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1. Introduction 

Stated choice (SC) data has proven useful in studying many transportation related 
problems over the past two to three decades. For example, SC data has been used to 
examine the demand for a cycle-way networks (e.g., Ortúzar et al., 2000), to examine 
the benefits derived from various calming measures on traffic (e.g., Garrod et al., 
2002)., to study the influences on parking choice (e.g., Shiflan and Bard-Eden, 2001; 
Hensher and King, 2001; van der Waerden et al., 2002) and to establish the Value of 
Travel-Time Savings (VTTS) of commuters and non-commuters (e.g., Hensher, 
2001a,b). Typically, SC experiments present sampled respondents with a number of 
different choice situations, each consisting of a universal but finite set of alternatives 
defined on a number of attribute dimensions. Respondents are then asked to specify 
their preferred alternatives given a specific hypothetical choice context. These responses 
may then be used by transport modelers to estimate models of choice behavior, which 
depending on the type of experiment conducted, may allow for the estimation of the 
direct or cross elasticities (or marginal effects) of the alternatives as well as on the 
marginal rates of substitution respondents are willing to make in trading between two 
attributes (i.e., willingness to pay measures, for example, VTTS). 

Unlike most data, SC data requires that the analyst designs the experiment in advance 
by assigning attribute levels to the attributes that define each of the alternatives which 
respondents are asked to consider. Traditionally, the attribute levels are allocated to 
each of the alternatives according to some generated experimental design, with the most 
common approach being to use a fractional factorial design to generate a series of single 
alternatives which are then allocated to choice situations using randomized, cyclical, 
Bayesian or foldover procedures (see for example, Bunch et al., 1994; Louviere and 
Woodworth, 1983; Huber and Zwerina, 1996; Sandor and Wedel, 2001).   

Whilst historically, researchers have tended to rely on orthogonal experimental designs 
(designs in which the attribute levels between different attributes are uncorrelated, see 
e.g., Louverie et al., 2000) when conducting SC studies, a small but growing number of 
researchers have called into question this practice (e.g., Bliemer and Rose, 2006; 
Carlsson and Martinsson, 2003; Ferrini and Scarpa, 2007; Huber and Zwerina, 1996; 
Kanninen, 2002; Kessels et al., 2006; Sándor and Wedel, 2001, 2002, 2005; Rose and 
Bliemer, 2006). The central argument against the use of orthogonal designs is that the 
properties of orthogonality in SC data are not aligned with the properties of the discrete 
choice models typically estimated on SC data. In linear models, such as linear 
regression, orthogonality is important in that it avoids problems with multicollinearity 
in the estimated model, but more importantly, also results in the elements of the models 
variance-covariance matrix being minimized. It is this second point which is of primary 
importance. By minimizing the elements of the variance-covariance matrix of the 
model, the standard errors of the parameter estimates are also minimized, which in turn 
ensures that the t-ratios of the model are maximized.  

Unfortunately, discrete choice models are not linear models and the variance-covariance 
matrices of the parameters of such models are obtained very differently to the variance-
covariance matrices of linear regression models. McFadden (1974) showed that the 
asymptotic variance-covariance (AVC) matrix of the multinomial logit (MNL) model 
can be derived from the second derivatives of the log-likelihood function of the model. 
The same also holds for more advanced discrete choice models. Given that (i) the log-
likelihood function and second derivatives of discrete choice models are dependent on 
the choice probabilities obtained from choice data, and (ii) that only differences in the 
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utility of the chosen and non-chosen alternatives matter, the orthogonality of a SC 
design says little about the expected AVC matrix of the design.  

Acknowledgement of this fact has resulted in a small but growing stream of research 
into experimental designs generated specifically to minimize the elements of the AVC 
matrices for discrete choice models. Such designs are known as efficient designs (see 
Bliemer and Rose, 2006 for a review of such designs). To date, most research on 
efficient designs have assumed an MNL model form (see Ferrini and Scarpa, 2007 and 
Sándor and Wedel, 2002, 2005 for the sole exceptions). In this paper, we examine the 
generation of efficient SC experimental designs to the nested logit (NL) model form, 
which has become a popular tool in estimating models based on SC data in the 
transportation area (e.g., Bhat and Castelar, 2002; Brownstone and Small, 2005; Cherchi 
and Ortúzar, 2002; Hess and Polak, 2006a,b; Hess et al., 2006; Polydoropoulou and 
Ben-Akiva, 2001; Yao and Takayuki, 2005). Given the wide scale use of the nested 
logit model in SC related transportation studies, understanding how better to generate 
the SC designs for this model is an important issue, particularly given that the AVC 
matrix of the nested logit model is very different to that of an MNL model. 

The NL model is a significant extension to the traditional MNL model. The primary 
motivation to switch from the MNL model to the NL model is the restrictive MNL 
assumption of independent and identically distributed (IID) error terms (and the related 
behavioral assumption - the Independence of Irrelevant Alternatives (IIA) assumption). 
A particularly important behavioral consequence of IID and IIA is that all pairs of 
alternatives are equally similar or dissimilar in terms of their unobserved influences (see 
for example, Ben-Akiva and Lerman, 1985; Louviere et al., 2000; Hensher and Greene, 
2002; Koppelman and Wen, 1998a,b; Hensher et al., 2005). This has implications for 
the treatment of any attributes not observed.  

In practice, it is often the case that different subsets of alternatives will share similar 
unobserved information content, which may translate into correlation between these 
unobserved influences amongst pairs of alternatives (i.e., non-zero and varying 
covariances for pairs of alternatives). Differences in error variance and non-zero 
covariances represent violations of the IID and IIA assumption. By relaxing the IID 
(and IIA) assumption(s) of the MNL model, the NL model overcomes these problems 
by allowing for different treatments of the error (co)variances across subsets of the 
alternatives contained within the model, hence negating the problems often associated 
with the MNL model. 

The main contributions of the paper are two-fold. First, the research presented in this 
paper generalizes the current state-of-the-art of efficient SC designs towards the NL 
model, of which the MNL model is a special case. In Section 4, we show that unlike the 
MNL model, dependence on the choice observations is an issue in NL models, thus 
making the derivations more complex. To overcome this, it is necessary to rely on 
analytical approximations. Secondly, through the use of case studies, we demonstrate 
that the choice of model type (i.e., MNL or NL in this case) and also the nesting 
structure during the design generation process is important for the efficiency of the 
choice data at the time of estimation. 

The remainder of the paper is organized as follows. In Section 2, we derive the NL 
model as necessary background before Section 3 discusses the theory on generating 
efficient experimental designs. In Section 4, we derive the AVC matrix for the NL 
model. Section 5 presents a case study in which we generate and compare SC 
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experimental designs, and also illustrate losses in efficiency if a different model type or 
nesting is used for estimation than the design is generated for.  

 

2. Nested logit model 
Adopting the definitions used in Hensher and Greene (2002)1, the elements in the NL 
model have a tree structure in which the top-level alternatives are referred to as 
branches, and the alternatives residing at the bottom of the tree structure as elemental 
alternatives. An example is shown in Figure 1. Typically, the elemental alternatives 
represent the alternatives individuals are directly faced with in choice situations. The 
branches of the model then define groupings of elemental alternatives that are assumed 
to be more or less similar in terms of having the same error variances in their utility 
functions.  
 

mλ
Branches
(associated scale parameters:      )

Elemental alternatives
(associated scale parameters:       )  

mj J∈

1, ,m M= K

|j mμ
 

 

Figure 1: Two level nested logit tree 
 

Within the NL model, each branch and elemental alternative will have an associated 
scale parameter. Let mλ  denote the scale parameter of branch m, and let |j mμ  denote the 
scale parameter of elemental alternative j within branch m. Let mJ  denote the set of all 
elemental alternatives belonging to branch m. By definition, all scale parameters of the 
elemental alternatives in this set mJ  have the same scale parameter. That is, |j m mμ μ=  
for all mj J∈  for some value ,mμ  while the scale parameters of elemental alternatives 
below different branches need not be the same. If mμ  is the same for each branch, m, 
then the NL model will collapse to an MNL model.  

Each elemental alternative is assumed to have a corresponding utility function. Given 
that an individual has chosen an elemental alternative in branch m, the utility |jt mU  of 
elemental alternative j and individual t consists of an observed utility component |jt mV  
and the unobserved random component | ,jt mε   

 

                                                           
1 We will restrict ourselves to NL models with two levels, being the most common. However, the theory can be extended to include 
more than two levels.  
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| | | , ; 1, , ; 1, , .jt m jt m jt m mU V j J m M t Tε= + ∀ ∈ = =K K  (1) 

 

The observed utility is assumed to be a linear combination of attribute values |jkt mx  (the 
explanatory variables) with associated weights kβ  for each attribute k, 

 

| | |
1

, ; 1, , ; 1, , .
K

jt m j m k jkt m m
k

V x j J m M t Tμ β
=

= ∀ ∈ = =∑ K K  (2) 

If the same parameter appears in multiple elemental alternatives, then the parameter is 
called generic across these alternatives, otherwise it is called alternative-specific.2 Note 
that we have added scale parameter |j mμ  to the observed utility component to account 
for differences in scale parameters. The unobserved random components |jt mε  for all 

mj J∈  and all decision makers, t, are assumed to be independently and identically 
extreme value type I distributed. The probability of choosing elemental alternative j 
given that branch m was chosen can therefore be seen as a simple MNL model, yielding 
the following conditional probability (McFadden, 1974): 

 

|
|

|

exp( )
, ; 1, , ; 1, , .

exp( )
m

jt m
jt m m

it m
i J

V
P j J m M t T

V
∈

= ∀ ∈ = =
∑

K K  (3) 

 

The utility of a branch m is in the literature called an inclusive value (IV) variable. 
Multiplying this IV variable with the IV parameter (that is, the branch scale parameter) 
yields this combined observed utility for branch m (see Ben-Akiva and Lerman, 1985; 
Hensher and Greene, 2002; Carrasco and Ortúzar, 2002): 

 

|log exp( ) , 1, , ; 1, , .
m

m
mt jt m

j Jm

V V m M t Tλ
μ ∈

⎛ ⎞
= ∀ = =⎜ ⎟

⎝ ⎠
∑ K K  (4) 

 

The probability of choosing branch m is given by 

 

1

exp( ) , 1, , ; 1, , .
exp( )

mt
mt M

nt
n

VP m M t T
V

=

= ∀ = =

∑
K K  (5) 

 

                                                           
2 If attribute k does not appear in alternative j in branch m, then |jkt mx  is simply set to 0. 



Efficient stated choice experiments for estimating nested logit models  
Bliemer, Rose & Hensher 

 

5 

Combining equations (3)–(5) yields the unconditional probability that a decision maker, 
t, chooses elemental alternative j:  

 
/

|
|

| /
|

|
1

exp( )
exp( )

, ; 1, , ; 1, , .
exp( )

exp( )

m m

m

n n

m

m

it m
i J jt m

jt mt jt m m
M it m

i Jit n
n i J

V
V

P P P j J m M t T
V

V

λ μ

λ μ
∈

∈

= ∈

⎛ ⎞
⎜ ⎟
⎝ ⎠= = ⋅ ∀ ∈ = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑
∑ ∑

K K (6) 

Unfortunately, the NL model is over-identified and to be able to estimate the parameters 
(including scale parameters), and as commonly done we normalize all scale parameters 
of the lower level, i.e. | 1j m mμ μ= =  for all mj J∈  and all m. For more details on the 
nested logit model, see for example, Ben-Akiva and Lerman (1985) or Hensher et al. 
(2005). The next section will describe how to construct an efficient design for 
estimating the set of parameters. 

 

3. Efficient stated choice experiments 

The literature on generation of efficient designs for stated choice (SC) experiments state 
as their basis, the seminal work by McFadden (1974) and described in detail in Ben-
Akiva and Lerman (1985) and Louviere et al. (2000). Following on from this, the 
majority of work conducted on the generation of efficient SC experiments has relied on 
this model (e.g., Bliemer and Rose, 2005; Carlsson and Martinsson, 2003; Huber and 
Zwerina, 1996; Kanninen, 2002; Kuhfeld et al., 1994; Rose and Bliemer, 2005; Sándor 
and Wedel, 2001). In this section we will design SC experiments allowing for different 
error variances across the alternatives (i.e., for the NL model).  

Stated choice experiments present sampled respondents with a number of different 
choice situations, each consisting of a universal but finite set of alternatives defined on a 
number of attribute dimensions. Respondents are then asked to specify their preferred 
alternatives given a specific hypothetical choice context. SC data requires that the 
analyst designs the experiment in advance by assigning attribute levels to the attributes 
that define each of the alternatives which respondents are asked to consider.  

Orthogonal designs are widely used in SC experiments; however, this class of designs 
may not be statistically ‘efficient’, as they do not take the SC model specification into 
account.3 A significant amount of research effort has recently been devoted to how 
better to assign the attribute levels to alternatives and in turn, the resulting alternatives 
to choice situations. These efforts have concentrated on methods to promote greater 
gains in the statistical efficiency of SC experiments (e.g., Anderson and Wiley, 1992; 
Bunch et al., 1994; Carlsson and Martinsson 2003; Huber and Zwerina, 1996; 
Kanninen, 2002; Laziri and Anderson, 1994; Sándor and Wedel, 2001). Common 
amongst all of these efforts is minimization of the elements of the AVC matrix of the 
models to be fitted to SC data. 

                                                           
3 Originally, orthogonal designs were employed in conjunction with linear regression models, for which they are efficient. However, 
for other model types such as discrete choice models, orthogonal designs are no longer efficient which has been largely 
unrecognized by many researchers.  
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In order to estimate the likely AVC matrix of a SC experiment, the analyst is required to 
assume a set of prior parameter estimates (Huber and Zwerina, 1996; Sándor and 
Wedel, 2001).4 These priors are used to calculate the expected utilities as well as choice 
probabilities of each of the alternatives. From these choice probabilities, it is possible to 
calculate the AVC matrix of the model to be estimated. Through manipulation of the 
design, the analyst is able to minimize the elements within the AVC matrix, which in 
the case of the diagonals means lower standard errors and hence greater reliability in the 
estimates at a fixed sample size.  

Important issues that need to be addressed are how to determine the priors and how to 
determine the best nesting structure. Often, pilot studies with a small number of 
respondents are conducted before generating the final experimental design to be given 
to a large number of respondents. A simple orthogonal design could be used for the pilot 
study and a range of model types and nesting structures can be estimated. This will give 
indications of the most suitable nesting structure and corresponding parameters. These 
parameters can then be used as priors for generating the efficient design.  

Let TΣ  denote the AVC matrix of all parameter estimates using a sample size of T. 
There are K parameters to estimate and there are M scale parameters to estimate for 
each branch, such that the total number of parameters to estimate is .K M+  Hence, TΣ  
is a symmetric matrix of dimension ( ) ( ).K M K M+ × +  In the literature, several 
measures for determining the efficiency of a design have been proposed, such as the D-
error, A-error, etc. (see e.g., Huber and Zwerina, 1996). The A-error aims to minimize 
the average asymptotic variances (of which the roots are the asymptotic standard errors 
of the parameter estimates). This measure is sensitive to the scale of the parameters. The 
D-error does not exhibit this sensitivity and as such has become the mostly widely used 
measure of efficiency. Thus, we adopt this measure for the remainder of the paper.5 The 
D-error is the determinant of this matrix (assuming a single respondent) with a certain 
scaling taking the number of parameters into account: 

 
1/( )

1D-error det( ) .K M+= Σ  (7) 

 

The lower this D-error, the higher the efficiency of the design and therefore the greater 
the asymptotic efficiency of the parameter estimates. Instead of assuming fixed prior 
parameters, one could also assume prior parameter distributions and computed the 
expected D-error over these probability distributions. This will lead to so-called 
Bayesian efficient designs, see e.g., Sándor and Wedel (2005), Bliemer et al. (2006). 
Algorithms to find efficient designs are briefly discussed in Appendix A. 

                                                           
4 One reviewer questioned the use of prior parameter estimates in generating SC experiments and the impact such priors may 
have on final model results. The need for using prior parameters need not be a major concern as one can always choose to use 
zero prior values, which will yield designs with an efficiency equivalent to that of an orthogonal design. However, using information 
on priors, even if one just knows the sign, one can improve on the efficiency of the design. If priors do not exist in the literature, 
they can always be obtained from a small pilot study. Misspecification of priors may decrease the efficiency of the design, but the 
efficiency will in general still be better than assuming zero priors. We would argue that the purpose of research is to recover the 
population parameters, and that any design, even one randomly generated will recover the true population parameters in large 
enough sample sizes. The purpose of efficient designs is to recover these at much smaller sample sizes, and even with 
misspecification of the prior parameters, efficient designs tend to perform much better than other design types (see Bliemer and 
Rose, 2006). 
5 Note that using a different efficiency measure may lead to a different (optimal) efficient design. 
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The (expected) D-error will be used in this paper as a criterion to determine efficient 
designs. The next section will be devoted to the calculation of the AVC matrix.  

 

 

 

4. Deriving the asymptotic variance-covariance matrix 

In this section, we demonstrate that the AVC matrix can be computed using the design 
attribute values and prior parameter values. The following important result, proven by 
McFadden (1974) for the MNL model, will be used to establish the AVC matrix for the 
NL model. Let ( , )β λ  denote the true parameter values of the NL model. Furthermore, 
suppose that ˆ ˆ( , )T Tβ λ  are the maximum likelihood estimators of the model for a sample 

size of T. It then holds that ˆ ˆ( , )T Tβ λ  is asymptotically normal as T →∞  with mean 
( , )β λ  and variance-covariance matrix 1,T T

−Σ = Ω  where TΩ  is the Fisher information 
matrix consisting of the negative expected second derivatives of the log-likelihood 
function. Hence, if ( , )TL β λ  is the log-likelihood function (assuming T respondents), 
then it follows that: 

 
2 ( , ) .

( , ) ( , ) '
T

T
LE β λ

β λ β λ
⎛ ⎞∂

Ω = − ⎜ ⎟∂ ∂⎝ ⎠
 (8) 

 

In a SC design, different combinations of attribute levels are shown to respondents in 
each choice situation. Let S be the total number of choice situations (choice sets) faced 
by each individual respondent t, where  s denotes each specific choice situation, and let 

|jkts mx  be the attribute level related to the kth attribute associated with the jth alternative 
(in branch m) shown to respondent t in choice situation s. As is commonly the case, it is 
assumed that all respondents face the same choice situations (although more 
sophisticated approaches exist and the derivations here can be extended), such that the 
sub-index t can be dropped from the attribute variables and the probabilities. The log-
likelihood function can thus be written as  

 

| |
1 1 1 1 1 1

( , ) log log ,
m m

T S M T S M

T jts js mts jts m js m ms
t s m j J t s m j J

L y P y y P Pβ λ
= = = ∈ = = = ∈

= =∑∑∑∑ ∑∑∑ ∑  (9) 

 

where jtsy  is the vector of outcomes of the SC experiment. This indicator value is equal 
to one if elemental alternative j is chosen in choice situation s by respondent t, and zero 
otherwise. Furthermore, this vector is decomposed such that | ,jts jts m mtsy y y=  where (for 
all respondents t and choice sets s) mtsy  equals one if branch m is ‘chosen’ and zero 
otherwise, and |jts my  equals one if elemental alternative j is chosen given that branch m 
was chosen, and zero otherwise. The second derivatives needed in equation (10) are 
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derived in Appendix B, which after some manipulations finally lead to the following 
equations: 

 

1 2 1 2

1 2 1 2 1 2

2 2

2 2

2

| | | | | | |
1 1

| | | |
1

( , ) ( 1)
mk k mk mk

mk nk

S M
T

ms m ik s m is m ik s m ik s m is m js m jk s m
s m i J i J j Jk k

M

m ms m is m ik s m n ns is n ik s n
i J n i J

LE T P x P x x P P x

P P x P P x

β λ λ
β β

λ λ λ

= = ∈ ∈ ∈

∈ = ∈

⎧ ⎡ ⎤⎛ ⎞⎛ ⎞∂ ⎪− = − − −⎢ ⎥⎜ ⎟⎜ ⎟ ⎨⎜ ⎟ ⎜ ⎟∂ ∂ ⎢ ⎥⎪⎝ ⎠ ⎝ ⎠⎣ ⎦⎩

⎛ ⎞
− −⎜⎜

⎝ ⎠

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ 1

1

1 2 1 2

1 2 1 2

| |
1

| | | | | | |

mk

mk k mk mk

M

ik s m is m
m i J

ik s m is m ik s m ik s m is m js m jk s m
i J i J j J

x P

x P x x P P x

= ∈

∈ ∈ ∈

⎛ ⎡
⎜ ⎢ ⎟⎟⎜ ⎢⎣⎝

⎫⎞⎤ ⎪⎟+ − ⎥ ⎬⎟⎥ ⎪⎦ ⎠⎭

∑ ∑

∑ ∑ ∑

  (10a) 

 

1 1 1 1 2 1 2

1 2 1 1 2 2

2

| | | | |
1 1 1

( , ) log exp
m m k nk

S K M
T

k iks m m s m is m ik s m n ns is n ik s n
s i J k i J n i Jm k

LE T x P P x P P xβ λ β λ λ
λ β = ∈ = ∈ = ∈

⎡ ⎤⎛ ⎞⎛ ⎞∂ ⎛ ⎞
− = −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑ ∑ ∑ ∑ ∑
           (10b) 

( )1 1 1

1

1 2

1 2 1 2

1 2

2

| 1 22 1 1

| |
1 1 1

1 log exp , if  
( , )

log exp log exp , i

m

m m

S K

m s m s k iks m
s i J kT

S K Km m

m s m s k iks m k iks m
s i J k i J k

T P P x m m
LE

T P P x x

β
β λ

λ λ
β β

= ∈ =

= ∈ = ∈ =

⎛ ⎞⎡ ⎤⎛ ⎞⎜ ⎟− =⎢ ⎥⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠⎢ ⎥∂ ⎣ ⎦⎝ ⎠− =⎜ ⎟⎜ ⎟∂ ∂ ⎡ ⎤ ⎡ ⎤⎝ ⎠ ⎛ ⎞ ⎛ ⎞
− ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ 1 2f  m m

⎧
⎪
⎪⎪
⎨
⎪

≠⎪
⎪⎩

  (10c) 

 

It should be pointed out that, unlike in the MNL model, in the NL model the second 
derivatives are not independent of observed choices, y; see Appendix B. However, for 
large T (as we are interested in the asymptotic properties), we can use substitutions of  
probabilities as shown in Appendix A, such that equations (10a,b,c) are independent 
again of y. In case 1mλ =  for all branches m, the Fisher information matrix of the NL 
model in equation (10a) collapse to that of the MNL model as reported in Bliemer and 
Rose (2005), namely 

 

1 2 2

1 2 1 2

2

1

( ) .
k k

S
T

js jk s jk s is ik s
s j J i Jk k

LE T P x x P xβ
β β = ∈ ∈

⎛ ⎞⎛ ⎞∂
− = −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∑ ∑ ∑  (11) 

 

Using equations (12a,b,c), the Fisher information matrix, ,TΩ  can be calculated and 
hence, the AVC matrix, ,TΣ  can be computed as well (for each sample size T).  

The only remaining unknowns are the parameter values. The true parameter values 
( , )β λ  are to be estimated from the model. In constructing efficient designs, it is 
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common to assume prior parameter values ( , )β λ% %  and optimize the design based on 
these priors. Considerable effort should be committed to identifying reasonable prior 
parameter values, as doing so will result in significant pay-offs in terms of requiring 
(much) smaller sample sizes in the actual SC experiment.  

As indicated by equations (10a,b,c), the Fisher information matrix is proportional to the 
sample size T, hence, the AVC matrix will be proportional to 1/ .T  The square roots of 
the diagonals of the AVC matrix represent the asymptotic standard errors of the 
parameter estimates, and hence, these standard errors (se) are proportional to 1/ .T  In 
other words, 1( ) ( ) / ,T k kse se Tβ β=  where ( )T kse β  is the asymptotic standard error of 
parameter kβ  assuming a sample size of T, while 1( )kse β  is the asymptotic standard 
error considering only a single respondent. As such, similar to the MNL model, the NL 
model will exhibit diminishing increases in reliability (as measured by lower asymptotic 
standard errors) as we increase the sample size. 

Interestingly, having the prior parameter values kβ%  and also the asymptotic standard 
errors for each sample size T, one is also able to compute the asymptotic t-values. In 
order to test parameters being statistically significant from zero, or scale parameters 
from one (i.e. testing whether that part of the tree structure is actually an MNL model), 
the following asymptotic t-values can be computed: 

1

,
( ) /

k
T

k

t
se T

β
β

=
%

 and    
1

.
( ) /

m
T

m

t
se T

λ
λ

=
%

 (12) 

 

Re-arranging this term and assuming a certain significance level (e.g., 1.96Tt ≥ ) yields 
the following theoretical minimum sample sizes *

kT  and *
mT  for obtaining a statistically 

significant parameter estimate for parameter kβ  and ,mλ  respectively: 

 
2

* 1( ) ,T k
k

k

t seT β
β

⎛ ⎞
≥ ⎜ ⎟
⎝ ⎠

%

%
 and    

2

* 1( ) .
1

T k
m

k

t seT λ
λ

⎛ ⎞
≥ ⎜ ⎟−⎝ ⎠

%

%
 (13) 

 

These (asymptotic) theoretical minimum sample sizes can be used to assess the 
efficiency of a design for each parameter estimate separately, instead of for all 
parameters combined when using the D-error measure. The minimum sample sizes 
derived from equation (13) hold only under the asymptotic assumption and therefore 
should be interpreted carefully as representing the lower bounds for the sample sizes. In 
practice, it is likely that (much) larger sample sizes are required. However, these 
theoretical sample sizes can give indications about which parameters are likely to be 
difficult to estimate once data is collected using the design. 

It should be stressed that the above derivations of the AVC matrix hold under the 
assumption of independent choice situations. In the case where respondents face 
multiple choice situations, as with SC data, the assumption of independence typically 
does not hold and therefore may bias the derived AVC matrix. Basically all literature on 
generating efficient designs assumes independent choice situations, thereby intrinsically 
assuming independent choice situations. In this paper, we recognize this problem, but 
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do not aim to resolve the issue. The only way to correct for dependent choice situations 
is to switch to a mixed logit model formulation in which the dependency is treated as in 
panel data estimation. To our best knowledge, the only paper dealing with this topic of 
dependent choice situations is Bliemer and Rose (2008). In that paper, they show that it 
is possible in theory to generate designs for the panel version of the mixed logit model, 
but in practice it adds great computational complexity to the design generation process. 
Some preliminary results show, however, that experimental design results for the MNL 
model are much closer to those of the panel mixed logit model than for the cross-
sectional mixed logit model (e.g., considered in Sándor and Wedel, 2002). The MNL 
model being a special case of the NL model, this may suggest that creating designs 
assuming a nested logit form is not far from results obtained for a panel version. A 
compromise would be to generate an efficient design based on the NL model, and then 
assess if the design assuming a panel formulation also has a good efficiency.  

 
5. Case studies 

In this section, we generate a number of experimental designs for several models in 
which we allow for differences in the error variances across subsets of alternatives. In 
Section 5.1 a typical example of a nested logit model in transportation will be 
formulated and will serve as the basis of most of the analyses in the subsequent sections. 
Different (orthogonal and/or efficient) designs will be compared in Section 5.2. 
Potential effects of misspecification of prior parameters (in particular, the scale 
parameters) are discussed in Section 5.3. Also in this section, a Bayesian efficient 
design is analyzed, which is less sensitive to prior parameter misspecification. Section 
5.4 examines the impact of model misspecification, which shows that generating a 
design for an MNL model while the true model is an NL model (or the other way 
around) will lead to a loss in efficiency.  

 
5.1   Model formulation and design dimensions 
The example we use involves an experiment with four elemental alternatives; ‘car on 
toll road’ (cart), ‘car on non-tolled road’ (carnt), ‘bus’, and ‘train’. The observed 
components of these elemental alternatives are represented by 

 
cart cart car cart car cart cart cart

0 1 2 3TT RC TOLL ,s s s sV β β β β= + + +  (14) 

  
carnt car carnt car carnt

1 2TT RC ,s s sV β β= +  (15) 

 
bus bus bus bus bus bus

0 1 2TT FARE ,s s sV β β β= + +  (16) 

 
train train train train train

1 2TT FARE .s s sV β β= +  (17) 

 

where TT represents travel time, RC running costs, TOLL toll costs, and FARE the fare 
costs. The elemental alternatives are nested into two groups: car = {cart, carnt} for car 



Efficient stated choice experiments for estimating nested logit models  
Bliemer, Rose & Hensher 

 

11 

alternatives and pt = {bus, train} for public transport alternatives. The IV variables of 
these nests are given by 

 

( )car car cart carntlog exp( ) exp( ) ,s s sV V Vλ= +  (18) 

 

( )pt pt bus trainlog exp( ) exp( ) .s s sV V Vλ= +  (19) 

 

 

There are in total 11 parameters to be estimated, of which nine at the elemental level (of 
which two generic parameters, car

1β  and car
2 ,β  and seven alternative-specific 

parameters), and two scale parameters. There are nine attributes for which different 
combinations of attribute levels have to be determined in the experimental design. The 
attribute levels and priors to be used in generating the design are listed in Table 1. The 
priors were chosen based on previous study results as well as to preserve realistic 
estimates of VTTS for the car and public transport alternatives. Following common 
practice, we limit the experiments to attribute level balanced designs (although such a 
constraint may result in the generation of a sub-optimal design).  

Table 1:  Prior parameter values and attribute levels for case study 1 
Prior parameter values: 

cart
0β  car

1β  car
2β  cart

3β  bus
0β  bus

1β  bus
2β  train

1β  train
2β  carλ  ptλ  

-0.4 -0.5 -0.9 -1.3 -0.4 -0.4 -1.5 -0.45 -1.6 1 0.6 
 

Attribute levels: 
cartTTs  

(min.) 

cartRCs  
(A$) 

cartTOLLs (
A$) 

carntTTs  
(min.) 

carntRCs  
(A$) 

busTTs  
(min.) 

busFAREs

(A$) 

trainTTs  
(min.) 

trainFAREs

(A$) 
10 1 2 20 2 40 1 30 2 
20 2 3 30 3 50 2 40 3 
30 3 4 40 4 60 3 50 4 

 

5.2 Efficiency of different designs 
As our focus in the case study will be to compare the efficiency of different designs, 
ceteris paribus (given a certain model type and prior parameter values), we keep all 
design dimensions fixed (i.e., the number of alternatives, the number of attributes, the 
number of choice situations, the number of attribute levels, the attribute level range, 
etc.), while only changing the order that the attribute levels appear within the design. 
Later in the paper, we investigate losses of efficiency under prior parameter and model 
type misspecification using the same design dimensions. The number choice situations 
chosen (i.e., 12) was selected such that both attribute level balance and orthogonality 
can be achieved. Whilst we could have chosen different design dimensions, the purpose 
of the paper is not to test the impact of these dimensions on the design efficiency. 
Rather, the aim of the paper is to illustrate the methodology and demonstrate the 
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importance of selecting more efficient SC designs for the particular model type that is 
likely to be estimated, once data has been collected. 

We generate three different (attribute level balanced) designs with 12 choice situations 
assuming the above NL model: an efficient (non-orthogonal) design, and two 
orthogonal designs. Orthogonal designs, in which the attribute levels of different 
attributes are all uncorrelated, are still the mainstream design type to use. For this reason 
we include orthogonal designs in our comparison. As it is common practice when 
undertaking SC studies to only generate a single orthogonal design, and in doing so, not 
test the overall efficiency of the design, it is possible (indeed probable) that researchers 
may obtain sub-optimal designs. The two orthogonal designs we generate consist of the 
most efficient one and the least efficient one, which allows for an examination of the 
likely range of impact upon the reliability of the parameter estimates obtained from 
different orthogonal designs of the same dimensions. 

Table 2 shows the three generated designs. Shown in the table are the attribute level 
combinations for each of the final designs constructed, as well as the D-error values for 
the designs computed from the AVC matrices derived using equations (10a,b,c) (see 
Table 3). In calculating the D-error values, we remove the rows and columns from the 
AVC matrix related to the two alternative-specific constants.6  

To generate the designs, we used Ngene 0.7,7 which evaluates in an intelligent way the 
D-error of a large number of possible designs, and stores the most efficient design (with 
or without the restriction of orthogonality). For the non-orthogonal designs, the 
algorithm employed a simple swapping procedure similar to that discussed in Appendix 
B or Huber and Zwerina (1996) and Sándor and Wedel (2001).  

 

Table 2:  Experimental designs for case study 1 
Efficient design for NL model D-error = 0.1421 

 
s 

cartTTs  
(min.) 

cartRCs  
(A$) 

cartTOLLs

(A$) 

carntTTs  
(min.) 

carntRCs  
(A$) 

busTTs  
(min.) 

busFAREs

(A$) 

trainTTs  
(min.) 

trainFAREs

(A$) 
1 10 1 4 20 4 50 2 40 3 
2 20 1 2 40 3 40 1 30 4 
3 30 2 3 30 2 50 3 50 2 
4 20 1 2 20 4 60 2 40 4 
5 30 2 3 30 2 60 1 50 2 
6 10 3 4 40 3 40 3 30 4 
7 20 1 4 30 4 60 1 50 3 
8 30 2 3 30 4 60 3 50 4 
9 10 3 2 20 2 50 2 30 3 

10 10 3 4 20 2 50 2 40 3 
11 20 2 2 40 3 40 3 40 2 
12 30 3 3 40 3 40 1 30 2 

                                                           
6 These rows and columns are generated from the design, however, they are simply ignored in calculating the D-error measure. 
For many SC studies, it is the attribute parameters (or ratios thereof) which are of prime importance, and not the constants 
(Hensher et al., 2005). As the D-error measure is a global measure of statistical efficiency, minimization of this measure often 
results in trade-offs having to be made between elements of the AVC matrix of designs. Inclusion of constant terms may therefore 
result in lower efficiency levels being achieved (i.e., higher standard errors) for the design attributes which are often considered to 
be of more importance. 
7 Ngene, developed by Econometric Software Inc., is dedicated software for generating experimental designs for stated choice 
studies, and currently has prototype status.   



Efficient stated choice experiments for estimating nested logit models  
Bliemer, Rose & Hensher 

 

13 

Orthogonal design (most efficient) for NL model D-error = 0.2983 
 
s 

cartTTs  
(min.) 

cartRCs  
(A$) 

cartTOLLs

(A$) 

carntTTs  
(min.) 

carntRCs  
(A$) 

busTTs  
(min.) 

busFAREs

(A$) 

trainTTs  
(min.) 

trainFAREs

(A$) 
1 20 3 3 30 2 60 2 50 3 
2 30 1 3 20 4 40 2 50 3 
3 30 1 2 40 3 60 1 40 2 
4 10 2 2 40 4 50 3 30 3 
5 30 3 4 40 3 40 3 40 2 
6 10 3 2 20 3 40 1 40 2 
7 20 1 3 30 2 40 2 30 4 
8 20 2 2 30 2 50 3 50 4 
9 30 3 3 20 4 60 2 30 4 

10 10 2 4 40 4 50 1 50 4 
11 10 1 4 20 3 60 3 40 2 
12 20 2 4 30 2 50 1 30 3 

 
 
Orthogonal design (least efficient) for NL model D-error = 1.0477 

 
s 

cartTTs  
(min.) 

cartRCs  
(A$) 

cartTOLLs

(A$) 

carntTTs  
(min.) 

carntRCs  
(A$) 

busTTs  
(min.) 

busFAREs

(A$) 

trainTTs  
(min.) 

trainFAREs

(A$) 
1 20 3 3 30 4 60 2 30 3 
2 10 1 3 40 2 40 2 30 3 
3 10 1 2 20 3 60 1 40 4 
4 30 2 2 20 2 50 3 50 3 
5 10 3 4 20 3 40 3 40 4 
6 30 3 2 40 3 40 1 40 4 
7 20 1 3 30 4 40 2 50 2 
8 20 2 2 30 4 50 3 30 2 
9 10 3 3 40 2 60 2 50 2 

10 30 2 4 20 2 50 1 30 2 
11 30 1 4 40 3 60 3 40 4 
12 20 2 4 30 4 50 1 50 3 

Table 3:  Asymptotic variance-covariance (AVC) matrices for case study 1 
 

AVC matrix for efficient design 
 cart

0β  car
1β  car

2β  cart
3β  bus

0β  bus
1β  bus

2β  train
1β  train

2β  carλ  ptλ  
cart
0β  9.04 0.10 0.41 -2.27 1.38 -0.10 -0.16 -0.09 -0.03 0.18 -0.16 
car

1β  0.10 0.24 0.36 0.66 -0.03 0.00 -0.02 0.00 -0.02 0.43 -0.04 
car
2β  0.41 0.36 0.84 0.97 0.16 -0.01 -0.01 -0.01 0.03 0.64 -0.10 
cart
3β  -2.27 0.66 0.97 2.61 -0.31 0.03 -0.01 0.02 0.01 1.15 -0.08 
bus
0β  1.38 -0.03 0.16 -0.31 28.47 -0.53 -2.34 -0.13 0.76 0.02 -0.07 
bus

1β  -0.10 0.00 -0.01 0.03 -0.53 0.14 0.48 0.14 0.51 -0.01 0.19 
bus
2β  -0.16 -0.02 -0.01 -0.01 -2.34 0.48 2.39 0.50 1.92 -0.06 0.68 
train

1β  -0.09 0.00 -0.01 0.02 -0.13 0.14 0.50 0.15 0.54 -0.01 0.20 
train
2β  -0.03 -0.02 0.03 0.01 0.76 0.51 1.92 0.54 2.67 -0.01 0.80 
carλ  0.18 0.43 0.64 1.15 0.02 -0.01 -0.06 -0.01 -0.01 1.04 0.10 
ptλ  -0.16 -0.04 -0.10 -0.08 -0.07 0.19 0.68 0.20 0.80 0.10 0.40 
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AVC matrix for orthogonal design (most efficient) 
 cart

0β  car
1β  car

2β  cart
3β  bus

0β  bus
1β  bus

2β  train
1β  train

2β  carλ  ptλ  
cart
0β  14.76 1.45 1.23 0.32 -2.70 0.19 2.35 0.24 0.47 1.57 -0.52 
car

1β  1.45 0.58 0.95 1.49 -0.18 0.02 0.14 0.03 -0.02 0.91 -0.16 
car
2β  1.23 0.95 2.76 3.08 5.86 -0.08 -1.17 -0.04 0.34 1.77 -0.29 
cart
3β  0.32 1.49 3.08 5.15 2.40 -0.02 -0.78 -0.01 -0.08 2.46 -0.49 
bus
0β  -2.70 -0.18 5.86 2.40 102.76 -0.75 -10.4 0.44 9.42 -0.30 0.45 
bus

1β  0.19 0.02 -0.08 -0.02 -0.75 0.18 0.93 0.20 0.61 0.00 0.25 
bus
2β  2.35 0.14 -1.17 -0.78 -10.40 0.93 7.69 1.08 2.43 -0.11 1.27 
train

1β  0.24 0.03 -0.04 -0.01 0.44 0.20 1.08 0.25 0.77 0.01 0.31 
train
2β  0.47 -0.02 0.34 -0.08 9.42 0.61 2.43 0.77 4.28 -0.25 0.98 
carλ  1.57 0.91 1.77 2.46 -0.30 0.00 -0.11 0.01 -0.25 2.13 0.10 
ptλ  -0.52 -0.16 -0.29 -0.49 0.45 0.25 1.27 0.31 0.98 0.10 0.67 

 
 
AVC matrix for orthogonal design (least efficient) 

 cart
0β  car

1β  car
2β  cart

3β  bus
0β  bus

1β  bus
2β  train

1β  train
2β  carλ  ptλ  

cart
0β  224.3 9.09 31.52 -36.1 55.65 -0.28 -4.03 0.75 4.16 17.74 -1.70 
car

1β  9.09 1.48 1.35 1.39 4.02 0.01 -0.59 -0.01 1.20 2.85 0.13 
car
2β  31.52 1.35 7.49 -4.57 4.80 -0.14 1.95 0.13 -0.63 2.95 -0.43 
cart
3β  -36.1 1.39 -4.57 13.51 -2.40 0.10 -0.55 -0.20 2.25 2.61 0.74 
bus
0β  55.65 4.02 4.80 -2.40 422.6 -4.18 -31.4 2.42 25.95 4.26 2.30 
bus

1β  -0.28 0.01 -0.14 0.10 -4.18 0.24 0.67 0.16 0.71 0.06 0.26 
bus
2β  -4.03 -0.59 1.95 -0.55 -31.4 0.67 19.60 0.92 3.29 -0.07 1.71 
train

1β  0.75 -0.01 0.13 -0.20 2.42 0.16 0.92 0.28 0.48 0.01 0.33 
train
2β  4.16 1.20 -0.63 2.25 25.95 0.71 3.29 0.48 15.74 2.13 1.92 
carλ  17.74 2.85 2.95 2.61 4.26 0.06 -0.07 0.01 2.13 5.99 0.52 
ptλ  -1.70 0.13 -0.43 0.74 2.30 0.26 1.71 0.33 1.92 0.52 0.75 

 

As expected, the efficient design (without the orthogonality restriction) produces the 
lowest D-error value (0.1421), while the two orthogonal designs produce higher D-error 
values (0.2983 and 1.0477 for the most and least efficient orthogonal designs, 
respectively), see Table 2. The D-error of the most efficient orthogonal design is 2.1 
times greater than the D-error value of the efficient design, while D-error of the least 
efficient orthogonal design is even 7.4 times that of the efficient design. This suggests 
that on average, the asymptotic standard errors of the parameter estimates using the 
orthogonal designs will be 2.1 1.4≈  to 7.4 2.7≈  times larger than the average 
asymptotic standard errors of the efficient design. This is confirmed by examining the 
AVC matrices of the designs shown in Table 3. Clearly, the efficient design is able to 
provide more reliable parameter estimates than any orthogonal design (given that the 
prior parameter values are correct), which is a conclusion that holds in general.  

Looking at individual parameters, in the efficient design the parameter that is the most 
difficult to estimate (having the highest theoretical minimum sample size to be 
statistically significant in estimation) is cart

3 ,β  needing a minimum sample size of 
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* 5.9T =  (that is, 1.3/ 2.61/5.9 1.96,− ≈ −  see also Table 4). In the most efficient 
orthogonal design parameter bus

2β  is most difficult to estimate, requiring a minimum 

sample size of * 13.1T =  (as 1.5/ 7.69 /13.1 1.96− ≈ − ), and in the least efficient 
orthogonal design this is parameter car

2β  with a minimum sample size of * 35.5T =  (as 

0.9 / 7.49 / 35.5 1.96− ≈ − ). Again, the efficient design is (much) more efficient than 
the orthogonal designs, this time in terms of sample size requirements for individual 
parameter estimates. 
 
5.3 Effect of prior parameter misspecification 
Efficient designs are constructed under the assumption that the prior parameter values 
are the true parameter values, which implies that any misspecification of these priors 
can lead to losses in the efficiency of the design. For each design, the effect of 
misspecifying these priors can be tested by computing the D-errors for that design for 
different values of the priors. As an example, we analyze the effect of misspecifying the 
scale parameter of the public transport branch, ptλ  (which was assumed to be 0.6), on 
the efficiency of the efficient design. In Figure 2 the solid line indicates the D-error for 
the efficient design for different values of pt ,λ  ranging from 0.4 to 0.8. Clearly, the 
efficient design has the lowest D-error in case pt 0.6,λ =  as the efficient design was 
optimized for this parameter value. However, any deviation from this value leads to 
higher D-error (if pt 0.4,λ =  the D-error is four times higher). Hence, the design is 
rather sensitive to misspecification of this scale parameter.  

In order to create a more robust design that is less sensitive to prior parameter 
misspecification, one could consider a Bayesian efficient design, in which the expected 
D-error is minimized over a probability distribution of prior parameter values instead of 
having the minimum D-error for only a single prior parameter value. Table 4 presents a 
Bayesian efficient design in which the scale parameter ptλ  is assumed to be uniformly 
distribution on the range [0.4, 0.8], which has also been generated using Ngene 0.7. 
Generating Bayesian efficient designs is much more computationally intensive than 
generating efficient designs given fixed priors, as the expected D-error can only be 
computed through simulated integration (see Bliemer et al., 2006), using similar 
techniques as in mixed logit models (see e.g., Train, 2003). The D-error for this 
Bayesian efficient design is plotted in Figure 2 (see dashed line) for different values of 
scale parameter pt .λ  Compared to the efficient design, the D-error for this Bayesian 
efficient design is slightly higher in the area around 0.6, but outside this area the D-error 
does not increase as rapidly as the D-error for the efficient design does (e.g., if 

pt 0.4,λ =  the D-error for the Bayesian design is much smaller). This indicates that the 
Bayesian efficient design is indeed more robust to prior parameter misspecification.  
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Table 4:  Bayesian efficient design for NL model (Bayesian D-error = 0.1908) 
 
s 

cartTTs  
(min.) 

cartRCs  
(A$) 

cartTOLLs

(A$) 

carntTTs  
(min.) 

carntRCs  
(A$) 

busTTs  
(min.) 

busFAREs

(A$) 

trainTTs  
(min.) 

trainFAREs

(A$) 
1 10 1 4 20 4 50 3 40 3 
2 10 3 4 20 2 60 2 50 3 
3 20 1 2 20 4 60 2 50 3 
4 20 3 2 30 3 40 3 30 4 
5 10 3 2 40 3 40 2 30 2 
6 10 3 2 20 2 50 2 40 3 
7 20 2 3 40 3 40 1 30 4 
8 30 2 3 40 2 50 3 50 2 
9 30 1 3 30 2 50 3 40 4 

10 20 1 4 30 4 60 1 50 2 
11 30 2 3 30 4 60 1 40 4 
12 30 2 4 40 3 40 1 30 2 
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Figure 2: Effect of misspecifying the scale parameter for public transport  
 

5.4 Effect of model type misspecification 
As this paper deals with differences in the error variances across subsets of alternatives, 
we would like to investigate the implications of creating a design that ignores these 
differences (as in the MNL model) while the true model has these differences (as in the 
NL model), and the other way around. For this purpose, the efficient design in Table 1, 
generated based on the NL model in Section 5.1, is used to compute the D-error 
assuming an MNL model specification. Furthermore, we will generate an efficient 
design for the corresponding MNL model, and use this design to compute the D-error 
assuming the NL model specification.  

The MNL prior parameter values are the same as in the NL model in Section 5.1, except 
that the parameters in each of the branches are multiplied by the scale parameter of that 
branch in order to keep the comparison as consistent as possible. An efficient design for 
the MNL model is presented in Table 5. The D-error of this MNL efficient design is 
0.0717, however, the D-error of this MNL design assuming NL is 0.1697. Recall that 
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the NL efficient design has a D-error of 0.1421, which means that the MNL design is 
not efficient if the actual model is an NL model rather than an MNL model. Reversely, 
the D-error of the NL efficient design (see Table 1) assuming MNL is 0.0756, which is 
slightly higher than the D-error for the MNL efficient design. Hence, in this example the 
NL design is efficient for the NL model and looses only a little of bit efficiency when 
applied to an MNL model, but the MNL design looses almost 20 percent efficiency 
when applied to an NL model. These results are summarized in Table 6 (under model 
M1), and demonstrate the importance of designing an experiment specifically for the 
model to be estimated.  

Table 5:  Efficient design for MNL model (D-error = 0.0717) 
 
s 

cartTTs  
(min.) 

cartRCs  
(A$) 

cartTOLLs

(A$) 

carntTTs  
(min.) 

carntRCs  
(A$) 

busTTs  
(min.) 

busFAREs

(A$) 

trainTTs  
(min.) 

trainFAREs

(A$) 
1 30 2 3 40 3 40 1 30 3 
2 20 2 4 30 2 60 1 50 2 
3 10 3 4 40 3 40 3 40 3 
4 20 1 2 20 4 50 3 50 2 
5 30 1 2 30 2 60 3 50 4 
6 10 1 4 20 4 50 2 30 4 
7 10 3 2 40 4 40 1 40 3 
8 10 3 2 40 3 50 2 30 3 
9 20 1 4 30 3 60 1 50 2 

10 30 2 3 20 2 50 2 30 4 
11 30 2 3 20 4 40 3 40 2 
12 20 3 3 30 2 60 2 40 4 

Table 6:  D-errors of efficient designs under different model (mis)specifications 
   Assumed model for estimation 
   MNL NL 

MNL     0.0717     0.1697 (+19%) 
M1 Assumed model for design 

NL     0.0756 (+5%)     0.1421 

MNL     0.0543     0.2702 (+32%) 
M2 Assumed model for design 

NL     0.0622 (+15%)     0.2045 

MNL     0.1476     0.3109 (+5%) 
M3 Assumed model for design 

NL     0.1550 (+5%)     0.2966 

 

The effect of model misspecification is very case specific. In Table 6 two other models 
have been used to compare MNL and NL models and designs.8 In model M2 two 
branches are considered with two alternatives each. Each alternative has two attributes 
and within each branch all parameters are generic, leading to four parameters in total 
(excluding two scale parameters). Efficient designs are generated with 12 choice 
situations. In Model M3 there are three branches of which the first branch is a 
degenerate branch with a single alternative, and the other two branches have two 

                                                           
8 In order to reduce the length of the paper, the complete model specification and the generated designs will not be presented in 
this paper, however, they can be found on http://www.itls.usyd.edu.au/about_itls/ staff/johnr.asp. 
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alternatives each. Again, each alternative has two attributes and now all parameters in 
the model are alternative-specific, leading to 12 parameters in total (excluding three 
scale parameters, of which the first one is fixed to one as it is a degenerate branch). 
Again, efficient designs are generated, this time with 16 choice situations. As can be 
observed from Table 6, M2 is rather sensitive to misspecification of the model. If a 
design assuming an MNL model is generated while the actual model is an NL model, 
then more than 30 percent of efficiency is lost over generating a design for the NL 
model. M3 is much less sensitive to misspecification, where only five percent efficiency 
is lost by choosing the wrong model to generate the design for. It is clear that model 
misspecification can lead to (smaller or larger) efficiency losses.  

 

5.5 Effect of nesting misspecification 
Similar to misspecification of priors and model type, any misspecification in the nesting 
may lead to loss in efficiency of the design. To illustrate, we use a case study based on a 
data set collected using a SC experiment for studying mode choice in Australia. This 
data set and the SC experiment is described in detail in Hensher et al. (2005). The 
alternatives consist of car on toll road, car on non-toll road, bus, train, busway, and light 
rail. Attributes for the car include fuel (with levels A$1, A$2, and A$3 for car on tolled 
road, and A$3, A4, and A$5 for car on non-tolled road), toll (A$1, A$1.5, and A$2), 
and travel time (10, 12, and 15 minutes for car on tolled road and 15, 20, and 25 minutes 
for car on non-tolled road), while for the public transport models they include fare (A$1, 
A$3, and A$5), travel time (10, 15, and 20 minutes), and frequency (every 5, 15, or 25 
minutes). The underlying experimental design used in the study is an orthogonal design 
with 81 choice situations, blocked in sets of three.  

Different nesting structures have been used to estimate different NL models. The 
parameter estimates for each NL model are presented in Table 7 (MNL results have 
been added as well), where each nest is indicated by a different shade of gray, and the 
corresponding estimated scale parameters are indicated at the bottom of the table. In 
order to allow for different nesting structures, each parameter has been treated as 
alternative-specific. According to the adjusted rho-squared, NL model 5 seems to fit the 
data best. This conforms with the earlier observation that the most appropriate nesting 
structure is not always obvious and need not follow an underlying decision tree. In 
particular, NL model 5 does not put the tolled and non-tolled car alternatives in the 
same branch, as some may expect.  
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Table 7:  Parameter estimates for different nesting structures in Sydney mode choice study 
 Estimated models 
parameters MNL NL1 NL2 NL3 NL4 NL5 
CT_CON 
CT_FUEL 
CT_TOLL 
CT_TIME 

-1.043 
-0.103 
-0.176 
-0.014 

-1.340 
-0.107 
-0.227 
-0.013 

-1.042 
-0.095 
-0.268 
-0.009 

-1.335 
-0.100 
-0.234 
-0.011 

-1.325 
-0.102 
-0.236 
-0.012 

-- 
-0.138 
-0.201 
-0.034 

CN_CON 
CN_FUEL 
CN_TIME 

-0.067 
-0.101 
-0.035 

-- 
-0.140 
-0.049 

-- 
-0.107 
-0.045 

-- 
-0.149 
-0.048 

-- 
-0.146 
-0.048 

 0.413 
-0.105 
-0.037 

BU_CON 
BU_FARE 
BU_TIME 
BU_FREQ 

-0.102 
-0.169 
-0.009 
-0.044 

-0.101 
-0.249 
-0.023 
-0.062 

 0.153 
-0.315 
-0.029 
-0.063 

-0.170 
-0.250 
-0.010 
-0.050 

-0.119 
-0.221 
-0.014 
-0.052 

 0.507 
-0.187 
-0.014 
-0.048 

TR_CON 
TR_FARE 
TR_TIME 
TR_FREQ 

 0.706 
-0.208 
-0.080 
-0.023 

-- 
-0.266 
-0.071 
-0.023 

 0.662 
-0.358 
-0.093 
-0.033 

 0.906 
-0.277 
-0.100 
-0.029 

 0.732 
-0.275 
-0.093 
-0.027 

 1.140 
-0.206 
-0.081 
-0.022 

BW_CON 
BW_FARE 
BW_TIME 
BW_FREQ 

 0.403 
-0.264 
-0.056 
-0.007 

0.396 
-0.311 
-0.065 
-0.010 

-0.002 
-0.352 
-0.057 
-0.017 

-- 
-0.287 
-0.047 
-0.004 

-- 
-0.318 
-0.052 
-0.004 

 0.862 
-0.279 
-0.054 
-0.008 

LR_CON 
LR_FARE 
LR_TIME 
LR_FREQ 

-- 
-0.252 
-0.037 
-0.006 

-- 
-0.300 
-0.045 
-0.012 

-- 
-0.384 
-0.057 
-0.020 

-- 
-0.325 
-0.050 
-0.008 

-- 
-0.251 
-0.036 
-0.006 

-- 
-0.242 
-0.016 
-0.002 

SCALE1     1.000 * 0.638 0.365 0.617 0.600     1.000 * 
SCALE2 -- 0.623 0.259 0.815 0.707 0.676 
SCALE3 -- 0.773 -- 0.749     1.000 * -- 
Adj. ρ2 0.246 0.246 0.215 0.246 0.266 0.286 
* Fixed, not estimated. 
 

Suppose that we would now like to create an efficient design for a similar mode choice 
study in which NL model 5 is taken as the appropriate model to be estimated. Then the 
parameter estimates of NL model 5 can be used as prior parameter values and an 
efficient design can be determined as outlined in this paper. Now suppose that the 
efficient design was not based on NL model 5, but on one of the other models with a 
different nesting structure. How much efficiency would be lost when such a design 
would be used to estimate NL model 5? 

To answer this question, we have generated an efficient design for each of the six 
models (one MNL model and five NL models), and used each of these efficient designs 
to compute the asymptotic standard errors assuming that the parameters in NL model 5 
represent the ‘true’ parameters. The results are presented in Figure 3, in which the 
increases in standard errors, compared to using an efficient design for NL model 5, are 
shown in percentages. The efficient design for NL model 5 is represented as the dashed 
zero percent line. Each line corresponds to a different design being used (i.e., being 
efficient for different nesting structures). The travel time parameter for the tolled car 
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alternative and the scale parameter for branch 2 tend to produce significantly higher 
standard errors (an increase of 23 percent to 35 percent and 25 percent to 43 percent 
respectively). Hence, if the model to be estimated is NL model 5, then using an efficient 
design based on another nesting will likely result in a significant loss of efficiency. In 
this case, the scale parameter in particular will become harder to estimate at a given 
sample size. Ignoring the efficient design for NL model 5, the efficient design for the 
MNL model looses the least efficiency when estimating NL model 5, and for some 
parameters the asymptotic standard errors even marginally improve. However, this 
design is still much less efficient than the design optimized for NL model 5.  
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Figure 3: Increases in standard errors for estimating model NL5 when using designs 

 optimized for other models  

 

In addition, we have also analyzed the asymptotic standard errors in case the efficient 
design for NL model 5 was used to estimate the other models, and compared the results 
to the asymptotic standard errors corresponding to the optimized designs. The design 
optimized for NL model 5 becomes much less efficient (e.g., the standard error for the 
travel time parameter for the tolled car alternative increases 45 to 75 percent) when it is 
used to estimate a model with a different nesting structure. An interesting direction for 
further research would be to try to optimize a design over a range of nesting structures 
(or even model types), which has some similarities with Bayesian efficient designs that 
optimize a design over a range of prior values. 
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6. Discussion and conclusions 

Violations of the IID assumption underlying the MNL model have led many to more 
advanced econometric models. In particular, the NL model has proven popular amongst 
transport researchers. The NL model is particularly appealing as it provides a closed 
form solution (unlike probit or random parameter logit models for example), whilst also 
allowing for a significant relaxation of the IID assumption. It is therefore likely that the 
NL model will remain a popular choice of model well into the future.  

Commonly associated with the use of the NL model, is SC data. Whilst many advances 
have been made in the econometric modeling of such data, the generation of SC 
experimental designs appears to have largely lagged behind. Even to this day, the most 
common type of design used in transportation research appears to be orthogonal designs 
which have been heavily promoted for several decades. The most recent advances in the 
design of SC experiments, efficient SC experiments, appear to be limited largely to the 
generation of designs assuming the estimation of an MNL model.  

Efficient SC designs have largely been limited to unlabeled experimental applications. 
This has had particular implications for designing efficient SC experiments for NL 
models. As Bliemer and Rose (2005) and Rose and Bliemer (2005) showed, however, 
by taking the second derivatives of the log-likelihood function, it is possible to correctly 
derive the AVC matrix for the MNL model allowing for alternative-specific parameter 
estimates.  

In this paper, we extend the work of Bliemer and Rose by deriving the AVC matrix for 
the NL model and show that it is possible to generate efficient SC designs allowing for 
differences in the error components across subsets of alternatives. Through use of a 
numerical example, we demonstrate that orthogonal designs may not be very efficient, 
hence generating an efficient design given a certain model specification is clearly 
preferred. Furthermore, failure to allow for violations of the IID assumption in 
generating efficient SC experiments may result in the generation of sub-optimal designs. 
In particular, we show that assuming an MNL model form when in fact an NL model 
form is correct, may lead to losses in efficiency in the design, leading to larger standard 
errors for the parameter estimates and larger sample size requirements for a given 
design. Results from the three model exercises may suggest that one is perhaps be better 
off by determining a design for the NL model instead of the MNL model, as the losses 
in efficiency are smaller when it comes to model misspecification. However, this result 
may not hold in general, and needs to be investigated in more depth. We further show 
that not only model misspecification leads to efficiency losses, also misspecifications of 
priors can have large impacts. By generating a Bayesian efficient design, these impacts 
are largely reduced, as shown in the case study.  

In this paper, we also show for that orthogonality as a design property may also result in 
the generation of sub-optimal designs, both in terms of the overall efficiency of the 
design, as well as in terms of theoretical sample size requirements. Our findings here 
continue a trend within the literature which suggests a move away from orthogonal 
designs for SC studies, towards designs which relate to the econometric models being 
fitted to such data. 

An area of further research would be to test different assumptions on the model 
specification (model type and model parameters) and create different SC experiments 
for a real SC study and compare the estimation outcomes. Furthermore, generating 
designs for a range of model types and nesting structures seems another interesting 
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direction of research, which would increase the robustness of the design under model 
and nesting misspecification. 
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Appendix A:  Algorithms for constructing efficient experimental designs 
In order to locate the most efficient design, one could first determine the full factorial 
design and next evaluate each different combination of S choice situations taken from 
this full factorial. The combination with the lowest efficiency error is the optimal 
design. However, this procedure is often not practical as a result of the extremely high 
number of possible design combinations that may need to be evaluated. For the example 
case study problem, the full factorial has a total of 93 19,683=  choice situations. 
Selecting a subset of 12 choice situations from the full factorial yields 513.37 10×  
possible different designs, all of which require evaluation. In practical terms, it may be 
impossible to evaluate all these designs, hence analysts often turn to smart algorithms to 
search a subset of the total possible number of designs to locate as efficient a design as 
possible. 

Generally, the algorithms used are described as either row based or column based 
algorithms. In a row based algorithm choice situations are selected from a predefined 
canditure set of choice situations (either a full factorial or a fractional factorial) in each 
iteration. Column based algorithms create a design by selecting attribute levels over all 
choice situations for each attribute. Row based algorithms can easily remove bad choice 
situations from the canditure set at the beginning (e.g., by removing designs which don’t 
match a particular analyst defined constraint), however in such designs it is often 
difficult to maintain attribute level balance (i.e., where each attribute level appears an 
equal number of times within each column). Column based algorithms generally have 
no difficulty in maintaining attribute level balance, and in general offer more flexibility 
and can deal with larger designs. Nevertheless, when the analyst wishes to impose some 
form of constraint upon the design, row based algorithms may be more suitable. 

Historically, a row based algorithm known as the Modified Federov algorithm (Cook 
and Nachtsheim, 1980) was used. In this algorithm, first a candidature set is determined 
(either the full factorial (for small problems), or a fractional factorial (for larger 
problems)) and then, a design is created by selecting choice situations from the 
candidature set at random. Once located, the efficiency error (e.g., D-error) of the design 
is computed. A new design is generated from the canditure set, and the efficiency 
measure computed for this new design. Designs with better efficiency measures are 
stored, and the process repeated a number of times until all possible designs are 
searched or the process is terminated by either the analyst or some form of stopping 
criteria.  

RSC (Relabeling, Swapping & Cycling) algorithms (Huber and Zwerina, 1996; Sándor 
and Wedel, 2001) are also used within the literature and are both row and column based 
algorithms. In each iteration, different columns for each attribute are created, which 
together form a design. This design is evaluated and if it has a lower efficiency error 
than the current best design, then it is stored. The columns are not created randomly, but 
– as the name suggests – are generated in a structured way using relabeling, swapping, 
and cycling techniques. With relabeling, two or more attribute levels within a column 
are exchanged with one another. For example, if the attribute levels 1 and 3 are 
relabeled, then a column containing the levels (1,2,1,3,2,3) will become (3,2,3,1,2,1). 
Swapping involves two or more attribute levels switching place. For example, if the 
attribute levels in the first and fourth choice situation are swapped, then (1,2,1,3,2,3) 
would become (3,2,1,1,2,3). Cycling is row based, replacing all attribute levels in each 
choice situation at the same time by replacing the first attribute level with the second 
level, the second level with the third, etc. Typically, the algorithm is set up to first 
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relabel for a number of iterations, before moving onto swapping and finally cycling. In 
some cases, only subsets of the RSC algorithm are used (e.g., RS or RC). 

If an efficient orthogonal design is required, as generated in the case study, it is possible 
to construct a single orthogonal design, and from this design relabel the attribute levels 
(as described above in the RSC algorithm) within each column to create a number of 
different orthogonal designs based on the initial design. Even though all these designs 
will be orthogonal, their efficiencies (e.g., according to the D-error) may be different. 
The orthogonal design with the lowest efficiency we can find we call an efficient 
orthogonal design.  
If multiple initial orthogonal designs can be generated (i.e., different fractional factorials 
taken from the full factorial), relabeling of each new initial design can also take place. 
Note that finding an orthogonal design is not always an easy task, and one may not be 
able to find an orthogonal design for given design dimensions. 

Rose and Bliemer (2007) provide a more detailed description of the construction of 
different types of stated choice experiments. 
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Appendix B:  Deriving the AVC matrix 
The determination of the statistical efficiency of a SC design requires the calculation of 
the expected AVC matrix of that design using equation (8), which requires taking the 
second derivative of the log-likelihood function in equation (9) that can be written as 
(substituting equations (2) and (6)): 
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Furthermore, we made the normalization assumption that 1mμ =  for all ,mj J∈  for all 
m. Given all respondents, t, make decisions from amongst each of the alternatives, j, it 
holds that | 1

m
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Taking all second derivatives for all (and each combination of) parameters yields the 
following series of equations: 
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In these equations, considering all elemental alternatives in branch m, mkJ  denotes the 
subset of elemental alternatives in which attribute k appears, and 

1 2mk kJ  denotes the 
subset of elemental alternatives in which both attributes 1k  and 2k  appear. Unlike the 
second derivatives in the case of the MNL model, equations (A3a) and (A3b) depend on 
the model outcomes ,mtsy  that is, which branch was chosen in each choice situation (see 
Bliemer and Rose, 2005 and Rose and Bliemer, 2005). As we are interested in the Fisher 
information matrix when ,T →∞  we observe that 

1
( ) ,T

mts mst
E y TP

=
=∑  such that we 

will use msP  to represent mtsy  in the Fisher information matrix. The validity of this 
reformulation is illustrated later in this appendix. 

Following from this substitution of msP  for mtsy , the sub-index t is no longer present 
within the equations, such that the summation over the respondents is simply the 
multiplicand of the value by T. The Fisher information matrix, now independent of y, 
thus simplifies to the equations (10a,b,c).  

In order to check that the analytical computation of the Fisher information matrix 
(independent of the observed choices, y) using equations (10a,b,c) is correct, we 
compare the outcomes using a simulated approach by creating simulated choices for a 
(large) sample of respondents and then estimate the model parameters on this data (see 
e.g., Ferrini and Scarpa, in press; Kessels et al., 2006) and take the inverse of the 
variance-covariance matrix.  

We have simulated the observed choices for a sample of 10,000 respondents given the 
efficient SC design shown in Table 2. Based on this simulated sample, we estimate a 
nested logit model using Nlogit 4.0 and obtain the Fisher information matrix and 
estimated parameter estimates from the simulated sample.9 The Fisher information 
matrix from this exercise is given in Table A (normalized to T=1). Using the parameters 
obtained in estimation, we next calculate the Fisher information matrix for the design 
using equations (10a,b,c) which we present also in Table A (assuming T=1). Note that 
                                                           
9 The simulated data and Nlogit syntax can be found at http://www.itls.usyd.edu.au/about_itls /staff/johnr.asp. 
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the two are virtually equivalent. It is interesting to note that similar results are already 
obtained for sample sizes as low as 100 respondents.  



Efficient stated choice experiments for estimating nested logit models 
Bliemer, Rose & Hensher 
 

30 

Table A:  Simulated and Analytically derived Fisher Information Matrices  

Simulated Fisher information matrix (from Nlogit 4.0) 

 cart
0β  car

1β  car
2β  cart

3β  bus
0β  bus

1β  bus
2β  train

1β  train
2β  carλ  ptλ  

cart
0β  1.66 14.82 1.74 5.17 -0.30 -15.88 -0.48 -14.24 -1.36 -10.84 17.50 
car

1β  14.82 1035.71 102.78 47.82 -12.66 -707.24 -24.25 -556.18 -40.85 -447.30 707.83 
car
2β  1.74 102.78 16.77 5.83 -1.14 -62.38 -2.50 -70.79 -6.13 -48.85 78.45 
cart
3β  5.17 47.82 5.83 17.75 -1.08 -58.84 -1.65 -42.74 -4.12 -36.07 57.91 
bus
0β  -0.30 -12.66 -1.14 -1.08 1.65 82.11 3.44 -54.98 -3.61 5.89 -9.17 
bus

1β  -15.88 -707.24 -62.38 -58.84 82.11 4233.35 168.06 -2765.29 -176.17 326.91 -510.24 
bus
2β  -0.48 -24.25 -2.50 -1.65 3.44 168.06 8.79 -119.44 -7.95 11.12 -17.16 
train

1β  -14.24 -556.18 -70.79 -42.74 -54.98 -2765.29 -119.44 3082.59 201.01 264.95 -433.25 
train
2β  -1.36 -40.85 -6.13 -4.12 -3.61 -176.17 -7.95 201.01 15.62 20.87 -34.52 
carλ  -10.84 -447.30 -48.85 -36.07 5.89 326.91 11.12 264.95 20.87 210.80 -334.61 
ptλ  17.50 707.83 78.45 57.91 -9.17 -510.24 -17.16 -433.25 -34.52 -334.61 535.40 

 
Analytically derived Fisher information matrix (from equations (10a,b,c)) 

 cart
0β  car

1β  car
2β  cart

3β  bus
0β  bus

1β  bus
2β  train

1β  train
2β  carλ  ptλ  

cart
0β  1.66 14.83 1.74 5.17 -0.30 -15.94 -0.48 -14.21 -1.36 -10.84 17.51 
car

1β  14.83 1035.88 102.77 47.86 -12.69 -709.28 -24.33 -554.67 -40.76 -447.38 707.98 
car
2β  1.74 102.77 16.77 5.84 -1.14 -62.55 -2.51 -70.66 -6.12 -48.88 78.46 
cart
3β  5.17 47.86 5.84 17.75 -1.08 -59.03 -1.66 -42.62 -4.12 -36.08 57.94 
bus
0β  -0.30 -12.69 -1.14 -1.08 1.65 82.36 3.45 -55.15 -3.62 5.91 -9.20 
bus

1β  -15.94 -709.28 -62.55 -59.03 82.36 4245.61 168.58 -2773.45 -176.66 327.87 -511.53 
bus
2β  -0.48 -24.33 -2.51 -1.66 3.45 168.58 8.81 -119.80 -7.97 11.16 -17.23 
train

1β  -14.21 -554.67 -70.66 -42.62 -55.15 -2773.45 -119.80 3087.93 201.33 264.26 -432.28 
train
2β  -1.36 -40.76 -6.12 -4.12 -3.62 -176.66 -7.97 201.33 15.64 20.83 -34.46 
carλ  -10.84 -447.38 -48.88 -36.08 5.91 327.87 11.16 264.26 20.83 210.85 -334.69 
ptλ  17.51 707.98 78.46 57.94 -9.20 -511.53 -17.23 -432.28 -34.46 -334.69 535.52 

 




