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Abstract

After the discovery of the Higgs boson at LHC [1, 2] and the subse-
quent measurements of its mass and couplings, the search for new
physics has become more important than ever, with one of the most
promising candidates being theories which exhibit supersymmetry
(SUSY). A space-time symmetry between fundamental integer and
half-integer spin particles, SUSY proposes a plethora of new states
which may be in reach of present-day collider technology, with even
greater prospects for those of the future. As a consistent solution to
the hierarchy problem, the unnaturally large quantum corrections
to the bare Higgs boson mass from short-distance scale physics, this
thesis explores anomalies from experiment left unexplained by the
enormously successful Standard Model of particle physics, offered
consistently even in minimal supersymmetric extensions.

With this in mind, we initially focus on the predictions from the
Minimal Supersymmetric Standard Model (MSSM) without assump-
tion of specific SUSY breaking mechanisms. Our MSSM phenomenol-
ogy explores two of the most sensitive observables - the muon anoma-
lous magnetic moment and dark matter. In conjunction with collider
and other searches, we find a number of parameter regions still viable,
though future 100 TeV collider searches may even be able to close the
case on the MSSM explanation for these anomalies. Subsequently, we
explore the idea of ‘naturalness’ (or fine-tuning) in the MSSM. In light
of current experimental limits on coloured sparticles, we believe natu-
ralness considerations strongly hint the effectiveness of the MSSM up
to new physics scales as low as 100 TeV.

Finally, we propose simple modification to minimal supersymme-
try and its place in the early universe, without augmenting the gauge
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structure or particle content, in order to alleviate constraint on the
allowable parameter space of the MSSM. The former focuses on the
more comfortable accommodation of a 125 GeV Higgs boson mass
within the framework of the MSSM through non-linear realization
of electroweak gauge symmetry, whilst the latter accounts for a tem-
porary cosmological dark matter (DM) decay phase, avoiding the
commonly encountered overabundance of DM in MSSM parameter
regions.

Our results seem to yearn for higher center-of-mass energy colli-
sions and more precise experimental observations in order to continue
setting our targets and close in on supersymmetric models.
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Outline

“I think it’s much more interesting to live not knowing than to have answers
which might be wrong.”

— Richard Feynman, 1918–1988

The development of Supersymmetry (SUSY), a space-time symmetry relating classes
of particles with different spin, has attracted the attention of physicists all around
the world for the last few decades, and for good reason. It resolved a long-standing
discomfort in interpreting the various energy scales of current fundamental physics
theory - in a rather unique and extraordinary way. It promised new physics in the form
of heavy ‘partners’ to the Standard Model particles right around the corner, within
reach of current-generation colliders, and certainly within that of the next. This appeal
lead it to become one of the most studied candidates for physics beyond the Standard
Model to date.

However, direct searches for these sparticles at colliders have so far turned up noth-
ing. This leaves the prospect of supersymmetry as realized in nature an uncomfortable
one. But why would the absence of supersymmetric partners at our current energies
actually pose a threat to the validity of the theory one could ask? Although it in no
way invalidates it, this is of course a legitimate question, and one that has troubled
theorists and phenomenologists for decades. Can supersymmetry in its minimal form
still resolve outstanding problems and require little to no fine-tuning of parameters to
reproduce our observations? The idea of a ‘natural’ supersymmetric theory may even
today seem to be in conflict with what nature is telling us.

What preceded its development though, was the enormous success of the Standard
Model of Particle Physics. Developed by both theorists and experimentalists alike, it
can arguably be heralded as the greatest scientific achievement of the 20th century.
From the success of Paul Dirac in describing relativistic spin-1/2 particles and the

xix
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existence of anti-matter, to the discovery of the top quark at Fermilab in 1995 after
being proposed by Kobayashi and Maskawa years earlier, the Standard Model almost
seems impossible to fault. The recently discovered [1, 2] ’last piece’ of the jigsaw
puzzle, the Higgs boson, concluded this arduous century-long effort to describe the
interactions of particles at the most elementary level. Though, whether it be the
absence of a suitable dark matter candidate with the right density, or an explanation
for the observed non-zero masses of the neutrinos, there was always a hint that it was
incomplete - rather a low-energy description of a more fundamental theory.

In chapter 1, we describe how supersymmetry emerged organically as a beyond-
the-Standard Model candidate, for two important reasons: (1) Higgs loop-corrections
sensitive to high-scale physics cancel each other exactly (to all orders in perturbation
theory), and (2) it is the only extension to space-time symmetry that is compatible
with the non-trivial S-matrix of QFT. Similarly, we highlight the many reasons why
softly-broken SUSY arising at the TeV-scale is appealing, as it can provide unification
of couplings at the high-scale, a weakly-interacting dark matter particle with approx-
imately the correct density, whilst still maintaining exact cancellation of quadratic
divergences. Specifically, we take a model-independent approach and introduce the
Minimal Supersymmetric Standard Model (MSSM), parameterizing our ignorance of
a UV-complete theory with a full set of soft-breaking masses. This sets up an ideal
phenomenological scenario for studying new physics in the context of colliders and
cosmology.

In chapter 2, the MSSM is confronted with observations from experiment, where
we concentrate on the challenge of explaining the muon anomalous magnetic moment,
(g− 2)µ. The (g− 2)µ is one of the most important low-energy observables for testing
weak-scale supersymmetry, with exciting upcoming precision results that will push the
bounds on minimal supersymmetry even further. Similarly, since we mainly focus on
the R-Parity conserving case, the lightest supersymmetric particle (LSP) forms an ideal
dark matter candidate - where we study the predicted abundance and direct-detection
rates in comparison with experimental values from various collaborations. Finally, we
recast previous collider searches in channels sensitive to weak-scale supersymmetry
and discuss the prospects for observations at future colliders with center of mass
energies of

√
s = 100 TeV.

In chapter 3, we explore the idea of ‘naturalness’ in the MSSM. Naturalness as a
guiding principle in the MSSM quantifies the sensitivity of the electroweak vacuum to
changes in the fundamental parameters of the theory. We argue that regions of low
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fine-tuning of parameters may hint at physics beyond the MSSM, appearing at an
arbitrary scale Λ - and furthermore provide an example of low-fine tuning resulting
from a theory defined at a higher scale through quasi-fixed Renormalization Group
(RG) behavior.

In chapter 4, we are motivated by the results of the previous two chapters showing
that sections of the MSSM parameter space may be incompatible with observations
of the present DM abundance in the universe. The existence of a temporary phase
transition in the early universe that allows for decays of a dark matter candidate could
be established, given that the symmetry stabilizing the DM is restored in the present
(zero-temperature) phase. We also briefly discuss the prospect of accommodating
this in the MSSM, by developing an R-parity violating vacuum in the sneutrino
direction, and how we could further explore the effects of macroscopic conditions on
the development of R-parity breaking phases in the early universe.

Chapter 5 presents an alternate description of electroweak symmetry breaking in
the MSSM from non-linear realizations, still retaining the same model-independence
and degrees of freedom present in the standard realization of the MSSM. We study the
phenomenology, including the mass spectrum, predicted by the model.

We present our concluding remarks in chapter 6 and supplementary material in
the appendices.
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Chapter 1.

The Standard Model of Particle Physics
and supersymmetric models

“If I could remember the names of these particles, I would have been a
botanist.”

— Enrico Fermi, 1901–1954

1.1. Prelude: Dirac, Weyl and Majorana Spinors

Supersymmetry is built upon the arguably less familiar Weyl and Majorana type
fermions, rather than the 4-component Dirac fermion. Matter fields in supersymmetric
theories are placed in an irreducible representation of the supersymmetry algebra called
chiral supermultiplets, each one containing a Weyl fermion. Hence it is useful to
exploit a representation of the Lorentz group that is irreducible - the Weyl spinor.
This avoids the unnecessary introduction of extra operators on the reducible Dirac
representation throughout the theory that can potentially complicate matters. Since
parity is not a fundamental symmetry of the group, left and right-handed fermions
must be treated differently, with different quantum numbers under the Standard Model
gauge group. For example, left-handed fermions participate in the weak interaction,
whereas right-handed fields are singlets under the electroweak gauge group, described
by SU(2)×U(1)Y.

1



2 The Standard Model of Particle Physics and supersymmetric models

The dynamics of spin-1/2 fermions in the Standard Model are famously described
by the Dirac equation, with Lagrangian (in natural units where h̄ = c = 1):

LDirac = Ψ(iγµ∂µ −m)Ψ, (1.1)

where Ψ is the 4-component Dirac spinor, also called a bispinor. Here, and throughout
this thesis, we use the flat spacetime metric in the mostly negative regime ηµν= diag(1,-
1,-1,-1). The γµ, where µ = {0, 1, 2, 3}, are the 4 x 4 Dirac matrices and the field has the
adjoint Ψ = γ0Ψ†. The Dirac field is massive coming from the term −mψ̄ψ, however
one cannot include this term in the Standard Model and simultaneously preserve
gauge invariance. Instead in the Standard Model, fermions start off massless and
subsequently acquire their mass through the Higgs mechanism. The Dirac spinor can
then be written in terms of two-component objects, a left-handed and right-handed
Weyl spinor η and χ† respectively:

Ψ =

 ηα

χ†α̇

 , Ψ =
(

χα η†
α̇

)
, (1.2)

with spinor indices α = 1, 2 and α̇ = 1, 2 counting over the complex degrees of freedom.
One can define operators that project the left and right-handed states through the γ5

matrix, written in the 2 x 2 block matrix representation as:

PL =
1− γ5

2
, PR =

1 + γ5
2

, γ5 =

-1 0

0 1

 , (1.3)

where γ5 is in the Weyl or chiral basis. Acting upon the Dirac spinor projects the
necessary state:

ΨL = PLΨ =

ηα

0

 , ΨR = PRΨ =

 0

χ†α̇

 , (1.4)

so clearly a Dirac spinor satisfies Ψ = ΨL + ΨR. Obviously, ΨL and ΨR are eigenstates
of helicity, which is not a Lorentz-invariant quantity (only in the massless fermion
case). Hence we define them as eigenstates of γ5 known as the chirality of the left
or right-handed field, whose eigenvalues are ± 1. Since the left and right-handed
spinors transform as separate and distinct representations of the Lorentz group, this
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shows that the Dirac spinor does indeed form a reducible representation. Since Weyl
fermions are 2-component objects, their dynamics are instead represented using the 2
x 2 Pauli matrices:

LDirac = iη†σµ∂µη + iχ†σµ∂µχ−m(ηχ + η†χ†), (1.5)

where we have suppressed explicit dependence on the spinor indices. The final two
terms also clearly show that massive fermions break chiral symmetry explicitly.

Demanding that χ = η, one can construct a Majorana-type fermion:

ΨMajorana =

 ηα

η†α̇

 . (1.6)

These will become important in supersymmetric gauge theories, which place the
gauge bosons and their superpartners, the gauginos into irreducible representations
called gauge supermultiplets. Since the quantum numbers of the partner gauginos are
identical to their corresponding gauge boson, they also must be their own antiparticle
- and hence Majorana fermions. This is especially applicable to models of dark matter -
of which the supersymmetric candidate is indeed Majorana. A Majorana fermion has
the corresponding Lagrangian:

LMajorana = iη†σµ∂µη − 1
2

m(ηη + η†η†). (1.7)

1.2. The Standard Model: Matter and Gauge Fields

The Standard Model (SM) [14–17] is a non-Abelian Yang-Mills theory based on three
continuous symmetry groups that transform independently, denoted by the direct
product SU(3)C× SU(2)L×U(1)Y. Respectively these represent the strong (colour)
interaction, weak isospin and weak hypercharge gauge groups. It is a relativistic
quantum field theory and so respects Poincaré symmetry. This comprises invariance
under space-time translations, rotations and inertial reference frames, of which the
last two form the Lorentz subgroup.

The Standard Model requires invariance under local transformations, which forces
one to introduce a set of gauge interactions with the matter fields, completely deter-
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mined by the local gauge symmetry. For a set of transforming gauge fields Aa
µ where

the Roman alphabet indices represent the gauge degrees of freedom, one can maintain
gauge invariance in the theory with covariant derivatives:

∂µ → Dµ = ∂µ + igAa
µTa. (1.8)

Sums over repeated indices are implied. The generators Ta depend on the group
representation of the matter field to which they are coupled. For the U(1)Y there is
a single hypercharge operator, for SU(2) there are the 3 Pauli matrices σi(i = 1, 2, 3),
and the 8 Gell-Mann matrices λj(j = 1, 2, ...8) for SU(3)C. The full matter Lagrangian
is then identified as:

LMatter = iLγµDµL + iQγµDµQ + iuγµDµu + idγµDµd + ieγµDµe, (1.9)

with the fields defined in Table 1.1. The matter fields reside in one particular repre-
sentation of the gauge group called the fundamental representation, however the gauge
fields are in the adjoint representation, that is, they are defined through the structure
constants:

(Ta)bc = −i f abc, a, b, c ∈ (1, ..., N2 − 1). (1.10)

In general, if N is the dimension of the symmetry group, an SU(N) group will contain
N2 − 1 degrees of freedom. For example, for the SU(3)C group, this implies the
existence of 8 gluons. The basis for the generators are arbitrary, but are chosen in this
representation such that they satisfy:

Tr(TaTb) =
δab

2
. (1.11)

In addition to the matter fields, gauge fields for each symmetry group have gauge-
invariant kinetic terms:

LGauge = −
1
4

Ga
µνGaµν − 1

4
Wa

µνWaµν − 1
4

BµνBµν, (1.12)

given the gauge field strength terms Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ − g f abc Ab

µ Ac
ν. Non-abelian

gauge fields for which the generators do not commute lead to gauge self-interactions,
particularly important for such phenomena as QCD asymptotic freedom. Note that



The Standard Model of Particle Physics and supersymmetric models 5

gauge invariance forbids terms like 1
2 m2Aµ Aµ, eg. the mass of the photon, and further-

more gauge bosons remain massless without an additional mechanism.

Finally, one can recognize that these are not the only combination of SM fields that
produce a gauge-invariant quantity. The matter fields can also be coupled to the Higgs
doublet Φ through the Yukawa-Higgs interaction:

LYukawa = −yuQΦ†u− ydQΦd− yeLΦe + h.c., (1.13)

where yu,d,e are 3x3 Yukawa matrices in family space.

Table 1.1.: The Standard Model matter and gauge field contents with associated quantum
numbers for each field. Quarks and Leptons both have 3 families that transform the
same under the SM gauge group.

Name SU(3)C, SU(2)L, U(1)Y

Matter Fields (Spin-1/2)

Quarks (3 Gen.)
Q (uL dL) (3,2,1

6 )
u u†

R (3,1,−2
3 )

d d†
R (3,1,1

3 )

Leptons (3 Gen.)
L (νL eL) (1,2,−1

2 )
e e†

R (1,1,1)

Gauge Fields (Spin-1)

B Boson B (1,1,0)

W Bosons W (1,3,0)

Gluons g (8,1,0)

Scalar Fields (Spin-0)

Higgs boson Φ
(

φ+ φ0
)

(1,2,1
2 )

1.3. Spontaneous Symmetry Breaking and the Higgs

Mechanism

The final ingredient for the Standard Model is essential in describing the experimental
observation of the massive gauge bosons (W ± , Z) and fermions. This is accomplished
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through the introduction of an SU(2) doublet field Φ ≡ (φ+ φ0)T with the gauge-
invariant Lagrangian:

LHiggs = (DµΦ)†(DµΦ) + µ2Φ†Φ− λ
(

Φ†Φ
)2

, (1.14)

where Dµ = ∂µ − igWa
µTa − ig′YφBµ. For µ2 < 0 and λ < 0, the unique potential facil-

itates the spontaneous breaking of SU(2)×U(1)Y to U(1)EM, the electromagnetism
gauge group. The generator of this unbroken group is Q = T3 + Y, representing the
electric charge. With gauge freedom, one can rotate away the charged component of
the doublet field (known as the unitary gauge) to obtain the field configuration at the
minimum:

〈φ〉2 ≡ v2

2
=

µ2

2λ
, (1.15)

where v is the electroweak vacuum expectation value (VEV), whose value is given in
Table 1.2. Since Φ is a two-component complex object, it has 4 degrees of freedom, three
of which will correspond to a triplet of massless Goldstone modes πa (a = 1, 2, 3) which
get ‘eaten-up’ by the longitudinal modes of the W ± and Z bosons. The remaining
degree of freedom is identified as the massive Higgs boson with real-field h, and so a
convenient parameterization about the minimum becomes:

Φ(x) =
h(x) + v√

2
ei π

aTa
v , (1.16)

where the Goldstone boson fields πa(x) are associated with each broken generator Ta,
being the well-known Pauli matrices Ta = σa

2 (a = 1, 2, 3) in this case. In a more general
consideration, this is known formally as Goldstone’s Theorem [17]. Inserting back into the
Lagrangian, the mass of the physical Higgs boson at tree-level is m2

h = −2µ2 = −2λv2.
Additionally there are terms involving Higgs-gauge and Higgs self-interactions. The
physical eigenstates, known as the W ± and Z are related to the gauge eigenstates via
electroweak mixing through an angle θW known as the Weinberg (or weak-mixing)
angle. In the on-shell scheme this is calculated to be [18]:

sin2 θW = 0.2233. (1.17)

After electroweak symmetry-breaking (EWSB), the masses of the electroweak gauge
bosons are now necessarily non-zero, except for the photon, in accordance with
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experimental observation:

m2
W =

g2

4
v2, m2

Z =
g2 + g′2

4
v2. (1.18)

Similarly, after electroweak symmetry breaking, the Higgs-Yukawa interaction gener-
ates mass terms for the fermions with the tree-level relation:

m f = y f
v√
2

. (1.19)

Typically the Standard Model is parameterized with 19 independent parameters: 3
gauge couplings, 9 fermion masses (or equivalently their Yukawa couplings), the
Higgs boson mass and vacuum expectation value, 3 CKM mixing parameters and
a CKM CP-violating phase, and the QCD vacuum angle. These are input through
experimental measurements and are summarized in Table 1.2.
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Table 1.2.: The 19 free parameters of the Standard Model, from data in [18].

Parameter Name Value†

g′(g1) U(1) hypercharge gauge coupling 0.321

g(g2) SU(2) weak gauge coupling 0.703

gs(g3) SU(3) strong gauge coupling 1.224

me Mass of the electron 510.9989461(31) keV

mµ Mass of the muon 105.6583745(24) MeV

mτ Mass of the tau 1776.86 ± 0.12 MeV

mu Mass of the up quark 2.2+0.6
−0.4 MeV

md Mass of the down quark 4.7+0.5
−0.4 MeV

ms Mass of the strange quark 96+8
−4 MeV

mc Mass of the charm quark 1.27± 0.03 GeV

mb Mass of the bottom quark 4.18+0.04
−0.03 GeV

mt Mass of the top quark 173.21± 0.51± 0.71 GeV

θ12 CKM mixing angle (12) 13.1◦

θ23 CKM mixing angle (23) 2.4◦

θ13 CKM mixing angle (13) 0.2◦

δ13 CKM CP-violating phase 1.20± 0.08

θQCD QCD vacuum angle ∼ 0 ‡

v Higgs vacuum expectation value (VEV) 246 GeV

mh Higgs boson mass 125.09 ± 0.24 GeV

† Some values like the quark masses and gauge couplings require specification of the renor-

malization scheme, where these have been quoted in the MS or ‘minimal subtraction’ [19, 20]

scheme. The renormalization scale, µ, is computed at µ ≈ 2 GeV for the u, c and s quarks and

µ = MZ for the gauge couplings. The top mass mt is based on published results from Tevatron

and LHC at
√

s = 7 TeV.
‡ Current experimental limits coming from the neutron dipole moment constrain the angle to

|θ| ≤ 10−10 [18].
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1.4. Problems with the Standard Model

There are a number of phenomena from experimental observations that the Standard
Model has so far been unable to address. Moreover, there are aspects of the Standard
Model theory that are largely inconsistent or unnatural. Nevertheless, this leads
particle physicists to the same conclusion: the Standard Model must be incomplete.
The most obvious example of this is the absence of gravitational interaction. At most
the Standard Model can be coupled to gravity in a semi-classical regime, however
there is currently no known way to implement quantum gravity in a renormalizable
quantum field theory. For this reason, it is largely believed that the Standard Model is
an effective theory, valid up to some energy scale E < ΛUV , where ΛUV is typically
taken to be the Planck scale MP = (8πG)−1/2 ' 2× 1018 GeV where G is Newton’s
gravitational constant. This would be the scale at which new physics must enter to
explain gravity at a quantum level. Despite this, there are still a number of other
observed phenomena that do not fit into the Standard Model picture. Most notably,
the absence of neutrino masses, of which there is strong empirical evidence from
neutrino oscillation experiments [21–25] that suggests they must be massive [26]. This
discovery from two collaborations [27, 28] was even the subject of the 2015 Nobel
Prize in Physics [29]. Of similar concern is the observation of a matter-antimatter
asymmetry, unexplained by the amount of CP-violation present in the Standard Model.
We outline some of the observational anomalies that are of direct interest to SUSY
phenomenologists, and more importantly the work of this thesis.

• Dark Matter and Dark Energy. By now, evidence for Dark Matter (DM) is over-
whelming (See a review in [30]). Early evidence came from observations of the
velocity of stars and luminous objects moving faster than they would have solely
under gravitational attraction from other luminous objects. Influential work on
galaxy rotation curves [31, 32] suggested that the amount of dark matter required
to fit observations was in fact greater than that of visible matter. A later number
of other observations also supported this hypothesis, including measurements of
the Cosmic Microwave Background (CMB) [33], gravitational lensing and other
sky surveys.

Observations from Type 1A supernova [34–38] have confirmed the accelerating
expansion of the universe of which Saul Permutter (of the Supernova Cosmology
Project [39]), Brian P. Schmidt and Adam G. Riess (of the High-Z Supernovae
Search Team [40]) were awarded the Nobel Prize in 2011 [41]. This fit into the
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standard framework of general relativity, accounting for this positive vacuum
energy, called Dark Energy, with a positive cosmological constant Λ. Somewhat
embarrassingly, attempts to justify the cosmological dark energy density ΩΛ in
terms of the vacuum contribution of quantum fields fails spectacularly - disagree-
ing by over 100 orders of magnitude [42]. This is one of the greatest unsolved
mysteries of particle physics and cosmology. Today the existence of dark matter
and dark energy form the ’Standard Model’ of modern cosmology, known as the
ΛCDM model.

Current ΛCDM measurements [43] estimate the total mass-energy of the universe
at 4.9% ordinary (baryonic) matter, 25.9% cold dark matter and 69.1% dark energy.
The amount of (non-baryonic) dark matter is typically quoted with the hubble
constant, h in units of 100 km/(s Mpc):

Ωnbmh2 = 0.112± 0.006 [43]. (1.20)

The Standard Model in its current form does not admit any appropriate dark
matter candidates, though the most convincing hypothesis is that of a Weakly-
Interacting Massive Particle (WIMP). The most studied of these in fact coming
from the lightest, stable particle in supersymmetry.

• Anomalous magnetic moment of the muon. Sizable deviations to the muon
magnetic moment come from Standard Model loop effects, leading to a small
deviation from the Dirac predicted value for the gyromagnetic ratio of gµ = 2
[44–47]. The measured value for the muon anomalous magnetic moment, aµ ≡
(g− 2)µ/2, shows around a 3σ deviation from the Standard Model prediction [48]:

∆aExp-SM
µ ≡ ∆aµ(Exp.)− ∆aµ(Theo.) = (28.6± 8.0)× 10−10 [49, 50], (1.21)

which includes improved QED [51, 52] and electroweak [53] contributions. The
largest uncertainty comes from the leading-order hadronic contribution, aHAD,LO

µ ,
which is determined through the e+e− → hadrons cross-section in dispersion
relations. Unfortunately, perturbation theory is unavailable due to long-distance
QCD. For this reason, this contribution has been under quite a lot of scrutiny
[46, 48, 54–59].
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µ− µ−

γ

γ γ

µ− µ−

Z0

γ γ γ

γ
µ−µ− µ−

µ− µ−W− W−

γνµ

Figure 1.1.: Standard Model contributions to the muon (g− 2)µ. From left to right: the
leading order QED ’Schwinger’ term, Electroweak Z and W boson exchange,
Lowest-order hadronic vacuum polarization, and hadronic light-by-light
scattering.

From the experimental side, the upcoming (g− 2)µ measurement at Brookhaven
National Laboratory (BNL) should reach a precision of about 14 ppm [60], im-
proving previous estimates by about a factor of 4. This can make this anomaly an
excellent indirect probe of new physics, and potentially lead to a 5σ discovery.
One can account for this anomaly through new physics contributions running
in the loops, typically proportional to (mµ/ΛNP)

2. One of the most promising
of these comes from supersymmetry. Typically this requires partners to the elec-
troweak gauge bosons and leptons entering into the loop diagrams to be around
100-500 GeV [44]. The SUSY explanation for the muon anomalous magnetic mo-
ment, in accordance with constraints from colliders and other detection methods,
will be studied in more detail in chapter 2.

The Standard Model also faces a number of challenges from the theoretical side. These
typically come from the origin and interpretation of the parameters in the theory. One
particular example occurs in the QCD sector, where one is not restricted to introduce
CP-violating terms to the Lagrangian. However CP-violation in the strong sector is
simply not observed in nature [18], and is deemed a "fine-tuning" problem - since
the QCD vacuum angle must be tuned precisely to very close to zero to agree with
observations. A similar situation occurs with the cosmological constant Λ, as already
discussed, albeit an even worse theoretical prediction. From arguments of the fine-
tuning of parameters however, of most interest here is the hierarchy between the
electroweak and Planck scale since supersymmetry provides an elegant solution to
this problem. This will be discussed in detail below.
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• Hierarchy problem: Previously, we wrote down the Higgs boson mass in section
1.3, in terms of the parameters of the tree-level Higgs potential µ2 and λ. Up to
numerical factors, we could approximately say that m2

h was −µ2 and this would
roughly represent the scale of electroweak physics at around 100 GeV. The gauge
boson masses mW and mZ are also defined through this scale, and one can see
that for reasonable values of the gauge couplings (ie. not too far from order 1),
these agree with observation quite well. But renormalization theory requires us to
reconcile the quantum corrected values with the physically observed quantities,
not just the tree-level contributions. For example, some measurable renormalized
mass, say m0, is a contribution of the bare parameter and quantum corrections
∆m0, written as:

mphys.
0 = mbare

0 + ∆m0. (1.22)

As a first example, let us consider the one-loop correction to the fermion propaga-
tor in quantum electrodynamics (QED). This is shown in Figure 1.2, where the
electron emits and re-absorbs a photon.

−iΣe(/p) =

Figure 1.2.: The electron self-energy diagram in QED.

The amplitude of this diagram can be computed using standard Feynman rules
for QED:

−iΣe(/p) = (−ie)2
∫ d4k

(2π)4

−igµν

k2 γµ i(/p + /k + m)

(p + k)2 −m2
e

γν, (1.23)

where we have used Feynman slash notation: /k ≡ γµkµ. Superficial power count-
ing reveals that the UV behavior

∫ ∞ d4k k
k2(p+k)2 is linearly divergent, however

upon evaluating the integral the numerator linear term vanishes by symmetry [61]
and the divergence is, at most, mildly logarithmic.
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Regulating the integral with an ultraviolet momentum cut-off Λ, the one-loop
mass correction, ∆me = Σe(/p)|p=m is:

∆me =
3α

4π
me log

Λ2

m2
e
+ ..., (1.24)

where α = e2/(4π) is the electromagnetic fine-structure constant. Typically, we
will have to take Λ → ∞ in this integral, where of course we can then add a
counter-term (or adjust the bare mass) to obtain the physical mass, me = 0.511
MeV. Even if one takes that scale of new physics at the Planck scale Λ∼ 1019 GeV,
where QED would certainly have broken down as a theory, then one finds that
the correction is still only around 0.019 MeV. Hence, the electron mass described
by QED remains natural as the physical mass stays very close to the bare mass (ie.
little fine-tuning of the bare mass is required). It is easy to see why this happens,
since the correction ∆me is proportional to me itself. The theory of a massless
fermion respects more symmetry than a massive theory, more specifically chiral
symmetry. It is this chiral symmetry that "protects" the electron mass from linear
divergence. We can see that when me → 0, and chiral symmetry is restored, the
massless fermion will remain massless (to all orders of perturbation theory). A
similar argument exists for the masses of gauge bosons. For a spontaneously
broken gauge symmetry, like electroweak symmetry, the correction is still a mild
logarithmic divergence and vanishes in the limit where the gauge symmetry is
restored. Unbroken gauge invariance in QED would protect the photon mass, for
example. In fact, this could extend to any parameter in the Lagrangian, following
from ’t Hooft’s criteria for a natural theory [62]:

“At any energy scale µ, a physical parameter or set of parameters ai(µ) is allowed to be
very small only if the replacement ai(µ) = 0 would increase the symmetry of the system.”

Something more interesting happens when considering corrections to a scalar
particle, like the Standard Model Higgs boson. Consider the diagram in Figure
1.3 in which a Higgs scalar (or any spin-0) particle couples to a fermion loop.
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f

f

h h

Figure 1.3.: One-loop contribution to the Higgs boson through a fermion loop.

The Higgs field couples to the fermion with real parameter λ f through the term
−λ f h f f . Once again introducing a cut-off scale Λ to regulate the loop, this is
calculated to be:

∆m2
h = (−1)

∫ d4k

(2π)4 Tr

[( iλ f√
2

)
i

/k −m f

( iλ f√
2

)
i

/p + /k −m f

]

= −
λ2

f

8π2

[
Λ2 − 3m2

f log
Λ2

m2
f
+ ...

]
, (1.25)

where the ellipses indicate higher-order terms. Importantly, note that we acquire
a minus sign from the fermion loop due to spin-statistics. No longer is the
leading-order contribution a mild logarithm, but is now instead a quadratic
divergence in the UV cut-off Λ. There is no chiral symmetry this time to "protect"
the scalar mass. The next physical scale one could possibly consider could be the
Grand Unified scale at around Λ∼ 1015 GeV, or most certainly the Planck scale.
Regardless, the correction is extremely large compared to the physical Higgs
boson mass, observed around the electroweak scale ∼ 100 GeV. Of course, we
could add a counter-term, or tune the bare mass parameter itself to cancel this
divergence, however the cancellation with the quantum corrections would be
completely unnatural.

One could ask whether this is actually independent of the regularization scheme -
we could have also chosen to use dimensional regularization instead of a high-
momentum cut-off. In this case, there are no manifestly quadratically divergent
poles for ε→ 0. Though this does not imply that the hierarchy issue is no longer
realized. Any Higgs coupling to a new physical scale will still be quadratic in that
scale, emphasizing the fact that the hierarchy problem is fundamentally about
the separation between the electroweak and UV scales.
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On this note, consider the Higgs boson coupled to some massive complex scalar
field S, with mass mS, and the term −λS|h|

2|S|2 in the Lagrangian, shown in
Figure 1.4.

h h

S

Figure 1.4.: One-loop contribution to the Higgs boson from a complex scalar S.

The mass correction originating from the diagram in Figure 1.4 is:

∆m2
h = λS

∫ d4k

(2π)4
1

k2 −m2
S

=
λS

16π2

[
Λ2 −m2

S log
Λ2

m2
S
+ ...

]
. (1.26)

Again, the divergence is quadratically sensitive to small-distance scales. Even if
we chose to push this aside as another unphysical artifact, that is renormalization
scheme-dependent, there is still quadratic sensitivity to the new physical scale,
m2

S. There is no argument here - m2
S is indeed a true physical scale - and this

dependence cannot be removed1.

One can immediately notice that the relation λS = λ2
f with each fermion accom-

panied by 2 complex scalar fields could neatly cancel the leading-order quadratic
divergences. This would indeed be a "miraculous accident" if it were not enforced
by some argument motivated by symmetry. These are essentially the conditions
of a supersymmetric extension to the Standard Model, which extend it to include
new scalar fields to partner the existing fermionic fields, and fermionic fields for
those of the gauge bosons.

1This still occurs even at two-loop level, as detailed in [63]. There one can consider heavy fermions ΨF
that have no direct couplings to the Higgs field, but only the Standard Model fields. The contribution

to the Higgs boson mass is found to be ∆m2
h∼

(
g2

16π2

) [
aΛ2 + 24m2

F log Λ2

m2
F
+ ...

]
, where the ellipses

represent higher-order finite terms. Although suppressed by a loop factor, the quadratic sensitivity
to new physical scales is indeed a property of scalar fields.
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Remarkably, supersymmetry, even in its minimal form, has the potential to address
almost all of the problems listed above, like dark matter, the matter-antimatter asym-
metry, the muon anomalous magnetic moment - not only just as a solution to the
hierarchy problem. However, when combined with experimental limits from various
sources like collider physics, astrophysics and cosmology, it becomes clear that in its
minimal form, the existence of viable parameter solutions becomes slightly weaker.
However, the goal of this thesis will be to address as many of these problems as
possible, in particular the muon anomalous magnetic moment and dark matter, whilst
still maintaining the nice features of a model-independent approach and minimal
particle spectrum. At no point do we propose additional degrees of freedom to explain
these phenomena, apart from those in the Minimal supersymmetric extension to the
Standard Model itself. It is important first to become familiar with the construction
and formalism of supersymmetric gauge theories and then subsequently the structure
of the MSSM.

1.5. Supersymmetry and supersymmetric models

Supersymmetry is perhaps the most studied Beyond the Standard Model (BSM) theory,
originating from a number of independent groundbreaking papers from the early
1970’s [64,65] and subsequently from Wess and Zumino [66] as a renormalizable QFT in
four dimensions. In the context of a solution to the hierarchy problem, supersymmetry
was first implemented by P. Fayet [67] as the Minimal Supersymmetric Standard Model
(MSSM). But minimal supersymmetry has a number of other important properties we
will discuss, namely an explanation for dark matter and a hint towards gauge-coupling
unification. However, as SUSY is a non-trivial extension to relativistic invariance, it is
important to recognize where it fits, if at all, as an extension to Poincaré invariance in
relativistic field theory. This warrants a discussion on one of the most famous no-go
theorems in theoretical physics.

Coleman and Mandula formulated a no-go theorem in their famous 1960’s paper
"All Possible Symmetries of the S-matrix" [68], in which they stated that in a theory
with a non-trivial S-matrix, there are no possible space-time extensions of the Poincaré
group. Details of the formulation of this theorem can be found in [69]. The Poincaré
algebra is based on the generators contained in the energy-momentum operator Pµ
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and Lorentz transformations in the rank-2 antisymmetric tensor Mµν:[
Pµ, Pν

]
= 0, (1.27)[

Mµν, Pσ

]
= i
(

ηµνPµ − ηµσPν

)
, (1.28)[

Mµν, Mρσ

]
= i
(

ηνρMµσ + ηµσ Mνρ − ηµρMνσ − ηνσ Mµρ

)
. (1.29)

This no-go theorem forbids us from introducing any generator that does not commute
with the Pµ and Mµν generators. The only allowed conserved charges must be scalars
under the Lorentz group (ie. not carrying any Lorentz indices), like the electromagnetic
charge from the U(1) internal symmetry group2.

1.5.1. The SUSY algebra

Golfan and Liktman [71] however conceded that this was based on the assumption
that these generators were based on vector representations of the Lorentz group. This
is circumvented by generators in the spinorial representation, which are the conserved
charges of supersymmetric transformations:{

Qα, Q†
β̇

}
= 2

(
σµ)

αβ̇
Pµ, (1.32){

Qα, Qβ̇

}
=
{

Q†
α̇, Q†

β̇

}
= 0, (1.33)

where these are in the Weyl representation (see section 1.1). This is sometimes called
the "Super-Poincaré algebra" or superalgebra and is based on anticommutators rather
than the more familiar commutators. Of course we can also write down commutators

2Suppose you have a free-field theory and decided to add a traceless symmetric Lorentz tensor Qµν
that is conserved in an elastic two-body interaction. Let the incoming momenta be p1 and p2 and
the outgoing q1 and q2, respectively. Conservation of Qµν results in the relations [70]:

pµ
1 + pµ

2 = qµ
1 + qµ

2 , (1.30)

pµ
1 pν

1 + pµ
2 pν

2 = qµ
1 qν

1 + qµ
2 qν

2, (1.31)

and the scattering angle vanishes. The point is that the generators Pµ and Mµν leave the scattering-
angle completely undetermined. The addition of an exotic conserved charge over-constrains the
S-matrix such that it is no longer analytic in the scattering angle and only a discrete set of momenta
are possible.
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with the Poincaré generators:[
Pµ, Qα

]
=
[

Pµ, Q†α̇
]
= 0, (1.34)[

Mµν, Qα

]
= i
(
σµν)β

α
Qβ,

[
Mµν, Q†α̇

]
= i
(
σµν)α̇

β̇
Q†β̇. (1.35)

The matrices σµν and σµν are specified in appendix A. Interestingly, this is not even the
most general form of supersymmetric algebra. Haag, Lopuszanski and Sohnius [72]
first showed that Eqs. 1.32-1.33 were not the most general form of SUSY algebra -
one can actually introduce additional N ’copies’ of the supersymmetric generators,
now called "extended supersymmetry". In this thesis, we will only be concerned with
minimal N = 1 supersymmetry (4 supercharges in total) which is adequate enough
for phenomenological study.

This makes supersymmetry unique in the fact that it is the only possible non-trivial
space-time symmetry extension to the Poincaré invariance of the Standard Model.
Consequently, the mixing of internal and space-time symmetries in this way leads to
predictions of supersymmetric models that are quite different to that of the Standard
Model. It also implies that the Casimirs of this group are altered, which label the
irreducible representations of the Poincaré group. Previously, the eigenvalues of these
were the mass and spin of a particle. However, since we can have particles of different
spin in a single multiplet, the second Casimir is no longer a good operator.

The representations of supersymmetric algebra are supermultiplets, each con-
taining a collection of particles and corresponding superpartners which differ by a
spin-1/2 unit. The number of bosonic fields and fermionic fields must be the same.
Consider the fermionic number operator (−1)NF where NF = 1 acting on fermions
and NF = 0 for bosons, this implies (−1)NF Qα = −Qα(−1)NF . Hence one can prove
that:

Tr
[
(−1)NF

{
Qα, Q†

β̇

}]
= 2(σµ)αβ̇PµTr

[
(−1)NF

]
= 0. (1.36)

using equation 1.32. Tr
[
(−1)NF

]
is known as the Witten index and represents the

difference between the number of bosonic and fermionic degrees of freedom, which
clearly must be equal in a supermultiplet. Since the first Casimir operator, whose
eigenvalue is mass-squared, commutes with supersymmetry then this also implies
that the bosonic and fermionic states must be degenerate. Since this is clearly not seen
experimentally, SUSY cannot be an exact symmetry and must be broken at some scale.



The Standard Model of Particle Physics and supersymmetric models 19

1.5.2. Superspace and superfields

The most straightforward way to construct SUSY theories uses the superfield formal-
ism. Using standard QFT techniques to build our theory requires us to constantly
check that the combinations of fields introduced are truly invariant under supersym-
metric transformations. Instead, a superfield requires us to extend our normal set of
4 bosonic coordinates xµ with Weyl spinor coordinates θα and θ†

α̇, which have mass
dimension [θ] = −1/2. Being fermionic, these are anticommuting (Grassmannian)
and so satisfy alternate relations, detailed in A.2. For this reason, a general scalar
superfield has a finite expansion in θα and θ†

α̇:

S(xµ, θα, θ†
α̇) =φ(x) + θξ(x) + θ†χ†(x) + θθM(x) + θ†θ†N(x)

+ (θσµθ†)Vµ(x) + (θθ)θ†η†(x) + (θ†θ†)θλ(x) + (θθ)(θ†θ†)D(x),

(1.37)

where we have suppressed indices, however the spinor coordinates appearing in
brackets imply they are contracted by spinor indices. This is of course the simplest
expansion, we could of course include Lorentz indices, in the vector or spinor represen-
tation. This form is convenient since supersymmetric transformations, parameterized
by anticommuting objects εα and ε†

α̇ are just translations in superspace:

(xµ, θ, θ†)→ (xµ + iθσµε† − iεσµθ†, θ + ε, θ† + ε†). (1.38)

Constructing a supersymmetric Lagrangian will require derivatives that commute with
supersymmetric transformations. Hence, if we define the supersymmetric covariant
derivatives:

Dα = +i
∂

∂θα + (σµθ†)α∂µ, D†
α̇ = −i

∂

∂θ†α̇
− (θσµ)α̇∂µ, (1.39)

then if S is a superfield, then DαS is also a superfield. Of course Eq. 1.37 is a reducible
representation of supersymmetry. However, since we will ultimately be interested in
placing our SM particles and their superpartners in supermultiplets, we should work
with their irreducible forms. These representations are defined by imposing a set of
constraints, shown in Table 1.3. One can see that D†

α̇(xµ + iθσµθ†) = 0, and so any
function of yµ = xµ + iθσµθ† can be defined as a chiral superfield:

Φ(yµ, θα, θ†
α̇) = φ(y) +

√
2θψ(y) + (θθ)F(y), (1.40)
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which can then be expanded as a function of the xµ coordinates:

Φ(xµ, θα, θ†
α̇) = φ(x) + iθ†σµθ∂µφ(x)− 1

4
(θθ)(θ†θ†)∂µ∂µφ(x)

+
√

2θψ(x)− i√
2
(θθ)θ†σµ∂µψ(x) + (θθ)F(x). (1.41)

The degrees of freedom of such a representation involves a complex scalar φ, a two-
component complex Weyl fermion ψα and an auxiliary field F which ensures the SUSY
algebra closes off-shell (but whose dynamical equations of motion are trivial). In
accordance with the result in 1.36, the bosonic and fermionic degrees of freedom match
and so supersymmetry can be held at a quantum mechanical level, not just classically.
We will find it instructive to work with chiral superfields only, and not anti-chiral
ones, since we can always swap right-handed particle states for their corresponding
left-handed anti-particle states.

For our theory of superfields to be manifestly invariant under supersymmetric
transformations, the action must be computed by integrating over all of the superspace
coordinates. One key observation is that for a general superfield S, the variation of
the action vanishes, since the D(x) term transforms as a total derivative. Similarly,
for a chiral superfield, the variation in the term F(x) multiplied on θθ vanishes on
integration in the same way, leaving the dynamics unchanged. We can refer to these
as D and F-terms respectively, the notation of which can be conveniently written,
for example [S]D ≡

∫
d2θd2θ†S and [Φ]F ≡

∫
d2θΦ. Constructing a supersymmetric

invariant Lagrangian density is then simple:

L =
[
K(Φ, Φ∗)

]
D + ([W(Φ)]F + h.c.) . (1.42)

The term K(Φ, Φ∗) is the Kähler potential, and as a combination of both Φ and Φ∗,
is a real superfield. W(Φ) is a holomorphic function of chiral superfields Φ (but
of course not their conjugates) known as the superpotential. Simply choosing just
K(Φ, Φ∗) = Φ∗Φ in the action generates a supersymmetric interacting theory known
as the Wess-Zumino model3 [66].

3For a renormalizable supersymmetric theory of multiple chiral superfields Φi, the Lagrangian in terms
of component fields and integrating out the auxilary fields gives LWZ = ∂µφ∗i ∂µφi + iψiσ

µ∂µψi −
∂2W

∂φi∂φj
ψiψj −∑i

∣∣∣ ∂W
∂φi

∣∣∣. Each scalar and fermion field have a canonical kinetic term, and the D-term

contribution F∗i Fi is eliminated in favour of derivative of the superpotential through its equations of
motion.
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Ultimately our supersymmetric theories must interact with gauge fields Aµ, and
again these have an irreducible representation that contain partner spin-1/2 fields
called gauginos, denoted by λα. The simple Kähler potential is not invariant under
gauge transformations:

Φ→ e−iΛΦ, Φ∗ → Φ∗eiΛ∗ , (1.43)

with matrix expansion Λ ≡ ΛaTa for a set of generators Ta parameterized by the
chiral superfield Λa. Since Φ∗Φ→ Φ∗e−i(Λ−Λ∗)Φ, one must modify the kinetic term,
as is done with covariant derivatives in non-supersymmetric theories. Supergauge-
invariance requires the introduction of a real, vector superfield V in the Kähler poten-
tial transforming under the following:

eV → eiΛ∗eVe−iΛ. (1.44)

V is similarly expanded in terms of the generators of the group in the adjoint rep-
resentation. Through the Baker-Campbell-Hausdorff (BCH) formula, this has the
form

V → V + i(Λ∗ −Λ) + ..., (1.45)

where the ellipses represent higher order terms in V after using the commutation
relation [Ta, Tb] = i f abcTc. Because the second term is independent of V, once can
always supergauge away the higher order terms by choosing an appropriate value for
Λ∗ −Λ. A most convenient gauge is the Wess-Zumino gauge, which is ideally finite for
eV :

VWZ(xµ, θα, θ†
α̇) = (θσµθ†)Aµ(x) + (θθ)(θ†λ†(x)) + (θ†θ†)(θλ(x)) +

1
2
(θθ)(θ†θ†)D(x).

(1.46)

Hence, a supergauge-invariant kinetic term for a set of chiral superfields Φi has the
following components upon taking the D-term:[

Φ∗i(eV)
j
iΦj

]
D
=Dµφ∗iDµφi + iψ†iσµDµψi −

√
2ga((φ

∗Taψ)λa + h.c.)

+ ga(φ
∗Taφ)Da + F∗iFi. (1.47)
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We can immediately identify the first two terms as the kinetic terms for the chiral
supermultiplet, with the proper covariant derivative containing the gauge interactions.

For completeness, we require kinetic terms for the gauge fields and their superpart-
ners. In the non-Abelian case, we define the field-strength:

Wα = −1
4

D†D†(e−V DαeV), (1.48)

which is a chiral superfield. Transforming as Wα → e−iΛWαeiΛ, we will require
the trace in the Lagrangian for supergauge invariance. Hence one can construct the
minimal renormalizable supergauge-invariant Lagrangian with the following D and
F-terms:

L =
[
Φ†

i eVΦi

]
D
+ ([W(Φi)]F + h.c.) +

(
1
4
[
W a

αW
αa]

F + h.c.
)

. (1.49)

In component form, one can write this as:

L =Dµφ∗iDµφi + iψ†iσµDµψi −
1
4

Fa
µνFaµν + iλaσµDµλ

a

−
√

2ga((φ
∗Taψ)λa + h.c.)− 1

2

(
∂2W

∂φi∂φj
ψiψj + h.c.

)
−V(φi, φ∗j ), (1.50)

which contains a kinetic term for the gauge fields and gauginos. The scalar potential
V(φi, φ∗j ) is formed by eliminating the auxilary fields through their equations of
motion:

V(φi, φ∗j ) = F∗iFi +
1
2

DaDa, (1.51)

Fi = −
∂W∗

∂Φi

∣∣∣∣
Φi=φi

, Da = −ga(φ
∗Taφ). (1.52)

Since the product of chiral superfields are also chiral superfields, the superpotential
can be expanded in powers of Φi:

W(Φ) = LiΦi +
1
2

MijΦiΦj +
1
6

yijkΦiΦjΦk. (1.53)

The first term can only be written down for gauge singlet fields, and is typically
omitted from the superpotential since the MSSM does not contain any gauge singlets.
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Table 1.3.: Irreducible representations of supersymmetry, known as supermultiplets. A chiral
supermultiplet contains a complex scalar field and spin-1/2 Weyl fermion. Vector
superfields contain a spin-1 gauge boson and spin-1/2 fermion partner.

Components Constraint

Chiral (anti-chiral) SF Φ φ, ψ, F D†
α̇Φ = 0 (DαΦ = 0)

Vector (real) SF V λ, Aµ, D V = V†

However, in chapter 5, the parameterization of the Higgs sector will admit Higgs
states in a gauge singlet, altering the phenomenology significantly compared to the
MSSM without modifying its content.

This gives us almost all of the ingredients to form a supersymmetric version of the
Standard Model, by including all the relevant matter and gauge fields. However, as
previously stated, supersymmetry cannot be an exact symmetry of nature to agree
with experimental observation, and so this will require the separate introduction of
SUSY breaking terms.

To qualify as a symmetry, the generators of supersymmetry must commute with
the Hamiltonian (Eq. 1.34) and annihilate the ground state, the latter being:

Qα |0〉 = Q†
α̇ |0〉 = 0. (1.54)

Taking the trace of Equation 1.32, one computes the Hamiltonian:

H ≡ P0 =
1
4

(
Q†

1Q1 + Q1Q†
1 + Q†

2Q2 + Q2Q†
2

)
. (1.55)

Hence, the expectation value 〈0|H |0〉 only vanishes if the supercharges annihilate the
vacuum. This is representative of the fact that the contributions from the bosons and
fermions to the vacuum energy are of opposite sign. The converse holds also though:
for supersymmetry to be broken in the ground state, one then has 〈0|H |0〉 > 0.



24 The Standard Model of Particle Physics and supersymmetric models

Table 1.4.: Particle content of the Minimal Supersymmetric Standard Model (MSSM), adapted
from [73]. Particles are written as gauge eigenstates as they are entered in the
Lagrangian, not mass eigenstates.

Name Particles SU(3)C, SU(2)L, U(1)Y

Spin-0 Spin-1/2

Squarks, Quarks (3 Gen.)
Q

(
ũL d̃L

)
(uL dL) (3,2,1

6 )
U ũ∗R u†

R (3,1,−2
3 )

D d̃∗R d†
R (3,1,1

3 )

Sleptons, Leptons (3 Gen.)
L (ν̃L ẽL) (νL eL) (1,2,−1

2 )
E ẽ∗R e†

R (1,1,1)

Spin-1 Spin-1/2

B-Boson/Bino B B̃ (1,1,0)

W Bosons/Winos W ± , W0 W̃ ± , W̃0 (1,3,0)

Gluon/Gluino g g̃ (8,1,0)

Spin-0 Spin-1/2

Higgs bosons/Higgsinos
Hu

(
h+u h0

u

) (
h̃+u h̃0

u

)
(1,2,1

2 )

Hd

(
h0

d h−d
) (

h̃0
d h̃−d

)
(1,2,−1

2 )

1.6. The Minimal Supersymmetric Standard Model

(MSSM)

The fields required to generate a supersymmetric Standard Model are listed in Table 1.4,
where the transformation of the supermultiplets under each gauge group listed in the
final column. Superfields will be written in upper-case whilst their component fields
are written in lower-case form, unless specified otherwise. The (s)quarks, (s)leptons
and Higgs(inos) fit into chiral supermultiplets, whilst the gauge bosons (gauginos) fit
into vector supermultiplets. Constructing the Lagrangian density from Eq. 1.49, one
can write down a number of combinations of chiral superfields for the superpotential:

W = yij
u QiHuU j

+ yij
d QiHdDj

+ yij
e LiHdEj

+ µHuHd. (1.56)

Note that this is written in terms of chiral superfields only, as is required for invariance
under supersymmetry, as we have ideally traded left-handed particles for their right-
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handed anti-particle states (see Particles in Table 1.4). This is not the most general
Lorentz and gauge invariant combination of fields, however, as one can include terms
in violation of lepton and baryon number (by 1 unit):

W∆L=1,∆B=1 =
1
2

λijkLiLjEk
+ λ′ijkLiQjDk

+ µ′iLiHu︸ ︷︷ ︸
∆L=1

+
1
2

λ′′ijkUiDjDk︸ ︷︷ ︸
∆B=1

. (1.57)

Baryon and lepton number violating decays are significantly constrained from experi-
ment [74–77].

Probably the most significant constraint comes from the non-observation of proton
decay, which could be mediated by the baryon and lepton number violating couplings
λ′′†1j1 and λ′11j respectively, where j is the generation of down-type squark (shown
for j = 2 in Figure 1.5). Strongest constraints for the proton lifetime come from the
Super-Kamiokhande Collaboration in a number of decay modes [78], the lower-limit
greater than ∼ 1032 years. This suggests that either lepton or baryon number violating
couplings would have to be extremely small if not forbidden by some symmetry.

1.6.1. The implications of R-Parity on the MSSM

The MSSM accomplishes this with a discrete symmetry called R-Parity, a multiplicative
quantum number that distinguishes each particle in a supermultiplet. It is written as

PR = (−1)3(B−L)+2s, (1.58)

where s is the spin of the particle. It is clearly evident that SM particles have PR = +1
and SUSY particles have PR = −1. Exact R-parity conservation has a number of
important phenomenological consequences:

1. Only an even number of SUSY particles can be produced in a decay at colliders
(ie. pair production), since the initial state always has PR = +1.

2. The lightest SUSY particle (LSP) is stable since there are no kinematically accessi-
ble states with PR = −1.

3. SUSY particles must decay to an odd number of other SUSY particles, eventually
resulting in (usually) one LSP. This would exit in a detector at a collider as missing
transverse energy.



26 The Standard Model of Particle Physics and supersymmetric models

e+

u u

p

π0

s̃∗R

d

u u†

λ′′ λ′

Figure 1.5.: Proton decay through the process p → e+π0 with R-Parity violating couplings
mediated by a strange squark. The matrix element is proportional to λ′′∗112λ′112. No
observed proton decay has been found, but lower limits have been set at 1.29× 1031

years [79] for this decay mode.

1.6.2. R-Symmetries

Sometimes we may encounter a supersymmetric Lagrangian that is invariant un-
der a global continuous U(1)R symmetry, of which R-parity may form a discrete Z2

subgroup. In a more general sense, any symmetry in which fields within the same
supermultiplet transform differently under is called an R-symmetry. Hence, the gen-
erators of supersymmetry carry R-charge themselves and therefore do not commute
with the R-charge:

[Qα, R] = Qα, [Q†
α̇, R] = −Q†

α̇. (1.59)

It then follows that the Grassmanian coordinates also carry R-charge:

θ → eiaθ, θ† → e−iaθ†, (1.60)

where a is the parameter of global R-transformations. The MSSM superpotential given
in Eq. 1.56 automatically respects this global U(1)R symmetry [80, 81]. For chiral
superfields, at the component field level, one usually finds that the components φ,
ψ and F transform with RΦ, RΦ − 1 and RΦ − 2, respectively, whilst the anti-chiral
field has opposite charges. Inevitably, the soft-breaking terms that are quadratic and
trilinear in fields will explicitly break R-symmetry, which we introduce in the next
section.
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1.6.3. Soft supersymmetry breaking in the MSSM

Supersymmetry breaking is perhaps the most important phenomenological consid-
eration in supersymmetric theories, especially since it introduces significantly more
free parameters. It is usually done explicitly, i.e. inserting the most general set of
terms with dimensionful couplings that respect gauge invariance. One must be careful
however as to not introduce terms that result in additional scalar mass quadratic UV
sensitivity [82]. This is what is meant by ’softly’ breaking the symmetry. The most
general version for the MSSM contains the following contributions4:

Lso f t =
1
2
(

M1B̃B̃ + M2W̃W̃ + M3G̃G̃
)

+ m2
Hu
|Hu|

2 + m2
Hd
|Hd|

2 +
(

BµHuHd + h.c.
)

+ Q̃∗Li

(
m2

Q

)
ij

Q̃Lj + L̃∗Li

(
m2

L

)
ij

L̃Lj + ũRi

(
m2

u

)
ij

ũ∗Rj + d̃Ri

(
m2

d

)
ij

d̃∗Rj + ẽRi

(
m2

e

)
ij

ẽ∗Rj

+ (Au)ijQ̃Li Huũ∗Rj + (Ad)ijQ̃Li Hdd̃∗Rj + (Ae)ij L̃Li Hd ẽ∗Rj + h.c., (1.61)

where we have suppressed the gauge indices in the adjoint representation, the SU(2)
indices and the tilde on the mass matrices. These are of course the component field
terms entered directly into the Lagrangian, not superfields. All in all, there are three
gaugino masses M1, M2, M3, five 3 x 3 scalar mass-squared matrices (in flavour space)
m2

Q, m2
L, m2

u, m2
d, m2

e, three 3 x 3 complex trilinear matrices Au, Ad, Ae, 2 Higgs mass-
squared terms m2

Hu
, m2

Hd
, and a Higgs mass term Bµ. Accounting shows that in the

most generic MSSM model the total number of introduced parameters is 105, including
masses, phases and mixing angles [84].

The model-independent approach using the set of terms in Eq. 1.61 is favorable for
collider studies since the origins and details of SUSY breaking mechanisms and particle
phenomenology are effectively decoupled. Nonetheless, the strategy of building a
SUSY model requires some sort of organizing principle in order to limit the amount of
parameters and at the same time agree with experimental observables. In particular,
we find strong constraint coming from flavour and CP-violating processes which
already limits generic flavour structure for the scalar matrices introduced in Eq. 1.61.
One way to completely avoid this is to assume a ’flavour-blind’ or universal flavour

4We note that trilinear terms involving the conjugate Higgs fields, Lso f t ⊂ (Cu)ijQ̃Li H
∗
d ũ∗Rj +

(Cd)ijQ̃Li H
∗
u d̃∗Rj +(Ce)ij L̃Li H

∗
u ẽ∗Rj +h.c., may in principle be included in the soft breaking Lagrangian

since there are no scalar singlet ’tadpoles’ - one-loop diagrams with a single external leg - in the
MSSM. These are also typically very suppressed in many supersymmetric models like gauge-
mediated supersymmetry breaking [69, 83]. These are omitted following the discussion in this
section.
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structure for the scalar masses and that the trilinear matrices are proportional to their
corresponding Yukawa matrix in the SM Lagrangian

m2
i = m2

i 1, i = {Q, L, u, d, e}, (1.62)

Au = Auyu, Ad = Adyd, Ae = Aeye. (1.63)

Similarly, we can also rotate away complex phases in the gaugino mass terms and trilin-
ear interaction terms to avoid dangerous CP-violation and a charge/colour-breaking
Higgs VEV. Rotations in the components of the Higgs supermultiplets Hu and Hd can
also be used to fix the imaginary parts of Bµ and µ to zero. We also choose Ci = 0
(See Footnote 4). Ultimately, we can assume all non-trivial complex phases in the
MSSM vanish, besides those left over by the CKM mixing matrix. Of course we are
motivated phenomenologically - theoretically one would have to explain the origin of
these structures. A number of high-scale models attempt to unify these parameters, for
example with mSUGRA boundary conditions in Planck-scale Mediated Supersmmetry
Breaking (PMSB) [85–93]. Similarly, other schemes like Gauge Mediated Supersym-
metry Breaking (GMSB) [94–97] and Anomaly Mediated Supersymmetry Breaking
(AMSB) [98, 99] work by the interaction of the MSSM visible sector with a ‘hidden
sector’ via a messenger field. Flavour-universal structure can be realized in the case of
gauge field mediation, since the SM gauge fields interact in a flavour-blind way.

Another popular scheme to avoid dangerous flavour-violating effects is called
Minimal Flavour Violation (MFV) [84, 100–103]. Within this scheme one addresses
all flavour and CP-violating effects through the Standard Model Yukawa couplings,
which is held even for new physics contributions. In particular for SUSY, one can
in general satisfy constraints from flavour-changing effects by assuming a flavour
diagonal structure for the SUSY breaking terms, at the particular scale MSUSY in
which SUSY is broken. Thus, all loop-induced flavour-changing effects are simply
proportional to (and hence naturally suppressed by) the Standard Model CKM matrix
elements ie. the squarks and the quarks are both rotated in the same way in flavour
space. This popular motivation has been previously studied extensively in the context
of SUSY models [104–116].

A final comment we must make is that even when one assumes universal squark
masses at a high-scale (ie. a diagonal matrix), mixing terms can in principle be
generated through renormalization group running to the electroweak scale which is a
consequence of non-diagonal Yukawa matrices.
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1.6.4. Renormalization Group Equations (RGEs) in the MSSM

In the MSSM, the β-functions that govern the running of couplings and mass pa-
rameters with energy scale Q is modified through the existence of the gauginos,
Higgsinos, extra Higgs bosons and scalar matter fields. In the case of the Standard
Model, the renormalization scheme called Dimensional Regularization (or DREG) is
frequently used to do perturbative calculations. However, since this scheme violates
supersymmetry, a modified scheme called Dimensional Reduction (or DRED) is usu-
ally chosen [117]. In this case, only the momenta are taken to arbitrary dimensions,
but four-component gauge fields and gamma matrices γµ are still maintained. The
β-functions for the MSSM are detailed in the appendix B.1 at one-loop order.

One of the hallmarks of the MSSM is that at large energies, the strong, weak and
hypercharge gauge couplings unify at about Λ ' 2× 1016 GeV [118] . The situation is
not as ideal in the case of only SM fields, shown in Figure 1.6. This strongly presents a
case for the MSSM to be some low-energy limit of a supersymmetric grand unified
theory [119, 120]. This also presents the case that the weak-scale MSSM may be valid
all the way up to Λ∼MGUT without the addition of any new physics up to the grand
unified scale [83].

Figure 1.6.: Renormalization Group Equation (RGE) two-loop evolution of the inverse gauge
couplings in the MSSM (solid lines) and SM (dashed lines). The difference in solid
lines corresponds to the variation in the weak-scale SUSY threshold and strong
coupling constant at MZ. Taken from [73].
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1.6.5. The Higgs and electroweakino sector at tree-level

The full scalar potential, at tree-level, decomposed into the component Higgs fields
can be written as:

V = (m2
Hu

+ |µ|2)
(∣∣∣h+u ∣∣∣2 + ∣∣∣h0

u

∣∣∣2)+ (m2
Hd

+ |µ|2)
(∣∣∣h0

d

∣∣∣2 + ∣∣∣h−d ∣∣∣2)
+ Bµ

(
(h+u h−d − h0

uh0
d) + c.c.

)
+

1
8
(g2 + g′2)

(∣∣∣h+u ∣∣∣2 + ∣∣∣h0
u

∣∣∣2 − ∣∣∣h0
d

∣∣∣2 − ∣∣∣h−d ∣∣∣2)2

+
1
2

g2|h0†
d h+u + h−†

d h0
u|

2, (1.64)

where g and g′ are the SU(2)L and U(1)Y gauge couplings, respectively. It is immedi-
ately apparent that the potential minimizes at h−d = h+u = 0, which is good news as
this not being the case would lead to electromagnetism being spontaneously broken,
in conflict with experiment. Either way we could have used the SU(2) freedom to
rotate away these component fields in the doublet, but one needs to be sure that this is
indeed a minimum first. The potential can then be re-written as

V = (m2
Hu

+ |µ|2)
∣∣∣h0

u

∣∣∣2 + (m2
Hd

+ |µ|2)
∣∣∣h0

d

∣∣∣2
− Bµ(h

0
uh0

d + c.c.) +
1
8
(g2 + g′2)

(∣∣∣h0
u

∣∣∣2 − ∣∣∣h0
d

∣∣∣2)2

. (1.65)

Clearly, the potential is bounded from below since it will be dominated by the quartic
terms in h0

u and h0
d in the large-field limit. This term vanishes however when h0

u = h0
d

and so leads us to the condition that

2Bµ < 2|µ|2 + m2
Hu

+ m2
Hd

, (1.66)

such that when this is satisfied the potential will rise to positive infinity in all field di-
rections. We typically call the field direction in which VD vanishes the ‘D-flat direction’.
Similarly to facilitate electroweak symmetry breaking, we require that the potential be
a saddle point at the origin, leading to the second condition

(|µ|2 + m2
Hu
)(|µ|2 + m2

Hd
) < B2

µ. (1.67)

The final two conditions on the parameters of the MSSM relate to the minimization
of the potential (vanishing first dervatives not at the origin). Let us use the notation〈

h0
u

〉
≡ vu and

〈
h0

d

〉
≡ vd for the vacuum expectation values. It will become useful
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later to make the identifications

tan β ≡ vu
vd

, v2 = v2
u + v2

d, (1.68)

where v is equivalent to the SM vacuum expectation value of v∼ 246 GeV. Expanding
around

〈
h0

u

〉
≡ vu and

〈
h0

d

〉
≡ vd, we can compute the physical masses of each of the

states from the two Higgs multiplets. We get 3 massless states m
ξ0 = mξ ± = 0 that are

identified with the Goldstone bosons, which become the longitudinal modes of the W
and Z bosons. The masses of the 5 remaining physical Higgs bosons are

m2
A0 = 2Bµ/ sin 2β, (1.69)

m2
h0,H0 =

m2
A0 + m2

Z

2
∓ 1

2

√
(m2

A0 + m2
Z)

2 − 4m2
A0m2

Z cos2 2β, (1.70)

m2
H± = m2

W + m2
A0 . (1.71)

Interestingly, the mass of the CP-odd Higgs boson is unbounded since it scales with
2Bµ/ sin 2β, and similarly for H0 and H± , but this is not the case for the lightest
Higgs boson h0 which is identified with the Standard Model one. In fact, we get an
uncomfortable upper-bound on its mass

mh0 < mZ| cos 2β|, (1.72)

around the Z boson mass. But this is just the tree-level expression, the sizable one-loop
corrections will be discussed in the following section. For now, we are also interested
in the electroweakino sector, containing the chargino and neutralino eigenstates. These
are important in the calculation of the muon (g− 2)µ and other low-energy predictions
of the MSSM, including our prime dark matter candidate. Firstly, the neutralino masses
can be computed from the gauge-eigenstate basis (Ψ0)T = (B̃0, W̃0, H̃0

d , H̃0
u), which

contributes to the Lagrangian as

L
χ̃0 = −

1
2
(Ψ0)TM

χ̃0Ψ0 + c.c., (1.73)
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Table 1.5.: Hierarchy of the MSSM parameters contributing to the 2 lightest neutralino compo-
nents.

Parameters LSP NLSP
M1 > M2 > µ Higgsino Wino

M1 > µ > M2 Wino Higgsino

M2 > µ > M1 Bino Higgsino

µ > M2 > M1 Bino Wino

with the 4 x 4 symmetric matrix

M
χ̃0 =


M1 0 −g′vd/

√
2 g′vu/

√
2

0 M2 gvd/
√

2 −gvu/
√

2

−g′vd/
√

2 −gvd/
√

2 0 −µ

g′vu/
√

2 −gvu/
√

2 −µ 0

 . (1.74)

This can of course be diagonalized by a unitary matrix N to obtain the mass eigenstates

N∗M
χ̃0 N−1 = diag(m

χ̃0
1
, m

χ̃0
2
, m

χ̃0
3
, m

χ̃0
4
), (1.75)

where m
χ̃0

1
< m

χ̃0
2
< m

χ̃0
3
< m

χ̃0
4
. Now with this in mind, the lightest mass eigenstate

is simply the linear combination of basis states

χ̃0
1 = N11B̃0 + N12W̃0 + N13H̃0

d + N14H̃0
u. (1.76)

Table 1.5 shows that the order of the parameters in Eq. 1.74 determines the main
component of the neutralino LSP and NLSP. This has a dramatic impact on dark
matter observables when the LSP is taken to be a dark matter candidate. The charged
versions of the electroweakinos, called the charginos, come from the mixing of the
W̃ ± and H̃± eigenstates and can be diagonalized in a similar way.



The Standard Model of Particle Physics and supersymmetric models 33

1.6.6. The Higgs boson mass at 1-loop

In the MSSM, we have the contributions to the (lightest) Higgs mass-squared coming
from the diagrams shown in Figure 1.7, with the largest contribution coming from the
large Yukawa coupling of the 3rd generation squarks.

+ +

t̃

t̃t

=∆m2
h

Figure 1.7.: Largest contributions to the lightest Higgs boson mass in softly-broken minimal
supersymmetry come from top-quark and stop-squark loop diagrams. Since
thefirst two cancel exactly in supersymmetry, the last diagram (corresponding to
the second term on the right-hand side of Eq. 1.77) which is introduced explicitly
in soft-supersymmetry breaking, raises the Higgs boson mass by an amount
proportional to ln (mt̃/mt).

In exact supersymmetry at one-loop the first two diagrams in Figure 1.7 of course
cancel, and that is the end of the story. However the presence of soft breaking terms
means that the final diagram will contribute to ∆m2

h at the order of the supersymmetry
breaking scale, typically taken as the geometric mean of the two squark masses,
MS =

√mt̃1
mt̃2

. Hence, at one-loop level, the Higgs boson mass has an upper bound
of the form

m2
h . m2

Z cos2 2β +
3g2m4

t

8π2m2
W

[
ln

(
M2

S

m2
t

)
+

X2
t

M2
S

(
1− X2

t

12M2
S

)]
, (1.77)

where Xt ≡ At − µ cot β represents the off-diagonal stop squark mixing compo-
nent, which is maximized when Xt =

√
6MS, aptly named the "maximal mixing

scenario" [121]. The tree-level Higgs boson mass coming from the first term saturates
at large tan β and so the predicted mass has a lower limit around mZ without radiative
corrections, in tension with experimental observation. Moreover, since experimental
searches for stops and other superpartners have shown that these cannot exist at
low-energies [122–125], radiative corrections must then contribute to a net fine-tuning
of the Higgs boson mass of a few percent or so. Some have termed this issue ’the little
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hierarchy problem’ in reference to the hierarchy between the electroweak and SUSY
breaking scale. Of course this is distinct to the ‘real’ hierarchy problem between the
electroweak and Planck scale which is much more severe - though these are removed
completely even in minimal supersymmetry.

1.7. Remarks on the MSSM and beyond

Obviously our introduction of explicit soft supersymmetry breaking terms neglected
the consideration of any particular mechanism that communicates this breaking to
the MSSM. Naturally this calls for physics beyond the MSSM, some of which we have
already mentioned in section 1.6.3. However, the goal of this thesis is not to explore
these various possibilities, but instead to follow what the MSSM as an effective theory
is telling us about physics for current energy observables and its behaviour in the UV.
Some of the aformentioned issues can even be addressed through simple modification
of the MSSM itself, or its place in the evolution of the universe. However, our intention
hereforth is now to determine how minimal supersymmetry stacks up with current
experimental observations.



Chapter 2.

Confronting the MSSM with the muon
(g− 2)µ and dark matter

“I have done a terrible thing, I have postulated a particle that cannot be
detected.”

— Wolfgang Pauli, 1900–1958

2.1. Implications for low-energy observables

Many constraints on the MSSM that are relevant come from low-energy observables.
In section 1.6.3, we discussed how constraints from flavour-changing and CP-violating
effects typically result in certain structure for the scalar mass matrices. However, this
is not all. There are also constraints coming from astrophysical observations, where
one of these is from the MSSM neutralino as an explanation for the observed dark
matter.

We will discuss the relevant sources of constraint in detail below since our phe-
nomenological studies will be confronted with them.

1. LHC, LEP and Tevatron constraints. The most straightforward constraint im-
posed on the SUSY spectrum should be that the lightest Higgs boson mass should
be SM-like. Recently, the ATLAS and CMS collaborations at LHC have discov-
ered a new boson that resembles a Standard Model Higgs boson with a mass of

35
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roughly 125 GeV [1, 2]. When considering the Higgs boson mass in SUSY, we
should include radiative corrections, with the main contribution from the stop
squark at one-loop in Eq. 1.77. In addition, since the Higgs sector in the MSSM is
extended compared to the SM, it should be confronted with precision measure-
ments. The main processes at LEP (Large Electron-Positron Collider) come from
Higgsstrahlung and double Higgs production, whilst Tevatron limits come from
gluon fusion, Higgsstrahlung, VBF and associated production processes.

One can typically avoid constraints on the SM-like Higgs boson in the so-called
’decoupling limit’ [126]. Typically any theory containing a light Higgs boson
of mass mh and a number of heavier Higgses of mass M will have its effects
suppressed by the ratio m2

h/M2, since operators in the effective Lagrangian
describing perturbations to the Higgs coupling will enter with dimension 6. This
is particularly characteristic of the MSSM Higgs sector since the heavier Higgs
particles all appear on the order of the pseudoscalar mass mA0 whilst the lighter
Higgs boson is ∼mZ at tree-level. Hence, with heavier contributions at the TeV
scale, the corrections to the lighter Higgs couplings are already reduced to around
a percent level.

Direct searches have also been performed for the first two generations of sleptons
and the lightest chargino. LEP has produced the following limits [26]:

m ˜̀
L
, m ˜̀

R
> 100 GeV, (` = e, µ), (2.1)

mχ̃±1
> 105 GeV. (2.2)

2. Flavour and CP-violating constraints.

Flavour mixing in the MSSM can be induced in both the squark and slepton
sectors, leading to particularly dangerous sources of flavour-violating processes,
which experiments suggest are strongly suppressed.

µ→ eγ

The process µ→ eγ can be induced through slepton-neutralino or sneutrino-
chargino loops. This depends on the off-diagonal contributions from m2

ē , m2
Q̃

or Ae.
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γ

µ e

µ̃L ẽL

χ̃0

(δLL
L̃ )12

Figure 2.1.: A supersymmetric contribution to the lepton flavour-changing process
µ → eγ coming from off-diagonal terms in the slepton mass-squared
matrix m2

ē . Current upper limit on the branching fraction is B(µ →
eγ) < 2.4× 10−12 [127].

In the mass insertion approximation [128, 129], we describe the off-diagonal
terms (i 6= j) in the slepton mass matrix (flavour space) with

(δLL
L̃ )ij =

(∆m2
L̃)ij

m2
L̃

, (2.3)

where m2
L̃ is the average slepton mass squared. The off-diagonal mixing terms

are treated as a perturbation to the slepton mass term. Then the branching
fraction of muon decay to eγ relative to B(µ→ eνµνe) is [130]:

B(µ→ eγ)∼ 10−5
(

mW
MSUSY

)4

|(δLL
L̃ )12|

2 tan2 β. (2.4)

For an MSUSY of around 1 TeV, one can reduce the ratio to about 10−8 − 10−9

assuming an insertion parameter of order unity. The current experimental
bound is B(µ → eγ) < 2.4× 10−12 [127]. Hence, we would expect quite a
suppression in the off-diagonal terms in the slepton mass matrix compared
to the diagonal (non-flavour violating) components.

K0K0-mixing

Similarly, there is constraint on the squark mass-squared matrices coming
from neutral kaon mixing. Some of these can be important especially the
squark-quark-gluino vertex, shown in Figure 2.2 which are of the order of
α2

S where αS = g2
S/4π is the strong analogue of the fine-structure constant.

Clearly diagrams of this type only become valid in the limit of non-zero
down-squark mass mixing, shown by the mass insertions (δLL

Q̃ )12, (δRR
d̄ )12
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and (δLR
d̄ )12 depending on whether the mixing (off-diagonal terms) come

from the soft-SUSY breaking matrices m2
Q̃, m2

d̄ or Ad. Here, the mixing terms
are again treated as a perturbation to nearly degenerate squark masses.

g̃ g̃

s

d

d

s

s̃∗R

d̃R

d̃∗R

s̃R

(δRR
d̄ )12

(δRR
d̄ )12

Figure 2.2.: A contribution from supersymmetry to K0K0 mixing through gluino-
squark loops. In the mass insertion approximation, the vertices (repre-
sented by × ) are the off-diagonal elements of m2

d̄. One can also have
contributions from (∆m2

Q̃)12, a combination of (∆m2
Q̃)12 and (∆m2

d̄)12 or
(∆Ad)12 depending on the quark helicity states.

Generically, one can calculate the contributions from the effective Hamilto-
nianH∆S=2

eff [131–133],

H∆S=2
eff =

5

∑
i=1

CiOi +
3

∑
i=1

C̃iÕi, (2.5)

where the operators Oi and Õi are defined to be:

O1 = (si
Lγµdi

L)(s
j
Lγµdj

L), Õ1 = O1(L↔ R), (2.6)

O2 = (si
Rdi

L)(s
j
Rdj

L), Õ2 = O2(L↔ R), (2.7)

O3 = (si
Rdj

L)(s
j
Rdi

L), Õ3 = O2(L↔ R), (2.8)

O4 = (si
Ldi

R)(s
j
Rdj

L), Õ5 = (si
Ldj

R)(s
j
Rdi

L). (2.9)

After matching effective Hamiltonian with the full theory one can compute
the Wilson coefficients Ci and C̃i, and hence the observables

∆mK = 2Re
[
〈K0|H∆S=2

e f f |K
0〉
]

, (2.10)

εK =
1√

2∆mK
Im
[
〈K0|H∆S=2

e f f |K
0〉
]

. (2.11)

where Eqs. 2.10 and 2.11 are the ∆mK ≡ mKL
−mKS

mass eigenstate difference
and εK is the CP-violating parameter. Constraints on the experimentally
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measured values can be interpreted in terms of the real and imaginary parts
of the mass insertion parameters and the ratio of the gluino to the average
squark mass, m2

g̃/m2
q̃ [131]. Similar, but weaker, constraints come from other

systems like D0D0 mixing which puts constraints on the amount of sup-
scharm mixing, for example.

3. B-Physics observables

In SUSY, the flavour structure of the soft breaking terms can contribute to pro-
cesses involving B and K mesons. We discuss the most relevant of these to this
thesis in this section.

b→ sγ

The FCNC decay b → sγ is highly sensitive to new physics, and thus has
sizable contributions from SUSY. At lowest order, the decay proceeds in
the SM through a tW loop, however SUSY contributions contain an addi-
tional charged Higgs and other coloured sparticle loops. One can write the
new physics contributions to b→ sγ with the effective Hamiltonian, where
particles above the scale Q = mW are integrated out [134],

H∆F=1
eff = −4GF√

2
V∗tsVtb

8

∑
i=1

Ci(Q)Oi, (2.12)

The new physics contributions can appear dominantly through the magnetic
and chromomagnetic operators, given in [135] as:

O7 =
e

16π2 mb(sσµνPRb)Fµν, (2.13)

O8 =
gs

16π2 mb(sσµνTaPRb)Ga
µν. (2.14)

New physics contributions from SUSY at one-loop to the Wilson coefficients
are found by matching to the full theory at Q = mW and are given as

CSUSY
7,8 = CH±

7,8 + Cχ̃±

7,8 + Cg̃
7,8 + Cχ̃0

7,8, (2.15)

which are penguin diagrams containing charged Higgs-up type quarks,
charginos-up type quarks, gluino-down type quarks and neutralino-down
type quarks respectively.
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µ (δRL
d )32

(δLR
u )33 M3

γ γ

bR sL bR sL

t̃L t̃R g̃ g̃

H̃d H̃u b̃R s̃L

Figure 2.3.: One-loop contributions to the flavour-changing decay b→ sγ through
the stop-Higgsino (left) and sbottom-gluino (right) in the mass inser-
tion approximation for the up and down-type squark mass matrices,
respectively.

When stops and Higgsinos run in the loop as the significant contribution
shown in Figure 2.3 (left), and in the limit µ2 � m2

Q3
, m2

ū3
, the general formula

for B(B→ XSγ) is [136]:

B(B→ XSγ)

B(B→ XSγ)SM
− 1 ≈ 2.55

m2
t Atµ

m4
t̃

tan β

[
log

mt̃
µ

(
1 + 2.1

r2 + 1
r

µ2

m2
t̃

)

−0.52 +
1 + r2

2− 2r2 log r− µ2

m2
t̃

(
0.76

3(r2 + 1)
4r

+ 2.1
r4 + 1

2r(r2 + 1)
log r

)
...

]
,(2.16)

where mt̃ =
√mQ3

mū3
and r = mQ3

/mū3
. The ellipses denotes terms that are

sub-dominant. Immediately one can see that the contribution is enhanced
for large At, tan β and light stop masses. The already discussed constraints
coming from LEP also require that µ not be too small.

BS→ µ+µ−

The effects of large tan β are also noticeable in the important observable decay
BS → µ+µ− [137]. In the heavy squark limit, neutral currents can still be
mediated by Higgs-loops. Of course at tree-level there are no FCNCs because
the only allowed couplings of weak isospin T3 = 1/2 valued fields is to the
up-type Higgs superfield Hu (and opposite for the down-type superfield Hd).
This is not the case at loop-level, where couplings of down-type matter fields
to Hu are induced. Even though these are suppressed at loop-level, the effects
of large tan β can enhance the contribution enough to be significant. One can
parameterize corrections to the down-type Yukawa couplings from these loop-
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induced non-holomorphic terms by the effective couplings [100, 105, 108]:

ε0 = − 2αSµ

3πmg̃
H2

m2
q̃L

m2
g̃

,
m2

d̃R

m2
g̃

 , (2.17)

εY = − Au

16π2µ
H2

(
m2

q̃L

µ2 ,
m2

ũR

µ2

)
, (2.18)

where

H2(x, y) =
x ln x

(1− x)(x− y)
+

y ln y
(1− y)(y− x)

, (2.19)

and µ is the supersymmetric Higgs mass term and Au is the trilinear soft-
breaking coupling. Then in this limit, the only sizable contribution from
SUSY is

RBµµ ≡
BSUSY(BS → µ+µ−)

BSM(BS → µ+µ−)
= (1 + δS)

2 +

(
1−

4m2
µ

m2
BS

)
δ2

S, (2.20)

where

δS =
π sin2 θWm2

BS

αm2
AC10A(m

2
t /m2

W)

εYy2
t tan3 β

[1 + (ε0 + εYy2
t ) tan β][1 + ε0 tan β]

. (2.21)

Here yt denotes the top Yukawa coupling, C10A(m
2
t /m2

W) is the Standard
Model Wilson coefficient, both ∼O(1). At tree-level, m2

A = m2
H± −m2

W is
the (physical) pseudoscalar Higgs boson mass. The effects can sufficiently
decouple from the low-energy theory as M4

A and linearly in µ. On the other
hand, we also find BSUSY(BS → µ+µ−)∼ tan6 β whilst the physical Higgs
boson mass m2

h0 is only mildly sensitive to tan β at large values.

Bu→ τν

Similarly, for the B(Bu → τν) observable, we have contributions from
charged-Higgs loops. Within the MFV framework in SUSY, the contribu-
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tion can be written as the ratio [137]:

RBτν ≡
BSUSY(Bu → τν)

BSM(Bu → τν)
=

[
1−

(
m2

B

m2
H±

)
tan2 β

1 + ε0 tan β

]2

, (2.22)

which is also enhanced at large tan β and light charged Higgses.

4. The anomalous magnetic moment of the muon, (g− 2)µ

The low-energy effective magnetic dipole moment (MDM) operator is written as:

LMDM =
e

4mµ
aµµ̄σρλµFρλ, (2.23)

where e is the electric charge, mµ is the muon mass and Fρλ is the photonic field
strength.

µ̃ µ̃

χ̃0µ− µ−

γ

µ− µ−

γ

χ̃− χ̃−

ν̃µ

Figure 2.4.: MSSM contributions to the muon (g − 2)µ at one-loop. These essentially
come from smuon-neutralino (left) and smuon sneutrino-chargino (right)
loops.

In the MSSM, aµ receives contributions at one-loop order from two diagrams,
given in Figure 2.4. In the left figure, the neutralino and smuon run through
the loop, whilst on the right the chargino and smuon-sneutrino. The one-loop
contributions to aµ from these superpartners (including complex phase effects)
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are [138]:

aχ̃0

µ =
mµ

16π2 ∑
i,α

{
−

mµ

12m2
µ̃m

(|nL
iα|

2 + |nR
iα|

2)FN
1 (xiα)

+
m

χ̃0
i

3m2
µ̃m

Re(nL
iαnR

iα)FN
2 (xiα)

}
,

(2.24)

aχ̃+

µ =
mµ

16π2 ∑
j

{ mµ

12m2
ν̃µ

(|cL
j |

2 + |cR
j |

2)FC
1 (xj) +

2mχ̃±j

3m2
ν̃µ

Re(cL
j cR

j )FC
2 (xj)

}
, (2.25)

where i = 1, 2, 3, 4, j = 1, 2 and α = 1, 2 run over the neutralino, chargino and
smuon mass eigenstates, respectively. The couplings are defined as

nR
iα =
√

2g1Ni1Xα2 + yµNi3Xα1,

nL
iα =

1√
2
(g2Ni2 + g1Ni1)X∗α1 − yµNi3X∗α2,

cR
j = yµUj2,

cL
j = −g2Vj1 (2.26)

where the muon Yukawa coupling is given by yµ = g2mµ/
√

2mW cos β. N are the
neutralino and U, V are the chargino mixing matrices, respectively. X denotes the
slepton mixing matrix. In terms of the kinematic variables xiα = m2

χ̃0
i
/m2

µ̃α
and

xj = m2
χ̃±j

/m2
ν̃µ

, the loop functions F are defined as follows

FN
1 (x) =

2

(1− x)4

[
1− 6x + 3x2 + 2x3 − 6x2 ln x

]
,

FN
2 (x) =

3

(1− x)3

[
1− x2 + 2x ln x

]
,

FC
1 (x) =

2

(1− x)4

[
2 + 3x− 6x2 + x3 + 6x ln x

]
,

FC
2 (x) = − 3

2(1− x)3

[
3− 4x + x2 + 2 ln x

]
. (2.27)

and are normalized such that FN
1 (1) = FN

2 (1) = FC
1 (1) = FC

2 (1) = 1 in the
degeneracy limit.
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Predominantly, the calculation of aµ depends on the SUSY parameters:

M1, M2, µ, mµ̃L
, mµ̃R

, tan β. (2.28)

In the large tan β limit, with the mass scales given around a scale MSUSY, the
contributions to Eqs. 2.24 and 2.25 can be summarized as, respectively,

aχ̃0

µ '
m2

µ

192π2M2
SUSY

(
g2

1 − g2
2

)
tan β, (2.29)

aχ̃±

µ '
m2

µg2
2

32π2M2
SUSY

tan β. (2.30)

The dependence on all of the parameters in 2.28 are rather complicated, and does
not need a further detailed discussion. At two-loop however, if the squark (or
1st/3rd generation slepton) masses are large we expect the SUSY contributions to
be enhanced by large logarithms [139],

a2-loop
µ = −4α

π
log

MSUSY
mµ

a1-loop
µ . (2.31)

This contribution depends on the mass spectrum, but for squarks of about a few
TeV can lead to an enhancement/suppression of about O(10)%. For specific
details, see [140–142].

5. Dark matter relic abundance, Ωχ.

In the standard Weakly-Interacting Massive Particle (WIMP) freeze-out paradigm,
dark matter particles were initially in chemical equilibrium with the surrounding
plasma, until the expansion rate of the universe overtook the scattering rate.
We discuss the details of this scenario in section 4.1. If we naively suppose a
generic WIMP with mass mχ, one can write the thermally-averaged annihilation
cross-section as the following,

〈σv〉 ∼ α2

m2
χ

. (2.32)

Assuming that the time of non-relativistic decoupling of the dark matter from the
plasma occurs at x f ≡ mχ/T ≈ 10, we can approximately reproduce the correct



Confronting the MSSM with the muon (g− 2)µ and dark matter 45

relic density after freeze-out

Ωχh2∼ 10−26 cm3/s
〈σv〉 ' 0.1

(
0.01

α

)2( mχ

100 GeV

)2

. (2.33)

The fact that weak-scale dark matter like those in supersymmetric extensions
to the Standard Model approximately gives the correct abundance has been
dubbed the ‘WIMP miracle’. Perhaps the best studied WIMP dark matter can-
didate [143], the MSSM LSP (Lightest Supersymmetric Particle), which is typ-
ically the neutralino χ̃0

1 can be kept absolutely stable without R-Parity violat-
ing terms in the Lagrangian. Upon calculating the thermal relic density [30],
one finds that the MSSM neutralino fits ok into the WIMP paradigm and pro-
duces the desired quantity in Eq. 1.20 for a number of parameter regions, al-
though recent null-results from direct detection experiments suggest this may
not be as much of a ’miracle’ as initially thought. The annihilation mechanism
of course depends on the mass of the neutralino LSP, where a number of pro-
cesses like χ̃0

1χ̃0
1 → ZZ, Zh0, h0h0 or extended Higgs sector processes like χ̃0

1χ̃0
1 →

W ±H∓ , ZA0, h0A0, h0H0, H0A0, H0H0, A0A0, H+H− can contribute. Similarly,
if there are other sparticles in the spectrum that are only slightly heavier, co-
annihilation diagrams like that of (b) and (c) in Figure 2.5 become important.

χ̃0
1

χ̃0
2, χ̃±1

χ̃0
1

χ̃0
1

t, b...

t̄, b̄...

f

f̄ , f̄ ′

χ̃0
1

f̃ γ, Z

Z, W ± fh0, H0, A0

f
(a) (b) (c)

Figure 2.5.: Some annihilation (and co-annihilation) channels for neutralino LSP dark
matter into SM particles. (a) Annihilation through the Higgs boson resonance,
(b) co-annihilation with almost-degenerate χ̃0

2 and χ̃±1 , and (c) co-annihilation
with almost-degenerate sfermions.

6. Dark matter direct detection experiments.

Direct detection experiments like CDMS [144], LUX [145], XENON1T [146],
XENON100 [147], ZEPLIN [148] and PANDAX [149] attempt to measure dark
matter elastic scatterings off nuclei. They can be broken up into spin-dependent
(axial-vector) and spin-independent (scalar) interactions. The cross section of
scalar couplings get an enhancement from large target nuclei, proportional to
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the square of the atomic mass. The axial-vector case, however, only benefit from
an enhancement proportional to the total angular momentum, J(J + 1) and not
the size of the nuclei. For this reason, we typically find that the experimental
sensitivity (especially for neutralinos) to axial-vector scatterings are below that of
the scalar case. Hence, we will focus on the spin-independent case in this work,
which are mainly mediated by t-channel CP-even Higgs boson exchanges in the
MSSM.

Spin-Independent case

In the scalar case, the neutralino-nucleon scattering cross-section is given by the
following:

σSI(χN → χN) =
4
π

m2
χm2

N

(mχ + mN)
2 [Z fp + (A− Z) fn]

2, (2.34)

where mN is the nuclei mass, and Z and A are the atomic number and mass of
the nucleus, respectively. The factors fp and fn are the neutralino couplings to
protons and neutrons, which can be written as

fp,n = ∑
q=u,d,s

f (p,n)
Tq aq

mp,n

mq
+

2
27

f (p,n)
TG ∑

q=c,b,t
aq

mp,n

mq
. (2.35)

The aq are the neutralino-quark couplings and f (p,n)
Tq,TG are the nuclear matrix

elements, determined from chiral perturbation theory. The first term comes from
the two diagrams in Figure 2.6, whilst the second term in Eq. 2.35 comes from
a diagram interacting with gluons through a quark/squark loop. The aq are
model-dependent, but when embedded in the MSSM, they take the following
form [150–154], in the notation of [155]:

aq = −
1

2(m2
1i −m2

χ)
Re[(Xi)(Yi)

∗]− 1

2(m2
2i −m2

χ)
Re[(Wi)(Vi)

∗]

−
gmq

4mW B

[
Re(δ1[gN12 − g′N11])DC

(
− 1

m2
H
+

1

m2
h

)

Re(δ2[gN12 − g′N11])

(
D2

m2
h
+

C2

m2
H

)]
, (2.36)
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where

Xi ≡ η∗11
gmqN∗1,5−i

2mW B
− η∗12eig

′N∗11, (2.37)

Yi ≡ η∗11

(yi
2

g′N11 + gT3iN12

)
+ η∗12

gmqN∗1,5−i

2mW B
, (2.38)

Wi ≡ η∗21
gmqN∗1,5−i

2mW B
− η∗22eig

′N∗11, (2.39)

Yi ≡ η∗22
gmqN∗1,5−i

2mW B
− η∗21

(yi
2

g′N11 + gT3iN12

)
, (2.40)

where we use i = 1, 2 for up & down type quarks respectively. The parameters in
Eqs. 2.37-2.40 also have dependence on the up & down type quarks as

δu,d
1 = N13, N14, δu,d

2 = N14,−N13,

Bu,d = sin β, cos β, Cu,d = sin α, cos α, Du,d = cos α,− sin α, (2.41)

where α represents the CP-even Higgs mixing angle (ie. cos α ≈ 1 corresponds
to the limit mH � mh). The constants yi, T3i and ei are the hypercharge, isospin
and electric charge for each quark. The squark masses are given by m1i, m2i,
diagonalized by the matrix η such that diag(m2

1, m2
2) = ηM2η−1. The last term in

Eq. 2.36 in the square brackets is the contribution from Higgs exchange.

h0, H0 q̃

q q

q q

χ̃0
1 χ̃0

1

χ̃0
1 χ̃0

1

Figure 2.6.: Feynman diagrams for direct detection of neutralino LSP dark matter through
the spin-independent t-channel CP-even Higgs exchange (left) and spin-
dependent s-channel squark exchange (right).
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2.2. MSSM Parameter Scan

The potential for the MSSM with to satisfy the muon (g − 2)µ and dark matter si-
multaneously has been the subject of some study [156–161], some able to rule out
slepton and electroweakino masses up to ∼ 1 TeV. However, in this chapter, we aim
to comprehensively cover the allowable parameter space by including recent con-
straints from direct detection experiments, which can be quite imposing especially for
bino-Higgsino like LSPs [162, 163].

In order to satisfy the 125 GeV Higgs boson mass (within a 2 GeV deviation from
the central value), the soft-breaking mass parameters for the stop is kept heavy at
5 TeV. We also maintain this for the other scalar masses. Such a heavy coloured
sparticle spectrum allows us to safely ignore any CP-violating effects and B-physics
contributions in this study, as the last section has shown that their effects decouple as
mass-squared. Moreover, motivated by these contributions predicted by the MSSM in
the previous section, we assume a diagonal structure for the soft-SUSY breaking masses
and trilinear couplings as described in section 1.6.3. Similarly we allow significant
stop mixing by setting the stop trilinear parameter to be in the range −5 TeV < At <

5 TeV. In light of this range of parameters, we ensure the mixing parameter does not
lead to charge/colour breaking minima in the potential by only allowing parameter
sets with |Xt/MS| < 2 [164]. We set the top quark mass to 173.5 GeV. For the first two
generations of sleptons, one can assume A` = 0 as they also have small effect on the
determination of ∆aµ. To avoid contributions from the stau generation to the trilepton
signature in the collider simulations, we decouple the sector by setting mτ̃L

= mτ̃R
= 5

TeV and Aτ = 0. Hence, ∆aµ is particularly sensitive to the following parameter scan
range:

−2000 GeV < M1, M2 < 2000 GeV,

−2000 GeV < µ < 2000 GeV,

100 GeV < m2
˜̀

L
, m2

˜̀
R
< 2000 GeV,

10 < tan β < 50. (2.42)

where ` = e, µ. We use the software package FeynHiggs-2.12.0 [165] to numerically
calculate the sparticle mass spectrum, including Higgs bosons and ∆aµ.

The following constraints are imposed on the parameter space:
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i. LHC: We require the lightest Higgs boson mass in the range

123 < mh0 < 127 GeV. (2.43)

ii. Higgs precision measurements: Exclusion limits at 95% C.L. from LEP, Teva-
tron and the LHC on the experimental cross-sections from Higgs searches are
implemented using HiggsBounds-4.2.1 [166–169].

iii. LEP direct searches [26]:

m ˜̀
L
, m ˜̀

R
> 100 GeV, (` = e, µ), (2.44)

mχ̃±1
> 105 GeV. (2.45)

iv. Requiring the lightest neutralino χ̃0
1 to be the LSP and consistent with a dark

matter candidate imposes the lower bound m
χ̃0

1
> 30 GeV [170, 171].

In Figure 2.7, we see the dependence of ∆aµ on the masses of the the neutralinos,
χ̃0

1,2, chargino, χ̃±1 and sleptons, m ˜̀
L
. Sizable contributions to ∆aµ arise when tan β is

large, the gaugino and Higgsino mass parameters are of the same sign and when χ̃0
1,2

and χ̃±1 have a large Higgsino/wino (or both) component. For the scan range given in
Eq. 2.42, one finds that the dominant contribution comes from the chargino-smuon
sneutrino loop (shown in Figure 2.4, right) rather than the neutralino-smuon loop. In
order to explain ∆aµ within 2σ of the central value, we require m

χ̃0
1
< 1.0 TeV and

mµ̃1
< 1.03 TeV. Next, we look at constraints coming from dark matter observations

which are typically in tension with wino or Higgsino-like LSPs and become constrained
by direct detection experiments.
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Figure 2.7.: Results of the parameter scan shown on the plane of ∆aµ vs. the mass of the
lightest neutralino, χ̃0

1 (top left panel), second lightest neutralino, χ̃0
2 (top right

panel), lightest chargino, χ̃±1 (bottom left panel) and first and second generation
sleptons, m ˜̀

L
. Green points include constraints imposed by LEP and LHC data.

The 2σ dashed lines correspond to the deviation given in 1.21.

2.3. Dark Matter relic abundance and direct detection

measurements

In this section, we focus on the parameter sets that satisfy ∆aµ within the upper and
lower 2σ limit, as shown by the dashed lines in Figure 2.7.

The dark matter relic abundance, ΩDMh2 and the spin-independent scattering cross
section with nuclei, σSI are calculated using MicrOmegas-4.2.3 [172–174]. In many
cases, such as predominantly wino or Higgsino-like neutralinos, large annihilation
rates in the early universe lead to under-abundance in the standard WIMP freeze-
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out paradigm. There are several alternatives to this common scenario, for example
choosing an axion-Higgsino component admixture as dark matter [175]. We do not
focus on such specific cases, however allowing for underabundant dark matter requires
a rescaling of the spin-independent cross section, σSI by the factor (ΩDMh2/ΩPlanckh2)

where we use the central value of the relic density measured by the Planck satellite
ΩPlanckh2 = 0.112± 0.006 [43].

In Figure 2.8, we present the neutralino dark matter relic density ΩDMh2 (left) and
the spin-independent neutralino-nucleon scattering cross-section σSI (right). In the
left panel, many points that satisfy the 2σ bound on ∆aµ and LEP and Higgs data
are overabundant. These samples are bino-like which have a small annihilation rate
to SM particles and hence freeze-out of the plasma with large density. On the other
hand, the annihilation cross-section for predominantly wino or Higgsino-like are high
enough to be much lower than the 3σ lower bound on the relic density. A mixed LSP
with a certain wino or Higgsino-fraction [176] can be typically reconciled within the
3σ upper and lower bound of the Planck measured value, ΩPlanckh2. We take these
samples for the spin-independent cross-section σSI on the right panel, shown as black
squares. Finally, there is another channel where the annihilation rate may be enhanced
through the Z and h resonance effect. This is seen in the two dips in the left panel for
neutralino masses at MZ/2 and Mh/2.

We see in Figure 2.8 (right) that a large portion of the samples where the LSP has a
sizable Higgsino or wino component are excluded by the recent PandaX-II [177] and
LUX 2016 [178] direct detection experiments. Though samples that are almost pure
Higgsino or wino annihilate so efficiently that their small abundance evade direct
detection experiments effectively. However, we are also interested in those points
which satisfy the relic abundance within the 3σ upper and lower bound that evade
direct detection experiments. There are two categories that these fit into. The first
correspond to the efficient co-annihilation region where bino-like LSPs are almost
degenerate with the sleptons. These bino-like LSPs can avoid direct detection since
their nucleon scattering cross-section are small. Though, a small number of these may
not be able to avoid constraints from XENON 1T (2017) [179]. The other region of
interest is the so-called ’MSSM blind-spot’ [180, 181]. In the spin-independent case,
this occurs when the hχ̃0

1χ̃0
1 coupling vanishes (or is highly suppressed), shown in

Figure 2.6 (left). All other sparticles are typically heavy (decoupled) for these samples.
Hence, the direct detection cross-section is dominated solely by h exchange, as can be
seen in Eq. 2.36 when mH and mq̃ are large. In the low-energy Higgs effective theory,
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this occurs when the following condition is satisfied for the parameters of the theory
at tree-level:

(m
χ̃0

1
+ µ sin 2β)

(
m

χ̃0
1
− 1

2
(M1 + M2 + (M1 −M2) cos 2θW)

)
= 0. (2.46)

Figure 2.8.: The neutralino dark matter relic density, ΩDMh2 (left) and the spin-independent
neutralino-nucleon scattering cross-section σSI (right) vs. the mass of the LSP. We
show the Planck central value and 3σ upper and lower bounds as the dashed and
dot-dashed lines on the left figure, and exclusions limits on σSI from LUX (2013)
(black line) [182], LUX (2016) [178] (magenta line), PandaX-II [177] (red line) and
XENON1T (2017) [179] (blue line, projected results) on the right figure. Green
points on the left figure satisfy the 2σ upper and lower bound on ∆aµ, LEP and
Higgs data. On the right figure, green points also satisfy the 3σ upper bound
only on the DM relic density whilst the black squares are a subset of these also
satisfying the 3σ lower bound.

2.4. Limits on electroweakinos from
√

s = 8 TeV LHC

searches

Strong constraint on the electroweakino sector come from multi-lepton + missing
energy channels at colliders, which have been extensively searched for at both ATLAS
and CMS. The main processes contributing to 2`+��ET events arise from the production
of slepton pairs and charginos:

pp→ ˜̀+˜̀−, χ̃+
1 χ̃−1 , (2.47)
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with subsequent decays to leptons:

• slepton decays: ˜̀± → `± χ̃0
1;

• chargino decays through

– sleptons: χ̃±1 → ˜̀± (→ `± χ̃0
1)ν`,

– sneutrinos: χ̃±1 → ν̃`(→ ν`χ̃
0
1)`
± ,

– W ± gauge boson: χ̃±1 →W ± (→ `± ν`)χ̃
0
1.

While 3`+ ��ET events mainly come from the associated production of charginos and
neutralinos:

pp→ χ̃0
i χ̃±j , (2.48)

where i = 2, 3, 4 and j = 1, 2. They then decay in two different ways:

• through sleptons/sneutrinos:

– χ̃0
i → `∓ ˜̀± (→ `± χ̃0

1), χ̃±j → ˜̀± (→ `± χ̃0
1)ν`,

– χ̃0
i → `∓ ˜̀± (→ `± χ̃0

1), χ̃±j → ν̃`(→ ν`χ̃
0
1)`
± ;

• through the SM gauge bosons: χ̃0
i → Z(∗)(→ `± `∓ )χ̃0

1, χ̃±j → W ± (∗)(→
`± ν`)χ̃

0
1.

Subsequently, we show these decay processes as diagrams in Figure 2.9.
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˜̀ ±
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1
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`∓ (ν) `± (ν)

˜̀ ± (ν̃)
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1

χ̃0
1

`± (ν)ν(`± )

˜̀ ± (ν̃)
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χ̃0
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χ̃±1,2

χ̃0
1 `±
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`∓

ν

`±χ̃0
1

W ± (∗)

(c)

Figure 2.9.: Collider signatures for (a) dilepton events through intermediate sleptons and
trilepton events through (b) sleptons/sneutrinos or (c) gauge bosons in the MSSM.

We use SPheno-3.3.8 [183] to produce the SLHA (SUSY Les Houches Accord [11,
12]) file employed in MadGraph5_aMC@NLO [184] to generate signal events at parton level.
These events are passed to PYTHIA [185] for showering and hadronization. Effects of
the detector are included using tuned Delphes [186]. We also employ FastJet [187] to
cluster jets using the anti-kt algorithm [188]. NLO in QCD corrections in the production
of ˜̀ ± ˜̀ ∓ , χ̃±i χ̃∓i & χ̃0

i χ̃±j pairs are estimated using the multiplicative k-factor of
1.3 [189]. The ATLAS dilepton [190] and trilepton [191] analyses are recast using the
CheckMATE-1.2.2 software package [192]. We estimate the main SM backgrounds
which arise from the following irreducible processes:

• di-boson: WZ, ZZ,

• tt̄V (V = W, Z),

• tri-boson: VVV.

The reducible background consists of single/pairs of tops, WW, and single W/Zs with
associated jets or photons). The exclusion limit is determined from the most sensitive
signal region, defined as

r = max
(

NS,i/S95%
obs.,i

)
, (2.49)

where NS,i and S95%
obs.,i are the event number and observed 95% C.L. upper limit for the

ith signal region, respectively. The most sensitive signal region is the largest r-value
over all regions in the analysis. A sample point is excluded at 95% C.L. if r > 1.
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Figure 2.10.: Exclusion limits in the mχ̃±1
−m

χ̃0
1

plane from LHC Run-I at
√

s = 8 TeV from
combined dilepton and trilepton events. All samples in the plot satisy LEP and
Higgs constraints, ∆aµ within 2σ and the 3σ upper bound on the relic density as
well as the LUX 2016 spin-independent cross-section 95% C.L. exclusion limits.
We sort the excluded 2`+ /ET & 3`+ /ET samples into Ωh2 < +3σ (red squares)
and −3σ < Ωh2 < +3σ (blue diamonds) where Ωh2 ≡ ΩDMh2 −ΩPlanckh2.

In Figure 2.10, we recast the exclusion limits coming from the LHC 8-TeV dilepton
and trilepton searches, shown in the mχ̃±1

−m
χ̃0

1
plane. All the samples present satisfy

∆aµ within 2σ as well as the LEP, Higgs and other collider constraints. They also satisfy
the 3σ upper bound on the DM relic density and direct detection limits from LUX
2016. We further classify these into the dilepton and trilepton excluded points (blue
diamonds), and a subset of these that satisfy both the upper and lower bound on the
relic density (red squares). There is a portion of samples that can be excluded by the 8
TeV limits, namely for χ̃0

1 < 300 GeV and χ̃±1 < 710 GeV. There is a significant number
of samples that are not excluded lying around the region where χ̃±1 and χ̃0

1 are almost
degenerate. These are wino or Higgsino-like neutralino candidates. Scenarios like
these are usually referred to as compressed spectra since there is a small mass difference,
∆m, between the LSP and the NLSP [193]. Typically the soft decay products are difficult
to access at the LHC, but can be probed using monojet-like signals to boost the initial
state pair and enhance the missing ET of the final state. It has also been suggested in
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the Higgsino case to search for soft dileptons complementary to the monojet signal
to boost the signal-to-background ratio rather than monojets alone which suffer from
large SM background [194–196]. Similarly, the small electroweak production rate can
be studied in the context of Vector Boson Fusion (VBF) production at LHC [197]. The
strategy for these analyses is to search for two forward opposite-hemisphere jets with
large dijet invariant mass. Such analyses have been investigated in the context of the
HL-LHC [193, 198–203].

However, when the bino component of χ̃0
2 becomes dominant, the cross-section

from χ̃±1 χ̃0
2 becomes suppressed. In this case we find that the dilepton searches may

become complimentary to the trilepton channel. The factor in determining this is the
neutralino-leptonic branching fraction which can be quite sensitive to the configuration
of the parameter space. We identify a number of cases:

(a) When the slepton is on shell, the chargino two-body decay dominates with the
leptonic branching fraction given by B(χ̃±1 → ν`

˜̀ ± (→ χ̃0
1`
± ))max = 2/3.

(b) When the sneutrino is on- shell and lighter than the corresponding slepton, the
dominant decay mode will be χ̃0

2 → ν`ν̃` with the neutralino leptonic branching
fraction suppressed.

(c) When the sleptons and sneutrinos are heavy, the decay paths of χ̃±1 and χ̃0
2

are dominated by W and Z decays, respectively. The branching fractions are
given by B(χ̃±1 → χ̃0

1W ± (→ `± ν`)) ' 2/9 and B(χ̃0
2 → χ̃0

1Z(→ `± `∓ ))∼ 6%,
respectively. Otherwise if the decay path χ̃0

1 → hχ̃0
1 is kinematically accessible,

then the trilepton exclusion limits can be weakened in this way.

2.5. Prospects for searches at a 100 TeV collider

The frontier of particle physics hinges on the ability to resolve smaller and smaller
distances (higher and higher energy scales) at colliders in order to probe fundamental
new physics. In recent years, there have been proposals for a 100 TeV pp collider that
could potentially probe an order of magnitude energy scale higher than the LHC [204]
with promising prospects for detection of charged and neutral SUSY states [205, 206].
The integrated luminosity of such a machine may be as high as 3 ab−1, the same as the
target luminosity for the HL-LHC upgrade, as we will use in this study.



Confronting the MSSM with the muon (g− 2)µ and dark matter 57

In this section, we study the potential for a 100 TeV pp collider to explain ∆aµ and
the previous direct search constraints as well as those from DM relic density and LUX
2016. We extrapolate the allowed sample results from the 8 TeV search in the previous
section using the most sensitive signal region. In this way, we simply rescale the
signal (S) and background (B) events by the following ratio using the corresponding
production cross-sections:

N100 TeV/N8 TeV = (σ100 TeV/σ8 TeV)(L100 TeV/L8 TeV), (2.50)

where we have used the luminosities L8 TeV = 20.3 fb−1 and L100 TeV = 3000 fb−1. We
consider such a treatment a preliminary theoretical estimate. Optimization of this
strategy could be performed once the details of the collider environment become
known. The expected signal exclusion criteria for the most sensitive signal region is
taken as

S√
B + (βsys.B)

2
≥ 2 [Excluded], (2.51)

where the dimensionless factor βsys. parameterizes the systematic uncertainties. Figure
2.11 shows the expected exclusion limits, where we can see that for βsys. = 0.1 we can
probe a number of samples within χ̃0

1 < 530 GeV and χ̃±1 < 940 GeV. This extends to
χ̃0

1 < 710 GeV and χ̃±1 < 940 GeV in the case where βsys. = 0.

We note that regions satisfying the relic density within the 3σ (upper and lower)
range, through resonant annihilation in the ‘blind spot’ region can now be searched
for through the associated production process χ̃0

2χ̃+
1 at the 100 TeV pp collider. How-

ever, there are still samples outside the reach of future searches for trilepton events,
corresponding to Higgsino/wino-like LSPs in the compressed mass spectrum region
or bino-like LSPs that co-annihilate with the sleptons. The former may be probed
through the monojet(-like) analysis at a future 100 TeV pp collider, as explored in [207].
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Figure 2.11.: Same as for Figure 2.10, but for
√

s = 100 TeV and 3000 fb−1 of data. Excluded
2`+ /ET & 3`+ /ET samples are shown for the ranges Ωh2 < +3σ (red squares)
and −3σ < Ωh2 < +3σ (blue diamonds) where Ωh2 ≡ ΩDMh2 −ΩPlanckh2. The
two figures correspond to βsys. = 0.1 and βsys. = 0, respectively.

2.6. Concluding remarks

This chapter has combined results from current and future pp coliider and dark
matter direct detection experiments to produce limits on the spectrum of electroweak
sparticles that satisfy the anomalous magnetic moment of the muon, or (g− 2)µ, in the
MSSM. With all relevant constraints from Higgs and SUSY searches at LEP and LHC,
measurements of the dark matter relic density from Planck and the PANDAX-II/LUX-
2016 direct detection experiments, parts of the MSSM parameter space satisfying the
(g− 2)µ can be significantly excluded. These limits could be further improved using
the recent XENON-1T [179, 208] dark matter constraints and monojet searches [207]
at the LHC, especially for regions where the mass difference between the LSP and
NLSP is small. In a broader context, our naive estimates in Figure 2.11 give further
motivation towards direct SUSY searches that shed light on low-energy observables
like the (g− 2)µ, and furthermore the development of next-generation colliders. It
could be argued from these results that after the full run of next generation pp colliders,
one could finally close the lid on the simplest versions of supersymmetry satisfying
the (g− 2)µ that simultaneously explain all (or part of) the dark matter abundance in
the universe.
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To close this chapter, we would also like to stress that despite the microscopic
properties of the dark matter, the abundance significantly depends on its cosmological
evolution of the early universe. More specifically, particular regions of excluded
parameter space (i.e. predominantly bino-like LSPs) can actually become consistent
with observation through depopulation mechanisms of cosmological origin, which are
described in more detail in chapter 4.
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Chapter 3.

Naturalness and fine-tuning beyond
the MSSM

“God used beautiful mathematics in creating the world.”
— Paul Dirac, 1902–1984

The null results of supersymmetry at the CMS and ATLAS collaborations have put
great constraint on the masses of coloured sparticles such as the gluino and squarks,
leading to 95% C.L. exclusion limits (within certain simplifying assumptions) of about
mg̃ & 1.5 TeV for mg̃ ' mq̃ and mg̃ & 1 TeV for mg̃ � mq̃ [122–124, 209, 210]. Recent
√

s = 13 TeV results may suggest even stronger limits, excluding up to ∼ 2 TeV
gluinos and ∼ 1.5 TeV squarks [211,212]. It is particularly these limits that have hinted
at the fact that the ‘natural’ MSSM may not be realistic. Furthermore, it has been
shown that in order to keep the MSSM ‘natural’, one must keep the sparticle masses
quite below the TeV scale [213–242].
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Figure 3.1.: (Left) A Summary of the dedicated searches for stop pair production from ATLAS
3.2-36 fb−1 data at

√
s = 13 TeV, showing the 95% C.L. exclusion limits in the

mt̃1
−m

χ̃0
1

plane. (Right) Exclusion limits at 95% C.L. in the mg̃ −m
χ̃0

1
plane from

ATLAS
√

s = 13 TeV data for various simplified models of gluino decaying to the
lightest neutralino [210].

Many of these models at large, however, come with a number of parameter relations
usually as a result from some enhanced symmetries at the high-scale. Some studies
have shown that this can lead to a significant reduction in fine-tuning. For example
in [227,231,243–246] one finds the existence of the ‘gaugino focus point’ corresponding
to a particular hierarchy of gaugino masses at the GUT scale. This could result from
the embedding of SUSY in a larger gauge group structure or even from string theory.
Similarly, the low-energy spectrum may contain degeneracies in the scalar masses
coming from soft SUSY breaking stemming from cancellations between the tree and
loop corrections to the Higgs boson mass leading to an overall reduction in fine-tuning
(the so-called ‘focus-point’) [219, 247–250]. Although as attractive as these prospects
are, we in fact have no knowledge of the UV-complete supersymmetric Standard
Model, or at which energy scale this should appear. More specifically, the failure for
the MSSM to remain natural seems to hint that there is physics beyond the MSSM -
whatever that may be. We have already mentioned the case where certain boundary
conditions at the high scale can lead to reduction in fine-tuning - however one can
also consider modifications to the Renormalization Group (RG) running down to low
energies.

In this section, within the framework of this effective field theory, we parameterize
our ignorance of the UV-physics and consider arbitrary variation in the 20-dimensional
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MSSM parameter space, for differing values of the unknown new physics intermediate
scales Λ in the next section.

Firstly, let us consider the minimization of the tree-level MSSM potential, which
gives the following condition on the mass of the Z-boson:

m2
Z

2
=

m2
Hd
−m2

Hu
tan2 β

tan2 β− 1
− |µ|2 ' −m2

Hu
− |µ|2, (3.1)

where the far right-hand side is valid for medium-to-large values of tan β, or when
|mHd

| . |mHu
| for tan β & 3. For the one-loop MSSM Coleman-Weinberg potential

[251, 252], one simply makes the replacements

m2
Hu
→ m2

Hu
+ Σu

u, m2
Hd
→ m2

Hd
+ Σd

d, (3.2)

where Σu
u and Σd

d are the one-loop corrections which include contributions from par-
ticles and sparticles with sizable Higgs-Yukawa or gauge-Higgs couplings. Eq. 3.1
highlights a very important feature of the MSSM. This condition intrinsically connects
the SUSY breaking scale, coming from the Higgs mass terms, with the electroweak
breaking scale. In fact, since the µ term sets the masses of the Higgsinos in the
MSSM, natural SUSY usually requires that the Higgsinos not exceed a couple hundred
GeV [237, 251, 253–258]. As is typically the case, the soft-SUSY breaking mass for the
up-type Higgs doublet, mHu

, is usually driven to negative values at the electroweak
scale, triggering EWSB.

Hence, it is clear from the last equality in Eq. 3.1 that we must adjust the low-energy
values of mHu

and µ in such a way to reproduce mZ ' 91 GeV. This can be achieved
in a ‘natural’ way when these adjustments are not sensitive to the variation in the
fundamental parameters of the theory defined at some high scale, Λ. Quantitatively
measuring this sensitivity, we invoke the standard Barbieri-Guidice measure [214]:

∆ = max

{∣∣∣∣∣ ai

m2
Z

∂m2
Z

∂ai

∣∣∣∣∣
}

, (3.3)

where the ai are the fundamental parameters of the low-energy effective MSSM theory.
These are of course renormalized through the RGEs down to the SUSY scale MSUSY

at which the fine-tuning is actually evaluated. The quantity ∆ represents the degree
to which one must tune the independent parameters to correctly reproduce the elec-
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troweak scale. The application of the measure in the curly brackets in Eq. 3.3 to the
right-hand side of Eq. 3.1 results in

ai

m2
Z

∂m2
Z

∂ai
=

2a2
i

m2
Z

(
−∂µ2

∂a2
i
−

∂m2
Hu

∂a2
i

)
. (3.4)

Naively, one can estimate this fine-tuning at tree-level from ai = {µ
2, m2

Hu
}. We find

∆µ = −2µ2

m2
Z

, ∆m2
Hu

= −
2m2

Hu

m2
Z

. (3.5)

Again this tree-level analysis shows that in order to achieve low fine-tuning, one must
have the absolute values of µ and m2

Hu
at the electroweak scale to be comparable to the

mass of the Z-boson.

Another question we may ask is: how much fine-tuning is actually acceptable? Of
course this may differ among phenomenologists, however it is reasonable to accept
that a value of ∆ greater than 100 (∆−1∼ 1% - corresponding to cancellations no more
than 2 orders of magnitude) would amount to a fine-tuned theory.

We approach the problem of fine-tuning in two ways. Firstly, we assume that
the UV physics beyond the MSSM enters at a low enough scale such that the RG
running of the “fundamental" parameters is not strong enough to destabilize the
electroweak minimum relationship in Eq. 3.1. Secondly, we look for relationships
among parameters in the RGEs that correspond to infrared fixed-point behavior
- implying that the values of the parameters satisfying the electroweak minimum
condition are not particularly sensitive to their values at the input scale. We explore
this case in sections 3.3 and 3.4.

3.1. General MSSM parameter scan

Here we present our results for a general parameter scan over the 20-dimensional
MSSM parameter space. We take a random sampling of the following parameter
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ranges:

−3000 GeV < M1, M2 < 3000 GeV,

M3 < 3000 GeV,

−(3000)2 GeV2 < m2
Hu

, m2
Hd

< (3000)2 GeV2,

m2
i1,2

< (3000)2 GeV2,

m2
i3 < (3000)2 GeV2,

−3000 GeV < At, Ab, Aτ < 3000 GeV,

1 < tan β < 50,

sign(µ) = ± 1. (3.6)

where i = (Q, ū, d̄, L, ē). Note that the first and second generation scalar soft masses
are taken to be degenerate and similarly we assume no flavour mixing at the input
scale (i.e. these are the diagonal entries of the matrices, we assume the off-diagonal
entries are zero). In contrast to the philosophy adopted in chapter 2, and in virtue of
the discussion in the previous section, we obviously cannot invoke decoupling of the
third-generation squarks or gluino which are the main culprits in MSSM fine-tuning.
However, the subsequent results in this chapter suggest that such a heavy spectra in
the order of a few TeVs may indeed still remain natural pertaining to the important
boundary conditions that we specify.

Eqs. 3.6 are the fundamental parameters of the theory entered at the following
representative values of Λ:

Λ ∈
[
105, 1010, 1016

]
GeV. (3.7)

We employ the full two-loop RGEs using SPHENO-3.3.8 [183] combined with SARAH

[259] to compute both the MSSM spectrum and the fine-tuning measure. The param-
eters included in the calculation of the fine-tuning measure in Eq. 3.3 are the gaug-
ino masses M1, M2, M3, Higgs soft-breaking masses m2

Hu
, m2

Hd
, 3rd generation scalar

masses m2
Q3

, m2
ū3

, m2
d̄3

, m2
L3

, m2
ē3

, the trilinear couplings At, Ab, Aτ, and the terms µ and
Bµ, all computed at the corresponding scale Λ. The top (pole) mass is set to 173 GeV.
We also compute the DM relic density ΩDMh2 and spin-independent WIMP-nucleon
cross-section assuming a neutralino DM candidate using micrOmegas-4.3.2 [174].
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Points which have a vacuum in the electroweak broken phase are chosen which
also satisfy ∆ ≤ 1000 are subsequently passed through the following constraints:

• Direct searches for the slepton and chargino at LEP produce the mass limits on
the first two generation sleptons and lightest chargino [26]:

ml̃L
, ml̃R

> 100 GeV, (l = e, µ), (3.8)

mχ̃±1
> 105 GeV, (3.9)

• We require the lightest Higgs boson mass in the range 122 < mh < 128 GeV [1, 2],

• We require the lightest neutralino χ̃0
1 as the LSP and m

χ̃0
1
> 30 GeV to be consistent

with the bound on light MSSM neutralino dark matter [170, 171],

• We satisfy the 3 sigma upper bound on dark matter relic density observed by
the Planck collaboration given by ΩPlanckh2 = 0.112± 0.006 [260]. For points
with underabundant dark matter, we assume there may be some additional
contribution from non-thermal candidates, such as the axion.

• We use the recent data from XENON1T [179] to constrain the points with results
from direct detection experiments, where we rescale the spin-independent cross-
section σSI to the observed relic density by (ΩDMh2/ΩPlanckh2),

• We check the bounds from Higgs searches at LEP, Tevatron and LHC implemented
using HiggsBounds-4.3.1 [166],

• We also check important B-physics and flavour constraints, namely B(B →
Xsγ) and B(BS → µ+µ−). The measured values we use are B(B → Xsγ)exp =

(3.55± 0.26)× 10−4 [261] and the upper bound B(BS → µ+µ−)exp < 1.08× 10−8

(95% CL) [262]. These are calculated using FlavorKit [263] as part of the SPheno/
SARAH package. Where an upper and lower bound are shown, we constrain our
points to within 3σ of the quoted value.

We do not impose constraints from direct gluino/stop-squark searches from LHC
as the limits are largely model-dependent and would require a dedicated recasting.
Besides, there are many cases in which the spectrum may be compressed to easily
avoid these LHC search constraints. In Figure 3.2 we show the dependence on the
fine-tuning measure on the gluino mass Mg̃ and lighter stop mass Mt̃1

.
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Figure 3.2.: Fine-tuning measure as a function of the gluino mass (top panel) and lighter stop
mass (bottom panel) for three representative NP scales. Yellow squares contain LEP
and Higgs mass constraints as well as B-Physics and Higgs precision constraints.
The green squares are a subset of these containing DM relic density and direct
detection constraints.

Reductions in fine-tuning for the lower scales are indeed proportional to the amount
of renormalization ‘running time’, log Λ2/m2

Z, and hence we see one can achieve a
fine-tuning measure around O(10) for Λ = 100 TeV. Furthermore, as we see in the
plots in Figure 3.3, the dark matter constraints are satisfied relatively easily.

Since the electroweakino masses M1 and M2 enter the RGE for the up-type Higgs
soft-breaking mass rather mildly (proportional to their respective gauge couplings),
models with underabundant dark matter that are still compatible with direct detection
constraints can exist without a strong contribution to the fine-tuning.
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Figure 3.3.: Left: Relic density ΩDM as a function of the LSP mass corresponding to the red
squares in the rightmost panels of Figure 3.2. The dotted line corresponds to
the PLANCK measurement of ΩPlanckh2 = 0.112± 0.006 [260]. Right: WIMP-
nucleon spin-independent cross-section as a function of the LSP mass for the
points shown in the left panel. Since we allow the LSP to be underabundant after
freeze-out, we rescale the cross-section by the factor Ω/Ωc where Ωc corresponds
to the measured Planck Collaboration value. The solid lines corresponds to the
XENON1T 2017 [179] and the recent 1 tonne × year [208] results. Similar plots
exist for Λ = 105 and 1010 GeV.

3.2. The top-Yukawa infrared quasi fixed-point in the

MSSM

Consider the RGEs for the strong gauge coupling g3 and the top-Yukawa coupling yt

(given in appendix B.1), in the absence of 2-loop or electroweak effects,

dg3
dt

= − 3g2
3

16π2 , (3.10)

dyt
dt

=
yt

16π2

(
6y2

t −
16
3

g2
3

)
, (3.11)

where t = log(Q/Q0) and Q is the energy scale. One can easily verify that the ratio

(
y2

t

g2
3

)FP

=
7

18
, (3.12)
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is renormalization-invariant. This is the quasi-infrared fixed-point (QFP) [264, 265], also
known as the Pendleton-Ross fixed-point, since the top Yukawa coupling will track
closer to the strong gauge coupling as one continues into the infrared. We show this
behavior in Figure 3.4.

Figure 3.4.: The top Yukawa coupling yt expresses a quasi-infrared fixed-point evolving from
Λ = MGUT to mZ at two-loop renormalization. Taken from [266].

If one starts with a large top Yukawa coupling at a high scale, Λ (could be the GUT
scale), then we can even compute the value of tan β from the running top mass:

mt(mt) =
yFP

t v√
2

sin β, (3.13)
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which of course is distinguishable from the physical top mass mpole
t which receives

sizable one-loop corrections from (i) QCD gluons in the SM1 and (ii) stops/gluinos
from SUSY

mt(mt) =
mpole

t

1 +
(

∆mt
mt

)
QCD

+
(

∆mt
mt

)
SUSY

, (3.15)

where the SUSY corrections are given by [267–271]

(
∆mt
mt

)
SUSY

= − g2
3

12π2

{
B1(mt, mg̃, mt̃1

) + B1(mt, mg̃, mt̃2
) (3.16)

− sin(2θt)
mg̃

mt

[
B0(mt, mg̃, mt̃1

)− B0(mt, mg̃, mt̃2
)
]}

, (3.17)

where θt is the stop mixing angle and

Bn(p; m1, m2) = −
∫ 1

0
dxxn log

[
(1− x)m2

1 + xm2
2 − x(1− x)p2

m2
t

]
. (3.18)

Using the observed value for the top pole mass, this predicts a value for tan β of about
1.5 [272], which produces too light a Higgs boson mass at least at tree-level, requiring
large stop-loop corrections (and/or stop mixing).

3.3. Other QFPs in the MSSM and fine-tuning

Since the fixed-point property of yt has been well-known for a while, some studies have
focused on the existence of quasi-fixed points for other couplings in the MSSM, such
as the soft SUSY-breaking parameters when yt is in its quasi-fixed regime [273–278]. In
fact, it has been found that many of the soft SUSY-breaking masses have low-energy
predictions independent of their high-scale input.

Our goal is to study the implications of these QFPs on the fine-tuning measure
in the MSSM. In particular, because of the insensitivity of some of the low-energy

1This has the well-known result in the DR renormalization scheme [267]:(
∆mt
mt

)
QCD

=
5g2

3

12π2 . (3.14)
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parameters to their values at the high-scale, we would expect the fine-tuning measure
to be significantly reduced in regions of QFP attraction.

Firstly, consider the one-loop RGE for the superpotential µ term

d
dt

µ =
µ

16π2

[
3y∗t yt + 3y∗byb + y∗τyτ − 3g2

2 −
3
5

g2
1

]
. (3.19)

where t = log(Λ2/Q2), where Q is an arbitrary renormalization scale. Evidently,
µ = 0 is a fixed-point of the theory, and moreover if µ is taken small at Λ (say µ∼mZ)
then it shall stay small running to low energies (to all orders in perturbation theory).
The evolution of m2

Hu
with the energy scale is a little more involved, due to couplings

to heavier particles in the spectrum:

d
dt

m2
Hu

=
1

16π2

[
3Xt − 6g2

2|M2|
2 − 6

5
g2

1|M1|
2 +

3
5

g2
1S
]

, (3.20)

where

S ≡ m2
Hu
−m2

Hd
+ Tr[m2

Q −m2
L − 2m2

ū + m2
d̄ + m2

ē ], (3.21)

and

Xt = 2|yt|
2(m2

Hu
+ m2

Q3
+ m2

ū3
+ |At|

2). (3.22)

Since we know that yt is quasi-fixed in the infrared, a large yt at the high-scale enhances
the initial contribution from Xt at Λ, especially if m2

Hu
is initially large. Similarly, if M1

and M2 are initially small, the remaining terms in Eq. 3.20 are subdominant (they are
also naturally suppressed by the square of the electroweak gauge couplings). We can
write the RGE for m2

Hu
in an approximate form:

d
dt

m2
Hu

=
6y2

t

16π2 m2
Hu

. (3.23)

Similar to the µ parameter, this expresses a fixed point for m2
Hu

= 0. From the
observation in Eq. 3.23, there is another important fixed-point we can see by defining
the sum:

Σ = m2
Hu

+ m2
Q3

+ m2
ū3
+ |At|

2, (3.24)
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from which the beta function for Σ satisfies:

d
dt

Σ =
3y2

t

4π2 Σ− 2

π2 g2
3M2

3. (3.25)

This clearly has a fixed point Σ = 0 in the limit M3 → 0. However, due to the dynamics
of g3 and M3, which increase in the infrared, we would expect a significant positive
contribution to the evolution of Σ. In fact, this is evidence for the large fine-tuning
present in a heavier spectrum. One finds for a positive Σ at the weak scale, one must
have a large (and negative) m2

Hu
to cancel the 3rd generation squark masses m2

Q3
and

m2
ū3

. Similarly, since these parameters increase significantly in the infrared with large
yt, they can tend to destabilize m2

Hu
very quickly. For this reason, we also consider the

case of negative stop mass-squared values at the input scale2. These have been studied
previously in some gauge messenger models [281] and also in the MSSM [280, 282] at
the GUT scale. We show the evolution of Σ and these soft-breaking masses in Figure
3.5.

3.4. Parameter scan in the quasi-fixed point region

In the following section we choose a large input top Yukawa coupling, 1 < yt .
√

4π,
to enhance the running of m2

Hu
. This also requires the dominance of m2

Hu
over the

other scalar mass-squared parameters, most notably m2
Q3

and m2
ū3

individually. These
will also tend to grow significantly with large yt into the infrared. Furthermore, the
up-type Higgs soft-breaking mass parameter is also initially chosen to be large and
negative, which is driven to small negative values at the weak scale, exploiting the
quasi-fixed point behavior.

This scenario differs from the well-studied Radiative Electroweak Symmetry Break-
ing (RWESB) mechanism [93, 283–286], described as early as the 1980’s, where the
renormalization group equations drive m2

Hu
to negative values at the weak scale, trig-

gering electroweak symmetry breaking. An extraordinary property of this behavior is
that the squarks and sleptons physical mass-squared can still remain positive. How-

2Negative stop mass-squared at the GUT scale, for example, can lead to a potential with a D-flat
direction that is unbounded from below. This is improved with large loop corrections but can
generate a large charge-colour breaking minimum which can be tunneled to by the EW minimum (if
it has lower potential energy) [279]. For the tunneling rate to be longer than the age of the universe
(metastable), this leads to the following constraint on the running masses, mt̃(mZ) &

1
10 M3(mZ)

[280]. This is easily satisfied in our scan.
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ever, we also allow the stop masses to be tachyonic at the input scale, where their
physical mass-squared values are driven positive at the weak scale. Although REWSB
has the interesting property of naturally connecting electroweak symmetry breaking
with SUSY breaking, we focus on a more unique set of boundary conditions in this
framework. More precisely, we scan over the following modified parameter space:

Figure 3.5.: Illustration of the infrared-fixed behaviour of the parameter Σ for two different sets
of input parameters at Λ = 1016 GeV where m2

Q3
= m2

ū3
= −105 GeV2, At = −100

GeV and tan β = 10. The three separate curves are shown for different initial
values of: Top Row: M3 = 100 GeV, m2

Hu
= −105,−5× 105,−106 GeV2. Bottom

Row: M3 = 2500 GeV, m2
Hu

= −5× 104,−105,−5× 105 GeV2.
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−3000 GeV < M1, M2 < 3000 GeV,

M3 < 3000 GeV,

−(3000)2 GeV2 < m2
Hu

< 0,

0 < m2
Hd

< (3000)2 GeV2,

0 < m2
i1,2

< (3000)2 GeV2,

0 < m2
L3,ē3,d̄3

< (3000)2 GeV2,

−(1000)2 GeV2 < m2
Q3,ū3

< (1000)2 GeV2,

−3000 GeV < At, Ab, Aτ < 3000 GeV,

1 < tan β < 50,

sign(µ) = ± 1,

1 < yt < 3. (3.26)

We also choose three representative high scales to enhance the running of m2
Hu

through
the top Yukawa coupling:

Λ ∈
[
1010, 1016, 1019

]
GeV. (3.27)

Again, satisfying the constraints detailed in section 3.1, we show the plots correspond-
ing to the quasi-fixed point behavior in Figure 3.6.
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Figure 3.6.: Same as in Figure 3.2 with higher Λ scales and in a narrower scan range supporting
the infrared fixed-point behavior for Σ. Note the smaller y-axis range. Small fine
tuning of ∆ < O(100) can be achieved even for heavier sparticle masses > 1 TeV.

The plots shown in Figure 3.6 confirm our expectation showing significant reduction
in fine-tuning in the quasi-fixed point regime, even holding at very high NP scales.

3.5. Concluding remarks

Through our consideration of naturalness, and in light of current experimental limits
from the LHC, we believe that this is hinting towards evidence for physics beyond the
MSSM. In this way, the MSSM is treated as an effective theory all the way up to a scale
Λ with no a priori assumption on the origin of soft-breaking terms. This is alternative
to the often used boundary conditions assuming common scalar or gauginos at the
GUT scale, for example. For our definition for acceptable fine-tuning, we observe the
comfortable accommodation of multi-TeV coloured sparticles when the scale of new
physics is even as low as Λ = 1010 GeV and most certainly for Λ = 100 TeV. More
precisely, we see the reduction of fine tuning from ∆∼O(100) for Λ = 1016 GeV to
∆∼O(10) for Λ = 105 GeV in this case. But perhaps of greater interest is the existence
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of low-fine tuning (∆ < O(100)) when the MSSM behaves close to a quasi-fixed regime
where the dynamics of the soft-breaking parameter m2

Hu
becomes less sensitive to its

value at Λ. Because of the importance of the gluino mass M3 in the evolution of m2
Hu

to low-energies, we find an upper limit of about ∼ 1.5 TeV on the gluino satisfying
this naturalness criteria (and all other relevant constraints) when input at around the
GUT scale and above. These results are of course indicative only - one could always
perform a dedicated collider recasting outside the scope of our study. Nonetheless,
this calls for a further exploration into non-standard UV completions to the MSSM.



Chapter 4.

A cosmological mechanism for
depopulating dark matter

“In order to make an apple pie from scratch, you must first create the uni-
verse.”

— Carl Sagan, 1934–1996

One of the notable concerns with neutralino dark matter in the MSSM is the familiar
bino-like overabundance at early times, due to feeble annihilation rates. In this chapter,
we describe a cosmological mechanism for reducing the abundance substantially
through temporary decays. These early decays can arise from a spontaneously broken
symmetry, which is then appropriately restored as the universe cools to stabilize the
dark matter1.

In reference [6] we discuss how this can be applied to a model of fermionic dark
matter based on the inert 2HDM model [288], in which DM particles are odd under an
imposed Z2 symmetry and SM particles are even. In this case, at high temperatures
the Z2 symmetry is broken temporarily and then restored at lower temperatures,
accounting for a phase in which the dark matter abundance is reduced through decays.
Here instead we introduce a generic discussion of how we can exploit this mechanism
in a model-independent fashion before exploring how this could be applied to the
MSSM. In particular, dark matter in the MSSM can be destabilized in an analogous

1An approach has been considered in [287], using additional auxiliary dark sector fields that require a
specific mass arrangement.
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way through temporary R-Parity violation, a discrete Z2 symmetry that prevents decay
of the lightest neutralino to SM particles.

4.1. A closer look at the WIMP relic density: The

Boltzmann Equation

In the generic WIMP paradigm, dark matter particles were in thermal equilibrium
with the constituents of the Universe in its early history. The departure from thermal
equilibrium, where the dark matter decouples from the plasma occurs when the
expansion rate of the Universe, H, overtakes the interaction rate of the heavy particles,
Γ. We refer to this time in cosmological history as the WIMP freeze-out, since the
(co-moving) density of particles remains constant after decoupling - assuming it is
kept stable (or is very long-lived compared to the age of the Universe) until the
present day. If these particles were kept in equilibrium, they would have indeed been
thermally suppressed by the factor e−m/T. The Boltzmann equation for WIMP particles
χ describing this process can be written as 2:

a−3
d
(

nχa3
)

dt
= 〈σv〉

[
(nEQ

χ )2 − n2
χ

]
. (4.1)

In the above, a is the scale factor as usually defined through the Hubble expansion con-
stant as H ≡ ȧ/a and nχ and nEQ

χ are the dark matter number density and equilibrium
number density, respectively. 〈σv〉 is the thermally-averaged cross section, summed
over all annihilation channels. It typically becomes convenient to factor out the effects
of the universal expansion by using the number density of particles per co-moving
volume. For this sake, let us then define the quantities

Yχ ≡
nχ

s
, x ≡

mχ

T
. (4.2)

s = (2π2/45)g∗sT3 is the entropy density, dominated by relativistic contributions,
where

g∗s = ∑
i=bosons

gi

(
Ti
T

)3

+
7
8 ∑

i=fermions
gi

(
Ti
T

)3

. (4.3)

2Derivations of this equation in the form of Eq. 4.1 can be readily found in [289–291].



A cosmological mechanism for depopulating dark matter 79

In the early universe, at equilibrium, most species had identical temperatures, so
g∗s = g∗. We will ignore dependence of g∗ on temperature, to good approximation. In
general, the thermally-averaged cross section has dependence on velocity v, σv ∝ vp

where p = 0 is s-wave annihilation, p = 2 is p-wave annihilation. Since 〈v〉 ∼ T1/2,
we parameterize the cross section as

〈σv〉 ≡ σ0(T/mχ)
n = σ0xn, (4.4)

where n = 0 corresponds to s-wave annihilation, n = 1 for p-wave and so on. Chang-
ing from t to the variable x, we require the Jacobian dx/dt = Hx. Hence, with all this
we can write the Boltzmann equation for the abundance Yχ:

dYχ

dx
= − λ

xn+2

[
Y2

χ − (YEQ
χ )2

]
, (4.5)

where

λ =

[
xsχ 〈σv〉

Hχ

]
x=1

. (4.6)

In the above, we have implied sχ = (2π2/45)g∗m
3
χ and Hχ = (π2g∗/90)1/2(m2

χ/MP)

as the entropy density and Hubble expansion rate, respectively, both evaluated at
T = mχ. For an s-wave process (n = 0), λ is constant, but in general higher partial
waves mean that 〈σv〉may have some temperature dependence. We will ignore any
temperature dependence on the thermally averaged cross-section. Similarly, it is safe
for our purposes to ignore changes in g∗ with respect to temperature.

Initially, at x � 1, the relic abundance Yχ approximately tracks the equilibrium
abundance YEQ

χ , which we can write as Yχ(x) = YEQ
χ (x) + δ ≈ YEQ

χ (x). These equilib-
rium abundances have the simple forms:

YEQ
χ (x) =


45

2π4

(
π
8

)1/2 gχ

g∗
x3/2e−x , mχ � T,

45ζ(3)
2π4

geff
g∗
' 0.278 geff

g∗
, T � mχ,

(4.7)

where ge f f = gχ (ge f f = 3gχ/4) measures the degrees of freedom for bosonic
(fermionic) dark matter. For relativistic particles, clearly YEQ

χ remains constant up until
the dark matter becomes relativistic (or x > 1). For non-relativistic dark matter, YEQ

χ

becomes exponentially suppressed at later times and the Yχ will dominate completely.
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At this point, the dark matter scatterings are so rare that they cannot maintain equi-
librium in the thermal bath. At close to freeze-out, the departure from equilibrium is
significant and Yχ ≈ δ� YEQ

χ (x∼ x f ) where

δ(x) ≈ xn+2

2λ
. (4.8)

For x � x f one can then drop the equilibrium yield from Eq. 4.5 and integrate from
the freeze-out to the present day, x∞ to give:

Y∞
χ ≈

(n + 1)Yχ(x f )xn+1
f

Yχ(x f )λ + (n + 1)xn+1
f

, (4.9)

where Yχ(x f ) = δ(x f ) for non-relativistic dark matter. For relativistic dark matter at
decoupling, Yχ(x f ) = YEQ

χ . Typically, the correct relic abundance when the decoupling
is non-relativistic occurs when x f ∼O(10), and so in summary, the final yield of dark
matter for these situations are:

Y∞
χ =


(n+1)xn+1

f
λ , non-relativistic

0.278 (0.208) geff
g∗

, relativistic bosons (fermions)
(4.10)

Since we typically have λ� 1, the relativistic decoupled dark matter is several orders
of magnitude higher than the non-relativistic decoupling. This is finally recast into the
form of the fraction of present-day critical density from χ,

Ωχ =
mχY∞

χ s0

3H2
0 M2

P
, (4.11)

where s0 = 2891.2 cm−3 and H0 = 100 h km s−1 Mpc−1 (h = 0.673) are the present day
entropy density and Hubble expansion rate [26].
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Figure 4.1.: The typical ‘freeze-out’ description of a non-relativistic DM species from equilib-
rium with the surrounding plasma at about x f ∼O(10). The dashed line shows
the abundance of DM per comoving volume element, whilst the solid line is the
equilibrium abundance. Adapted from [291].

4.2. Decays from a cosmological phase transition

Let us suppose that there is a symmetry stabilizing the DM up to a time xa, in which
this symmetry is spontaneously broken. This cosmological phase transition persists
until xb, in which the symmetry is then restored. Hence, during the instability phase
x ∈ [xa, xb], the DM is permitted to decay. As seen in the previous section, we would
require that the dark matter be non-relativistic for some, if not all, of the instability
phase in order to suppress inverse decays that would repopulate the dark matter. The
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Boltzmann equation in Eq. 4.5 then gets modified with a decay term3:

dYχ

dx
= −

2Γχx
gχHχ

[
Yχ −YEQ

χ

]
− λ

xn+2

[
Y2

χ −
(

YEQ
χ

)2
]

. (4.12)

Here Γχ is the decay width of the DM particle.

Before we consider the effects of decays on dark matter density, we must first
comment on the consequence of entropy production during the phase transition, which
can also dilute the dark matter density when it is a first-order transition [295, 296].
Since the phase transition occurs well above T = 1 GeV, we can neglect entropy
production from particle decoupling, or in other words, we can assume g∗, the number
of relativistic degrees of freedom, is approximately constant. The change in entropy
can then be parameterized by a dilution factor (as in [295]) where γ ≡ s(x f )/s(xi)

such that the final density changes as

Y∞
χ →

Y∞
χ

γ
, Ωχ →

Ωχ

γ
, (4.13)

where γ > 1. Here, xi and x f represent the beginning and after the phase transition,
respectively. This is valid for the case where the dark matter density is much larger
compared to its equilibrium abundance, Yχ � YEQ

χ , as is the case after freeze-out and
annihilations are negligible compared to decays. However this also holds for DM
yields that are close to their equilibrium value, Yχ∼YEQ

χ . In many general cases, the
analytical solutions are not available.

The effect of the DM decays depends on when this instability takes place relative
to the time of freeze-out, and the size of the decay rate Γχ. Let us consider (4) separate
scenarios:

(1) Freeze-out precedes first phase transition, x f � xa. Here we expect a significant
change in the final density of dark matter. In Eq. 4.12, the equilibrium yield
would be exponentially suppressed, which then resembles the Bernoulli equation

3In general, we should include the thermally-average decay width 〈Γχ〉 = ΓχK1(x)/K2(x) where
Γχ is the zero-temperature width and Kn(x) are the modified Bessel functions [292–294]. For

non-relativistic DM, this has the asymptotic form K1(x)/K2(x) = 1− 3/(2x) +O(x−2) (x � 1)
and so can be approximated by the zero-temperature width, whilst for relativistic dark matter is
K1(x)/K2(x) = x/2 +O(x2) (x � 1) (see Appendix D). Hence, we neglect DM decay before it
becomes non-relativistic since they are highly suppressed.
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and is analytically solvable in terms of the incomplete Gamma function, Γ(α, x):

Yχ(xb) =
Yχ(xa)e

−
Γχ

2Hχ
x2

b

e
−

Γχ
2Hχ

x2
a
+ λ Yχ(xa)

1
2

(
Γχ

2Hχ

) n+1
2
[
Γ
(
−1−n

2 ,
Γχ

2Hχ
x2

a

)
− Γ

(
−1−n

2 ,
Γχ

2Hχ
x2

b

)]
(4.14)

≈
Yχ(xa)e

−
Γχ

2Hχ
(x2

b−x2
a)

1 + λ Yχ(xa)
Hχ

Γχ

 1
x3+n

a
− e

−
Γχ

2Hχ
(x2

b−x2
a )

x3+n
b

 . (4.15)

The second line uses a leading-order asymptotic expansion for the incomplete
Gamma function, for fixed α and large x (this is detailed in appendix D). The
scattering cross-section is present in Eq. 4.15 through the matching condition,
i.e. λYχ(xa) ≈ (n + 1)xn+1

f for non-relativistic freeze-out at x f . The exponential
suppression factor Γχ(x2

b − x2
a)/Hχ in Eq. 4.15 has a simple intuitive explanation.

The reduction of dark matter density is defined through the decay rate of dark
matter per the universal expansion rate multiplied by the decay time ∆t ∝ x2

b − x2
a,

or the duration of the phase transition. Finally, the present day abundance Y∞
χ

can be obtained by substituting Yχ(x f )→ Yχ(xb) into Eq. 4.9.

(2) Freeze-out occurs during instability phase, xa < x f < xb. In this case, we can solve
Eq. 4.12 with the ansatz Yχ = YEQ

χ + δd, where δd parameterizes a small deviation
from the equilibrium yield. Hence, we get the following solution for xa < x f :

δd(x) ≈ −
dYEQ

χ

dx

[
Γχ

Hχ
x +

2λ

xn+2 YEQ
χ

]−1

, (4.16)

where we have neglected δ′d and O(δ2
d) terms. For the period xa < x < x f , the

solution is given by Eq. 4.16. For the subsequent period of x f < x < xb, if
inverse decays are negligible, we can then implement the solution in Eq. 4.15,
provided we match the solutions with Yχ(xa) → Yχ(x f ) = YEQ

χ (x f ) + δd(x f ).
Then the present-day abundance is simply given by Yχ(x f )→ YEQ

χ (xb) in Eq. 4.10.
Conversely, if the inverse decays are fast enough to keep the DM in equilibrium
through the whole phase, we can use Eq. 4.10 to simply recast the final abundance
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as:

Y∞
χ ≈

(n + 1)YEQ
χ (xb)xn+1

b

YEQ
χ (xb)λ + (n + 1)xn+1

b

. (4.17)

We consider an explicit numerical example of this particular case in [6].

(3) Freeze-out immediately follows second phase transition, x f ∼ xb. If the decay width Γχ

is large enough its dominance will ensure YEQ
χ (x f )� δd(x f ) and decays will keep

the DM abundance exponentially close to the equilibrium value at freeze-out. This
is different of course to the case of pure scatterings. Consequently, one can then
obtain the present day abundance through the substitution Yχ(x f )→ YEQ

χ (x f ) in
Eq. 4.10, and may be substantially smaller than in Eq. 4.10.

(4) Freeze-out succeeds second phase transition, x f � xb. In this case, the scatterings that
would occur subsequently after the phase transition would re-populate the dark
matter. This would lead to essentially the same abundance at freeze-out, given in
Eq. 4.10.

For situations not considered here, it is always possible to solve Eq. 4.12 numerically
to obtain the final yield.

4.3. Regeneration and present-day abundance

During the phase of instability, x ∈ [xa, xb], suppose we have a scalar which spon-
taneously breaks the symmetry responsible for stabilizing the DM. There may also
be Goldstone modes or massive gauge bosons from the breaking of other continu-
ous symmetries. These can be produced via decays of the DM particle and through
scatterings with SM particles. Since the VEV of the S degree of freedom increases as
v2

s ∝ 1− x2
a/x2 in x ∈ [xa, xb], these degrees of freedom may stay relativistic or could

become non-relativistic depending on their thermal mass compared to the temperature
up until and at Tb.

After the second phase transition, all degrees of freedom associated with S are
heavy and therefore follow the Maxwell-Boltzmann distribution. We first assume that
all relativistic S degrees of freedom are in kinetic and chemical equilibrium at some
point during the instability phase, at least at the end leading up to Tb. Let us also
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assume that these scalars are still in kinetic equilibrium with the SM thermal bath after
this phase transition such that they will have the same temperature, Tb. This is satisfied
when the relaxation rate Γrelax ' Γcoll/Ncoll (where Γcoll is the collision rate and Ncoll

is the number of collisions) exceeds the Hubble rate H . Γrelax ' T
3mS

Γcoll which is a

valid assumption4 [297, 298]. Since the number density of initially relativistic particles
also doesn’t change after the symmetry-restoration at xb, we can in general write

ζ(3)

π2 T3
b =

(
mSTb

2π

)3/2

e(µ−mS)/Tb ⇒ µ ≈ mS, (4.18)

where µ is the associated chemical potential. Since µ∼mS � Tb the scalar is ini-
tially over-abundant since YS/YEQ

S ∼ exp(mS/Tb). The particles which become non-
relativistic during the instability phase will then follow a Maxwell-Boltzmann distri-
bution during and after xb. Since their mass may change after the phase transition, but
still maintaining the same number density, we have

(
m′STb

2π

)3/2

e−m′S/Tb =

(
mSTb

2π

)3/2

e(µ−mS)/Tb

⇒ µ ≈ mS −m′S +
3
2

Tb log(m′S/mS), (4.19)

where m′S is the mass of the scalar after the instability phase and mS is the mass at zero
temperature. Hence, the scalar S can be overabundant, YS/YEQ

S ∼ (m′S/mS)
3/2 exp(mS−

m′S)/Tb right after this phase transition, though closer to equilibrium compared to Eq.
4.18.

Since the scalars are heavier than the mass of the DM, and are non-relativistic, they
can annihilate to DM and an SM particle. This phase we call regeneration. Assuming
that DM annihilations have become negligible, one can write the analogous Boltzmann

4In general, we can fulfill this condition if we consider scalar interactions with electroweak bosons.
The collision rate can then be estimated as Γcoll ' G2

FT5 for non-relativistic S scattering with
a relativistic particle in the SM thermal bath. Kinetic equilibrium can then be achieved when
T4 & mS/G2

F MP ' (40 MeV)4(mS/TeV).
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equations for the regeneration phase:

dYS
dx

= −ΓSx
Hχ

(
YS −

Yχ

YEQ
χ

YEQ
S

)
− λS

xm+2

(
Y2

S − (YEQ
S )2

)
, (4.20)

dYχ

dx
=

ΓSx
Hχ

(
YS −

Yχ

YEQ
χ

YEQ
S

)
, (4.21)

where ΓS is the zero-temperature decay width for the scalar, which is suitable since S
is non-relativistic. Likewise, we may write the annihilation cross-section for S into SM
fermion pairs as before:

λS =

[
xsχ

〈
σv(SS→ f f̄ )

〉
Hχ

]
x=1

. (4.22)

Here we have m = 0 for s-wave scattering and m = 1 for p-wave. However, we again
approximate the thermally-averaged cross-section by the leading partial wave.

We briefly summarize the relevant timescales in this regeneration phase: (i) the
freeze-out of the scalar S, xS

f , given by H(xS
f ) = nS

〈
σv(SS→ f f̄ )

〉
x=xS

f
; (ii) the chem-

ical equilibrium of S, xS
c , where YS(xS

c ) = YEQ
S (xS

f ); and (iii) when inverse decays
become sizable, xS

i , where YS(xi)Y
EQ
χ (xi) = Yχ(xi)Y

EQ
S (xi). The phenomenology

changes significantly depending on how these are ordered. However, at the second
phase transition, since we have YS(xb)� YEQ

S (xb) and YS decreases with x such that
YS(x)� YEQ

S (x), in general we can conclude xS
i ≤ xS

c .

In Figure 4.2, we present two separate scenarios that may be realized within this
general framework.
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Figure 4.2.: Schematic illustrations of two distinct scenarios in the depopulation of thermal
dark matter. (Left) This corresponds to (1) in section 4.2, where the equilibruim
yield is negligible at the beginning of the phase transition. In this case, inverse
decays partially repopulate the dark matter after the second phase transition
leading to the present day abundance. (Right) This is the case described by (2) in
section 4.2. Since inverse decays are fast enough to keep the DM in equilibrium,
the equilibrium abundance at the end of the phase transition, YEQ

χ (xb), leads to the
present day abundance of dark matter.

4.4. Application to the MSSM & R-Parity violation

The multiple scalar states involved in supersymmetric theories makes them ideal
models to study the depopulation mechanism. Moreover, we have seen that signifi-
cant parts of the MSSM parameter space lead to bino-like DM candidates with relic
abundances many orders larger than observation because of their feeble annihilation
rate. Of course the neutralino DM candidate is stabilized by the discrete R-parity, but
this can be temporarily broken (and of course stabilized in the zero-temperature limit)
in the early universe, leading to an exponential decay period to reduce the abundance
significantly. One way to accomplish this is through the condensation of the sneutrino,
assuming all the other extra states of the MSSM remain heavy and decoupled. Using
the Higgs boson tree-level mass in Eq. 1.72, the zero temperature scalar potential in
this particular limit is the following [299]:

V0 = −m2
h

4
h2 + m2

ν̃|ν̃|
2 +

m2
Z

8v2

(
mh
mZ

h2 + 2|ν̃|2
)2

, (4.23)

where mν̃ here is the sneutrino soft SUSY breaking mass. We are interested in a phase
where the sneutrino develops a non-zero vacuum expectation value, and hence we



88 A cosmological mechanism for depopulating dark matter

allow it to be tachyonic5. The physical sneutrino mass, however, receives contribution
from the electroweak symmetry breaking and radiative corrections. The physical
mass-squared,

M2
ν̃ = m2

ν̃ +
(mZmh

2
+ rad. corr.

)
, (4.24)

must obviously be positive, and therefore the following constraint must be met:

−
(mZmh

2
+ rad. corr.

)
< m2

ν̃ < 0. (4.25)

4.4.1. Finite temperature corrections

In the high-temperature limit, we have contributions to the effective potential from
thermal loops. We will only consider contributions from h and ν̃, the electroweak gauge
bosons and the top quark. We will neglect all the sub-dominant Yukawa couplings.
The finite temperature contributions are given by

∆V(1)(φc, T) =
T4

2π2

[
∑

i
ni JB[m

2
i (φc)/T2] + nt JF[m

2
t (φc)/T2]

]
, (4.26)

where i =
{

h, ν̃, W ± , Z
}

and JB and JF are the boson and fermion thermal functions,
respectively, defined in the high-temperature limit as

JB(m/T) = −π4

45
+

π2

12
m2

T2 −
π

6

(
m2

T2

)3/2

− 1
32

m4

T4 log
m2

abT2 +O
(

m6

T6

)
, (4.27)

JF(m/T) =
7π4

360
− π2

24
m2

T2 −
1

32
m4

T4 log
m2

a f T2 +O
(

m6

T6

)
, (4.28)

where ab = 16π2 exp(3/2 − 2γE) (log ab = 5.4076) and a f = π2 exp(3/2 − 2γE)

(log a f = 2.6351). γE ≈ 0.5772 is the Euler-Mascheroni constant. m2 is the thermally

5This assumption is atypical, yet in some cases, phenomenologically viable. Tachyonic soft masses
may emerge in some specific supersymmetry breaking scenarios at high energies. For example,
the implications of a negative common scalar mass at the GUT scale in the context of minimal
supergravity (mSUGRA) is discussed in [300].
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shifted mass, computed from the tree-level potential as:

m2(φc) =
d2V0(φc)

dφ2
c

. (4.29)

We show a more detailed derivation of the origin of the finite-temperature contribu-
tions to the potential in appendix C. The ni represent the degrees of freedom of the ith
species, which are

nh = 1, nν̃ = 2, (4.30)

nW = 6, nZ = 3, nt = −12. (4.31)

Therefore, the thermal masses for the scalar boson species are:

m2
h(h, ν̃) ' −m2

h
2

+
3m2

h

2v2 h2 +
mzmh

v2 |ν̃|
2, (4.32)

m2
ν̃(h, ν̃) ' m2

ν̃ +
mzmh

v2 h2 +
6m2

z

v2 |ν̃|
2. (4.33)

Similarly, the top-quark mass is defined through the Yukawa coupling, yt. The dom-
inant high temperature corrections to the potential in Eq. 4.23 (ignoring linear and
logarithmic terms in T) reads:

VT =
αhT2

2
h2 + αν̃T2|ν̃|2 , (4.34)

αh =
1

8v2

(
4m2

W + 2m2
Z + 4m2

t + m2
h +

2
3

mZmh

)
≈ 0.383 , (4.35)

αν̃ =
1

8v2

(
4m2

W + 4m2
Z +

1
3

mZmh

)
≈ 0.129 . (4.36)

The full potential given by V0 + VT reveals that at sufficiently large T the Higgs and
the sneutrino fields minimize the potential by residing at the origin, 〈h〉T = 〈ν̃〉T = 0,
and hence electroweak symmetry and R-parity are unbroken. The critical temperature
at which an instability develops in the ν̃-direction occurs at

Tν̃
c ≈ 2.78|mν̃|, (4.37)
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and the sneutrino field develops a non-zero vacuum expectation value given by,

〈ν̃〉T =
v

mZ

(
−m2

ν̃ − αν̃T2
)1/2

, (4.38)

while the Higgs field remains at the origin. Further cooling down to the second critical
temperature, Th

c ≈ 143 GeV results in the electroweak phase transition due to the

Higgs field condensate with VEV 〈h〉T = v
mh

(
m2

h − 2αhT
)1/2

. Positive contribution
to the sneutrino mass from the Higgs condensate starts to dominate and brings the
sneutrino field back to the origin. This restores the R-parity, as desired in the zero-
temperature limit. Hence, for a suitable for m2

ν̃ we can account for a phase in the early
universe,

Th
c ≈ 143 GeV < T < Tν̃

c ≈ 2.78|mν̃| , (4.39)

where R-parity is broken spontaneously. During this phase the neutralino LSP ceases
to be a stable particle. More specifically, condensation of the sneutrino field leads
to a spontaneous breaking of R-parity and to a mixing of neutralinos and neutrinos.
Through this mixing the neutralino LSP decays into Standard Model particles, the
dominant decay channel being the 2-body process χ→ Zν′ for mχ > mZ + mν. The
longitudinal degrees of freedom of the Z-boson during the instability state become
massive sneutrino states and decay back to neutralino DM during the regeneration
phase.

In general, the violation of lepton number as a consequence of R-parity violating
interactions can have important impact on other areas of early universe cosmology,
particularly leptogenesis. This can be linked to processes converting lepton number
into baryon number, known as the sphaleron process [301], of which the observed
baryon asymmetry is well-known to be [302]:

B ≡ nb − nb̄
s

=
nb
s
' 10−10. (4.40)

We do not discuss these implications here and hence the full phenomenological validity
of this particular supersymmetric model remains open to further study.
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4.5. Microscopic vs macroscopic properties

Everyday experience would tell us that as a system is heated up, it becomes less
ordered. In the language of particle physics, this means that at large temperatures,
symmetries get restored. Interestingly enough, exceptions to this situation have been
studied, usually with the presence of a non-vanishing background charge [303–306].
For example, this may be lepton number in the MSSM, or the continuous global R-
charge of the MSSM. Previously, in section 4.4, we saw how we could arrange the
parameters of the theory in such a way to obtain a non-vanishing R-parity breaking
VEV at high-temperature, requiring the sneutrino mass-squared parameter at zero-
temperature to be negative. However, this need not be the only case, and in fact we
can categorize this situation two ways:

(A) Microscopic properties. These are controlled by the parameters of the theory enter-
ing the Lagrangian.

(B) Macroscopic properties. This is enhanced by a large background charge density in
the universe, and does not depend on the details of the theory at short-distances.

For example, the effective potential in Eq. 4.23 contains a global U(1)R symmetry.
Assume an associated background charge density, nR that grows as nR ' T3 (since
the total charge, Q is conserved during universal expansion). We can then use the
strategies developed in [307–309] to compute the contribution to the effective potential
(see [305] for a general consideration). This is readily found to be:

VnR
=

3n2
R

4T2 + 12|ν̃|2 + 6h2 . (4.41)

The important implication of such a contribution is that symmetry breaking can now
occur at high temperature, independent of the microscopic parameters, for sufficiently
large nR > ncrit.

R . This is because it becomes more preferential to store the large amount
of charge density in the vacuum, rather than in the thermally excited modes [310].
Hence, at large T, the macroscopic conditions of the universe do not depend on the
properties of the microscopic theory at T = 0.

As a matter of future work, this may have important application in the breaking,
and subsequent restoration, of R-parity in the early universe - possibly leading to
decays similar to that discussed in section 4.4, controlled by the external charge density
parameter nR. Tracking the evolution of this density through the Boltzmann equation
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could reveal when equilibrium decays washout this charge, restoring R-parity at lower
temperature. This could relieve constraint on the space of microscopic parameters to
describe this phase in section 4.4. The validity of this possibility remains to be studied.

4.6. Concluding remarks

In conclusion, the general aim of this chapter is to present a generalized framework
in which one may consider a DM model that can temporarily support a period of
decay through violation of a symmetry that would otherwise render the DM stable.
Motivated by the common situation in the MSSM with overabundant bino-like DM,
we see that present day abundances can be substantially reduced, depending on the
time of these phase transitions in the early universe. This can even be implemented in
the MSSM through R-Parity violation with a sneutrino condensate and could open up
parameter regions that were previously excluded, like those shown in the left panels
of Figures 2.8 and 3.3 in the previous two chapters. Finally we make the comment that
physics at large scales (i.e. background charge densities, n) can impact the cosmological
evolution, irregardless of the physics at short-distances. This may even be realized
as the global R-symmetry of the MSSM, provided that the background density nR is
initially large enough, though this possibility is concern of future work.



Chapter 5.

An effective description of the MSSM
SU(2) × U(1)Y gauge symmetry

“The important thing in science is not so much to obtain new facts as to
discover new ways of thinking about them.”

— Sir William Lawrence Bragg, 1890–1971

5.1. Effective Field Theories: A general consideration

Effective Field Theories (EFTs) fulfill the role of describing low-energy phenomena
by ignoring the complex, and often unknown degrees of freedom that parameterize
the higher energy (or short length scale) physics. But this does not mean that the low-
energy description of physics receives no influence from the high-energy description.
In fact, the parameters that enter the low-energy theory should be calculated from
the UV-complete model (typically with less parameter structure because of enhanced
symmetry). On the other hand, we can treat the low-energy parameters completely
independently and fit them from experiment, a great example being the four-fermion
vertex Fermi constant, GF. This was later UV-completed in terms of the more funda-
mental electroweak theory with the exchange of the weak W vector boson and hence
written in terms of the parameters, g and mW .

93
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Effective Lagrangians though contain (infinitely) many terms with mass dimension
greater than 4:

Leff = Ld≤4 + Ld=5 + Ld=6 + ..., (5.1)

and are hence non-renormalizable. For the d>4 terms, the coefficients have dimensions
of inverse mass. This mass scale Λ is typically large compared to the energies E of
the processes considered. The effective Lagrangian can therefore be used as an ap-
proximation tool for phenomenological studies when one wants to compute processes
at an energy E, incurring an error of O(E/Λ) when we neglect terms suppressed by
powers of 1/Λ. In particular, sections 5.2 and 5.3 will deal with the construction of
low-energy Lagrangians from spontaneously broken symmetries. This will involve
what are known as non-linear realizations of symmetries.

5.2. Standard nonlinear realizations: the formalism of

CCWZ

The formalism of nonlinear realizations was outlined by Callan, Coleman, Wess and
Zumino (CCWZ) [311, 312], which we follow closely here forth. Before referring
to their formalism of specific non-linear realizations of groups, it is important to
classify all non-linear realizations into some equivalence class. Since our interest is in
phenomenological Lagrangians of quantum fields, we define this as the equivalence of
the on-shell S-matrix. Hence, if we consider a non-linear transformation of fields which
leaves the on-shell S-matrix elements invariant, then these two non-linear realizations
are equivalent. In fact, this in ensured when the transformations are of the form

φ = χF(χ), F(0) = 1. (5.2)

This was first proven by R. Haag [313], with the consequence that the same experimen-
tal observations can be made using the field φ in L(φ) as with χ in L(χF(χ)), given
that F(χ) is a local power series in χ and L(φ) in φ and derivatives of φ. Correspond-
ingly, since F(0) = 1, they have the same free-field dynamics.

We should now turn our attention to the equivalence of all non-linear realizations
on a group G, in which the fields exist on a manifoldM where the action of G onM
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is defined as

x′ = g · x, x ∈ M, (5.3)

a realization on G. Now suppose that G is an n-dimensional compact semisimple Lie
group with H as a continuous subgroup. Let Vi (i = 1, 2, ..., n− d) be the generators of
the group H and Ai (i = 1, 2, ..., d) the remaining generators. Together they form a set
of generators of G that are orthonormal, with respect to the Cartan inner product. We
can write an element g ∈ G as the following product

g = eiπi Ai eiuiVi , (5.4)

where the coset (or quotient) space, G/H is parameterized by the πi on the vacuum
manifoldM. Now consider two elements g and g′. These are equivalent if there exists
a h ∈ H such that g = g′h. The implication of this is that g and g′ have equivalent
coordinates onM, namely the πi. Therefore, for any g ∈ G we can write the action of
G on G/H as

geiπi Ai = eiπ′i Ai eiu′iVi . (5.5)

Hence, we have now defined a change of variables on the manifoldM, with functions
determined from the group structure:

π′ = π′(π, g), u′ = u′(π, g). (5.6)

Now let us consider the transformation

h : ψ→ D(h)ψ, h ∈ H, (5.7)

where h ∈ H is a linear (unitary) representation of the subgroup. Then the following
transformation

g : π → π′, ψ→ D
(

eiu′iVi
)

ψ, (5.8)

is a non-linear realization of G. This is readily verified with the observation that

g1eiπ′i Ai = eiπ′′i Ai eiu′′i Vi , (5.9)
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and subsequently

g2g1eiπi Ai = eiπ′′i Ai eiu′′′i Vi , (5.10)

where we have

eiu′′′i Vi = eiu′′i Vi eiu′iVi , (5.11)

where π′′ = π′′′. Since D is a representation, we can write

D
(

eiu′′′i Vi
)
= D

(
eiu′′i Vi

)
D
(

eiu′iVi
)

. (5.12)

Hence, in short, we can write any linear representation of the broken subgroup H as
a non-linear representation of the entire group G, with the use of the parameters πi.
What we have referred to in Eq. 5.8 is the standard realization. However, the main result
from the original CCWZ papers [311, 312] is that any non-linear realization can be
brought into the standard realization, without any impact on the S-matrix elements
for the low-energy dynamical description.

5.3. Low-energy effective electroweak theory

We now show how the CCWZ formalism in the previous section can be applied
to the SU(2)×U(1)Y local gauge symmetry, describing the unification of the weak
and electromagnetic gauge groups. Since the W & Z bosons are massive, this gauge
symmetry is broken spontaneously, although we still do not have much knowledge
of the mechanism responsible for this. In fact, the unknown origin of the vacuum
expectation value, v is an emphasis in Higgs’ original paper [314]. Hence, the details
surrounding electroweak symmetry breaking is of great interest, where in particular
non-linear realizations may play a role. Non-linear realizations in the SM, with
emphases on different physics have been considered previously in [315–317].

Let us first extract the following Goldstone matrix from the parameterization
around the electroweak vacuum 〈Φ〉 = (0 v)T (v = 256 GeV) given in Eq. 1.16:

Σ(x) ≡ e
i
v πa(x) σ

a
2

0

1

 , (5.13)
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where πa(x) are the would-be Goldstone bosons parameterizing the coset space SU(2)
×U(1)Y/U(1)EM. The other directions in field space from these massless excitations
are typically quite massive and so can decouple sufficiently from the low-energy
dynamics. Because Σ(x) realizes the unbroken (residual) group U(1)EM linearly, but
non-linearly realizes the remainder SU(2)×U(1)Y/U(1)EM, this is of course a non-
linear realization. Now using Eq. 5.5 we can write a transformation rule for the
Goldstone matrix, given the unbroken generator U(1)EM ≡ Q = T3 + Y

Σ(x)→ gΣ(x)h−1 = e
i
2 βeiαaσa

Σ(x)e−
i
2 β(1+σ3). (5.14)

The action of the SU(2)×U(1)Y group on the matrix Σ(x) is

Σ(x)→ eiαaσa/2Σ(x)e−iβσ3/2. (5.15)

The effective Lagrangian is locally gauge invariant by including the gauge fields Wa
µ

and B0
µ in a covariant fashion

DµΣ = ∂µΣ + igWa
µ

σa

2
Σ + ig′

σ3

2
BµΣ + ... (5.16)

=
i
v

∂µπa σa

2
+ igWa

µ
σa

2
+ ig′B0

µ + ..., (5.17)

where Wµ = Wa
µσa/2 and Bµ = B0

µ1/2, provided that they transform accordingly:

Wµ → eiαaσa/2Wµe−iαaσa/2 − i
g

eiαaσa/2∂µeiαaσa/2, Bµ → Bµ +
∂µβ

2g′
. (5.18)

And again with the gauge field strength tensors for each field as

Bµν = ∂µBν − ∂νBµ, (5.19)

Wµν = ∂µWν − ∂νWµ + ig[Wµ, Wν], (5.20)

we can now construct a low-energy effective theory of SU(2)×U(1)Y, expanded to
two derivatives (the leading term in Eq. 5.21):

LΣ
eff. =

v2

2
Tr[DµΣ(DµΣ)†] +

g′v2

16π2 b1

(
Tr[Σ†DµΣ]

)2
+

gg′

16π2 a1Tr[BµνΣ†WµνΣ]. (5.21)
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Firstly, we can read off the masses of the W and Z, equivalent to those in Eq. 1.18, from
the first term in Eq. 5.21 by moving to the unitary gauge (〈Σ〉 = 1 from

〈
πa〉 = 0). It

turns out that this remains effective up to a UV-scale of about Λ∼ 4πv without the need
of a Higgs boson, but becomes strongly coupled thereafter, argued from the breakdown
of perturbative unitarity in WW scattering [318–320]. This can be estimated from Eq.
5.21 using the Goldstone equivalence theorem [321–324] for longitudinally polarized
vector bosons, the error being O(mW/E).

Note that we could have just as easily chosen the Σ(x) matrix as a linear combina-
tion of basis elements

Σ(x) =
1√

1 + πaπa

v2

(
1− i

v
πa σa

2

)
, (5.22)

without impacting the physics. This is of course the linear representation. If one is
interested in an ultraviolet completion to this model at energies of E & v, we have to
allow for quantum fluctuations about the Σ field, which we can easily introduce via a
real scalar field H

Σ→
(

1 +
H
v

)
Σ, (5.23)

provided that 〈H〉 = 0. Profoundly, in our effective field theory structure, we did
not even require the introduction of a Higgs boson to break electroweak symmetry,
this was done entirely by Σ. We had simply integrated out quantum fluctuations
about the Σ field in the effective theory approach. Now, considering again the linear
representation, in absence of normalization pre-factors, we could arrange these degrees
of freedom into a linear complex doublet of fields:

Σ(x) =
((

1 +
H
v

)
1− i

v
πa σa

2

)
=

1
2v

v + H − iπ3 −π2 − iπ1

π2 − iπ1 v + H + iπ3

 =
1√
2v

(Φ†Φ),

(5.24)

which is simply just a matrix bi-doublet representation of our standard SU(2) complex
scalar fields containing all our Goldstone modes and a physical Higgs boson

Φ =
1√
2

 −π2 − iπ1

v + H + iπ3

 , Φ̃ = −iσ2Φ∗ =
1√
2

v + H − iπ3

π2 − iπ1

 . (5.25)
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Hence it is clear that we can simply recover the non-linear parameterization via
integrating out an SU(2)×U(1)Y singlet field, containing the Higgs degree of freedom.

But in summary, we see the advantage of these non-linear realized symmetries,
especially in this context. The Higgs boson is no longer confined to the electroweak
doublet structure required by SU(2) invariance, and we are free to introduce any
polynomial terms in that are of course renormalizable. This is in strict contrast to the
standard linear case. Let us now ambitiously generalize straight to the MSSM case.

5.4. Non-linearly realizing the MSSM Higgs sector

The MSSM electroweak sector is described by a SU(2)×U(1)Y-valued massive vector
superfield, containing charged and neutral (CP-even) Higgs bosons, H0, H± whilst a
CP-even and odd Higgs, h0, A0 reside in an SU(2)×U(1)Y singlet chiral superfield. A
similar description, with a different focus on phenomenology was done in [325]. The
broken phase of SU(2)×U(1)Y with a residual Q = T3 + Y/2 symmetry is therefore
described by the element

U = e
i
2 ξiσi , det U = 1, (5.26)

where ξi (i = 1, 2, 3) are superfields1 whose scalar parts parameterize the coset space
SU(2)×U(1)Y/U(1)EM and σi (i = 1, 2, 3) are the Pauli matrices. These represent the
longitudinal modes of the W and Z vector bosons. The SUSY counterparts, which are
pseudo-Goldstone bosons, complete a massive vector supermultiplet2. It transforms
under this group as

U→ e
i
2 ΛiσiUe−

i
2 Σσ3 , (5.27)

where Λi and Σ are chiral superfields for the SU(2) and U(1)Y supergauge transfor-
mation parameters, respectively. Additionally, we have a singlet chiral superfield S,
where we identify the two Higgs doublet fields Hu = (H0

u H+
u )T and Hd = (H−d H0

d)
T

1We have suppressed the electroweak VEV in favor of the dimensionless quantity, ie. ξi ≡ ζi/v, where
the ζi have dimensions of mass.

2Spin-0 partners of spin-1 gauge bosons within massive gauge supermultiplets have been considered
in [326] in the linear realization.
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present in the standard MSSM with the composite structure:

Φ ≡ SU =

H0
u H−d

H+
u H0

d

 , det Φ = S2 = HuHd, (5.28)

where HuHd = εαβHα
u Hβ

d . These fields transform linearly as

Hu → e
i
2 Λiσi e

i
2 ΣHu, Hd → e

i
2 Λiσi e−

i
2 ΣHd. (5.29)

We can then write the linear fields in terms of the non-linear fields as

H0
u,d = S cos

(√
ξiξi
2

)
± iS

ξ3√
ξiξi

sin

(√
ξiξi
2

)
, (5.30)

H+,−
u,d = iS

ξ±√
ξiξi

sin

(√
ξiξi
2

)
, (5.31)

where ξ± = 1√
2
(ξ1± iξ2).

Importantly note that if we set the pseudo-Goldstone degree of freedom to zero,
ie. Im(ξ) = 0, and then defining Re(ξ) ≡ ρ(x) we return the Standard Model-like
parameterization, where

Φ = ρ(x)eiReξiσi/2, detΦ = ρ2. (5.32)

Let us first consider the D-terms in the Lagrangian. The most general, renormaliz-
able Lagrangian for the gauged-Higgs sector that we can write is

LHG =
[
Tr
(

Φ†eWΦeB
)]

D
+ κ2

[
Tr
(

U†eWUeB
)]

D

+
[
αTr

(
Φ†eWUeB

)
+ α∗Tr

(
U†eWΦeB

)]
D
+ β [S̄S]D , (5.33)

where W = gWiσi and B = g′Yσ3 are the respective SU(2) and U(1)Y gauge superfields
in the adjoint representation, thus transforming as

eW → eiΛ†
eWe−iΛ, eB → e

i
2 Σσ3eBe−

i
2 Σ†σ3 .

(
Λ ≡ 1

2
Λiσi

)
. (5.34)
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We have additional parameters κ, α, β not present in the MSSM, with the first two of
dimensions [mass] and the last dimensionless.

We can also write down the following superpotential3 for the Higgs-Yukawa sector,
in which the F-terms contribute to the Lagrangian

WHY = ū
(

yuΦ + y′uU
)

χuQ− d̄
(

ydΦ + y′dU
)

χdQ− ē
(

yeΦ + y′eU
)

χdL, (5.35)

where we have the standard ū, d̄, ē, Q, L quark and lepton chiral superfields, all having
3 generations. The yu, yd, ye are the conventional 3 x 3 dimensionless Higgs-Yukawa
matrices, whilst the extra y′u, y′d, y′e are extra mass matrices for the non-linear couplings.
When these vanish, we obtain the usual MSSM superpotential.

Finally, let us write down the Higgs superpotential, now only involving the scalar
superfield S:

WH =
λ

3
S3 +

µ

2
S2 − τS. (5.36)

The usual MSSM term (the µ term) comes from the quadratic term in S, recognized up
to normalization factors (see Eq. 5.37). The cubic coupling λ and τ have dimensions
zero and [mass]2, respectively. These represent deviations from the MSSM.

Along with soft-breaking SUSY terms (described in section 5.5), combining Eqs.
5.33, 5.35 and 5.36 we describe an effective low-energy description of the MSSM, with
new interactions present, whilst keeping the same particle content. This adds a more
rich phenomenology, but also flexibility in accommodating experimental constraints.
However, in the following sections we will put more of a focus on the EWSB and mass
spectrum.

5.5. Electroweak Symmetry Breaking in the non-linear

MSSM

Henceforth, we will refer to the scalar components of each superfield with the same
notation, eg. S|θ=0 = S. Motivated phenomenologically, we will also assume that the

3We have defined the quantities with doublet structure χu = (1 0)T and χd = (0 1)T .



102 An effective description of the MSSM SU(2) × U(1)Y gauge symmetry

squarks and sleptons do not develop vacuum expectation values. Therefore we will
solely focus on the terms stemming from Eqs. 5.33 and 5.36.

In a model-independent way, we will introduce the standard soft-breaking terms to
break supersymmetry at low-energies. Since we are discussing EWSB in the tree-level
approximation, we will sufficiently consider soft scalar masses for S and ξ3 in the
potential

Vsoft =

(
1
2

m2
SS2 + h.c.

)
+

A
2

Tr
(

Φ†Φ
)
+

B
2

Tr
(

Φ†Φσ3

)
. (5.37)

One can verify that with the relations

A = m2
Hu

+ m2
Hd

, B = m2
Hu
−m2

Hd
, m2

S = 4Bµ, (5.38)

that this is equivalent to the Higgs part of the soft-breaking Lagrangian given in Eq.
1.61. There are other terms which can appear in Eq. 5.37 such as S∗S, Tr(U†U) or
Tr(U†Uσ3). We omit them here since the relationships with the MSSM parameters
become more complicated. Nonetheless, Eq. 5.37 is perfectly sufficient to facilitate
EWSB. Now we can write the full Higgs potential as the following:

VH =
∣∣∣λS2 + µS− τ

∣∣∣2 + (SS̄ + αS̄ + α∗S + κ2
)2

VD + Vsoft, (5.39)

where VD is expressed as

VD =
g2 + g′2

2

[
iξ3√
ξiξi

cos

(√
ξ̄i ξ̄i
2

)
sin

(√
ξiξi
2

)
− iξ̄3√

ξ̄i ξ̄i
cos

(√
ξiξi
2

)
sin

(√
ξ̄i ξ̄i
2

)

+
ξ̄+ξ+ − ξ̄−ξ−√

ξiξi
√

ξ̄i ξ̄i
sin

(√
ξiξi
2

)
sin

(√
ξ̄i ξ̄i
2

)]2

+g′2
∣∣∣∣∣ iξ+√

ξiξi
sin

(√
ξiξi
2

)
cos

(√
ξ̄i ξ̄i
2

)
− iξ̄−

ξ
sin

(√
ξ̄i ξ̄i
2

)
cos

(√
ξiξi
2

)

+
ξ̄+ξ3 − ξ+ξ̄3√

ξiξi
√

ξ̄i ξ̄i
sin

(√
ξiξi
2

)
sin

(√
ξ̄i ξ̄i
2

)∣∣∣∣∣
2

, (5.40)

and where the sum over i = 1, 2, 3 in the square roots is implied. As we do in
the MSSM, the vanishing of the charged fields minimizes the potential, so we have
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ξ+ = ξ− = 0 in the vacuum state. Finally, Eq. 5.39 takes a simple form

VH =
∣∣∣λS2 + µS− τ

∣∣∣2 + (SS̄ + αS̄ + α∗S + κ2
)2

sinh2 ξ

+
A
2

SS̄ cosh ξ − B
2

SS̄ sinh ξ +

(
1
2

m2
SS2 + h.c.

)
. (5.41)

where ξ ≡ Im(ξ3). Here, the situation becomes somewhat different to the MSSM. In
the nonlinear parameterization, one can still achieve EWSB in the supersymmetric
limit (ie. A = B = m2

S = 0). In fact, this leads us to the conditions for D and F-flatness,
respectively

〈ξ〉 = 0, λ 〈S〉2 + µ 〈S〉 − τ = 0, (5.42)

and hence the singlet field, S, develops a vacuum expectation value. Consequently, in
the (standard) linear realization this means that

e〈ξ〉 ≡ tan β, 〈S〉2 = vuvd. (5.43)

Then what follows is vu = vd and 〈S〉2 = v2/2 where of course v2 = v2
u + v2

d.

Let’s make an important observation. The expectation value of 〈S〉 can in general
be complex-valued, and therefore a source of spontaneous CP-violation. Again, for the
sake of simplicity, assume that λ, µ and τ are all real parameters. From the F-flatness
condition in Eq. 5.42, we find that when λτ < 0 and |µ| < 2

√
−λτ, we get the

expectation value in polar form

|v|2 = −2τ

λ
, cos θ = − µ

2
√
−λτ

, (5.44)

with the complex phase θ. If λτ > 0, however, then the expectation value is real. For
θ = 0, π, we get the following solutions respectively

vθ=0 = − µ

2
√

2λ

(
1±

√
1 +

16λτ

µ2

)
, vθ=π =

µ

2
√

2λ

(
1±

√
1 +

16λτ

µ2

)
. (5.45)

Any of these two can be associated with the electroweak vacuum.

Analyzing the potential in Eq. 5.41, it is clear that the flatness of the potential is
raised by the SUSY breaking terms, however in stark contrast to the MSSM, we can
still maintain a D-flat potential through ξ = 0 (tan β = 1) when B = 0 (m2

Hu
= m2

Hd
)
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for 〈S〉 6= 0. Focusing on CP-conserving solutions (θ = 0, π), the vacuum expectation
value is a solution to the following extremum condition:

2λv3 + (2µ2 + m2
S − 4λτ)v±

√
2µ(3λv2 − 2τ) = 0, (5.46)

where the ± sign corresponds to the two phase angles θ = 0, π, respectively. Solutions
are non-trivial for λτ 6= 0.

5.6. The non-linear MSSM mass spectrum

Now we are nearing the part where we want to compute physical quantities, that
being the particle mass spectrum. This requires us first to canonically normalize the
kinetic terms since we have introduced extra contributions. We achieve this through
the rescaling of the chiral superfields

S→
√

2 + βS, ξi → ρξi, (i = 1, 2, 3), (5.47)

where we have

ρ ≡ v2

4
+

Re(α)v√
2

+
κ2

2
. (5.48)

5.6.1. W & Z bosons

The masses of the W and Z gauge bosons are readily computed as

m2
Z =

(g2 + g′2)
2

∆, m2
W =

g2

2
∆, (5.49)

where ∆ is identified with the electroweak VEV-squared, but is written in terms of the
model parameters as

∆ = 4κ2 +
4
√

2Re(α)v√
2 + β

+
2v2

2 + β
≈ (174 GeV)2, (β 6= −2). (5.50)

which is equivalent to v2 in the limit of vanishing non-minimal terms in Eq. 5.33.
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5.6.2. Higgs bosons

Firstly, the mass matrix for the CP-even states come from the mixing of the (Re(S), Im(ξ3))

states  4m2
S+4µ2−8λτ

2+β + 12
√

2λµv
(2+β)3/2 +

12λ2v2

(2+β)2 0

0 g2+g′2

4
∆2

ρ + Av2

ρ

 , (5.51)

which is of course diagonal since the S scalar resides in a superfield singlet. Let us
consider the masses in the simpler framework of the vanishing additional kinetic
terms in Eq. 5.33 (ie. κ = α = β = 0):

m2
H0

1
= 2µ2 + 2λ(3µv + 3λv2 − τ) + 2m2

S + A, (5.52)

m2
H0

2
= m2

Z + 4A. (5.53)

Note in the limit that A→ 0, the mass of the second state H0
2 becomes degenerate with

the Z boson. This is because we associated this state with the partner of the Z in the
massive neutral gauge supermultiplet. However, we could associate either of these
states with the SM Higgs boson4. However, it is more natural in this case to associated
H0

1 , the singlet state, with the SM-like Higgs boson. This can be seen from Eq. 5.33 in
the limit of vanishing non-minimal terms, that we recover the same interactions with
the electroweak gauge bosons as in the MSSM case.

Similarly, for the pair of pseudo-scalar states (Im(S), Re(ξ3)), we have the mass
matrix −4m2

S+4µ2−8λτ+2A
2+β + 4

√
2λµv

(2+β)3/2 +
4λ2v2

(2+β)2 0

0 0

 , (5.54)

and therefore in the same κ = α = β = 0 limit the masses read

m2
ξ0 = 0, (5.55)

m2
A0 = 2µ2 + λ(λv2 + 2µv + 2τ) + A−m2

S. (5.56)

4In Ref. [154], this is associated with H0
2 .
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The massless eigenstate is associated with the neutral Goldstone state, which gets
’eaten up’ by the Z boson. The second state is the equivalent of the pseudoscalar state
A0 in the MSSM.

For the pairs of charged states (Re(ξ+), Re(ξ−)), (Im(ξ+), Im(ξ−)) we get identical
mass matrices:  g2

16
∆2

ρ + Av2

2ρ − g2

16
∆2

ρ −
Av2

2ρ ,

− g2

16
∆2

ρ −
Av2

2ρ
g2

16
∆2

ρ + Av2

2ρ .

 . (5.57)

Hence, we have the mass eigenstates

m2
ξ ± = 0, (5.58)

m2
H± = m2

W + 4A. (5.59)

Again, we have two massless states that are identified with the longitudinal polariza-
tion of the W ± bosons. We also recognize the scalar partners to the W bosons in the
massive charged gauge supermultiplet as the H± states.

5.6.3. Neutralinos & Charginos

Now consider the fermionic eigenstate basis of neutral states (B̃, W̃3, ξ̃3, S̃). The mass
matrix reads

M
χ̃0 =


M1 0 ig′√

2v
∆ 0

0 M2 − ig√
2v

∆ 0
ig′√

2v
∆ − ig√

2v
∆ 0 0

0 0 0 µ +
√

2λv


. (5.60)

We note a main difference to the MSSM case - the fermionic partner in the singlet
chiral superfield S̃ remains decoupled from the other states. Considering the case
of restored supersymmetry, where the gaugino masses vanish, there appears to be
one massless neutral state, being the partner to the would-be Goldstone state. The
two other neutral massive states are degenerate with the Z boson in this limit, which
complete the neutral massive vector supermultiplet. For simplicity, let us consider
the degenerate electroweakino mass case M1 = M2 ≡ M and v/∆� M. We can then
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diagonalize the matrix in Eq. 5.60 to obtain the following spectrum:

m2
χ̃0

1
≈ m4

Z∆2

M2v4 , (5.61)

m2
χ̃0

2
= |µ +

√
2λv|2, (5.62)

m2
χ̃0

3
≈ M2 − m4

Z∆2

M2v4 , (5.63)

m2
χ̃0

4
= M2. (5.64)

Note the degeneracy in the two heaviest states, m2
χ̃0

4
−m2

χ̃0
3
≈ m2

χ̃0
1
. We will further see

in this framework that m2
χ̃0

1
could indeed be the lightest supersymmetric particle (LSP).

It’s relative lightness could indeed be interesting phenomenology for dark matter.

For the charged fermionic eigenstates (W̃+, ξ̃+, W̃−, ξ̃−), the mass matrix is 4 x 4
symmetric, written as

Mχ̃± =

0 X

X 0

 , (5.65)

where

X =

 M2 −2ig
v ∆

−2ig
v ∆ 0

 . (5.66)

We can directly compute the masses of the chargino states as

m2
χ̃±1

, m2
χ̃±2

=
M2

2
+

4g2∆2

v2 ∓

√
4g2M2

2∆2

v2 +
M4

2
4

. (5.67)

Again note that in the limit of restored supersymmetry where M2 → 0, then we obtain
one massless and one massive charged eigenstate. The massless state corresponds to
the would-be Goldstone boson, whilst the massive charged partner is degenerate with
the W bosons, completing the massive charged vector supermultiplet. Again, if we
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assume ∆/v� M2, then these masses are approximately

m2
χ̃±1
≈ 64m4

W∆2

M2
2v4 , (5.68)

m2
χ̃±2
≈ M2

2 +
64m4

W∆2

M2
2v4 . (5.69)

From Eq. 5.68, we can see that the lightest chargino is also relatively light, too.

5.7. Concluding remarks

After establishing the non-linear realization of the SU(2)×U(1)Y gauge invariance
of the MSSM, we note a particularly important observation that the standard (linear)
realization of the MSSM is in fact a special case of the non-linear one. Moreover, the
non-linear realization admits additional interactions among the alternate representa-
tions of superfields, without modifying the particle content of the MSSM, which is
quite desirable from a phenomenological perspective.

One of the main focuses of this alternate description is the appearance of elec-
troweak symmetry breaking in the limit when supersymmetry is restored. EWSB is
also observed along the D-flat direction in broken supersymmetry. The consequences
of which means that the lightest Higgs boson may be accommodated more comfortably
within this framework at tree-level. The potentially interesting phenomenology of the
charged and neutral electroweakinos, and in particular the lightest neutralino, remains
open to further study in this framework.



Chapter 6.

Conclusions

Beginning with the simplest of supersymmetric models, the MSSM, it is apparent that
the major outstanding challenges that face the Standard Model of Particle Physics
can be addressed quite elegantly. In particular, one can aptly resolve the hierarchy
problem by stabilizing the electroweak scale from large quantum corrections. But
perhaps one of the most exciting consequence is the prediction of new physics right
around the corner. In fact, the case is made for explanations of outstanding low-
energy observables, the most interesting of these being the muon anomalous magnetic
moment and weakly-coupled dark matter. The intimate connection between them
makes for an excellent probe of the potential of supersymmetric models.

We investigate this in detail in chapter 2, with emphasis on the potential for
discovery at current and future collider searches. Because of the increasing effort
from the experimental and theoretical sides, especially with upcoming high precision
measurements at BNL [60], we focused our sights on the muon (g − 2)µ, finding
important constraint on the electroweakinos and sleptons. Moreover, with constraints
coming from dark matter experiments and observations, we clearly see a preference
for specific arrangements of parameters in the theory, namely the composition of
neutralino DM. It is probable that a significant portion of the space maintaining the
explanation for these observations may be probed in the future, tightening the grip on
the possibility of the realization of supersymmetry in nature.

In chapter 3, we explored the idea of naturalness in the context of the MSSM. As the
experiments from the LHC push the masses of supersymmetric particles (particularly
coloured sparticles like gluinos and stops) higher and higher, the amount of fine-tuning
required to reproduce the weak-scale becomes stronger and stronger. We take the
attitude that this failure seems to suggest physics beyond the MSSM. For the MSSM as
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an effective theory though, certain parameters are almost insensitive to their values
in the ultraviolet (the so called ’quasi fixed-points’ [264, 265]), leading to significant
reduction in fine-tuning. This is in agreement with our expectations compared with
the dynamics of the theory described by the Renormalization Group Equations (RGEs).

In this dissertation, however, we have also considered a number of novel modifica-
tions, not only to the realization of the theory, but also to the macroscopic conditions in
early universe cosmology - leading to relaxation on the allowable parameter space that
would otherwise limit the range of observables that it has the potential to explain. The
latter we consider in chapter 4, augmenting the standard cosmological model of dark
matter with an additional phase where decays are permitted. We find that the MSSM
may permit such a phase through sneutrino condensation, spontaneously violating
R-parity, which would usually render the lightest neutralino stable. In general, we
find that this scenario may lead to a significant reduction in the abundance of dark
matter in the early universe, a feature of some models, especially the MSSM neutralino
with a large bino fraction.

Chapter 5 considered an alternate arrangement of the electroweak sector of the
MSSM, one in which the Higgs is integrated out in an SU(2)×U(1)Y singlet superfield,
S. This unique configuration gave rise to non-standard linear and cubic terms in S,
modifying the phenomenology of the Higgs bosons. As well as accommodating the
lighter Higgs mass through extra tree-level contributions, alleviating unnecessary
fine-tuning for the electroweak vacuum. We also found that electroweak symmetry
could even be broken in the supersymmetric limit.

The overall message conveyed in this thesis is two-fold. Firstly, we demonstrated
the ability for minimal supersymmetry to address inconsistencies in our current knowl-
edge of fundamental physics from both the experimental and theoretical side. Not
only can these be facilitated within the MSSM itself, but they also strongly suggest that
SUSY could even appear within the crosshair of next-generation collider technology.
Secondly, the inability for minimal supersymmetry to accommodate them comfort-
ably, coupled with the absence of sparticles at colliders, seems to hint at new physics
beyond-the-MSSM, or simple modification to the microscopic and/or macroscopic
properties of the theory that continue to be studied further. With these considerations,
SUSY could still be a very real possibility just out of our present reach, but as elusive
as it may seem, it certainly remains that supersymmetry bears a rather unique place in
our quest to discover new and exciting physics.
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Appendix A.

Spinors and Grassmann numbers

A.1. Common identities

Pauli Matrices

σµ = (I,−→σ ), σ̄µ = (I,−−→σ ) (A.1)

σ0 =

1 0

0 1

 , σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (A.2)

σiσj = iεijkσk + δijI. (A.3)

σµν ≡ 1
4
(
σµσν − σνσµ) , σµν ≡ 1

4
(
σµσν − σνσµ) . (A.4)

[
σνσ̄µ + σµσ̄ν]β

α
= 2ηµνδβ

α ,
[
σ̄νσµ + σ̄µσν]β̇

α̇
= 2ηµνδ

β̇
α̇ . (A.5)

σ̄νσµσ̄ρ = ηµνσ̄ρ − ηνρσ̄µ + ηµρσ̄ν − iενµρδσ̄δ (A.6)

Tr(σµσ̄ν) = 2ηµν, Tr(σνσ̄µσλσ̄ρ) = 2(ηνµηλρ + ηµληνρ − ηνληµρ − iενµλρ) (A.7)
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Spinors

ξ ·λ = εαβξαλβ = εαβξαλβ, ξ̄ · λ̄ = εα̇β̇ξ̄α̇λ̄β̇ = εα̇β̇ξ̄ α̇λ̄β̇ (A.8)

ξαξβ =
1
2

εαβξ · ξ, ξ̄α̇ξ̄ β̇ = −1
2

εα̇β̇ξ̄ · ξ̄ (A.9)

ξα(χ ·λ) + χα(λ · ξ) + λα(ξ ·χ) = 0 (A.10)

Fierz Identities:

ξ ·χξ ·λ = −1
2

ξ · ξχ ·λ, ξ̄ · χ̄ξ̄ · λ̄ = −1
2

ξ̄ · ξ̄χ̄ · λ̄ (A.11)

(λσµξ̄)(λσνξ̄) =
1
2

ηµνλ ·λξ̄ · ξ̄, (ξ̄σ̄µλ)(ξ̄σ̄νλ) =
1
2

ηµνλ ·λξ̄ · ξ̄ (A.12)

Spinors & Pauli Matrices

ξ̄σ̄µλ = −λσµξ̄, ξσµλ̄ = −λ̄σ̄µξ (A.13)

A.2. Grassmann numbers and calculus

The anticommutative properties of the Grassmann coordinates are as follows:{
θα, θβ

}
= 0,

{
θ†

α̇, θ†
β̇

}
= 0,

{
θα, θ†

β̇

}
= 0. (A.14)

The derivatives of the Grassmannian coordinates also satisfy the following:

∂θβ

∂θα = δβ
α ,

∂θ†
β̇

∂θ†
α̇

= δα̇
β̇,

∂θ†
β̇

∂θα = 0,
∂θβ

∂θ†
α̇

= 0. (A.15)
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We can show how a derivative acts on anticommuting coordinates by calculating the
following:

∂ (θθ)

∂θα
= εβσ

∂
(

θβθσ
)

∂θα

= εβσ
∂θβ

∂θα θσ − εβσθβ ∂θσ

∂θα

= εβσδβ
α θσ − εβσθβδσ

α

= εασθσ − εβαθβ

= εασθσ + εαβθβ

= 2θα. (A.16)

where we have acquire a negative sign on passing the derivative through the Grass-
mann coordinates.

Integral measures act similarly to Grassmann coordinates in that they anticommute
with themselves and also the coordinates:{

dθα, dθβ

}
=
{

dθα, θβ

}
=
{

θα, θβ

}
= 0. (A.17)

We can use the result given in Eq. A.16 to properly define the integration measure:

d2θ = −1
4

dθαdθβεαβ, (A.18)

such that the integral over this space is normalized to 1:

∫
d2θθθ = −1

4

∫
d2θdθαdθβεαβθθ

= −1
2

∫
d2θdθαdθβθαθβ

= −1
2

∂

∂θα
∂

∂θβ

(
θαθβ

)
= −1

2
εβα

∂

∂θα
∂

∂θβ
θθ

= εαβ
∂

∂θα θβ

= 1, (A.19)
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with a similar expression for the measure of d2θ†.This definition is convenient since the
integration of a superfield (which acts as a derivative) simply returns the coefficients
of the terms θθ, θ†θ† and θθθ†θ†.



Appendix B.

Renormalization Group Equations
(RGEs)

B.1. One-loop RGEs in the SM & MSSM

The following are taken from [73].

• Gauge couplings g1, g2, g3,

βga
≡ d

dt
ga =

1

16π2 bag3
a, (b1, b2, b3) =

 (41/10,−19/6,−7) (SM)

(33/5, 1,−3) (MSSM)
(B.1)

• Gaugino masses M1, M2, M3,

βMa
≡ d

dt
Ma =

1

8π2 g2
a Ma, (b1, b2, b3) = (33/5, 1,−3) (B.2)

• Higgs mass parameters m2
Hu

, m2
Hd

,

βm2
Hu
≡ d

dt
m2

Hu
=

1

16π2

[
3Xt − 6g2

2|M2|
2 − 6

5
g2

1|M1|
2 +

3
5

g2
1S
]

(B.3)

βm2
Hd
≡ d

dt
m2

Hd
=

1

16π2

[
3Xb + Xτ − 6g2

2|M2|
2 − 6

5
g2

1|M1|
2 − 3

5
g2

1S
]

(B.4)
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• Scalar mass parameters m2
Q3

, m2
ū3

, m2
d̄3

, m2
L3

, m2
ē3

,

βm2
Q3
≡ d

dt
m2

Q3
=

1

16π2

[
Xt + Xb −

32
3

g2
3|M3|

2 − 6g2
2|M2|

2 − 2
15

g2
1|M1|

2 +
1
5

g2
1S
]

(B.5)

βm2
Ū3

≡ d
dt

m2
ū3

=
1

16π2

[
2Xt −

32
3

g2
3|M3|

2 − 32
15

g2
1|M1|

2 − 4
5

g2
1S
]

(B.6)

βm2
d̄3

≡ d
dt

m2
d̄3

=
1

16π2

[
2Xb −

32
3

g2
3|M3|

2 − 8
15

g2
1|M1|

2 +
2
5

g2
1S
]

(B.7)

βm2
L3
≡ d

dt
m2

L3
=

1

16π2

[
Xτ − 6g2

2|M2|
2 − 6

5
g2

1|M1|
2 − 3

5
g2

1S
]

(B.8)

βm2
ē3
≡ d

dt
m2

ē3
=

1

16π2

[
2Xτ −

24
5

g2
1|M1|

2 +
6
5

g2
1S
]

(B.9)

• Trilinear/bilinear couplings at, ab, aτ, b1

βat
≡ d

dt
at =

1

16π2

[
at

(
18y∗t yt + y∗byb −

16
3

g2
3 − 3g2

2 −
13
15

g2
1

)
+ 2aby∗byt

+yt

(
32
3

g2
3M3 + 6g2

2M2 +
26
15

g2
1M1

)]
(B.10)

βab
≡ d

dt
ab =

1

16π2

[
ab

(
18y∗byb + y∗t yt + y∗τyτ −

16
3

g2
3 − 3g2

2 −
7
15

g2
1

)
+ 2aty

∗
t yb

+2aτy∗τyb + yb

(
32
3

g2
3M3 + 6g2

2M2 +
14
15

g2
1M1

)]
(B.11)

1The trilinear couplings are related to the parameters usually seen in literature through a rescaling via
the Yukawa coupling: at = Atyt, ab = Abyb, and aτ = Aτyτ . Additionally, in the text we have used
the notation Bµ ≡ b here.
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βaτ
≡ d

dt
aτ =

1

16π2

[
aτ

(
12y∗τyτ + 3y∗byb − 3g2

2 −
9
5

g2
1

)
+ 6aby∗byτ

+yτ

(
6g2

2M2 +
18
5

g2
1M1

)]
(B.12)

βb ≡
d
dt

b =
1

16π2

[
b
(

3y∗t yt + 3y∗byb + y∗τyτ − 3g2
2 −

3
5

g2
1

)
+ µ

(
6aty

∗
t + 6aby∗b + 2aτy∗τ + 6g2

2M2 +
6
5

g2
1M1

)]
(B.13)

• Higgsino mass parameter µ,

βµ ≡
d
dt

µ =
µ

16π2

[
3y∗t yt + 3y∗byb + y∗τyτ − 3g2

2 −
3
5

g2
1

]
(B.14)

• Yukawa couplings yt, yb, yτ,

βyt
≡ d

dt
yt =

yt

16π2

[
6y∗t yt + y∗byb −

16
3

g2
3 − 3g2

2 −
13
15

g2
1

]
(B.15)

βyb
≡ d

dt
yb =

yb

16π2

[
6y∗byb + y∗t yt + y∗τyτ −

16
3

g2
3 − 3g2

2 −
7
15

g2
1

]
(B.16)

βyτ
≡ d

dt
yτ =

yτ

16π2

[
4y∗τyτ + 3y∗byb − 3g2

2 −
9
5

g2
1

]
(B.17)

Parameters:

S ≡ m2
Hu
−m2

Hd
+ Tr[m2

Q −m2
L − 2m2

ū + m2
d̄ + m2

ē ] (B.18)

Xt = 2|yt|
2(m2

Hu
+ m2

Q3
+ m2

ū3
) + 2|at|

2 (B.19)

Xb = 2|yb|
2(m2

Hd
+ m2

Q3
+ m2

d̄3
) + 2|ab|

2 (B.20)

Xτ = 2|yτ|
2(m2

Hd
+ m2

L3
+ m2

ē3
) + 2|aτ|

2 (B.21)
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Appendix C.

Thermal corrections to the effective
potential

C.1. Thermal Field Theory and Green’s functions

Consider a system in contact with a thermal bath at temperature T. The grand canoni-
cal average of an operator O is

〈O〉 = Z−1Tr
(

e−βHO
)

, (C.1)

where Z is the partition function defined as Z = Tre−βH. Consider now a scalar field
φ(x) with Hamiltonian H (in the Heisenberg picture) carrying no charges. We can
describe

φ(x) = eitHφ(0, x)e−itH, (C.2)

where x0 = t is analytically continued to the complex plane. The thermal Green’s
function is

G(C)(x− y) = θC(x0 − y0)G+(x− y) + θC(y
0 − x0)G−(x− y) (C.3)

where

G+(x− y) = 〈φ(x)φ(y)〉 , G−(x− y) = G+(y− x) (C.4)
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with complex time ordering along the contour C (i.e. θC(x0 − y0) = 1 if x0 > y0 along
C). Now we take the complete set of states |n〉 that have eigenvalues En. Computing
the Green’s function at the point x = y = 0 we get

G+(x− y) = Z−1 ∑
m,n
| 〈m|φ(0)|n〉 |2e−iEn(x0−y0)e−iEm(x0−y0+iβ). (C.5)

This is analytical along the domain

−β ≤ Im(x0 − y0) ≤ 0, θC(x0 − y0) = 1, (C.6)

0 ≤ Im(x0 − y0) ≤ β, θC(y
0 − x0) = 1. (C.7)

Using the definitions of G+(x) and G−(x) and the cyclic permutation property of the
operator trace, we can deduce that

G+(t− iβ, x) = G−(t, x). (C.8)

commonly known as the Kubo-Martin-Schwinger (KMS) relation [327, 328]. Similarly,
for a fermion two-point function we can write the time-ordered Green’s function,
labeled by spinor indicies α and β as

S(C)
αβ (x− y) =

〈
TCψα(x)ψ̄β(y)

〉
= θC(x0 − y0)S+

αβ − θC(y
0 − x0)S−αβ. (C.9)

which acquires a negative sign under the KMS relation:

S+
αβ(t− iβ, x) = −S−αβ(t, x). (C.10)

Formalism in imaginary time

The calculation of the propagator depends on the chosen contour C, where we go from
a time t to t− iβ recalling the KMS periodicity relation in Eq. C.8. Hence, an easily
chosen path is a straight line along the imaginary axis, parameterized by t = −iτ,
known as the Mastubara contour [329]. We can write the two-point Green’s function
for both scalar and fermion fields as

G(τ, x) =
∫ d4p

(2π)4 ρ(p)eip · xe−τp0 [
θ(τ) + (−1)2sn(p0)

]
(C.11)
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where s is the spin of the particle. We have also defined the function ρ(p) = 2π[θ(p0)−
θ(−p0)]δ(p2 − m2). Note also the presence of the Bose-Einstein and Fermi-Dirac
distribution functions for the scalar and fermion cases, respectively. This can be simply
written in the form

n(ω) =
1

eβω − (−1)2s . (C.12)

Now, from the Kubo-Martin-Schwinger relations in both Eq. C.8 and C.10, one can
write the following relations

G(τ + β) = (−1)2sG(τ), −β < τ < 0, (C.13)

G(τ − β) = (−1)2sG(τ), 0 < τ < β, (C.14)

implying that the propogator is period (antiperiodic) in τ (with period β) for bosons
(fermions). Let us then write the momentum space propagator following from the
Fourier transform of Eq. C.11

G̃(ωn, p) =
1

p2 + m2 + ω2
n

(C.15)

where the discrete frequencies in this space are ωn = 2nπβ−1 for bosons and ωn =

(2n + 1)πβ−1, known as the Mastubara frequencies. Now we can recast the propagator
through inverse Fourier transform as

G(τ, x) =
1
β

∞

∑
n=−∞

∫ d3p

(2π)3 e−iωnτ+ip · xG̃(ωn, p), (C.16)

using ωn as either for bosons or fermions. Hence, the finite temperature dynamics are
obtained from the zero temperature one via the simple replacements:

p0 → iωn,
∫ d4p

(2π)4 →
1
β

∞

∑
n=−∞

∫ d3p

(2π)3 . (C.17)

See [330] for details in evaluating the infinite summation loop integrals in Eq. C.17.
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C.2. Thermal Effective Potential at 1-loop

Here we will determine the one-loop effective potential at finite temperature. Consider
a theory of self-interacting scalar fields. We will write the effective potential in the
form

Vβ
eff(φc) = V0(φc) + Vβ

1 (φc), (C.18)

where V0(φc) is the tree-level zero-temperature potential. Using the calculations in the
previous section, the finite temperature part of the potential (at 1-loop) is written as

Vβ
1 (φc) =

1
2β

∞

∑
n=−∞

∫ d3p

(2π)3 log(ω2
n + ω2), (C.19)

where the ωn are the bosonic Mastubara frequencies and ω2 = p2 + m2(φc) where m2

is the shifted mass, computed from the tree-level potential

m2(φc) =
d2V0(φc)

dφ2
c

. (C.20)

In the imaginary time formalism, this can be shown to be [331]:

Vβ
1 (φc) =

∫ d3p

(2π)3

[
ω

2
+

1
β

log(1− e−βω)

]
. (C.21)

The first term in Eq. C.21 is identified with the Coleman-Weinberg potential [252],
whilst the temperature-dependent part can be written as

1
β

∫ d3p

(2π)3 log(1− e−βω) =
1

2π2β4 JB[m
2(φc)β2], (C.22)

with the thermal bosonic function JB is defined as

JB[m
2β2] =

∫ ∞

0
dxx2 log

[
1− e−

√
x2+β2m2

]
. (C.23)
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In the high-temperature expansion (m� T), one can expand the integral in Eq. C.23
to give the series

JB(m
2/T2) = −π4

45
+

π2

12
m2

T2 −
π

6

(
m2

T2

)3/2

− 1
32

m4

T4 log
m2

abT2

−2π7/2
∞

∑
`=1

(−1)`
ζ(2`+ 1)
(`+ 1)!

Γ
(
`+

1
2

)(
m2

4π2T2

)`+2

, (C.24)

where ab = 16π2 exp(3/2− 2γE) (log ab = 5.4076). Similarly, the fermionic thermal
function

JF[m
2β2] =

∫ ∞

0
dxx2 log

[
1 + e−

√
x2+β2m2

]
, (C.25)

can be expanded in the same way:

JF(m
2/T2) = −7π4

360
− π2

24
m2

T2 −
1

32
m4

T4 log
m2

a f T2

−π7/2

4

∞

∑
`=1

(−1)`
ζ(2`+ 1)
(`+ 1)!

(1− 2−2`−1)Γ
(
`+

1
2

)(
m2

π2T2

)`+2

,(C.26)

where a f = π2 exp(3/2− 2γE) (log a f = 2.6351).
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Appendix D.

Asymptotic expansions of special
functions

D.1. The incomplete gamma function, Γ(α, z)

The incomplete Gamma functions γ(α, z) and Γ(α, z) are defined as [332]:

γ(α, z) =
∫ z

0
e−ttα−1dt (Re α > 0), (D.1)

Γ(α, z) =
∫ ∞

z
e−ttα−1dt, (D.2)

where Eq. D.2 is sometimes known as the complementary incomplete Gamma function.

Fixed α, large x

Let us consider the case where the arguments α and x are real, and x > 0. Moreover, if
x is large, it is more convenient to work with the complementary function, Γ(α, x). If
one applies integration by parts to Eq. D.2, we obtain:

Γ(α, x) = e−xxα−1 + (α− 1)Γ(α− 1, x), (D.3)
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and upon repeated application, the result is:

Γ(α, x) = e−xxα−1
{

1 +
α− 1

x
+

(α− 1)(α− 2)

x2 + · · · (D.4)

+
(α− 1)(α− 2) · · · (α− n + 1)

xn−1

}
+ εn(x), (D.5)

where n is a non-negative integer. The function εn(x) is

εn(x) = (α− 1)(α− 2) · · · (α− n)
∫ ∞

x
e−ttα−n−1dt. (D.6)

If we have n ≥ α− 1, then what follows is that tα−n−1 < xα−n−1 leading to the result

|εn(x)| ≤ |(α− 1)(α− 2) · · · (α− n)|e−xxα−n−1. (D.7)

Finally, this leads to the asymptotic series for Γ(α, x)

Γ(α, x)∼ e−xxn−1
∞

∑
s=0

(α− 1)(α− 2) · · · (α− s)
xs . (D.8)

D.2. The modified Bessel function of the second kind,

Kn(z)

The modified Bessel function of the second kind, for real valued argument x, is defined
as [333]:

Kn(x) =
1
2

πin+1H(1)
n (ix), (D.9)

where H(1)
n (ix) is the Hankel function of the first kind. The asymptotic expansion for

large x is:

Kn(x) '
( π

2x

)1/2
e−xPn(x), (D.10)

where Pn(x) is an asymptotic series written as

Pn(x) = 1 +
4n2 − 1

8x
+

(4n2 − 1)(4n2 − 32)

2!(8x)2 + · · · . (D.11)
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Alternatively, for small x, the asymptotic expansion takes the form

Kn(x)∼ (n− 1)!2n−1x−n. (D.12)
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Colophon

This thesis was made in LATEX 2ε using the “hepthesis” class [334]. Feynmann diagrams
were created using the “axodraw2” style [335].
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[206] B. S. Acharya, K. Bożek, C. Pongkitivanichkul, and K. Sakurai, Journal of High
Energy Physics 2015, 181 (2015).

[207] M. Low and L.-T. Wang, Journal of High Energy Physics 2014, 161 (2014).

[208] XENON, E. Aprile et al., (2018), arXiv:1805.12562 [astro-ph].

[209] G. Aad et al., Journal of High Energy Physics 2014, 176 (2014).

[210] M. Aaboud et al., The European Physical Journal C 76, 392 (2016).

[211] M. Aaboud et al., Physical Review D 96, 112010 (2017).

[212] M. Aaboud et al., Phys. Rev. D97, 112001 (2018).



144 BIBLIOGRAPHY

[213] J. Ellis, K. Enqvist, D. Nanopoulos, and F. Zwirner, Modern Physics Letters A
01, 57 (1986).

[214] R. Barbieri and G. F. Giudice, Nuclear Physics B 306, 63 (1988).

[215] G. L. Kane, C. Kolda, L. Roszkowski, and J. D. Wells, Physical Review D 49, 6173
(1994).

[216] G. W. Anderson and D. J. Castaño, Physics Letters B 347, 300 (1995).

[217] G. W. Anderson and D. J. Castaño, Physical Review D 52, 1693 (1995).

[218] S. Dimopoulos and G. F. Giudice, Physics Letters B 357, 573 (1995).

[219] K. L. Chan, U. Chattopadhyay, and P. Nath, Physical Review D 58, 096004 (1998).

[220] S. Akula, M. Liu, P. Nath, and G. Peim, Physics Letters B 709, 192 (2012).

[221] M. Liu and P. Nath, Physical Review D 87, 095012 (2013).

[222] P. H. Chankowski, J. Ellis, and S. Pokorski, Physics Letters B 423, 327 (1998).

[223] P. H. Chankowski, J. Ellis, M. Olechowski, and S. Pokorski, Nuclear Physics B
544, 39 (1999).

[224] G. L. Kane and S. F. King, Physics Letters B 451, 113 (1999).

[225] M. Bastero-Gil, G. L. Kane, and S. F. King, Physics Letters B 474, 103 (2000).

[226] J. A. Casas, E. José Ramón, and H. Irene, Journal of High Energy Physics 2004,
008 (2004).

[227] S. Cassel, D. M. Ghilencea, and G. G. Ross, Nuclear Physics B 825, 203 (2010).

[228] S. Cassel, D. M. Ghilencea, and G. G. Ross, Nuclear Physics B 835, 110 (2010).

[229] S. Cassel, D. M. Ghilencea, S. Kraml, A. Lessa, and G. G. Ross, Journal of High
Energy Physics 2011, 120 (2011).

[230] D. M. Ghilencea and G. G. Ross, Nuclear Physics B 868, 65 (2013).

[231] A. Kaminska, G. G. Ross, and K. Schmidt-Hoberg, Journal of High Energy
Physics 2013, 209 (2013).

[232] I. Gogoladze, F. Nasir, and Q. Shafi, International Journal of Modern Physics A
28, 1350046 (2013).



BIBLIOGRAPHY 145

[233] S. Antusch, L. Calibbi, V. Maurer, M. Monaco, and M. Spinrath, Physical Review
D 85, 035025 (2012).

[234] S. Antusch, L. Calibbi, V. Maurer, M. Monaco, and M. Spinrath, Journal of High
Energy Physics 2013, 187 (2013).

[235] E. Hardy, Journal of High Energy Physics 2013, 133 (2013).

[236] S. Fichet, Physical Review D 86, 125029 (2012).

[237] K. Kowalska and E. M. Sessolo, Physical Review D 88, 075001 (2013).

[238] C. Han, K.-i. Hikasa, L. Wu, J. M. Yang, and Y. Zhang, Journal of High Energy
Physics 2013, 216 (2013).

[239] A. Arvanitaki, M. Baryakhtar, X. Huang, K. Van Tilburg, and G. Villadoro,
Journal of High Energy Physics 2014, 22 (2014).

[240] H. Baer, V. Barger, and M. Padeffke-Kirkland, Physical Review D 88, 055026
(2013).

[241] G. G. Ross, K. Schmidt-Hoberg, and F. Staub, Journal of High Energy Physics
2017, 21 (2017).

[242] B. P. Padley, K. Sinha, and K. Wang, Physical Review D 92, 055025 (2015).

[243] K. Choi, K. S. Jeong, T. Kobayashi, and K.-i. Okumura, Physics Letters B 633,
355 (2006).

[244] K. Choi, K. S. Jeong, T. Kobayashi, and K.-i. Okumura, Physical Review D 75,
095012 (2007).

[245] M. Badziak, S. Krippendorf, H. P. Nilles, and M. W. Winkler, Journal of High
Energy Physics 2013, 94 (2013).

[246] O. Lebedev, H. P. Nilles, and M. Ratz, p. 211 (2005), hep-ph/0511320.

[247] H. Abe, T. Kobayashi, and Y. Omura, Physical Review D 76, 015002 (2007).

[248] J. L. Feng, K. T. Matchev, and T. Moroi, Physical Review Letters 84, 2322 (2000).

[249] J. L. Feng, K. T. Matchev, and T. Moroi, Physical Review D 61, 075005 (2000).

[250] J. L. Feng, K. T. Matchev, and F. Wilczek, Physics Letters B 482, 388 (2000).



146 BIBLIOGRAPHY

[251] H. Baer et al., Physical Review D 87, 115028 (2013).

[252] S. Coleman and E. Weinberg, Physical Review D 7, 1888 (1973).

[253] H. Baer, V. Barger, P. Huang, A. Mustafayev, and X. Tata, Physical Review Letters
109, 161802 (2012).

[254] H. Baer, V. Barger, P. Huang, and X. Tata, Journal of High Energy Physics 2012,
109 (2012).

[255] M. W. Cahill-Rowley, J. L. Hewett, A. Ismail, and T. G. Rizzo, Physical Review
D 86, 075015 (2012).

[256] J. L. Feng and D. Sanford, Physical Review D 86, 055015 (2012).

[257] Z. Kang, J. Li, and T. Li, Journal of High Energy Physics 2012, 24 (2012).

[258] H. Baer, V. Barger, and D. Mickelson, Physics Letters B 726, 330 (2013).

[259] F. Staub, Computer Physics Communications 185, 1773 (2014).

[260] Planck Collaboration, P. A. R. Ade et al., A&A 571 (2014).

[261] Heavy Flavor Averaging Group, D. Asner et al., (2010), arXiv:1010.1589 [hep-ph].

[262] CMS Collaboration, CMS, (2011), CMS-PAS-BPH-11-019, LHCb-CONF-2011-047,
CERN-LHCb-CONF-2011-047.

[263] W. Porod, F. Staub, and A. Vicente, The European Physical Journal C 74, 2992
(2014).

[264] B. Pendleton and G. G. Ross, Physics Letters B 98, 291 (1981).

[265] C. T. Hill, Physical Review D 24, 691 (1981).

[266] N. Polonsky, Lect.Notes Phys.Monogr. 68, 1 (2001).

[267] D. Pierce, p. 0418 (1994), hep-ph/9407202.

[268] J. Bagger, K. Matchev, and D. Pierce, Physics Letters B 348, 443 (1995).

[269] D. M. Pierce, J. A. Bagger, K. T. Matchev, and R.-J. Zhang, Nuclear Physics B 491,
3 (1997).

[270] B. D. Wright, Submitted to: Phys. Rev. D. (1994), hep-ph/9404217.



BIBLIOGRAPHY 147

[271] A. Donini, Nuclear Physics B 467, 3 (1996).

[272] J. A. Casas, J. R. Espinosa, and H. E. Haber, Nuclear Physics B 526, 3 (1998).

[273] S. A. Abel and B. C. Allanach, Physics Letters B 415, 371 (1997).
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[304] A. Riotto and G. Senjanović, Physical Review Letters 79, 349 (1997).
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