same category in early and late lactation, 

giving us the confidence that selecting cows based on a fragment of the lactation in this study 

was a viable option.   

Three days before the commencement of the experimental period, selected cows were fitted 

with commercially produced CatLog
TM

 GPS units (17 x 25 x 5 mm) (Catnip Technologies 

Ltd, US), which were encased in a waterproof plastic box, and secured with polystyrene foam 

together with a  battery pack (17 x 20 x 49 mm). The plastic box was mounted on a collar on 
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the upper left side of the neck of each cow, to ensure the GPS unit antenna was unobstructed 

from satellite signals. GPS units were programmed to record the position of the cow every 3 

min using CatlLog
TM 

software. Collars were removed one day after the completion of the 

experiment. 

Data analysis 

Cow performance and cow traffic data 

All individual cow traffic events and milking events during the experimental period were 

recorded electronically and then manually downloaded from the herd management software 

(DelPro, DeLaval, Tumba, Sweden). Data included daily milk yield (DY; kg milk/cow/day), 

milk yield per milking (MY; kg milk/cow/milking), milking interval (MI; hours, defined as 

total time between two consecutive milking events), milking duration (MD; min/cow; from 

the beginning of milk flow until the end of milk flow); incomplete milkings (INC; %, defined 

as the proportion of milking events whereby one or more individual quarters were either not 

milked or yielded less than 50% of the calculated expected yield);  and daily milking 

frequency (MF; milkings/cow/day). In addition, concentrate consumption (CC; total amount 

of GBC consumed; kg DM/cow/day) and percentage of concentrate consumed (%CC; %, 

defined as the proportion of allocated concentrate that was actually consumed/cow/day) were 

also included. 

Waiting area time (WT) was calculated as the total time the cow spent in the pre-milking 

waiting yard before a milking event. Return time (RT) was calculated as the total time cows 

spent outside the dairy between milkings, and was calculated as the time between the cow 

exiting the dairy after a milking event and the subsequent entry to the pre-milking waiting 

yard. Feeding area time (FT) was calculated as the total time the cows spent in the post-

milking yard in the vicinity of the out-of-parlour feeders.  

Cow behaviour data 

Daily ruminating, grazing and resting time data were collected from the computer utilising 

the manufacturer’s support software (Data Flow software, SCR Engineers) and summarised 

for each cow by 2-h interval, and day.  

Data from GPS units were downloaded using CatlLog
TM

 software and exported into ArcGIS 

10.3.1. software for further analysis. Positional fixes (location of the cow) that were located 

outside the predefined areas (paddock, laneways and dairy), which included a 30 m buffer to 

account for potential location errors, were removed (17 % of data points). Location 
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information was utilised to calculate the total time spent in paddocks, laneways and the dairy 

(for each cow each day).  

Statistical analysis  

Outcome  variables analysed statistically included five related to cow performance (DY, MY, 

MD, INC, CC and %CC); five related to cow traffic (MI, MF, WT, RT and FT); and six 

related to cow behaviour (time spent in paddocks, time spent in laneways and time spent in 

dairy and time spent ruminating, grazing and resting (h/day)). 

All variables were analysed using multivariable linear mixed models with parameter 

estimates calculated using residual maximum likelihood (REML). All analyses were 

conducted using Genstat 16th Edition (VSN International Ltd). Residual analyses were 

performed to ensure that the assumptions of normality were met. Data from two variables 

(WT and FT) required log-transformation prior to analysis. Predicted means, effects and 

standard errors generated form the fitted model were back-transformed. 

All models included the explanatory effects of treatment (EFF and INEF), stage of lactation 

(SOL, as early = ≤ 100 DIM; mid = 101 - 200 DIM and late = ≥ 201 DIM), parity (as 

lactation number 1=1, lactation number 2=2, lactation number 3=3, lactation number 4=4, 

lactation number ≥5 = 5). Cow ID and Trial day were included as random effects in all 

models. Model for RT included additional effects of Area (the grazing area the cow visited 

before returning to the dairy, as ‘Area A’, ‘Area B’ or ‘Area C’). Model for MY also included 

CC as a fixed effect and Fetched (whether the cow was fetched from pasture to the yard, as 

‘yes’ or ‘no’). The interactions between effects were tested, and removed if not significant. 

Significance was determined if P < 0.05. Least significant differences were used to determine 

significant differences between predicted means. 

RESULTS 

Cow selection 

After classifying the whole herd, a total of 28 cows were selected; 17 cows were identified as 

EFF and 11 cows as INEF.  Means from the 8 week pre-trial period are shown in Table 2. 

During this 8 week period cows categorised as EFF produced 28% more milk with 4% less 

milkings per day and INEF cows produced 8% less milk with 5% more milkings per day in 

relation to their expected values (predicted means). It is important to note that cows were 

classified based on the relative residuals for DY and MF (as per methodology developed in 
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Chapter 4). The relative residual estimates how much a cow produced (for DY), or how many 

times per 24 h she was milked (for MF) in relation to her fitted or expected value after 

accounting for the effects of stage of lactation and parity number by the model. In both 

groups, the majority of the cows were in mid and late lactation (Table 2). In regards to parity, 

18% of the cows in EFF (n=3) and the INEF cows (n=2) were primiparous and 82% were 

multiparous. 

Table 2. Cow performance measures (daily milk yield, milking frequency, relative residual 

for daily milk yield (RRDY) and milking frequency (RRMF) from the 8-week pre-

experimental period for selected Efficient and Inefficient cows milked in a pasture-based 

automatic milking system. 

 Efficient Inefficient 

Number of cows  17 11 

Daily milk yield (kg milk/day) 30.3 20.63 

Milking frequency (milkings/day) 1.9 1.9 

RRDY (%) 28 -8 

RRMF (%) -4 5 

Parity (mean, range) 3.3 (1-8) 3.5 (1-6) 

Days in milk (mean, range) 166 (86-254) 178 (90-265) 

Stage of Lactation (n)   

          Early (≤ 100 DIM) 1 1 

          Mid (101 – 200 DIM) 6 5 

          Late (≥ 201 DIM) 10 5 

 

Cow performance  

There was a significant effect of SOL (P < 0.001), Parity (P < 0.001), CC (P < 0.001) and 

treatment (P<0.001) on daily milk yield, although there was no interaction between effects.  

During the experimental period EFF cows produced 39% more milk in comparison to INEF 

cows and had greater (P = <0.01) milk yield per milking (Table 3). Parity had an effect on 

MY (P = 0.024) and stage of lactation had a significant effect (P = 0.002) on CC. In all 

models there was no interaction between SOL, Parity and treatment. There was no difference 

(P > 0.05) between EFF and INEF cows with regard to MD, CC and % CC. 
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Table 3. Predicted means for daily milk yield, milk yield, milking duration, percentage of 

concentrate consumption, concentrate consumption and incomplete milkings for Efficient and 

Inefficient cows milked in a pasture-based automatic milking system.  

 
Treatment 

 
Efficient Inefficient SED

1
 P -value 

Daily Milk yield (kg milk/cow/day) 30.25
a
 21.63

 b
 1.41 <0.001 

Milk yield (kg milk/cow/milking) 18.71
 a
 12.65

 b
 1.96 0.002 

Milking duration (mm:ss/cow) 07:08 07:11 1:03 0.921 

% Concentrate consumption (%) 69.26 75.73 3.77 0.103 

Concentrate consumption (kgDM/day) 7.03 6.94 0.35 0.683 

Incomplete milkings (%) 6 4 0.02 0.598 
1
 Average standard error of the difference 

a-b
 Different lowercase superscripts within row indicate significant differences (P < 0.05) 

 

Cow traffic  

Return time was affect by Area (P < 0.001) and Fetched (P < 0.001), although no significant   

difference was observed between treatments (Table 4) and there was no interaction between 

effects. Cows returning from ‘Area A’ had a shorter average RT than cows returning from 

‘Area B’ and ‘Area C’ (10:42 ± 0:04  hh:mm, 13:14 ± 0:15hh:mm, 11:13 ± 0:08 hh:mm, 

respectively). Cows that had been fetched presented a significantly higher RT than cows not 

fetched (14:56 ± 0:05 hh:mm and 10:48 ± 0:15 hh:mm, respectively) although there was no 

interaction with treatments (P > 0.05). Exploratory descriptive statistics showed that EFF and 

INEF cows were fetched 36% and 38% of their recorded milking events, respectively.  

Treatments, stage of lactation and parity did not affect any of the analysed cow traffic 

variables (P > 0.05). There was no significant difference between EFF and INEF cow for FT, 

WT and MF. Figure 1 shows frequency distribution of MI for each treatment. 

Table 4. Predicted means for return time, feeding area time, waiting area time, milking 

frequency and milking interval for Efficient and Inefficient cows milked in a pasture-based 

automatic milking system. 

 
Treatment 

 
Efficient Inefficient SED

1
 P -value 

Return time (hh:mm) 11:49 11:37 0:09 0.830 

Feeding area time/visit (hh:mm)
2
 00:23 00:24 0.15 0.749 

Waiting area time/visit (hh:mm)
2
 01:05 01:20 0.04 0.697 

Milking frequency (milkings/day) 1.80 1.84 0.1 0.887 

Milking interval (hh:mm) 13:24 13:06 0:15 0.762 
1
 Average standard error of the difference 

2 
Feeding area time and Waiting area time were retransformed from LOG 
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Figure 1. Frequency distribution of milking intervals for Efficient and Inefficient cows 

milked in a pasture-based automatic milking system. Vertical bars indicate SEM (standard 

error of the mean).  

 

Cow behaviour 

Efficient cows spent 40 min more per day grazing (P = 0.04), 42 min more per day 

ruminating (P < 0.001) and 55 min less resting (P = 0.004) in comparison to INEF cows 

(Table 5). There was no significant difference (P > 0.05) between EFF and INEF cows for 

time spent in laneways, time spent in dairy and time spent in paddocks. Only RT was affected 

(P < 0.01) by parity, but there was no effect of SOL and there was no interaction between 

effects in in any of the models (P > 0.05). Rumination and grazing diurnal patterns (Figure 2) 

are presented in Figure 2.  

Table 5. Predicted means for grazing time, ruminating time, resting time, time spent in 

paddocks, time spent in laneways and time spent in the dairy for Efficient and Inefficient 

cows milked in a pasture-based automatic milking system. 

 
Treatment 

 
Efficient Inefficient SED

1
 P -value 

Grazing time (min/day) 467.2
a
 427.2

b
 19.34 0.04 

Ruminating time (min/day) 490.6
 a
 448.5

b
 14.24 <0.001 

Resting time (min/day) 296.9
a
 349.3

 b
 17.96 0.004 

Time spent in paddocks (h/day) 17.2 16.9 0:20 0.156 

Time spent in laneways (h/day) 2.2 2.5 0:08 0.504 

Time spent in dairy (h/day) 2.9 2.8 0:06 0.698 
1
 Average standard error of the difference 

a-b
 Different lowercase superscripts within row indicate significant differences (P < 0.05) 
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Figure 2. Diurnal pattern of rumination time (A) and grazing time (B) for Efficient (broken 

line) and Inefficient (solid line) cows milked in a pastured-based automatic milking system. 

 

DISCUSSION  

The aim of this study was to investigate the behaviour and performance of two groups of 

cows with different levels of efficiency in a pasture-based automatic milking system. Results 

showed that EFF cows produced more milk, with similar MF to their INEF counterparts.  

Whilst there was no difference in variables associated with cow traffic, EFF cows spent more 

time displaying grazing and rumination behaviour in comparison to INEF cows. 

The proportion of EFF and INEF cows identified in this study (5% EFF; 3% INEF) was 

lower in comparison to those reported in Chapter 4 (10% EFF; 12% INEF). Aside from being 

a chance occurrence or specific to the herds in each study, the only plausible explanation for 

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16 18 20 22 24

R
u

m
in

ta
io

n
 t

im
e

 (
m

in
/2

h
 in

te
rv

al
) 

Time of the day (h) 

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16 18 20 22 24

G
ra

zi
n

g 
 t

im
e

 (
m

in
/2

h
 in

te
rv

al
) 

Time of the day (h) 

A 

B 



CHAPTER 6 • Efficient and Inefficient cows: performance and behaviour 

111 

this could be in relation to the length of the period analysed to select the cows in each study 

(8 weeks in the present study and whole lactation data sets in Chapter 4). Although the 

number of EFF and INEF cows identified in the present study was relatively smaller than in 

Chapter 4, it was still deemed relevant to understand their behaviour and performance of 

individual animals with contrasting levels of ‘efficiency’.  Regardless of the proportion of the 

herd falling into each of these categories, EFF and INEF cows still have a significant impact 

on the system performance and might also influence the behaviour of herdmates.  

As expected, there was a significant difference (P < 0.05) in DY between INEF and EFF 

cows, with the latter group producing on average 8.62 litres/cow/day more. Although SOL, 

Parity, CC had significant effect (P < 0.001) on DY, there was almost no difference in 

regards to these variables between treatments.  Milking frequency and milking interval results 

were in agreement with previous studies conducted in pasture-based AMS (Lyons et al., 

2013b, Shortall et al., 2017) and did not differ significantly between treatments. This finding 

supports the suggestion that the core differences in DY between EFF and INEF cows might 

be due to behaviour and time spent on different behaviours rather than being a direct 

reflection of MF. 

Further analysis of raw data showed that there was no difference in regards to MI distribution 

(Figure 1), with both groups presenting similar proportions (~ 35%) of extended MI (over 

16h). This value is similar to the 30% reported by Lyons et al. (2013a) previously for pasture-

based AMS. Together with the relatively low MF (in comparison to frequencies typically 

reported for more intensive indoor systems for example), this factor (extended MI) might be 

at least partially responsible for the low number of incomplete milkings observed for both 

treatments.  Longer MI’s typically result in fuller and more distended udders that would 

likely increase the ease and success rate for any automatic cup attachment technology 

(Kolbach et al., 2012). Furthermore, data from pasture-based AMS does indicate that on 

average, when MF increases over 2 milking/cow/day (i.e. when MI is decreased), the 

percentage of incomplete milkings also tends to increase (N. Lyons, personal 

communication). 

The lack of effect between treatments in regards to cow traffic variables (MF, WT, RT, FT) 

might be the result of the high level of behaviour synchrony among cows of the milking herd. 

Grazing cows typically exhibit a high level of synchronisation in behaviour (Uetake et al., 

1997, Thorne et al., 2003) particularly with activities like grazing (Rook and Huckle, 1995, 
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Ketelaar-de Lauwere et al., 1999). The similarity in the diurnal pattern of rumination and 

grazing time between EFF and INEF cows (Figure1) also supports this concept of 

synchronisation. Furthermore, there was no difference across the treatments with regards to 

time spent in the different areas of the farm (paddocks, laneways and dairy facility). It is 

recognised that during the trial period the system was not operating in full capacity (RR can 

perform between 60-90 milking per hour (García et al., 2007, Kolbach et al., 2012) with only 

298 milking cows).  The low cow:robot ratio would have increased the possibility for cows to 

move through the system in groups. 

It has been previously reported that in pasture-based AMS, early lactation cows typically 

traffic around the system with higher levels of motivation with higher MF, shorter MI (Jago, 

2006, Lyons et al., 2013a); and less likelihood of requiring to be fetched (Ipema and Benders, 

1992, Jago, 2006) than cows in late lactation. In the current study, DIM did not have an effect 

on any of the traffic variables measured. However this was not surprising as the majority of 

the EFF and INEF cows were in mid and late lactation.  

Cow returning from ‘Area B’ had a longer average RT than cows returning from ‘Area A’ 

and ‘Area C’. This longer RT may have been due to this area becoming available to the cows 

in the late afternoon-early evening, when cows are more likely to be actively seeking a fresh 

pasture allocation.  During the night cows tend to be less active (John 2018) and prefer to be 

at pasture, (Legrand et al., 2009). Therefore, it is plausible that after accessing ‘Area B’ 

(available 17:00-23:00), and after a period of time grazing fresh pasture, cows were less 

motivated to leave the allocation and stayed in the pasture during the night, resulting in 

longer RT. The peak in grazing behaviour (Figure 2) observed after 18:00 h supports this 

idea. In a recently published study John et al. (2017) demonstrated the diurnal feeding pattern 

of cows, under outdoor conditions, when feed quality was held consistent. Moreover, when 

the timing of feeding was restricted (feed access between 1800 and 0600 h), cows consumed 

more feed (74% on the total DMI) in the first 6 h period, maximising lying time between 

2400 and 0600, even with an ad libitum feed regimen. 

The average time that cows spent grazing and ruminating was in agreement with values 

previously reported in the literature (Rook et al., 1994, Bargo et al., 2002, Krause et al., 2002, 

Kennedy et al., 2009).  Although there was no difference between treatments with regard to 

time spent at pasture, EFF cows spent more time grazing and ruminating and less time resting 

than INEF cows. What is not known is whether EFF cows grazed and ruminated more 
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because they were producing more milk or whether they were higher producers which 

resulted in an increased appetite and increased ‘drive’ to graze and ruminate. 

Dry matter intake is a function of total grazing time (min/day), biting rate (bites/min) and bite 

mass (gDM/bite) (Phillips and Denne, 1988). Several studies have shown a strong 

relationship between grazing behaviour, pasture intake and milk production with Holstein-

Friesian cows (Pulido and Leaver, 2001, Bargo et al., 2002, McCarthy et al., 2007).  Pulido 

and Leaver (2001) reported an increase in grazing time and pasture intake rate with cows 

producing between 16.9 and 35.5 kg/milk/cow/day when grazing ryegrass pasture. In that 

study, cows with a high DY (35.5 kg milk/cow/day) grazed for 552 min/day and cows with 

lower DY (16.9 kg milk/cow/day) grazed for 480 min/day over two experiments. In addition, 

Bargo et al. (2002) and McCarthy et al. (2007) reported a positive relationship between DY 

and total bites/cow/day, indicating increments of 5 kg and 4.2 kg of milk per 10,000 bites, 

with average biting rates of 55 and 60 bites/min, respectively. When comparing different 

strains of Holstein Friesian dairy cows with regard to grazing behaviour,  McCarthy et al. 

(2007) reported that almost half of the observed variation in milk production (R2=0.42) 

within a strain was explained by grazing behaviour. Grazing time (min/day), biting rate 

(bites/min) and bite mass (gDM/bite) were the main grazing behaviour variables associated 

with milk production.  

A reduction in grazing time caused by concentrate supplementation has been reported 

previously (Pulido and Leaver, 2001, McCarthy et al., 2007) and could explain differences in 

grazing time among cows. However in our study there was no difference in concentrate 

consumption between EFF and INEF cows. Given that cows from both treatments had similar 

diurnal grazing patterns (Figure 2), it is thus highly likely that the observed longer time spent 

grazing for EFF cows in the present study would have resulted in greater pasture and total 

(given similar concentrate intake between treatments) DMI. 

In our study EFF cows presented a longer grazing time in comparison to INEF (467.2 

min/day and 427.2 min/day, respectively). If we assume an average bite rate of 60 bites/min 

and a bite size of 0.63 g DM/bite (Bargo et al., 2002, McCarthy et al., 2007), this difference 

in time spent grazing would account for approximately an additional 1.5 kg DM/day for the 

EFF cows. However, it is recognised that the difference in daily DMI may in fact have been 

even greater.  If the EFF cows were more motivated to graze then it is also possible that they 

were more aggressive with their grazing behaviour and may have had both a higher bite rate 
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and/or a higher bite size.  Considering a typical feed conversion efficiency in pasture-based 

systems of 1-1.5 L milk/kg DM, it follows that the observed differences in grazing behaviour 

(and potentially in pasture intake) might explain only a proportion of the observed difference 

in DY. The lower rumination time measured for the INEFF also supports the association with 

the (potentially) lower DMI by INEFF cows, as less rumination time may indicate less 

material in the rumen to digest (Kennedy et al. 2009). 

A proportion of the variability observed in grazing behaviour in ruminants is genetically 

inherited (Launchbaugh et al., 1999, Snowder et al., 2001), creating the opportunity to select 

for individual cows based on behavioural traits that are more suitable to our pasture-based 

production systems. The development of new and more accurate technologies that can 

monitor various animal behaviours (sometimes even in real time) and generate reliable data, 

such as activity and rumination monitors, opens up the possibility for selection. In addition, 

AMS provides the opportunity to easily capture data from individual animals. For example, 

Carlstrom et al. (2013) proved the feasibility of using data from commercial AMS for genetic 

analysis of ‘milkability’ traits. 

Another factor to consider is the order in which cows gain access to a fresh pasture allocation 

(not recorded in the present study), as the quality and nutritive value of pasture decreases, it is 

accessed by herd mates and the sward is gradually depleted (Clark, 2013).   In pasture-based 

AMS operating with voluntary traffic (3WG), cows might access the same allocation up to 8 

hours apart. Cows accessing pasture at an early stage are offered an ad libitum allowance and 

better quality pasture in comparison to cows accessing later (Scott et al., 2014). This will 

impact on not only  milk production of the cow (due to differences in intake and quality), but 

also cow behaviour, as cows accessing the pasture later will have to graze for longer to meet 

their requirements, potentially spending more time and energy. It is possible that EFF cows 

may have been able to harvest more pasture and of higher quality, which would help to 

explain the higher DY observed for those cows compared to INEFF cows. Unfortunately, due 

to equipment malfunction, the specific GPS data, which would have added light into this 

speculation, were not captured. 

It is important to mention that there are several other factors/variables affecting whole cow 

performance in dairy systems, such as milking characteristics (e.g. milking duration, average 

milk flow), milk solids production, fertility, feed conversion efficiency, longevity and 

temperament that need to be considered when defining whether a cow is efficient or not. This 
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study was focused on variables regarding cow performance (including traffic) and behaviour 

of two groups of pre-selected cows aiming to increase the understanding of how productivity 

can be improved in pasture-based AMS. It is noted that the definition of E and I used in this 

study applies only for the purpose of the present investigations. 

CONCLUSION  

Optimising cow performance from grazed pasture is key for pasture-based AMS operating 

with voluntary traffic. This study has shown that Efficient cows produced more milk, with no 

difference in MF and cow traffic variables in comparison to Inefficient cows. The difference 

in cow performance might be partially explained by cow behaviour, as Efficient cows were 

recorded to have longer grazing and rumination times and shorter resting times. Further 

research should be conducted to elucidate the proportion of increased daily milk yield/greater 

efficiency that could not be explained by changes in grazing and feeding behaviour. 
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OVERVIEW OF CHAPTER 7 

It was shown in previous Chapters that contrasting levels of individual animal efficiency, as 

defined specifically for the purpose of these investigations, can be identified and quantified in 

pasture-based AMS. The next question becomes one of how individual animal efficiency (or 

aspects of behaviour associated with it), could be used to capture benefits at the whole herd 

or whole system level.   

One opportunity to capture such benefits is provided by pasture-based AMS that operate a 

voluntary traffic system, with either seasonal or split calving systems. These systems will 

typically have a period of the year with a low cow:robot ratio, resulting in an underutilisation 

of the robotic equipment, with a high labour input and high energy costs on a per litre of milk 

basis. As a result, productivity and efficiency of the system is reduced. Traffic system type is 

generally very consistent within farm, due to the facility infrastructure and also the lack of 

knowledge regarding how cows adapt to short changes in the traffic management system. 

Chapter 7 summarises the results of a field study conducted with the aim of addressing this 

issue by implementing a short period of voluntary-batch milking. 
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CHAPTER 7: Increase Automatic Milking Systems 

efficiency: effect of a short-period of 

voluntary-batch milking on cow performance



CHAPTER 7 • Short-term alteration in traffic systems 

121 

 

ABSTRACT 

Pasture-based automatic milking systems operating with voluntary cow traffic, with either 

seasonal or split calving systems are likely to have a period of equipment underutilisation due 

to reduced herd size and subsequent low cow:robot ratios. During these periods it is expected 

that operating costs are increased and labour efficiency is reduced. Operating a voluntary-

batch traffic system during this period could address these issues; however, the ability of 

experienced cows to shift from voluntary-batch milking back to voluntary milking without 

significant negative impacts on cow performance has not been investigated to date. Acquiring 

this knowledge is important before new strategies to capture benefits arising from different 

levels of ‘efficiency’ are developed in the future. Cow performance data were collected over 

a 24-week period from a farm in Tasmania, where 156 cows were milked by an automatic 

milking robotic rotary. For the first 8 weeks cows were allowed to traffic voluntarily with a 3 

way grazing system (VOL-PRE), followed by 8 weeks where cows were milked twice-a-day 

and managed under a voluntary-batch trafficking systems (VB) before reverting back to 3 

way grazing (with voluntary cow traffic) (VOL-POST) for the last 8 weeks. Milking cows 

twice-a-day in the VB period resulted in a reduction in daily milk yield (VOL-PRE = 35.3 

kg/cow/day and VB = 34.44 kg/cow/day) and milking frequency (VOL-PRE = 2.14 

milkings/cow/day and VB = 1.97 milkings/cow/day). During VOL-POST period, milking 

frequency increased (P < 0.001) (2.31 milkings/cow/day), together with a slight but also 

significant increase (P < 0.001) in daily milk yield (35.5 kg milk/cow/day). Results indicate 

that experienced cows can be transitioned from voluntary-batch milking and back to 

voluntary milking without significant negative impacts on cow performance.  This is a 

management strategy that can be employed during periods of underutilisation to improve both 

milk harvesting and labour efficiencies. 
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INTRODUCTION  

Cow traffic has been recognised as one of the key factors affecting the feasibility and 

operational efficiency of automatic milking systems (AMS) (Lyons et al., 2014; Utsumi, 

2011; Prescott et al., 1998; Halachmi et al., 2009). In Australia the majority of pasture-based 

AMS use controlled voluntary cow traffic, where cows can move from the paddock and 

through the dairy (with pre-selection for milking if milking permission is granted) to the next 

feed allocation with relative freedom of choice. At certain times of the year, AMS farms that 

operate a voluntary traffic system with either seasonal or split calving systems are likely to 

have some months where the number of cows per robot is particularly low. This can present 

some challenges such as difficulty to achieve and maintain good voluntary cow movement 

with reduced herd size (due in part to very small feed/pasture allocations), reduced labour use 

efficiency, underutilisation of the milk harvesting equipment, higher operating costs (per litre 

of milk) (Shortall et al., 2017), and maintaining high milk quality (due to the small volumes 

harvested per hour).  

With ‘box-robot’ systems some of these challenges can be addressed by operating with a 

reduced number of boxes (i.e. with some boxes turned off for certain periods of time) to 

maintain a relatively consistent cow:box ratio. With the high-throughput robotic rotary (RR; 

Automatic Milking Rotary - AMR
TM

, DeLaval International AB, Tumba, Sweden), the 

operator can deactivate some of the bails (Kolbach et al., 2013) on the platform, which might 

address some (but not all) of the above-mentioned challenges.  However, additional benefits 

could be captured if the operator were able to switch to a voluntary-batch milking mode for 

the months of underutilisation, allowing cows to walk to the dairy by themselves after an 

automatic gate releaser opens the paddock gate at designated times during the day or night. In 

the ‘voluntary-batch’ system, offering supplementary feed in a feeding area located before 

milking, could encourage cows to voluntarily move to the dairy 2.5 hours before each 

“milking session” starts. A management strategy such as this would give the operator the 

opportunity to turn on the milk harvesting equipment for defined hours, saving electricity, 

controlling milking frequency of the cows and increasing labour efficiency (it would negate 

the need for on-call staff during the night hours if the dairy was shut down). In addition, 

having the dairy shut down for a period of time creates the opportunity to do major services 

to the equipment before the commencement of the next calving season without negatively 

impacting cow traffic.  
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However, such benefits would be eroded if cows, particularly those with increased ‘AMS-

efficiency (higher milk yield relative to milking frequency) did not re-adapt to full voluntary 

traffic soon after the voluntary-batch period is finished. Whilst it is known that it can take 

some time for naïve cows to fully adapt to voluntary cow traffic (depending on herd size, 

machine capacity, pre-training and other factors) (Donohue et al., 2010; Jacobs & Siegford, 

2012)) there are currently no published studies that demonstrate the ability of experienced 

cows to shift from voluntary-batch milking to voluntary milking within the same lactation 

and the effect that this might have on individual cow traffic and cow performance.  

In regards to cow performance, it was expected that daily milk yield (DY, defined here as 

accumulated milk production of all individual milking events in a given 24-hour period) 

would respond to the change of milking frequency (MF, defined here as sum of all individual 

milking events per cow in a given 24-hour period). Several studies conducted in conventional 

milking systems have measured the effect of MF on DY, showing that production increases 

20-40% between once and twice-a-day milking and another ~15 % when cows are milk three 

times a day (Rémond et al., 2004; Clark et al., 2006). In these studies there was very limited 

variation in milking intervals (MI, defined here as total time between two consecutive 

milking events) and no variation in MF within cows and from day to day. In an AMS, as 

cows walk voluntary to the dairy through the day and night, there is a degree of variation in 

MI and MF between cows within the herd and within cows from day to day (Hogeveen et al., 

2001; Lyons et al., 2013a). In a study conducted over 2 years under pasture-based AMS, 

Lyons et al. (2013a) showed a relatively high proportion (30% of total milking intervals) of 

extended milking intervals (MI greater than 16 hours), in which the milk accumulation rate 

decreased on average by 40%, negatively affecting milk yield per milking. In the same study 

it was determined that DY increases of 33%, 13% and 6%  where associated with MF’s in the 

ranges of 1 to 2, 2 to 3 and 3 to 4 milkings per day, respectively. Based on these studies it is 

expected that when cows transition from voluntary traffic to batch milking, MY could be 

negatively affected in those cows for which the MF is reduced (e.g. from 2.5 to 2 milkings 

per day; and positively affected in those cows for which the MF is increased (e.g. from 1.5 to 

2 milkings per day).  However, a study conducted by Foley et al. (2015) demonstrated that in 

a pasture based AMS milking frequency can be reduced, without any significant negative 

effect on DY or cow traffic in cows in mid lactation. This was done by comparing two 

different groups of cows, which were allowed to be milked a maximum of 2 and 3 times per 

day by adjusting milking permission. Although there was a significant difference between 
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groups in MF (1.5 and 1.8 milkings per day) and also in many cow performance variables 

(MI, kg milk yield/cow/visit , milking duration/cow/visit (min), milking duration/cow/day 

(min), return time/cow/visit (h) and waiting time/cow/day (h)) there was no significant 

differences in MY.  

A field study was therefore conducted to investigate the effects of implementing voluntary-

batch milking (cows were transitioned from a voluntary trafficking system to a voluntary-

batch system and back to voluntary) on the subsequent performance and voluntary traffic of 

individual cows. 

MATERIALS AND METHODS 

General information 

The study was conducted in a commercial split-calving herd located in Deloraine, Tasmania, 

Australia, between April 27 and October 9 2015, where all milkings were performed on a 24-

bail internal herringbone RR (DeLaval Automatic Milking Rotary, AMR
TM

). The farm had 

operated as a pasture-based system with voluntary cow traffic and 3-way grazing (3WG) 

(Lyons et al., 2013b; Kerrisk, 2009) since 2012. The experimental period was based on 

historical data collection which extended over a 24-week period and was divided into 3 

‘treatments’ based on the type of cow traffic: ‘voluntary pre voluntary-batch period’ (VOL-

PRE; weeks 1 to 8), ‘voluntary-batch’ (VB; weeks 9 to 16) and ‘voluntary post voluntary-

batch period’ (VOL-POST; weeks 17 to 24).  

During VOL-PRE and VOL-POST cows were managed with 3WG and were allowed to 

voluntary traffic from pasture to the milk harvesting facility to be milked at any time during 

the day and night. Cows exiting the dairy after being milked or when denied milking 

permission, had access to one of the 3 daily pasture allocations, depending on the time of the 

day. Under VOL-PRE, allocations opened at 0600 h, 1400 h, and 2200 h and under VOL-

POST at 0500 h, 1300 h, and 2100 h. Cows were granted milking permission based on a 

minimum milking interval of 6 hours or an expected yield greater than 7 kg/milking (as 

calculated by the support software, DelPro, DeLaval™). Cows that had not returned to the 

dairy facility from the pasture allocation were fetched by the operator to minimise milking 

intervals extending beyond 24 h. 

During the VB period cows were milked in two defined sessions/day commencing at 0500 h 

and at 1400 h. Cows were held in the paddock (gate closed) until 2.5 hours prior to the 
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beginning of each milking session when an automatic gate releaser was activated opening the 

paddock’s gate. This meant that cows could traffic voluntarily (thus the name VB) to the 

dairy via the feedpad area from 0230 h and 1130 h with milking commencing at 0500 h and 

1400 h respectively. Any cow not walking voluntarily to the feedpad area was fetched to the 

dairy before the milking session was finished. Cows were also encouraged by the operator to 

walk from the feedpad area and through the waiting yard as required to ensure that the 

milking sessions were generally completed by 0800 h in the morning and 1700 h in the 

evening. After being milked, cows were allowed to voluntarily walk to the new allocation of 

pasture and were locked into the paddock after the milking session was complete and the last 

cow had entered the paddock. During this period there was a significantly high level of 

manual attachment of cups conducted by the operator, with the aim of reducing total milking 

sessions time and also as a strategy to prevent incomplete milkings.  

For all periods, target daily dry matter intakes were 22.5 kg DM/cow/day, and feed was 

offered as a combination of grazable pasture (perennial ryegrass, Lolium perenne L.), partial 

mixed ration (PMR) and grain-based concentrate (GBC). The percentage of each feed in the 

daily allocation varied depending on the availability of pasture. At all times cows were 

managed as a single herd. In all 3 periods cows had access to GBC feed after milking in 20 

automated out-of-parlour feeders (FSC400, DeLaval International AB, Tumba, Sweden) 

located in an area immediately post-milking. Individualised GBC was calculated 

automatically based on days in milk. All cows were fitted with an electronic identification 

transponder attached to a collar, to allow them to traffic through the automatic drafting gates 

(DeLaval Smart Selection Gate, Tumba, Sweden) and to the out-of-parlour feeders. 

The autumn calving herd consisted of 199 Holstein-Friesian primiparous (n=43) and 

multiparous (n=156, parity range 2 – 8) cows. Only multiparous cows were included in the 

study, all of which had previous experience with 3WG as a management system. At the 

beginning of the experiment (week 1) the herd was comprised of 86 cows and by week 6 all 

156 cows had calved. 

The spring calving herd, comprised of 391 Holstein-Friesians cows (parity range 1 – 8), were 

dried-off during the VOL-PRE period however, they were managed together with the autumn 

calving herd before they were dried off. Two weeks prior to the end of VB, week 14, the 

spring herd started calving and fresh cows joined the autumn milking herd, with almost 50 % 

of them calved within 4 weeks. Data from the spring calving herd was excluded from the 
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analysis. This study was intended to simulate a commercial situation whereby herd numbers 

reduced for a period of time, and although data generated by the spring herd was excluded 

from the analysis, animals that were dried off and calved back into the herd could have 

influenced herd dynamics, and it was not the intention of this study to remove their influence. 

Data collection 

Data were collected electronically by the herd management software, including daily milking 

frequency (MF; milkings/cow/day), daily milk yield (DY; kg milk/cow/day), milk yield per 

visit (MY; kg milk/cow/milking), milking interval per visit (MI; h), milking duration per visit 

(MD, min), concentrate consumption (CC; kgDM/cow/day), percentage of concentrate 

consumed (%CC; %, defined as the proportion of allocated concentrate that was actually 

consumed/day); incomplete milkings (INC; %, defined as the proportion of milking events 

whereby one or more teats were either not milked or yielded less than 50% of the calculated 

expected yield); parity number, and days in milk (DIM). Due to the variability (between 

days) typically observed in AMS, seven-day averages were calculated prior to statistical 

analysis. 

Statistical analysis 

Outcome variables 

The outcome variables analysed at cow level were milking frequency, milk yield per day, 

milk yield per visit, milking interval, milking duration, concentrate consumption, percentage 

of concentrate consumption and incomplete milkings.  

Explanatory variables 

The main explanatory variables included in the analysis were: days in milk, lactation number, 

traffic system (VOL-PRE, VB, VOL-POST), concentrate consumption and cow ID.  

Statistical models 

Linear mixed models (REML) were used to analyse data. All models included the fixed 

effects of days in milk, lactation number and traffic system. The interactions between days in 

milk and lactation number with traffic system were tested, and removed if not significant. For 

the analysis of DY, concentrate consumption was included in the model as an interaction with 

traffic system. Cow ID was included as a random effect in all models. Residual analysis was 

performed to check for normality. All analyses were conducted in Genstat 16th Edition (VSN 

International Ltd.) and P values lower than 0.05 were considered significant. Least significant 
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differences were used to determine significant differences in variables between the different 

traffic systems. 

RESULTS 

For all models there were no interactions between DIM, lactation number and traffic system 

(all P > 0.05).  Days in Milk (DIM) had a significant effect on all outcome variables (P < 

0.001) except for INC. Traffic system had a significant effect on all variables except CC, and 

lactation number had a significant effect on MF, DY and MI. Concentrate consumption has a 

significant effect on DY (P < 0.001). 

Milking cows twice-a-day during the VB period resulted in a significant reduction of MF, 

DY, and INC while MY, MI, MD, CC and % CC increased during the VB period (Table 1). 

Interestingly, when cows switched back to voluntary traffic (VOL-POST) MF increased 

significantly (17%), together with a slight but also significant increase in DY (3%). During 

the VOL-Post period, MF reached the highest value in the first week of the treatment (Figure 

1) while DY presented the lowest value. Frequency distribution of milking intervals is 

presented in Figure 2. 

Table 1. Predicted means for milking frequency per day, milk yield per day, milk yield per 

visit, milking interval per visit, milking duration per visit (min), incomplete milkings, 

concentrate consumption and % concentrate consumption for each of the treatments 

voluntary pre voluntary-batch period (VOL-PRE), voluntary-batch (VB) , voluntary post 

voluntary-batch period (VOL-POST) traffic systems. 

 Traffic system  

  

VOL-

PRE 
VB 

VOL-

POST 
SED 

Milking frequency  (milkings/cow/day) 2.14
b
 1.97

c
 2.31

a
 0.04 

Milk yield per day (kg milk/cow/day) 35.3
a
 34.44

b
 35.5

a
 0.3 

Milk yield per visit (kg milk/cow/visit) 16.51
b
 17.26

a
 15.57

c
 0.17 

Milking interval per visit  (hours) 11.44 11.98 10.74 0.004 

Milking duration per visit  (minutes)  6.11 
c
 6.51 

ab
 6.21 

bc
 0.06 

Concentrate consumption (kgDM/day) 8.40
c
 8.62

a
 8.53

b
 0.11 

% Concentrate consumption (%) 95.14 95.59 96.06 0.3 

Incomplete milkings (%) 5
b
 3

c
 9

a
 0.01 

SED: Standard error of the difference; Different letters (within row) indicate significant differences 

(P<0.001) between groups.VOL-PRE is the 8 week period of voluntary cow traffic prior to the 

voluntary-batching period, VB is the 8 week period of voluntary-batching whereby cows were 

restricted to the paddock between designated milking times but were allowed to voluntarily traffic to 

the pre-milking feedpad prior to voluntarily trafficking through the dairy and out to the subsequent 

pasture allocation, VOL-POST is the the 8 week period of voluntary cow traffic after to the voluntary-

batching period. 
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Figure 1. Effect of traffic systems: voluntary pre voluntary-batch period (VOL-PRE, ◊); 

voluntary-batch (VB, ●); voluntary post voluntary-batch period (VOL-POST ■) on a) 

milking frequency per day (milkings/cow/day), (b) milk yield per day (kg milk/cow/day), (c) 

milk yield per visit (kg milk/cow/visit), (d) milking interval per visit (hs), (e) milking 

duration per visit (min), (f) Incomplete milking (%), (g) concentrate consumption 

(kg/cow/day), (h) % concentrate consumption (%). Predicted means and standard error are 
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presented. Break in the data lines indicates when VB started (week 9) and when VOL-POST 

commenced (week 17). 

 

 

Figure 2. Frequency distribution of milking interval (h) resulting from voluntary pre 

voluntary-batch period (VOL-PRE; ■), voluntary-batch (VB; □) , voluntary post voluntary-

batch period (VOL-POST; ) traffic systems. Vertical bars indicate SEM (standard error of 

the mean). 
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particularly interesting given that the study cows were in mid-lactation as they moved into the 

VOL-POST treatment, and it is well known that MF decreases with stage of lactation (Lyons 

et al., 2013b). Two weeks prior to the end of VB (week 15), the spring herd started calving 

and fresh cows joined the autumn milking herd, this most likely impacted the motivation 

levels of the autumn calvers being studied and could explain, at least in part, the observed 

increase in MF in VOL-POST. This would have also been the case if the autumn-calving 

cows had been managed with voluntary cow traffic throughout the full 8 week winter period 

and it is possible that the autumn-calving cows would have responded with an increase in MF 

even earlier (as the spring calving cows started to join the herd) if they had not been restricted 

with the VB strategy. Further research is needed to elucidate this. 

Daily milk yield decreased slightly albeit significantly by 0.86 litres/cow/day when cows 

were restricted to the VB milking strategy. This was likely due to the slight reduction in mean 

MF. However, because MF commonly achieved in AMS pasture-based system are not much 

greater than 2 milkings/day (Lyons et al., 2013b; Lyons & Kerrisk, 2017), the losses in milk 

production might be compensated by the long-term benefits of reducing milking intervals that 

extended beyond 16 hours. Further long-term benefits might have been generated by the near 

elimination of extended milkings (at a quarter level) resulting from incomplete milkings. 

Interestingly MY was greater for the VB period, resulting in a higher milk harvesting 

efficiency, and was lower for the VOL-POST period since the increase in milking frequency 

did not result in a proportionately higher MY. Still, the increase in DY achieved in VOL-

POST was encouraging, particularly in light of the fact that cows were beyond the first 100 

days of lactation.  

Although the level of incomplete milkings (5%) was acceptably low at the beginning of the 

study, a significant decrease in the incidence of INC was reported during the VB period, this 

was expected as the level of manual cup attachment conducted by farm staff increased during 

that period, in an attempt to reduce inefficiencies associates with cows requiring a second or 

even third attempt at milking. In addition, the fact that the system was only operating over 

limited number of hours per day could have resulted in a greater level of hygiene on the 

external surfaces of the equipment with a reduced opportunity for manure to dry on the 

camera lenses, milk tubes and robotic arms. As a result of the controlled and regular milking 

frequency during the VB period, a relatively higher proportion of milking intervals between 

8-16 hours was observed (87%, Figure 2), resulting in a fuller and more distended udder that 

would likely increase the ease for any automatic cup attachment device to locate the teats 
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(Kolbach et al., 2012). This could explain, at least partly, the low number of incomplete 

milkings.  

Whilst the shift to VB reduced the incidence of incomplete milkings, it is concerning that the 

prevalence of incomplete milkings increased during the VOL-POST period (even to levels 

significantly higher than those in VOL-PRE). The explanation for this is likely multi-factorial 

but could include factors such as the automatic cup attachment,  the lower milk yield/milking, 

some disturbance created by the fresh spring calving cows and/or an increase in the variation 

of intervals between successive milkings. 

Having the robotic system operating for discrete sessions/limited hours per day provides the 

possibility to implement strategies, such us performing manual cup attachment, to reduce the 

number of incomplete milkings substantially, which might have a positive impact on milk 

production, udder health, and cow traffic. Such strategies are almost impossible to apply in a 

practical manner when operating with voluntary traffic. 

Contrary to expectations, there was no significant difference between periods in the 

percentage of concentrate consumption (%CC). With defined milking sessions and manual 

cup attachment it was expected that a higher number of cows (relative to VOL-PRE) could be 

present in the feeding area at the same time, creating an increased level of congestion and 

competition for the feeding stations. This does not appear to have been the case in this study 

and is likely to be directly related to the number of feeding stations available (20 parlour 

feeders) and the rate (cows/hour) of cows exiting the dairy. As dairy cows in conventional 

milking systems have been shown to maintain a relatively similar order of milking (Scott et 

al., 2014) it is possible that the VB management strategy resulted in cows accessing the 

feeding stations in more of a hierarchical order. This in turn may have reduced the likelihood 

that some cows were not able to access their concentrate allocation without being disturbed 

by more dominant herdmates. Concentrate consumption increased significantly (but only by 

2.6%) when the study cows shifted from VOL-PRE to VB. This was somewhat surprising 

given the reduced visitation frequency and the reduced milk yield but it also could be 

explained by the programmed increment in allowance during early lactation stage.   Although 

MF increased in VOL-POST period, CC decreased significantly in comparison to VB, more 

than likely due to the fact that allocation levels automatically decreased as cows progressed 

through mid-lactation. 



CHAPTER 7 • Short-term alteration in traffic systems  

132 

Knowing that cows can quickly adapt to changes in traffic systems within the same lactation 

without a significant negative effect on their performance, provides the opportunity to use 

this as a strategic management option, not only for periods of underutilisation but also 

perhaps to address other challenges in pasture-based AMS.  A similar strategy used in this 

study might be applicable for example, on farms where cows are exposed to periods with 

high environmental temperature humidity index (THI) resulting in heat stress.  In pasture-

based AMS with large herds, where a high proportion of the diet is comprised of pasture, the 

combination of long walking distances and high temperatures result in a decrease in cow 

voluntary movement (Wildridge et al., 2018), reducing milking frequency, potentially 

affecting production and also increasing labour associated with increased fetching. A period 

of time in which cows can be batch milked or voluntary-batch-milked could have a positive 

impact on cow production and welfare.  It is however, important to understand the impact of 

the freshly calved cows on the herd dynamics before broad adoption of voluntary-batch 

milking under various scenarios can be recommended. 

In order to avoid having a negative impact in cow performance and welfare, other factors 

such as: type of robots, farm layout, size of the waiting yards and herd size, need to be 

consider before applying changes in traffic systems. 

CONCLUSION  

The findings presented in this study indicate that experienced cows can be transitioned from 

voluntary-batch milking and back to voluntary milking without significant negative impacts 

on cow performance and cow traffic. This enhances the potential future application (outside 

the scope of this thesis) of previous findings in relation to variability in individual animal 

‘efficiency’ for pasture-based AMS.  Results from this present study suggest that ‘voluntary-

batch’ milking could be a feasible management option for pasture-based AMS to address 

periods of underutilisation of the equipment. Care should be taken to monitor and manage the 

level of incomplete milkings as cows transition back to voluntary milking to ensure that 

udder health and production are not inadvertently compromised. 
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GENERAL DISCUSSION 

This research has explored key aspects of efficiency at animal and system levels as the basis 

to develop strategies on how to improve system performance in pasture-based AMS operating 

with voluntary traffic. To achieve this, a research approach that combined innovative uses of 

data from commercial farms with controlled field investigation, was used to characterise the 

current situation, identify gaps in knowledge, validate a newly available research tool, and 

identify and quantify the extent to which different levels of animal efficiency (as defined for 

pasture-based AMS) could be used to advance pasture-based AMS in the future. The primary 

purpose of this final Chapter is therefore to integrate the knowledge generated through each 

of the individual pieces of research, highlight those areas that require further research, and 

outline the key conclusions of these investigations. 

Pasture-based AMS 

The exploration of strategies to improve whole farm productivity will continue to play a role 

in improving the uptake and success of farms operating with Automatic Milking Systems 

(AMS).  In particular, optimising robot performance, a key objective for the vast majority of 

farmers operating with AMS (Sonck and Donkers, 1995), is deemed critical to increasing 

farm profitability. 

In countries like Australia, New Zealand and Ireland, the majority of commercial dairy farms 

are pastured-based, i.e. grazed pasture is the main individual component of the total annual 

dry matter intake consumed by cows. In a world where the demand for high quality dairy 

products is increasing and consumers are becoming more informed about how their food is 

produced (Cembalo et al., 2016), pastured-based dairy systems are well positioned to meet 

that demand. 

When AMS commenced to be adopted in countries like Australia and New Zealand, the 

predominant perception was that they would not be compatible with pasture-based systems 

(Garcia and Fulkerson, 2005). This was perhaps influenced by the reported reduction in 

grazing (hours/days/months) which is associated with AMS adoption in many European 

countries (de Koning, 2011); a concern when consumer opinion is increasingly influencing 

farming practices. Despite this, research studies conducted in various countries have 

demonstrated that AMS can be successfully integrated into grazing systems and that cows 

adapt very well to voluntary cow traffic when feed is used as the primary incentive (Jago et 
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al., 2002, Davis, 2006). A review of current and relevant literature (Chapter 2) showed that 

the nature of voluntary traffic and the management systems implemented in pasture-based 

AMS are associated with significant levels of variability in milking frequency (MF) and 

milking interval (MI), not only among individual cows but also over time. Interestingly, the 

impact of MI on milk yield varies significantly between cows (Lyons et al., 2013a). The 

feasibility of, and opportunity for, using data from commercial herds to determine individual 

performance through in-depth analysis of factors including MF, MI, and milking time (among 

others) was also highlighted in the literature review. Thus, Chapter 2 proposed that there was 

a significant opportunity to explore the individual cow variability in order to identify, select 

and in the future potentially breed cows more suitable to AMS, and even more specifically 

for pasture-based AMS. It was also shown that current levels of robot utilisation and milk 

harvested per robot (MHR) in pasture-based AMS are relatively low (Lyons and Kerrisk, 

2017; Chapter 2) in comparison to indoor systems, indicating that there was an opportunity to 

improve system performance.  

In a comprehensive review on the impact of AMS on dairy cow management, behaviour, 

health, and welfare, Jacobs and Siegford (2012) suggested that completely different AMS 

optimisation strategies might be needed to successfully operate pasture-based AMS. It is 

evident that factors specific to, or more exacerbated by, grazing systems (such as greater 

walking distances, periods of hot weather, diurnal grazing behaviour and greater social 

synchronisation of cow behaviour) add and element of complexity to the system when the 

aim is to optimise robot performance (John et al., 2016). 

Farmers operating with AMS typically have two main strategies to increase robot 

performance, namely increasing MF or increasing the number of cows in the herd whilst 

maintaining MF (Woolford et al., 2004; Chapter 2). The need for a better understanding of 

the relationship between robot performance, cows per robot (CR) and MF in pasture-based 

AMS was also highlighted in Chapter 2.  

In Chapter 3, the relationship between MF, CR and MHR was analysed using data from a 2-

year period from 17 commercial pasture-based AMS farms. As expected, it was demonstrated 

that, on average, commercial pastured-based AMS are achieving lower levels of robot 

performance (measured as robot utilisation and MHR), together with lower level of MF in 

comparison with those commonly reported in indoor systems. Interestingly though, the 

average number of CR was fairly similar to those reported for indoor based systems. From 
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this finding alone it would seem apparent that farmers operating pasture-based AMS are 

targeting an increase in MF rather than an increase in CR, or a combination of both, as a 

strategy to optimise MHR, although they are not achieving it. This is in alignment with the 

work by Lyons and Kerrisk (2017), who estimated that milkings per robot per day, CR, MHR 

and milking time could be increased (potentially) by up to 60%. The most likely reasons for 

farmers opting for this strategy (i.e. increasing only MF as a mean to increase MHR) 

probably include the realisation that operating with high CR creates additional pressure on 

the system (including cows, labour and equipment), and that an increment in MF is easier and 

cheaper to target in the short term. The relatively lower levels of MF and milk yield achieved 

in pasture-based AMS compared to indoor AMS might be explained predominantly by 

factors associated with feeding system (i.e. walking distances, limitation in dry matter 

intake), calving system (whereby peak herd size and annual average herd size are 

significantly different) and possibly even genetic potential.   

It was clearly demonstrated (Chapter 3) that the number of CR had a greater positive effect 

on MHR than MF. From a robot performance aspect, it would therefore be more beneficial 

for farmers to increase CR, rather than targeting higher MF levels. However, the potential 

benefits of such strategy have not been determined at either research or commercial farm 

level. Although studies conducted in New Zealand by Davis et al. (2005) and Jago and Burke 

(2010) reported high CR (75 and 92 cows per robot respectively), the average MF in both 

studies was not greater than 1.5 milkings/cow/day, therefore achieving low levels of MHR. 

These lower levels of MF, together with a different type of cow (lower yielding cows New 

Zealand Holstein strains, Jerseys and Crossbreds) make it difficult to extrapolate the results to 

current commercial operations. Further research would be required to elucidate this. 

Moreover, achieving high levels of MF in pasture-based AMS is somewhat challenging with 

current management practices. In spite of several studies (John et al., 2013, Lyons et al., 

2013b, Scott et al., 2014) that have successfully focused on manipulating feed (timing, 

placement and distribution) to encourage cows to move frequently around a pasture-based 

AMS, it is evident that the majority of the farmers are not achieving relatively high and 

consistent levels of MF, and therefore high MHR. In addition, many farmers are starting to 

operate with 4 feed allocations per day (4WG) (N. Lyons personal communication), and 

although anecdotal evidence suggest that cows traffic is improved, no research has been 

conducted in this specific area.   
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Together, the above discussion highlights the importance of investigating opportunities to 

increase performance through better exploiting individual cow efficiencies in AMS, which 

was a core objective of this research.  

Milk harvested per robot and individual animal efficiency in AMS 

The vast majority of commercial farms in Australia operate with robot utilisation levels 

which are well below the technical capability of the equipment. This indicates that key 

factors limiting performance of the dairy are a combination of animal, management and feed 

factors. Modifying animal, management and feed factors will come at a cost (financial, 

labour, stress, operating) that may well be greater than the performance benefits that are 

sought to be optimised. The optimum number of CR would be the one that will allow the 

system to achieve a high MHR, with a high individual cow production (not necessarily 

maximised).  

Another key finding from Chapter 3 was that with current management practices, traffic 

systems and cow types, the probability of achieving high MHR (greater than 1,600 kg 

milk/day/robot) with Low (<2) and Mid (<2.5) levels of MF in commercial pasture-based 

AMS, is low. 

These findings, together with the known variability in MF and MY between individual cows 

and over time (Chapter 2) highlighted an opportunity to explore strategies to increase AMS 

performance and prompted the question: can we identify those cows that are most suited to 

pasture-based AMS? This question then constituted the central objective of the novel research 

reported in Chapter 4, which extracted additional benefits from data that are automatically 

captured in an AMS. If the most ‘efficient’ cows could be identified, that would then open a 

whole spectrum of opportunities around increasing the proportion of ‘efficient’ cows in the 

herd either through selection or through management, i.e. potentially shifting cows from a 

category  of ‘inefficient cows’ to another one of ‘efficient cows’.  

The search for improved animal efficiency is not new. However, previous studies have 

focussed on traits different from those this present research has focussed on. As milk flow 

rate (kg/min) has been shown to be one of the most important variables influencing MHR 

(Castro et al., 2012), the majority of published studies have focussed on milkability traits, 

including milk flow rate, milking time, box (usage) time and milking interval (Carlstrom et 

al., 2013, Carlstrom et al., 2014). Large variation and moderate to high repeatability were 
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found for average flow milk rate and box time traits, meaning that is possible to improve 

those traits by breeding. ‘Habituation of heifers’, referring to the period of time a heifer needs 

to get familiar with the AMS, is another example of an index proposed by a Dutch breeding 

company to improve efficiency in AMS (Vosman, 2014). However no published studies have 

validated this index.  

In this present research, a novel concept of ‘efficiency’ at a cow level was developed for 

AMS in relation to cow performance (MF and MY). The concept was aligned with the 

strategy of increasing the volume of MHR by increasing the number of cows in the herd, 

whilst maintaining a relatively low MF, which would in turn allow for further increase in CR. 

This was following from findings from Chapter 3, which suggested that increasing the 

number of cows in the herd is the most suitable strategy to increase productivity in pasture-

based AMS. Thus, an ‘efficient’ cow was defined as a cow that produced more milk from 

relatively less milkings, and an ‘inefficient’ cow was defined as one that produced less milk 

from relatively more milkings. With this novel and AMS-specific approach, MF was 

considered as a ‘cost’ to the cow (as each milking event costs the cow time and energy, both 

limited resources) and a cost to the system (as each milking consumes power, water, and uses 

space and resources that could be used by other cows). In addition, targeting lower MF gives 

the AMS operator the possibility to milk more cows per unit, which in turn can be of greater 

economic benefit as CR have a positive effect on MHR. In addition, it may also result in 

other benefits from an animal welfare point of view. This is because high producing cows 

with a lower MF (as per Efficient cow definition) would travel reduced distances/day and 

might spend less time on yards with hard surfaces and more time at pasture, thus reducing the 

risk of lameness.  

The analysis of cow performance at whole lactation level from two large datasets (2 

commercial AMS farms) proved that cows could be categorised in relation to their efficiency. 

On both farms, about 13% (range 10-16%) of the lactations analysed were identified as 

Efficient and about 12% (range 7-17%) as Inefficient. Cows categorised as Efficient 

produced 9% more milk with 5% less milkings per day and Inefficient cows produced 10% 

less milk with 6% more milkings in relation to their expected values. Results also suggested 

that a cow could remain efficient/inefficient for the whole lactation. However, only a low 

proportion of cows (8%) appeared to be ‘efficient’ or ‘inefficient’ across more than one 

lactation.  Perhaps this was due to the fact that although MF is a repeatable trait, it only has 

an intermediate repeatability ~ 0.40 (Lovendahl and Chagunda, 2011). Logically, there are 
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many factors affecting MF in pastured-based AMS, and it is likely that those factors also 

present complex interactions. The fact that only a low proportion of cows carried over the 

‘efficiency’ to the following lactation suggested that factors other than genetics were 

responsible, limiting the potentially applicability of breeding ‘efficient’ cows for AMS. 

However, it is recognised that a relative low numbers of lactation were analysed in the 

present study (n=292). In addition, there is very limited research in AMS looking over 

multiple lactations of individual cows (none in pasture-based AMS) making it very difficult 

to relate this finding with previous literature. It is evident that more research is needed in this 

area, particularly considering that one of the main advantages of AMS is the enormous 

amount of data recorded by the system. Whilst extensive data editing is necessary, the 

captured data are valuable and accurate enough to conduct research (Carlstrom et al., 2013). 

In this regard, the present thesis makes a significant contribution to AMS research, by 

providing novel approaches for better exploiting data generated by these systems. However, 

the difficulty to access large datasets from commercial AMS farms is a reality, which in turn 

may limit research possibilities. 

Proving that cows can be categorised as efficient or inefficient was a key outcome of this 

research. However, understanding what creates these levels of efficiency was also key if the 

proportion of the herd falling into each category is to be manipulated in future systems (a 

potential practical application of this present research). Given that voluntary cow traffic 

allows cows to decide where to spend their time, it might be possible that some cows in 

pasture-based AMS spend considerable more time on pasture and grazing than others.  It was 

also suggested that each individual cow develops a unique feeding and drinking pattern and 

that such pattern is relatively consistent over time (Melin et al., 2005). The theory that 

Efficient cows might spend more time in the paddock grazing pasture, which might in turn 

result in higher levels of rumination and higher milk production than Inefficient cows in the 

same herd, was tested in Chapter 5. Using the methodology developed in Chapter 4, two 

groups of cows (Efficient and Inefficient) were selected and compared.  

To be able to accurately assess differences in cow behaviour between cows, a device capable 

of monitoring multiple behaviours with high levels of accuracy under grazing conditions was 

needed. While many devices have been already validated, the majority of the studies were 

conducted in indoor housed systems and results cannot be extrapolated directly to pasture-

based  systems (Schirmann et al., 2009, Burfeind et al., 2011), mainly due to the differences 

in cow behaviour and environmental conditions. In addition, most of the devices validated are 
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constrained by either the type or number of behaviours that can be measured or because they 

are less suitable for a practical use.  Thus, an evaluation of the accuracy of a newer version of 

an activity- and rumination- monitoring system (SCR HR-LDn, SCR Engineers, Netanya, 

Israel) was conducted (Chapter 5). This study was the first to show that the monitoring-

activity system quantified time spent grazing, resting and ruminating with high to very high 

level of accuracy in dairy cows grazing two different forage swards. Whilst the technology 

was already being adopted on commercial farms, this was the first published evaluation study 

(with high levels of accuracy) of the SCR HR-LDn in outdoor grazing settings. 

The proposed hypothesis regarding differences in cow behaviour between Efficient and 

Inefficient cows was confirmed with a field trial (Chapter 6). In Chapter 6 it was concluded 

that the difference in cow performance might be partially explained by cow behaviour, as 

Efficient cows were recorded to have longer grazing and rumination times and shorter resting 

times, likely explaining at least in part the difference in milk production. However, the 

investigation also showed that a relatively important proportion of the difference in milk 

between ‘efficient’ and ‘inefficient’ cows, could not be quantified by changes in grazing or 

feeding behaviour only. Further investigations would be warranted to identify and quantify 

the different factors involved.  

Potential application of the concept of ‘efficiency’ in AMS 

Demonstrating that cows can be categorised (and quantified) as Efficient and Inefficient with 

regard to cow performance, and that they behave differently, opens new possibilities and 

options to manipulate cows and move them from an Inefficient category to an Efficient 

category. In this regard, there may be potential to control or manage cows with different 

levels of efficiency in different ways. One management option could be to control the MF of 

Inefficient cows by batch-milking them (i.e. defined milking sessions) through the system 

which could ensure that their MF was restricted and that their time at pasture could be 

maximised.  The lack of information relating to batch milking in pasture-based AMS 

prompted the need to investigate this possibility further in this thesis.  

In pasture-based AMS operating with either seasonal or split calving systems, higher levels of 

system utilisation are typically observed in spring-summer (a time at which robot capacity 

could actually be the limiting factor on some farms).  During the remainder of the year these 

systems will run at lower than potential utilisation levels. In our study, Season (as time of the 

year) had a significant effect on robot performance (Chapter 3). This was in agreement with 
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Lyons and Kerrisk (2017). To overcome this period or underutilisation, a study was 

conducted (Chapter 7) to investigate the effects of implementing a novel management 

strategy to potentially improve both milk harvesting and labour efficiencies in the system. 

The introduction of a short period of voluntary-batch milking on the subsequent performance 

and voluntary traffic of individual cows was investigated. Results from the study indicated 

that experienced cows can be transitioned from voluntary-batch milking and back to 

voluntary milking without adversely affecting cow performance and cow traffic. This is the 

first study to report how cows adapt to large changes in traffic management system within the 

same lactation. It is recognised that this strategy might be only suitable for farms operating 

with large herds and robotic equipment with a high-throughput capacity, as the AMR (60-90 

milking per hour). It is important to consider that with voluntary-batch traffic systems, 

individual cow production might be limited as MF is being restricted (i.e. to twice-a-day). 

However, losses in milk production might be compensated by the long-term benefits of 

reducing MI that extended beyond 16 hours and also by the lower levels of incomplete 

milkings. Importantly, the magnitude of the limitation is likely to change depending on the 

level of MF achieved with voluntary traffic (specific to individual farms) and the stage of 

lactation of the cows. 

Having the robotic system operating for discrete milking sessions (i.e. limited hours per day) 

has a significant impact on labour. It negates the need for on-call staff during the hours that 

the dairy is not operating and provides the opportunity to have periods of zero alarms, 

potentially improving quality of life for farmers. Operating an AMS with voluntary traffic is 

very demanding from the labour and management point of view, as the 24-hour operation 

comes with a level of risk of alarms and breakdowns during the night.  As the main 

motivations for farmers to adopt AMS are related to social reasons (i.e. increased labour 

flexibility, improved lifestyle, reduced labour) (Mathijs, 2004, Molfino et al., 2014), 

strategies that improve system productivity but also positively impact on labour, like the one 

proposed in this study, will contribute to make the technology even more attractive. Discrete 

milking sessions also creates the opportunity to do major services to the equipment before the 

commencement of the next calving season without negatively impacting cow traffic.  

The real value of voluntary-batch milking (as investigated in Chapter 7) might not be realised 

until further research is conducted to determine the impact on cows at different stages of 

lactation and cows in different categories of ‘efficiency’. It could be possible that dramatic 

improvements in whole farm performance could be achieved if sub-herds of milking cows are 
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managed in different ways. For example, perhaps the cows categorised as Inefficient could be 

voluntary-batched to restrict their MF, freeing vital robot capacity allowing for an increased 

number of cows to be milked (thereby dramatically increasing robot performance). 

CONCLUSION 

The central aim of this thesis was to identify strategies on how to improve production 

efficiency in pasture-based AMS operating with voluntary traffic, which are determined by 

complex interactions of animal, management, feed and environment factors. Through this 

thesis, inefficiencies at both system and cow performance levels were identified and analysed 

with the ultimate aim of finding alternatives to increase AMS productivity. The novel 

research presented in this thesis has contributed with new, unique and original knowledge to 

pasture-based AMS, as follow: 

Overall, this research was the first to demonstrate that the number of CR had a greater 

positive effect on robot performance than MF, clearly suggesting that farmers operating 

pasture-based AMS should focus, when possible, on increasing herd size. This research also 

showed how existing data from commercial farms can be better exploited to contribute to 

new knowledge. 

In this thesis, a new and innovative approach to ‘efficiency’ in pasture-based AMS at animal 

level was developed. As such, this study is the first to develop a new methodology to identify 

cows with different levels of ‘efficiency’; to quantify differences in performance between 

them; and to apply the novel concept into an independent field research study.  

The research also contributes with the first published study on validation of the SCR HR-LDn 

SCR tags in grazing systems. The key outcomes of this investigation, which showed a high to 

very high level of accuracy of the tested tool, gives strong confidence in the application of 

this technology for its use in both, research and commercial settings. Combining data 

provided by this sensor together with additional automated data, creates the opportunity to 

understand, monitor and manage individual cows in the future.  

This research was also the first to compare aspects of efficiency of voluntary and batch-traffic 

systems in AMS. The work demonstrated how, not only system efficiency could be improved 

in period of low utilisation, but also key outcomes of the present research, namely the 

concept of ‘efficient’ cows in AMS, could be managed to lift inefficient cows into more 

productive categories.  
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As the adoption of AMS and its integration with grazing systems continues to increase, 

findings from this thesis will help farmers, researchers and consultants to make more 

informed decisions when working towards more efficient and productive pasture-based AMS 

systems. 
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