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Abstract 

Background. Flood studies are conducted mostly at city or catchment scales. While such 

studies are necessary for developing flood policies, municipalities require, in addition, 

place-specific data and strategies that can identify population at risk and develop tailored 

measures to reduce vulnerability and increase resilience. Local authorities commonly 

conduct their own flood studies, concentrating on the geophysical aspects of floods without 

considering their differential social impacts. Different communities and individuals may be 

at risk for different reasons and for effective flood risk management and better adaptation 

to floods, it is important to know not only how significant the aggregate flooding risk is, but 

who is at risk and what are the drivers of their vulnerability. 

Objectives and Methods. The objective of the study is to develop a new methodology for 

assessing urban flood risk at local scale by constructing a Flood Social Vulnerability (FSV) 

model and use it assess the extent to which vulnerability to flooding is likely to change 

under different scenarios of climate change. The model is based on a hybrid approach, 

combining hydrological and hydraulic flood simulations with social vulnerability and built-

environment indicators. The methodology is tested by applying it to the Marrickville Study 

Region (MSR), which consists of a number of suburbs in Sydney’s Inner-West known to be 

prone to flooding. The study area is divided into a set of local spatial units, determined by 

the smallest unit at which aggregated data is available. This is, in the case of MSR, the SA1 

scale of the Australian Bureau of Statistics. A set of indicators under each dimension of a 

flood risk pyramid – hazard, exposure and social vulnerability – are extracted from 

simulation analyses and socio-economic databases, for each local unit, and combined into a 

flood social vulnerability index (FSVI). Moreover, this research investigated how 

vulnerability might change in the future due to the impact of climate change under today’s 

demographic, socioeconomic and built-environment conditions. To test the suitability of 

FSVI in informing flood mitigation policy making within a local government, results were 

discussed with the local government authority (the Inner-West Council) of the MSR. 

Findings. FSVI developed in this study helped in detecting local flood vulnerability hotspots. 

There was little overlap between the spatial distribution of the three sets of indicators 

(hazard, exposure and social vulnerability). Hence, drawing on socio-economic information 

to assess vulnerability to flooding was found to be useful. Simulation of climate change 
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scenarios show noticeable increases in the duration of floods, but limited changes in flood 

depths, velocities and extents. Stakeholders at the Inner-West Council stated that the 

study’s findings could inform the Council’s current flood management planning, especially 

in relation to emergency services.   
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1 Background and Aims 

Chapter 1 
Background and Aims  

 

1.1 Introduction 

Global flood losses are increasing due to a number of factors, including changes in climate 

patterns as well as growing population and economic development in flood-prone 

areas(Ashley et al., 2005; Muis et al., 2015).  The reported average annual global losses 

between 1980 and 2012 exceeded $23 billion (Jongman et al., 2015). Climate change is 

likely to significantly increase weather-related hazards including flood hazards and 

associated economic damage (Muller, 2007) due to a change in rainfall patterns and an 

increase in the frequency and intensity of extreme weather events (Jongman et al., 2015). 

Considering only projected population growth, urbanization and growth in economic 

activity, but without taking into account increases in flood frequency and intensity, the 

average annual global flood losses are set to increase approximately ninefold from 2005 to 

2050. If the effects of climate change are considered as well, then annual losses in 2050 

would be expected to increase by more than 17 times relative to 2005 (Hallegatte et al., 

2013). 

A rich literature has helped us to understand the physical behavior of floods and predict 

future flooding scenarios (Zhou, 2014; Domingo et al., 2010; Patro et al., 2009; Sole et al., 

2008; Phillips et al., 2005; Ashley et al., 2005; Overton, 2005; Hallegatte et al., 2013). In 

addition, a number of studies have proposed and/or analysed flood management strategies 

aimed at reducing economic damage and assisting communities in adapting to flooding 

events (Muis et al., 2015; Liu et al., 2015; Tavares et al., 2015; Garbutt et al., 2015; Hunt and 

Watkiss, 2011; Charlesworth, 2010). However, most flood studies are conducted at city or 

catchment scales. As far municipal government is concerned, city-scale flood management 
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strategies are important and useful but not sufficient. Municipalities require locally-specific 

data and strategies that can identify population at risk and develop specific measures to 

reduce vulnerability and increase resilience. Such strategies are typically inscribed within, 

and informed by, larger-scale strategies but are not entirely determined by them.  

In some cases, local authorities have conducted their own flood studies. However, these 

studies typically concentrate on the geophysical aspects of flooding by determining 

frequency and areal extent of flooding and providing recommendations for improving 

drainage paths and upgrading storm water infrastructure (e.g. Cornelius, 2012; GRAY, 

2011; Reid et al., 2014). However, different communities and individuals may be at risk for 

different reasons (e.g., living in low-lying areas, poor mobility, poor access to financial 

resources in times of flood). Hence, for effective flood risk management and for better 

adaptation to floods, it is important to know not only how significant the aggregate flooding 

risk is, but who is at risk and what are the drivers of their vulnerability (Koks et al., 2015). 

While the literature on flooding has recognized the importance of incorporating 

institutional and socio-economic factors in determining vulnerability to flooding, 

conducting such assessments at local scale remains limited.  

The goal of this project is to develop and apply a new methodology for assessing 

vulnerability to flooding in urban areas at local scale. More specifically, this thesis aims to 

advance our understanding of the relative importance of geophysical, institutional and 

socio-economic factors within local communities that make them vulnerable to flooding. A 

hybrid approach, combining hydrological and hydraulic analyses with social vulnerability 

analyses, is adopted. The methods developed here are tested and validated by applying 

them to Marrickville Study Region (MSR) located into Sydney’s Inner-West council that is 

known to be prone to flooding events.  

1.2 Socio-Economic Flood Risk Assessment Framework 

A number of geophysical factors affect the intensity and distribution of flooding, such as 

meteorology, hydrology, hydraulics, climate change, topography and patterns of land use 

etc. However, the impact of flooding (damage to properties, loss of lives, spread of diseases 

etc.) depend not only on such factors but also on the characteristics of the built 

environment, demography and the socioeconomic conditions of communities affected by 
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the flood. These factors, together, can have a strong effect on the ability of individuals, 

communities and institutions to adapt and respond to the floods. Flood risk assessment is 

an important tool for an effective flood risk management process, and is usually the first 

step towards the development and implementation of short and long-term flood risk 

reduction plans, that operate both before and after floods have occurred (Floodsite, n.d.).  

Flood risk mitigation can be broadly divided into structural and non-structural approaches 

(Thampapillai and Musgrave, 1985). Often, risk due to flood cannot be fully prevented by 

the application of structural measures only, even those designed for rarely extreme events. 

This is because there is always a chance of residual risks due to the failure of technical flood 

protection systems or natural and human-induced modifications of land form and land use 

(Plate, 2002; Cutter et al., 2013). Structural protection measures rarely eliminate all flood 

risk and preparedness is therefore an important part of flood risk management (Plate 

2002). For example, early warning systems which forecast information about  upcoming 

floods are an essential part of flood management which provide vital lead time to control 

reservoir levels and prepare evacuation in advance  (Chau et al., 2005; Cloke and 

Pappenberger, 2009). Conjunctive use of structural and non-structural measures is 

important for reducing flood risk and implementing this strategy at local level requires 

strong organizational capacity by local government, including data collection and 

vulnerability assessment (Brody et al., 2010). 

A number of different conceptual frameworks exist for analysing flood risk and 

vulnerability.  Methodologies that have been applied in prior flood risk assessments are 

implemented within probabilistic and/or deterministic analyses. The most traditional, and 

still most commonly used, flood risk evaluation framework is based on a definition of risk as 

the product of the probability of occurrence of the flood and its likely impact. Typically, the 

probability of occurrence - evaluated from past time series or climate change projection is 

expressed as exceedance probabilities (Apel et al., 2004; Tapsell et al., 2002; Koks et al., 

2015; van Manen and Brinkhuis, 2005). A commonly-used approach to quantify economic 

damage and estimate the number of casualties is based on water depth-damage functions. 

The quantitation is usually based on expert analysis of impacts of previous flood events 

(Muis et al., 2015; van Manen and Brinkhuis, 2005). This approach does not usually 

consider social ramifications of risk (other than those implied by economic cost, injury and 

-18- 



death) or differential exposure to the hazard within communities nor does it assess the 

spatial distribution of the risk, relying instead on aggregate indicators. Some approaches 

extend the risk framework by considering all possible flood events, with their probability of 

occurrence and likely impacts, while taking into account various uncertainties associated 

with the risk (Apel et al., 2004).  

The impacts of a flood, as well as the capacity to deal with it through preparedness, depends 

on, in addition to the intensity of the flood and the extent of exposure , the infrastructure 

systems and institutional capacity in place and, more generally, the ability of populations to 

cope with and adapt to the hazard (Koks et al., 2015). Hence, damage or loss of life due to 

flood can be seen as the outcome of interactions between the local ecology, physical 

environment, socio-economic factors and institutional arrangements (Mileti, 1999). 

Therefore, any assessment of flooding must take into account all of these factors and not 

just the geophysical ones – and this can be challenging from a methodological point of view 

because data and information on the different factors are different in nature and in quality 

(Schanze, 2006). This is the case for studies 

conducted at country or catchment levels, but 

equally for those conducted at local scale.  

Another conceptual framework – used by a 

number of studies in the literature – defines flood 

risk as a pyramid in which the impact of floods is 

the outcome of the interaction between hazard, 

exposure and social vulnerability (Crichton, 

2002; Dwyer et al., 2004; Lindley et al., 2006; 

Dang et al., 2011; Kaźmierczak and Cavan, 2011) 

(see Figure 1-1). Hazard is typically characterized by  its probability of occurrence (Dwyer 

et al., 2004) and most commonly represented by the areal extent and depth of flooding in 

time and space under different scenarios (Plate, 2002; Schanze, 2006). “Exposure” is the 

extent to which valued aspects of a community’s life (e.g., health, prosperity, security) are 

likely to be affected by the flood (Field, 2009; Koks et al., 2015; Dwyer et al., 2004; 

GeoscienceAustralia, n.d.).  Often, characterizing exposure consists of identifying key 

economic and livelihood elements of a community in GIS-type data management systems. 

Figure 1-1: Risk Pyramid 
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On the other hand, social vulnerability (SV) refers to the intrinsic characteristics of the 

exposed elements which determine their potential to be harmed and their capacity to cope 

with, and adapt to, the hazard (Sarewitz et al., 2003). Cutter et al. (2003) defines social 

vulnerability as demographic and socioeconomic features of people, community and 

infrastructures that reflect their poor ability to prepare for, respond to and recover from 

hazard and disaster. The concept helps explain why two communities equally exposed to 

the same hazard may experience its impacts in very different ways (Cutter et al., 2013). SV 

was often neglected because of the difficulty in quantifying it (Cutter et al., 2003).  Social 

vulnerability can be quantified by constructing a social vulnerability index (SoVI) where the 

index value is calculated by aggregating a set of indicators reflecting various elements of 

vulnerability information. Including social vulnerability in flood risk assessment allows for 

a more comprehensive characterization of the impacts of flood, as represented by the three 

dimensional risk pyramid shown in Figure 1-1 where each face of  the pyramid represents 

one the three dimensions discussed earlier,  hazard, exposure and social vulnerability 

(Dwyer et al., 2004). Hence, increasing the magnitude of any of these dimensions increases 

the volume of the pyramid which reflects a higher overall risk. The aim of this study is to 

develop a flood social vulnerability index which combines all three dimensions of the risk 

pyramid and can be used at a municipal scale to provide useful planning information for 

local government. The index will allow spatial units within a locality to be compared to each 

other in terms of their vulnerability to flooding. Natural hazards such as floods, cyclones 

and earthquakes cannot be fully prevented, but their impacts can be mitigated by 

identifying social groups vulnerable to their effects and assisting them through 

preparedness and emergency planning measures process (Solangaarachchi et al., 2012). 

Since, ultimately all impacts of flooding are experienced locally, preparedness requires 

detailed information at a local scale that can help local government planners to develop 

specific, differentiated mitigation plans, rather than simply adopting homogenous flood 

mitigation measures based on larger-scale studies.  

1.3 Objectives 

The objective of the study is to develop a new methodology for assessing urban flood risk at 

local scale by developing a Flood Social Vulnerability (FSV) model. The developed 
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methodology can be used by local government authorities as an input for better adaptation 

strategies for flood and climate change issues. The output of the FSV model will be a flood 

social vulnerability index (FSVI) that will allow a comparison of vulnerabilities of different 

spatial units. A detailed hydrological and hydraulic analysis will be conducted, as part of the 

methodology, in order to characterize the hazard and exposure dimensions of the risk 

pyramid, under climate change projections. Results from the flood analysis are combined 

with a newly-constructed social vulnerability index to produce the FSVI at local scale. The 

term “local”, as used here, refers to the lowest possible spatial resolution at which social 

and flood vulnerability index can be determined based on available data resolution. The 

following specific objectives will be pursued: 

Build a hydrological and hydraulic model to quantify the magnitude of the hazard under 

different climate scenarios. 

1. Build an exposure indicator based on built-environment data. 

2. Build a social vulnerability index based on a combination of socio-economic and 

demographic indicators. 

3. Combine the above three indicators into an FSVI and analyse the possible future 

evolution of the FSVI. 

4. Apply the methodology to Marrickville Study Region (MSR) and identify vulnerable 

groups, sources of vulnerability as well as measures likely to reduce vulnerability.  

The study will hence seek to answer the following research questions: 

1. Does an index combining geophysical and socio-economic elements of flood risk 

provide useful information on vulnerable groups, over and above that found in more 

conventional flood studies?  

2. How does the spatial pattern of flooding in the Marrickville valley change under 

various scenarios of climate change and what kind of adaptation measures are most 

likely to reduce vulnerability to flooding under climate change? 

3. How useful are vulnerability assessments, such as the one conducted here, for 

municipal planning for flooding? 
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2 Literature Review 

Chapter 2 
Literature Review 

 

2.1 Urban Flood Modelling 

2.1.1 Urban Flood 

Urban flooding is increasing worldwide due to rapid urbanization and change in 

hydrological and meteorological condition in cities (Koop and van Leeuwen, 2017; Miller 

and Hutchins, 2017; Huong and Pathirana, 2013; Bruni et al., 2015; Ashley et al., 2005). In 

addition, many cities around the world are experiencing flooding due to insufficient 

drainage capacity, lower standard of drainage systems, financial constraints and limited 

ability to modify existing underground drainage systems (Mark et al., 2004). There are a 

number of negative consequences of urban flooding, including damage to assets and loss of 

lives. Other impacts of urban flooding include economic losses due to disruption of traffic, 

decreased productivity, spread of water-borne diseases and decline in property values 

(König et al., 2002). 

An urban flood can be defined as a situation in which water remains on the surface because 

the stormwater drainage system cannot discharge it in a timely fashion, i.e. when runoff 

generated by rainfall or upstream water flow exceeds the capacity of the drainage systems 

(Schmitt et al., 2004). Sometimes the underground pipe systems may have sufficient 

capacity and the surface intake capacity may be the limiting factor. In that case, at the time 

of heavy rainfall, a major portion of the runoff will flow above surface while the pipe 

systems are only partially filled. Hence, the duration of the flood depends on the capacity of 

the total system including the surface and underground components (Mark et al., 2004). 
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The surface drainage component of an urban drainage system  may include curb/street 

gutters, drainage swales, road side channels, water ways, road reserves, 

detention/retention basins and water bodies like lakes, ponds etc. The roofs of houses and 

buildings, streets, parking lots, yards etc. are also a part of surface drainage components 

that are connected with the sewer system via inlets and street gutters. On the other hand, 

the closed underground sewer network contains inlets, pipes, junction pits, access 

chambers and outlet structures (Schmitt et al., 2004; QUDM, 2013).  

Urban geometry is highly complex as it contains artificial morphology with a number of 

barriers like curbs, footpaths, fences which divert the shallow water flows in different 

directions. An urban catchment is comparatively smaller than a rural catchment and is 

characterized by a fast hydrological response due to a high percentage of imperviousness 

(McGrane, 2016; Bruni et al., 2015). The impervious surface decreases the infiltration 

capacity of the system which eventually increases the surface runoff and higher peak 

discharge occurs more rapidly in comparison to a natural catchment. On the other hand, 

though small natural streams are reduced or paved over in urban areas, the overall 

drainage density increases with the increasing number of artificial channels (Paul and 

Meyer, 2001).  

It is clear, therefore, that any attempt at understanding vulnerability to flooding in cities 

must take into account the complex network of systems and features affecting runoff and 

drainage, whether they are an intentional part of the urban storm-water system or not (Hsu 

et al., 2000). Flood models are commonly used to simulate rainfall events in specific urban 

settings. The output of these models are flood depth and extent, water velocity profiles and 

flood duration (Schmitt et al., 2004; Rauch et al., 2002; QUDM, 2013). The models can be 

calibrated against historical records of flooding and can be used to simulate flooding 

dynamics under different climate change scenarios. In addition, they allow planners to 

consider the effects on flooding risk of specific modifications to the built environment.  

2.1.2 Modelling Approaches 

Flood models are based on a combination of hydrological and hydrodynamic approaches, 

according to overall schema shown in Figure 2-1.  
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Figure 2-1: Overall schema of combined hydrological/hydrodynamic modelling; rectangular shapes 
represent computer model/simulation tools; circular shapes represent the major input to and/or 

output of simulation tools. 

Hydrological models take rainfall as a major input and calculate the surface runoff that 

becomes an input to the hydrodynamic model.  Hydrological simulations are important 

because the spatial and temporal resolution of rainfall affects time shifts of modelled runoff 

peaks (Bruni et al., 2015). Hydrology can be modelled using a separate rainfall-runoff 

model. Alternatively, rather than conducting a separate hydrological simulation prior to the 

hydrodynamic one, as shown in Figure 2-1, the hydrology can be characterized through  the 

2D hydrodynamic model  using the rain-on-grid method. Both  approaches  (rainfall-runoff 

and rain-on-grid) have already been successfully applied in a number of studies (Phillips et 

al., 2005; Cornelius, 2012; Johnson, 2013) and either can be used provided adequate 

calibration has been performed (Johnson, 2013). A major advantage of rainfall- runoff 

models is that significant knowledge has accrued because of their long history. The 

advantage of the rain-on-grid method, on the other hand, is that it removes the need to 

build and run a separate hydrological model. However, it is a comparatively new 

technology, can increase hydraulic modelling runtime significantly, and require detailed 

digital terrain information. Furthermore, only a limited amount of research has been 

undertaken in support of this approach.  

The hydrodynamic (HD) behaviour of the water system can be modelled either by one 

dimensional (1D) HD or two dimensional (2D) HD or 1D and 2D (1D-2D) coupled 

hydrodynamic modelling techniques (Figure 2-2). Both the 1D and 2D modelling techniques 

are based on solving the Saint Venant equations which are derived from principles of 
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conservation of mass and momentum. In a 1D model, the cross-sectional average Saint 

Venant equations describe the evolution of water depth and discharge or mean velocity by 

solving one continuity and one momentum equation. In 2D models, the depth average Saint 

Venant equations (also known as shallow water equations) describe the evolution of water 

depth and two Cartesian velocity components by solving one continuity equation and two 

momentum equations (Petersen et al., 2002; Gharbi et al., 2016). 

 

Figure 2-2: Depiction of a general 1D model of the river channel coupled with a 2D model of the 
floodplain (Source: Gilles et al., 2012) 

Topography is one of the major inputs for the HD model. The geographic information in the 

1D model is described by the cross-section data while in 2D model it is described by a 

digital elevation model (DEM). DEM is the digital representation of natural topography as 

well as man-made features located on the surface of the earth in raster format (Vaze and 

Teng, 2007; Gupta, 2018). The higher the resolution, the more accurate will be the real-

world representation. On the other hand, the computational requirements of the model, 

including simulation time, will increase with increasing resolution of DEM (Sole et al., 

2008). Airborne Laser System (ALS) is a technique designed to quickly produce DEM using 

instruments such as GPS, laser scanners and video cameras fastened to aircraft. The ALS 

technique produces high quality of DEM with an accuracy of +-25 cm (Sole et al., 2008). The 

required resolution of DEM depends on the type of catchment that is being modelled. To 

model a rural flood plain, 30m (30 m × 30 m) resolution of the DEM usually produces good 

results (Karim et al., 2011). Even 90m resolution DEM has been used for river basin 

modelling (Patro et al., 2009). But for urban terrain, micro scale topography requires 1 to 5 

-25- 



m resolution in order to adequately represent complex flow paths around different urban 

features (Hunter et al., 2008).  

There is a rich body of literature describing urban drainage models based on the above-

mentioned three approaches (1D or 2D or 1D-2D). The selection of a correct HD model 

depends on the purpose and complexity of the watershed systems. 1D models can simulate 

both surface networks and buried pipe networks. These two types of networks are 

dynamically interconnected and the flow exchange between the two systems is simulated 

by inlets (Mark et al., 2004; Leandro et al., 2016; Chang et al., 2015). 1D models are easy to 

setup, calibrate and explain but they cannot be applied in all types of geography. To model a 

flood plain or an urban terrain in 1D, it is necessary to widen cross-sections of a channel 

(Vojinovic and Tutulic, 2009). However, this may not be a realistic assumption, in flat areas 

with large variations in water depth. 2D models provide a more valid description of flow by 

describing the spatial distribution of flow (Petersen et al., 2002; Fatichi et al., 2016). For 

example, in an urban catchment, when the water overtops the curb, flow direction can 

change due to a change in slope and this kind of effect is best simulated in 2D (Leandro et 

al., 2009). This is why, for pipe flow, artificial open channels, creeks and rivers, where flow 

paths are well defined, 1D hydrodynamic models are recommended. 2D models, on the 

other hand, are better used to model the effects of more complex urban features (Vojinovic 

and Tutulic, 2009; Cornelius, 2012; QUDM, 2013). An added disadvantage of 1D models is 

that generation of flood maps requires extra effort because longitudinal profiles of channel 

water levels need to be extrapolated through the flood plain to generate water surface maps 

(using the GIS software). In 2D models, no extrapolation is required and the results can be 

directly presented on a 2D map (Petersen et al., 2002; Vojinovic and Tutulic, 2009).  Again, a 

2D model may not suitable for the purpose of flood forecasting as it takes longer time to 

simulate in comparison with a 1D model. 

Modelling an urban surface drainage system exclusively in 2D HD is computationally very 

expensive. Representing the micro topography such as small creeks and artificial drainage 

systems, requires very high resolution of topography data which increases the number of 

computational points and computation time (Petersen et al., 2002). An increasingly popular 

alternative is the use of a hybrid 1D-2D coupled hydrodynamic modelling approach in 

which the channels and pipe systems are modelled in 1D while runoff and flooding over the 
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topography are modelled in 2D and the flow between the two layers are dynamically 

interconnected (Mark and Djordjevic, 2006; Petersen et al., 2002).  

A number of 1D-2D HD coupling software are commercially available that can be used to 

model the urban stormwater drainage system. Most of these software are integrated with a 

Geographic Information System (GIS) platform. The most important difference between the 

different software is the choice of the numerical solution technique.  MIKE URBAN is an 

urban drainage modelling software that has been specifically developed for urban areas and 

is able to cover all water networks in a city including pipe networks (MikeUrban, n.d.). 

MIKE FLOOD is a 3 way coupling software that is good for mixed urban areas, whereas 

MIKE 21 is used for flood plains, overland flow paths, open channels. MIKE 11 is used for 

simulating significant hydraulic structures (Cornelius, 2012).  

TUFLOW (sometimes referred as TUFLOW Classic) has been developed for the modelling of 

2D flows in coastal zones, riverine and urban areas. In a benchmark testing of six 2D HD 

model including TUFLOW, Hunter et al. (2008) concluded that all models produce plausible 

result in a densely urban area. TUFLOW has the capacity to dynamically link with a number 

of 1D HD engines such as ESTRY, Flood Modeller, XP-SWMM and 12D. Besides, it can be 

integrated with a number of commercial and free GIS software (BMT-WBM, 2016). 

The storm-water of Marrickville valley sub-catchment drains its water through a 

curb/gutter system, to a pipe system and finally into four major outfalls including a tunnel 

into the Cooks River. The area is highly impervious with high density residential and light-

density industrial developments, as well as a number of major and minor roads. As the total 

drainage system consists of open channel and underground pipe systems, so the flood 

analysis will be done by the 1D-2D coupling method, using the software TUFLOW. In 

addition to the advantages of TUFLOW discussed earlier, an important reason for selecting 

TUFLOW is that the Inner West council (previous Marrickville council) has investigated 

urban flooding using the software and has provided the author of this study with a set of 

data that can be readily run with TUFLOW. 

2.1.3 Climate Change Implication on Urban Flooding 

Anthropogenic climate change is caused mainly by greenhouse gases emissions and 

deforestation. As a result, decreases in cold temperature extremes, increases in warm 
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temperature extremes, accelerated sea levels rise and increase in the number of heavy 

precipitations events have been observed in a number of regions since the middle of the last 

century. Greenhouse gas (GHG) emissions are driven by growth in population size and 

economic activity, changes in lifestyle, energy use, land use pattern, technology, as well as 

the existence or not of climate policy.  Continuous increase of greenhouse gas emissions will 

cause further warming and long-lasting changes in the climate system and a number of 

future climate scenario projections have been made in reports by the International Panel on 

Climate Change (IPCC, 2014a).  

 Climate Change Scenario 2.1.3.1

Future scenarios of climate change are constructed from the output of Global Circulation 

Model (GCMs), based on different pathways of changes in greenhouse gas 

emissions/concentrations in these GCMs. GCMs are mainly constructed for large scale study 

(continental/hemisphere/global). To use these models at local scale requires downscaling. 

These models are have good accuracy when simulating temperature and sea level rise but 

are less accurate for simulating rainfall and windstorm. Better accuracy of rainfall depends 

on the aggregation of model grid point and average across time (CoastAdapt, n.d.).  

In 2010, the International Panel on Climate Change (IPCC) in its fourth assessment report 

(AR4), outlined the future climate change projections with the term Special Report on 

Emission Scenarios (SRES) based on the emissions of greenhouse gases. By 2100, a 

warming of 3.4°C and 1.8°C are projected under scenarios SRES A2 and SRES B1. In 2013, 

the IPCC released its fifth assessment report (AR5) in which SRES were replaced with 

Representative Concentration Pathways (RCPs). The RCPs take into account uncertainty in 

projecting future emissions. The RCPs include four different climate change scenarios; i) 

RCP2.6, ii) RCP4.5 iii) RCP6.0 and iv) RCP8.5. The RCP8.5 and RCP2.6 are respectively the 

most and least severe scenarios. RCP2.6 keeps increases in average global temperatures 

below 2°C relative to pre-industrial levels through strong and effective greenhouse 

reduction measures, while RCP8.5 represents a business-as-usual scenario with very high 

levels of greenhouse gas emissions (CoastAdapt, n.d.). 

In this research, the future flooding scenario will be projected both for the low and high 

emission condition by considering both the rainfall change and sea level rise projection. 

This projected rainfall and sea level rise data will be used as input to the flood model 
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described in the previous section to determine the future flooding hazard of the 

Marrickville Study Region.  

2.2 Vulnerability Concept 

Vulnerability can be defined, in the most general sense, as the degree to which a system is 

likely to experience harm due to exposure to a hazard (Turner et al., 2003). However, 

practitioners from different disciplines interpret such a definition in different ways which 

in turn leads to diverse methods for assessing vulnerability (Alwang et al., 2001).  Research 

on vulnerability assessment has been conducted from within a number of disciplines, 

including geography, economics, sociology, disaster management, environmental science 

and health.  

From a detailed analysis of the literature on vulnerability to natural hazards, Rygel et al. 

(2006) identified two major perspectives on vulnerability. The first perspective focuses on 

the potential exposure to hazards. Studies conducted by following this theme, try to assess 

the impact of hazards and degree of loss of life and property resulting from a particular 

event (Muis et al., 2015; van Manen and Brinkhuis, 2005; Tapsell et al., 2002).  The second 

major perspective highlights differential impacts and attempts to explain why two different 

communities exposed to the same magnitude of hazard may experience its impacts in 

different ways and to different extents (Cutter et al., 2013).  

Under this perspective, a high degree of importance is attributed the social vulnerability of 

individuals, households and communities. Social vulnerability can be defined, after Sarewitz 

et al. (2003), as the intrinsic characteristics of the exposed elements that determine their 

potential to be harmed, independently of the magnitude and frequency of occurrence of the 

hazard. The impacts of a flood, as well as the capacity to deal with it through preparedness, 

depends on, in addition to the intensity of the flood and the extent of exposure to it, the 

ability of a system to cope with it when it occurs, and to adapt to it over the longer term 

(Koks et al., 2015). Hence, vulnerability can be seen to be made of two dimensions, a 

geophysical one which depends on the characteristics of the hazard and the physical 

landscape over which it occurs and a socio-economic one which is a function of institutional 

and socio-economic characteristics. The word vulnerability has been used in the literature 

to denote either the total concept incorporating both its geophysical and socio-economic 
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and institutional dimensions, or to refer only to the latter. In this thesis, the first meaning is 

employed (total vulnerability) with the two dimensions referred to as geophysical and 

social vulnerability, respectively.   

2.2.1 Social Vulnerability (SV) 

Natural hazards such as floods, cyclones and earthquakes cannot be fully prevented, but 

their impacts can be mitigated by identifying social groups vulnerable to their effects and 

assisting them through preparedness and emergency planning measures process 

(Solangaarachchi et al., 2012). Empirical evidence from historical flood analysis has shown 

that particular social groups tend to carry a higher burden of death, injury and relative 

economic impact from floods. For example, low income populations and ethnic groups in 

Texas, USA experienced a high number of casualties due to flooding (Zahran et al., 2008).  

Specific population groups have been found to have lower levels of disaster preparedness 

and are less likely follow disaster warning and evacuation plans due to existing health 

problems, limited economic support and lack of access to resources at the time of disaster 

(Garbutt et al., 2015). Cutter et al. (2003) defines social vulnerability as the demographic 

and socioeconomic features of people and communities, and characteristics of the built 

environment in which they live, that reflect a deficiency in their ability to prepare for, 

respond to and recover from a hazard. Identifying socially vulnerable groups allows 

planners to develop targeted and differentiated mitigation plans to reduce the risk from 

floods.  

Indicator-based assessments of social vulnerability typically use different types indicators 

that measure institutional, socio-economic, demographic and built-environment 

characteristics associated with high vulnerability to natural hazards. Built-environment 

characteristics such as high settlement density, poor quality of infrastructure, poor 

availability of medical facilities etc., that may or may not be dependent on social 

characteristics, but can lead to worse impacts from natural hazards (Borden et al., 2007; 

Holand et al., 2011). As an example, settlements with poor and insufficient drainage 

infrastructure services can lead to higher water levels during flood events. In order to 

reflect that social vulnerability and built-environment vulnerability will be assessed 

separately, in this study. This will allow further detailed characterisation of urban 

geophysical vulnerability to natural hazards at local scale.   
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2.2.2 Measurement of Social Vulnerability 

 Indicators selection 2.2.2.1

Measurement of social vulnerability is complex as it involves a large number of factors that 

determine the degree to which people’s lives and assets are at risk due to natural hazards 

(Holand et al., 2011). The accuracy of the analysis depends on the selection of the right 

number and types of indicators (Tavares et al., 2015). The most common types of indicators 

that have been used in previous studies are i) dependency on others due to age or disability, 

ii) gender iii) economic disadvantage iv) occupation category v) limited access to resources 

including technology and transportation v) accommodation vi) immigration status  vii) 

language barriers and vii) race and ethnicity (Fatemi et al., 2017; Frigerio and De Amicis, 

2016; Garbutt et al., 2015; Cutter et al., 2003; Tavares et al., 2015; Fekete, 2009; 

Solangaarachchi et al., 2012; Koks et al., 2015; Holand et al., 2011; Schmidtlein et al., 2008; 

Cutter et al., 2013; Borden et al., 2007).  

People who are highly physically dependent on others often have limited capacity to adapt 

to changes and may require special support during and after disaster (O’Sullivan et al., 

2009). The physically-impaired or physically-dependent may sometimes be overlooked at 

the time of recovery due to their low visibility. Examples of this group can be drawn from 

young children and aged population (Cutter et al., 2000; O'Brien and Mileti, 1992), persons 

who require special assistance or live alone in a household, single parent-family with 

dependent children etc. (Blaikie et al., 2014).  Age is one of the major factors in determining 

SV as young children and the elderly have mobility constraints and may require extra care 

at the time of hazard. Aged people may also have pre-disaster medical conditions that 

further contribute to increased vulnerability. Females may be disadvantaged during 

recovery from natural hazard because of lower earnings and extra family care 

responsibilities and household tasks (Fekete, 2010; Cutter et al., 2003).  

People with low socioeconomic status usually have higher dependence on welfare which 

limits their capacity to adapt to post-disaster conditions (Cutter et al., 2003; Burton, 1993). 

On the other hand, people with high socioeconomic status have a better capacity to recover 

from the impacts of the hazard due to insurance, social networks and social safety nets. A 

number of indicators such as household’s income, employment status, type of profession 

and home ownership can be used as a proxy to measure socioeconomic status. Workers in 
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low-skilled sectors may be at higher risk of losing their jobs during or after disasters, 

compared to high-skilled professionals, sometimes leading to slower recovery. Similarly, 

household with low rent may indicate lower socioeconomic status, in contrast with owner-

occupier households, with or without mortgage.  

In some countries, education is a critical factor linked to socioeconomic status where high 

level of educational attainment means better employment opportunities (White, 2000). In 

Australia, education may not always be directly linked with economic status. However, 

individuals with higher education levels may be better able to access, interpret and act 

upon information and evacuation plans and times of disaster to make an evacuation plan 

(Morrow, 1999; Solangaarachchi et al., 2012). Race, ethnicity and migration status are also 

important factors that may partly determine vulnerability during a hazard (Pulido, 2000; 

O’Sullivan et al., 2009). Poor familiarity of the new migrants with the place of residence, as 

well as language barriers, could make it harder for them to access the country’s emergency 

services. Other miscellaneous indicators include, for example, motor vehicle ownership and 

access to the internet, both of which enhance access to information and transport during a 

hazard (O’Sullivan et al., 2009).  Furthermore, households with a relatively large number of 

members may find it more difficult to evacuate and/or adapt to hazards, compared to 

smaller households. 

 Quantitative measure of Social Vulnerability 2.2.2.2

Both qualitative and quantitative measurement of SV is evident in the literature. Dwyer et 

al. (2004) computed SV based on a risk perception questionnaire, including perceived 

amount of time required to recover from various natural-hazard events. However, data 

collection and analysis of qualitative surveys is a time consuming process. The outcome 

depends on the skills of the researcher and can be influenced by the researcher’s personal 

biases. On the other hand, quantitative approaches are popular in the literature and usually 

lead to the calculation of a social vulnerability index (SoVI) (Cutter et al., 2003). The index 

value for one spatial unit is calculated by aggregating a set of indicators into a single value 

reflecting vulnerability. This is particularly useful when the purpose is to develop a relative 

assessment of vulnerability, i.e. a comparison of the social vulnerabilities of different spatial 

units. The actual spatial units depend on the purpose of the study and the spatial scale of at 

which information is available, usually from census data.  
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The approach of developing index has been conducted for a large number of spatial scales; 

e.g. from municipal scale to continental level. For a continental-level study, SoVI is 

computed for each country. For example, using this approach, Vincent (2004) compared the 

social vulnerability to climate change of African nations. Cutter et al. (2003) analysed 

comparative SVs to environmental hazards among 3141 counties of the United States. 

Holand et al. (2011) and Garbutt et al. (2015) conducted similar studies to Cutter et al. 

(2003) but using a higher spatial resolution by comparing social vulnerability among 

different local government areas. Local level social vulnerability analysis is possible when 

census data is available for household levels. For example, the Australian Bureau of 

Statistics (ABS) provides publicly available aggregate demographic and socioeconomic data 

for units including between 200 to 800 households. Tavares et al. (2015) and Koks et al. 

(2015) conducted local-scale assessments of vulnerability to flooding by comparing SoVIs 

at census block level. Solangaarachchi et al. (2012) conducted a similar local-level 

assessment in the context of bushfire risk in two local councils in Sydney. SoVI is typically 

displayed on GIS maps (Figure 2-3) to compare the vulnerability from one place to another.  

The number of indicators for constructing SoVI is large and some of them may be 

correlated. Therefore, in order to eliminate correlated variables and reduce variables into a 

more manageable number of components, researchers apply statistical techniques, such as 

the principal component analysis (PCA). PCA is multivariate regression analysis technique 

for variables reduction. The technique derives a set of components that capture most of the 

variability using a smaller number of variables (Fekete, 2009). For example, in the 

construction of SoVI, Tavares et al. (2015) initially included 126 variables. After checking 

the multicollinearity between different pairs of variables, total 34 variables were retained 

for the PCA analysis.  After PCA, a total 8 components were extracted where the number of 

variables under each component varies from 1 to 8. Koks et al. (2015), on the other hand, 

did not use PCA, but started instead with a small number of variables.  
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Figure 2-3: Social vulnerability of Norway (Source: Holand et al., 2011); 0.5 standard deviations 
(Std.Dev) are used as breakpoints and highlight the areas that score over 0.5 or under -0.5 Std.Dev 
from the mean score. The areas above 0.5 Std.Dev represent higher than average levels of vulnerability, 
and vice versa) 

In this research, a quantitative approach of SV analysis developed by Cutter et al. (2003) 

will be followed and the census data provided by Australian Bureau of Statistics (ABS) will 

be used as a source of social vulnerability indicators.  One important question in 

aggregating indicators or components from PCA is whether equal or different weights are 

applied to different indicators or components. This is a subject of debate in the social 

vulnerability literature. Cutter et al. (2003) did not find any defensible method for assigning 

weights and gave equal importance to each component in the aggregate model. Many 

researchers followed the same concept of equal contribution of each component. 

Solangaarachchi et al. (2012) provided weights to each component (ranging from 0 to 1) 

based on the percentage of variance explained. In a study of sensitivity analysis of SoVI,  

Schmidtlein et al. (2008) on the other hand, chose to include the first component only, since 

it explains the largest amount of variation in the original data. This amounts to assigning a 
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weight of 1 to the first component and 0 to all others. Tavares et al. (2015) argued that 

despite different percentages of variance explained by different components, it is difficult to 

provide a scientifically solid basis for assigning unequal weights to components. For a more 

detailed discussion of problems of weights, the reader is referred to El-Zein and Tonmoy 

(2015). In this study, equal weights will be assigned in all aggregations, including those 

involving indicators and components, as well as aggregation of the three indices 

(geophysical, exposure and social vulnerability) into a final flood vulnerability index. It’s 

important to keep in mind the limitations of SoVI.  SoVI does not give an absolute 

assessment. Instead, vulnerability assessment is done by comparing the index value 

between different spatial units yielding a relative assessment. In addition, SoVI may identify 

a social group or geographical at higher risk but does not tell exactly what adaptation 

measures are required. Another challenge is to evaluate temporal trends of SoVI as it is 

based on the census data which is only updated over long time intervals (1 in 5 years).  

A similar approach is used for constructing an exposure index (FE) based on the built 

environment data. PCA will be not required for computing FE because only a small number 

of indicators are available for the study area. 

2.3 Composite Indices of Vulnerability to Flood 

Social vulnerability has been used in several studies as a tool for assessing vulnerability to 

floods (Koks et al., 2015; Cutter et al., 2013; Tavares et al., 2015; Garbutt et al., 2015; Fekete, 

2009). However, only a few of these studies went on to develop a composite index which 

includes indicators reflecting different components of risk such as physical, social, economic 

or environmental components. Fernandez et al. (2016) developed a Flood Vulnerability 

Index (FVI) based on both Cluster Analysis and PCA. To develop the composite index, in 

addition to social and economic dimensions of vulnerability, they incorporated the 

geophysical and environmental dimension. The geophysical component represented the 

potential of physical impact on the built environment and the environmental dimension 

referred the potential impacts on the natural environment and ability of the ecosystem to 

cope and recover from hazard impacts. However, they did not use any outcomes of flood 

simulation such as flood depth, velocity etc. Connor and Hiroki (2005) developed an FVI by 

combining indicators of meteorological, hydrogeological, socioeconomic and 
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countermeasure components, using multiple linear regression analyses. The 

countermeasure component represented the extent of protection against flood through 

river improvement and community preparedness. Zachos et al. (2016) developed a 

separate index for each component (physical, social, economic, environmental) and finally 

combined them to develop a composite index using a weighted-sum approach. They applied 

their index to the study of vulnerability to flooding at the basin level, for the Lower 

Mississippi River Valley. However, the geophysical component of risk was based only on 

elevation above or below a base flood datum, extracted from 100-year flood level, rather 

than any detailed flooding simulations. Balica et al. (2009) also computed FVI with the aim 

of assessing the conditions which influence flood damage at various spatial scales, such as 

river basin, sub-catchment and urban area. Their approach for determining the composite 

index was similar to that of Zachos et al. (2016). However, depending on the scale of the 

analysis for determining the geophysical component of risk, various physical indicators 

were considered, such as heavy rainfall, flood duration, evaporation rate, flow velocity, river 

discharge, storm surge, flood water depth and sedimentation load. In a different study, 

Balica et al. (2012) focused on developing Coastal City Flood Vulnerability Index based on 

the hydrogeological, socio-economic and politico-administrative components  to 

demonstrate which cities are most vulnerable to coastal flooding. To the best of the author’s 

knowledge, no composite index of vulnerability to flooding, incorporating both geophysical 

and socio-economic dimensions of risk and using hydrologic simulations of floods, was 

developed at a local municipal scale. The need for such an index has been discussed earlier 

and will be the subject of this thesis. 
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3 Indicator-Based Flood Social Vulnerability Model 

Chapter 3 
Indicator-Based Flood Social Vulnerability 

Model 
 

3.1 Introduction 

A structure of indicators is developed, based on the risk pyramid framework described in 

Section 1.2. The structure, shown in Figure 3-1, is made of three indices corresponding to 

the three dimensions of risk in the pyramid:  i) the flood hazard index (FH), ii) the flood 

exposure index (FE) and iii) the social vulnerability index (SoVI). The three indices are 

finally combined, leading to the Flood Social Vulnerability Index (FSVI) which assesses 

relative vulnerability to flooding among different spatial units of a flood-prone region.  

 

Figure 3-1: Research design 
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3.2 Methods 

The FSVI is developed through the following steps:  

i. The study area is subdivided into a number of spatial units/blocks. These are 

typically the smallest geographical unit for which demographic and 

socioeconomic data is available.  The sizes of the spatial units can vary from a 

few of households to hundreds or thousands of households.  

ii. Each vulnerability dimension is quantified as an index value by a set of 

indicators. The indicators are selected to capture major elements of that 

particular vulnerability dimension. The indicators are standardised with a 

mean of 0 and standard deviation of 1 (Equation 3-1). The individual index is 

calculated as a weighted average of its standardised indicators (Equation 3-2)  

𝐼𝐼𝑠𝑠𝑠𝑠 =  
𝐼𝐼𝑠𝑠 − µ𝑠𝑠
σ𝑠𝑠

 
Equation 3-1 

 

Where Isi is the standardised value of the indicator Ii 

μi  and σi  are the mean and standard deviation of Ii  indicator for all the spatial units within 

the study area  

 

𝐹𝐹𝑚𝑚 = �𝑤𝑤𝑠𝑠𝐼𝐼𝑠𝑠𝑠𝑠

𝑁𝑁𝑚𝑚

𝑠𝑠=1

 
Equation 3-2 

Where 

F is the index of the dimension m (i.e., flood hazard, flood exposure or social vulnerability),  

Isi is the standardised value of the i-th indicator 

wi is the weight of indicator Ii.  

Nm is the number of indicators for dimension m. 

iii. The index value of each of the three vulnerability dimensions is normalized 

and converted into a value between 1 and 10, where 1 indicates the lowest 

vulnerability and 10 the highest.  
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iv. Finally, the three indices are combined to calculate a Flood Social 

Vulnerability Index (FSVI). Most common means of combining or aggregating 

multiple vulnerability indicators into a single utility function or vulnerability 

index is based on an additive or multiplicative approaches. This method for 

building indices has generated some debate in the literature. For example, by 

analysing the additive and multiplicative approaches, Ebert and Welsch 

(2004) identified that both approaches should produce identical rankings 

when different normalisations and standardisations are used. They found 

that multiplicative aggregations have better validity than additive ones, and 

better reflect synergetic processes between indicators. However, 

multiplicative aggregation can be difficult to communicate to stakeholders 

and experts (El-Zein and Tonmoy, 2017; El-Zein and Tonmoy, 2015). Yet 

another advantage of the multiplicative approach in calculating indices 

relative to a more conventional additive approach is that it magnifies cases in 

which more than one index is pointing to high vulnerability and yields a small 

index in cases in which any one of the indices indicates very low vulnerability. 

This research applies both additive, and multiplicative approach for 

calculation of FSVI and results are compared and implications of results and 

limitations of both approaches are discussed in the result section. The 

following additive and multiplicative equations are used for this study.  

Additive aggregation: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐼𝐼𝐴𝐴𝑠𝑠 = 𝑤𝑤ℎ𝐹𝐹𝐻𝐻𝑠𝑠 + 𝑤𝑤𝑒𝑒𝐹𝐹𝐸𝐸𝑠𝑠 + 𝑤𝑤𝑠𝑠𝐹𝐹𝑆𝑆𝐹𝐹𝐼𝐼𝑠𝑠 
Equation 3-3 

Where, wh, we and ws are weight of the three indices 

Multiplicative aggregation: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐼𝐼𝑀𝑀𝑠𝑠 = 𝐹𝐹𝐻𝐻𝑠𝑠𝑝𝑝ℎ × 𝐹𝐹𝐸𝐸𝑠𝑠𝑝𝑝𝑒𝑒 × 𝐹𝐹𝑆𝑆𝐹𝐹𝐼𝐼𝑠𝑠𝑝𝑝𝑠𝑠      
Equation 3-4 

Where ph, pe and ps are the multiplication weights of the three indices. The detailed 

methodology followed in generating the 3 indices SoVI, FE and FH is described in Sections 

3.3 to 3.5.  
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3.3  Social Vulnerability Index (SoVI) 

An indicator-based Social Vulnerability Index (SoVI) is developed using available 

socioeconomic and demographic data, at the smallest possible spatial scale. Representation 

of social vulnerability requires the selection of suitable set of indicators (Tavares et al., 

2015). These indicators quantify characteristics of communities and households that can 

either amplify or reduce their susceptibility to a climatic event and/or their capacity to cope 

with and adapt to it. These characteristics may pertain to the communities or households 

themselves, or to systemic biases and inequities in the broader institutional and socio-

economic environments in which they exist. A number of socioeconomic indicators have 

been used in the literature. Examples can be drawn from, without being limited to i) age, 

gender and special needs ii) race and ethnicity iii) family structure iv) socioeconomic status 

v) occupations vi) housing and purchasing power vii) mobility and communication and viii) 

urban context (Cutter et al., 2003; Fekete, 2009; Tavares et al., 2015; Solangaarachchi et al., 

2012; Koks et al., 2015). Choice of social vulnerability indicators is often guided by a 

number of factors, including questions such as what is the specific research question being 

addressed and within which policy framework, what is the system under analysis, what 

data is available and so on.  

The most comprehensive source of socioeconomic and demographic data in Australia is the 

Census data from the Australian Bureau of Statistics (ABS), collected and updated every five 

years. The Census data provides information on the key dimensions of income, education, 

employment, occupation, housing and other miscellaneous indicators. It provides 

aggregated socioeconomic and demographic information for persons, families or dwellings 

in different spatial units designed by the Australian Statistical Geography Standard (ASGS). 

The latest census has been conducted in 2016 and data will only be available in late 2017. 

Therefore, data from the previous census (2011) have been used in this research. 

Mesh block is the smallest ASGS region but ABS only provides total population and dwelling 

counts at the mesh block level to protect the privacy of residents. The second smallest 

geographical region is the Statistical Area Level 1 (SA1) for which a wide range of Census 

data is released. Hence, SA1 is adopted as the unit of analysis here. The whole of Australia is 

covered by a total of 54805 SA1 and, typically, each SA1 contains between 200 and 800 
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capita with an average population of about 400. The areal extent of SA1 varies between 

regional and metropolitan zones. 

The construction of SoVI involves a large number of socioeconomic and demographic 

variables. To reduce the number of variables to a manageable size, a multivariate statistical 

technique, the Principal Component Analysis (PCA) is applied. The PCA helps in simplifying 

the management of the data set by reducing the number of variables with minimal loss of 

original information. In addition, the PCA clusters the data into a number of uncorrelated 

principal components, hence providing new avenues of interpretation of data on social 

vulnerability.  Each principal component is expressed as a linear combination of original 

variables. 

3.4 Exposure Index (FE) 

A flood exposure index, FE, based on characteristics of the built environment, is developed. 

The exposure index is meant to reflect different aspects of the built environment (high 

settlement density, poor quality of infrastructure, poor availability of medical facilities) that 

can magnify the negative impacts of natural hazards.  The National Exposure Information 

System (NEXIS) designed by Geoscience Australia provides aggregate information about the 

residential, commercial and industrial structures that can be used to better understand 

elements at risk. The NEXIS data are also available for SA1, among which the building 

density, the old building density and population density are three indicators that used in 

this study to develop FE. 

3.5 Flood Hazard Index (FH) 

The flood hazard index is based on indicators of extreme flood events such as areal extent of 

flood, depth of flood above the ground surface, water velocity and flood duration. The flood 

events are simulated by means of a hydrological model and a hydraulic modelling 

technique, as described next. The primary output of a hydrological model is runoff from a 

particular rainfall event, which then becomes one of the key inputs to a hydraulic model. 

The hydraulic model calculates flood levels and flow patterns, taking into account the 

complex effects of backwater, overtopping of embankments, waterway confluences, bridge 

constrictions and other hydraulic structure behaviour. Projected climate change scenarios 
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are also applied to the hydrological model to determine the future flood hazard. This 

provides an assessment of changes in flood vulnerability with time.  

The output of flood analyses is generated as averages over areas of 9m2. This is a much 

smaller area than the area of any SA1 in our analyses. Hence, flood analysis results are 

upscaled to the SA1 level in order to build the composite indicator FSVI.  

3.6 Software 

Five software packages are used in the analyses. The “Statistical Package for the Social 

Sciences” (SPSS) is a statistical software used here to analyse demographic and 

socioeconomic data, perform the PCA and construct the social vulnerability index (Field, 

2009).  

Drains is a hydrological/hydraulic modelling software that can carry out hydrological 

analyses, in conjunction with hydraulic modelling systems (O’Loughlin and Stack, 2014). 

Drains is used in this study to generate stormwater runoff hydrographs from rainfall and 

routes these through surface and pipe networks. 

TUFLOW, also known as TUFLOW Classic, is a grid-based two-dimensional hydrodynamic 

free surface solver suited for simulating 2D flood behaviour. In addition to 2D, TUFLOW is 

also dynamically linked to 1D networks using the hydrodynamic solutions of ESTRY which 

is a separate 1D engine (TUFLOW, 2016). In the simulations conducted here, TUFLOW uses 

as input the runoff data generated by Drains model, and generates flow and inundation 

patterns of urban terrains where the flow behaviour is two-dimensional. The narrow open 

channels, stormwater pipes, culverts, bridges and pumps are modelled with the inbuilt 

ESTRY engine. 

Finally, ARC MAP and QGIS are two GIS tools used here for processing, analysing, mapping 

and visualising spatial data and model results.  
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4 Application of Flood Social Vulnerability Model 

Chapter 4 
Application of Flood Social Vulnerability 

Model 
 

4.1 Study Area 

4.1.1 Background 

The methodology described in Chapter 3 is applied to the major part of the Marrickville 

valley located in New South Wales in Inner West local government area (LGA). To be 

specific about the study region, the following two definitions will be used: 

1. Marrickville Study Region (MSR), which consists of the Marrickville valley except for 

some portion of northeast part (Figure 4-1). This portion is excluded because the 

data required for the flood modelling could not be accessible. The SoVI, FE, FH and 

FSVI are all are determined over the MSR. 

2. The Broader Study Region (BSR), consists of entire Sydney Inner West, Sydney City 

and Inner South and Sydney Inner South West (Figure 4-2). Only SoVI and FE are 

determined over the BSR. 

The MSR has experienced significant flooding as recently as 2012 (Mckenny et al, 2012). It 

has medium-density residential housing and light-density industrial facilities, as well as 

major and minor roads. The MSR covers (parts or all of) the suburbs of Petersham, 

Stanmore, Enmore, St Peters, Tempe, Marrickville and Dulwich Hill. The stormwater system 

of the Marrickville Valley drains runoff through a curb/gutter system, to a pipe system, and 

finally into four major outfalls including a tunnel discharging into the Cooks River. The 

suburbs within Marrickville valley falls into a geographical area managed by Sydney’s Inner 
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West council. Prior to 2016, when a new local government structure was introduced in New 

South Wales, the Marrickville suburb fell under the Marrickville Council. 
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Figure 4-1: Marrickville Study Region 
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Figure 4-2: Broader Study Region
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4.1.2 Drainage Systems 

The Marrickville valley consists of 9 sub-catchments. These are: i) eastern channel north 

(ECN), ii) eastern channel east (ECE), iii) eastern channel west (ECW) iv) eastern channel 

south (ECS) v) eastern channel 2 (EC2), vi) western channel (WC), vii) central channel (CC), 

viii) Malakoff Street (MK) and ix) Malakoff Tunnel (MT). Among this 9 sub-catchment, the 

ECE is excluded from the MRS due to data unavailability. Figure 4-3 shows the sub-

catchments of the Marrickville valley except for ECS, ECE and MT (GRAY, 2011).  

 

Figure 4-3: Sub-catchments of Marrickville valley (Source: GRAY, 2011) 

The topography of the area derives from the Airborne Laser Survey (ALS), and varies from 

5.5 to 50.8 mAHD (Figure 4-4). Due to this variation, water flows from the northern side to 

the southern Cooks River with the aid of major and minor drainage systems. Property 
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drainage systems (pipe/gutter) are linked with the pits/pipe systems when the water is 

conveyed to the trunk drainage system before it discharges to the Cooks River. The four 

major trunk drainage systems that direct water towards the Cooks River are Eastern 

Channel, Central Channel, Western Channel and Malakoff Street tunnel.  

For the temporary storage of water, the Marrickville Oval is used as a flood retarding basin. 

The Sydenham storage pit is served the same purpose, but two pumps are installed in this 

pit to divert high flood water to the eastern channel. One pump is used to divert flood water 

to the Cooks River from the low lying area of the central channel catchment, and another 

one transfers water from the central channel to the eastern channel. When the flood flow 

this region exceeds the drainage capacity, the excess water is either conveyed by roadway 

or stored in the road or other downstream locations. Except under extreme flood events, 

overland flow towards the Cooks River is not possible due to urban barriers (GRAY, 2011). 

 

Figure 4-4: Topography of the study area 
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4.1.3 Land Use 

Based on NEXIS data at mesh-block scale, 63% of the MSR land is residential and 21% is 

industrial. The remaining land use is parkland, commercial, educational and transport 

routes. Figure 4-5 shows the land use map of Marrickville Valley. 

 

Figure 4-5: Land use of Marrickville Valley 

4.2 Scope of Study 

The scope of the vulnerability study is defined at the outset by providing answers to a set 

fundamental questions, shown in Table 4-1 (El-Zein and Tonmoy, 2015; Tonmoy et al., 

2014). 
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Table 4-1: Vulnerability related questions and answer 

Question Answer 

1. Whose vulnerability is assessed? Marrickville Study Region (MSR) 

2. The vulnerability of which valued 
attribute of the socio-ecological 
system is assessed? 

Well-being, including economic prosperity, of 
Marrickville residents  

3. Vulnerability to which hazard, 
under what scenarios of future 
climatic, institutional and socio-
economic change, is assessed? 

Flooding as a result of heavy rainfall events under 
future climate change scenarios, given current 
socio-economic conditions. 

4. What is the temporal scale of 
assessment? 

Social vulnerability for the present day. 

Flood analysis for present day and for the period 
between 2060 and 2080 subject to climate change 
projections. 

5. What is the standard spatial unit 
of the analyses? 

Statistical Area Level 1 (SA1) (a total of 84 SA1 in 
the MSR and 2575 SA1 in the BSR)  

6. How will vulnerability be assessed, 
specifically: 
a. What are the dimensions of 

vulnerability considered? 
b. How will they be quantified? 

Dimensions  

i) Geophysical vulnerability: e.g. flood hazard 
indicators determined through hydrological and 
hydraulic simulations 

ii) Social vulnerability and vulnerability 
associated with the built environment 
vulnerability: assessed through indicators. 

4.3 SoVI for Marrickville Valley 

The following steps have been followed for the computation of SoVI in the Marrickville 

valley. 

i. Select social vulnerability indicators based on the literature 

ii. Conduct PCA analyses for reducing and clustering the large number of 

indicators into manageable components 

iii. Calculate the score of the principal components 

iv. Calculate the SoVI by aggregating the principal components scores  
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4.3.1 Indicator Selection 

The social vulnerability assessment conducted here is formally independent of the specific 

hazard in question, i.e., it can in principle be applied to identify vulnerability to a number of 

hazards (e.g., flooding, heatwaves, earthquakes). The selection of an initial set of candidate 

indicators is an essential first step in index-building exercise. A rich literature exists on 

indicators of SV in Australia and overseas. Indicators of social vulnerability found in the 

literature broadly fall into eight categories, i.e. i) dependency on others due to age, gender 

or disability ii) race, ethnicity and familiarity with place of residence iii) family structure – 

household demography iv) educational level v) accommodation categories and household 

resources vi) socioeconomic disadvantage vii) occupation class viii) urban context.  

The literature surveyed for this study encompasses a number of hazards including flooding 

(Koks et al., 2015; Cutter et al., 2013; Tavares et al., 2015; Garbutt et al., 2015; Fekete, 2009) 

sea level rise (Wu et al., 2002) and bushfire (Solangaarachchi et al., 2012). There are 

numbers literature where the vulnerability assessment is independent to any specific 

natural hazard (Cutter et al., 2003; Dwyer et al., 2004; Holand et al., 2011; Schmidtlein et al., 

2008; Zhou et al., 2014). Based on this survey, a total of 37 indicators, shown in Table 4-2, 

are selected. Each indicator is assumed to have a monotonic relationship with vulnerability, 

and the direction of correlation of the indicator with vulnerability (whether vulnerability 

increases or decreases with increasing indicator) has been identified based on the literature 

and shown in Table 4-2. 

 The selected indicators are extracted from the ABS database. All selected indicators are 

expressed as percentages relative to total population of the SA1, total families in the SA1 or 

total dwellings in the SA1, depending on the indicator in question. The denominator for 

each indicator is shown in Table 4-2. 
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Table 4-2: Social Vulnerability Indicators Selected for the Study 

No Indicators Indicators in 
Short Form 

Unit Direction of 
Correlation 

with 
Vulnerability* 

1 Number of children below 5 years of age CHLD_AGE As a % of total population + 

2 Number of people over 65 years of age PPL_AGE As a % of total population + 

3 Number of people between  35 and 39 years MED_AGE As a % of total population - 

4 Number of females GEND As a % of total population + 

5 Number of people requiring special assistance SPC_ASST As a % of total population + 

6 Number of non-citizens NON_CIT As a % of total population + 

7 Number of recent migrants (previous 8 months) REC_MIGR As a % of total population + 

8 Number of people with low speaking proficiency in English LOW_ENG As a % of total population + 

9 Number of people who moved residence in the last year NEW_RES As a % of total population + 

10 Number of people employed as managers EMP_MNG As a % of total population aged 15 years and over   - 

11 Number of people employed as professional EMP_PRF As a % of total population aged 15 years and over   - 

12 Number of people employed as laborers EMP_LBR As a % of total population aged 15 years and over   + 

13 Number of people employed as machinery operators or drivers EMP_DRV As a % of total population aged 15 years and over   + 

14 Number of households with above-median household income HH_INCMED As a % of total households - 

15 Number of households with negative or nil income HH_INCNIL As a % of total households + 

16 Number of people with weekly income less than $300 PPL_INCLOW As a % of total population aged 15 years and over  + 

17 Number of people with weekly negative or nil income PPL_INCNIL As a % of total population aged 15 years and over   + 

18 Number of people who are unemployed PPL_UNEMP As a % of total population aged 15 years and over  + 

19 Number of dwellings occupied by 5 individuals or more DWL_5PPL As a % of total households + 
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20 Number of dwellings occupied by single individuals DWL_1PPL As a % of total households + 

21 Number of household with 2 or more families DWL_2FAM As a % of total households + 

22 Number of dwellings owned with mortgage DWL_MORT As a % of total households - 
23 Number of dwelling owned outright or being purchased DWL_OWN As a % of total households - 
24 Number of cooperative, community, or church housing units DWL_COPT As a % of total households + 

25 Number of houses with weekly rent over the median household rent 

    

HH_MEDRNT As a % of total households - 
26 Number of houses with weekly rent below $150 HH_LOWRENT As a % of total households + 
27 Number of dwellings with no internet connection DWL_NOINT As a % of total households + 
28 Number of dwellings with no motor vehicle DWL_NOVEH As a % of total households + 
29 Number of single-parent families with children under 15 FAM_SNGLPAR As a % of total families + 
30 Number of couple families with more than 2 dependent children FAM_DEPCHLD As a % of total families + 
31 Number of unemployed families FAM_UNEMP As a % of total families + 
32 Number of couple families with one person unemployed FAM_1UNEMP As a % of total families + 
33 Number of people who never went to school NO_SCHL As a % of total population aged 15 years and over + 
34 Number of people whose highest level of education is year 11 EDU_YR11 As a % of total population aged 15 years and over + 
35 Number of people whose highest level of education is Bachelor 

degree or above 

EDU_BACH As a % of total population aged 15 years and over - 

36 Number of people whose highest level of education is Diploma or 

Advanced Diploma 

EDU_DIP As a % of total population aged 15 years and over - 

37 Number of people whose highest level of education is Certificate 

Level (Certificate 1, 2, 3 or 4) 

EDU_CERT As a % of total population aged 15 years and over + 

* A positive sign next to an indicator implies that vulnerability increases with increasing value of the indicator; a negative sign indicates the opposite.  
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4.3.2 Principal Component Analysis (PCA) 

An initial selection of 37 socioeconomic and demographic indicators (Table 4-2) is made for 

the 2,575 SA1’s of Marrickville valley and its surrounding suburbs (Figure 4-6). All the 

indicators are then standardised using Equation 3-1. The PCA is applied to reduce the 

number of indicators (with minimal loss of information) and to cluster the data in a new set 

of uncorrelated orthogonal variables called principal components. PCA also provides 

weights for each indicator to calculate the components score. The SPSS software is used for 

the PCA analysis. 

Correlation between pairs of indicators and multicollinearity in a sub-group of indicators 

play a vital role in extracting the total number of principal components and to cluster the 

indicators under each component. Very low or very high correlation or multi-collinearity as 

well as singularities (perfect correlation) can cause significant problems for PCA. It is 

advised, for example, that an indicator that does not correlate with other indicators be 

excluded from the analysis (Field, 2009).  The determinant of the correlation matrix helps 

in identifying the problems generated by multicollinearity.  

There are no straightforward rules in a PCA analysis for detecting which variables should 

be retained. Several trials and errors are usually required to identify which variables ought 

to be eliminated from the analysis.  This process is performed iteratively, and the outcomes 

of each iteration are evaluated with Kaiser-Meyer-Olkin (KMO) measures of sampling 

adequacy and Bartlett’s test of sphericity. These two tests provide guidance concerning the 

number of retained indicators appropriate for the dataset in question. 

The number of components extracted from the PCA is based on the eigenvalues associated 

with each component and the shape of the scree plot (eigenvalue vs component number 

curve). This is discussed further in the results chapter. 
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Figure 4-6: SA1 Map 

4.3.3 Normalisation of Principal Components 

Vulnerability is a social construct that is influenced, but not entirely determined, by 

physical phenomena. Hence, vulnerability cannot be measured in the same way that 

physical entities such as mass and length are measured. On the other hand, socioeconomic 

indicators, and associated composite indices, provide a relative assessment of vulnerability, 

rather than an absolute, objective measure. Therefore, it is important to be clear about the 

benchmark of comparison, i.e., relative to what is vulnerability being assessed. Each of the 

social vulnerability components obtained from the PCA (Section 4.3.2) for each SA1 is 

normalized relative to the minimum and maximum value of that component in a region of 

reference, using the following relationship: 

𝐶𝐶𝑠𝑠 = (𝑏𝑏 − 𝑎𝑎)
𝐶𝐶𝑠𝑠 − 𝐶𝐶𝑚𝑚𝑠𝑠𝑚𝑚

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐶𝐶𝑚𝑚𝑠𝑠𝑚𝑚
+ 𝑎𝑎 

Equation 4-1 

 

Where 
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𝐶𝐶𝑠𝑠 is the normalised value of the i-th indicator from the desired range of “a to b”; for this 

study, all indices are normalised to a range between 1 and 10; i.e. a = 1 and b = 10; 

Ci  is the component score of i-th component for each SA1; 

Cmin i and  Cmax i are the minimum and maximum score of the i-th component among all SA1s 

in the study region (MSR or BSR).   

Two approaches are followed in the selection of Cmin i and Cmax i. In the first approach, the 

region of reference is MSR itself and the Cmin i and Cmax i are the maximum and minimum 

value of that component within the 84 SA1 of MSR (red boundary in Figure 4-6 ). Principal 

components normalised using this approach provide measures of relative vulnerability 

within the MSR. They convey how vulnerable a given SA1 is relative to other SA1s in MSR. 

In the second approach, the region of reference is the entire Sydney Inner West, Sydney City 

and Inner South and Sydney Inner South West shown in Figure 4-2 (broader Sydney 

region), and including 2575 SA1. In other words, each principal component is normalized 

relative to the minimum and maximum value of that component in the entire Sydney region 

and can, therefore, help situate the vulnerability of Marrickville SA1s in the broader context 

of part of the Sydney metropolitan area hence it is possible to get a sense of how vulnerable 

Marrickville SA1s relative to the wider region to which MSR belongs. 

Finally, SoVI is constructed using an additive aggregation of all Principal Component’s 

scores by providing equal weight to each component and results are presented in Section 

5.1.1. The reason for providing the equal weight is already discussed in the literature 

review (Section 2.2.2.2). 

4.4 Flood Exposure Index for Marrickville Valley 

The Flood Exposure Index (FE) is developed for the Marrickville valley following the same 

approach that is used for constructing SoVI. Exposure index which represents vulnerability 

driven by the built environment  has been quantified by previous researchers using 

indicators such as population density, quality and magnitude of residential, commercial and 

industrial properties, transport facilities and lifelines such as hospitals, schools, electric 

power, potable water facilities etc. (Mileti, 1999; Chang, 2003; Gilbert et al., 2003; 

Parfomak, 2005; Borden et al., 2007; Holand et al., 2011). The most comprehensive source 

of built environment data for the Marrickville Study Region (MSR) are the ABS and National 
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Exposure Information System (NEXIS) of Geoscience Australia. Three indicators are 

selected from these two sources as reflecting a dimension of vulnerability mediated by the 

built environment for the year 2011(Table 4-3). No PCA analysis is required in this case 

because the number of indicators is small. Like ABS, the NEXIS provides aggregate 

information for Statistical Area Level 1 (SA1). 

 

Table 4-3: Flood Exposure Indicators 

Each indicator is standardised using Equation 3-1, then the indicators are combined by 

additive aggregation to construct FE. The FE values are again normalised to a range of 1 to 

10 by using the same concept described in Section 4.3.3 and the results are described in the 

Section 5.1.2. 

4.5  Flood Hazard Index for Marrickville Valley 

4.5.1 Flood Simulation 

The previous Marrickville council (now part of the Inner West council) of Sydney has 

developed Drains hydrological/hydraulic model and TUFLOW two-dimensional 1D/2D 

hydraulic model for the flood analysis of MSR. The same flood models are used in this study 

to generate flooding scenarios from extreme rainfall and climate change events. To generate 

the flooding scenarios the most up-to-date design rainfall data following the guidelines of 

Indicators Data Source Direction of Correlation with 

Vulnerability 

Population density per 

square km 

ABS + 

Building density per square 

km 

NEXIS + 

Old building (constructed 

before 1980) density per 

square km 

NEXIS + 
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Australian Rainfall 2016 guidelines are used.  Total 1035 hydrological sub-catchments were 

generated based on the Airborne Laser Survey (ALS) with the assumption that runoff 

generated from those sub-catchments would flow towards pits. The purpose of the Drains 

model is to generate surface flows arriving at each pit and route these stormwater 

hydrographs to pipes and surface water networks (GRAY, 2011). 

The runoff from the sub-catchments is then input as pit inflow into the TUFLOW hydraulic 

model. TUFLOW is dynamically coupled with 1D ESTRY engines and takes consideration of 

urban features such as urban topography, roads, levees, infrastructures, including the urban 

stormwater drainage systems with its natural channels, pits, pipes, barriers, culverts, trunk 

drainage systems, pumps, weirs and bridges. The output from the TUFLOW model can be 

used to estimate extent and level of flooding, as well as velocities of water and flow 

patterns. Due to the non-availability of historical gauge water level and discharge data, the 

model results were verified based on the council knowledge of drainage hot spots, 

community questionnaire results and comparison of results with the previous studies. 

Among the nine sub-catchments,  data for ECE sub-catchments is not accessible for this 

research and is therefore excluded from the model (GRAY, 2011).  

TUFLOW does not have its own graphical user interface, but GIS software can be used for 

the creation and editing of spatial data and viewing of results (TUFLOW, 2016). The 

council’s TUFLOW model was developed using the MapInfo Professionals GIS software and 

simulated with the hydrodynamic computational engine released in 2010.  For the current 

study, the TUFLOW model is simulated with hydrodynamic computational engine released 

in 2016 and for convenience, the ArcGIS environment is used for data building and editing 

(starting from the MapInfo data files provided by the Council, and converted to ArcGIS). 

4.5.2 Design Storm 

A first step of conducting a flood hazard modelling is to an appropriate design rainfall event 

that suits the study objectives. As the objective in this study is to identify flood hazard 

under extreme conditions, a 1% Annual Exceedance Probability (AEP) which has only 1% 

chance of occurring in a given year is selected as our design storm event. There are five 

classes of design rainfalls; a 1% AEP rainfall event falls into the category of Rare Design 

Rainfall (Green et al., 2016). Design rainfall depths and temporal patterns are derived from 

the Intensity Frequency Duration (IFD) curves/charts, released by Australian Bureau of 
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Meteorology (BOM), which is a probabilistic-based estimation of average rainfall depth at a 

particular location within a defined duration.  

The hydrological and hydraulic models for the Marrickville Valley Flood Study, 2011 (GRAY, 

2011) are used in this research as a starting point and modified as well as updated where 

necessary. This initial modelling was conducted using a previous set of guidelines, namely 

the Australian Rainfall-Runoff (ARR), 1987 guidelines and its corresponding IFDs (Pilgrim, 

1987). However, ARR 1987 IFDs are superseded by the recent published ARR 2016 IFDs 

(Babister et al., 2016) with new sets of temporal patterns, known as ensemble storms. 

Existing flood models are therefore updated in this research by using new ARR 2016 

guidelines and its corresponding IFDs.  

In the previous ARR guideline (i.e. ARR 1987), only one temporal storm pattern per 

duration for a given AEP was available for analysis. On the other hand, new ARR 2016 uses 

a more extensive database and provides guidelines for using ensemble event, which 

delivers ten temporal storm patterns per duration for a given AEP. ARR 2016 recommended 

the use of flood models with an ensemble of storms (i.e. use multiple storm patterns) and to 

find the median of ensemble storms that will be considered as the design storm event for a 

particular AEP. As this covers a broader range of possible rainfall scenarios, it provides a 

relatively more robust estimation of 1% AEP design storm, compared to previous ARR 

1987. 

4.5.3 FH construction 

The Flood Hazard Index (FH) is developed from the flood simulation results discussed in the 

previous section. The FH is constructed following the same approach described for FE in 

section 4.4. From the flood simulation results, the following four indicators have been 

extracted for each SA1: 

i. Extent of flooding as percent of total area that is flooded; 

ii. Average maximum flood depth; 

iii. Average maximum velocity; 

iv. Average flood duration; 

Any increase in any of the above-mentioned indicators will increase the hazard index of that 

particular SA1. Each of the indicators is standardised using Equation 3-1 and aggregated 
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(additive) to construct the FH. The FH values are then normalised into 1 to 10 scale by 

applying the same concept described in Section 4.3.3 and the results are outlined in the 

Section 5.1.3. 

4.6 Flood Social Vulnerability Index (FSVI) for Marrickville Study Region 

Finally, the FSVI is developed following both additive and multiplicative aggregations as 

explained in Section 3.2. One of the most significant hurdles of indicator-based vulnerability 

assessment is to assign relative importance (weights) to the indicators. When indicators are 

aggregated, the majority of quantitative-based studies in the literature adopts equal 

weights, while others assign weights based on exper judgment or PCA (Tonmoy, 2014). The 

PCA is often applied when a large number of indicators are used. For a similar reason, this 

research used PCA for developing SoVI index as SoVI combines a large number of 

indicators, and weights derived from the PCA were used in building SoVI. However, the 

other three indices of this study (FSVI, FE and FH) are based on a small number of indicators, 

therefore PCA is not used and, equal weights are adopted. Nevertheless, different 

combinations of weights are tested to check their impact on final results (Table 4-4) which 

was also a recommendation of the stakeholders of Inner-West Council where the MSR is 

located (See Section 5.2). The results of the various FSVI scenarios are outlined in the 

results Section 5.1.4. 

Table 4-4: FSVI with different weight combination 

Scenario Weights 

FH SoVI FE Description 

FSVIE 1 1 1 Equal weights 

FSVIFH50 1.5 1 1 50% weight increase of FH 

FSVIFH100 2 1 1 100% weight increase of FH 

FSVISoVI_Wt_Zero 1 0 1 0 weights to SoVI 

FSVIFE_Wt_Zero 1 1 0 0 weights to FE 
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5 Result and Discussion 

Chapter 5 
Result and Discussion  

 

5.1 Vulnerability to flooding in Marrickville 

5.1.1 Social Vulnerability Index (SoVI) 

37 socioeconomic and demographic indicators, discussed in Section 4.3.1 are initially 

selected for the construction of SoVI. Following a standard practice of PCA (discussed in 

Section 4.3.2), indicators that have high correlation (multicollinearity) or do not have any 

correlation with other indicators are excluded from the analysis. As a result 16 indicators 

are removed and 21 are retained. Three tests are conducted on the retained indicators. The 

determinant of the correlation coefficient matrix for the retained  21 indicators is 2.57x10-5 

which is greater than the minimum recommended value of 10-5 (Field, 2009), indicating an 

acceptable level of multicollinearity. The Bartlett’s test of sphericity is found to be highly 

significant (P < 0.001), indicating that the correlation matrix of indicators is significantly 

different from an identity matrix. In an identity matrix, the indicators are perfectly 

independent because the correlation between them is zero. In the absence of correlations, 

no clusters can be identified. Finally, the Kaiser-Meyer-Olkin measure of sampling adequacy 

(KMO) was found to be 0.815. The KMO result indicates that the sample is adequate for PCA 

to yield distinct and reliable component (Kaiser, 1970).  

Next, a cluster analysis is conducted to identify major subgroups or components with 

eigenvalues greater than 1 using Kaiser’s criteria (Kaiser, 1960). The scree plot (Figure 

5-1), shows that the point of inflexion is at component 5 after which the slope changes 

significantly. Five components, shown in Table 5-1, are selected, including the point of 

inflexion  (Cattell, 1966), although some authors suggest its exclusion (e.g., Field (2009). 

The five principal components explain 66% of the variance. All 21 variables present 
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commonality extraction values greater than 0.5, which indicates that in all the variables, at 

least 50% of the variance is explained by the resulting principal component.  

 

Figure 5-1: Scree plot 

The resulting five principal components can be seen to reflect five different aspects of social 

vulnerability. Each aspect is given a label based on the indicator with the highest factor 

loading. The factor loading is the correlation between the indicator and the component 

(Field, 2009). Most indicators have significant  loadings on all or most components. This 

characteristic makes the interpretation of components difficult, and that is why the factor 

rotation technique (varimax orthogonal rotation) is applied which ensures that variables 

are loaded maximally to only one factor. Table 5-1 shows the five principal components 

with the rotated factor loadings. In addition, Appendix A, shows the matrix of loadings of 

each indicator on each component before and after rotation.  
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Table 5-1: Extracted Principal Component 

Principal Component Eigen 
Values Indicators Factor Loading 

after rotation 

1. Household 
demography 5.157 

Number of dwellings occupied by 5 individuals or more .773 

Number of household with 2 or more families .726 

Number of dwellings occupied by single individuals -.655 

Number of people with low speaking proficiency in English .630 

Number of couple families with more than 2 dependent children .623 

Number of people who never went to school .605 

2. Immigration and 
income status 3.536 

Number of non-citizens .843 

Number of households with negative or nil income .747 

Number of recent migrants (previous 8 months) .743 

Number of people with weekly negative or nil income .706 

Number of houses with weekly rent over the median household rent within the study region .542 

3. Low rented 
households, 

dependent and 
unemployed families  

2.425 

Number of houses with weekly rent below $150 .812 

Number of single-parent families with children under 15 .633 

Number of unemployed families .575 

Number of dwellings owned with mortgage -.562 

Number of dwelling owned outright or being purchased  -.500 

 4. Age distribution 1.724 
Number of people over 65 years of age -.741 

Number of people between  35 and 39 years 

 

.685 

Number of children below 5 years of age .531 

5. Educational status 1.013 Number of people whose highest level of education is year 11 .814 

Number of people whose highest level of education is Certificate Level (Certificate 1, 2, 3 or 4) .508 
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The factor loading of each indicator is divided by the square root of the eigenvalue to get 

the weight (Pink, 2011). The index value of each social vulnerability component is then 

determined by the summation of the product of the weight and standardised indicators 

values (Equation 5-1). 

𝐶𝐶𝑠𝑠 = �
𝐿𝐿𝑗𝑗
�λ𝑠𝑠

𝑝𝑝

𝑗𝑗=1

× 𝐼𝐼𝑠𝑠𝑗𝑗  
Equation 5-1 

where  

Ci is the index value of i-th component for the SA1  

Isj is the standardised value of the j-th indicator for the SA1 

Lj is the factor loading for the j-th variable 

λi is the eigenvalue of the i-th principal component 

p is the total number of indicators in the index 

Though the factor loading has both +/- sign, its absolute value is used in determining the 

weight. Where indicators decrease with increasing vulnerability, the inverse of the indicator 

is used to ensure all indicators increase with increasing vulnerability. The indices of each 

component (Ci) are then converted into a 1 to 10 scale using Equation 4-1 where 1 denotes 

the lowest vulnerability and 10 the highest. Note that the index value of a given SA1 only 

represents the relative rank of its vulnerability and does not carry proportionality. In other 

words, an SA1 with an index value of 10 is not expected to be 10 times more vulnerable 

than one with an index value of 1. The composite social vulnerability (SoVI) is determined 

by the arithmetical sum of each component score by applying an equal weight (Equation 

3-2). The reason for providing equal weights has been discussed in the Literature Review 

Section 2.2.2. 

In order to present the relative vulnerability of SA1s within MSR, the SoVI within the study 

region is converted to a 1 to 10 scale (Figure 5-2). For the convenience of graphical 

representation, the SoVI is then classified into the following 5 categories by subdividing the 

index value into 5 equal intervals. 

i. Very low 

ii. Low 
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iii. Moderate 

iv. High 

v. Very High 

Figure 5-2 shows that higher social vulnerability occurs mostly within the western part of 

the MSR. Several factors seem to combine to produce a ranking of high vulnerability. For 

example, the SA1s marked as 1 and 2 in Figure 5-2 are classified as highly socially 

vulnerable as a result of the component school of household demography and age 

distribution but not, significantly, education status, low value of rental or employment type. 

Specifically, in these two SA1s, there is a relatively large proportion of dwellings occupied 

by i) more than 5 individuals, ii) more than 1 family, iii) single individuals, iv) aged 

individuals and v) individuals with low English profiency. On the other hand, the SA1 

marked as 3 in Figure 5-2, is ranked as highly vulnerable for different reasons, namely high 

proportions of migrants, low-income households and individuals with lower educational 

levels. Conversely, the SA1s in the eastern part of the MSR, marked as 4 and 5, rank law on 

social vulnerability as a result of the very low number of  residential dwellings and the 

predominantly industrial land use  this part of MSR. 

Figure 5-3 shows social vulnerability of MSR in comparison to its surrounding suburbs. The 

figure indicates that although some SA1s in the western part of the Marrickville have 

relatively high social vulnerability, the most disadvantageous SA1’s are those in the inner-

west around Bankstown and Canterbury not Marrickville. 
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Figure 5-2: Different components of SoVI and composite SoVI within Marrickville
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Figure 5-3: a) SoVI of Marrickville Valley in comparison to its surrounding suburbs b) Zoom to Marrickville valley
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 Sensitivity Analysis of SoVI 5.1.1.1

The SoVI of the Marrickville Study Region is determined (Figure 5-2) based on the initial 

selection of 37 socioeconomic and demographic indicators with a sample size of 2575 SA1’s 

of Marrickville valley and its surroundings suburbs. In addition, a sensitivity analysis has 

been done to check how the ranking of SoVI of different SA1s varies when the sample size of 

SA1 is changed. To do this, a total 548 number of SA1s have been selected from a smaller 

geographic area in comparison to the previous analysis. This new geographical area has 

been selected by considering a 2500 meter buffer from the boundary of MSR (Figure 5-4). 

The SA1s from this new geographical area cover a smaller portion of the Sydney-Inner 

West, Sydney-Inner South West and Sydney-City and Inner South. 

 

Figure 5-4: Variation of sample size of SA1 to check sensitivity of SoVI 

By following the standard practice described in Section 4.3.2, a total 21 indicators were 

retained by the PCA. With the new sample size, the retained indicators were found to be 

almost the same as those obtained from the previous analysis covering a bigger 

geographical area. Only two new indicators emerged (number of dwellings with no motor 

vehicle, number of people employed as machinery operators or drivers) which had not been 
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retained in the previous analysis and two indicators were dropped (number of people with 

weekly negative or nil income, number of unemployed families) which had been retained in 

the previous analysis. The Principal Component Analysis (PCA) was then conducted with 

the 21 indicators with the varimax orthogonal rotation. The results of the three tests 

conducted on the 21 indicators are as follows which satisfied the criteria of PCA described 

in Section 5.1.1: 

i. Determinant of the correlation matrix = 2.96x10-5 

ii. The Bartlett’s test of sphericity is found to be highly significant (P < 0.001)   

iii. KMO = 0.803 

From the principal component analysis, five different dimensions of social vulnerability 

were extracted (Table 5-2) explaining 64.4% of the variance. The different indicators that 

were retained under each component differed from the previous analysis (Table 5-1). 

However, the SoVI of MSR with the new sample size was highly similar to the one obtained 

from the larger set (see Figure 5-5). In nine SA1’s, vulnerability increased to the next level 

and in 4 SA1’s it moved one level down. Hence, less than 15% of MSR’s SA1s were affected 

and only by one level. 
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Figure 5-5: Composite SoVI of MSR after changing sample size of SA1 
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Table 5-2: Extracted Principal Component after changing sample size of SA1 

Principal Component 
Eigen 
Values Indicators 

Factor Loading 
after rotation 

1  5.798 

Number of non-citizens -.781 

Number of houses with weekly rent over the median household rent within the study region -.745 

Number of dwelling owned outright or being purchased .744 

Number of people over 65 years of age .722 

Number of recent migrants (previous 8 months) -.568 

Number of couple families with more than 2 dependent children .492 

 2 3.148 

Number of people with low speaking proficiency in English .820 

Number of household with 2 or more families .788 

Number of people who never went to school .680 

Number of dwellings occupied by 5 individuals or more .657 

Number of people employed as machinery operators or drivers .565 

Number of single-parent families with children under 15 .491 

 3 1.973 

Number of houses with weekly rent below $150 .788 

Number of dwellings with no motor vehicle .716 

Number of dwellings occupied by single individuals .706 

Number of dwellings owned with mortgage -.632 

 4 1.507 

Number of children below 5 years of age -.716 

Number of households with negative or nil income .631 

Number of people between  35 and 39 years -.600 

 5 1.10 
Number of people whose highest level of education is year 11 .804 

Number of people whose highest level of education is Certificate Level (Certificate 1, 2, 3 or 4) .448 
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Figure 5-6: Change in level of Social Vulnerability  

5.1.2 Flood Exposure Index 

The standardised values (using Equation 3-1) of three selected flood exposure indicators 

(population density, building density and old building density) described in Section 4.4 are 

aggregated to construct exposure index FE (Equation 3-2) by applying equal weights. The 

index values are then converted to a range of 1 to 10, yielding FE as a proxy for vulnerability 

due to the built environment. Figure 5-4 shows the variation of FE, discretised into five 

categories, within MSR. Several SA1s around Enmore, Lewisham, Dulwich Hill and 

Marrickville have high vulnerability, on account of high residential density. SA1s between 

Marrickville and Sydenham have very low vulnerability because of the predominantly 

industrial nature of the area. Figure 5-5 shows exposure index of MSR in the context of the 

wider inner west, and highlights around twenty SA1s with high or vey high vulnerability in 

the Inner West, none of which is in MSR.  
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Figure 5-7: Exposure Index within Marrickville Valley
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Figure 5-8: a) FE of Marrickville Valley in comparison to its surrounding suburbs b) Zoom to Marrickville Valley 
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5.1.3 Flood Hazard  

 Hydrological Analysis 5.1.3.1

The Drains model is simulated with ensemble storms (storm pattern 1 to 10, discussed in 

Section 4.5.2) for different storm durations starting from 1 hour to 24 hours for the 1% 

AEP. The model is run over multiple periods to identify the critical duration producing the 

highest flow for the 1% AEP. The peak catchment flows of the study area at various 

durations for various storm patterns are shown in Table 5-2. 

Table 5-3: Flows for the 1% Annual Exceedance Probability for ensemble storms 

Storm 
Duration 

(Hour) 

1% Peak Flow (m3/s) 
Storm 
1 

Storm 
2 

Storm 
3 

Storm 
4 

Storm 
5 

Storm 
6 

Storm 
7 

Storm 
8 

Storm 
9 

Storm 
10 Median 

1 50.5 41.2 45.9 42.8 45.1 46.7 41.7 44.5 41.5 48.0 44.8 
1.5 40.1 44.3 40.4 35.6 36.1 45.5 45.1 40.8 38.1 39.3 40.2 

2 43.7 42.7 34.2 48.3 43.5 45.0 32.8 42.5 36.9 41.4 42.6 
3 30.3 30.9 29.8 31.3 27.3 27.5 31.6 31.5 30.3 32.6 30.6 

4.5 26.5 31.2 26.5 31.2 29.8 31.0 26.5 28.5 29.2 30.1 29.5 
6 29.7 30.3 31.8 25.7 29.9 34.5 26.5 26.2 29.6 32.5 29.8 
9 25.3 25.7 22.6 26.6 25.7 22.4 23.5 23.3 29.2 23.0 24.4 

12 25.0 25.5 28.7 23.2 28.6 26.9 22.0 25.6 30.0 24.3 25.5 
18 24.0 20.9 21.5 17.7 21.9 21.3 22.4 16.7 21.5 19.6 21.4 
24 22.8 24.8 20.6 21.2 19.1 22.3 18.8 20.2 20.5 18.2 20.5 

 

The maximum median peak flow (44.8 m3/s) occurs for 1-hour storm duration. This median 

peak flow closely matches the peak flow of storm pattern number 8 of that particular storm 

duration. Therefore, the temporal pattern number 8 of 1-hour duration rainfall, is taken as 

the design storm for 1% AEP and for this research. It will be referred to as the base 

condition or base scenario for this study. Further climate change impacts are analysed as 

variations on this base condition.   

Figure 5-6 shows the temporal pattern of design storm for 1-hour duration storm for 1% 

AEP and how the temporal variation differs from the previous ARR 1987 temporal 

distribution used by Marrickville valley flood study. The average intensity of ARR 1987 is 

33% higher than that of ARR 2016 which means that flood simulations were overestimated 

for the Marrickville Valley Flood Study. 

-75- 



 

Figure 5-9: Comparison of rainfall intensities of ARR 1987 and ARR 2016 design storms for Marrickville 
valley 

 Hydraulic Analysis  5.1.3.2

The design runoff generated by the Drains model due to 1% AEP (runoff due to 1hr storm 

from pattern 8) are used next as an input in the TUFLOW hydraulic model to produce 

flooding results, in the form of flood depth,  extent, water velocity and flood duration. In 

addition, flood depth and velocity are used to generate provisional flood hazard maps by 

following the NSW Floodplain Development Manual (Government, 2005). According to the 

manual, flood hazard is categorised into high or low hazard, defined as follows: 

“High hazard: possible danger to personal safety; evacuation by truck difficult; able-bodied 

adults would have difficulty in wading to safety; potential for significant structural damage 

to buildings. 

Low hazard: should it be necessary, truck could evacuate people and their possessions; 

able-bodied adults would have little difficulty in wading to safety.” 

Accordingly, the data from Figure 5-7 extracted from the manual is used to generate the 

provisional hazard map for the MSR. Note that these categories are provisional because 

they do not reflect the effects of other factors such as flood readiness, damage, flood 

warning, flood duration, rate of rising of the flood, evacuation problems, effective flood 

access and type of built environment.  
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Figure 5-10: Provisional hazard categories (Source: NSW floodplain development manual) 

Figure 5-8, Figure 5-9 and Figure 5-10 show the output from the TUFLOW model showing 

the variation of peak flood depth, peak velocity and flood duration, respectively, due to 1% 

AEP design flood event. A total of 17.6% of the MSR is flooded due to 1% AEP design flood 

event. Approximately 10% surface area of the MSR is under 0.1 to 1 meter of flood depth, 

with low flood velocity (<= 0.4 m/s). A small surface area (0.6%) is highly flooded (depth>1 

meter) which mainly includes the Marrickville oval that acts as a retarding basin for 

temporary flood storage (see Table 5-3). It is mostly roads that fall under high flood velocity 

(>= 2 m/s). The maximum flood duration due to 1% AEP for this region is 3 hours. Not 

surprisingly, the areas that are more deeply flooded (see Figure 5-8) are also found to be 

flooded for a longer duration (see Figure 5-10). 

The provisional hazard map (Figure 5-11) for the MSR which represent the combined effect 

of flood depth and velocity is generated based on the data from Figure 5-7. Most of the MSR 
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(82.4%) does not experience flooding. Of the remaining part, most flooded areas (15.8% of 

MSR or 90% of flooded area) falls in a low-hazard category. The remaining part (1.8% of 

MSR or 10% of flooded area) is a high-hazard zone and includes the Marrickville oval and 

some roads towards the south of MSR. 
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Figure 5-11: 1% AEP design flood event: Peak flood depth 
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Figure 5-12: 1% AEP design flood event: Peak velocity vector 
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Figure 5-13: 1% AEP design flood event: Flood Duration 
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Figure 5-14: 1% AEP design flood event: Provisional Flood Hazard 
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Table 5-4: % of Area Flooded Under Different Flood Indicators (Base Condition) 

Area Flooded 
Under Different 

Flood Depth Zone 

Area Flooded Under 
Different Velocity 

Zone 

Area Flooded 
Under different 
Flood Duration 

Flood 
Depth 
(m) 

% of 
Area 
Flooded 

Flood 
Velocity 
(m/s) 

% of 
Area 
Flooded 

Flood 
Duration 
(h) 

% of 
Area 
Flooded 

0 - 0.1 7.3 0 - 0.4 9.8 0 - 0.5 3.9 
0.1 - 0.2 3.2 0.4 - 0.8 4.0 0.5 - 1 2.5 
0.2 - 0.4 3.6 0.8 - 1.2 2.0 1 - 1.5 2.3 
0.4 - 1 2.8 1.2 - 2.0 1.4 1.5 - 2 2.2 
>1 0.6 >2 0.3 2 -2.5 2.8 

- - - - 2.5 - 3 3.8 
- - - - > 3 0 

 Climate Change Impacts 5.1.3.3

Potential variations of flooding patterns in Marrickville due to future climate change are 

tested in this research by following the guidelines provided by ARR 2016 (Bates et al., 

2016). The guidelines suggested testing the model by incorporating climate change 

projections of the study area for at least two different climate change scenarios (i.e. a low 

and a high emission scenario). Future rainfall projections are obtained from the “Climate 

Change in Australia” website, developed by the CSIRO’s Representative Climate Futures 

Framework. The changes in future rainfall intensity are derived by downscaling the results 

of a Global Circulation Model (GCM) for regional clusters of Australia (Figure 5-12). These 

projections are available for four Representative Concentration Pathways (RCPs) of future 

greenhouse gas and aerosol concentrations. Among the four RCPs, a low-emission scenario, 

RCP4.5 and a high-emission scenario RCP8.5 are used to test impacts of future climate 

change on flooding in Marrickville.   

The Marrickville Study Region (MSR) is located in the East Coast Natural Resource 

Management Cluster (Figure 5-12). The projected changes in rainfall for the East Coast 

cluster relative to a 20-year (1986-2005) baseline are shown in Table 5-4. 
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Figure 5-15: Locations of Natural Resource Management Clusters, source: Bates et al. (2016) 

Table 5-5: Projected Rainfall Change for the Year 2060 and 2080 relative to the period 1986-2005 

Represented 

concentration 

pathways (RCPs) 

Year 

2060 2080 

RCP 4.5 +12% +12% 

RCP 8.5 +12% +19% 

Another factor that may affect the magnitude of flooding of MSR is the change in tailwater 

level due to sea level rise. This is mainly because the Cook River that flows through the 

Marrickville valley is connected to the Botany Bay coast (Figure 5-13). A rise in sea level 

coupled with tidal influence can act as a barrier reducing the runoff from the upper 

catchment. This phenomenon is known as change in tailwater level. In order to test its 

impact on MSR, this research used sea level rise projections for Botany Bay. These 

projections are obtained from the CoastAdapt tool (NCCARF, 2017). Developed by the 

National Climate Change Adaptation Research Facility (NCCARF), CoastAdapt provides 

access to sea level rise projections for different RCPs for all Australian coastal councils. 

Table 5-5 shows sea level rise projections for Botany Bay region relative to a historical 

average (1986 and 2005) for two different greenhouse gas emission scenarios.  
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Figure 5-16: Confluence of Cooks River 

Table 5-6: Projected Sea Level Rise in meter for the Year 2060 and 2080 relative to 1986 - 2005 

Represented 

concentration 

pathways (RCPs) 

Year 

2060 2080 

RCP 4.5 0.3 0.42 

RCP 8.5 0.36 0.56 

 Approach 5.1.3.4

In order to test climate change impacts on Marrickville flood predictions, four combinations 

of rainfall increase and tailwater increase, shown in Table 5-6, are modelled for estimating 

flood for the 1% AEP design event.  
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Table 5-7: Climate change scenarios 

Combination RCPs and 

projected year 

% of RF 

increase 

Sea Level  rise 

Cooks River (m) 

 1 RCP 4.5 (2060) 12 0.3 

 2 RCP 4.5 (2080) 12 0.42 

 3 RCP 8.5 (2060) 19 0.36 

 4 RCP 8.5 (2080) 19 0.56 

 

 Climate change results 5.1.3.5

To implement each of the combinations of rainfall and tailwater rise conditions, firstly, the 

design input rainfall depth (1% AEP) is increased to the target percentage, and the 

corresponding runoff is generated from the Drains model. Then, simulations using the 

TUFLOW model are updated with the new runoff, while the tailwater level, a boundary 

condition in TUFLOW, is increased to the target values. Note that, the change in rainfall 

from base to climate change scenarios applies uniformly over the MSR. However, elements 

of topography and landuse might result in different effects in different SA1s. In addition 

relative vulnerability might change as a result of changes tailwater level which will affect 

some SA1s more than others.  

Contours of peak flood depth, peak velocity, flood duration and provisional flood hazard 

map due to the more severe climate change scenario (RCP 8.5, 2080) are shown in Figure 

5-14, Figure 5-16, Figure 5-18 and Figure 5-20, respectively. In addition, to better visualise 

the effect of climate change, contours of differences between base condition and climate 

change scenarios are also shown in these figures. Results for the other climate scenarios 

were found to differ from RCP 8.5, 2080, in values but not in overall patterns; therefore, for 

the sake of conciseness, output maps for the other climate change scenarios (RCP4.5-2060, 

RCP4.5-2080, and RCP8.5-2060) are shown in Appendix B but not in the main text. Finally, a 

comparison of the percentages of area flooded under different flood indicators due to the 

base and more severe CC scenario (RCP 8.5 - 2080) is shown in Table 5-8.  
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Under RCP 8.5, 2080, extent of flooding increases from 17.6% (base condition) to 19.37%. 

No significant differences are observed between the various RCP’s for both the year 2060 

and 2080, i.e. the percentages of flooding area are stable at around 19.3% (Table 5-8). 

Figure 5-15 reveals that an additional area of around 2% of MSR is flooded due to the 

influence of climate change, mostly in the vicinity of Cooks River and most likely due to the 

tailwater effect (sea level rise). In comparison to base condition, flooding depth increases 

by up to 0.2m and mostly within the area where flooding extent has increased (Figure 

5-15). In addition, an increase in velocity by 0.2 m/s is seen in some areas (Figure 5-17). 

Nowhere in MSR is flood depth reduced, but velocity is projected to decline in around 2% of 

the MSR, under RCP 8.5, 2080.  

In comparison to flooding extent, depth and velocity, the increase of flood duration due to 

the effect of climate change is noticeable. This is mainly due to sea level rise in the Cook 

River which slows down drainage of runoff water. The maximum flood duration is projected 

to increase to up to 7 hours, compared to 3 hours under the base condition (Figure 5-18). 

Even more significantly, more than 10.5% of MSR experiences a flood duration over 3 hours 

under climate change (see Figure 5-19). This may have significant implications for 

emergency services, flooding contingency plans and post-flooding recovery, which will be 

discussed later. 

The provisional hazard zone due to the influence of CC reflects the combined change of 

flood depth and velocity (Figure 5-20). For most of the MSR, there is no change in hazard 

categories due to CC (Figure 5-21). The additional 2% of area which is flooded due to CC 

falls in the low-hazard category. The variation of the flooded area under different flood 

indicators and different provisional hazard zones for different climatic conditions is shown 

in Table 5-7 and Table 5-8.  
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Figure 5-17: 1% AEP design flood event, Climate Change Scenario, RCP 8.5 (2080): Peak flood depth 

 

Figure 5-18: Change in flood depth due to CC in comparison to base condition 
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Figure 5-19: 1% AEP design flood event, Climate Change Scenario, RCP 8.5 (2080): Peak velocity vector 

 
Figure 5-20: Change in flood velocity due to CC in comparison to base condition 
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Figure 5-21: 1% AEP design flood event, Climate Change Scenario, RCP 8.5 (2080): Flood Duration  

 

Figure 5-22: Change in flood duration due to CC in comparison to base condition 
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Figure 5-23: 1% AEP design flood event, CC  Scenario, RCP8.5 (2080): Provisional Flood Hazard  

 
Figure 5-24: Change in provisional flood hazard zone due to CC in comparison to base condition
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Table 5-8: Percentage of Area Flooded under Different Flood Indicators due to Base and RCP8.5 (2080) 

Area Flooded Under 
Different Flood Depth Zone 

Area Flooded Under Different 
Velocity Zone 

Area Flooded Under different 
Flood Duration 

Flood 
Depth 
(m) 

% of Area Flooded Flood 
Velocity 
(m/s) 

% of Area Flooded Flood 
Duration 
(h) 

% of Area Flooded 

Base CC Base CC Base CC 
0 - 0.1 7.3 7.4 0 - 0.4 9.8 10.4 0 - 0.5 3.9 3.9 
0.1 - 0.2 3.2 3.2 0.4 - 0.8 4.0 4.5 0.5 - 1 2.5 2.2 
0.2 - 0.4 3.6 3.9 0.8 - 1.2 2.0 2.3 1 - 1.5 2.3 1.2 
0.4 - 1 2.8 4.0 1.2 - 2.0 1.4 1.8 1.5 - 2 2.2 0.7 
>1 0.6 0.9 >2 0.3 0.5 2 -2.5 2.8 0.5 

- - - - - - 2.5 - 3 3.8 1.2 
- - - - - - > 3 0 9.6 

 

Table 5-9: Percentage of Area Flooded Under Different Flood Hazard Zone due to Base and RCP8.5 
(2080) 

Scenario 
Area Flooded as a % of 
Total MSR Area  

Low Hazard Zone 
as % of Total MSR 
Area 

Transition and High Hazard 
Zone as % of Total MSR 
Area 

Base 17.55 15.77 (90) 1.78 (10) 
RCP 4.5 (2060) 19.30  16.41 (85) 2.88 (15) 
RCP 4.5 (2080) 19.34  16.43 (85) 2.91 (15) 
RCP 8.5 (2060) 19.31  16.41 (85) 2.90 (15) 
RCP 8.5 (2080) 19.37  16.42 (85) 2.94 (15) 

    *The value inside the bracket indicates Low/High Hazard Zone as a % of total flooded area

-92- 



 Flood Hazard Index 5.1.3.6

The four flood hazard indicators, described in Section 4.5.3, are extracted from the TUFLOW 

model results for the base case and the different climate change scenarios. Results for each 

indicator along with provisional hazard categories for the base and climate change 

scenarios have already been discussed in Section 5.1.3.2 and Section5.1.3.5. It is worth 

mentioning that flood results discussed so far, are based on fine spatial resolution (3-meter 

grid size). On the other hand, the flood hazard index (FH) to be built is based on the 

combined effect of these four indicators, upscaled to the SA1 resolution, by averaging all 

grid values that fall within a given SA1. MSR includes a total of 84 SA1s, 80 of which are 

found to be flooded under base and all four climate scenarios. Indicators are then 

standardised (Equation 3-1) and later aggregated (Equation 3-2) to construct FH using 

equal weights. The FH index is calculated and normalised to a scale between 1 and 10, where 

1 represents the lowest vulnerability and 10 the highest. For the presentation of the result, 

FH is then further classified into the following five categories by subdividing the index value 

into five equal intervals. 

i. Very Low 

ii. Low 

iii. Moderate 

iv. High 

v. Very High 

Note that the 4 SA1s which are not flooded are automatically allocated to the category of 

Very Low FH. The variation of FH due to 1% AEP design event is shown in Figure 5-23. 

Among the 84 flooded SA1s, 34 fall into categories of high to very high vulnerability. The 

outcome is consistent with findings from Section 5.1.3.2. As an example, results from the 

Marrickville oval which is located within the SA1 identified as number 1 in Figure 5-23 can 

be compared with the results discussed in Section 5.1.3.2 (Figure 5-8, Figure 5-9 and Figure 

5-10). These figures show that in most of the flooded part of this SA1, flood depth is higher 

than 1 meter, and duration of flood is between 2.5 and 3 hours. These values are close to the 

maximum values for the base condition. Though the average flood velocity in this SA1 

seems low (mainly varies between 0 and 0.4 m/s), this range of velocity exists over 

approximately 60% of the total flooded area. On the other hand, 49% area of this SA1 is 
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flooded, a proportion close to the maximum of 56%.  The comparatively high magnitudes of 

the combined effects of these four indicators make this SA1 potentially exposed to 

significant flooding hazard. A similar reasoning can be applied to SA1s marked as 2 and 3 in 

Figure 5-23.  

FH due to CC scenario is developed based on the results discussed in Section 5.1.3.5. 

Unsurprisingly, the FH’s due to the base and climate change condition are found to be very 

highly correlated (Figure 5-22). For this reason, only 7 SA1’s are identified (marked with a 

red dot in Figure 5-24) where the hazard increases to the next higher level. This does not 

necessarily mean that vulnerability of other SA1s hasn’t increased, just not severely enough 

to move to the next hazard category. In fact, Section 5.1.3.5 shows that the magnitude of all 

four indicators have increased, relative to the base case, to different extents and at different 

locations of MSR (and not just those seven SA1s). The relative vulnerabilities of the other 

SA1’s are affected by climate change but not to the extent of changing their hazard index 

relative to the base case. Therefore, while the flood hazard can be a good representation of 

flood vulnerability of the MSR, it may not be the best proxy for assessing the impacts of CC. 

 

Figure 5-25: Correlation of flood hazard index between base condition Vs different climate change 
scenarios 
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Figure 5-26: Flood Hazard Index: 1% AEP design flood event 

 

Figure 5-27: Flood Hazard Index: RCP 8.5 (2080) 
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 Sector-specific flood hazard index (SFH) 5.1.3.7

The MSR is mostly residential, albeit industrial and commercial activities are also present 

(see Section 4.1.3). The SA1’s in the MSR are either single or mixed land use (Figure 4-5). 

With the methodology presented here, it is possible to analyse the vulnerability to flooding 

of specific land uses. This can provide sector-specific flooding information to local 

authorities.  To illustrate this, the following two sectors specific flood hazard (SFH) indices 

are determined: 

i. Residential flood hazard index (RFH) 

ii. Industrial flood hazard index (IFH) 

The analyses are conducted by considering flood hazard indicators within a given land use 

type. For any area other than residential or industrial area, the value of the indicators is set 

to zero. The difference between the FH and SFH (RFH or IFH) is that the SFH only shows the 

variation of vulnerability due to flood hazard within a specific land use type. The SA1 

labelled as 1 (Figure 5-23) falls into the Very High hazard zone, while in the case of RFH 

(Figure 5-25), this area falls into High hazard zone. A large portion of this particular SA1 

contains a green area (Marrickville oval) that is highly flooded due to 1% AEP; however this 

area does not affect the construction of RFH because it is not residential. 
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Figure 5-28: Residential flood hazard index for 1% AEP design event 

 

Figure 5-29: Industrial flood hazard index for 1% AEP design event 
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5.1.4 Flood Social Vulnerability Index (FSVI) 

No correlations were found between SoVI, FE and FH (Figure 5-27). Hence, constructing FSVI 

by combining the three indices can provide useful information. FSVI is constructed using 

multiplicative and additive aggregation for the different scenarios outlined in Table 4-4 (see 

Figure 5-28 and Figure 5-29).  

Only the SA1’s with high indices value are magnified in multiplicative aggregation as 

High/Very High FSVI category, i.e. if any of the three indices have a low score then the FSVI 

becomes low/very low. That is why the percentages of high and very high categories of FSVI 

are much lower in this approach than those obtained using additive aggregation (see Figure 

5-30). Considering all combinations of weights, with additive aggregation, the percentage of 

high/very high categories of FSVI varies from 15 to 27 percent, whereas with multiplicative 

aggregation, the range varies from 0.5 to 7 percent (Figure 5-31). 

 

Figure 5-30: Correlation between different indices 

 

-98- 



 

Figure 5-31: Flood Social Vulnerability Index for different weight combination: additive aggregation 
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Figure 5-32: Flood Social Vulnerability Index for different weight combination: multiplicative aggregation 
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Figure 5-33: Percentage of area and population exposed under each categories of FH 

 

Figure 5-34: percentage of high/very high categories of FSVI with different weight combination 
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To gain an understanding of the reasons behind the vulnerability classification obtained, 

four SA1’s (A1, A2, A3 and A4 shown in Figure 5-32) with different FSVI categories (low, 

medium, high and very high, respectively) are selected from the results (additive 

aggregation with equal weights) to check how different indices contribute to the FSVI. The 

individual indicator/component score producing of FH, FE and SoVI are shown in Table 5-9. 

All selected SA1s have High or Very High FH, indicating physical susceptibility to flooding. 

A1 has high population density, and high buildings density, a relatively large proportion of 

which is old building stock. This leads to a high value of FE.  The area also has relatively high 

scores for the components of social vulnerability. High/Very High index values of every 

component leads to a Very High value of FSVI for A1. A2 is also highly physically susceptible 

to flooding, but in A2, the densities of population, buildings and old buildings are 

comparatively low and SoVI is one level lower. That is why the FSVI of the SA1 becomes one 

level lower than A1. On the other hand, area A3 is located in a largely industrial zone with 

no old buildings, and only a small proportion of residential properties. This leads to low FE 

and SoVI and, therefore, despite high FH, low overall vulnerability FSVI.  Among the four 

SA1s, the vulnerability level of A4 is moderate, with high social vulnerability but low 

exposure index. 

 

Figure 5-35: FSVIE: Equal Weight (additive aggregation) with four selected SA1s 
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Table 5-10: Comparison of indicators/component score between four selected SA1s  

Indices  

A1 
(Residential) 
 

A2 
 
(Residential 
& parkland) 

A3 
 (Industrial) 

A4 
 (Residential) 

FSVI Category 
 

Indicators 
VH H L M 

Flood Hazard 
Index 

  

  

Mean Flood Depth 
(m) 0.31 

VH 

0.37 

VH 

0.35 

H 

0.12 

H 
% of Flooded Area 0.56 0.49 0.16 0.04 
Flood Duration (h) 1.53 1.62 1.99 1.51 
Flood Velocity 
(m/s) 0.78 0.45 0.38 1.10 

Flood 
Exposure 
Index 

  

  

Population 
density/sq km 7954 

H 

3395 

L 

57 

VL 

5149 

L 
Building 
density/sq km 1525 

1039 97 1418 
Old building 
density/sq km 449 

64 0 73 
Social 
Vulnerability 
Index 

(major 
indicators 
under each 
component*) 

 

C1 (DWL_5, 
DWL_2FAM, 
DWL_1PPL) 

5.8 

VH 

      

6.9 

H 

1.0 

VL 

7.6 

H 

C2 (NON_CIT, 
HH_INCNIL, 
REC_MIG) 

9.0 4.1 1.5 4.0 

C3 (HH_LRNT, 
FAM_SPAR, 
FAM_UNEMP) 

8.9 6.2 4.6 5.4 

C4 (PPL_AGE, 
MED_AGE, 
CHLD_AGE) 

5.0 6.8 3.4 4.7 

C5 (EDU_YR11, 
EDU_CERT) 8.9 8.2 1.0 5.6 

*The full explanation of indicators are given at Table 4-2 
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5.2 Feedback from Inner-West Council 

This research project has been done in collaboration with the Inner-West Council where the 

Marrickville Study Region (MSR) is located. At the beginning of the project, a meeting was 

conducted at the Council’s Office to discuss the project brief (27th July 2016). The Council 

provided a set off data required for the simulation of flood model. After a first round of 

analyses were completed, another meeting was organised (24th August 2017) at the 

Council’s Office attended by, in addition to the researchers (the author and his supervisor, 

Abbas El-Zein), the following Council staff: 

1. Coordinator of Asset Planning  

2. Development and Planning Engineer 

3. Engineering Design and Planning Engineer 

The researchers presented the project’s objectives, methodology and outcomes followed by 

extensive discussions and responses by stakeholders. Feedback from the meeting was used 

to refine the analyses and findings. The meeting lasted approximately 90 minutes. A 

summary of the feedback received from Council’s stakeholders is as follows: 

- The council staff saw a good potential for the findings of the research project to 

inform existing Council’s flood management process. The study findings were 

considered especially useful for the flood emergency response services. In particular, 

combining geophysical, built-environment and social vulnerability provide 

information not usually available to emergency services and help them develop 

better contingency plans. 

- The Flood Hazard Index (FH) was constructed using flood depth, areal extent and 

flood duration. Council staff advised that the incorporation of flood velocity in FH is 

important. Note that the inclusion of velocity is in agreement with the methodology 

used to develop flood hazard zoning maps in the New South Wales Flood Plain 

Manual of Australia. The FH was hence modified accordingly. (Only the final FH, i.e., 

including velocity, has been presented in the thesis.)  

- One of the limitations of the social vulnerability index, noted by stakeholders, is that 

it is based on household survey data by the Australian Bureau of Statistics, which 

does not capture the vulnerability of employees of workplaces located in 

Marrickville. Different kind of data will would be required to develop a map of 
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workplace vulnerability, including, amongst others, number of employees, firms 

assets and resources, and the adequacy of emergency procedures in place at the 

firms. This was beyond the scope of this thesis. 

- Following a discussion between researchers and stakeholders, it was agreed that no 

particular weighting scheme can be identified for the constructing the FSVI. Hence, it 

was deemed that using equal weight for all indicators is a sound approach, provided 

the qualitative nature of the exercise is kept in mind when interpreting the results. 

On the other hand, stakeholders were interested in finding out how vulnerability 

varies within MSR when flood hazard is integrated either with social vulnerability or 

the exposure, but not both. In addition, the effect of allocating higher relative weight 

to hazard index was of interest. This is why FSVI is also constructed with different 

weight combinations (see Table 4-4).  

5.3 Discussion 

Planning for urban flooding has been traditionally based on geophysical assessment of 

flooding patterns at city scale (Muis et al., 2015; Jongman et al., 2015; Wu et al., 2002). 

However, the literature on vulnerability and environmental risk emphasises that impacts of 

extreme weather events are experienced differently by different segments of the 

population, depending on socio-economic and institutional factors (Jongman et al., 2015; 

Cutter et al., 2013; Zahran et al., 2008). Several attempts at combining socio-economic and 

geophysical elements of flooding have been attempted in the literature (Garbutt et al., 2015; 

Tavares et al., 2015; Koks et al., 2015), including construction of composite indices (Connor 

and Hiroki, 2005; Zachos et al., 2016; Balica et al., 2009). However, very few attempts have 

been made at building such indices at local scale, i.e., using fine-scaled municipal data and 

aiming to compare units within one municipality rather than between different 

municipalities. Hence, the modalities and usefulness of such an exercise remains an open 

question. 

This thesis has proposed a new flooding index termed as Flood Social Vulnerability Index 

(FSVI) based on a combination of hydrological modelling, built-environment and socio-

economic indicators, at the lowest statistical unit available. It was hypothesised that the 

index is particularly suitable for application at local scale in ways that may assist local 

government in developing adaptation measures. The index was applied to the Marrickville 
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Study Region (MSR), in Sydney’s inner west. The thesis aimed to answer three research 

questions: 

1. Does an index combining geophysical and socio-economic elements of flood risk 

provide useful information on vulnerable groups, over and above that found in more 

conventional flood studies?  

2. How does the spatial pattern of flooding in the Marrickville valley change under 

various scenarios of climate change and what kind of adaptation measures are most 

likely to reduce vulnerability to flooding under climate change? 

3. How likely are vulnerability assessments, such as the one conducted here, to 

contribute to municipal planning for flooding? 

These questions will now be discussed based on findings from the project. 

5.3.1 Usefulness of Combined Indices  

The three components of the combined index proposed in this research were found to be 

poorly correlated when applied to the Marrickville Study Region (MSR), hence lending 

support to the hypothesis that such an index may yield additional information, not provided 

by its individual components. The possibility of a strong correlation between the three 

components arises from the fact that the economically and/or politically disenfranchised 

often occupy environmentally marginal land and are hence more exposed to the impacts of 

pollution and extreme weather events (Adger, 2006; Hewitt, 1983). However, this is not 

always the case, as Cutter et al. (2000) argued that the most vulnerable places from the 

biophysical viewpoint do not always overlap with the most vulnerable populations. In the 

case of MSR studied here, no consistent pattern relating the three components of risk was 

found, with some areas of MSR identified as susceptible to flooding scoring low social 

vulnerability, while other socially-vulnerable areas were found to be at low risk of flooding.  

The study results identified that the FSVI exhibit significant spatial variation within MSR 

especially in relation to its hazard and social vulnerability components. This is aligned with 

previous research on social vulnerability which is often used as a tool for the mitigation of 

floods (e.g. Cutter et al., 2003; Holand et al., 2011; Tavares et al., 2015; Koks et al., 2015).   

Flood studies conducted by local government in Australia typically develop geophysical 

flood models to estimate flood characteristics (extent, depth, velocity) and convert them 

into estimates of potential flood damage in monetary terms (e.g. Cornelius, 2012; GRAY, 
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2011; Reid et al., 2014). This information is then used to determine flood mitigation options 

through cost-benefit analyses in which hard protection measures such as levee banks, 

improved stormwater management systems are favoured.  The findings of this thesis 

suggest that more effective flood adaptation measures may be achieved, compared to those 

typically generated by the current approaches, which often preclude consideration of social 

vulnerability and built-environment characteristics from flood mitigation decision making.  

Combining information about the physical characteristics of flood with local-scale data on 

social vulnerability and built environment allow flood mitigation efforts to be targeted at 

the most vulnerable segments of the population (Cutter et al., 2003) and brings to the 

portfolio of flood adaptation actions a set of targeted, non-infrastructural measures that are 

often low-cost. Examples include increasing flood awareness amongst migrants, new 

residents and/or those with low levels of education and minor retrofitting to waterproof 

old buildings (Koks et al., 2015).  

The data can further be used by emergency services to predict the recovery capacity of 

various localities and flood evacuation plans can hence be tailored and prioritised, targeting 

those with low mobility and low access to resources. Cutter et al. (2003) suggested that 

resource prioritisation for flood mitigation may be vulnerable to politics of vested interests. 

Data, such as those developed in this thesis, can help in providing an objective basis to 

discussions between stakeholders attempting to develop collective action on flooding. This 

was, indeed, confirmed by Council stakeholders feedback as stated earlier. 

5.3.2 Vulnerability to Flooding under Climate Change in Marrickville 

While identifying flood vulnerability under climate change, two different greenhouse gas 

emission scenarios (low and high emission scenario RCP4.5 & RCP8.5) for the years 2060 

and 2080 were used to predict future physical characteristics of floods in MSR. On the other 

hand, any future projections of demographic and socioeconomic changes in MSR, were 

bound to suffer from a high level of uncertainty. Therefore, the aim of the thesis was to 

predict the effects of climate change on vulnerability to flooding in MSR, under current 

socio-economic, demographic and built-environment conditions. One drawback of this 

approach is that urban expansion, which has been identified as an important driver of 

future flood risk in a number of climate change studies, is not taken into account here (Zhu 

et al., 2007; Muis et al., 2015). Note that the approach adopted here has been followed in 
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several other studies in the literature wherein future flood risk is predicted without 

considering urban expansion (e.g. Zhou, 2014; Berggren et al., 2011; Ashley et al., 2005; 

Schreider et al., 2000).  

Two sources of change, under each climate change scenario, were injected in the analysis: 

a) change in rainfall which can affect water flow in MSR and b) change in sea levels which 

can affect the run-off during floods. Note that the change in rainfall as a result of climate 

change is applied uniformly across MSR, a limitation of the spatial resolution of global 

circulation models. As a result, the flood hazard index FH under climate change scenarios 

was found to be highly spatially correlated to its values under base conditions. 

Flood duration is a significant aspect of floods, also considered as a critical factor in 

determining the expected level of damage of properties. The longer the flood duration, the 

higher the damage (Soetanto and Proverbs, 2004; Kelman and Spence, 2004). In coastal 

areas, long-term inundation may also occur due to the sea level rise (Poulter and Halpin, 

2008). During the last few decades, the average annual flood duration along the U.S. East 

Coast has been increasing due to sea level rise (Ezer and Atkinson, 2014). In this research, 

flood simulations incorporating climate change scenarios showed a noticeable increase in 

the duration of the floods, but only limited change in other flood hazard indicators such as 

flood depth and velocity (see Table 5-7). The increase in flood duration is due to sea level 

rise which slows down discharges by urban drainage system of MSR into the Cooks River. 

Longer flood durations can lead to higher dependency on emergency services, higher costs 

of emergency and longer recovery times for the community. Another implication of this 

finding is that, if the bottleneck to drainage occurs downstream, increasing the drainage 

capacity through infrastructural change plan may not address the problem and resources 

may be better directed at improvement of flood warning and better access to flood-affected 

communities.  This is clearly an open question which deserves more research. Significantly, 

the NSW Flood Plain Manual (FPM) categorises flood hazards based on flood depth and 

velocity, but not flood duration. This was reflected in the analyses conducted here when, 

under both base and climate change conditions, the MSR was categorised as low-flood-

hazard area (85% of the total flooded area low hazard due to CC which was 90% under base 

condition), despite the increase in flood duration under climate change. The findings in this 

season suggests that there may be a case for revising this categorisation in order to include 

flood duration. 
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5.3.3 Vulnerability Assessment in Policy Making 

The purpose of vulnerability assessments is to inform decision-makers, raise awareness of 

impacts of climate change and monitor adaptation policy (Schröter et al., 2005; Patt et al., 

2012). Most of the vulnerability research are conducted at regional or national level 

(Tonmoy et al., 2014). The indicator-based flood social vulnerability assessment was 

conducted in this study at a local scale. However, a question remains as whether, and how, 

such studies can lead into local government policy for flood mitigation? Though this new 

methodology of vulnerability assessment was found to be useful by council stakeholders 

(see Section 5.2), the potential of this tool as part of an adaptation policy for local 

government is still an open question. This is because conversion of scientific information to 

policy and accomplishment is a not an easy task. According to Wolf et al. (2011), “a lack of 

correspondence between vulnerability theory and action indicates weak links between 

analyses and decision making”. In some cases local councils are liable for building and 

executing policy but these are constrained by the regulatory environments at regional and 

national levels (Eisenack et al., 2014). However, globally policy interest in vulnerability 

assessment has increased and implementation of climate change impacts as an adaptation 

policy has become a priority for many city and regions (Tonmoy et al., 2018; Carmin et al., 

2012; Measham et al., 2011; Füssel, 2007; Adger et al., 2005; Adger et al., 2003). The state of 

New South Wales (NSW) in Australia requires councils to develop their own sea level rise 

planning and to adopt their own place specific sea level rise projections. For example, the 

Shoalhaven City Council requires every development application to consider flood risk 

including flooding projections under climate change (Council, 2014). 

The NSW Flood Pain Manual (FPM) recommends that any flood mitigation measure 

consider in addition to cost-benefit criteria, considerations of social feasibility and impacts. 

However, significantly, no mention is made specifically of socio-economically differentiated 

impacts and vulnerabilities. This manual is prepared to assist the local government in 

formulating flood management plans through the flood risk management process. The first 

step of this process is to formulate a Floodplain Risk Management Committee whose 

objective is to assist the Council in the development and implementation of a flood plain 

risk management plan. For example, there is a Flood Management Advisory Committee 

(FMAC) exists for Inner West local government area (MSR is located within this local 

government area).  As far as the Inner West Council are concerned as stated earlier, 
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consulted stakeholders believed that the vulnerability assessments conducted here can be 

useful for flood planning in Marrickville Study Region. A key actor in developing policy at 

the Council is FMAC which helps develop and implement flood risk management plans. This 

is a discussion forum which includes technical, social, economic and environmental matters 

and whose recommendations are usually adopted by the council. Hence, the adoption and 

dissemination of the study’s findings by this committee would be the most effective route 

by which the study may have an impact in actual flood policy. Whether such an adoption 

will take place in the future remains to be seen. 

5.3.4 Future Research 

Calibration and Validation of Flood Model 

There is further scope for validating results obtained from this research. Currently, no 

historical water level or flow data are available for the study area. As a result, the flood 

model that has been received from the Council is calibrated based on available information 

such as expert knowledge amongst council Engineers on flooding, previous studies and 

community questionaries. The model would hence benefit from more rigorous based on 

detailed water level or flood data. 

Assisting in Development of Finer Scale Flood Mitigation Policies 

Qualitative research at a household level within the highly vulnerable parts of the study 

areas can be conducted in order to develop a better understanding of how residents 

experienced previous flood events. This would help in qualitatively validating the 

vulnerability maps developed in this research. It would also help identify needs of, and 

adaptation strategies developed by, residents, hence informing adaptation policy. On the 

other hand, the methodology proposed here can be extended to develop a Social 

Vulnerability Index for the workplace, taking into account patterns of vulnerability specific 

to workplace environments.  

Assessing Impacts of Changing Socioeconomic Profile and Ageing Built Environment of FSV 

Socioeconomic profile (e.g. increasing ageing population) and built environment conditions 

(e.g. older houses and infrastructure systems) are expected to change in the future. Further 

research exploring the impacts of these changing conditions on FSV can be beneficial. It 

could assist policymakers in better allocating resources for infrastructure development and 

maintenance projects. 
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Table A-1 

Component Factor Loading for each component before rotation 
1 2 3 4 5 

Number of houses with weekly rent over the median household rent within the study region -.808 -.106 -.245 .096 .019 

Number of non-citizens -.765 .435 -.263 .031 .047 

Number of dwelling owned outright or being purchased .746 -.098 -.252 -.443 -.047 

Number of couple families with more than 2 dependent children .682 .179 -.151 .185 .112 

Number of recent migrants (previous 8 months) -.640 .274 -.229 -.095 .236 

Number of dwellings occupied by 5 individuals or more .622 .450 -.198 .126 .069 
Number of people whose highest level of education is Certificate Level (Certificate 1, 2, 3 or 
4) 

.598 -.287 .107 -.013 .304 

Number of people with low speaking proficiency in English .082 .829 .045 .096 -.186 

Number of people with weekly negative or nil income -.135 .707 -.376 -.258 .124 

Number of unemployed families -.152 .601 .270 .182 .117 

Number of people who never went to school .312 .569 .147 .169 -.329 

Number of household with 2 or more families .476 .527 -.184 .034 -.075 

Number of households with negative or nil income -.451 .475 -.230 -.163 .238 

Number of houses with weekly rent below $150 -.032 .251 .821 .050 .056 

Number of dwellings occupied by single individuals -.514 -.173 .650 -.014 .046 

Number of dwellings owned with mortgage .463 -.343 -.500 .256 .082 

Number of children below 5 years of age .390 .000 -.144 .642 -.089 

Number of people over 65 years of age .479 .013 .436 -.553 -.138 

Number of people between  35 and 39 years -.413 -.470 -.097 .515 -.160 

Number of single-parent families with children under 15 .167 .356 .429 .475 .097 

Number of people whose highest level of education is year 11 .325 -.039 .172 .126 .731 
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Table A-2 

Indicators Factor Loading for each component after rotation 
1 2 3 4 5 

Number of dwellings occupied by 5 individuals or more .773 -.073 -.016 -.066 .206 

Number of household with 2 or more families .726 .027 .024 -.128 .009 

Number of dwellings occupied by single individuals -.655 .008 .533 -.035 -.057 

Number of people with low speaking proficiency in English .630 .317 .427 -.088 -.231 

Number of couple families with more than 2 dependent children .623 -.277 -.092 .007 .305 

Number of people who never went to school .605 -.074 .377 -.057 -.250 

Number of non-citizens -.118 .843 .108 .211 -.257 

Number of households with negative or nil income .034 .747 .051 -.064 -.004 

Number of recent migrants (previous 8 months) -.205 .743 .010 .079 -.034 

Number of people with weekly negative or nil income .430 .706 -.043 -.228 -.058 

Number of houses with weekly rent over the median household rent within the study region -.491 .542 -.098 .372 -.227 

Number of houses with weekly rent below $150 -.110 -.136 .812 -.218 .071 

Number of single-parent families with children under 15 .290 -.118 .633 .209 .178 

Number of unemployed families .236 .340 .575 .020 .029 

Number of dwellings owned with mortgage .267 -.319 -.562 .316 .255 

Number of dwelling owned outright or being purchased .407 -.381 -.500 -.500 .137 

Number of people over 65 years of age .082 -.415 .126 -.741 -.012 

Number of people between  35 and 39 years -.418 -.100 -.080 .685 -.177 

Number of children below 5 years of age .436 -.334 .010 .531 .096 

Number of people whose highest level of education is year 11 .057 -.077 .125 -.022 .814 
Number of people whose highest level of education is Certificate Level (Certificate 1, 2, 3 or 
4) 

.116 -.483 -.132 -.144 .508 

 

-113- 



 

 

 

 

 

 

B. Appendix B 

 

  

-114- 



 

Figure B-1: 1% AEP design flood event, Climate Change Scenario, RCP 4.5 (2060): Peak flood depth 
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Figure B-2: 1% AEP design flood event, Climate Change Scenario, RCP 4.5 (2080): Peak flood depth 
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Figure B-3: 1% AEP design flood event, Climate Change Scenario, RCP 8.5 (2060): Peak flood depth 
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Figure B-4: 1% AEP design flood event, Climate Change Scenario, RCP 4.5 (2060): Peak velocity vector 
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Figure B-5: 1% AEP design flood event, Climate Change Scenario, RCP 4.5 (2080): Peak velocity vector 
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Figure B-6: 1% AEP design flood event, Climate Change Scenario, RCP 8.5 (2060): Peak velocity vector 
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Figure B-7: 1% AEP design flood event, Climate Change Scenario, RCP 4.5 (2060): Flood Duration 
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Figure B-8: 1% AEP design flood event, Climate Change Scenario, RCP 4.5 (2080): Flood Duration 
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Figure B-9: 1% AEP design flood event, Climate Change Scenario, RCP 8.5 (2060): Flood Duration 
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Figure B-10: 1% AEP design flood event, CC  Scenario, RCP4.5 (2060): Provisional Flood Hazard 
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Figure B-11: 1% AEP design flood event, CC  Scenario, RCP4.5 (2080): Provisional Flood Hazard 
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Figure B-12: 1% AEP design flood event, CC  Scenario, RCP8.5 (2060): Provisional Flood Hazard 
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