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1. Introduction 
A growing number of empirical studies involve the assessment of influences on a choice 
amongst ordered discrete alternatives. Ordered logit and probit models are well known, 
including extensions to accommodate random parameters and heteroscedasticity in 
unobserved variance (see, e.g., Greene 2007). The ordered choice model allows non-
linear effects of any variable on the probabilities associated with each ordered level (see 
for example, Eluru, Bhat and Hensher 2008).  However the traditional ordered choice 
model is potentially limited, behaviorally, in that it holds the threshold values to be 
fixed. This can lead to inconsistent (i.e., incorrect) estimates of the effects of variables. 
Extending the ordered choice model to account for threshold random heterogeneity as 
well as underlying systematic sources of explanation for unobserved heterogeneity is a 
logical extension in line with the growing interest in choice analysis in establishing 
additional candidate sources of observed and unobserved taste heterogeneity.  

A substantive application herein is used to illustrate the behavioral gains from 
generalizing the ordered choice model to accommodate random thresholds. It is focused 
on the role that information processing strategies play in conditioning the way in which 
individuals assess the attributes associated with choice alternatives offered in a stated 
choice experiment (see Hensher et al. 2005a, Hensher 2006b, 2008).  We investigate the 
role of attribute processing strategies (APS) in an individual’s choice amongst 
unlabelled attribute packages of alternative tolled and non-tolled routes for the 
commuting trip. The ordering represents one very specific APS, namely the number of 
attributes attended to from the full set. Despite a growing number of studies focusing on 
these issues (see for example Cantillo et al. 2006, Hensher 2006, Swait 2001, Campbell 
et al. 2008), the entire domain of every attribute is treated as relevant to some degree 
and included in the utility expressions for every individual. While acknowledging the 
extensive study of nonlinearity in attribute specification which permits varying marginal 
(dis)utility over an attribute’s range, including account for asymmetric preferences 
under conditions of gain and loss (see Hess at al. 2008), this is not the same as 
establishing ex ante the extent to which a specific attribute might be totally excluded 
from consideration for all manner of reasons, including the impost of the design of a 
choice experiment when stated choice data is being used. 

Most psychological theories of choice assume a dual-phase model of the decision-
making process (Houston et al.1989, Kahneman and Tversky, 1979, Thaler, 1999). The 
first phase relates to the editing of the problem. The second phase relates to the 
evaluation of the edited problem. The main function of the editing operations is “to 
organize and reformulate the options so as to simplify subsequent evaluation and 
choice” (Kahneman and Tversky, 1979, p. 274). The main function of the evaluation 
operations is to select the preferred alternative. Similarly, in other behavioral paradigms 
such as the ‘Cancellation and Focus Model of Choice’ (Houston et al., 1989; Houston 
and Sherman, 1995, Bonini et al. 2004), it is assumed that people cancel features shared 
by the alternatives (within bounds that allow for just noticeable difference), and focus 
evaluation on the remaining attributes.  

Referencing is a critical activity in the construction of behavioral reality that captures 
many of the elements of stage one editing, including cancellation and focus. 
Referencing helps shape the perspectives through which an individual sees the world, 
focusing attention on key elements within, involving processes of inclusion and 
exclusion as well as emphasis, and hence operates by biasing the cognitive processes of 
information by individuals (Hallahan 1999). We are interested in two dimensions of 
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referencing – attributes and choice1. Attribute referencing entails accentuation of 
attributes of alternatives, ignoring other attributes and hence biasing information 
processing in terms of focal attributes. Referencing suggests circumstances in SC 
studies where the alternatives on offer that are contrasts to the experienced alternative 
(for example, a recent trip) that offer less attractive attribute levels such as travel times, 
are more likely to result in higher willingness to pay compared to relatively more 
attractive attribute scenarios. 

The establishment of attribute inclusion/exclusion in making choices in a stated choice 
(SC) context is often associated with design dimensionality and the so-called complexity 
of the SC experiment (Hensher 2006a). It is typically implied that designs with more 
items to evaluate are more complex than those with less items2 (for example, Arentze et 
al., 2003, Swait and Adamowicz 2001a, 2001b), impose cognitive burden, and are 
consequently less reliable, in a behavioral sense, in revealing preference information. 
This is potentially misleading, since it suggests that complexity is an artefact of the 
quantity of information, in contrast to the relevance of information.  

We need a way of identifying what information (that is, attributes) is actually processed 
in arriving at a choice outcome and which is ignored. We recognise however that the 
process is inherently stochastic from an analyst’s perspective, since we will never be 
able, with total certainty, to rely on a set of exogenous data items to elicit how an 
attribute is processed by each individual. This necessitates treating the processing of 
attributes as endogenous with the choice outcome so that unobserved influences of 
processing can also be accommodated, at least randomly.  

One way to establish potential sources of influence on attending to attributes is to 
investigate the link between the design of the choice context, the individual’s 
background and the inclusion/exclusion of specific attributes. An ordered choice model 
is an appropriate econometric form within which to study the influences on the number 
of attributes ignored from the full set on offer; which can then be embedded in a joint 
process and outcome choice model (see Hensher 2008) 

The paper is organised as follows. The next section sets out the econometric 
specification of the generalised ordered choice model, focusing on the derivation of the 
random threshold structure and its behavioral appeal. We then introduce the empirical 
context used to test this new model, focusing on the design of the stated choice 
experiment and associated questions used to define the choice setting and the process 
used by each respondent in establishing relevance of each attribute. The empirical 
analysis that follows presents the estimated the models – a traditional model and the 
extended ordered choice model, together with the associated marginal effects that are 
the basis of behavioral assessment. The paper concludes with some observations on the 
merits of the extended model form. 

 

 

                                                           
1 Hallahan (1999) presents seven dimensions, of which attributes and choice are only two. The others are situations, actions, 
issues, responsibility and news. 
2 Complexity also includes attributes that are lowly correlated, in contrast to highly correlated, the latter supporting greater ease of 
assessment in that one attribute represents other attributes.  
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2. Generalizations of the ordered choice model to 
accommodate preference heterogeneity 
 

2.1 The ordered probit model 
The ordered probit model was proposed by Zavoina and McElvey (1975) for the 
analysis of categorical, nonquantitative choices, outcomes and responses.  Familiar 
applications now include bond ratings, discrete opinion surveys such as those on 
political questions, obesity measures (Greene et al. 2008), preferences in consumption, 
and satisfaction and health status surveys such as those analyzed by Boes and 
Winkelmann (2004, 2007).   

The model foundation is an underlying random utility or latent regression model, 

 

yi* = β′xi + εi, (1) 
 
in which the continuous latent utility, yi* is observed in discrete form through a 
censoring mechanism (equation 2). 

 
yi   =  0  if   μ-1  <  yi* < μ0, 

=  1  if    μ0  <  yi*  < μ1, 
=  2  if    μ1  <   yi* < μ2 (2) 
=  ... 
=  J  if   μJ-1 <  yi*  < μJ. 

 

The model contains the unknown marginal utilities, β, as well as J+2 unknown 
threshold parameters, μj, all to be estimated using a sample of n observations, indexed 
by i = 1,...,n.  The data consist of the covariates, xi and the observed discrete outcome, yi 
= 0,1,...,J.  The assumption of the properties of the “disturbance,” εi, completes the 
model specification.  The conventional assumptions are that εi is a continuous 
disturbance with conventional cdf, F(εi|xi) = F(εi) with support equal to the real line, 
and with density f(εi) = F′(εi). The assumption of the distribution of εi includes 
independence from (or exogeneity of) xi. 

By the laws of probability, the probabilities associated with the observed outcomes are 
given as equation (3). 

 
Prob[yi = j | xi]  =  Prob[εi <  μj - β′xi]  -  Prob[μj-1 - β′xi], j = 0,1,...,J.  (3) 
 
Several normalizations are needed to identify the model parameters.  First, given the 
continuity assumption, in order to preserve the positive signs of the probabilities, we 
require μj > μj-1.  Second, if the support is to be the entire real line, then μ-1 = -∞ and μJ 
= +∞.  Finally, assuming (as we will) that xi contains a constant term, we will require μ0 
= 0.  With a constant term present, if this normalization is not imposed, then adding any 
nonzero constant to μ0 and the same constant to the intercept term in β will leave the 
probability unchanged.  Given the assumption of an overall constant, only J-1 threshold 
parameters are needed to partition the real line into the J+1 distinct intervals. 
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Since the data contain no unconditional information on scaling of the underlying 
variable, if yi* is scaled by any positive value, then scaling the unknown μj and β by the 
same value preserves the observed outcomes – a free unconditional variance parameter, 
Var[εi] = σε

2, is not identified without further restriction.  We thus impose the 
identifying restriction σε = a known constant, σ .  The usual approach to this 
normalization is to assume that Var[εi|xi] = 1 in the probit model and π2/3 in the logit 
model – in both cases to eliminate the free structural scaling parameter. The standard 
treatments in the received literature complete the ordered choice model by assuming 
either a standard normal distribution for εi, producing the ordered probit model or a 
standardized logistic distribution (mean zero, variance π2/3), which produces the 
ordered logit model. Applications appear to be well divided between the two. A 
compelling case for a particular distribution remains to be put forth. 

With the full set of normalizations in place, the likelihood function for estimation of the 
model parameters is based on the implied probabilities given in equation (4). 

 

Prob[yi = j | xi]  =  F(μj - β′xi)  -  F(μj-1 - β′xi)  > 0, j = 0,1,...,J. (4) 

 

Estimation of the parameters is a straightforward problem in maximum likelihood 
estimation (see, e.g., Greene 2008 and Pratt 1981).  Interpretation of the model 
parameters is, however, much less so (see, e.g., Daykin and Moffitt 2002).  There is no 
natural conditional mean function, so in order to attach behavioral meaning to the 
parameters, one typically refers to the probabilities themselves.  The partial effects in 
the ordered choice model are: 

 

1
Prob[ | ] ( ) ( )i

j i j i
i

y j f f−

∂ = ′ ′⎡ ⎤= μ − − μ −⎣ ⎦∂
x x x

x
β β β

. (5) 
 
The result shows that neither the sign nor the magnitude of a coefficient is informative 
about the corresponding behavioral characteristic in the model, so the direct 
interpretation of the coefficients (or their “significance”) is fundamentally ambiguous.  
A counterpart result for a dummy variable in the model would be obtained by using a 
difference of probabilities, rather than a derivative (Boes and Winkelmann 2007 and 
Greene 2008, Chapter E22).  One might also be interested in cumulative values of the 
partial effects, such as shown in equation (6) (see, e.g., Brewer et al. 2006). The last 
term in this set is zero by construction. 

 

[ ]( )10

Prob[ | ] ( ) ( )ji
m i m im

i

y j f f−=

∂ ≤ ′ ′= μ − − μ −
∂ ∑x x x
x

β β β
. (6) 

 

2.2 A generalized ordered choice model 
A number of authors, beginning with Terza (1985), have questioned some of the less 
flexible aspects of the model specification.   Recent analyses, e.g., Long (1993), Long 
and Frees (2005) and Williams (2006), have proposed a “generalized ordered choice 
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model.” The partial effects shown above vary with the data and the parameters.  Since 
the probabilities must sum to one, the partial effects for each variable must sum to zero 
across the probabilities.  It can also be shown that for the probit and logit models, this 
set of partial derivatives will change sign exactly once in the sequence from 0 to J, a 
property that Boes and Winkelmann (2007) label the “single crossing” characteristic.  
Boes and Winkelmann (2007) also note that for any two continuous covariates, xik and 
xil 

 

     

,

,

Prob[ | ] /
Prob[ | ] /

i i i k k

i i i l l

y j x
y j x

∂ = ∂ β
=

∂ = ∂ β
x
x  (7) 

 
This result in (7) is independent of the outcomes. The ordered choice models above 
have the property in equation (8); that is, the partial effects are each a multiple of the 
same β.   
 

∂Prob[yi >  j | xi]/∂xi  =  Kjβ (8) 
 
This is a feature of the model that has been labeled the “parallel regressions” 
assumption. A standard test of this null hypothesis, due to Brant (1990), is used to 
detect the condition.  The Brant test frequently rejects the null hypothesis of a common 
slope vector in these discrete choice models.  Since the discrete choices are not 
independent; indeed, the entire model describes a single choice (e.g., if y > 2, then y > 
1), the test is not about the choice mechanism per se, but about functional form. 

An extended form of the ordered choice model that has attracted much (perhaps most) 
of the recent attention, is the “Generalized Ordered Logit” (or Probit) model e.g., by 
Williams (2006).  This model is defined in equation (9). 

 

Prob[yi = j | xi]  =  Prob[εi <  μj - βj′xi]  -  Prob[μj-1 - βj-1′xi], j = 0,1,..., J  (9) 

 

where β-1 = 0 (see e.g., Williams 2006, Long 1997, Long and Frees 2006). The 
extension provides for a separate vector of marginal utilities for each outcome. 

The generalization of the model suggested above deals with both problems (single 
crossing and parallel regressions), but it creates new ones.  The heterogeneity in the 
parameter vector is an artifact of the coding of the dependent variable, not a 
manifestation of underlying heterogeneity in the dependent variable induced by 
behavioral differences.  It is unclear what it means for the marginal utility parameters to 
be structured in this way.  Consider, for example, that there is no underlying structure 
that could be written down in such a way as to provide a means of simulating the data 
generating mechanism.  By implication, yi* = βj′xi + εi if yi = j.  That is, the model 
structure is endogenous – one could not simulate a value of yi from the data generating 
mechanism without knowing in advance the value being simulated.  There is no reduced 
form. The more difficult problem of this generalization is that the probabilities in this 
model need not be positive, and there is no parametric restriction (other than the 
restrictive model version we started with) that could achieve this. The probability model 
is internally inconsistent. The restrictions would have to be functions of the data. The 
problem is noted by Williams (2006), but dismissed as a minor issue. Boes and 
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Winkelmann (2007) suggest that the problem could be handled through a “nonlinear 
specification.”  Essentially, this generalized choice model does not treat the outcome as 
a single choice, even though that is what it is. 

To put a more positive view, we might interpret this as a semi-parametric approach to 
modeling what is underlying heterogeneity. However, it is not clear why this 
heterogeneity should be manifest in parameter variation across the outcomes instead of 
across the individuals in the sample.  One would assume that the failure of the Brant test 
to support the model with parameter homogeneity is, indeed, signalling some failure of 
the model.  A shortcoming of the functional form as listed above (compared to a 
different internally consistent specification) is certainly a possibility.  We hypothesise 
that it might also be picking up unobserved heterogeneity. 

 

2.3 Modeling observed and unobserved heterogeneity 
Since Terza (1985), with the exception of Pudney and Shields (2000), most of the 
“generalizations” suggested for the ordered choice models have been about functional 
form – the single crossing feature and the parallel regressions (see, also, Greene 2008). 
Our interest in this paper is, rather, in a specification that accommodates both observed 
and unobserved heterogeneity across individuals.  We suggest that the basic model 
structure, when fully specified, provides for sufficient nonlinearity to capture the 
important features of choice behavior.  The generalization that interests us herein will 
incorporate both observed and unobserved heterogeneity in the model itself. 

The basic model assumes that the thresholds μj are the same for every individual in the 
sample.  Terza (1985), Pudney and Shields (2000), Boes and Winkelmann (2007) and 
Greene et al. (2008), all present cases that suggest individual variation in the set of 
thresholds is a degree of heterogeneity that is likely to be present in the data, but is not 
accommodated in the model. Pudney and Shields discuss a clear example in the context 
of job promotion, in which the steps on the promotion ladder for nurses are somewhat 
individual specific. 

Greene (2002, 2008) argues that the fixed parameter version of the ordered choice 
model, and more generally, many microeconometric specifications, do not adequately 
account for the underlying, unobserved heterogeneity likely to be present in observed 
data.  Further extensions of the ordered choice model presented in Greene (2008) 
include full random parameters treatments and discrete approximations under the form 
of latent class, or finite mixture models.  These two specific extensions are also listed by 
Boes and Winkelmann (2004, 2007) as candidates for extending the model. They also 
describe a common effects model for panel data. 

The model that assumes homogeneity of the preference parameters, β, across 
individuals, also assumes homogeneity in the scaling of the random term, εi.  That is, 
the homoscedasticity assumption, Var[εi|xi] = 1 is restrictive in the same way that the 
homogeneity assumption is.  Heteroscedasticity in terms of observables in the ordered 
choice model is proposed in Greene (1997) and reappears as a theme in Williams 
(2006). 

The model proposed here generalizes the ordered choice model in the directions of 
accommodating heterogeneity, rather than in the direction of adding nonlinearities to the 
underlying functional form. The earliest extensions of the ordered choice model focused 
on the threshold parameters. Terza’s (1985) extension suggested 
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μij  =  μj  +  δ′zi. (10) 

 

The analysis of this model continued with Pudney and Shields’s (2000) “Generalized 
Ordered Probit Model,” whose motivation, like Terza’s was to accommodate observable 
individual heterogeneity in the threshold parameters as well as in the mean of the 
regression.   We (and Pudney and Shields) note an obvious problem of identification in 
this specification. Consider the generic probability with this extension, 

 

Prob[yi <  j | xi,zi]  =  F(μj + δ′zi - β′xi) = F[μj + (δ*′zi + β′xi)], δ* = -δ. (11) 

 

It is less than obvious whether the variables zi are actually in the threshold or in the 
mean of the regression. Either interpretation is consistent with the model.  Pudney and 
Shields argue that the distinction is of no substantive consequence for their analysis. 

Formal modeling of heterogeneity in the parameters as representing a feature of the 
underlying data, also appears in Greene (2002) (version 8.0) and Boes and Winkelmann 
(2004), both of whom suggest a random parameters (RP) approach to the model.  In 
Boes and Winkelmann, it is noted that the nature of an RP specification induces 
heteroscedasticity, and could be modeled as such.  The model would appear as follows: 

 

βi  =  β  +  ui  (12) 
 
where ui ~ N[0,Ω].  Inserting this in the base case model and simplifying, we obtain 
equation (13). 
 

Prob[yi  <  j | xi ]  =  Prob[εi + ui′xi < μj - β′xi]  = 
1

j i

i i

F
⎛ ⎞′μ −
⎜ ⎟⎜ ⎟′+⎝ ⎠

x
x x
β

Ω
, (13) 

 

Equation (13) could be estimated by ordinary means, albeit with a new source of 
nonlinearity – the elements of Ω must now be estimated as well3.  Boes and 
Winkelmann (2004, 2007) did not pursue this approach.  Greene (2002) analyzes 
essentially the same model, but proposes to estimate the parameters by maximum 
simulated likelihood. 

Curiously, none of the studies listed above focus on the issue of scaling, although 
Williams (2006), citing Allison (1999) does mention it.  A heteroscedastic ordered 
probit model with the functional form in (14) appears at length in Greene (1997), and is 
discussed in some detail in Williams (2006).   

 

Var[εi|hi]  =  exp(γ′hi) (14) 

 

                                                           
3 The authors’ suggestion that this could be handled semiparametrically without specifying a distribution for ui is incorrect, 
because the resulting heteroscedastic probability written above only preserves the standard normal form assumed if ui is normally 
distributed as well as εi 
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In microeconomic data, scaling of the underlying preferences is as important a source of 
heterogeneity as displacement of the mean, perhaps even more so.  But, it has received 
considerably less attention than heterogeneity in location.   

In what follows, we will propose a formulation of the ordered choice model that treats 
heterogeneity in a unified, internally consistent fashion.  The model contains three 
points at which individual heterogeneity can substantively appear: in the random utility 
model (the marginal utilities), in the threshold parameters, and in the scaling (variance) 
of the random components.  As argued above, this form of treatment seems more likely 
to capture the salient features of the data generating mechanism than the received 
“generalized ordered logit model,” which is more narrowly focused on functional form. 
 

2.4 Random thresholds and heterogeneity in the ordered choice model 
We depart from the base case, 

 

Prob[yi = j | xi]  =  F(μj - β′xi)  -  F(μj-1 - β′xi)  > 0, j = 0,1,...,J. (15) 

 

The intrinsic heterogeneity in utility functions across individuals is captured by writing 

 

βi  =  β  +  Δzi  + Γvi (16) 

 

where Γ is a lower triangular matrix and vi ~ N[0,I].  βi is normally distributed across 
individuals with conditional mean (equation 17): 
 
E[βi|xi,zi]  =  β  +  Δzi (17) 
 
and conditional variance (equation 18): 
 
Var[βi|xi,zi]  =  ΓIΓ′  =  Ω. (18) 
 

This is a random parameters formulation that appears elsewhere, e.g., Greene (2002, 
2005).  The random effects model is a special case in which only the constant is 
random.  The Mundlak (1978) and Chamberlain (1980) approach to modeling fixed 
effects is also accommodated by letting zi = ix  in the equation for the overall constant 
term.   

The thresholds are modeled randomly and nonlinearly as 

 
μij  =  μi,j-1 +  exp(αj + δ′ri + σjwij), wij ~ N[0,1]  (19a) 
 
with normalizations and restrictions μ-1 = -∞, μ0= 0, μJ = +∞.  For the remaining 
thresholds, we have (19).  
 
μ1 =   exp(α1 + δ′ri + σ1wj1)   
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     =  exp(δ′ri) exp(α1  + σ1wj1) (19b) 
 
μ2  =  exp(δ′ri) [exp(α1  + σ1wj1) + exp(α2  + σ2wj2)], 
 
μj  =  exp(δ′ri) ( )1 exp( )j

m m m imw=Σ α + σ , j = 1,...,J-1 
 
μJ  =  +∞. 
 

This formulation preserves the ordering of the thresholds and incorporates the necessary 
normalizations.  It also allows observed variables and unobserved heterogeneity to play 
a role both in the utility function and in the thresholds. The thresholds, like the 
regression itself, are shifted by both observable (ri) and unobservable (wij) 
heterogeneity.  The model is fully consistent, in that the probabilities are all positive and 
sum to one by construction.  If δ = 0 and σj = 0, then the original model is returned, with 
μ1 = exp(α1), μ2 = μ1 + exp(α2) and so on. 

Finally, the disturbance variance is allowed to be heteroscedastic, now specified 
randomly as well as deterministically. Thus, 

 
Var[εi|hi,ei]  =  σi

2   =  exp(γ′hi + τei) (20) 
 
where ei ~ N[0,1].  Let vi = (vi1,...,viK)′ and wi = (wi1,...,wi,J-1)′.  Combining terms, the 
conditional probability of outcome j is 
 

Prob[yi = j | xi,zi,hi,ri,vi,wi,ei]  =  

, 1

exp( ) exp( )
ij i i i j i i

i i i i

F F
e e

−
⎡ ⎤ ⎡ ⎤′ ′μ − μ −

−⎢ ⎥ ⎢ ⎥
′ ′+ τ + τ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

x x
h h
β β

γ γ  (21) 

 

The term that enters the log likelihood function is unconditioned on the unobservables.  
Thus, 

 

Prob[yi = j | xi,zi,hi,ri]  = 

                   

, 1

, ,
( , , ) .

exp( ) exp( )i i i

ij i i i j i i
i i i i i ie

i i i i

F F f e d d de
e e

−
⎛ ⎞⎡ ⎤ ⎡ ⎤′ ′μ − μ −
⎜ ⎟−⎢ ⎥ ⎢ ⎥⎜ ⎟′ ′+ τ + τ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

∫v w

x x
v w v w

h h
β β

γ γ
 (22) 

 

The model is estimated by maximum simulated likelihood.  The simulated log 
likelihood function is given in (23). 

 

logLS(β,Δ,α,δ,γ,Γ,σ,τ)= 

                     

, , , 1, ,
1 1

, ,

1log
exp( ) exp( )

n M ij m i m i i j m i m i
i m

i i m i i m

F F
M e e

−

= =

⎛ ⎞⎡ ⎤ ⎡ ⎤′ ′μ − μ −
⎜ ⎟⎢ ⎥ ⎢ ⎥−
⎜ ⎟′ ′+ τ + τ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

∑ ∑
x x

h h
β β

γ γ
 (23) 
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vi,m, wi,m, ei,m are a set of M multivariate random draws for the simulation4. This is the 
model in its full generality.  Whether a particular data set will be rich enough to support 
this much parameterization, particularly the elements of the covariances of the 
unobservables in Γ, is an empirical question that will depend on the application. 

The model contains four points at which changes in the observed variables can induce 
changes in the probabilities of the outcomes, in the thresholds, μij, in the marginal 
utilities, βi, in the utility function, xi and in the variance, σi

2.  For convenience in the 
derivation below, let a vector ai denote the union of (xi,ri,zi,hi).  This allows for cases in 
which variables appear at more than one place in the model.  The partial effect of a 
change in an element of ai on the probability will depend on where it appears in the 
specification.  For cases in which a variable appears in more than one location, the 
partial effect will be the sum of the two, three or four terms.  To avoid a cumbersome 
reparameterization of the model to place zeros in the appropriate places in the various 
parameter vectors and matrix, we assume at this point that ai appears in full throughout 
the model; that is, as if ai = xi = ri = zi = hi.  Thus, we write the probability of interest as 
(24). 
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μij is defined in (19).  Then, the set of partial effects is given as (25). 
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The sum of four terms in the middle of the expressions shows the four parts of a 
compound partial effect; in turn, these are the components of the change (a) due directly 
to change in xi, (b) indirectly due to change in the variables that influence βi, (c) due to 
change in the variables in the variance and (d) due to changes in the threshold 
parameters, respectively. 

Like the log likelihood function, the partial effects must be computed by simulation.  If 
a variable appears only in xi, then this formulation retains both the “parallel regressions” 
and “single crossing” features of the original model. Nonetheless, the effects are highly 
nonlinear in any event.  However, if a variable appears anywhere else in the 
specification, then neither of these properties will remain. 

                                                           
4 We use Halton sequences rather than pseudo-random numbers.  See Train (2003) for discussion.   
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3. Empirical application 
 

The context of the application, using stated choice data from a larger study reported in 
Hensher (2006a,b), is an individual’s choice amongst unlabelled attribute packages of 
alternative tolled and non-tolled routes for the car commuting trip in Sydney (Australia) 
in 2002. In this paper we are interested in one feature of the way in which individual’s 
process attribute information, namely attribute inclusion or exclusion. The dependent 
variable in the ordered choice model is the number of ignored attributes, or the number 
of attributes attended to from the full fixed set associated with each alternative package 
of route attributes. The utility function is defined over the attribute information 
processed by each individual, with candidate influences on the each individual’s 
decision heuristic including the dimensions of the choice experiment (e.g., number of 
alternatives, range of attributes), the framing of the design attribute levels relative to a 
reference alternative (see below), an individuals socioeconomic characteristics, and 
attribute accumulation where attributes are in common units (see also Hensher 2006b).   

The alternative attribute packages offered to individuals to evaluate are pivoted around 
the car commuting experiences of sampled respondents. The use of a respondent’s 
experience, embodied in a reference alternative, to derive the attribute levels of the 
experiment is supported by a number of theories in behavioural and cognitive 
psychology, and economics, such as prospect theory, case-based decision theory and 
minimum-regret theory (see Starmer 2000, Hensher 2006b).  

Reference alternatives in SC experiments5 act to frame the decision context of the 
choice task within some existing memory schema of the individual respondents and 
hence make preference-revelation more meaningful at the level of the individual. 
Theoretically, the role of reference alternatives in SC tasks is well supported within the 
literature. For example, prospect theory (Kahneman and Tversky 1979), which argues 
that individuals use decision heuristics when making choices, promotes the idea that the 
very specific context in which a decision is made by each individual is an important 
determinant of the selection of choice-heuristic, supporting the use of reference 
alternatives in SC tasks. Framing effects, of which reference dependence is a popular 
interpretation, provides context support in trading off the desire to make a good choice 
against the cognitive effort involved in processing the additional information provided 
in a SC task (Hensher 2006). Starmer (2000, p 353) in particular argues strongly for the 
use of reference alternatives (e.g., a current trip) in decision theory. 

16 stated choice sub-designs have been embedded in one overall design. Each 
commuter evaluated one randomly assigned sub-design; however, across the full set of 
stated choice experiments, the designs differed in terms of the number, range and levels 
of attributes, the number of alternatives and the number of choice sets. The combination 
of these dimensions of each design is often seen as the source of design ‘complexity’, 
and it is within this setting that we have varied the number of attributes that each 
respondent is asked to evaluate, and through supplementary questions, established 
which attributes were ‘ignored’ in the evaluation and selection of an alternative.  

Previous studies were used to identify candidate design dimensions. The five design 
dimensions are shown in Table 1.   

 

                                                           
5 Hensher (2004), Train and Wilson (2008), and Rose et al. (2008)  provide details of the design of pivot-based experiments. 
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Table 1: Dimensionality of the design plan 

Choice set 
size 

Number of 
alternatives 

Number of 
attributes 

Number of 
attribute levels

Range of        
attribute levels 

6 2 3 2 Narrower than base 
9 3 4 3 Base 
12 4 5 4 Wider than base 
15 ---- 6 ---- ---- 

 

Six attributes were selected for each alternative, based on previous evidence (see 
Hensher 2001), to characterise the options: free-flow time, slowed down time, stop/start 
time, variability of trip time, toll cost and running costs. Hensher (2006) explored how 
varying the number of attributes affects information processing, grouping attributes 
according to four patterns, noting that aggregated attributes are combinations of existing 
attributes6. 

In the current study we focus on one of the four patterns, that associated with five 
attributes; i.e., free flow time, slowed down time, stop/start time, trip time variability, 
total costs. We have selected a generic design (i.e., unlabeled alternatives) to avoid 
confounding the effect of the number of alternatives with the labeling (e.g., car, train). 
The sub-design dimensions are shown in Table 2 with eth attribute ranges in Table 3. 

 
Table 2:  The sub-designs of the overall design for five attributes 

Choice set of 
size 

Number of 
alternatives 

Number of 
attributes 

Number of levels 
of attributes 

Range of          
attribute levels 

15 2 5 2 Wider than base 
9 2 5 4 Base 
6 3 5 4 Narrower than base 
12 4 5 3 Narrower than base 

Note: Column 1 refers to the number of choice sets. The four rows represent the set of designs (see Appendix A). 
 

Table 3:  The attribute profiles for the design 

(units = %) Base range  Wider range  Narrower range 
Levels: 2 3 4 2 3 4 2 3 4 
Free flow time ± 20 -20, 0, +20 -20,-10,+10,+20 -20, +40 -20,+10,+40 -20, 0,+20,+40 ± 5 -5, 0,+5 -5, -2.5, +2.5, +5 
Slow down time ± 40 -40, 0, +40 -40,-20,+20,+40 -30, +60 -30,+15,+60 -30, 0,+30,+60 ± 20 -20, 0, +20 -20, -2.5, +2.5, +20 
Stop/start time ± 40 -40, 0, +40 -40,-20,+20,+40 -30, +60 -30,+15,+60 -30, 0,+30,+60 ± 20 -20, 0, +20 -20, -2.5, +2.5, +20 
Uncertainty of  travel 
time 

± 40 -40, 0, +40 -40,-20,+20,+40 -30, +60 -30,+15,+60 -30, 0,+30,+60 ± 20 -20, 0, +20 -20, -2.5, +2.5, +20 

Total costs ± 20 -20, 0, +20 -20,-10,+10,+20 -20, +40 -20,+10,+40 -20, 0,+20,+40 ± 5 -5, 0,+5 -5, -2.5, +2.5, +5 

 
As a generic design, the added alternatives are exactly the same. That is, for two design 
alternatives, we should not expect to find the parameter for an attribute (e.g., ‘free flow 
travel time’) to be different for the set of non-reference alternatives. Therefore we do 
not need the attribute ‘free flow time one’ to be orthogonal to the attribute ‘free flow 
time two’ etc up to ‘free flow time J-1’. We need to ensure that the attribute ‘free flow 
time’ representing all non-reference alternatives is perfectly7 orthogonal to the other 
attributes (such as slow down time, etc.). The designs are computer-generated. A 
                                                           
6 This is an important point because we did not want the analysis to be confounded by extra attribute dimensions. 
7 Approximately orthogonal is also acceptable given that some designs cannot guarantee complete orthogonality without loss of 
structure in terms of cognitive efficiency (in contrast to statistical efficiency). 
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preferred choice experiment design is one that maximizes the determinant of the 
covariance matrix, which is itself a function of the estimated parameters. Knowledge of 
the parameters or at least some priors (such as signs) for each attribute, from past 
studies, provides a useful input. We found that in so doing, the search eliminates 
dominant alternatives. The method used finds the D-optimality plan very quickly (see 
Rose and Bliemer 2007). 

The actual levels of the attributes shown to respondents are calculated relative to those 
of the experienced reference alternative – a recent car commuter trip. The levels applied 
to the choice task differ depending on the range of attribute levels and the number of 
levels for each attribute. The design dimensions are translated into SC screens, 
illustrated in Figure 1. The range of the attribute levels vary across designs. Each 
sampled commuter is given a varying number of choice sets (or scenarios), but the 
number of attributes and alternatives remain fixed. Elicitation questions associated with 
attribute inclusion and exclusion shown in Figure 2. 
 

 
 

Figure 1:  An example of a stated choice screen 

 

 
 

Figure 2:  CAPI questions on attribute relevance 
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4. Empirical analysis 
 
Computer-aided personal interview (CAPI) surveys were completed in the Sydney 
metropolitan area in 2002. A stratified random sample was applied, based on the 
residential location of the household. Screening questions established eligibility in 
respect of commuting by car. Further details are given in Hensher (2006a). Final models 
are given in Table 4, with the respective marginal effects in Table 5.  

A direct interpretation of the parameter estimates is not informative, given the logit 
transformation of the choice dependent variable (see equations 5 and 25). We therefore 
provide the marginal (or partial) effects which have substantive behavioral meaning, 
defined as the derivatives of the choice probabilities (equation 25). A marginal effect is 
the influence a one unit change in an explanatory variable has on the probability of 
selecting a particular outcome, ceteris paribus8. The marginal effects need not have the 
same sign as the model parameters. Hence, the statistical significance of an estimated 
parameter does not imply the same significance for the marginal effect. 

The generalized ordered logit model has a preferred goodness of fit over the traditional 
ordered logit model. With four degrees of freedom difference, the likelihood ratio of 
181.92 is statistically significant on any acceptable chi-squared test level.  The 
generalized model has included a random parameter form for congestion time framing 
and has accounted for two systematic sources of variation around the mean of the 
random threshold parameter (i.e., the accumulation of travel time and gender).  

The evidence identifies a number of statistically significant influences on the number of 
attributes attended to, given the maximum number of attributes provided. Individuals 
clearly self-select attribute information to process in stated choice studies, just as they 
do in real markets, where the transaction costs of seeking out, compiling and assessing 
large amounts of potentially useful information is often seen as burdensome and/or as 
producing insufficient benefit. While the evidence herein cannot establish whether an 
attribute reduction strategy is strictly linked to behavioral relevance, or to a coping 
strategy for handling cognitive burden, both of which are legitimate paradigms in real 
markets, it does provide important signposts on how many attributes provided within a 
specific context are processed to reflect attribute relevancy.  

The threshold parameter has a statistically significant mean and two sources of 
systematic variation across the sample around the mean threshold parameter estimate. 
We investigated an unconstrained random parameter normal distribution; however the 
standard deviation parameter estimate was not statistically significant from zero. The 
evidence however justifies the inclusion of a non-fixed threshold parameter, with a 
higher mean estimate across the sampled population when an individual aggregates the 
travel time components and when they are male. This is an important finding since it 
justifies the new formulation of the threshold parameters in ordered choice models as 
behaviorally meaningful. We take a closer look at each model discussing the evidence 
for design dimensions, framing around the base, attribute packaging, variance 
decomposition, and other effects. The magnitude and direction of influence is given in 
Table 5 for the marginal effects which have to be interpreted relative to each level of the 
number of attributes ignored.  

 
                                                           
8 This holds for continuous variables only. For dummy (1,0) variables, the marginal effects are the derivatives of the probabilities 
given a change in the level of the dummy variable. 
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Table 4:  Ordered logit models (2,562 observations) 

 
Attribute 

 
Units 

Ordered Logit Generalised Ordered 
Logit 

Constant  2.9682 (4.17) 2.9504 (2.79) 

Design Dimensions:  

Narrow attribute range 1,0 1.3738 (3.59) 1.4275 (2.35) 

No. of alternatives Number -0.9204 (-4.1) -1.0205 (-2.87) 

Framing around Base Alt:  

Free flow time for Base  minus SC alternative 

level 

Minutes 0.0329 (4.02) 0.0599 (3.44) 

Congested  time for Base minus  SC alternative 

level 

Minutes -0.0083 (-1.80) 0.0761 (2.20) 

Attribute Packaging:  

Adding travel time components 1.0 -0.7407 (-4.25) -0.8700 (-3.33) 

Variance decomposition:  

Number of  levels  Number 0.1043 (2.35) 0.3357 (4.48) 

Free flow time for Base 

minus SC alternative level 

Minutes -0.0164 (-2.75) -0.0332 (-4.04) 

Who pays (1= commuter personally) 1,0 -0.3070 (5.74) -0.3721 (-3.89) 

Threshold Parameters:  

Mu1  0 0 

Mu2 mean  3.0973 (5.74) 0.8753 (3.71) 

Standard deviation of Mu2 threshold parameter   0.0767 (0.018) 

Threshold Parameter Decomposition:  

Adding travel time components 1,0  1.7447 (10.83) 

Gender (male =1) 1,0  0.3366 (2.80) 

Random parameters:  

Congested  time for Base minus  SC alternative 

level 

1,0  0.2652 (2.48) 

Count of Choice Responses:  

 max # attributes minus #ignored obs 

0 5-0 1415 
1 5-1 1080 
2 5-2 66 
Log-Likelihood  -1871.80 -1780.85 
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Table 5:  Marginal effects derived from ordered logit models 

Ordered Logit Generalised Ordered Logit  

Attribute Average No. of Attributes 
Ignored 

Average No. of Attributes Ignored 

                                                     Design Dimensions: 

Narrow attribute range -0.4148, 0.8412, 0.0550 -0.3127, 0.2803, 0.0324 

No. of alternatives 0.2779, -0.2608, -0.0171 0.2236, -0.2004, -0.032 

Framing around Base Alt:   

Free flow time for Base minus SC 

alternative level 

-0.0099, 0.0093, 0.0006 -00131, 0.0118, 0.0014 

Congested  time for Base  minus SC 

alternative level 

0.0025, -0.0024, -0.0002 -0.0167, 0.0149, 0.0017 

Attribute Packaging: 

Adding travel time components 0.237, -.2099, -0.0137 0.1906, -0.1709, -0.0198 

Variance Decomposition: 

No. of levels -0.1104, 0.0249, 0.0856  

Free flow time for Base minus SC 

alternative level 

-0.2386, 0.0537, 0.1849  

Who pays  0.0740, -0.0167, -0.0573  

Note: the three marginal effects per attribute refer to the levels of the dependent variable. 

 

In commenting on the marginal effects, it should be noted that, for the generalised 
ordered logit model, some attributes have more than one role; for example the framing 
of free flow time is both a main effect influence as well as a source of variance 
decomposition (i.e., systematic source of heterogeneity) for the unobserved variance; 
and the attribute accumulation for travel time is both a main effect and a systematic 
source of influence on the distribution of the random threshold parameter. The 
generalised ordered choice model (GOCM) takes all of these sources into account in 
identifying the marginal effects for each level of the choice variable. In contrast, where 
an attribute has multiple roles in the traditional ordered choice model (TOCM), the 
marginal effects are calculated separately.  

The dummy variable for ‘narrow attribute range’ has the greatest marginal effect, 
although its influence is moderated in GOCM compared to TOCM. The probability of 
considering all attributes from the offered set decreases as an attribute’s range narrows, 
ceteris paribus. That is, respondents tend to ignore all attributes when the difference 
between attribute levels is small. This result is perhaps due to the fact that evaluation of 
small differences is more difficult than evaluation of large differences. An important 
implication is that if an analyst continues to include, in model estimation, an attribute 
across the entire sample that is ignored by a respondent, then there is a much greater 
likelihood of mis-specified parameter estimates in circumstances where the attribute 
range is narrower than wider. This finding has interesting implications for the growing 
evidence that mean WTP for an attribute tends to be higher under a wider range for the 
numerator attribute (Louviere and Hensher 2001). Simply put, the greater relevance in 
preserving the attribute content under a wider range will mean that such an attribute is 
relatively more important to the outcome, than it is under a narrow range specification, 
and hence a higher mean WTP is inferred.  
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The marginal effects for the narrow attribute range are positive when one (i.e., 5-1) or 
two attributes (i.e., 5-2) are ignored. Importantly the positive effect is greater when one 
attribute is ignored than when two are ignored. This suggests that the probability of 
considering four or three attributes from the offered set increases as an attribute’s range 
goes from narrow to non-narrow, ceteris paribus, but to a greater extent for four 
attributes. What we are observing across all three levels of the dependent variable is U-
(or inverted U-) shaped response, which appears to be the case for all attributes in 
GOCM. Thus for the narrow attribute range we have the highest probability of 
preserving four attributes than of preserving three attributes given that the probability of 
preserving all attributes is decreased. Given the observed profile of the sampled 
respondents preserving five, four and three attributes (Table 3), where there are only 66 
individuals in the last category (compared to 1415 and 1080 in 5-0 and 5-1), we have 
greater confidence in the relative marginal effects of preserving all (i.e., five) attributes 
and four attributes. 

As we increase the ‘number of alternatives’ to evaluate (over the range of 2 to 4), 
ceteris paribus, the importance of considering all attributes increases, as a way of 
making it easier to differentiate between the alternatives. This finding runs counter to 
some views, for example, that individuals will tend to ignore increasing amounts of 
attribute information as the number of alternatives increases. Our evidence suggests that 
the processing strategy is dependent on the nature of the attribute information, and not 
strictly on the quantity. The negative marginal effects for ignoring one and two 
attributes (or preserving for and three attributes) suggest that these rules are less likely 
to be adopted as the number of alternatives increases. 

The theoretical argument promoted in prospect theory for reference points is supported 
by our empirical evidence. We have framed the level of each attribute relative to that of 
the experienced car commute trip as (i) free flow time for current (or base) minus the 
level associated with an attribute and alternative in the SC design, and (ii) the congested 
travel time for the base minus the level associated with each SC alternative’s attribute. 
The more that an SC attribute level deviates from the reference alternative’s level, the 
more likely that an individual will process an increased number of attributes. This 
evidence was found for both the ‘free flow time’ and ‘congested time’ framing effects. 
Conversely, as the SC design attribute level moves closer to the reference alternative’s 
level, individuals appear to use some approximation paradigm, in which closeness 
suggests similarity, and hence ease of eliminating specific attributes, because their role 
is limiting in differentiation.   

Reference dependency not only has a direct (mean) influence on the number of 
attributes ignored; it also plays a role via its contribution to explaining 
heteroscedasticity in the variance of the unobserved effects. This has already been 
accounted for in the GOCM marginal effects for free flow time framing. It is separated 
out in the TOCM. The effect of widening the gap between the base and SC ‘free flow 
time’ reduces the heteroscedasticty of the unobserved effects across the respondents, 
increasing the acceptability of the constant variance condition when simpler models are 
specified.  

In GOCM, the congested time framing effect is represented by a distribution across the 
sample. The random parameter has a statistically significant standard deviation 
parameter estimate, resulting in a distribution shown in Figure 3. The range is from -
0.857 to 1.257; hence there is a sign change around the mean of 0.70833 and standard 
deviation of 0.2657. This results in the same mean marginal effect sign in GOCM as 
free flow time framing; however when we treated congested time framing as having a 
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fixed parameters (in TOCM, where the standard deviation parameter was not 
statistically significant), the signs are swapped for all levels of the choice variable. The 
evidence from the GOCM is intuitively more plausible. 
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Figure 3:  Distribution of preference heterogeneity for congested time framing 

 

The attribute-accumulation rule in stage 1 editing under prospect theory is consistently 
strong for the aggregation of travel time components. The positive marginal effect for 
the dummy variable ‘adding three travel time components’ indicates that, on average, 
respondents who add up the time components, in assessing the alternatives, tend to 
ignore more attributes.  

There is clear evidence that a relevant simplification rule is re-packaging of the attribute 
set, where possible, through addition. This is not a cancellation strategy, but a rational 
way of processing the information content of component attributes, and then weighting 
this information (in some unobserved way) in comparing alternatives.  

The socio-economic characteristics of respondent’s proxy for other excluded contextual 
influences. A respondent’s role in paying the toll was identified, through its influence 
on variance decomposition of the unobserved effects, as a statistically significant socio-
economic influence on the number of attributes considered. We have no priors on the 
likely sign of the influence on variance. The positive marginal effect for who pays 
suggests that those who pay themselves tend to increase the variance of the unobserved 
effects, resulting in a lower probability of preserving more attributes. Gender was a 
systematic source of influence on the threshold parameter, increasing its mean estimate 
for males. 

 

5. Conclusions 
 
The recognition of randomness in the threshold parameters and the identification of 
systematic sources of heterogeneity in the mean threshold parameter estimate is an 
important extension of the existing ordered choice model. This paper has brought 
together all of the contributions in the literature and extended them, in particular to 
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ensure preservation of the ordering of thresholds in the context of random 
parameterisation of the thresholds (equations 16 to 21). The specific application herein, 
on the role that attributes play in choice making in stated choice experiments, pivoted 
around a real market experience, has highlighted the role of random thresholds and 
decomposition, suggesting that the generalized empirical model is a rich behavioral 
addition to the literature on ordered choice modeling. 
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Appendix A  
Designs for five-attributes 

 
Alternative 1 Alternative 2 

Block Scenarios 
Free Flow time Slowed down time Stop/Start time Uncert  of travel time Total cost Free Flow time Slowed down time Stop/Start time Uncert of travel time Total cost 

1 1 1 1 0 1 1 0 1 0 0 1 

1 2 0 1 0 1 0 1 0 1 1 0 

1 3 1 1 0 1 1 0 1 0 1 1 

1 4 0 0 1 1 0 1 1 0 0 1 

1 5 0 1 0 0 1 1 0 1 1 1 

1 6 0 0 0 1 1 0 0 0 0 1 

1 7 0 1 1 1 1 1 0 0 0 1 

1 8 1 1 1 1 0 0 1 0 1 1 

1 9 0 0 1 1 0 0 1 1 0 1 

1 10 0 0 1 0 0 0 0 0 0 0 

1 11 0 1 1 1 1 0 0 1 0 1 

1 12 0 0 1 0 0 1 0 0 0 0 

1 13 1 1 1 0 1 0 0 1 1 1 

1 14 1 1 0 0 1 0 0 1 1 0 

1 15 1 0 0 0 1 1 1 1 0 1 

2 1 0 0 1 0 0 0 0 0 1 0 

2 2 1 1 1 1 0 0 1 0 0 0 

2 3 1 1 1 1 1 1 1 1 1 0 

2 4 0 1 1 0 0 1 0 1 0 0 

2 5 1 0 0 0 1 1 0 1 1 0 

2 6 1 0 0 0 1 1 0 0 0 0 

2 7 1 1 0 0 0 0 0 1 1 0 

2 8 0 1 0 0 1 1 1 1 0 1 

2 9 1 1 1 1 0 0 0 0 0 1 
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2 10 1 0 1 0 0 0 1 0 1 0 

2 11 1 1 0 1 1 0 0 1 1 1 

2 12 1 0 0 1 0 1 0 0 1 1 

2 13 1 0 1 0 0 0 1 0 1 0 

2 14 0 1 1 1 0 1 1 1 1 1 

2 15 1 0 0 0 0 0 1 0 0 0 

 
 

Alternative 1 Alternative 2 

Block Scenarios Free Flow 
time 

Slowed down 
time 

Stop/Start 
time 

Uncertainty 
of travel time Total cost Free Flow 

time 
Slowed down 

time 
Stop/Start 

time 
Uncertainty 

of travel time Total cost 

1 1 1 0 0 3 3 3 3 1 1 1 

1 2 2 0 3 2 1 0 1 0 1 2 

1 3 1 1 3 2 2 3 0 1 0 3 

1 4 2 3 1 3 2 0 1 2 2 3 

1 5 2 1 2 1 1 1 3 0 0 0 

1 6 2 1 1 0 0 3 2 0 3 1 

1 7 3 0 2 1 3 2 2 3 3 2 

1 8 0 3 2 0 1 3 2 1 2 0 

1 9 0 0 3 1 1 3 3 2 2 0 

2 1 1 3 3 1 3 2 2 2 0 2 

2 2 0 0 0 2 2 1 2 2 1 0 

2 3 0 3 3 3 0 1 1 0 0 1 

2 4 1 1 1 3 1 2 2 0 1 0 

2 5 2 3 0 2 3 1 2 3 0 3 

2 6 0 2 1 3 3 3 3 3 0 2 

2 7 3 1 3 0 0 1 0 1 1 2 

2 8 2 1 0 3 3 0 0 2 2 2 

2 9 0 2 1 2 1 3 0 2 3 0 
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Alternative 1 Alternative 2 Alternative 3 

Block Scenarios Free Flow 
time 

Slowed 
down time 

Stop/Start 
time 

Uncertainty 
of travel time Total cost Free Flow 

time 
Slowed 

down time 
Stop/Start 

time 
Uncertainty of 

travel time Total cost Free Flow 
time 

Slowed down 
time 

Stop/Start 
time 

Uncertainty 
of travel time Total cost 

1 1 2 3 3 3 1 3 1 1 0 2 1 0 0 2 3 

1 2 0 2 0 2 1 2 0 2 1 0 3 1 3 3 0 

1 3 2 0 1 3 2 0 1 2 0 1 1 3 3 1 0 

1 4 0 3 1 3 0 3 2 0 1 0 2 1 3 0 1 

1 5 3 2 2 3 2 0 3 3 0 3 1 1 1 2 3 

1 6 2 2 1 0 0 0 0 0 1 2 1 3 2 2 1 

2 1 0 1 0 3 3 2 2 1 2 3 1 3 2 0 2 

2 2 3 1 2 2 0 0 2 3 1 2 1 0 0 3 1 

2 3 3 3 0 0 0 1 1 1 1 1 0 0 3 2 2 

2 4 2 3 0 1 3 3 0 3 2 1 1 2 2 3 2 

2 5 2 0 2 3 3 3 3 1 1 1 1 2 3 0 0 

2 6 2 1 0 2 2 3 0 1 0 3 0 2 2 1 3 
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Alternative 1 Alternative 2 Alternative 3 Alternative 4 

Block Scenarios Free 
Flow 
time 

Slowed 
down 
time 

Stop/Start 
time 

Uncertainty 
of travel 

time 

Total 
cost 

Free 
Flow 
time 

Slowed 
down 
time 

Stop/Start 
time 

Uncert 
of 

travel 
time 

Total 
cost 

Free 
Flow 
time 

Slowed 
down 
time 

Stop/Start 
time 

Uncert 
of 

travel 
time 

Total 
cost 

Free 
Flow 
time 

Slowed 
down 
time 

Stop/Start 
time 

Uncert 
of 

travel 
time 

Total 
cost 

1 1 2 1 0 0 2 0 2 0 0 2 1 0 1 1 1 0 1 2 2 2 

1 2 1 0 0 0 1 2 1 2 2 0 0 2 1 1 2 0 2 1 1 2 

1 3 1 2 2 0 0 2 0 0 1 0 0 2 2 2 2 0 1 1 2 1 

1 4 1 2 2 0 1 0 0 1 2 2 1 2 2 2 2 2 1 0 1 1 

1 5 2 2 2 1 1 1 1 1 0 1 2 2 2 1 2 0 0 0 2 2 

1 6 2 2 0 2 1 1 0 1 0 2 1 0 1 0 2 0 1 2 1 1 

1 7 0 0 0 1 2 1 2 2 2 1 2 1 1 0 2 2 1 1 0 2 

1 8 0 1 1 1 0 1 2 0 2 0 2 0 2 0 1 2 0 2 0 1 

1 9 1 1 0 2 2 2 2 2 1 0 1 1 0 2 2 0 0 1 0 1 

1 10 2 2 1 2 1 0 0 2 0 0 1 1 0 1 0 2 2 1 2 1 

1 11 1 2 1 0 0 2 0 0 1 1 0 1 2 2 0 2 0 0 0 2 

1 12 0 2 0 0 0 2 1 1 2 0 1 0 2 1 1 1 0 2 1 1 

2 1 2 0 1 1 2 2 0 1 1 1 0 2 2 2 0 1 1 0 0 0 

2 2 0 0 1 2 1 2 2 2 0 0 1 1 0 1 2 1 1 0 1 2 

2 3 0 1 1 0 2 2 0 2 1 0 1 2 0 2 0 0 1 1 0 1 

2 4 2 2 1 2 0 1 0 2 1 0 0 1 0 0 1 0 1 0 0 2 

2 5 1 2 2 2 2 1 2 1 1 0 0 1 2 0 0 2 0 0 2 1 

2 6 1 1 0 2 1 0 0 2 1 2 0 0 2 1 2 2 2 1 0 0 

2 7 1 1 2 2 0 0 2 1 1 1 2 0 0 0 0 0 2 1 1 1 

2 8 1 0 1 2 2 2 1 2 1 0 1 0 1 2 2 0 2 0 0 1 

2 9 1 2 0 1 1 0 1 2 0 1 2 0 1 2 0 0 1 0 1 2 

2 10 2 1 1 0 0 1 0 2 2 2 1 0 2 2 1 0 2 0 1 0 

2 11 2 2 0 0 2 0 0 0 2 1 2 2 2 0 0 1 1 1 1 0 

2 12 1 0 2 0 0 0 2 1 1 0 2 1 0 2 2 2 1 0 2 1 
 
 


