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Notation 

 
The following is a list of the symbols used in this thesis. 

𝛾 Interfacial tension (mN/m) 

𝑃 Pressure (Pa) 

𝑅  Radius of meniscus curvature (mm) 

𝜃  Contact angle (°) 

𝜃𝑎  Advancing angle (°) 

𝜃𝑟  Receding angle (°) 

𝜃𝑑  Dynamic contact angle (°) 

𝜃𝑠  Quasi-static contact angle (°) 

𝜌  Density (kg/m3) 

g  Gravity (m/s2) 

𝑙𝑐  Capillary length (mm) 

b Characteristic length (mm) 

𝐿𝑆  Slip length (mm) 

𝜂 Viscosity (Pa·s) 

𝐶𝑎  Capillary number 

𝐴, 𝐵  Constants in power law function 

𝜔  Liquid bridge transfer ratio 

𝑈  Substrate stretching speed (cm/s) 

𝒓  Position vector of SPH particle 

ℎ  Smoothing length (m) 
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𝑚   Particle mass (kg) 

𝑊  Smoothing function 

𝑐  Artificial sound speed (m/s) 

∆𝑡  Time step (s) 

𝐶, 𝐷  Constants in potential energy function 

𝛼𝑖𝑗  Inter-particle force strength parameter (J) 

𝜏  Shear stress (N/m2) 

𝛾̇  Shear rate (s-1) 

𝐿0  Particle spacing (m) 

𝑭𝑖
𝑣𝑖𝑠  Interfacial viscous force (N) 

𝜂∗  Interfacial viscosity (Pa·s) 

𝑄  Flow rate (m3/s) 

𝑣𝑡 Triple-line region velocity (m/s) 

𝑡 Simulation time (ms) 

𝜃𝑡 Contact angle of top substrate (°) 

𝜃𝑏 Contact angle of bottom substrate (°) 
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Abstract     

 

Complex interactions in porous media play an important role on many industrial and 

geotechnical applications, such as groundwater treatment, porous catalysts, carbon 

geosequestration, and oil recovery. Rate-dependent wetting effects are of great significance in 

understanding the multiphase behaviours of porous media thus further throw light on 

engineering solutions to the above problems. A number of experimental studies and theoretical 

models suggest that the contact angle varies with the velocity of fluid at triple-line region, thus 

resulting in dynamic capillary interactions. 

In this thesis, a modified smoothed particle hydrodynamics (SPH) model is applied to simulate 

(1) the contact angle dynamics and (2) stretching of liquid bridge at meso-scale. This SPH 

model adopted an inter-particle force formulation with short-range repulsive force and long-

range attractive force to take into account single-phase and multiphase interactions. The free 

surface of fluids with different surface tension can be reproduced by adjusting liquid-liquid 

inter-particle force parameter. By changing the liquid-solid inter-particle force parameter, solid 

surfaces from hydrophobicity to hydrophilicity can be reproduced. Through parametric studies, 

other physical properties predicted from the model including density, viscosity and 

compressibility are also implemented and can be altered for various fluid constituents. 

Particularly, a newly-introduced viscous force is imposed at the liquid-solid interface to capture 

the rate-dependent behaviours of contact angle without prescribing additional arbitrary 

condition or force.  

After identification of model parameters in Chapter 4, the rate-dependent contact angle 

behaviours are studied in Chapter 5, for both wetting and dewetting phenomena. It has been 

found that the dynamic contact angle only occurs when the proposed interfacial viscous force 

is included in the momentum equation. By analysing the contact angle results of fluid at triple-

line region with different moving speeds, the dynamic contact angles and corresponding 

capillary numbers can be correlated by power law functions. The derived correlation and 

constants are compared with different forms of empirical power law functions and the results 

are satisfactory. The magnitude of interfacial viscous force is proven to be influential on contact 

angle dynamics, and this interfacial model shares direct physical links with the apparent slip 

length and microscopic surface roughness.  
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In Chapter 6, we investigated the properties of stretching liquid bridges, including shape 

evolution, liquid transfer ratio and flow condition under dynamic loading. The Equation of 

State is modified for reproducing the rupture of a stretched liquid bridge. Different stretching 

rates are applied, and the shapes of liquid bridge at same breakup distance is presented. By 

differentiating the wettability of top and bottom substrates, the liquid transfer ratio regarding 

wettability difference and substrate moving speed is studied. In addition, we examined the flow 

condition during liquid bridge formation and rupture. 

In conclusion, a modified SPH model has been proposed to simulate the pore-scale effects and 

interactions, including surface tension, dynamic contact angles, and stretching of liquid bridges. 

With the newly-introduced interfacial viscous force which accounts for the relative shearing 

between solid and liquid particles, the contact angle associated with a moving contact line can 

be successfully reproduced. In addition, the shape evolution and rupture of liquid bridge are 

further studied by setting different stretching speeds and wettability of substrates. These results 

demonstrated the robustness of the proposed model in simulating multiphase flow in geo-

materials, and the potential to interpret more complex characteristics and behaviours of 

capillary interactions at macro-scale. 
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Chapter 1  

Introduction 

 

Multiphase flows and capillary interactions in porous media are of great significance in many 

industrial applications, such as carbon sequestration [1], groundwater treatment [2], oil 

recovery [3], and porous catalysts [4]. These processes usually involve rate-dependent wetting 

behaviour, which acts as a critical role in describing the wetting and dewetting of the systems. 

To account for the dynamic wettability and associated contact angle dynamics, experimental 

characterisation [5-7], theoretical modelling [8, 9], and various numerical methods [10-12] are 

conducted over the decades. Among these approaches, numerical methods demonstrated 

substantial advantages in modelling the multiphase flow and capillary interactions, including 

time and cost efficiency, flexibility of simulation length scales, and free of external interference. 

However, there are limited cases with successful numerical implementation in modelling the 

dynamic capillary interactions within reasonable time and length scales while preserving 

realistic physical basis and quantities. 

Contact angle is formed when a liquid is brought into contact with solid surface and it can 

change considerably from static value under dynamic conditions due to the contact line motion. 

The dynamic contact angle, 𝜃𝑑, associated with a moving contact line can be expressed by the 

corresponding triple-line region velocity 𝑣𝑡 and quasi-static contact angle 𝜃𝑠: 𝜃𝑑 = 𝑓(𝑣𝑡, 𝜃𝑠) 

[13]. The dynamic contact angle is an important physical parameter in fluid dynamics that 

affecting the behaviours of capillary flows with low Reynold number, 𝑅𝑒. The capillary flows 

are usually represented by relatively small capillary number, 𝐶𝑎 and bond number, 𝐵𝑜: 

𝐶𝑎 =  
viscous force

surface tension force
=
𝜂𝑣

𝛾
, (1.1) 

𝐵𝑜 =  
gravitational force

surface tension force
=
𝑔𝜌𝑏2

𝛾
, (1.2) 

where 𝜌 , 𝛾 , 𝜂 , 𝑣 , 𝑔  and 𝑏  are density, surface tension, viscosity, velocity, gravity and 

characteristic length, respectively. To account for the problem of contact angle with moving 
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contact line, researchers have developed several models including hydrodynamic model [8], 

molecular-kinetic model [14], and combined model [15].  

However, the complete understanding of dynamic contact angle with moving contact line is 

still an open topic due to the complex multiphase interactions and the fundamental role of the 

liquid-solid-vapour triple-line region in the liquid spreading. Experimental investigations on 

dynamic contact angle could be strongly influenced by small length-scale physical and 

chemical heterogeneities, surface roughness change due to liquid-solid phase interactions, 

impurities adsorbed on the solid surface, and growth and dissolution of bubbles, etc [16]. 

Therefore, the numerical modelling of the dynamic contact angle plays a significant role in 

studying the capillary effects and fluid dynamics. 

Considering the above-mentioned limitations and availability of experimental conditions and 

facilities, the numerical approaches including molecular dynamics (MD) [11, 17, 18], lattice-

Boltzman methods (LBM) [10, 19, 20], and smoothed particle hydrodynamics (SPH) [12, 21] 

serve as powerful tools to study the fundamental mechanisms within capillary interactions. At 

the micro-scale, Koplik et al. [11] identified rate-dependent behaviour for dynamic receding 

angle with MD simulation in an immiscible two-fluid system. Lukyanov and Likhtman [18] 

applied MD simulation to explain the behaviours of dynamic contact angle from the perspective 

of force distribution and friction law. Nevertheless, there are restrictions in simulation time and 

length scales due to the high computing power required for MD simulations. At the meso-scale, 

researchers also proposed and verified the power law correlation between 𝐶𝑎 and dynamic 

contact angle with multiphase capillary flow using LBM and SPH method, and the outcomes 

consist with experimental results and theoretical predictions [10, 12, 19-21]. To deal with 

moving boundaries problem, LBM requires additional algorithm which may lose the accuracy 

of the standard scheme [22]. For the previously mentioned SPH models that successfully 

simulated the dynamic contact angle, additional terms should be imposed, such as contact line 

force formulation at the triple-line region [12] and Young–Laplace boundary condition at the 

fluid-fluid interface [21], all of which require explicit modelling of all phases in the pore space 

thus dramatically increase the computational cost. 

This thesis is organized as follows: In Chapter 2, we present a literature review regarding basic 

knowledge and current study on dynamic capillary interactions, i.e., (1) contact angle dynamics, 

and (2) stretching and rupture of liquid bridges. Experimental findings, theoretical predictions 

and simulation approaches concerning the contact angle with moving contact line problem are 
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presented and discussed. The SPH model with inter-particle force and modified liquid-solid 

interface formulation are described in Chapter 3. Chapter 4 presents parameter identification 

and model calibration for density, viscosity, surface tension, static contact angles and liquid-

solid interactions. In Chapter 5, we examine the effectiveness of newly-introduced interfacial 

viscous force formulation. Then the correlations between dynamic contact angle and 𝐶𝑎 with 

empirical power law functions are analysed under different magnitude of interfacial viscous 

force. The physical meaning of interfacial viscous force parameter is further illustrated from 

the perspective of slip length and microscopic surface roughness, followed by mesh sensitivity 

tests and flow condition examination. Chapter 6 presents the rate-dependent behaviours of 

liquid bridges under dynamic loading conditions. The shape evolution of liquid bridges with 

different stretching speeds and substrate wettability are described. In addition, we study the 

liquid bridge transfer ratio by differentiating the wettability of top and bottom substrates, and 

the results are compared with other experiments and simulations. Finally, conclusions are made 

in Chapter 7. 
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Chapter 2  

Literature Review 

 

In this Chapter, the background and basic concepts of capillary interactions will be presented. 

Based on theoretical predictions, experimental results and numerical simulations, the rate-

dependent behaviours of capillary interactions are introduced and discussed with an emphasis 

on contact angle dynamics and properties of stretched liquid bridges. In addition, a brief 

introduction of SPH method with existing approaches for surface tension and dynamic contact 

angle prescription is presented.  

2.1 Capillary interactions 

2.1.1 Surface tension 

Surface tension, caused by the imbalance of molecular force at the interface between two 

immiscible fluids, is one of the most important properties in the phenomenon of capillarity. In 

the fluid bulk region, each molecule is pulled equally by neighbouring molecules in every 

direction, while there is no molecule for those molecules exposed at the surface. Therefore, the 

force balance is broken at the surface, and this leads to an attractive force pulling the surface 

inwards to maintain the lowest surface free energy as well as the least surface area of the fluid. 

The surface tension is defined as the work consumed (∆𝑊) per unit of new surface area formed 

(∆𝐴) [23]: 

γ =
∆𝑊

∆𝐴
=
𝐹∆𝑅

∆𝐴
=

𝐹∆𝑅

2𝜋𝑅∆𝑅
=

𝐹

2𝜋𝑅
=
𝐹

𝐿
, (2.1) 

where 𝛾 is surface tension, 𝐹 is the force acting on the surface, 𝑅 is the droplet circle radius, 

and 𝐿 is the length of the line that the force acts on perpendicularly. In practise, surface tension 

can be measured by several methods such as capillary rise method, sessile drop method, bubble 

pressure method and so on. 

https://en.wikipedia.org/wiki/Capillary_action
http://en.wikipedia.org/wiki/Surface_area
https://en.wikipedia.org/wiki/Bubble_pressure_method
https://en.wikipedia.org/wiki/Bubble_pressure_method


 

6 

 

2.1.2 Young-Laplace equation 

A consequence of surface tension is the presence of a pressure difference ∆𝑃 between a liquid 

drop and the medium. Considering a small section of the interface between liquid and gas phase, 

see Fig. 2.1. The surface is expanded by a tiny amount of 𝛿𝑧 along the normal to the surface, 

with the local radius of curvature changing from 𝑅𝑖  to 𝑅𝑖 + 𝛿𝑧, and the area 𝐴 = 𝛿𝑥𝛿𝑦 also 

increases to (1 + 
 𝛿𝑧 

𝑅1
 +

 𝛿𝑧 

𝑅2
 ) 𝐴. In equilibrium, the virtual work done by the contraction forces 

must balance the work of the pressure: 

𝛾 (
 1 

𝑅1
 +
 1 

𝑅2
)𝐴𝛿𝑧 − ∆𝑃𝛿𝑉 =  0, (2.2) 

where 𝛿𝑉 = 𝐴𝛿𝑧 is the small change in droplet volume due to the displacement of the interface, 

and the Young–Laplace equation is derived as: 

𝛾 (
 1 

𝑅1
 +
 1 

𝑅2
) = ∆𝑃, (2.3) 

where and 𝑅1 and 𝑅2 are the principal radius of curvature. 

 

Fig. 2.1 The geometry considered to derive the Young-Laplace equation [24]. 

2.1.3 Capillary pressure 

Capillary pressure acts as dominant role in the displacement of multiphase flow, and it is 

generally defined as the pressure difference across the interface between two immiscible fluids, 

see Fig. 2.2 [25]: 

𝑃𝑐 = 𝑃𝑛𝑤 − 𝑃𝑤, (2.4) 

where 𝑃𝑐  is capillary pressure, 𝑃𝑛𝑤  is the pressure in the non-wetting phase and 𝑃𝑤  is the 

pressure in the wetting phase. 

https://en.wikipedia.org/wiki/Radius_of_curvature_(mathematics)
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Fig. 2.2 Illustration of capillary pressure: water rise in a capillary tube, where water is a 

wetting fluid and air is a non-wetting fluid. 

According to Young-Laplace equation, the wetting contact angle of free surface inside the 

capillary tube is prescribed by the capillary pressure, surface tension, and effective radius of 

curvature [26, 27]: 

𝑃𝑐 =
2γcos𝜃

𝑅
, (2.5) 

where 𝜃 is the contact angle on the surface of the capillary and 𝑅 is the effective radius. 

2.1.4 Capillary length  

It is common to observe free liquid presenting different rest shapes, because in addition to 

surface tension, other forces also contribute largely to the overall liquid-air interface shape. 

The most common factor is gravity, which flattens profile of large drops to reduce the 

gravitational energy of the liquid. For gravity to be negligible, the radius of the droplet should 

be smaller than the capillary length 𝑙𝑐, which is defined by the balance between Young-Laplace 

pressure γ/𝐿 and the correspondent hydrostatic pressure 𝜌𝑔𝐿: 

𝑙𝑐 = (
γ

𝜌𝑔
)

1
2

(2.6) 

The capillary length provides a clear upper bound on the size of the systems in the following 

simulations, as long as we are focusing on capillarity interactions.  

2.1.5 Boundary condition and slip length 

The physics of the interfacial flow between the liquid and solid phases are critical for in-depth 

understanding of fluid dynamics in confined geometries. Identifying the appropriate boundary 

conditions is one of the most important contents in studying the above system. The no-slip 

boundary condition in Fig. 2.3 (a) is usually considered to be appropriate for most macro flows, 
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where the relative velocity of fluid adjacent to the solid boundary is assumed to be zero. Other 

than the no-slip condition, partial slip is first proposed by Navier [28] to describe the slip of 

fluid at solid surface, as shown in Fig. 2.3 (b). The slip length 𝐿𝑆 represents the distance from 

the liquid-solid interface to the point where the extrapolation of liquid velocity is zero. In 

Navier’s model, slip velocity 𝑣𝑠 is related to 𝐿𝑆 as well as the shear rate that fluid exert at the 

wall: 

𝑣𝑠 = 𝐿𝑆
𝜕𝑣𝑏
𝜕𝑧
, (2.7) 

where 𝑣𝑏 is the velocity of the bulk fluid and 𝑧 is the axis perpendicular to the wall. 

 

(a) (b) 

Fig. 2.3 Schematic representation of (a) the no-slip boundary condition, and (b) the partial 

slip boundary condition. 

According to a number of experimental studies, 𝐿𝑆 usually ranges from 0 to 10 nm with various 

fluids and solid surfaces, and some of the cases show dependency of slip on shear rate. More 

details are described and summarized in [29]. However, compared with the predictions under 

no-slip boundary conditions and bulk fluid viscosity, the average boundary fluid velocity and 

slip length of pressure-driven flow can increase dramatically on certain surfaces, such as 

superhydrophobic and rough surfaces [30-33]. For instance, for hexadecane flowing over a 

bare sapphire surface, 𝐿𝑆 can reach hundreds of nanometres [30], and 𝐿𝑆 up to 400 um was 

achieved on hydrophobic micro-macro structures [33]. Furthermore, the slip length can even 

larger than 1 mm for fluid flow through the aligned carbon-nanotube membrane [32]. In 

addition, molecular dynamics simulations also suggest slip length may increase as the 

approaching of contact line [11]. 
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2.2 Contact angle hysteresis and dynamics 

2.2.1 Wetting and contact angle 

Wetting process can be characterised by the liquid-solid-vapour three-phase contact line as a 

combination consequence of adhesive and cohesive forces. The three-phase contact line 

generates a contact angle which is regarded as primary parameter in wettability studies. In 

general, contact angle less than 90° represents high wettability of surface, i.e., hydrophilicity 

while for the contact angle larger than 90° corresponds to low wettability, i.e., hydrophobicity.  

Equilibrium contact angle 𝜃𝑒 is achieved when three-phase contact line no longer moves, see 

Fig. 2.4, and 𝜃𝑒  relates the relative strength of the liquid, solid, and vapour molecular 

interaction according to Young’s equation [26]: 

𝛾𝑙𝑣cos𝜃𝑒 = 𝛾𝑠𝑣 − 𝛾𝑠𝑙, (2.8) 

where 𝛾𝑙𝑣 , 𝛾𝑠𝑣   and 𝛾𝑠𝑙 are the liquid-vapor, solid-vapor and liquid-solid interfacial tension 

respectively. 

 

Fig. 2.4 Equilibrium contact angle formed on a smooth homogeneous solid surface [34]. 

Based on Young’s equation, thermodynamic parameters 𝛾𝑙𝑣, 𝛾𝑠𝑣 and 𝛾𝑠𝑙 give a unique contact 

angle when the wettability of an ideal surface is fixed. However, on a non-ideal surface, the 

contact angles formed by expanding or contracting the liquids could be greatly different. These 

two contact angles are called advancing or receding angle, respectively, which represent the 

maximum or minimum contact angle when the advancing or receding contact line begin to 

move, see Fig. 2.5. The difference between the advancing angle 𝜃𝑎 and receding angle 𝜃𝑟 is 

characterised as contact angle hysteresis [35]. 
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Fig. 2.5 Advancing and receding angles induced by the drop method [25]. 

2.2.2 Rate-dependent behaviour of contact angle 

The apparent contact angle associated with a moving contact line varies with velocity. The 

behaviours of dynamic contact angle associated with contact line motion of spreading liquids 

can be described by several theories, including hydrodynamic model [8], molecular-kinetic 

model [14], and their combination [15].  A number of empirical relationships and theoretical 

models for wetting have been discussed in the literature, and all of which suggest the dynamic 

advancing (or receding) contact angle 𝜃𝑑
𝑎 (𝜃𝑑

𝑟) as a function of 𝐶𝑎 and the corresponding quasi 

static contact angle 𝜃𝑠
𝑎 (𝜃𝑠

𝑟) during wetting (dewetting) processes. Elliot and Riddiford [36] 

found the dynamic contact angle is rate-independent when 𝐶𝑎 < 2 × 10-7 for water with glass 

or polyethylene plate. Schwartz and Tejeda [5] also identified that the dynamic contact angle 

is constant for 𝐶𝑎  < 2 × 10-6. For 10-6 < 𝐶𝑎  < 10-2, the dynamic contact angle changes 

monotonically with 𝐶𝑎, and the most commonly suggested relationship is:  

|cos𝜃𝑑
𝑎/𝑟
− cos𝜃𝑠

𝑎/𝑟
| = 𝐴𝐶𝑎𝐵, (2.9) 

where 𝐴 and 𝐵 are constants. This result reveals that dynamic wetting has universal behaviour 

which is independent of the details of the liquid-solid-gas system [13]. 

From theoretical predictions and studies, different values for exponent 𝐵  are derived. 

Nattermann et al. [37] applied functional renormalization-group (RG) methods to describe the 

behaviour of depinning transition and obtained 𝐵 = 1.5. Hoffman [9] assumed a microscopic 

scenario where the liquid molecules advance at liquid-gas interface by a surface diffusion 

mechanism, and 𝐵 = 1 is obtained over the range of 10-5 < 𝐶𝑎 < 10-3. Cox [8] adopted a general 

slipping model and a matched asymptotic expansion to investigate the contact line movement 

and obtains 𝐵 = 1 for 𝐶𝑎 < 10-3. A treatment of the contact line motion in the presence of an 

adsorbed film is given by Mumley et al. [38], and they obtained 𝐵 ≈ 0.5 for 10-4 < 𝐶𝑎 < 10-2 

and 𝐵 ≈ 1 for 𝐶𝑎 < 10-5. Ishimi et al. [39] considered the complete wetting situation in the 

presence of a monomolecular film. They presume that the energy dissipation is caused by a 

frictional force acting on the film due to the balance for interfacial tension forces and the 
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analysis led to 𝐵 = 0.5. Sheng and Zhou [40] took a different approach and confirmed that 

viscous effects would give an intrinsic 𝐵 = 1 for relatively small 𝐶𝑎. 

In addition to the abovementioned theoretical models, experimental studies with various 

techniques in diverse systems have also found different values for the exponent 𝐵 over wide 

ranges of 𝐶𝑎 . Schwartz and Tejeda [5] measured the dynamic contact angle by dipping 

filaments with rough surfaces into different liquids. The results led to 1/3 < 𝐵 < 1 for 𝐶𝑎 

ranging from 10-4 to 10-2. Rillaerts and Joos [41] used paraffin oil and aqueous glycerol to 

measure the dynamic contact angle in prewetted capillaries, and the results suggest that 𝐵 = 

0.5 for  4 × 10-4 < 𝐶𝑎 < 4 × 10-2. Bracke et al. [7] measured dynamic contact angles in which a 

continuous solid strip is drawn into a large liquid pool. After testing with several liquids 

including corn oil aqueous, glycerine, and ethyleneglycol solutions, they obtained 𝐵 ≈ 0.5 for 

3 × 10-3 <  𝐶𝑎 < 10-1. Stokes et al. [42] used a glycerol-methanol mixture as the more wetting 

fluid to displace a mineral oil. They found 𝐵 ≈ 0.4 for 5 × 10-5 < 𝐶𝑎 < 5 × 10-4. Recently, Zhang 

et al. [43] Obtained 𝐵 ≈ 0.2 for water and glycerol between two moving substrates over the 

range 10-5 < 𝐶𝑎 < 10-1. 

It’s also been pointed out that the dependence of the contact angle on moving contact line 

velocity, i.e., the value of 𝐵, is enhanced by rough surfaces [5, 44]. Karim et al. [45] conducted 

dynamic contact angle experiments on rough Teflon plates with different roughness, and they 

found the dynamic contact angle is significantly influenced by the degree of roughness of 

Teflon surface. The contact angle hysteresis is only within 5° on smooth surface. While on 

rough surface, the contact angle hysteresis is more than 20° and increases with the surface 

roughness. 

2.2.3 Measurement of contact angle 

One significant challenge with droplets from particle method simulations is that the 

conventional contact angle becomes ill-defined even for smooth surfaces, as illustrated in Fig. 

2.6. Due to the interaction between the surface and the fluid, the liquid particles adjacent to the 

surface is frequently restructuring. Therefore, different methods to approximately fit the outline 

of a droplet and measure the contact angle have been applied [46-48]. One approach is to 

neglect the liquid particles that are closest to the surface for a certain distance [49-51]. This 

approach is realized by physically drawing a line that is equal to the slope of the droplet just 

above the neglected thickness, then using this line to calculate the contact angle between the 

droplet and the surface. This treatment is simple and only requires a liquid density profile and 
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drawing a line. The disadvantage is the lack of an empirical method to verify the accuracy of 

the line placement, thus could lead to some error for the calculation of contact angle. 

Considering the anisotropy of the wetting behaviour, contact angle values are often averaged 

from different side views. 

 

Fig. 2.6 Illustration of the contact angle measurement deviation [52]. 

2.3 Stretched liquid bridges 

2.3.1 Capillary force  

As mentioned in Section 2.1.2, the Young-Laplace equation relates the mean curvature and the 

pressure difference across the liquid interface. When the liquid bridge is formed between two 

parallel substrates as shown in Fig. 2.7, the force that the liquid bridge exerts on the substrates 

can be calculated from the Laplace pressure and the contact area of the liquid on the substrate: 

𝐹𝑙 = 𝜋𝑅1
2𝛾 (

 1 

𝑅1
 +
 2𝑐𝑜𝑠𝜃 

𝐻
) , (2.10) 

where 𝐹𝑙 is the total force, 𝑅1 and 𝑅2 are the principle radii of the curvature, 𝐻 is the height of 

the liquid bridge, and 𝜃 is the contact angle. 

 

Fig. 2.7 Schematic of a capillary bridge between two parallel plates [53]. 

2.3.2 Liquid transfer  

Liquid bridges formed between two rigid bodies with an arbitrary shape play an important role 

in capillary interactions. The rupture and transfer of liquid bridge has been widely investigated. 

A typical transfer process usually involves compress, pause, retreat and rupture, see Fig. 2.8. 
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With the compress of the substrate, a liquid bridge is formed between the acceptor and donor 

surfaces. After the system is in the equilibrium state, the acceptor substrate is slowly retreated 

from the donor surface till the liquid bridge is ruptured. The shape of a stretched liquid bridge 

has been demonstrated to be affected by various factors, including stretching speed, wettability 

of substrates, viscosity and surface tension of liquid, etc. [54-56].  

 

Fig. 2.8 A schematic illustration of a typical liquid drop transfer process [57]. 

The transfer ratio, 𝜔, is another important parameter in describing the stretching process of a 

liquid bridge, which is defined as the ratio between the volume of the liquid transferred onto 

the acceptor surface and the total liquid volume. Experimental findings and theoretical models 

have demonstrated that the transfer ratio can be described as a function of stretching speed 𝑈: 

𝜔 = 𝑓(𝑈), and three regimes for liquid transfer (quasi-static, transition and dynamic) are 

identified [57]. In Fig. 2.9, we can see that the transfer ratio is almost 100% for relatively small 

stretching speed, and this regime refers to the quasistatic regime where surface forces 

dominates the transfer process. While for relative large stretching speed, the transfer ratio 

converges to 0.5, and viscous and inertial forces dominate this dynamic regime. In the transition 

regime, all the three forces are contributing to the transfer process. It is noteworthy that in the 

quasistatic regime, the wettability of substrates plays an important role in determining the 

transfer ratio. Experimental results suggest that liquid will transfer to the more wettable surface 

at low 𝐶𝑎 regime [54]. 
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Fig. 2.9 Relation between transfer ratio, 𝜔, and stretching speed 𝑈 for glycerol transferred 

from OTS to PEMA surfaces, and three regimes are identified [57]. 

2.4 SPH methods for capillary interactions  

In this section, the SPH method is briefly introduced with emphasis on reviewing existing 

approaches for surface tension and dynamic contact angle modelling. SPH method is a fully 

mesh-free, Lagrangian particle numerical method proposed and developed by Gingold and 

Monaghan [58] and Lucy [59] in 1977. One of the major topics studied in SPH is interfacial 

flows including floating body simulation [60] and multiphase studies [61, 62]. Although one 

of the main challenges faced by SPH is the problem of size, this challenge can be overcome 

with the use of massively parallel implementations [63]. In SPH models, the fluid is represented 

by a discrete set of 𝑁 particles. The position of the 𝑖𝑡ℎ particles is denoted by the vector,  𝒓𝑖, 

𝑖 = 1, … , 𝑁. SPH theory is based on the idea that continuous variables are represented as the 

superposition of smoothing functions centred on a set of discrete particle points, 𝒓𝑖, as shown 

in Fig. 2.10. Detailed SPH formulations and discretisation of Navier-Stokes (N-S) equations 

will be described in Chapter 3. 
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Fig. 2.10 Particle approximation in SPH method. 

2.4.1 Advantages and disadvantages of SPH methods 

A good knowledge of advantages of SPH method is helpful in deciding whether SPH is suitable 

for a particular problem. A few notable points from academic reviews [64, 65] that introduce 

the relative advantages of SPH are listed below: 

a) Compared with grid based methods, it is easier to vary spatial and temporal resolution 

in SPH. In grid based methods, sophisticated schemes are required in order to change 

grid size and indexing [66]. While, in SPH the smoothing length can be adjusted 

according to relatively simple criteria. 

b) It is also easy to include additional physics and transport equations in SPH which makes 

numerical computations to be explicit. Another advantage lies in the increased accuracy, 

the Lagrangian form treat fluid displacement in an intrinsic manner instead of an 

iterative procedure. This leads to reduced effects of numerical diffusion on velocity and 

momentum. 

c) Due to the Lagrangian particle nature of SPH, explicit interface tracking or capturing 

is not required. The difficulties associated with grid-based continuum numerical 

methods to processes with complex dynamic interfaces and/or boundaries is avoided.  

Therefore, SPH is an ideal choice for modelling free surface and interfacial flow problems. 

It is also necessary to keep in mind the following disadvantages of SPH:  

a) Numerical issues such as tensile instability [67] sometimes limit the range of problems 

can be addressed. In fluid dynamics problems, tensile instability can be resolved by 

applying sufficiently large positive background pressure to avoid the formation of 

negative pressure regions. In the literature, adding artificial pressure [68], higher order 

kernels [69] and kernel gradient correction [70] can handle the tensile instability issue. 
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b) Compared with grid-based methods which can be designed to suit a particular problem 

by defining and modifying mesh geometry [71], SPH sometimes can lead larger errors 

because the Lagrangian nature of SPH makes it more difficult to control particle 

parameters, for instance, to allow changes of particles in size and number.  

c) Computational resource requirements can often be significantly greater for SPH method 

than their grid-based counterparts. Steady state solutions for many fluid dynamics 

problems are more time-consuming with SPH than finite elements due to the time-step 

restrictions for stable solutions of good quality [72].  

2.4.2 Implementation of surface tension in SPH 

Traditional SPH methods impose zero pressure Dirichlet boundary condition to free surface 

particles and thus make it difficult to implement a surface tension model at the free surface. 

However, a reliable surface tension model is required for numerical simulation of dynamic 

capillary interactions. In SPH, multiphase flow with surface tension have been modelled with 

different methods described as follows.  

Brackbill et al. [73] proposed Continuum Surface Force (CSF) method to model surface tension 

effects where the surface force per unit mass is approximated by: 

𝐹𝑠 =
𝜎𝜅𝒏𝛿(𝑠)

𝜌
, (2.11) 

where 𝜎 is the surface-tension coefficient, 𝜅 = −∇ ∙ 𝒏 is the average curvature, 𝒏 is the unit 

outward normal, and 𝛿(𝑠) is a one-dimensional delta function of the distance 𝑠 perpendicular 

to the surface. This method consists of identifying the normal to the target surface by assigning 

a colour 𝐶  to each fluid particle and finding the gradient of the colour function from 𝒏 =

∇𝐶/|∇𝐶| , e.g., ∇C = ∑
𝑚𝑏(𝐶𝑏−𝐶𝑎)

𝜌𝑏
𝑏 ∇𝑎𝑤𝑎𝑏(ℎ). The curvature can then be calculated by an SPH 

form of the divergence of 𝒏.  

Yeganehdoust et al. [74] developed an efficient CSF method to track and correct colour 

function of boundary particles. The static contact angles, liquid droplet evolution and dynamic 

wetting angles on inclined surfaces and droplets collision have been successfully reproduced. 

Hu & Adams [61] modified the particle smoothing function for pressure and gradient terms 

and an alternative form of the colour gradient function is applied, in which the steady 

equilibrium droplets, capillary waves and drop deformations in shear flow have been achieved 

[75]. 
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Another approach is to treat the SPH particles as real physical particles and superimpose forces 

in between to create the effects of surface tension [76, 77], i.e., Inter-Particle Force (IPF) model. 

For example, Tartakovsky and Meakin [76] implemented pairwise particle-particle interactions 

with the following force/mass between particles separated by a distance 𝑟: 

𝐹(𝑟𝑖𝑗) = {
𝑠𝑖𝑗 cos (

3𝜋

2ℎ
) 𝑟𝑖𝑗, 𝑟𝑖𝑗 ≤ ℎ 

           0               , 𝑟𝑖𝑗 > ℎ 
. (2.12) 

The force 𝐹(𝑟𝑖𝑗) is repulsive for 𝑟𝑖𝑗  less than ℎ/3, attractive for 𝑟𝑖𝑗  between ℎ/3 and ℎ, and 

zero for 𝑟𝑖𝑗 larger than ℎ. The choice of parameter 𝑠𝑖𝑗 depends on the properties of different 

fluids and it is expected to be proportional to the surface tension. This surface-tension model 

is applied onto a series of problems involving drops, and fluid moving through fractures, and 

satisfactory results have been obtained. 

2.4.3 Prescribing dynamic contact angle in SPH 

The numerical simulation of capillary interactions in multiphase flow requires appropriate 

liquid-solid interactions and boundary conditions for reproducing dynamic contact angle. In 

the literature, there are only a few approaches are developed for prescribing dynamic contact 

angle in SPH. Tartakovsky and Panchenko [21] applied the dynamic Young–Laplace boundary 

condition at the fluid–fluid interface to obtain the rate-dependent contact angle at triple-line 

region. Huber et al. [12] introduced a Contact Line Force (CLF) model where the interfacial 

tension tangential to the solid interface is balanced by a driving force acting on the contact line, 

so the dynamic contact angle and moving contact line is properly implemented. Hochstetter 

and Kolb [78] directly applied the Cox’s law [8] to reproduce the dynamic contact angle, which 

is related to the third power of 𝐶𝑎. In addition, Farrokhpanah [79] applied dynamic contact 

angle by correcting the unbalanced force in the colour function near the contact line. However, 

the aforementioned approaches either lack direct links to realistic physical quantities that 

usually involved in complex flow conditions, or require explicit modelling of all phases in the 

pore space thus the computational cost is dramatically increased. Therefore, a new approach 

for tackling dynamic contact angle in SPH method will be desired in Chapter 3. 
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Chapter 3  

SPH Method and Numerical Model 

 

The SPH method is a fully mesh-free, Lagrangian method proposed by Gingold and Monaghan 

[58] and Lucy [59] independently for astrophysical problems. With the continuous 

development of the method, SPH is capable of handling many categories of engineering and 

physics problems. By imposing interpolation on the smoothing kernel, it is possible to estimate 

the derivatives of particle properties including pressure, density and viscosity. Gravitational 

forces can be implemented by summing over the particles with prescribed algorithms. In this 

chapter, the SPH method and selection of smoothing function are introduced, followed by the 

SPH discretisation of N-S equation, implementation of particle-particle interaction force model, 

and the newly-introduced interfacial viscous force formulation for accounting the dynamic 

capillary interactions. 

3.1 SPH method 

3.1.1 Smoothing function 

The SPH method is based on the idea that a continuous field 𝐴(𝒓𝑖) at position 𝒓𝑖  can be 

smoothed by a convolution integral with smoothing function, 𝑊(𝒓𝑖 − 𝒓𝑗 , ℎ), allowing the 

value of any function to be obtained at a given point with neighbouring particles: 

𝐴(𝒓) = ∫𝐴(𝒓′)𝑊(𝒓 − 𝒓′, ℎ)𝑑𝒓′

𝛺

, (3.1) 

where ℎ  is smoothing length. The correctness for the approximation Eq. (3.1) should be 

ensured by imposing several conditions on the smoothing function. The first is the 

normalization condition, which requires the integral of the smoothing function equal to 1: 

∫𝑊(𝒓 − 𝒓′, ℎ)𝑑𝒓′

𝛺

= 1. (3.2) 

The second condition is the delta-function property, where 𝑊 should become a Dirac delta 

function in the ℎ → 0 limit [80]: 
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𝑊(𝒓 − 𝒓′, ℎ)
ℎ→0
→  𝛿(𝒓 − 𝒓′) . (3.3) 

The integral of Eq. (3.1) is cast in the discrete form for computational use: 

𝐴(𝒓𝑖) =∑𝐴(𝒓𝑗)
𝑚𝑗

𝜌𝑗
𝑗

𝑊(𝒓𝑖 − 𝒓𝑗 , ℎ), (3.4) 

where 𝑚𝑗 and 𝜌𝑗 are mass and density of the 𝑗𝑡ℎ particle, respectively. 

3.1.2 Approximation of the function’s gradient 

Following Monaghan [65],  the approximation of function gradient ∇𝐴(𝒓) is obtained by the 

gradient of the smoothing function: 

∇𝐴(𝒓) = ∫𝐴(𝒓′)∇𝑊(𝒓 − 𝒓′, ℎ)𝑑𝒓′

𝛺

, (3.5) 

where ∇𝑊(𝒓 − 𝒓′, ℎ) is the gradient of the smoothing function. In the discrete form, Eq. (3.5) 

is rewritten as: 

∇𝐴(𝒓𝑖) =∑
𝑚𝑗

𝜌𝑗
𝐴(𝒓𝑗)∇𝑊(𝒓𝑖 − 𝒓𝑗 , ℎ)

𝑛

𝑗=1

. (3.6) 

In general, the summation in Eq. (3.6) is conducted over all particles in the computational 

domain. When a smoothing function with compact support domains are imposed, the 

summation is only applied to the neighbouring particles within the range of smoothing length. 

3.1.3 Forms of smoothing functions 

A variety forms of smoothing functions have been used in SPH models, including Gaussian 

kernel [58], quadratic kernel [81], cubic-spline kernel [82], and fourth-order kernel [83]. 

Generally, the accuracy of the SPH interpolation increases with the order of the polynomial 

used in the smoothing function (except for the Gaussian kernel which has an exponential form). 

However, the computational time also increases with the order of the kernels. In this study, a 

Gaussian kernel is adopted for the proposed SPH model considering both calculation accuracy 

and computational efficiency:  

𝑊(𝒓, ℎ) =
1

ℎ√𝜋
𝑒
−(
𝒓2

ℎ2
)
 . (3.7) 
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3.2 Numerical model 

The Lagrangian form of Navier-Stokes equation for an incompressible Newtonian fluid is 

expressed as follows: 

𝑑𝒗𝑖
𝑑𝑡
= −

∇𝑃

𝜌𝑖
+ 𝜇

∇2𝒗𝑖
𝜌𝑖

+ 𝑭 , (3.8) 

where 𝒗𝑖  is flow velocity, 𝑃  is pressure, 𝜌  is density, 𝜇
∇2𝒗𝑖

𝜌𝑖
 is the viscous term, and 𝑭 

corresponds to the total volumetric force acting on unit mass. To represent the conservation of 

the mass for fluid flow, the continuity equation is usually written in the following form: 

𝑑𝜌

𝑑𝑡
= −𝜌∇ ∙ 𝒗𝑖 . (3.9) 

Using the definitions of gradients derived above, the Navier-Stokes Eq. (3.8) and (3.9) can be 

written in SPH form now. 

3.2.1 Momentum equation 

The approximation of function gradient in Eq. (3.6) can be applied to the pressure gradient 

term in Eq. (3.8) to have: 

∇𝑃𝑖 =∑
𝑚𝑗

𝜌𝑗
𝑗

𝑃𝑗∇𝑖𝑊(𝒓𝑖 − 𝒓𝑗 , ℎ) , (3.10) 

This approximation of Eq. (3.10) has the advantage that local pressure gradient becomes zero-

valued when the spatially pressure field is constant [84]. However, Eq. (3.10) does not 

guarantee the conservation of linear or angular momentum and it is difficult to construct a 

consistent energy equation. Therefore, the pressure gradient should be symmetrised by 

rewriting ∇𝑃/𝜌 to ensure momentum conservation [65]: 

∇𝑃𝑖
𝜌𝑖
= ∇(

𝑃

𝜌
)
𝑖

+
𝑃𝑖
𝜌𝑖2
∇𝜌𝑖 . (3.11) 

By applying approximation of Eq. (3.6), the following equation for the pressure gradient is 

obtained:  

∇𝑃𝑖 = 𝜌𝑖∑𝑚𝑗 [
𝑃𝑖

𝜌𝑖
2 +

𝑃𝑗

𝜌𝑗
2] ∇𝑊(𝒓𝑖 − 𝒓𝑗 , ℎ)

𝑗

, (3.12) 
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and the momentum equation becomes: 

𝑑𝒗𝑖
𝑑𝑡
= −∑𝑚𝑗 [

𝑃𝑖

𝜌𝑖
2 +

𝑃𝑗

𝜌𝑗
2] ∇𝑊(𝒓𝑖 − 𝒓𝑗, ℎ) + 𝜇

∇2𝒗𝑖
𝜌𝑖

+ 𝑭

𝑗

. (3.13) 

The viscous term is subjected to modification which will be discussed later in Section 3.3.4. 

For gravitational flows, the term 𝑭 can be substituted by the vector 𝒈 to represent gravity. 

Additional external forces, e.g., liquid-solid particle interactions, can be added to the last term 

in Eq. (3.13) for different scenarios.  

3.2.2 Continuity equation 

The continuity equation for particle 𝑖 can be written directly with the approximation of Eq. 

(3.5): 

𝜌𝑖 =∑𝑚𝑗𝑊(𝒓𝑖 − 𝒓𝑗 , ℎ)

𝑗

. (3.14) 

In this approach, the density of a given particle is directly calculated based on the particle 

masses of its neighbouring points, which is simple and straightforward. However, Monaghan 

[65] pointed out that this approach would suffer several major disadvantages when simulating 

free surface flows. As a result, another approach for computing the density of particle is applied 

in this work to solve the continuity equation as 

𝑑𝜌𝑖
𝑑𝑡
=∑𝑚𝑗𝒗𝑖𝑗∇𝑊(𝒓𝑖 − 𝒓𝑗 , ℎ)

𝑗

, (3.15) 

where  𝒗𝑖𝑗 = 𝒗𝑖 − 𝒗𝑗 is the relative velocity of the 𝑖𝑡ℎ particle with respect to 𝑗𝑡ℎ particle. 

3.3.3 Equation of State (EOS) 

Originally the SPH method was proposed to deal with astrophysical problems [58, 59], which 

can be handled by applying EOS for the ideal gas. In terms of fluid simulation, the real fluid 

can be treated as a weakly-compressible fluid, where the compressibility of simulated liquid is 

artificially controlled by different choices of constants in EOS. In this work, the Tait EOS [64] 

is applied to define the motion of particle: 

𝑃 =
𝑐2𝜌0
𝜀
[(
𝜌𝑖
𝜌0
)
𝜀

− 1] , (3.16) 
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where 𝑐 is artificial speed of sound, 𝜌0 is reference density of fluid, and 𝜀 is a constant.  

According to Morris [85], the artificial sound speed must be chosen carefully to ensure the 

efficiency and accuracy of SPH solutions. The artificial sound speed should be large enough to 

ensure the behaviour of the corresponding fluid is sufficiently close to the real fluid, while 

reasonably small to make the time step practical in the calculation. Adami et al. [86] suggested 

that the artificial sound speed should be chosen at least one order of magnitude larger than the 

maximum velocity of particles in order to limit the effect of compressibility on the flow. In this 

work, we choose the artificial speed of sound as 𝑐 = 10𝑉𝑚𝑎𝑥 along with 𝜀 = 7, where 𝑉𝑚𝑎𝑥 is 

the expected maximum particle velocity during simulations. 

3.3.4 Artificial viscosity 

In this work, a Monaghan style artificial viscosity [65] is adopted in the proposed model, to 

model viscous effect, prevent strong shocks and stabilise the numerical algorithm. The artificial 

viscosity is obtained by writing the momentum equation with following form: 

𝜇
∇2𝒗𝑖
𝜌𝑖

= −∑𝑚𝑗[П𝑖𝑗]∇𝑊(𝒓𝑖 − 𝒓𝑗 , ℎ)

𝑗

, (3.17) 

where П𝑎𝑏 is given by: 

П𝑖𝑗 = {

−𝛼𝑐𝑖̅𝑗𝜇𝑖𝑗 + 𝛽𝜇𝑖𝑗
2

𝜌̅𝑖𝑗
 𝒗𝑖𝑗 ∙ 𝒓𝑖𝑗 < 0 

0                               𝒗𝑖𝑗 ∙ 𝒓𝑖𝑗 > 0

, (3.18) 

and  

𝜇𝑖𝑗 =
 ℎ𝒗𝑖𝑗 ∙ 𝒓𝑖𝑗

𝒓𝑖𝑗2 + 0.01ℎ2
, (3.19) 

where 𝛼 and 𝛽 are constants, 𝑐𝑖̅𝑗 = (𝑐𝑖+𝑐𝑗)/2 and 𝜌̅𝑖𝑗 = (𝜌𝑖+𝜌𝑗)/2 refer to the values of the 

artificial sound speed and the density averaged between particles 𝑖 and 𝑗, respectively. The 

viscosity vanishes when two particles move away from each other(𝒗𝑖𝑗 ∙ 𝒓𝑖𝑗 > 0), Otherwise, 

when particles approach each other (𝒗𝑖𝑗 ∙ 𝒓𝑖𝑗 < 0), the value of the viscous term is increased, 

thus stabilizing the numerical solution.  

The term involving 𝛼 are responsible for creating shear and bulk viscosity, while the term 

involving 𝛽 is used to prevent unphysical penetration of particles that approach each other at a 
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high speed. Monaghan suggested the values for 𝛼 and 𝛽 are 1 and 2, respectively, for best 

results [65]. In this work, we adopt the 𝛼 value while change the value of 𝛽 to 0 as the motion 

of fluid flow in the simulation is relatively slow (ranging from 0.0002 to 20 mm/s). It should 

be noted that the implementation of this artificial viscosity could lead to unphysically high 

shear viscous forces because SPH simulations are stabilized by a fluid’s physical viscosity, and 

it is challenging to simulate low viscous flows [87]. Therefore, our simulations will be carried 

out with this high viscous setting, and the apparent viscosity will be calibrated later in Section 

4.2. 

3.3.5 XSPH correction 

An equation of motion called XSPH formulation is added to the momentum equation, 

continuity equation, and equation of state to close the system of governing equations [65, 88]: 

𝑑𝒓𝑖
𝑑𝑡
= 𝒗𝑖 +𝜓∑𝑚𝑗

2(𝒗𝑖 − 𝒗𝑗)

𝜌𝑖 + 𝜌𝑗
𝑊(𝒓𝑖 − 𝒓𝑗 , ℎ)

𝑗

, (3.20) 

where 𝜓 is constant between 0 and 1. Using this XSPH correction in the equation of motion 

helps to move particles with average velocity, thus more consistent for the algorithm.  This can 

potentially reduce the noise induced by pressure gradients, thus stabilising the free surface of 

liquid, and prevent the unphysical penetration of particles passing through each other. 

3.3.6 Time integration  

The choice of time step ∆𝑡  is important in terms of balancing simulation stability and 

computational cost. Due to the explicit nature of the time stepping scheme, ∆𝑡 must be smaller 

than certain values in order to stabilize the simulation. On the other hand, smaller ∆t will cost 

more computational resource for simulation. For the weakly-compressible SPH formulation, 

the time step ∆t must satisfy (1) the CFL-condition based on the maximum artificial sound 

speed and the maximum flow speed [85]: 

∆𝑡 ≤ 0.25
ℎ

𝑐𝑚𝑎𝑥 + |𝑢𝑚𝑎𝑥|
, (3.21) 

(2) the magnitude of particle acceleration 𝑓𝑖  

∆𝑡 ≤ 0.25
i

min √
ℎ

𝑓𝑖
, (3.22) 
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and (3) the viscous condition 

∆𝑡 ≤ 0.125
ℎ2

𝜇
. (3.23) 

3.3 Inter-particle force model in SPH 

Implementation of the surface tension effects into SPH model has been a challenging task. As 

discussed in the Chapter 2, there are two typical models for generating surface tension effects 

in the SPH method, Continuum Surface Force (CSF) model and Inter-Particle Force (IPF) 

model. Compared with the CSF model, the IPF model demonstrates some advantages. Firstly, 

the algorithm of IPF model is simpler because it does not require the calculation for normal 

vector and curvature of the interface. In addition, the interactions between different phases can 

be easily generalized with IPF model, resulting well-defined contact angles under both static 

and dynamic conditions. 

In this work, an inter-particle force formulation proposed by Li et al. [89] is applied to 

reproduce the surface tension and wetting effects. The pair potential energy 𝑈(𝑟) and inter-

particle force 𝑭𝑖𝑗
𝑖𝑛𝑡𝑒𝑟 are given as: 

𝑈(𝑟) = 𝛼𝑖𝑗[𝐶𝑊
𝑒(𝑟, ℎ𝑖) − 𝐷𝑊

𝑒(𝑟, ℎ𝑗)],  where ℎ𝑖 , ℎ𝑗 ≤ 0.5ℎ, (3.24) 

𝑭𝑖𝑗
𝑖𝑛𝑡𝑒𝑟 = −

𝑑𝑈(𝑟)

𝑑𝑟

𝒓𝑖 − 𝒓𝑗

‖𝒓𝑖 − 𝒓𝑗‖
, 𝑖 ≠ 𝑗, (3.25) 

where 𝛼𝑖𝑗 is inter-particle force strength parameter, 𝐶 and 𝐷 are constants, and 𝑊𝑒 is the cubic 

spline function to construct the potential energy function with the form of: 

𝑊𝑒(𝑟, ℎ)

{
 
 

 
 1 −

3

2
(
𝑟

ℎ
)
2

+
3

4
(
𝑟

ℎ
)
3

     0 <
𝑟

ℎ
≤ 1

  
1

4
(2 −

𝑟

ℎ
)
3

                      1 <
𝑟

ℎ
≤ 2 

    
   0                                         otherwise

. (3.26) 

This smoothing function is normalized by 
2

3ℎ
,  

10

7𝜋ℎ2
,  

1

𝜋ℎ3
 in 1D, 2D and 3D space, respectively. 

The inter-particle force in Eq. (3.25) is imposed on both liquid and solid particles to generate 

multiphase interactions between different phases. The parameter 𝛼𝑖𝑗 is set to 𝛼1 when particle 

𝑗 is a liquid particle and set to 𝛼2 when particle 𝑗 is a solid particle. Note that particle 𝑖 in Eq. 

(3.25) is always a liquid particle. By assigning different value for 𝛼1 and 𝛼2, different surface 
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tension of free surface and static contact angle can be reproduced in the simulation. Moreover, 

to prevent the unphysically penetration of liquid particles into the solid particles, additional 

repulsive boundary forces are implemented similar to those implemented in Monaghan and 

Kajtar [90]. 

3.4 Interfacial viscous force formulation 

In most SPH simulations, the boundaries of rigid bodies have been prescribed with different 

mechanisms, such as ghost particles [91], normalising conditions [92], and boundary particle 

forces [90], all of which are only appropriate for perfectly smooth boundaries [93]. In this work, 

considering the particle-particle interaction force at liquid-solid interface, the summation of the 

short range repulsive and longer range attractive forces acting on the liquid particle is zero on 

the tangential direction, which makes the interface also frictionless, see Fig. 3.1 (b). Therefore, 

the rate-dependent behaviour of moving contact line is hardly achieved in this circumstance. 

 
 

 

(a)  (b)        (c) 

Fig. 3.1 Schematics of the modified SPH approach (not to scale): (a) Shearing between solid 

and liquid particles at the liquid-solid interface; (b) Force balance of a liquid particle; (c) 

Geometry of capillary tube for dynamic contact angle simulation. 

There are several approaches in SPH to prescribe dynamic contact angle at the contact line, 

e.g., using Young–Laplace boundary condition at the fluid–fluid interface [21], and introducing 

a contact line force model [12].  However, the above approaches require explicit modelling of 

geometries and boundaries of all phases in the pore space thus the computational cost is 

dramatically increased. In this work, we introduce a new algorithm which imposes a viscous 

force 𝑭𝑖
𝑣𝑖𝑠 on the liquid particles at liquid-solid interface to reproduce the rate-dependent 

behaviour of moving contact line: 
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𝑭𝑖
𝑣𝑖𝑠 = −𝑆 ∙ 𝜏 = −𝐿0 ∙ 𝜂 ∙ 𝛾̇ = −𝐿0 ∙ 𝜂 ∙

𝒗𝑖 − 𝒗𝑗

𝐿0/2
(3.27) 

where 𝑆 is liquid-solid contact area, and in two-dimensional case the contact area becomes the 

particle spacing 𝐿0, 𝜏 is shear stress, 𝜂 is the viscosity of bulk fluid, 𝛾̇ is shear rate, and 𝒗𝑖 −

𝒗𝑗 is the relative velocity between liquid and solid particles. The thickness of shearing equals 

to half of the interface spacing 𝐿0 considering the contact line is in the middle of solid-liquid 

interface, as shown in Fig. 3.1 (a). This formulation is based on assumptions of the laminar 

flow with a constant shear rate and no-slip boundary condition at the liquid-solid interface.  

 

Fig. 3.2 Comparison between velocity profiles under the slip boundary (dashed line) and the 

equivalent model (dotted line). 

To take the presence of the slip length into account, the interfacial force formulation in Eq. 

(3.27) needs to be modified. Fig. 3.2 illustrates the equivalent model for effective shear rate 𝛾̇∗ 

considering the slip boundary condition with a slip length of 𝐿𝑠. The equivalent model should 

have the same tangential force with the actual case with a slip condition, as: 

𝑭𝑖
𝑣𝑖𝑠 = −𝐿0 ∙ 𝜂

∗ ∙
𝒗𝒚

𝐿0/2
= −𝐿0 ∙ 𝜂 ∙

𝒗𝒚

𝐿0/2 + 𝐿𝑠
 , (3.28) 

where 𝜂∗ is the equivalent viscosity at the interface. Thus, we have: 

𝜂∗ = 𝜂 ∙
𝐿0

𝐿0 + 2𝐿𝑠
 . (3.29) 

Therefore, the bulk viscosity 𝜂  at interface is replaced by a smaller value 𝜂∗  (𝐿𝑠 > 0) to 

reproduce the actual shear profile at the liquid-solid interface. Finally, we have interfacial 

viscous force 𝑭𝑖
𝑣𝑖𝑠 added in the inter-particle force formulation with the following form: 
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𝑭𝑖
𝑣𝑖𝑠 = {

−𝐿0 ∙ 𝜂
∗ ∙
𝒗𝑖 − 𝒗𝑗

𝐿0/2
,   𝑟𝑖𝑗 ≤ 𝐿0

0                               ,   𝑟𝑖𝑗 > 𝐿0

. (3.30) 

This formula also includes the mesh size, 𝐿0, and mesh sensitive studies have been conducted 

to verify Eq. (3.30). Modified with the inter-particle interaction force, 𝑭𝑖𝑗
𝑖𝑛𝑡𝑒𝑟, and interfacial 

viscous force, 𝑭𝑖
𝑣𝑖𝑠 , the SPH discretisation of the governing equations now can be read as 

follows: 

𝑑𝒗𝑖
𝑑𝑡
= −∑𝑚𝑗 [

𝑃𝑖

𝜌𝑖
2 +

𝑃𝑗

𝜌𝑗
2 + П𝑎𝑏] ∇𝑊(𝒓𝑖 − 𝒓𝑗 , ℎ)

𝑗

+ 𝒈 +∑
𝑭𝑖𝑗
𝑖𝑛𝑡𝑒𝑟

𝑚𝑖
𝑗

+
𝑭𝑖
𝑣𝑖𝑠

𝑚𝑖
. (3.31) 

The parameters used in this work is listed in Table 3.1. unless otherwise mentioned. This SPH 

model is implemented in an open source framework PySPH [94].  

Table 3.1. Parameters for dynamic contact angle simulations. 

Parameters Symbols Value 

Density (kg/m3) 𝜌0 1000.0 

Gravity (m/s2) 𝑔 9.8 

Viscosity (Pa∙s) ^ 𝜂 0.013, 0.04, 0.185 

Interfacial viscosity (Pa∙s) 𝜂∗ 0 ~ 0.009 

Surface tension (N/m)^ γ 0.28 

Particle mass (kg) 𝑚0 6.25 × 10−7 

Particle spacing (m) 𝐿0 2.5 × 10−5 

Smoothing length (m) Ϯ ℎ  7.5 × 10−5 (=3𝐿0) 

Artificial sound speed (m/s) 𝑐 3.0 

Time step (s) ∆𝑡 4.15 × 10-7 

Liquid-liquid interaction force parameter (J) 𝛼1 5.42 × 10-4 

Liquid-solid interaction force parameter (J) 𝛼2 5.69 × 10-4 

^ These material properties are the results of other input parameters. 

ϮSufficient particles should be contained in a smoothing area to get a smoother result. Unnatural 

stiffness of fluid particles occurred in the simulation tests with smoothing length smaller than 
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2𝐿0  due to a lack of neighbouring particles. Hence, ℎ =  3𝐿0  was used in this work 

considering both simulation accuracy and computational efficiency.  
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Chapter 4  

Identification of Model Parameters 

 

In this chapter, we firstly present the density and pressure profile of a stable state droplet, and 

the viscosity of the simulated fluid is derived from Poiseuille's Law. The inter-particle force 

formulation is validated by simulating the shape evolution of droplet in vacuum, and surface 

tension is calibrated afterwards. Subsequently, static contact angles with different liquid-solid 

inter-particle force parameters are reproduced to evaluate the performance of the multiphase 

interaction algorithm. Finally, the boundary condition is examined with gravity-driven flow in 

a capillary tube. 

4.1 Density and pressure 

In this section, a droplet composed of 32400 particles is simulated, and the density and pressure 

profile of this stable state droplet is presented. Fig. 4.1 shows the average density profile in 

terms of droplet radius, which describes the change of the density from the centre to the surface 

of the droplet. The radius of the droplet is 1.5 mm and the density has a stable value of 1000 

kg/m3 within the region where 𝑅 is less than 1.2 mm. The averaged density over the whole 

droplet is also 1000 kg/m3. However, for the area between 1.2 mm and 1.5 mm, the density 

profile starts to fluctuate due to the boundary deficiency [80]. The boundary deficiency refers 

to the inaccuracy of interpolation when the support domain of a particle is incomplete. In this 

case, since the droplet is simulated in vacuum, the supporting domain of the particle near 

droplet surface is incomplete and the smoothing results are not accurate. Therefore, we will 

only consider the values in bulk stable region to represent the real density of the droplet.  
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Fig. 4.1 Density profile of a steady state droplet. 

The pressure profile of the stable state droplet is shown in Fig. 4.2. Similarly, the pressure at 

the edge of the droplet fluctuates a lot due to boundary deficiency. Again, we only took bulk 

stable pressure for droplet property calculation and calibration, such as surface tension and 

viscosity.  

 

Fig. 4.2 Pressure profile of a steady state droplet. 

It is noteworthy that the system should be in stable configuration for property calibration and 

calculation. For instance, the system potential energy evolution throughout the above 

calibration is shown in Fig. 4.3, which indicates the solution become stable after simulation 
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time 𝑡=0.125 s. Therefore, the values for pressure and density is taken after 0.125 s of 

simulation time.  

 

Fig. 4.3 Evolution of the system potential energy with respect to the simulation time. 

4.2 Viscosity measurement 

In addition to surface tension, viscosity is another principal parameter in fluid dynamics, and 

the accurate calculation of 𝐶𝑎 relies on the value of fluid viscosity. In this work, the Hagen–

Poiseuille equation [95] is applied to calculate the viscosity of the simulated fluid. The Hagen–

Poiseuille equation describes the pressure drop of incompressible and Newtonian fluid flowing 

through a long cylindrical pipe, as shown in Fig. 4.4. In 3D case, the viscosity of fluid can be 

found in the following equation: 

∆𝑝 =
8𝜂𝐿𝑄

𝜋𝑟4
, (4.1) 

where ∆𝑝 is the pressure reduction, 𝐿 is the length of pipe, 𝜂 is the dynamic viscosity, 𝑄 is 

the volumetric flow rate, 𝑟 is the pipe radius. 

https://en.wikipedia.org/wiki/Dynamic_viscosity
https://en.wikipedia.org/wiki/Volumetric_flow_rate
https://en.wikipedia.org/wiki/Radius
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Fig. 4.4 Pressure drop for laminar flow in pipe [25]. 

While in 2D case, the equation turns out to be:  

∆𝑝 =
3𝜂𝐿𝑣

𝑟2
, (4.2) 

where 𝑣 is the velocity of flow. The derivation of 2D Hagen–Poiseuille equation is detailed in 

Appendix A. 

A 2D Poiseuille flow as shown in Fig. 4.5 (a) is simulated to estimate the viscosity of fluid. 

The parameters for liquid and solid interactions are the same as those used for density and 

pressure calibration. The width of channel is 9 mm. The selected length of flow is 𝐿 = 16 mm 

and this section is in the bulk region of pipe to avoid deviation due to boundary deficiency. A 

shifting boundary is driving the flow from left to generate a pressure difference. Then the 

pressure of two black blocks are measured and the pressure difference ∆𝑝 is around 15 Pa. 

Finally, the calculated viscosity of this fluid is 0.04 Pa·s. In addition, the velocity profile of this 

Poiseuille flow as well as theoretical solution are plotted in Fig. 4.5 (b). 

 

(a) 
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(b) 

Fig. 4.5 (a) Simulation of pressure-driven Poiseuille flow for viscosity calculation; (b) 

Velocity profiles of steady Poiseuille flow and referenced parabolic plot. 

 

4.3 Surface tension  

To examine the surface tension scheme used in this study, the shape evolution of a 2D droplet 

with zero gravity in vacuum is presented. The simulation starts from a 2.6 × 2.6 mm2 square 

shape drop filled with liquid particles. Due to liquid-liquid interaction force which is short-

range repulsive and longer range attractive, the fluid particles should eventually form a circular 

shape droplet to minimize the surface energy and surface area. The reference density of fluid 

for the simulation is set to 1000 kg/m3. 
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Fig. 4.6 Shape evolution of a droplet with zero-gravity in vacuum. 

The shape evolution of the droplet is presented in Fig. 4.6. The droplet is square at simulation 

time zero, 𝑡 = 0 ms. Due to the liquid-liquid interaction force, the surface of the droplet starts 

to evolve and finally turns into a circular shape at  𝑡 = 100 ms. 

The Young-Laplace equation in Chapter 2, Eq. (2.3) is used to calculate the surface tension, 

and in two-dimensional case, Eq. (2.3) becomes 

𝛾

𝑅
 = ∆𝑃. (4.3) 

Here ∆𝑃 is the averaged pressure of particles in the stable region, and 𝑅 is measured from the 

outmost particle to the centre of the droplet.  By altering the liquid-liquid inter-particle force 

parameter 𝛼1, this model can simulate different surface tension of free surface for various fluids. 

In this calibration, the total pressure of the droplet is the sum of pressure calculated from EOS 

plus the part generated by inter-particle force 𝑭𝑖𝑗
𝑖𝑛𝑡𝑒𝑟. Due to the boundary deficiency effect, we 

exclude the edge of droplet and use bulk region for pressure measurement. In Table 4.1, 7 

different values of 𝛼1 from 0.1 × 10-4 to 5.5 × 10-4 are tested and the resulted surface tension is 

calculated. It is observed that the surface tension of droplets increases linearly with 𝛼1, see in 

Fig 4.7. Therefore, we can tune the value of 𝛼1 to get desired surface tension according the 

linear relationship.  

Table 4.1. Summary of  𝛼1 values and the corresponding surface tension 
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Fig. 4.7 Relationship between the 𝛼1 and surface tension. 

4.4 Contact angle  

In this section, the contact angle calibration is conducted by simulating a droplet wetting solid 

surface with the liquid-solid interaction formulation. The liquid-liquid interaction parameter 

𝛼1  is set to 5.42 × 10-4 J, and a stable circular droplet is imported as the liquid phase for the 

initial configuration at 𝑡 = 0 ms. The solid base is cut in rectangular shape with the dimension 

of 2.0 mm × 0.1 mm. The solid base particles are discretised to four layers in the y-direction, 

with a spacing of 2.5 × 10-2 mm and the bottom layer is fixed in the x- and y-directions.  

Different wetting behaviour from hydrophobic to hydrophilic can be simulated by adjusting 

the liquid-solid interaction strength parameter 𝛼2, and six different equilibrium contact angles 

are simulated with 𝛼2 ranging from 0 to 7.0 × 10−4 J. All the cases start from the same initial 

condition, and the droplet is slowly brought into contact with the flat surface under gravity. 

The simulation stops when the droplet configuration reaches a stable status. The final stable 

configurations of all cases are shown in Fig. 4.8, and the static contact angles are measured and 

listed in Table 4.2. The relationship between 𝛼2 values and contact angles is plotted in Fig. 4.9 

which indicates a monotonic correlation. This demonstrates that in this model, a desired static 

contact angle on a flat solid surface can be achieved by changing the α2 value. 
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Fig. 4.8 Stable configurations of static contact angles on the solid surface. 

Table 4.2. Summary of  𝛼2 values and the corresponding contact angle  

 

 

Fig. 4.9 Relationship between the  𝛼2 and contact angle. 
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4.5 Boundary condition examination 

The boundary condition is examined in this section. A gravity-driven flow is simulated as 

shown in Fig. 4.10. The fluid domain is 2 mm high and 1.2 mm wide with fixed solid boundary 

on the left and right sides. Periodical boundary condition is imposed on top and bottom of the 

fluid domain. The liquid-solid interaction strength parameter 𝛼2 is set to 4.0×10-4 J with other 

parameters and constants same with the above-mentioned contact angle calibration. 

 

Fig. 4.10 Gravity-driven flow between two parallel plates. 

The velocity profile in Fig. 4.11 is obtained by measuring and connecting the velocity along 

the flow cross section with more than 20 velocity points. The blue line refers to the velocity 

profile with interfacial viscous force implemented in the model, where the parameter 𝜂∗ equals 

to 0.006 Pa·s. The red line represents the case without imposing interfacial viscous force 

formulation, and the black line is a parabolic plot of ideal velocity profile for no-slip condition. 

It can be observed that the velocity profile for both cases are quite close to the theoretical 

profile, which demonstrated the capability of proposed model in simulating different boundary 

condition, and the velocity of the liquid particles adjacent to the solid boundary is approaching 

zero. In principle, the no-slip boundary condition requires the velocity of the fluid adjacent to 

the boundary is zero, however in this case, the most left (or right) fluid particles can not fully 

represent the interface due to the existence of the space between solid and liquid particles. If 

the velocity is interpolated to the centre of the liquid-solid interface, the velocity would be 

almost zero. Therefore, this SPH model may possess various slip boundary conditions for 

different liquid-solid interface scenarios.  
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Fig. 4.11 Velocity profiles of steady gravity-driven flow and referenced parabolic plot. 
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Chapter 5  

Dynamic Contact Angle 

 

In this chapter, we will investigate the dynamic contact angle with the newly-introduced 

interfacial viscous force formulation. The parameters and geometry for the simulation is firstly 

introduced followed by the examination on the effectiveness of 𝑭𝑖
𝑣𝑖𝑠. The simulated dynamic 

contact angle results are verified by the power law correlation mentioned in Chapter 2, and the 

influence of different magnitude of 𝑭𝑖
𝑣𝑖𝑠 on dynamic contact angle and power law fitting results 

is also studied. In addition, the viscosity ratio, 
𝜂∗

𝜂
, is found to be responsible for achieving 

similar dynamic contact angle simulation results for fluids with different viscosity. Finally, the 

mesh sensitivity test and velocity field of capillary flow is conducted and discussed.  

The content of this Chapter is based on the manuscript entitled ‘A Modified Smoothed Particle 

Hydrodynamics Approach for Modelling Dynamic Contact Angle Hysteresis’, Y. Bao, L. Li, 

L. Shen, C. Lei, and Y. Gan, 2018, in submission.  

5.1 Simulation geometry and setup 

To simulate the moving contact line and dynamic contact angle, a 2D capillary tube with a 

shifting substrate is modelled in vacuum with the following geometry and parameters. The size 

of the capillary tube is 4 mm × 1.36 mm containing fluid with domain of 1.8 mm × 1.2mm, as 

shown in Fig. 5.1. The characteristic length of the fluid is within capillary length  𝑙𝑐 (2 mm), 

so the influence induced by gravity can be neglected as capillary and viscous force are 

dominating this system. Other parameters are listed in Chapter 3, and the value of interfacial 

viscous force parameter 𝜂∗  will be stated in the following sections. The surface tension  

(γ = 0.28 N/m) and bulk viscosity (𝜂  = 0.04 Pa∙s) of the simulated fluid is fixed unless 

mentioned otherwise, and 𝐶𝑎 is only controlled by the triple-line region velocity, 𝑣𝑡. 

The contact angle 𝜃 is considered as the included angle by the tangent to the curvature of the 

fluid front and the vertical solid wall. The first three layers of liquid particles adjacent to the 

solid wall are neglected for curvature fitting, as these particles are frequently reconstructing 
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due to the liquid-solid interactions and boundary repulsive force, which results the triple-line 

region not suitable for a stable contact angle fitting.  

 

Fig. 5.1 Geometry of the capillary tube and contact angle determination. 

The capillary tube is under same stable configuration before the bottom substrate starts moving. 

In all simulation cases, the bottom substrate moves along the 𝑦-direction for 1.2 mm to raise 

or withdraw the fluid with various velocities to generate a moving contact line. Fig. 5.2 shows 

snapshots of fluid movement and curvature at different simulation time. It can be observed in 

both advancing and receding cases, the initial configurations are the same in terms of fluid 

curvature and static contact angle. With the driving of the substrate, the fluid is either pushed 

up or lowered down depending on the direction of the substrate movement. The advancing 

angle occurs when the fluid is pushed up, and receding angle is formed when the substrate 

withdraws the fluid. For any given time step, the resulting contact angle will be recorded 

against the instantaneous contact line speed. 
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(a) 

 

(b) 

 

Fig. 5.2 Snapshots of dynamic contact angle simulation at various simulation time steps while 

the moving speed of substrate equals 10 mm/s: (a) advancing case; (b) receding case. 

5.2 Effectiveness test for 𝑭𝒊
𝒗𝒊𝒔 

In this section, the newly-introduced interfacial viscous force formulation is examined. For this 

purpose, we conducted two dynamic contact angle simulations, implemented with and without 

the interfacial viscous force 𝑭𝑖
𝑣𝑖𝑠, and the results are compared in terms of dynamic contact 

angle. The first case is implemented by the interfacial viscous force 𝑭𝑖
𝑣𝑖𝑠 with parameter 𝜂∗ = 

0.003 Pa∙s, and the other one does not consider the effect of 𝑭𝑖
𝑣𝑖𝑠 where 𝜂∗ = 0.0 Pa∙s. Both 

cases are simulated with 12 sets of substrate moving speed ranging from 0.002 mm/s to 20 

mm/s. The resulted 𝐶𝑎 covers from 10-6 to 10-1. Simulation results are plotted in scatters as 

shown in Fig. 5.3. 
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Fig. 5.3 Scattered plot of dynamic contact angle simulation with and without interfacial 

viscous force, 𝑭𝑖
𝑣𝑖𝑠. Blue and pink circles: advancing and receding cases with 𝑭𝑖

𝑣𝑖𝑠; Black and 

red squares: advancing and receding cases without 𝑭𝑖
𝑣𝑖𝑠. 

For 𝐶𝑎 < 10−4, the dynamic contact angle simulation results are independent of  𝑭𝑖
𝑣𝑖𝑠 where 

the dynamic advancing/receding angle is around 70° and 60°, respectively. For 10−4 < 𝐶𝑎 <

10−3, slight difference can be observed from the results. For cases implemented with 𝑭𝑖
𝑣𝑖𝑠, the 

dynamic advancing angle starts to increase and the receding angle starts to decrease, while the 

dynamic contact angle without 𝑭𝑖
𝑣𝑖𝑠 remains unchanged. The major difference occurs in the 

large 𝐶𝑎  regime (𝐶𝑎 > 10−3 ): With the increase of 𝐶𝑎 , the dynamic advancing/receding 

contact angle keeps almost constant in the case without 𝑭𝑖
𝑣𝑖𝑠, which suggests there is no rate-

dependent behaviour of dynamic contact angle. While for cases implemented 𝑭𝑖
𝑣𝑖𝑠, the dynamic 

advancing angle increases from 70° to around 90° and the dynamic receding angle decreases 

from 60° to less than 40°.  

The simulation results suggest that the interfacial viscous force formulation is the key for 

reproducing dynamic contact angle. According to Eq. (3.30) in Chapter 3, the interfacial 

viscous force 𝑭𝑖
𝑣𝑖𝑠  at liquid-solid interface region is increased with the velocity of liquid 

particles. Therefore,  𝑭𝑖
𝑣𝑖𝑠 will result in different influence on the motion of moving contact 

line depending on the magnitude of 𝑣𝑡 . In the case where 𝑣𝑡  is small (𝐶𝑎 < 10−4 ), the 

magnitude of interfacial viscous force 𝑭𝑖
𝑣𝑖𝑠 is also neglectable, so the contact angle hysteresis 

is hardly observed within small 𝐶𝑎 regime. When 𝑣𝑡 becomes larger, 𝑭𝑖
𝑣𝑖𝑠 starts to influence 
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the behaviour of moving contact line. In such a circumstance, the relative motion of contact 

line is restricted and slowed down on the flow direction. Meanwhile, the bulk fluid in the 

middle region of capillary tube does not affected by the interfacial viscous force, so this part 

of fluid moves quicker than the fluid at triple-line region, which makes a larger (or smaller) 

contact angle for advancing (or receding) case. In summary, with the existence of this newly-

introduced interfacial viscous force formulation, the SPH model can successfully simulate the 

dynamic contact angle.  

Although the proposed formulation can reproduce the rate-dependent behaviour of moving 

contact line, accuracy of the simulation results remains to be investigated. In the following, 

two forms of empirical power law correlations are used to examine the results. Firstly, the 

above simulation results with the presence of 𝑭𝑖
𝑣𝑖𝑠  is replotted in Fig. 5.4. Instead of the 

scattered plot, smoothed density histogram plot is applied to have a clear view of data density 

distribution. Note that the legend bars represent the relative value of data density, e.g., ‘1.0’ 

refers to the highest density of data and ‘0.0’ refers to the lowest data density. Then, the power 

law correlation of Eq. (2.9) in Chapter 2 is used to fit the results and the constants are derived. 

From literature review we know that the constant 𝐵  ranges from 0.2 to 1.0 based on 

experimental findings and theoretical prediction. In our simulation results, 𝐵 value of 0.531 

and 0.406 is derived for advancing and receding cases, respectively, which suggests that our 

results consist with the above range for 𝐵 . Here, the quasi-static advancing and receding 

contact angle (𝜃𝑠
𝑎  and 𝜃𝑠

𝑟 ) are obtained by raising or lowering the bottom substrate with 

extremely slow velocity of 2×10-5 mm/s. 

Furthermore, the simulation results can also be compared with the power law correlation 

proposed by Seebergh and Berg in [44], where the dynamic contact angle and 𝐶𝑎 is described 

as 
|cos𝜃𝑑

𝑎/𝑟
−cos𝜃𝑠

𝑎/𝑟
|

(1+cos𝜃𝑠
𝑎/𝑟
)

= 𝐴𝐶𝑎𝐵 and 𝐵 equals 0.42. An additional term (1 + cos𝜃𝑠
𝑎/𝑟
) is added to 

minimize the deviations induced by fluid properties when comparing results of different fluids. 

Our model also produces a similar range of 𝐵 agreeing well with the experimental results in 

[44]. 

The above verification on our simulation results demonstrated that the model can not only 

reproduce the rate-dependent behaviours of moving contact line, but also shows good 

agreement with existing studies in terms of power law correlation fitting constants. 
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(a) (b) 

Fig. 5.4 Smooth density histogram plot and power law fitting for dynamic (a) advancing, and 

(b) receding contact angle results, x and y stands for 𝐶𝑎 and |cos𝜃𝑑
𝑎/𝑟
− cos𝜃𝑠

𝑎/𝑟
| 

respectively. 

5.3 Parametric study of  𝜼∗ 

In this section, we will present the parametric study of the SPH model with respect to the 

interfacial viscous force 𝑭𝑖
𝑣𝑖𝑠. The magnitude of interfacial viscous force 𝑭𝑖

𝑣𝑖𝑠 can be altered by 

different value of 𝜂∗, which will influence the triple-line region behaviour and dynamic contact 

angle. In order to study the correlation between interfacial viscous force parameter 𝜂∗  and 

resulting dynamic contact angle, five sets of simulations with 𝜂∗ ranging from 0.006, 0.003, 

0.0015, 0.0006 and 0 Pa·s are presented. Each set of simulations are conducted with different 

substrate speeds, resulting 𝐶𝑎 covering from 10-6 to 10-2.  

  

  (a)   (b) 

Fig. 5.5 Dynamic contact angle with different magnitude of interfacial viscous force for  

(a) advancing cases; (b) receding cases. 
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We selected the simulations with bottom substrate speeds of 20 mm/s, 10 mm/s, 2 mm/s, 0.2 

mm/s, 0.02 mm/s and 0.002 mm/s to study the correlation between dynamic contact angle and 

𝐶𝑎 with different value of 𝜂∗. In Fig. 5.5, it can be observed that larger 𝜂∗ would result a larger 

advancing angle and smaller receding angle especially in higher 𝐶𝑎 regime, which means the 

contact angle hysteresis is enhanced by the increase of 𝜂∗. The largest dynamic advancing angle 

for five cases are 93.38°, 86.98°, 83.86°, 75.93°, 69.43° respectively, and 39.43°, 40.85°, 

41.59°, 53.10°, 61.04° for dynamic receding cases. As 𝐶𝑎 is getting smaller, the dynamic 

advancing and receding angle converge to around 70° and 60°, respectively.  

The enhancement of dynamic contact angle on larger value of 𝜂∗ can be interpreted from the 

perspective of slip length and surface roughness, and this phenomenon is in good agreement 

with experiment results. Studies have suggested that the degree of slip is reduced by surface 

roughness, and the contact angle hysteresis is further enhanced by rough surface [45, 96]. 

According to Eq. (3.29), the value of 𝜂∗ is inversely proportional to the slip length 𝐿𝑠 in the 

model. Therefore, the selection of large value 𝜂∗ refers to a small 𝐿𝑠, which simulates a rougher 

surface leading to larger contact angle hysteresis. Similarly, a small value of  𝜂∗ will result in 

a large slip length, so the surface would be less rough and the contact angle hysteresis is less 

profound. 

Nevertheless, when 𝜂∗  is larger than 0.0015 Pa ·s, there is a little difference between the 

dynamic advancing and receding angle for substrate moving velocity larger than 10 mm/s. It is 

observed that the dynamic advancing angle varies 5° to 10° with different  𝜂∗ value, while the 

variation for dynamic receding angle is only within 2°. We interpret this phenomenon from the 

perspective of liquid-solid particle interactions with a strong interfacial viscous force. For the 

dynamic receding angle case, the solid boundary at triple-line region is emerged in the fluid as 

pre-wetted surface. In scenarios with a relative large interfacial viscous force, a thin water film 

is formed and attached on the solid surface and gravity force can hardly drive it downwards, 

see Fig. 5.6 (a). In this circumstance, the dynamic receding angle is perceived as the 

intersection between the water film and fluid curvature, and the triple-line region is not strongly 

influenced by 𝑭𝑖
𝑣𝑖𝑠. Therefore, the dynamic receding angles tend to be very small and the values 

are very close. When the moving contact line velocity is smaller, or the interfacial viscous force 

is less significant, there will be no water film formed on the solid surface as shown in Fig. 5.6 

(b). In addition, the thin water film will not form even with strong interfacial viscous force in 

the advancing angle case, because the surface of the capillary tube is not pre-wetted. 
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(a) (b) 

Fig. 5.6 Dynamic receding angle simulation, (a) presence of thin water film with the substrate 

moving at 20 mm/s; (b) without thin water film with the substrate moving at 2 mm/s. 

To obtain a further understanding of how the parameter 𝜂∗ influences the dynamic contact 

angle, the simulation results with 5 different 𝜂∗ values are fitted with Eq. (2.9) and constants 𝐴 

and 𝐵 are derived correspondingly. Similarly, all scattered data are represented with smooth 

density histogram. In Fig. 5.7, it is observed that 𝐴 and 𝐵 in the power law fitting, which 

represents amplitude and exponent of the curve, respectively, changes with the value of 𝜂∗. For 

𝜂∗ > 0.001 Pa·s, the slope is quite obvious, the value of |cos𝜃𝑑
𝑎/𝑟
− cos𝜃𝑠

𝑎/𝑟
| decreases as the 

decrease of 𝐶𝑎. For  𝜂∗ = 0.0006 Pa·s, the slope is not very evident with fitting results giving a 

small value of 𝐵. For the case 𝜂∗ = 0 Pa·s, the slope will be 0 as expected since there is no rate-

dependent behaviour of contact angle. 
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Fig. 5.7 Density histogram plots and power law fitting for dynamic contact angle results 

with different 𝜂∗ value, and x and y stands for  |cos𝜃𝑠
𝑎/𝑟
− cos𝜃𝑑

𝑎/𝑟
| and 𝐶𝑎, respectively.  
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Furthermore, we compared our numerical predictions using 𝜂∗= 0.009, 0.006 and 0.003 Pa·s 

with the empirical power law correlations proposed in [6, 7] and experimental data extracted 

from [97] that including various combination of liquid and solid materials. Since all these 

previous studies focused on the dynamic advancing cases for various types of liquid, we used 

here the additional term (1 + cos𝜃𝑠
𝑎) to unify the numerical and experimental data, as shown 

in Fig. 5.8. Excellent agreement is observed between simulation results with 𝜂∗= 0.009 Pa·s 

and the experimental data from [97]. In addition, the simulation results using 𝜂∗= 0.006 Pa·s 

and 𝜂∗= 0.003 Pa·s are consistent with the empirical correlations derived by Bracke et al. [7] 

and Jiang et al [6], respectively. Note that instead of fitting the experimental data using two-

parameter power law correlations, our prediction only depends on the value of interfacial 

viscosity 𝜂∗ , which has a physical meaning as shown in Eq. (3.29) and can be identified 

independently from measurements of the apparent slip length. This verification on our 

simulation results demonstrate that not only the model can reproduce the rate-dependent 

behaviour of moving contact line, but also a good agreement with existing experimental studies 

can be achieved. 

 

Fig. 5.8 Comparison of power law correlations obtained from simulations with experimental 

data and empirical power law correlations. 

All the fitting results for 𝐴  and 𝐵 , amplitude and exponent, respectively, under different 

magnitude of  𝑭𝑖
𝑣𝑖𝑠 are plotted in Fig. 5.9. In general, the value of 𝐴 and 𝐵 increases with 𝜂∗. 

The only exception is the dynamic receding angle with 𝜂∗ = 0.006 Pa·s. The reason is also due 

to water film caused by the strong adhesion between liquid and solid particles. It can be 

concluded from our simulation that the value of power law fitting constant 𝐵 shares a positive 

correlation with 𝜂∗. To further validate the dynamic contact angle simulation results derived 

from this model, the values of 𝐵  given by 𝜂∗  in both advancing and receding cases are 
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compared with experimental results. In the work of Shi et al. [98], constant 𝐵 equals 0.17 and 

0.16 for advancing and receding scenarios, respectively, based on similar power law function. 

These two values can be achieved within a narrow range of 𝜂∗ (around 0.0005 Pa·s) in our 

model as shown in Fig. 5.9, which suggests the simulation results share good agreement with 

experimental outcomes within this 𝜂∗ region. 

  

      (a)        (b) 

Fig. 5.9 Relationship between power law fitting constants, (a) amplitude and (b) exponent, 

and 𝜂∗. 

5.4 Scaling of  𝜼∗ 

As stated in the Chapter 3, to reproduce the dynamic contact angle, the viscosity 𝜂 at the liquid-

solid interface is replaced by the interfacial viscous force parameter 𝜂∗, which is related to the 

slip length and surface roughness at the microscopic scale. In Section 5.3, simulations are 

conducted with same fluid viscosity and different power law fitting parameters are derived 

depending on the values of 𝜂∗. However, for fluids with different viscosity, the prediction and 

dependence of dynamic contact angle results on different value of  𝜂∗ is unknown. We suppose 

that the ratio of interfacial viscous force parameter 𝜂∗ and bulk viscosity 𝜂, i.e.,  
𝜂∗

𝜂
, dominates 

the power law correlation between dynamic contact angle and 𝐶𝑎, and same value of 
𝜂∗

𝜂
 will 

reproduce similar simulation results for fluids with different viscosity. To examine the 

influence of 
𝜂∗

𝜂
 on dynamic contact angle simulation results, two sets of simulations with 

different bulk viscosity setting (0.013 Pa·s and 0.185 Pa·s) are conducted, and the results are 
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compared with the 𝜂∗ = 0.003 Pa·s case in Section 5.3. All these three cases share same value 

of 
𝜂∗

𝜂
 = 0.075.  

The data cover the range of 𝐶𝑎 from 10-6 to 10-1, and the results are plotted in Fig 5.10. The 

red line is the fitting function derived from the reference case with 𝜂 = 0.04 Pa·s and 𝜂∗ = 0.003 

Pa·s. The dynamic receding angle case with fluid bulk viscosity 0.185 Pa·s is excluded for 

discussion, because in this high viscosity setting the interfacial viscous force 𝑭𝑖
𝑣𝑖𝑠 will be quite 

large with fixed ratio 
𝜂∗

𝜂
, which causes the strong adhesion between liquid and solid particles 

discussed previously and the accurate contact angle is difficult to determine.  

In Fig. 5.10, it is observed that the scattered data of three cases cover different range of 𝐶𝑎 as 

the viscosity is varied. Nonetheless, the data for advancing and receding cases with different 

bulk viscosity settings can still be described by the reference curve. This result demonstrates 

that for fluids with different viscosity, the same ratio of 
𝜂∗

𝜂
 will lead to similar dynamic contact 

angle as well as the corresponding power law fitting results. 

  

      (a)        (b) 

Fig. 5.10 Scattered plot of dynamic contact angles with different viscosity of fluid and  

𝜂∗

𝜂
 = 0.075: (a) advancing angle; (b) receding angle. 

5.5 Mesh sensitivity test for 𝑭𝒊
𝒗𝒊𝒔 

Since the interfacial viscous force formulation Eq. (3.30) includes the mesh size 𝐿0, the mesh 

sensitivity studies should be conducted. The particle spacing used for the above simulations is 

𝐿0  = 2.5×10-5 m, and in this sensitivity study, the particle spacing is doubled to 

𝐿0′ = 5.0×10-5 m. The mesh testing case is simulated with the same parameters as the original 
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mesh case in which the interfacial viscous force parameter 𝜂∗ equals 0.003 Pa·s, and the results 

are plotted in Fig. 5.11. To verify the simulation results with doubled particle spacing 𝐿0′, the 

power law fitting curve derived from original particle spacing 𝐿0 is also plotted as the red 

reference line in Fig. 5.11 for comparison. It can be observed that for the advancing case, the 

mesh testing results can be well described by the red line. For the receding case, there are some 

deviations between the simulation data and reference curve. However, the slope of data is still 

quite close to the red line. In summary, the mesh scaling in the interfacial viscous force 

formulation Eq. (3.30) is validated and the dynamic contact angle simulation results are hardly 

affected by the different choice of particle spacing.  

      

      (a) (b) 

Fig. 5.11 Smooth density histogram plot for dynamic contact angle simulation results with 

doubled particle spacing 𝐿0′: (a) advancing case; (b) receding case. The red line refers to 

power law fitting curve with original particle spacing 𝐿0. 

5.6 Velocity field in capillary tubes 

The velocity field plays an important role in understanding the flow motion under dynamic 

conditions. In experiment, it is very difficult to observe the velocity field of fluid involved in 

capillary interactions. However, in this numerical model, the velocity field can be visualised 

by plotting the velocity vector of each liquid particle. The flow condition at the triple-line 

region can be examined, and the velocity difference between the bulk and interface particles 

are compared. In this section, the velocity field of dynamic advancing angle simulation with 

substrate speed of 0.02 m/s is analysed. The snapshots of fluid motion at various simulation 

time steps are reported in Fig. 5.12.  

At 𝑡 = 0 ms, the fluid in the capillary tube is under a quasi-static configuration and the velocity 

of all liquid particles are smaller than 5 × 10-11 m/s, see Fig. 5.12 (a). The liquid-solid 
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interaction force is set larger than the liquid-liquid interaction force to simulate a hydrophilic 

surface, so liquid particles at triple-line region will tend to move up slightly while particles in 

the bulk middle region will tend to move towards the sides. At 𝑡 = 0.37 ms and 𝑡 = 0.87 ms, 

the bottom substrate starts to move up as shown in Figs. 5.12 (b) and (c), respectively. The 

velocity is transferred from the substrate to the liquid particles, and this process will take 

several time steps because the sound speed of the fluid is set to be relative low (𝑐 = 3 m/s). In 

addition, we can see that the velocity of liquid particles adjacent to substrate is very close to 

0.02 m/s. In Figs. 5.12 (d) and (e), the velocity of substrate has been fully transferred to all 

liquid particles. These two snapshots suggest that liquid particles in bulk region move faster 

than the particles near the solid boundary, because the interfacial viscous force 𝑭𝑖
𝑣𝑖𝑠 constrains 

the motion of liquid particles at interface. Due to the velocity difference of liquid particles at 

liquid front, the fluid curvature starts to evolve which results the change of contact angle. When 

the curvature becomes stable under this dynamic condition, the velocity of middle region 

particles is still larger than the particles near the boundary, but the difference is relatively small 

compared to previous two snapshots, see Fig. 5.12 (f). There are also some exceptions when 

the liquid particles are striding over solid particles at the boundary, as shown in Fig. 5.12 (g). 

Mostly a liquid particle next to the solid boundary tends to stay between two solid particles 

because the total system energy is comparably small and the force is balanced. However, since 

the substrate is pushing the fluid upward, the liquid particle need to accumulate enough energy 

to overcome the boundary repulsive force then move up. In this circumstance, the velocity of 

these liquid particles could be larger than other liquid particles.  
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(a) t = 0 ms (b) t = 0.37 ms 

  

(c) t = 0.87 ms (d) t = 1.33 ms 

  

(e) t = 2.78 ms (f) t = 19.0 ms 

 

(g) t = 19.48 ms 

Fig. 5.12 Snapshots of velocity field in a dynamic advancing angle simulation process. 
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5.7 Summary 

In this chapter, we first test the influence of the newly-introduced interfacial viscous force 𝑭𝑖
𝑣𝑖𝑠 

on dynamic contact angle simulations. It is found that the rate-dependent behaviour of moving 

contact line can be reproduced by including 𝑭𝑖
𝑣𝑖𝑠 in the momentum equation. Subsequently, 

different magnitude of 𝑭𝑖
𝑣𝑖𝑠  is implemented in the model, and power law correlations are 

derived for each case. The results suggest that the dynamic contact angle and the corresponding 

power law fitting results are dependent on the introduced interfacial viscous force parameter 

𝜂∗, where the larger 𝜂∗ will lead larger constants (amplitude and exponent) in power law fitting. 

Fluids with different bulk viscosity are also included in the dynamic contact angle simulation, 

and it turns out that same value of  
𝜂∗

𝜂
 will results similar rate-dependent behaviour of contact 

angle. Moreover, the mesh sensitivity tests are conducted, and the flow velocity field of 

dynamic advancing angle simulation is also discussed to characterise the curvature shape 

evolution process. 
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Chapter 6  

Dynamic Behaviour of Stretching Liquid 

Bridges  

 

In this chapter, the SPH model with modified Equation of State (EOS) is applied to simulate 

the stretch and rupture of a liquid bridge under dynamic loading. The shapes and rupture modes 

of the stretched liquid bridge are presented under different stretching speeds and wettability of 

the substrates. By differentiating the wettability of substrates, the liquid transfer ratio is studied 

with respect to the stretching speed and compared with available experimental observations 

and theoretical predictions. Furthermore, the flow structure of a liquid bridge during the 

stretching process is presented and discussed. 

6.1 A modified EOS for liquid rupture 

First, we test the original EOS for simulating liquid rupture phenomena using a simple liquid 

bridge example. Two parallel substrates with fluid in between are modelled in vacuum to study 

the stretching and rupture of the liquid bridge. The size of the substrate is 2.6 mm × 0.1 mm, 

and liquid particles are placed between two substrates occupying the domain of 1.6 mm × 1.0 

mm. At simulation time zero (𝑡 = 0 ms), the contact angles that fluid contacting with both top 

and bottom substrates are 90°, which makes the liquid bridge a rectangular shape, see Fig. 6.1 

(a). With the liquid-liquid and liquid-solid interaction forces, the curvature of the liquid bridge 

evolves to either concave or convex depending on the static contact angle prescribed by the 

liquid-solid interaction force parameter, as shown in Fig. 6.1 (b). By observing the potential 

energy fluctuation of the system, it is considered the system is in stable configuration after 

simulation time 0.2 s and the substrates can only move after this stable condition is achieved. 

In the following sections, simulation time zero (𝑡 = 0 ms) refers to the time when the stable 

configuration of the liquid bridge system is achieved. 
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(a)      (b) 

Fig. 6.1 Curvature of liquid bridge at (a) initial configuration; (b) stable configuration. 

The SPH equations and parameters in Chapter 3 are used to simulate the rupture of liquid bridge. 

The upper substrate moves up with constant velocity of 15 cm/s and the position of bottom one 

is fixed. However, with the stretch of the liquid bridge, it is observed that the curvature became 

a straight line, and the liquid bridge is not ruptured till the end of simulation, see Fig. 6.2. 

Subsequently, different stretching speed and wettability of substrate are tested, and the surface 

tension of simulated fluid is altered, however, the liquid bridge still cannot break. 

 

Fig 6.2 Shapes of a liquid bridge at various simulation time with Tait EOS. 

To figure out this problem, the density and pressure profile of the stretched liquid bridge are 

given in Fig. 6.3, and the force balance of liquid bridge is analysed. In this system, there are 

three forces contributing to the liquid bridge: (1) liquid-solid particle interaction force that 

resulting the adhesion force between substrates and fluid, (2) liquid-liquid particle interaction 

force, and (3) pressure-gradient force. The adhesion force is dominating the stretching process 

so the liquid bridge is stretched. However, due to the boundary deficiency, the pressure of 

liquid particles at the surface of liquid bridge is negative and the pressure inside the liquid 

bridge is positive. This provides a strong horizontal pressure-gradient force that resists the 

deformation of fluid on the horizontal direction, so the liquid bridge can only be extended 

vertically and hardly get ruptured. 

According to the EOS in Chapter 3, Eq. (3.16), the pressure is calculated based on the density 

of liquid particle 𝜌𝑖. When 𝜌𝑖 is larger than the reference density of fluid 𝜌0, the calculated 

pressure is positive, and the pressure is negative if 𝜌𝑖 is smaller than 𝜌0. The reference density 
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𝜌0 is set as 1000 kg/m3 for above simulation, while because of the boundary deficiency, the 

density of some particles drops below 1000 kg/m3 thus resulting an unphysical negative 

pressure. As a result, the EOS should be modified to avoid negative pressure, so the adhesion 

force can break the liquid bridge. 

 

       (a) (b) 

Fig. 6.3 (a) Density and (b) pressure distribution of a stretched liquid bridge with Tait EOS. 

Followed by the work of Hughes and Graham [99], an additional criterion is applied on current 

EOS: 

𝜌𝑖 = {
𝜌𝑖 , 𝜌𝑖 ≥ 𝜌0
𝜌0, 𝜌𝑖 < 𝜌0

. (6.1) 

In the original work in [99], this condition is initially applied on boundary particles to prevent 

sticking behaviour. In our work, adding this criterion can guarantee the minimum pressure of 

liquid particle non-negative by imposing a minimum value of the density 𝜌0  on all liquid 

particles. This additional constrain does not alter the conclusions from the numerical 

simulations carried out in Chapter 5, due to the dominance of compressive states in capillary 

tubes. With this modified EOS, the liquid bridge rupture simulation is conducted under same 

configuration as previous one, and the stretching process is described in Fig. 6.4. 

       



 

61 

 

 

Fig. 6.4 Shapes of a liquid bridge at various simulation time with modified Tait EOS. 

Firstly, the curvature of liquid bridge at stable configuration is slightly different from the 

previous simulation because of the additional condition on pressure prescription. With the 

stretch of the substrates, the curvature is more like an arc shape and the neck radius is 

decreasing from 𝑡 = 0 ms to 𝑡 = 12.2 ms. At simulation time 𝑡 = 15.2 ms, the liquid bridge is 

finally broken into two parts. Afterwards, the liquid particles draw together due to the surface 

tension effects and inertia effects. 

To understand the mechanism of liquid bridge rupture with this modified EOS, the density and 

pressure profile is shown in Fig. 6.5. The density profile is quite similar with Fig. 6.3 where 

the fluid density in the bulk region is close to 𝜌0, and the density of liquid particles without 

sufficient supporting domain is far below 1000 kg/m3. Nevertheless, compared with Fig. 6.3, 

some major differences can be found in pressure profile. The pressure of all liquid particles is 

non-negative because of the additional criterion of EOS. In addition, the overall pressure is 

much lower than the previous case, and the pressure of out layer liquid particles is zero. Since 

the pressure in the liquid bridge neck region is zero, the pressure gradient term in the governing 

equation is also zero. Therefore, there is no pressure-gradient force to counterbalance the 

adhesion force from the substrates, so the liquid bridge ruptures as the liquid bridge is stretched 

upon certain height. 
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   (a) (b) 

Fig. 6.5 (a) Density, and (b) pressure distribution of a stretched liquid bridge with corrected 

EOS. 

6.2 Rate-dependent behaviour of a stretching liquid bridge 

As stated in Chapter 2, the shape and transfer ratio of a liquid bridge depends on both stretching 

speed and wettability of substrates. In this section, we will firstly examine the shape evolution 

and rupture modes by simulating three sets of liquid bridge with different wettability under 

various stretching speeds. 

The geometry and parameters are same as those used in Section 6.1, and the static contact angle 

𝜃𝑠 of both top and bottom substrates are set to 40°, 60° and 80°. The liquid bridge is stretched 

at various velocities from 5 cm/s to 20 cm/s with only moving the top substrate, and all results 

are compared when the distance between two substrates reaches 0.3 cm, in Fig. 6.6.  
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Fig. 6.6 Liquid bridge stretch simulations snapshots for various substrate wettability and 

moving speeds. 

Firstly, the influence of substrate wettability and stretching speeds on the liquid bridge shape 

is analysed. According to the simulation results at the same final height, three different types 

of liquid bridge shape are identified with the increase of substrate moving speed: ruptured, 

droplet in the middle, and not ruptured. Take the 𝜃𝑠 = 60° for example, the liquid bridge is 

ruptured for 𝑈 ≤ 18 cm/s and not ruptured for 𝑈 = 20 cm/s, and a droplet is formed in the 

middle when 𝑈 = 18 cm/s. However, this diagram might be different if the wettability of 

substrates is altered. In the case where 𝜃𝑠  is decreased to 40 ° , the droplet appears for 

𝑈 = 16 cm/s instead of 18 cm/s, and the liquid bridge just ruptured at 𝑈 = 20 cm/s. For the 

simulation with 𝜃𝑠 = 80°, no droplet formed during stretching process, and the liquid bridge is 

not ruptured at 𝑈 = 18 cm/s. This diagram suggests that the liquid bridge is ruptured at lower 

stretching speeds, and not ruptured at higher stretching speed, at the same final height. In 

addition, if the liquid bridge is ruptured at a relative high stretching speed, a droplet may form 

in the middle of the liquid bridge. In conclusion, the results indicate that the shape of liquid 

bridge depends on both the stretching speed and the wettability of substrate. This results 

qualitatively consist with experimental observations from [54, 55, 100]. 
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In the following, five sets of liquid bridge transfer ratio simulations are conducted. The liquid 

bridge geometry and parameters in Section 6.1 is used for this simulation. The static contact 

angle of top substrate 𝜃𝑡 is fixed to 40°, and the wettability of bottom substrate 𝜃𝑏 is varied 

from 20° to 60°. Three different stretching speeds, 𝑈 = 1 mm/s, 10 mm/s and 100 mm/s are 

applied on both substrates, with the top substrate moving upwards and bottom substrate moving 

downwards. When the liquid bridge is ruptured, the transfer ratio 𝜔 is calculated as the ratio 

between the number of liquid particles attached on the top substrate and number of total liquid 

particles. The image processing for liquid particles counting is detailed in Appendix B. The 

results for the transfer ratio simulation are plotted in Fig. 6.7. 

 

(a) 

 

(b) 

Fig. 6.7 (a) Snapshots of liquid bridge with different transfer ratios; (b) Relationship between 

liquid bridge transfer ratio and 𝑈 for 𝜃𝑡 = 40° and 𝜃𝑏 is varied, Δ𝜃 = 𝜃𝑏 − 𝜃𝑡. 
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In Fig 6.7 (a), it is observed that the shape and transfer ratio of liquid bridge varies with the 

wettability of bottom substrate, and more details can be found in Fig 6.7 (b). When 𝑈 is 1 mm/s 

which is the smallest substrate moving speed in this simulation, 𝜔 increases with the increase 

of 𝜃𝑏. As 𝑈 increases to 10 mm/s, the transfer ratio still changes monotonically with 𝜃𝑏, but 

the range of 𝜔 is narrowed compared with the 𝑈 = 1 mm/s case. When 𝑈 reaches 100 mm/s, 

the transfer ratio 𝜔 for all five cases converge to around 50%. In addition, for the case where 

𝜃𝑏 is 40°, the transfer ratio is around 50% for all three substrate moving speeds. The simulation 

results suggest that in the quasi-static and transition regime, the wettability of substrate 

dominates the liquid transfer ratio. While in dynamic regime, 𝜔  is independent of 𝜃𝑏  and 

converge to 50% for all cases. The simulation results are compared with experimental 

observations and other simulation results in [54, 101, 102], and it turns out this model can 

qualitatively capture the liquid bridge rupture and transfer properties. 

6.3 Flow condition in liquid bridges 

Current studies focusing on the liquid transfer process and mechanism rarely involve the flow 

condition and velocity field of a stretched liquid bridge due to the difficulty of experimentally 

observation. Similar to the flow condition examination conducted in Section 5.6, the flow 

condition and velocity field of a stretched liquid bridge is examined in this section. The liquid 

bridge rupture simulation case of Fig. 6.3 (𝜃𝑏 = 60°, 𝑈 = 18 cm/s) is used for flow condition 

analysis where the liquid bridge is stretched only by top substrate.  

At the beginning of the stretching process, the velocity is transferred from top substrate to the 

liquid particles, see Fig. 6.8 (a). It also takes hundreds of time steps for the velocity fully 

transferred to all liquid particles. Subsequently in Fig. 6.8 (b) and (c), the curvature of the liquid 

bridge starts to evolve under the surface tension effects, and the liquid particles at the edge of 

bridge tend to move to the centre then move upward. As the neck radius getting smaller, the 

particle velocity at bottom half region becomes negligible compared with the upper half part. 

In Fig. 6.8 (d), when the liquid bridge neck is very thin and about to break, there are vortex 

formed just below the bridge neck region, which indicates the change of flow velocity direction 

for bottom part particles.  In Fig. 6.8 (e), the flow direction for upper and bottom is opposite to 

each other, and the liquid bridge finally ruptured in Fig. 6.8 (f). A droplet is formed due to the 

velocity difference between its adjacent liquid particles, and the droplet is slowly moving up 

because of inertia. 
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(a) 𝑡 = 0.72 ms (b) 𝑡 = 5.94 ms (c) 𝑡 = 8.42 ms 

  

 

(d) 𝑡 = 12.9 ms (e) 𝑡 = 13.9 ms (f) 𝑡 = 17.4 ms 

Fig. 6.8 Velocity field of a stretched liquid bridge at various simulation time steps. 

6.4 Summary 

In this chapter, the rate-dependent behaviour of stretched liquid bridge is simulated and 

discussed. A modified EOS that avoids negative pressure of liquid particle is applied in the 

model to properly reproduce the breakage of a stretched liquid bridge. The different rupture 

modes and transfer ratio of stretched liquid bridges with various substrate wettability and 

stretching speeds are simulated and analysed, in which the outcomes are agree well with 

experimental and other simulation results. In addition, the flow condition and velocity field of 

a stretched liquid bridge is also presented and discussed. These preliminary analyses warrant 

an improved modelling approach for future studies on dynamic behaviour of liquid bridges. 
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Chapter 7  

Conclusion and Future Work 

7.1 Conclusion 

This thesis numerically investigated the properties of capillary interactions with emphasis on 

the contact angle dynamics and stretching process of liquid bridges. A modified SPH model 

with inter-particle and interfacial viscous force is applied to simulate the rate-dependent contact 

angle behaviour. A capillary tube with a shifting bottom substrate is simulated and the dynamic 

contact angle is reproduced by raising or withdrawing liquid particles inside the tube. Various 

simulations are proceeded to verify the effectiveness of this newly-introduced interfacial 

viscous force, 𝑭𝑖
𝑣𝑖𝑠, and parametric study of the interface viscosity, 𝜂∗, is also conducted. In 

addition, the EOS of the model is modified particularly for reproducing the rupture of a 

stretching liquid bridge, followed by studies on the shape evolution as well as transfer ratio. 

The main conclusions are as follows: 

1. The interface of fluids with different surface tension, and surfaces with different wettability 

can be reproduced by the particle-particle interaction force formulation. Under the current 

SPH framework, model parameters can be identified from the intrinsic material properties, 

including the surface tension, static contact angle, and viscosity of the simulated fluid. 

2. To study the dynamic capillary interactions, it is demonstrated that the rate-dependent 

behaviour only occurs with the implementation of the interfacial viscous force,  𝑭𝑖
𝑣𝑖𝑠 , 

introduced in the work.  The simulation results consist with different forms of power law 

correlation describing the dynamic contact angle as function of 𝐶𝑎 . The influence of 

different magnitude of 𝑭𝑖
𝑣𝑖𝑠 on the contact angle dynamics is also studied, in which the 

power law fitting constants change monotonically with the interfacial viscosity parameter 

𝜂∗. This finding is interpreted from the perspective of correlations between 𝜂∗, slip length 

and microscopic surface roughness. It is shown that the increase of 𝜂∗ will lead to larger 

contact angle hysteresis, and this dependency is further explained from the perspective of 

correlations between 𝜂∗, slip length and surface roughness. The viscosity ratio, 
𝜂∗

𝜂
, is proved 

to be responsible for achieving similar dynamic contact angle behaviours even with fluids 
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having different viscosity. In addition, velocity field of the flow inside capillary tube is 

presented and discussed, in which the velocity of triple-line region and bulk region is 

compared to account for the formation of dynamic contact angle. 

3. Moreover, a modified EOS is implemented in the model to reproduce the rupture of a 

stretched liquid bridge. Utilising this EOS, the rupture mode of liquid bridge is found to 

depend on the substrate moving velocity and wettability. Moreover, the transfer ratio of a 

stretched liquid bridge under various loading rates and wettability is studied and the results 

are comparable to experimental and theoretical values. The flow condition and velocity 

field are also provided for further understanding the mechanism of a stretched liquid bridge 

upon rupture.  

This study provides a comprehensive investigation on contact angle dynamics and liquid bridge 

properties under dynamic loading conditions. Under this modified SPH model, the rate-

dependent behaviours of contact angle are successfully reproduced. The interfacial viscous 

force formulation is further demonstrated to share physical links to slip length and microscopic 

roughness of surface. The results derived from this modified SPH model can be applied into a 

variety of industrial and geological applications where dynamic capillary interactions usually 

occur, including carbon geosequestration, oil recovery, porous catalysis, and groundwater 

treatment.   

7.2 Future work 

The findings in hysteretic behaviours of capillary interactions from this thesis stimulate further 

work in the following aspects: 

(1) The simulation results in this work suggest that the parameter 𝜂∗, which can be related to 

the slip length and surface roughness, shares monotonic relationship with power law 

exponent, 𝐵. However, experimental observations regarding this correlation are scarcely 

found. Therefore, further experimental identification of the correlation between surface 

roughness and power law exponent 𝐵 is required to verify the findings derived from this 

work. 

(2) The numerical model in this work can only qualitatively capture the transfer ratio of a 

stretching liquid bridge. At quasi-static regime, deviations are observed when comparing 

the transfer ratio results with experimental values. As a result, the model for liquid transfer 

ratio simulation should be improved to quantitively reproduce the liquid motion at quasi-
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static regime. In addition, the effect of surface roughness on liquid bridge transfer ratio is 

of great interest to be investigated.  
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Appendix A:  

2D Hagen–Poiseuille equation derivation 

Firstly, we consider a solid cylinder of fluid, with radius 𝑟 inside a hollow cylindrical pipe of 

radius 𝑅, as shown in Fig. A. 

 

Fig. A. Pressure-driven fluid inside a cylinder [103]. 

In an equilibrium condition of constant speed, the net force goes to zero. 

𝐹𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 + 𝐹𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 = 0, 

∆𝑝 ∙ 𝐴 = 0, 

∆𝑝 ∙ 2𝑟 =  𝜂𝐿
𝑑𝑣

𝑑𝑟
. 

So 

𝑑𝑣

𝑑𝑟
=
∆𝑝 ∙ 2𝑟

𝜂𝐿
. 

Empirically, the velocity gradient is like the figure below. 
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At the centre: when 𝑟 = 0 : 
𝑑𝑣

𝑑𝑟
= 0 , 𝑣  reaches maximum; when  𝑟 = 𝑅:  𝑣 = 0 . From the 

velocity gradient equation above and the empirical velocity gradient limits, an integration can 

be made to get an expression for the velocity 

𝑑𝑣

𝑑𝑟
= (
2∆𝑝

𝜂𝐿
) 𝑟. 

Rewriting: 

∫ 𝑑𝑣 =
𝑜

𝑣

(
2∆𝑝

𝜂𝐿
) ∙ ∫ 𝑟𝑑𝑟

𝑅

𝑟

, 

𝑣(𝑟) = (
∆𝑝

𝜂𝐿
) ∙ [𝑅2 − 𝑟2]. 

Now, the equation of continuity giving the volume flux for a variable speed is: 

𝑑𝑉

𝑑𝑡
= ∫𝑣 ∙ 𝑑𝐴. 

Substituting the velocity profile equation and the surface area of the moving cylinder: 

𝑑𝑉

𝑑𝑡
= ∫ (

∆𝑝

𝜂𝐿
) ∙ [𝑅2 − 𝑟2]𝑑𝑟

𝑅

0

 

       = (
∆𝑝

𝜂𝐿
)∫ [𝑅2𝑟 −

1

3
𝑟3]

𝑅

0

 

       =
2

3
𝑅3 ∙ (

∆𝑝

𝜂𝐿
). 

In 2D case, 
𝑑𝑉

𝑑𝑡
= 𝐴 ∙ 𝑣 = 2𝑅𝑣 

So the final expression for viscosity is: 

𝜂 =
∆𝑝𝑅2

3𝐿𝑣
. 
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Appendix B:  

Image processing for contact angle fitting 

In this appendix section, the capillary tube image is processed and the contact angle at triple-

line region is fitted. The script is writing in Wolfram Mathematica 10.3. 
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Appendix C: Liquid particle counting 

In this section, the liquid bridge image is processed and the number of liquid particle is counted.  

 

 

 


