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1. Introduction

Stated choice (SC) data has proven useful in studying many transportation related
problems over the past two to three decades. For example, SC data has been used to
examine the demand for a cycle-way networks (e.g., Ortdzar et al., 2000), to examine
the benefits derived from various calming measures on traffic (e.g., Garrod et al,
2002)., to study the influences on parking choice (e.g., Shiflan and Bard-Eden, 2001;
Hensher and King, 2001; van der Waerden et al., 2002) and to establish the Value of
Travel-Time Savings (VTTS) of commuters and non-commuters (e.g., Hensher,
2001a,b). Typically, SC experiments present sampled respondents with a number of
different choice situations, each consisting of a universal but finite set of alternatives
defined on a number of attribute dimensions. Respondents are then asked to specify
their preferred alternatives given a specific hypothetical choice context. These responses
may then be used by transport modelers to estimate models of choice behavior, which
depending on the type of experiment conducted, may allow for the estimation of the
direct or cross elasticities (or marginal effects) of the alternatives as well as on the
marginal rates of substitution respondents are willing to make in trading between two
attributes (i.e., willingness to pay measures, for example, VTTS).

Unlike most data, SC data requires that the analyst designs the experiment in advance
by assigning attribute levels to the attributes that define each of the alternatives which
respondents are asked to consider. Traditionally, the attribute levels are allocated to
each of the alternatives according to some generated experimental design, with the most
common approach being to use a fractional factorial design to generate a series of single
alternatives which are then allocated to choice situations using randomized, cyclical,
Bayesian or foldover procedures (see for example, Bunch et al, 1994; Louviere and
Woodworth, 1983; Huber and Zwerina, 1996; Sandor and Wedel, 2001).

Whilst historically, researchers have tended to rely on orthogonal experimental designs
(designs in which the attribute levels between different attributes are uncorrelated, see
e.g., Louverie et al., 2000) when conducting SC studies, a small but growing number of
researchers have called into question this practice (e.g., Bliemer and Rose, 2006;
Carlsson and Martinsson, 2003; Ferrini and Scarpa, 2007; Huber and Zwerina, 1996;
Kanninen, 2002; Kessels et al., 2006; Sandor and Wedel, 2001, 2002, 2005; Rose and
Bliemer, 2006). The central argument against the use of orthogonal designs is that the
properties of orthogonality in SC data are not aligned with the properties of the discrete
choice models typically estimated on SC data. In linear models, such as linear
regression, orthogonality is important in that it avoids problems with multicollinearity
in the estimated model, but more importantly, also results in the elements of the models
variance-covariance matrix being minimized. It is this second point which is of primary
importance. By minimizing the elements of the variance-covariance matrix of the
model, the standard errors of the parameter estimates are also minimized, which in turn
ensures that the ¢-ratios of the model are maximized.

Unfortunately, discrete choice models are not linear models and the variance-covariance
matrices of the parameters of such models are obtained very differently to the variance-
covariance matrices of linear regression models. McFadden (1974) showed that the
asymptotic variance-covariance (AVC) matrix of the multinomial logit (MNL) model
can be derived from the second derivatives of the log-likelihood function of the model.
The same also holds for more advanced discrete choice models. Given that (i) the log-
likelihood function and second derivatives of discrete choice models are dependent on
the choice probabilities obtained from choice data, and (ii) that only differences in the
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utility of the chosen and non-chosen alternatives matter, the orthogonality of a SC
design says little about the expected AVC matrix of the design.

Acknowledgement of this fact has resulted in a small but growing stream of research
into experimental designs generated specifically to minimize the elements of the AVC
matrices for discrete choice models. Such designs are known as efficient designs (see
Bliemer and Rose, 2006 for a review of such designs). To date, most research on
efficient designs have assumed an MNL model form (see Ferrini and Scarpa, 2007 and
Sandor and Wedel, 2002, 2005 for the sole exceptions). In this paper, we examine the
generation of efficient SC experimental designs to the nested logit (NL) model form,
which has become a popular tool in estimating models based on SC data in the
transportation area (e.g., Bhat and Castelar, 2002; Brownstone and Small, 2005; Cherchi
and Ortazar, 2002; Hess and Polak, 2006a,b; Hess et al., 2006; Polydoropoulou and
Ben-Akiva, 2001; Yao and Takayuki, 2005). Given the wide scale use of the nested
logit model in SC related transportation studies, understanding how better to generate
the SC designs for this model is an important issue, particularly given that the AVC
matrix of the nested logit model is very different to that of an MNL model.

The NL model is a significant extension to the traditional MNL model. The primary
motivation to switch from the MNL model to the NL model is the restrictive MNL
assumption of independent and identically distributed (11D) error terms (and the related
behavioral assumption - the Independence of Irrelevant Alternatives (I1A) assumption).
A particularly important behavioral consequence of 11D and IIA is that all pairs of
alternatives are equally similar or dissimilar in terms of their unobserved influences (see
for example, Ben-Akiva and Lerman, 1985; Louviere et al., 2000; Hensher and Greene,
2002; Koppelman and Wen, 1998a,b; Hensher et al., 2005). This has implications for
the treatment of any attributes not observed.

In practice, it is often the case that different subsets of alternatives will share similar
unobserved information content, which may translate into correlation between these
unobserved influences amongst pairs of alternatives (i.e., non-zero and varying
covariances for pairs of alternatives). Differences in error variance and non-zero
covariances represent violations of the 11D and IIA assumption. By relaxing the 11D
(and I1A) assumption(s) of the MNL model, the NL model overcomes these problems
by allowing for different treatments of the error (co)variances across subsets of the
alternatives contained within the model, hence negating the problems often associated
with the MNL model.

The main contributions of the paper are two-fold. First, the research presented in this
paper generalizes the current state-of-the-art of efficient SC designs towards the NL
model, of which the MNL model is a special case. In Section 4, we show that unlike the
MNL model, dependence on the choice observations is an issue in NL models, thus
making the derivations more complex. To overcome this, it is necessary to rely on
analytical approximations. Secondly, through the use of case studies, we demonstrate
that the choice of model type (i.e., MNL or NL in this case) and also the nesting
structure during the design generation process is important for the efficiency of the
choice data at the time of estimation.

The remainder of the paper is organized as follows. In Section 2, we derive the NL
model as necessary background before Section 3 discusses the theory on generating
efficient experimental designs. In Section 4, we derive the AVC matrix for the NL
model. Section 5 presents a case study in which we generate and compare SC
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experimental designs, and also illustrate losses in efficiency if a different model type or
nesting is used for estimation than the design is generated for.

2. Nested logit model

Adopting the definitions used in Hensher and Greene (2002)*, the elements in the NL
model have a tree structure in which the top-level alternatives are referred to as
branches, and the alternatives residing at the bottom of the tree structure as elemental
alternatives. An example is shown in Figure 1. Typically, the elemental alternatives
represent the alternatives individuals are directly faced with in choice situations. The
branches of the model then define groupings of elemental alternatives that are assumed
to be more or less similar in terms of having the same error variances in their utility
functions.

Branches m=1,...,.M
(associated scale parameters: 4, )

Elemental alternatives jeJ,
(associated scale parameters: ;,,,)

Figure 1: Two level nested logit tree

Within the NL model, each branch and elemental alternative will have an associated
scale parameter. Let 2, denote the scale parameter of branch m, and let x,, denote the
scale parameter of elemental alternative j within branch m. Let J, denote the set of all
elemental alternatives belonging to branch m. By definition, all scale parameters of the
elemental alternatives in this set J, have the same scale parameter. That is, u;, = 4,
for all jeJ, for some value g, , while the scale parameters of elemental alternatives
below different branches need not be the same. If z, is the same for each branch, m,
then the NL model will collapse to an MNL model.

Each elemental alternative is assumed to have a corresponding utility function. Given
that an individual has chosen an elemental alternative in branch m, the utility U, of

elemental alternative j and individual ¢ consists of an observed utility component 7,

Jjtlm

and the unobserved random component ¢,

Jtlm?

1 We will restrict ourselves to NL models with two levels, being the most common. However, the theory can be extended to include
more than two levels.
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Uu, =V, +¢

Jtlm =7 jtlm Jtlm?

VieJ, m=1...,.M;t=1...\T. 1)

The observed utility is assumed to be a linear combination of attribute values x,, (the
explanatory variables) with associated weights g, for each attribute «,
K
Vi = ,ujlmz,ﬁkxjktlm, Vied, m=1...M;t=1...T. (2)
k=1

If the same parameter appears in multiple elemental alternatives, then the parameter is
called generic across these alternatives, otherwise it is called alternative-specific.? Note
that we have added scale parameter x,, to the observed utility component to account

for differences in scale parameters. The unobserved random components ¢, for all

Jtlm
jeJ, and all decision makers, z, are assumed to be independently and identically

extreme value type | distributed. The probability of choosing elemental alternative j
given that branch m was chosen can therefore be seen as a simple MNL model, yielding
the following conditional probability (McFadden, 1974):

_ exp( jt|m)
jtlm Zexp( 1t|m

ieJ,

ViedJ ;m=1...,.M;t=1,...,T. (€))

m?

The utility of a branch m is in the literature called an inclusive value (IV) variable.
Multiplying this IV variable with the IV parameter (that is, the branch scale parameter)
yields this combined observed utility for branch m (see Ben-Akiva and Lerman, 1985;
Hensher and Greene, 2002; Carrasco and Orttzar, 2002):

m jedJ,

= Ao Iog[Zexp( ’t'mJ Vm=1...,M;t=1,..,T. 4
)7

The probability of choosing branch m is given by

p =) o1 Mii=1,T. )

Zexp(

2 If attribute k does not appear in alternative j in branch m, then x

ik is simply set to 0.
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Combining equations (3)—(5) yields the unconditional probability that a decision maker,
t, chooses elemental alternative ;:

]i I
£ exp(V,
P,=P,P, =—"" ) Vied im=1...M;t=1....T.(6)

jt = Fm jtlm v Al exp(l/itm)1
Z[ z exp(an)] Z |

ieJ,
n=1\_ieJ,

( Z exp(V;ﬂm)

Unfortunately, the NL model is over-identified and to be able to estimate the parameters
(including scale parameters), and as commonly done we normalize all scale parameters
of the lower level, i.e. u,, =u, =1 forall jeJ, and all m. For more details on the

nested logit model, see for example, Ben-Akiva and Lerman (1985) or Hensher et al.
(2005). The next section will describe how to construct an efficient design for
estimating the set of parameters.

3. Efficient stated choice experiments

The literature on generation of efficient designs for stated choice (SC) experiments state
as their basis, the seminal work by McFadden (1974) and described in detail in Ben-
Akiva and Lerman (1985) and Louviere et al. (2000). Following on from this, the
majority of work conducted on the generation of efficient SC experiments has relied on
this model (e.g., Bliemer and Rose, 2005; Carlsson and Martinsson, 2003; Huber and
Zwerina, 1996; Kanninen, 2002; Kuhfeld et al., 1994; Rose and Bliemer, 2005; Sandor
and Wedel, 2001). In this section we will design SC experiments allowing for different
error variances across the alternatives (i.e., for the NL model).

Stated choice experiments present sampled respondents with a number of different
choice situations, each consisting of a universal but finite set of alternatives defined on a
number of attribute dimensions. Respondents are then asked to specify their preferred
alternatives given a specific hypothetical choice context. SC data requires that the
analyst designs the experiment in advance by assigning attribute levels to the attributes
that define each of the alternatives which respondents are asked to consider.

Orthogonal designs are widely used in SC experiments; however, this class of designs
may not be statistically ‘efficient’, as they do not take the SC model specification into
account.®* A significant amount of research effort has recently been devoted to how
better to assign the attribute levels to alternatives and in turn, the resulting alternatives
to choice situations. These efforts have concentrated on methods to promote greater
gains in the statistical efficiency of SC experiments (e.g., Anderson and Wiley, 1992;
Bunch et al., 1994; Carlsson and Martinsson 2003; Huber and Zwerina, 1996;
Kanninen, 2002; Laziri and Anderson, 1994; Sandor and Wedel, 2001). Common
amongst all of these efforts is minimization of the elements of the AVC matrix of the
models to be fitted to SC data.

3 Originally, orthogonal designs were employed in conjunction with linear regression models, for which they are efficient. However,
for other model types such as discrete choice models, orthogonal designs are no longer efficient which has been largely
unrecognized by many researchers.
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In order to estimate the likely AVC matrix of a SC experiment, the analyst is required to
assume a set of prior parameter estimates (Huber and Zwerina, 1996; Séandor and
Wedel, 2001).* These priors are used to calculate the expected utilities as well as choice
probabilities of each of the alternatives. From these choice probabilities, it is possible to
calculate the AVC matrix of the model to be estimated. Through manipulation of the
design, the analyst is able to minimize the elements within the AVC matrix, which in
the case of the diagonals means lower standard errors and hence greater reliability in the
estimates at a fixed sample size.

Important issues that need to be addressed are how to determine the priors and how to
determine the best nesting structure. Often, pilot studies with a small number of
respondents are conducted before generating the final experimental design to be given
to a large number of respondents. A simple orthogonal design could be used for the pilot
study and a range of model types and nesting structures can be estimated. This will give
indications of the most suitable nesting structure and corresponding parameters. These
parameters can then be used as priors for generating the efficient design.

Let X, denote the AVC matrix of all parameter estimates using a sample size of T.

There are K parameters to estimate and there are M scale parameters to estimate for
each branch, such that the total number of parameters to estimate is K + M. Hence, X,
Is @ symmetric matrix of dimension (K +M)x(K+M). In the literature, several
measures for determining the efficiency of a design have been proposed, such as the D-
error, A-error, etc. (see e.g., Huber and Zwerina, 1996). The A-error aims to minimize
the average asymptotic variances (of which the roots are the asymptotic standard errors
of the parameter estimates). This measure is sensitive to the scale of the parameters. The
D-error does not exhibit this sensitivity and as such has become the mostly widely used
measure of efficiency. Thus, we adopt this measure for the remainder of the paper.® The
D-error is the determinant of this matrix (assuming a single respondent) with a certain
scaling taking the number of parameters into account:

D-error = det(z, )" “, (7

The lower this D-error, the higher the efficiency of the design and therefore the greater
the asymptotic efficiency of the parameter estimates. Instead of assuming fixed prior
parameters, one could also assume prior parameter distributions and computed the
expected D-error over these probability distributions. This will lead to so-called
Bayesian efficient designs, see e.g., Sandor and Wedel (2005), Bliemer et al. (2006).
Algorithms to find efficient designs are briefly discussed in Appendix A.

* One reviewer questioned the use of prior parameter estimates in generating SC experiments and the impact such priors may
have on final model results. The need for using prior parameters need not be a major concern as one can always choose to use
zero prior values, which will yield designs with an efficiency equivalent to that of an orthogonal design. However, using information
on priors, even if one just knows the sign, one can improve on the efficiency of the design. If priors do not exist in the literature,
they can always be obtained from a small pilot study. Misspecification of priors may decrease the efficiency of the design, but the
efficiency will in general still be better than assuming zero priors. We would argue that the purpose of research is to recover the
population parameters, and that any design, even one randomly generated will recover the true population parameters in large
enough sample sizes. The purpose of efficient designs is to recover these at much smaller sample sizes, and even with
misspecification of the prior parameters, efficient designs tend to perform much better than other design types (see Bliemer and
Rose, 2006).

> Note that using a different efficiency measure may lead to a different (optimal) efficient design.
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The (expected) D-error will be used in this paper as a criterion to determine efficient
designs. The next section will be devoted to the calculation of the AVC matrix.

4, Deriving the asymptotic variance-covariance matrix

In this section, we demonstrate that the AVC matrix can be computed using the design
attribute values and prior parameter values. The following important result, proven by
McFadden (1974) for the MNL model, will be used to establish the AVC matrix for the

NL model. Let (3, 1) denote the true parameter values of the NL model. Furthermore,
suppose that (,[Ai’T,ﬂ:T) are the maximum likelihood estimators of the model for a sample
size of 7. It then holds that (ﬁT,ir) is asymptotically normal as 7 — o« with mean

(8,2) and variance-covariance matrix X, = Q.', where Q. is the Fisher information

matrix consisting of the negative expected second derivatives of the log-likelihood
function. Hence, if L,(S,4) is the log-likelihood function (assuming 7" respondents),

then it follows that:

Qr=—E( 0Ly (8. 2) J ©®)
3B A0, A)

In a SC design, different combinations of attribute levels are shown to respondents in
each choice situation. Let S be the total number of choice situations (choice sets) faced
by each individual respondent ¢, where s denotes each specific choice situation, and let
X 4 D€ the attribute level related to the k™ attribute associated with the ;™ alternative
(in branch m) shown to respondent ¢ in choice situation s. As is commonly the case, it is
assumed that all respondents face the same choice situations (although more
sophisticated approaches exist and the derivations here can be extended), such that the
sub-index ¢ can be dropped from the attribute variables and the probabilities. The log-
likelihood function can thus be written as

T S M T S M
Li(BA) =222 2 v l09P =23 ¥ D Vi 109 P, B C)

t=1 s=1m=1jeJ,, t=1 s=1m=1 jed,

where . is the vector of outcomes of the SC experiment. This indicator value is equal

to one if elemental alternative ; is chosen in choice situation s by respondent ¢, and zero
otherwise. Furthermore, this vector is decomposed such that y, =y ,.»,., Where (for

all respondents ¢ and choice sets s) y, . equals one if branch m is ‘chosen’ and zero
otherwise, and y. . equals one if elemental alternative j is chosen given that branch m
was chosen, and zero otherwise. The second derivatives needed in equation (10) are

Jislm
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derived in Appendix B, which after some manipulations finally lead to the following
equations:

aﬂklﬁﬂkz s=1 | m=1 ieJ, ieJ, JjeJ,

mhykp mky mkp

O*L.(B, A S |y
—E (MJ:_T Z{ZP ms!(’iml)( Z Xigstn Do Xikysim — Z iyt Do Z jslm™ /kZS’"]]

M
(Zﬁm&sﬁﬂ S o= 2P S B J 2 Fas e

m=1 e, n=1 i€, i€y

1€ iy 1€y JE€T i,

+ 2 xlk1s|m is|m tkzs|m Z xlk1s|m is|m z js|m jkﬂm]}}

(10a)

O°L.(B,A :
_E(_aﬂml(a’;kz)] Z{'Og Z eXp[Zﬁk zl@lmljpmlv[ﬂ“ z islmy ik sl z n z is|n™ ,ksz]

s ied,, i€ty n=1 i€y

(10b)

2
Jl |f m1:m2

—TZ s mélog[Zexp(Zﬂk Xt ﬂlog Zexp(Zﬂk X, H it m, #m,

ieJ ieJ
(10c)

ied,

I |

s P, . )| 109 exp( BiXisim,
g PL(BA) | _ Zﬂ: o )[ {z R
04,,04,,

It should be pointed out that, unlike in the MNL model, in the NL model the second
derivatives are not independent of observed choices, y; see Appendix B. However, for
large T (as we are interested in the asymptotic properties), we can use substitutions of
probabilities as shown in Appendix A, such that equations (10a,b,c) are independent
again of y. In case 4, =1 for all branches m, the Fisher information matrix of the NL

model in equation (10a) collapse to that of the MNL model as reported in Bliemer and
Rose (2005), namely

_E[M] z z /kls( Xitys — Z Pisxikzs j (11)

aﬂkléﬂkz s=1 /EJ,1 ieJ,(2

Using equations (12a,b,c), the Fisher information matrix, Q,, can be calculated and
hence, the AVC matrix, ., can be computed as well (for each sample size 7).

The only remaining unknowns are the parameter values. The true parameter values
(p,A) are to be estimated from the model. In constructing efficient designs, it is
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common to assume prior parameter values (/5,1) and optimize the design based on

these priors. Considerable effort should be committed to identifying reasonable prior
parameter values, as doing so will result in significant pay-offs in terms of requiring
(much) smaller sample sizes in the actual SC experiment.

As indicated by equations (10a,b,c), the Fisher information matrix is proportional to the
sample size T, hence, the AVC matrix will be proportional to 1/7. The square roots of
the diagonals of the AVC matrix represent the asymptotic standard errors of the

parameter estimates, and hence, these standard errors (se) are proportional to 1/ JT. In
other words, se,(5,) = se,(5,)/ JT, where se,(f,) is the asymptotic standard error of
parameter S, assuming a sample size of 7, while se (f,) is the asymptotic standard

error considering only a single respondent. As such, similar to the MNL model, the NL
model will exhibit diminishing increases in reliability (as measured by lower asymptotic
standard errors) as we increase the sample size.

Interestingly, having the prior parameter values S, and also the asymptotic standard
errors for each sample size 7, one is also able to compute the asymptotic #-values. In
order to test parameters being statistically significant from zero, or scale parameters
from one (i.e. testing whether that part of the tree structure is actually an MNL model),
the following asymptotic #-values can be computed:

B A

P oand g ——lm
seBONT T T e G)INT

(12)

Re-arranging this term and assuming a certain significance level (e.g., ¢, 21.96) yields
the following theoretical minimum sample sizes 7, and 7 for obtaining a statistically
significant parameter estimate for parameter g, and A, , respectively:

T > (M) . and T (Mj . (13)
ﬂk ﬂ“k -1

These (asymptotic) theoretical minimum sample sizes can be used to assess the
efficiency of a design for each parameter estimate separately, instead of for all
parameters combined when using the D-error measure. The minimum sample sizes
derived from equation (13) hold only under the asymptotic assumption and therefore
should be interpreted carefully as representing the lower bounds for the sample sizes. In
practice, it is likely that (much) larger sample sizes are required. However, these
theoretical sample sizes can give indications about which parameters are likely to be
difficult to estimate once data is collected using the design.

It should be stressed that the above derivations of the AVC matrix hold under the
assumption of independent choice situations. In the case where respondents face
multiple choice situations, as with SC data, the assumption of independence typically
does not hold and therefore may bias the derived AVC matrix. Basically all literature on
generating efficient designs assumes independent choice situations, thereby intrinsically
assuming independent choice situations. In this paper, we recognize this problem, but
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do not aim to resolve the issue. The only way to correct for dependent choice situations
Is to switch to a mixed logit model formulation in which the dependency is treated as in
panel data estimation. To our best knowledge, the only paper dealing with this topic of
dependent choice situations is Bliemer and Rose (2008). In that paper, they show that it
is possible in theory to generate designs for the panel version of the mixed logit model,
but in practice it adds great computational complexity to the design generation process.
Some preliminary results show, however, that experimental design results for the MNL
model are much closer to those of the panel mixed logit model than for the cross-
sectional mixed logit model (e.g., considered in Sandor and Wedel, 2002). The MNL
model being a special case of the NL model, this may suggest that creating designs
assuming a nested logit form is not far from results obtained for a panel version. A
compromise would be to generate an efficient design based on the NL model, and then
assess if the design assuming a panel formulation also has a good efficiency.

5. Case studies

In this section, we generate a number of experimental designs for several models in
which we allow for differences in the error variances across subsets of alternatives. In
Section 5.1 a typical example of a nested logit model in transportation will be
formulated and will serve as the basis of most of the analyses in the subsequent sections.
Different (orthogonal and/or efficient) designs will be compared in Section 5.2.
Potential effects of misspecification of prior parameters (in particular, the scale
parameters) are discussed in Section 5.3. Also in this section, a Bayesian efficient
design is analyzed, which is less sensitive to prior parameter misspecification. Section
5.4 examines the impact of model misspecification, which shows that generating a
design for an MNL model while the true model is an NL model (or the other way
around) will lead to a loss in efficiency.

5.1 Model formulation and design dimensions

The example we use involves an experiment with four elemental alternatives; “car on
toll road” (cart), ‘car on non-tolled road” (carnt), ‘bus’, and ‘train’. The observed
components of these elemental alternatives are represented by

Vet = B+ BETTO + BERCE + B TOLL™, (14)
Ve = BRI 4 BRCET, (15)
oS = B BT 4 BIFARE, (16)
yrEn = BT + BT FARE. (17)

where TT represents travel time, RC running costs, TOLL toll costs, and FARE the fare
costs. The elemental alternatives are nested into two groups: car = {cart, carnt} for car

10
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alternatives and pt = {bus, train} for public transport alternatives. The IV variables of
these nests are given by

Vscar — per Iog(exp(V;cart) n eXp(VScarnt))1 (18)

VP = A" log(exp(V™) +exp(V.™")). (19)

There are in total 11 parameters to be estimated, of which nine at the elemental level (of

car car

which two generic parameters, g™ and f,*, and seven alternative-specific
parameters), and two scale parameters. There are nine attributes for which different
combinations of attribute levels have to be determined in the experimental design. The
attribute levels and priors to be used in generating the design are listed in Table 1. The
priors were chosen based on previous study results as well as to preserve realistic
estimates of VTTS for the car and public transport alternatives. Following common
practice, we limit the experiments to attribute level balanced designs (although such a
constraint may result in the generation of a sub-optimal design).

Table 1: Prior parameter values and attribute levels for case study 1
Prior parameter values:

ﬁgan ﬂlcar anr ﬁscan 0bus ﬁlbus 2bus ﬂltrain 2train ﬂcar lpt
-0.4 -0.5 -0.9 -1.3 -0.4 -0.4 -1.5 -0.45 -1.6 1 0.6

Attribute levels:

TT::art R Csart TO L Lc;trt ( T-I—:arnt chamt -I—-I—sbus FAR EEus T-l—:rain FAR Eirain
(min.) (A%) A%) (min.) (A3) (min.) (A%) (min.) (A%)
10 1 2 20 2 40 1 30 2
20 2 3 30 3 50 2 40 3
30 3 4 40 4 60 3 50 4

5.2 Efficiency of different designs

As our focus in the case study will be to compare the efficiency of different designs,
ceteris paribus (given a certain model type and prior parameter values), we keep all
design dimensions fixed (i.e., the number of alternatives, the number of attributes, the
number of choice situations, the number of attribute levels, the attribute level range,
etc.), while only changing the order that the attribute levels appear within the design.
Later in the paper, we investigate losses of efficiency under prior parameter and model
type misspecification using the same design dimensions. The number choice situations
chosen (i.e., 12) was selected such that both attribute level balance and orthogonality
can be achieved. Whilst we could have chosen different design dimensions, the purpose
of the paper is not to test the impact of these dimensions on the design efficiency.
Rather, the aim of the paper is to illustrate the methodology and demonstrate the
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importance of selecting more efficient SC designs for the particular model type that is
likely to be estimated, once data has been collected.

We generate three different (attribute level balanced) designs with 12 choice situations
assuming the above NL model: an efficient (non-orthogonal) design, and two
orthogonal designs. Orthogonal designs, in which the attribute levels of different
attributes are all uncorrelated, are still the mainstream design type to use. For this reason
we include orthogonal designs in our comparison. As it is common practice when
undertaking SC studies to only generate a single orthogonal design, and in doing so, not
test the overall efficiency of the design, it is possible (indeed probable) that researchers
may obtain sub-optimal designs. The two orthogonal designs we generate consist of the
most efficient one and the least efficient one, which allows for an examination of the
likely range of impact upon the reliability of the parameter estimates obtained from
different orthogonal designs of the same dimensions.

Table 2 shows the three generated designs. Shown in the table are the attribute level
combinations for each of the final designs constructed, as well as the D-error values for
the designs computed from the AVC matrices derived using equations (10a,b,c) (see
Table 3). In calculating the D-error values, we remove the rows and columns from the
AVC matrix related to the two alternative-specific constants.®

To generate the designs, we used Ngene 0.7, which evaluates in an intelligent way the
D-error of a large number of possible designs, and stores the most efficient design (with
or without the restriction of orthogonality). For the non-orthogonal designs, the
algorithm employed a simple swapping procedure similar to that discussed in Appendix
B or Huber and Zwerina (1996) and S&ndor and Wedel (2001).

Table 2: Experimental designs for case study 1

Efficient design for NL model D-error =0.1421
TT:an RCian TO Lchn TTScamt RCsarm T-I-Shus FARE[:LIS TTStrain FAREgain

S (min) (A$) (A$) (min.) (A$) (min.) (A$) (min.) (A$)
1 10 1 4 20 4 50 2 40 3
2 20 1 2 40 3 40 1 30 4
3 30 2 3 30 2 50 3 50 2
4 20 1 2 20 4 60 2 40 4
5 30 2 3 30 2 60 1 50 2
6 10 3 4 40 3 40 3 30 4
7 20 1 4 30 4 60 1 50 3
8 30 2 3 30 4 60 3 50 4
9 10 3 2 20 2 50 2 30 3
10 10 3 4 20 2 50 2 40 3
11 20 2 2 40 3 40 3 40 2
12 30 3 3 40 3 40 1 30 2

® These rows and columns are generated from the design, however, they are simply ignored in calculating the D-error measure.
For many SC studies, it is the attribute parameters (or ratios thereof) which are of prime importance, and not the constants
(Hensher et al., 2005). As the D-error measure is a global measure of statistical efficiency, minimization of this measure often
results in trade-offs having to be made between elements of the AVC matrix of designs. Inclusion of constant terms may therefore
result in lower efficiency levels being achieved (i.e., higher standard errors) for the design attributes which are often considered to
be of more importance.

! Ngene, developed by Econometric Software Inc., is dedicated software for generating experimental designs for stated choice
studies, and currently has prototype status.
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Orthogonal design (most efficient) for NL model

D-error = 0.2983

TTScan RCian TOLLij TTScamt RCsarm T-I-Shus FARE[:us TTStrain FAREgain
S (min.) (A3) (A3) (min.) (A3) (min.) (A%) (min.) (A%)
1 20 3 3 30 2 60 2 50 3
2 30 1 3 20 4 40 2 50 3
3 30 1 2 40 3 60 1 40 2
4 10 2 2 40 4 50 3 30 3
5 30 3 4 40 3 40 3 40 2
6 10 3 2 20 3 40 1 40 2
7 20 1 3 30 2 40 2 30 4
8 20 2 2 30 2 50 3 50 4
9 30 3 3 20 4 60 2 30 4
10 10 2 4 40 4 50 1 50 4
11 10 1 4 20 3 60 3 40 2
12 20 2 4 30 2 50 1 30 3
Orthogonal design (least efficient) for NL model D-error = 1.0477
-|—-|—Scart Rczart TO LLcsart TTscamt RC:arnt Tstus FAR E?us T-l—strain FARE:,rain
§ (min.) (A3) (A3) (min.) (A3) (min.) (A3) (min.) (A3$)
1 20 3 3 30 4 60 2 30 3
2 10 1 3 40 2 40 2 30 3
3 10 1 2 20 3 60 1 40 4
4 30 2 2 20 2 50 3 50 3
5 10 3 4 20 3 40 3 40 4
6 30 3 2 40 3 40 1 40 4
7 20 1 3 30 4 40 2 50 2
8 20 2 2 30 4 50 3 30 2
9 10 3 3 40 2 60 2 50 2
10 30 2 4 20 2 50 1 30 2
11 30 1 4 40 3 60 3 40 4
12 20 2 4 30 4 50 1 50 3
Table 3: Asymptotic variance-covariance (AVC) matrices for case study 1
AVC matrix for efficient design
0cart lcar anr 3cart é)us ﬁlbus 2bus ltrai n 2train /1 car ﬂ, pt
ot 9.04 0.10 041 -227 138 -0.10 -0.16 -0.09 -0.03 0.18 -0.16
o 0.10 024 036 066 -0.03 0.00 -0.02 0.00 -0.02 043 -0.04
o 041 036 0.84 0.97 0.16 -0.01 -0.01 -0.01 0.03 064 -0.10
h -227 066 097 261 -031 0.03 -0.01 0.02 0.01 1.15 -0.08
é’”s 1.38 -0.03 0.16 -0.31 28.47 -053 -234 -0.13 0.76 0.02 -0.07
/31"”5 -0.10 0.00 -0.01 003 -053 014 048 014 051 -0.01 0.19
2”“5 -0.16 -0.02 -0.01 -0.01 -2.34 048 239 0.50 1.92 -0.06 0.68
frai” -0.09 0.00 -0.01 0.02 -013 0.124 050 0.15 0.54 -0.01 0.20
Z"ai” -0.03 -0.02 0.03 o0.01 0.76 051 192 0.54 2.67 -0.01 0.80
A 0.18 043 0.64 1.15 0.02 -0.01 -0.06 -0.01 -0.01 1.04 0.10
yis -0.16 -0.04 -0.10 -0.08 -0.07 0.19 0.68 0.20 0.80 0.10 0.40
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AVC matrix for orthogonal design (most efficient)

" a BT 0 e A S
Bt | 1476 145 123 032 -270 019 235 024 047 157 -052
| 145 058 095 149 -0.18 0.02 014 003 -0.02 091 -0.16
> | 123 095 276 3.08 586 -0.08 -1.17 -0.04 0.34 177 -0.29
At | 032 149 3.08 515 240 -0.02 -0.78 -001 -0.08 246 -0.49
;e | -2.70 -0.18 5.86 240 102.76 -0.75 -10.4 0.44 942 -0.30 0.45
A | 019 002 -008 -002 -075 018 093 020 0.61 000 0.25
A | 235 014 -1.17 -0.78 -1040 0.93 7.69 108 243 -011 1.27
" | 0.24 0.03 -004 -001 044 020 108 025 0.77 001 031
“" | 047 -0.02 034 -0.08 942 061 243 077 428 -025 0.98
A% 1 157 091 177 246 -030 000 -011 0.01 -025 213 0.10
A* | -052 -0.16 -0.29 -049 045 025 127 031 098 010 0.67
AVC matrix for orthogonal design (least efficient)
" a 2 5 " e A

" | 2243 9.09 3152 -36.1 55.65 -0.28 -4.03 0.75 416 17.74 -1.70
A | 9.09 148 135 139 402 001 -059 -001 120 285 0.3
> | 3152 135 7.49 -457 480 -014 195 013 -0.63 295 -043
" | -36.1 1.39 -457 1351 -240 010 -055 -020 225 261 0.74
B | 55.65 4.02 480 -240 4226 -4.18 -314 242 2595 426 230
™ | -0.28 001 -0.14 010 -418 024 067 016 071 006 0.26
2e | -403 -059 195 -055 -31.4 0.67 1960 0.92 329 -007 1.71
A™ | 075 -001 013 -020 242 016 092 028 048 0.01 0.33
" | 416 1.20 -0.63 225 2595 0.71 329 048 1574 213 1.92
A% | 17.74 285 295 261 426 0.06 -0.07 001 213 599 0.52
A% | -1.70 0.13 -043 074 230 026 171 033 192 052 0.75

As expected, the efficient design (without the orthogonality restriction) produces the
lowest D-error value (0.1421), while the two orthogonal designs produce higher D-error
values (0.2983 and 1.0477 for the most and least efficient orthogonal designs,
respectively), see Table 2. The D-error of the most efficient orthogonal design is 2.1
times greater than the D-error value of the efficient design, while D-error of the least
efficient orthogonal design is even 7.4 times that of the efficient design. This suggests
that on average, the asymptotic standard errors of the parameter estimates using the
orthogonal designs will be +2.1~1.4 to /7.4 ~2.7 times larger than the average
asymptotic standard errors of the efficient design. This is confirmed by examining the
AVC matrices of the designs shown in Table 3. Clearly, the efficient design is able to
provide more reliable parameter estimates than any orthogonal design (given that the
prior parameter values are correct), which is a conclusion that holds in general.

Looking at individual parameters, in the efficient design the parameter that is the most
difficult to estimate (having the highest theoretical minimum sample size to be

statistically significant in estimation) is A", needing a minimum sample size of
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T" =59 (that is, —1.3/+/2.61/5.9 ~—1.96, see also Table 4). In the most efficient

orthogonal design parameter ,szus is most difficult to estimate, requiring a minimum

sample size of 7" =13.1 (as —1.5//7.69/13.1~-1.96), and in the least efficient

car

orthogonal design this is parameter S5 with a minimum sample size of 7" =35.5 (as

—0.9/4/7.49/35.5 ~-1.96). Again, the efficient design is (much) more efficient than
the orthogonal designs, this time in terms of sample size requirements for individual
parameter estimates.

5.3 Effect of prior parameter misspecification

Efficient designs are constructed under the assumption that the prior parameter values
are the true parameter values, which implies that any misspecification of these priors
can lead to losses in the efficiency of the design. For each design, the effect of
misspecifying these priors can be tested by computing the D-errors for that design for
different values of the priors. As an example, we analyze the effect of misspecifying the

scale parameter of the public transport branch, AP (which was assumed to be 0.6), on
the efficiency of the efficient design. In Figure 2 the solid line indicates the D-error for
the efficient design for different values of A”, ranging from 0.4 to 0.8. Clearly, the

efficient design has the lowest D-error in case A™ =0.6, as the efficient design was
optimized for this parameter value. However, any deviation from this value leads to
higher D-error (if A" =0.4, the D-error is four times higher). Hence, the design is
rather sensitive to misspecification of this scale parameter.

In order to create a more robust design that is less sensitive to prior parameter
misspecification, one could consider a Bayesian efficient design, in which the expected
D-error is minimized over a probability distribution of prior parameter values instead of
having the minimum D-error for only a single prior parameter value. Table 4 presents a

Bayesian efficient design in which the scale parameter A" is assumed to be uniformly
distribution on the range [0.4, 0.8], which has also been generated using Ngene 0.7.
Generating Bayesian efficient designs is much more computationally intensive than
generating efficient designs given fixed priors, as the expected D-error can only be
computed through simulated integration (see Bliemer et al., 2006), using similar
techniques as in mixed logit models (see e.g., Train, 2003). The D-error for this
Bayesian efficient design is plotted in Figure 2 (see dashed line) for different values of

scale parameter A™. Compared to the efficient design, the D-error for this Bayesian
efficient design is slightly higher in the area around 0.6, but outside this area the D-error
does not increase as rapidly as the D-error for the efficient design does (e.g., if

APt = 0.4, the D-error for the Bayesian design is much smaller). This indicates that the
Bayesian efficient design is indeed more robust to prior parameter misspecification.
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Table 4: Bayesian efficient design for NL model (Bayesian D-error = 0.1908)

TTSCarI RCzal’t TO LLcSan TTSCamI Rczamt TTShLIS FARE?US TTStrain FAREgain
§ (min.) (A%) (A%) (min.) (A%) (min.) (A%) (min.) (A3)
1 10 1 4 20 4 50 3 40 3
2 10 3 4 20 2 60 2 50 3
3 20 1 2 20 4 60 2 50 3
4 20 3 2 30 3 40 3 30 4
5 10 3 2 40 3 40 2 30 2
6 10 3 2 20 2 50 2 40 3
7 20 2 3 40 3 40 1 30 4
8 30 2 3 40 2 50 3 50 2
9 30 1 3 30 2 50 3 40 4
10 20 1 4 30 4 60 1 50 2
11 30 2 3 30 4 60 1 40 4
12 30 2 4 40 3 40 1 30 2
D-error
T 0.6 : : : : : :
o5s) E— D-effigient desi.gn _
- = = Bayesian D-efficient design
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Figure 2: Effect of misspecifying the scale parameter for public transport
54 Effect of model type misspecification

As this paper deals with differences in the error variances across subsets of alternatives,
we would like to investigate the implications of creating a design that ignores these
differences (as in the MNL model) while the true model has these differences (as in the
NL model), and the other way around. For this purpose, the efficient design in Table 1,
generated based on the NL model in Section 5.1, is used to compute the D-error
assuming an MNL model specification. Furthermore, we will generate an efficient
design for the corresponding MNL model, and use this design to compute the D-error
assuming the NL model specification.

The MNL prior parameter values are the same as in the NL model in Section 5.1, except
that the parameters in each of the branches are multiplied by the scale parameter of that
branch in order to keep the comparison as consistent as possible. An efficient design for
the MNL model is presented in Table 5. The D-error of this MNL efficient design is
0.0717, however, the D-error of this MNL design assuming NL is 0.1697. Recall that
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the NL efficient design has a D-error of 0.1421, which means that the MNL design is
not efficient if the actual model is an NL model rather than an MNL model. Reversely,
the D-error of the NL efficient design (see Table 1) assuming MNL is 0.0756, which is
slightly higher than the D-error for the MNL efficient design. Hence, in this example the
NL design is efficient for the NL model and looses only a little of bit efficiency when
applied to an MNL model, but the MNL design looses almost 20 percent efficiency
when applied to an NL model. These results are summarized in Table 6 (under model
M1), and demonstrate the importance of designing an experiment specifically for the
model to be estimated.

Table 5: Efficient design for MNL model (D-error = 0.0717)

TT;:art R Czart TO LLcsart T-l—;:amt RC:arnt T-l—sbus FAR Esus T-l—strain FAR Ezrain
§ (min.) (A3) (A3) (min.) (A3) (min.) (A3) (min.) (A$)
1 30 2 3 40 3 40 1 30 3
2 20 2 4 30 2 60 1 50 2
3 10 3 4 40 3 40 3 40 3
4 20 1 2 20 4 50 3 50 2
5 30 1 2 30 2 60 3 50 4
6 10 1 4 20 4 50 2 30 4
7 10 3 2 40 4 40 1 40 3
8 10 3 2 40 3 50 2 30 3
9 20 1 4 30 3 60 1 50 2
10 30 2 3 20 2 50 2 30 4
11 30 2 3 20 4 40 3 40 2
12 20 3 3 30 2 60 2 40 4

Table 6: D-errors of efficient designs under different model (mis)specifications

Assumed model for estimation

MNL NL
. MNL 0.0717 0.1697 (+19%)
Assumed model for design
NL 0.0756 (+5%) 0.1421
) MNL 0.0543 0.2702 (+32%)
Assumed model for design
NL 0.0622 (+15%) 0.2045
) MNL 0.1476 0.3109 (+5%)
Assumed model for design
NL 0.1550 (+5%) 0.2966

The effect of model misspecification is very case specific. In Table 6 two other models
have been used to compare MNL and NL models and designs.® In model M2 two
branches are considered with two alternatives each. Each alternative has two attributes
and within each branch all parameters are generic, leading to four parameters in total
(excluding two scale parameters). Efficient designs are generated with 12 choice
situations. In Model M3 there are three branches of which the first branch is a
degenerate branch with a single alternative, and the other two branches have two

€ In order to reduce the length of the paper, the complete model specification and the generated designs will not be presented in
this paper, however, they can be found on http:/www.itls.usyd.edu.au/about_itls/ staff/johnr.asp.
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alternatives each. Again, each alternative has two attributes and now all parameters in
the model are alternative-specific, leading to 12 parameters in total (excluding three
scale parameters, of which the first one is fixed to one as it is a degenerate branch).
Again, efficient designs are generated, this time with 16 choice situations. As can be
observed from Table 6, M2 is rather sensitive to misspecification of the model. If a
design assuming an MNL model is generated while the actual model is an NL model,
then more than 30 percent of efficiency is lost over generating a design for the NL
model. M3 is much less sensitive to misspecification, where only five percent efficiency
is lost by choosing the wrong model to generate the design for. It is clear that model
misspecification can lead to (smaller or larger) efficiency losses.

55 Effect of nesting misspecification

Similar to misspecification of priors and model type, any misspecification in the nesting
may lead to loss in efficiency of the design. To illustrate, we use a case study based on a
data set collected using a SC experiment for studying mode choice in Australia. This
data set and the SC experiment is described in detail in Hensher et al. (2005). The
alternatives consist of car on toll road, car on non-toll road, bus, train, busway, and light
rail. Attributes for the car include fuel (with levels A$1, A$2, and A$3 for car on tolled
road, and A$3, A4, and A$5 for car on non-tolled road), toll (A$1, A$1.5, and A$2),
and travel time (10, 12, and 15 minutes for car on tolled road and 15, 20, and 25 minutes
for car on non-tolled road), while for the public transport models they include fare (A$1,
A$3, and A$5), travel time (10, 15, and 20 minutes), and frequency (every 5, 15, or 25
minutes). The underlying experimental design used in the study is an orthogonal design
with 81 choice situations, blocked in sets of three.

Different nesting structures have been used to estimate different NL models. The
parameter estimates for each NL model are presented in Table 7 (MNL results have
been added as well), where each nest is indicated by a different shade of gray, and the
corresponding estimated scale parameters are indicated at the bottom of the table. In
order to allow for different nesting structures, each parameter has been treated as
alternative-specific. According to the adjusted rho-squared, NL model 5 seems to fit the
data best. This conforms with the earlier observation that the most appropriate nesting
structure is not always obvious and need not follow an underlying decision tree. In
particular, NL model 5 does not put the tolled and non-tolled car alternatives in the
same branch, as some may expect.
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Table 7: Parameter estimates for different nesting structures in Sydney mode choice study

Estimated models

parameters MNL NL1 NL2 NL3 NL4 NL5
CT_CON -1.043 -1.340 -1.042 -1.335 -1.325 --
CT_FUEL -0.103 -0.107 -0.095 -0.100 -0.102 -0.138
CT_TOLL -0.176 -0.227 -0.268 -0.234 -0.236 -0.201
CT TIME -0.014 -0.013 -0.009 -0.011 -0.012 -0.034
CN_CON -0.067 -- -- -- -- 0.413
CN_FUEL -0.101 -0.140 -0.107 -0.149 -0.146 -0.105
CN_TIME -0.035 -0.049 -0.045 -0.048 -0.048 -0.037
BU _CON -0.102 -0.101 0.153 -0.170 -0.119 0.507
BU_FARE -0.169 -0.249 -0.315 -0.250 -0.221 -0.187
BU TIME -0.009 -0.023 -0.029 -0.010 -0.014 -0.014
BU FREQ -0.044 -0.062 -0.063 -0.050 -0.052 -0.048
TR_CON 0.706 -- 0.662 0.906 0.732 1.140
TR_FARE -0.208 -0.266 -0.358 -0.277 -0.275 -0.206
TR_TIME -0.080 -0.071 -0.093 -0.100 -0.093 -0.081
TR _FREQ -0.023 -0.023 -0.033 -0.029 -0.027 -0.022
BW_CON 0.403 0.396 -0.002 - - 0.862

BW_FARE -0.264 -0.311 -0.352 -0.287 -0.318 -0.279
BW_TIME -0.056 -0.065 -0.057 -0.047 -0.052 -0.054
BW_FREQ -0.007 -0.010 -0.017 -0.004 -0.004 -0.008

LR_CON = - - - = =
LR_FARE 0252~ -0.300  -0.384  -0325  -0251 @ -0.242

LR_TIME -0.037 -0.045 -0.057 -0.050 -0.036 -0.016
LR FREQ -0.006 -0.012 -0.020 -0.008 -0.006 -0.002
SCALE1 1.000 " 0.638 0.365 0.617 0.600 1.000
SCALE? -- 0.623 0.259 0.815 0.707 0.676
SCALE3 - 0.773 -- 0.749 1.000 --
Adj. p? 0.246 0.246 0.215 0.246 0.266 0.286

* Fixed, not estimated.

Suppose that we would now like to create an efficient design for a similar mode choice
study in which NL model 5 is taken as the appropriate model to be estimated. Then the
parameter estimates of NL model 5 can be used as prior parameter values and an
efficient design can be determined as outlined in this paper. Now suppose that the
efficient design was not based on NL model 5, but on one of the other models with a
different nesting structure. How much efficiency would be lost when such a design
would be used to estimate NL model 5?

To answer this question, we have generated an efficient design for each of the six
models (one MNL model and five NL models), and used each of these efficient designs
to compute the asymptotic standard errors assuming that the parameters in NL model 5
represent the ‘true’ parameters. The results are presented in Figure 3, in which the
increases in standard errors, compared to using an efficient design for NL model 5, are
shown in percentages. The efficient design for NL model 5 is represented as the dashed
zero percent line. Each line corresponds to a different design being used (i.e., being
efficient for different nesting structures). The travel time parameter for the tolled car
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alternative and the scale parameter for branch 2 tend to produce significantly higher
standard errors (an increase of 23 percent to 35 percent and 25 percent to 43 percent
respectively). Hence, if the model to be estimated is NL model 5, then using an efficient
design based on another nesting will likely result in a significant loss of efficiency. In
this case, the scale parameter in particular will become harder to estimate at a given
sample size. Ignoring the efficient design for NL model 5, the efficient design for the
MNL model looses the least efficiency when estimating NL model 5, and for some
parameters the asymptotic standard errors even marginally improve. However, this
design is still much less efficient than the design optimized for NL model 5.

45% \ T

40% |- ——— Using design optimized for MNL model _
Using design optimized for NL model 1 T
35% [ —+=— Using design optimized for NL model 2 T
———— Using design optimized for NL model 3
30% |- i Using design optimized for NL model 4 / 7
2506 - (| | - ==== Using design optimized for NL model 5 |
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Figure 3: Increases in standard errors for estimating model NL5 when using designs

optimized for other models

In addition, we have also analyzed the asymptotic standard errors in case the efficient
design for NL model 5 was used to estimate the other models, and compared the results
to the asymptotic standard errors corresponding to the optimized designs. The design
optimized for NL model 5 becomes much less efficient (e.g., the standard error for the
travel time parameter for the tolled car alternative increases 45 to 75 percent) when it is
used to estimate a model with a different nesting structure. An interesting direction for
further research would be to try to optimize a design over a range of nesting structures
(or even model types), which has some similarities with Bayesian efficient designs that
optimize a design over a range of prior values.
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6. Discussion and conclusions

Violations of the 11D assumption underlying the MNL model have led many to more
advanced econometric models. In particular, the NL model has proven popular amongst
transport researchers. The NL model is particularly appealing as it provides a closed
form solution (unlike probit or random parameter logit models for example), whilst also
allowing for a significant relaxation of the 11D assumption. It is therefore likely that the
NL model will remain a popular choice of model well into the future.

Commonly associated with the use of the NL model, is SC data. Whilst many advances
have been made in the econometric modeling of such data, the generation of SC
experimental designs appears to have largely lagged behind. Even to this day, the most
common type of design used in transportation research appears to be orthogonal designs
which have been heavily promoted for several decades. The most recent advances in the
design of SC experiments, efficient SC experiments, appear to be limited largely to the
generation of designs assuming the estimation of an MNL model.

Efficient SC designs have largely been limited to unlabeled experimental applications.
This has had particular implications for designing efficient SC experiments for NL
models. As Bliemer and Rose (2005) and Rose and Bliemer (2005) showed, however,
by taking the second derivatives of the log-likelihood function, it is possible to correctly
derive the AVC matrix for the MNL model allowing for alternative-specific parameter
estimates.

In this paper, we extend the work of Bliemer and Rose by deriving the AVC matrix for
the NL model and show that it is possible to generate efficient SC designs allowing for
differences in the error components across subsets of alternatives. Through use of a
numerical example, we demonstrate that orthogonal designs may not be very efficient,
hence generating an efficient design given a certain model specification is clearly
preferred. Furthermore, failure to allow for violations of the IID assumption in
generating efficient SC experiments may result in the generation of sub-optimal designs.
In particular, we show that assuming an MNL model form when in fact an NL model
form is correct, may lead to losses in efficiency in the design, leading to larger standard
errors for the parameter estimates and larger sample size requirements for a given
design. Results from the three model exercises may suggest that one is perhaps be better
off by determining a design for the NL model instead of the MNL model, as the losses
in efficiency are smaller when it comes to model misspecification. However, this result
may not hold in general, and needs to be investigated in more depth. We further show
that not only model misspecification leads to efficiency losses, also misspecifications of
priors can have large impacts. By generating a Bayesian efficient design, these impacts
are largely reduced, as shown in the case study.

In this paper, we also show for that orthogonality as a design property may also result in
the generation of sub-optimal designs, both in terms of the overall efficiency of the
design, as well as in terms of theoretical sample size requirements. Our findings here
continue a trend within the literature which suggests a move away from orthogonal
designs for SC studies, towards designs which relate to the econometric models being
fitted to such data.

An area of further research would be to test different assumptions on the model
specification (model type and model parameters) and create different SC experiments
for a real SC study and compare the estimation outcomes. Furthermore, generating
designs for a range of model types and nesting structures seems another interesting
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direction of research, which would increase the robustness of the design under model
and nesting misspecification.
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Appendix A: Algorithms for constructing efficient experimental designs

In order to locate the most efficient design, one could first determine the full factorial
design and next evaluate each different combination of S choice situations taken from
this full factorial. The combination with the lowest efficiency error is the optimal
design. However, this procedure is often not practical as a result of the extremely high
number of possible design combinations that may need to be evaluated. For the example

case study problem, the full factorial has a total of 3°=19,683 choice situations.

Selecting a subset of 12 choice situations from the full factorial yields 3.37x10>
possible different designs, all of which require evaluation. In practical terms, it may be
impossible to evaluate all these designs, hence analysts often turn to smart algorithms to
search a subset of the total possible number of designs to locate as efficient a design as
possible.

Generally, the algorithms used are described as either row based or column based
algorithms. In a row based algorithm choice situations are selected from a predefined
canditure set of choice situations (either a full factorial or a fractional factorial) in each
iteration. Column based algorithms create a design by selecting attribute levels over all
choice situations for each attribute. Row based algorithms can easily remove bad choice
situations from the canditure set at the beginning (e.g., by removing designs which don’t
match a particular analyst defined constraint), however in such designs it is often
difficult to maintain attribute level balance (i.e., where each attribute level appears an
equal number of times within each column). Column based algorithms generally have
no difficulty in maintaining attribute level balance, and in general offer more flexibility
and can deal with larger designs. Nevertheless, when the analyst wishes to impose some
form of constraint upon the design, row based algorithms may be more suitable.

Historically, a row based algorithm known as the Modified Federov algorithm (Cook
and Nachtsheim, 1980) was used. In this algorithm, first a candidature set is determined
(either the full factorial (for small problems), or a fractional factorial (for larger
problems)) and then, a design is created by selecting choice situations from the
candidature set at random. Once located, the efficiency error (e.g., D-error) of the design
is computed. A new design is generated from the canditure set, and the efficiency
measure computed for this new design. Designs with better efficiency measures are
stored, and the process repeated a number of times until all possible designs are
searched or the process is terminated by either the analyst or some form of stopping
criteria.

RSC (Relabeling, Swapping & Cycling) algorithms (Huber and Zwerina, 1996; Sandor
and Wedel, 2001) are also used within the literature and are both row and column based
algorithms. In each iteration, different columns for each attribute are created, which
together form a design. This design is evaluated and if it has a lower efficiency error
than the current best design, then it is stored. The columns are not created randomly, but
— as the name suggests — are generated in a structured way using relabeling, swapping,
and cycling techniques. With relabeling, two or more attribute levels within a column
are exchanged with one another. For example, if the attribute levels 1 and 3 are
relabeled, then a column containing the levels (1,2,1,3,2,3) will become (3,2,3,1,2,1).
Swapping involves two or more attribute levels switching place. For example, if the
attribute levels in the first and fourth choice situation are swapped, then (1,2,1,3,2,3)
would become (3,2,1,1,2,3). Cycling is row based, replacing all attribute levels in each
choice situation at the same time by replacing the first attribute level with the second
level, the second level with the third, etc. Typically, the algorithm is set up to first
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relabel for a number of iterations, before moving onto swapping and finally cycling. In
some cases, only subsets of the RSC algorithm are used (e.g., RS or RC).

If an efficient orthogonal design is required, as generated in the case study, it is possible
to construct a single orthogonal design, and from this design relabel the attribute levels
(as described above in the RSC algorithm) within each column to create a number of
different orthogonal designs based on the initial design. Even though all these designs
will be orthogonal, their efficiencies (e.g., according to the D-error) may be different.
The orthogonal design with the lowest efficiency we can find we call an efficient
orthogonal design.

If multiple initial orthogonal designs can be generated (i.e., different fractional factorials
taken from the full factorial), relabeling of each new initial design can also take place.
Note that finding an orthogonal design is not always an easy task, and one may not be
able to find an orthogonal design for given design dimensions.

Rose and Bliemer (2007) provide a more detailed description of the construction of
different types of stated choice experiments.
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Appendix B: Deriving the AVC matrix

The determination of the statistical efficiency of a SC design requires the calculation of
the expected AVC matrix of that design using equation (8), which requires taking the
second derivative of the log-likelihood function in equation (9) that can be written as

(substituting equations (2) and (6)):
A 1 1, =1
( e /umZﬁk zkv|m ]J
ieJ,

I S M K
LT (ﬂ’ﬁ) = zzzymtv Z yjts|m I " Aol 1, ’ exp[ﬁmzﬂkxjkﬂmJ ’
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j Z[Z exp /unZﬂk 1ks|n]}
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Furthermore, we made the normalization assumption that z =1 forall jeJ, , for all

m. Given all respondents, ¢, make decisions from amongst each of the alternatives, j, it
holds that zjejm Vs =1 and Zm ¥, =1, such that equation (A1) can be rewritten as
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Taking all second derivatives for all (and each combination of) parameters yields the
following series of equations:
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In these equations, considering all elemental alternatives in branch m, J,, denotes the
subset of elemental alternatives in which attribute & appears, and J,,, denotes the

subset of elemental alternatives in which both attributes &, and &, appear. Unlike the

second derivatives in the case of the MNL model, equations (A3a) and (A3b) depend on
the model outcomes y, ., that is, which branch was chosen in each choice situation (see

Bliemer and Rose, 2005 and Rose and Bliemer, 2005). As we are interested in the Fisher
information matrix when 7" — oo, we observe that E(Zi1 v,..)=TP,, such that we

will use P to represent y _ in the Fisher information matrix. The validity of this

ms

reformulation is illustrated later in this appendix.

Following from this substitution of P for y , the sub-index ¢ is no longer present

within the equations, such that the summation over the respondents is simply the
multiplicand of the value by 7. The Fisher information matrix, now independent of y,
thus simplifies to the equations (10a,b,c).

In order to check that the analytical computation of the Fisher information matrix
(independent of the observed choices, y) using equations (10a,b,c) is correct, we
compare the outcomes using a simulated approach by creating simulated choices for a
(large) sample of respondents and then estimate the model parameters on this data (see
e.g., Ferrini and Scarpa, in press; Kessels et al., 2006) and take the inverse of the
variance-covariance matrix.

We have simulated the observed choices for a sample of 10,000 respondents given the
efficient SC design shown in Table 2. Based on this simulated sample, we estimate a
nested logit model using Nlogit 4.0 and obtain the Fisher information matrix and
estimated parameter estimates from the simulated sample.® The Fisher information
matrix from this exercise is given in Table A (normalized to 7=1). Using the parameters
obtained in estimation, we next calculate the Fisher information matrix for the design
using equations (10a,b,c) which we present also in Table A (assuming 7=1). Note that

® The simulated data and Nlogit syntax can be found at http://www.itls.usyd.edu.au/about_itls /staff/johnr.asp.
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the two are virtually equivalent. It is interesting to note that similar results are already
obtained for sample sizes as low as 100 respondents.
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Table A: Simulated and Analytically derived Fisher Information Matrices

Simulated Fisher information matrix (from Nlogit 4.0)

A 5 A
| 1.66 14.82 1.74 5.17 -0.30 -15.88 -0.48 -14.24 -1.36 -10.84 17.50
| 14.82 103571 102.78  47.82  -12.66  -707.24 -24.25 -556.18 -40.85  -447.30  707.83
o 1.74 102.78 16.77 5.83 -1.14 -62.38 -2.50 -70.79 -6.13 -48.85 78.45
ot | 517 47.82 5.83 17.75  -1.08 -58.84 -1.65 -42.74 -4.12 -36.07 57.91
> | -0.30 -12.66 -1.14 -1.08 1.65 82.11 3.44 -54.98 -3.61 5.89 -9.17
B | -1588 -707.24  -62.38 -58.84 8211 423335 168.06 -2765.29 -176.17 32691  -510.24
2 | .0.48 -24.25 -2.50 -1.65 3.44 168.06 8.79 -119.44 -7.95 11.12 -17.16
" | 1424 55618  -70.79  -42.74 5498 276529 -119.44 308259  201.01  264.95 -433.25
| -1.36 -40.85 -6.13 -412  -3.61 -176.17 -7.95 201.01 15.62 20.87 -34.52
A% | -10.84  -447.30 -4885 -36.07  5.89 326.91 11.12 264.95 20.87 210.80  -334.61
A" | 1750  707.83 7845 5791  -9.17 -510.24  -17.16 -433.25  -3452  -33461 535.40
Analytically derived Fisher information matrix (from equations (10a,b,c))
) a y 5 ) B ) A )" a A
ot 1.66 14.83 1.74 5.17 -0.30 -15.94 -0.48 -14.21 -1.36 -10.84 17.51
™ | 14.83  1035.88 102.77 47.86 -12.69  -709.28  -24.33  -554.67  -40.76  -447.38  707.98
o 1.74 102.77 16.77 5.84 -1.14 -62.55 -2.51 -70.66 -6.12 -48.88 78.46
ot | 517 47.86 5.84 17.75  -1.08 -59.03 -1.66 -42.62 -4.12 -36.08 57.94
2 | -0.30 -12.69 -1.14 -1.08 1.65 82.36 3.45 -55.15 -3.62 5.91 -9.20
A | -15.94  -709.28  -62.55 -59.03 8236 424561 16858  -2773.45 -176.66  327.87  -511.53
> | -0.48 -24.33 -2.51 -1.66 3.45 168.58 8.81 -119.80 -7.97 11.16 -17.23
" | .1421 55467  -70.66  -42.62 -55.15 -2773.45 -119.80 3087.93  201.33  264.26  -432.28
| -1.36 -40.76 -6.12 -4.12 -3.62 -176.66 -7.97 201.33 15.64 20.83 -34.46
A% | -10.84  -447.38  -48.88 -36.08 5091 327.87 11.16 264.26 20.83 210.85  -334.69
A" | 1751 707.98 7846  57.94  -920  -51153  -17.23  -43228  -34.46  -334.69 53552
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