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1. Introduction 
The generation of experimental designs specifically for the purpose of stated choice (SC) 
surveys has attracted much attention of late. Unlike most data, SC data requires that the 
analyst design the data in advance by assigning levels to the attributes that define each of 
the alternatives which respondents are asked to consider. Traditionally, the attribute levels 
are allocated to the each of the alternatives according to some generated experimental 
design, with the most common approach being to use a fractional factorial design to 
generate a series of single alternatives which are then allocated to choice sets using 
randomised, cyclical, Bayesian or foldover procedures (see e.g., Bunch et al., 1994; Huber 
and Zwerina, 1996; Kanninen, 2002; Louviere and Woodworth, 1983; Sándor and Wedel, 
2001, 2002, 2005). A significant amount of research effort has recently been devoted to 
how better to assign the attribute levels to alternatives and in turn, the resulting alternatives 
to choice situations. By and large, these efforts have concentrated on methods to promote 
greater gains in the statistical efficiency of SC experiments (e.g., Bunch et al., 1994; 
Carlsson and Martinsson, 2002; Huber and Zwerina, 1996; Kanninen, 2002; Sándor and 
Wedel, 2001, 2002, 2005). What this stream of research has shown is that how the attribute 
levels of a design are distributed over the course of the experiment, via the underlying 
experimental design, will impact to a greater or lesser extent upon whether or not an 
independent assessment of each attributes contribution to the choices observed to have been 
made by sampled respondents can be determined.  

Primarily, these research efforts have concentrated on the concept of improving the 
statistical efficiency of experimental designs generated for SC studies. In doing so, 
researchers have defined statistical efficiency in terms of increased precision of the 
parameter estimates for a fixed sample size. In taking such a definition, statistical efficiency 
within the literature has therefore been linked to the standard errors likely to be obtained 
from the experiment, with designs that can be expected to i) yield lower standard errors for 
a given sample size, or ii) the same standard errors given a smaller sample size, being 
deemed more statistically efficient. In order to calculate the statistical efficiency of a design, 
Bunch, et al. (1994), Huber and Zwerina (1996), Sándor and Wedel (2001) and Kanninen 
(2002), amongst others, have shown that the common use of logit models to analyze 
discrete choice data requires a priori information about the parameter estimates, as well as 
the final econometric model form to be estimated. 

Information on the expected parameter estimates is required in order to calculate the 
expected utilities for each of the alternatives present within the design. Once known, the 
expected utilities may in turn be used to calculate the likely choice probabilities. Hence, 
given knowledge of the attribute levels (the design), expected parameter estimate values and 
choice probabilities, it becomes a straightforward exercise to calculate the asymptotic 
variance-covariance (AVC) matrix for the design, from which the expected standard errors 
can be obtained. By manipulating the attribute levels of the alternatives, for known 
(assumed) parameter values, the analyst is able to minimize the elements within the AVC 
matrix, which in the case of the diagonals means lower standard errors and hence greater 
reliability in the estimates at a fixed sample size, or even at a reduced sample size. The 
linking of the experimental design generation process to attempts to reduce the asymptotic 
standard errors of the parameter estimates has resulted in a class of designs known as 
‘efficient designs’ where a design that, when used in practice, is expected to produce 
smaller asymptotic standard errors for a given sample size is thought of as being more 
‘efficient’.  

Two main criticisms of the efficient design approach resonate within the literature. Firstly, 
in order to calculate the AVC matrix for a SC design, the analyst requires a priori 
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knowledge of the utility functions for data that will be collected using that design. This is 
because the values of the AVC matrix map directly to both the attribute levels and the 
choice probabilities of the alternatives contained within the design. The choice probabilities 
for a given design are in turn a function of the attribute levels as well as the parameter 
estimates associated with the attributes. The attribute levels are represented by the design 
itself, and are determined during the design construction phase. We note that the 
requirement of determining the attribute levels is independent of the type of experimental 
design implemented (e.g., if an orthogonal design is used the attribute levels still need to be 
determined), and hence this issue is not specific to the generation of efficient designs. 
Unfortunately, the exact parameter values are unlikely to be known at the design 
construction phase, and as such, the researcher may have to make certain assumptions as to 
what values (termed priors) these will be in order to generate an efficient design. To 
overcome this problem, three approaches have been used in the past.  

The first approach involves researchers making the strong assumption that all parameter 
priors are simultaneously equal to zero (e.g., Burgess and Street, 2003; Huber and Zwerina, 
1996; Street and Burgess, 2004; Street et al., 2005). This approach has the advantage of not 
requiring any advanced knowledge of the parameter estimates, however, such designs are 
likely to be truly optimal in practice only when the parameter estimates are zero. That is, 
such an approach is likely to require larger sample sizes in practice to achieve given values 
for the standard errors of the design than otherwise would have been the case had 
reasonable non-zero priors been used at the time of design construction (see e.g., Bliemer 
and Rose, 2006, 2009). The second approach that has sometimes been used in the past has 
been to assume that the parameter priors are non-zero and known with exact certainty (e.g., 
Carlsson and Martinsson, 2003; Rose and Bliemer, 2005; Scarpa and Rose, 2008). In such 
an approach, fixed non-zero values are assumed for the prior parameter estimates. This 
approach is relatively simple to implement, however questions remain as to the robustness 
of the designs should the assumed parameter priors be misspecified. 

Sándor and Wedel (2001) introduced a third approach by relaxing the assumption of perfect 
a priori knowledge of the parameter priors through adopting a Bayesian like approach to 
the design generation process. Rather than assume a single fixed value for each parameter 
prior, the efficiency of the design is calculated over a number of simulated draws taken 
from prior parameter distributions assumed by the analyst. Different distributions may be 
associated with different population moments representing different levels of uncertainty 
with regards to the true parameter values. In this way, by optimizing the efficiency of the 
design over a range of possible parameter prior values (drawn from the assumed parameter 
prior distributions), the design is made as robust as possible, at least for the range assumed1. 

The second criticism often leveled at this design approach is the need to know in advance 
the precise econometric model that will be estimated once data has been collected. There 
unfortunately exist many forms of possible discrete choice models that analysts may wish to 
estimate once SC data has been collected (e.g., MNL, NL, GEV, MMNL). Unfortunately, 
the log-likelihood functions of different model types are typically different from each other 
and given that the AVC matrix for such models is mathematically given as the inverse of 
the second derivatives of the models log-likelihood function, the AVC matrix for each type 
of model will also therefore be different. As such, the construction of efficient designs 
requires not only an assumption as to the parameter priors assumed, but also what AVC 
matrix the analyst is attempting to optimize.  
                                                           

1 For example, one would expect for most SC studies that a price parameter will be negative. If the expected parameter value is 
not known with any level of accuracy, then the analyst may assume say a uniform distribution ranging from -0.1 to -1.0 (or any 
other negative values depending on the magnitude of the expected parameter), thus optimizing the design over this range of 
possible population parameter values. 
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Given differences in the AVC matrices of different discrete choice models, attempts at 
minimising the elements of the AVC matrix assuming one model, may not necessary 
minimize the elements of the AVC matrix of another model. Similar to the problem 
involving knowledge of the parameter estimates, the analyst is unlikely to know precisely 
what model is likely to be estimated in advance, the problem becomes one of having to 
select the most likely model that will be estimated once data has been collected. In the past, 
little attention has been given to this issue, with only a small amount of research examining 
the issue in any depth (see e.g., Bliemer et al., 2009). 

In this paper, we propose the use of a model averaging approach to solve this latter 
problem. This solution involves calculating the AVC matrix for all possible models that 
might be estimating post data collection and minimising a weighted average measure of 
efficiency across these possible models. This approach has the advantage of not requiring 
precise knowledge of the exact econometric model to be estimated whilst allowing for 
statistical efficiency across a broad spectrum of possible model types. The model averaging 
approach may also be conducted in conjunction with the use of Bayesian prior parameters, 
thus allowing for both prior parameter and model estimation uncertainty during the design 
generation phase. The approach does come at a cost however, with the generated design 
unlikely to be as efficient a design when compared to a design generated specifically for the 
particular model type used post data collection.  

In this paper, we explore three different possible models in generating SC designs. These 
include the multinomial logit (MNL), mixed MNL (MMNL, referred to as the random 
parameters model in some literature) and the error components (EC) models. In discussing 
the MMNL and EC models, further distinctions are made between the cross sectional and 
panel formulations of these models. To demonstrate the robustness of this design approach, 
we construct a case study where we separately construct designs specifically for each model 
type and compare and contrast these designs with a number of designs constructed using the 
model averaging approach. In generating the designs, we use combinations of fixed and 
Bayesian priors, thus demonstrating the complete flexibility of the approach. In constructing 
the case study, we further compare the effect of using different weights for each model type 
as well as the impact of using a traditionally generated orthogonal design on the statistical 
efficiency of the expected results. 

The remainder of the paper is organised as follows. In section 2 we discuss the different 
model types used throughout the paper in detail. In doing so, we discuss differences in the 
utility specifications, probabilities, log-likelihood functions, and AVC matrices of each of 
the models. In Section 3, we discuss the process of generating efficient designs as well as 
outlining statistical measures of the efficiency of designs. Section 3 also discusses the 
design generation process and statistical efficiency measures when using the model 
averaging approach, the focus of this paper. In Section 4, we present a case study, the 
resulting designs of which are presented in Section 5. In generating the designs, we generate 
different designs that are optimised specifically for different model types which we 
compare and contrast to designs generated using the model averaging approach as well as to 
orthogonal designs. Section 6 presents results examining tests conducted on the robustness 
of the designs generated, after which Section 7 provides a discussion and conclusion of the 
general findings presented within the paper. 
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2. Methodology 
In this section, we outline the differences between the MNL, MMNL, and EC models. We 
begin by examining differences in the utility specifications of these models, after which we 
discuss the assumptions underlying each of the models log-likelihood functions. We next 
describe how the various models produce different choice probabilities. Finally, we 
conclude with an examination of differences in the (co)variance matrices of these models. 
In discussing the MMNL and EC models, we distinguish between different 
conceptualizations of these models based on different assumptions related to the 
interdependence of choice observations within the data.   

 

2.1 Utility specification 

Let nsjU  denote the utility of alternative j perceived by respondent n in choice situation s. 

nsjU  may be partitioned into three separate components, an observed component of utility, 
,nsjV  an unobserved (or un-modeled) component of utility, ,nsjη  and an unobserved (and un-

modeled) component, ,nsjε such that 

.nsj nsj nsj nsjU V η ε= + +  (1)

The observed component of utility is typically assumed to be a linear relationship of 
observed attribute levels of each alternative, x, and their corresponding weights 
(parameters), .β In the MNL model, the parameter weights for each attribute are invariant 
over respondents, such that the observed component of utility may be represented as 

1

.
K

nsj jk nsjk
k

V xβ
=

=∑  (2)

Unlike the MNL model, some or all of the parameter weights of the MMNL model are 
assumed to vary with density ( | )f β Ω  over the sampled population. Assumptions as to 
how these parameter weights vary over the population have in the past resulted in two 
different formulations of the MMNL model. One version of the model, known as the cross 
sectional MMNL formulation, assumes that the parameter weights vary with density over 
both n and s suggesting that preference heterogeneity exists both within and between 
individuals, even when the same individual is observed to make s choices within a similar 
choice context. The second version of the model, known as the panel MMNL formulation, 
assumes that preferences vary between individuals but not within. The assumption that 
preferences vary between and not within respondents accounts for the pseudo panel nature 
of SP data (Ortúzar and Willumsen, 2001; Revelt and Train, 1998; Train, 2003). Equations 
(3a) and (3b) represent the observed components of utility under both the cross sectional 
and panel formulations of the MMNL model specifications.  

1

,
K

nsj nsk nsjk
k

V xβ
=

=∑  (3a)

1
.

K

nsj nk nsjk
k

V xβ
=

=∑  (3b)
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Like the MMNL model, the EC model involves estimation of one or more random 
parameters. Unlike the MMNL model however, the random parameter estimates of the EC 
model are associated with alternatives, j, not attributes, x. To estimate the model, the analyst 
first specifies a set of dummy variables, with each dummy variable able to appear in the 
utility specifications of up to J-1 alternatives. Next, generic normally distributed random 
parameters with means normalised to zero, represented as nsjη in Equation (1), are estimated 
for each of the defined dummy variables. By associating each nsjη with different subsets of 
alternatives, the parameters (which represent standard deviations set around a mean of zero) 
capture different common error variances associated with those alternatives for which they 
are estimated for. Note that utility specifications with alternative specific constants and 
alternative specific error components will be equivalent to a MMNL model with normally 
distributed random constant terms. Also, as with the MMNL model, the random parameters 
of the EC model may be estimated with density over both n and s (cross sectional EC 
model) or only over n (panel EC model). 

Assuming the analyst fails to specify error components as part of the utility functions of the 
model, then Equation (1) will collapse to  

  
,nsj nsj nsjU V ε= +  (4)

which represents the most common form of utility representation within the literature. 

Finally, for all logit type models, the second unobserved component of utility, ,nsjε  are 
assumed to be identically and independently extreme value type 1 (EV1) distributed.  

 

2.2 Model probabilities  
Depending on the assumptions made about the utility specifications as outlined above, 
different functional forms of the logit model will be arrived at. We now outline in turn how 
the assumptions made about the different models influence the choice probabilities derived 
for each of the models.  

 

2.2.1 The MNL model 
The choice probabilities of the MNL model are derived from a number of assumptions 
about the choice behaviour of respondents. In particular, aside from the assumption that 

nsjε are IID EV1, the MNL model assumes that the marginal utilities for the attributes and 
variables specified within the system of utility equations are fixed for the sampled 
population and that 0.nsjη = Under these assumptions, the probability, ,nsjP  that respondent 
n chooses alternative j in choice situation s is given by 

( )
( )

exp
.

exp
ns

nsj
nsj

nsii J

V
P

V
∈

=
∑

 (5)
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2.2.2 MMNL and error components models 
Both the MMNL and EC models differ from the MNL model in that we now assume that 
(some of) the parameters (or error components) are random, following a certain probability 
distribution. The choice probabilities of the MMNL model therefore depend on the random 
parameters. Both models utilize the MNL probabilities given in Equation (5), however 
rather than calculate a single probability for each alternative, both models calculate the 
choice probabilities for each random draw taken from the assumed probability 
distribution(s). In this way, multiple choice probabilities are obtained for each alternative, 
as opposed to a single set of probabilities as obtained from the MNL model. It is the 
expectation of these probabilities over the random draws which are calculated and used in 
the model estimation process. The expected choice probabilities for the MMNL logit and 
EC models are given in Equations (6a) and (6b) respectively. 

( )
( ) ( )

exp
| ,

exp
ns

nsj
nsj

nsii J

V
E P f d

Vβ

β θ β
∈

⎡ ⎤ =⎣ ⎦ ∫ ∑
 (6a)

 
( )

( ) ( )
exp

| .
exp

ns

nsj
nsj

nsii J

V
E P f d

Vη

η θ η
∈

⎡ ⎤ =⎣ ⎦ ∫ ∑
 (6b)

Equations (6a) and (6b) provide the choice probabilities at the level of the alternatives. In 
the cross sectional formulations of the MMNL and EC models, it is these probabilities that 
are used directly in model estimation. In the panel formulations of the MMNL and EC 
models, the choice probabilities given in Equations (6a) and (6b), whilst calculated, are not 
of direct interest. Rather, what are of interest are the probabilities of observing the sequence 
of choices made by each respondent, not the probabilities that specific alternatives will be 
observed to be chosen. To this end, we define the probability *

nP  that a certain respondent n 
has made a certain sequence of choices { | 1}

nnsj s Sj y ∈=  with respect to the set of choice 

situations, ,nS  by 

( ) ( )* | ,nsj

n ns

y

n nsj
s S j J

P P f d
β

β θ β
∈ ∈

= ∏∏∫  (7a)

( ) ( )* | ,nsj

n ns

y

n nsj
s S j J

P P f d
η

η θ η
∈ ∈

= ∏∏∫  (7b)

for the MMNL and EC models respectively. 
 

2.3 Model log-likelihood functions 

Typically, the parameters β  contained within each nsiV are unknown and must be estimated 
from data. Let nsjy  equal one if j is the chosen alternative in choice situation s shown to 
respondent n, and zero otherwise. Then the parameters can be estimated by maximizing the 
likelihood function L, 
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( )
1

.nsj

n ns

N y

nsj
n s S j J

L P
= ∈ ∈

=∏∏∏  (8)

where N denotes the total number of respondents and nS  is the set of choice situations faced 
by respondent n. 

Rather than maximize the likelihood function, it is more common to maximize the log of 
the likelihood function instead. This is because taking the product of a series of probabilities 
will typically produce values that are extremely small and which most computing software 
packages will be unable to adequately handle. By taking the logs of the probabilities first, 
large negative values will result, which when multiplied, produce even larger negative 
values. As such, the log-likelihood function of the model, shown below, is typically 
preferred.   

( )
1

ln .
nsj

n ns

yN

nsj
n s S j J

LL P
= ∈ ∈

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
∏∏∏  (9)

In the sections that follow, we attempt to differentiate between the log-likelihood functions 
of the various models explored throughout this paper. 
 

2.3.1 The MNL model 
In order to derive the log-likelihood function of the MNL model, an assumption is made 
that all choice observations are independent of each other. That is, even in data where the 
same individual is observed to make multiple choices, the log-likelihood function of the 
MNL model treats the data as if the observed choices have been made by separate pseudo 
individuals. Using the mathematical properties ( )1 2 1 2ln ln( ) ln( )n n n n= +  and 

1 1ln( ) ln( ),njsy
njsn y n=  and applying the same mathematical rules to choice tasks, s, and 

alternatives, j, this independence of choice observations assumption results in Equation (9) 
being rewritten in the more commonly known form of 

( )
1

ln .
n ns

N

nsj nsj
n s S j J

LL y P
= ∈ ∈

=∑∑ ∑  (10)

The Log-likelihood function of the MNL model given in Equation (10) will be globally 
concave for linear in the parameters utility specifications (see McFadden 1974) suggesting 
that there should exist a single set of parameter estimates that will maximise this function.  
 

2.3.2 Cross sectional MMNL and error components models 
The log-likelihood functions of the cross sectional MMNL and EC models are derived 
under the same assumptions of choice observation independence as made with the MNL 
model. The difference between these two models and the MNL model however is that the 
choice probabilities used for the MNL are replaced with the expected choice probabilities 
given in Equations (6a) and (6b). Using the same mathematical rules used to derive the 
MNL model log-likelihood function, and noting additionally that 
( )1 2 1 2( ) ( ),E n n E n E n= the log-likelihood functions of the cross sectional MMNL and EC 

models may be represented as 
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( )
1

ln .
n ns

N

nsj nsj
n s S j J

LL y E P
= ∈ ∈

⎡ ⎤= ⎣ ⎦∑∑ ∑  (11)

 

2.3.3 Panel MMNL and error components models 
The derivation of the log-likelihood functions of the panel formulations of the MMNL and 
EC models differ to those of their equivalent cross sectional forms, as well as to that of the 
MNL model, in that the choice observations are no longer assumed to be independent 
within each respondent (although the independence across respondents assumption is 
maintained). Mathematically, this means that ( )1 2 1 2( ) ( ),E s s E s E s≠ and hence we are no 

longer able to invoke the mathematical rule ( )1 2 1 2ln ln( ) ln( ).s s s s= +  Given this, the log-
likelihood functions of the panel MMNL and EC models may respectively be represented as 

( ) ( )
1
ln | ,nsj

n ns

N y

nsj
n s S j J

LL P f d
β

β θ β
= ∈ ∈

=∑ ∏∏∫  (12a)

( ) ( )
1
ln | ,nsj

n ns

N y

nsj
n s S j J

LL P f d
η

η θ β
= ∈ ∈

=∑ ∏∏∫  (12b)

 
or 
 

( )*

1

 ln
N

n
n

LL P
=

= ∑  (12c)

In the next section we outline the AVC matrices of each of the model types considered 
within this paper. 
 

2.4 Model variance-covariance matrices 
The generation of efficient SC experiments requires first an estimation of the AVC matrix 

of the design, .NΩ  The AVC matrix NΩ  can be determined as the inverse of the Fisher 

information matrix, ,NI  which in turn can be computed using the second derivatives of the 
log-likelihood function of the discrete choice model to be estimated (see Train, 2003). 
Mathematically, the AVC matrix for the MNL may be represented as 

2
1 log, with  ,

'N N N N
LLI I E

β β
− ⎛ ⎞∂

Ω = = − ⎜ ⎟∂ ∂⎝ ⎠
 (13a)

whilst the AVC matrix of the MMNL and EC models becomes  
2

1 log ( ), with  ,
'N N N N

E LLI I E
θ θ

− ⎛ ⎞∂
Ω = = − ⎜ ⎟∂ ∂⎝ ⎠

 (13b)

where ( )NE ⋅  is used to express the large sample population mean. Hence, the AVC matrix 
can be determined by calculating the Hessian matrix of the log-likelihood function for the 
specific model.  

As was seen in Section 2.3, different discrete choice models have different log-likelihood 
functions. Given that the AVC matrix of a discrete choice model is calculated as the inverse 
of the second derivatives of the log-likelihood function of that model, it is clear that each 
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model will also yield a different AVC matrix. In this section, we reproduce the second 
derivatives of the log-likelihood functions for each of the models discussed as part of this 
paper.  

 

2.4.1 The MNL model 
The second derivatives of the log-likelihood function of the MNL depend on whether the 
parameter estimates are generic or alternative specific (see Bliemer and Rose, 2005). Let 

*
nsjx and nsjx represent attributes for which generic, given as *,β  and alternative specific, 

represented by ,jβ   parameters are to be estimated for respectively. Assuming that all 
respondents face the same choice situations, s, the second derivatives of the MNL log-
likelihood function yields the following expressions (see Rose and Bliemer, 2005) 

1 2 2

1 2

2
* * *

* *
1 1n ns

N J

nsjk nsj nsjk nsi nsik
n s S j J ik k

LogL x P x P x
β β = ∈ ∈ =

∂ ⎛ ⎞
= − −⎜ ⎟∂ ∂ ⎝ ⎠
∑∑ ∑ ∑  (14a)

1 1 1 1 2 2

1 1 2

2
* *

*
1 1n ns

N J

j k s j s j k s ik s is
n s S j J ij k k

LogL x P x x P
β β = ∈ ∈ =

∂ ⎛ ⎞
= − −⎜ ⎟∂ ∂ ⎝ ⎠
∑∑ ∑ ∑

 
(14b)

( )

1 1 2 2 1 2

1 1 2 2
1 1 2 2 1 2

1 22
1

1 2
1

, if  ;

1 , if  .

n ns

n ns

N

j k s j k s j s j s
n s S j J

N
j k j k

j k s j k s j s j s
n s S j J

x x P P j j
LogL

x x P P j j
β β

= ∈ ∈

= ∈ ∈

⎧ ≠⎪
∂ ⎪= ⎨∂ ∂ ⎪− − =

⎪⎩

∑∑ ∑

∑∑ ∑  
(14c)

Note that the choice index, ,njsy  drops out of the second derivatives of the MNL log-
likelihood function, with only the design, x, and choice probabilities remaining. Given this 
result, it is not necessary to know a prior what alternatives will be chosen in the sample 
data in order to calculate the expected AVC matrix of the model. All the analyst requires to 
know is the design, and the choice probabilities. Given that the choice probabilities are a 
function of the design as well as the parameter estimates (see Equation (5)), in generating 
an efficient design, the analyst is required to make certain assumptions regarding the 
parameter estimates in advance. We discuss this further in Section 3. 
 

2.4.2 Cross sectional MMNL and error components models 

The AVC matrix of the MMNL and EC models are somewhat more complicated than those 
of the MNL model given that the parameter and error component estimates are now assume 
to be randomly distributed. Let kM  represent a vector of parameters related to the 
probability distributions of the k (either random or error component) parameters, ,kβ  
denoted by [ ],k kmθ θ=  where 1, , .km M= K The second derivatives of this model is given 
as  

( ) ( )( )1 1 2 2 1 1 2 2 1 1 2 2

22

2
1

log ( ) 1 1 .
n ns

N
nsj nsj nsj

nsj
n s S j Jk m k m k m k m k m k mnsj nsj

P P PE L y E E E
E P E Pθ θ θ θ θ θ= ∈ ∈

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
∑∑ ∑ (15) 

Unfortunately, unlike the MNL model, the choice index, ,njsy  does not drop out when 
taking the second derivatives of the log-likelihood function of this model. Thus, in order to 
derive Equation (15), we are forced to rely on asymptotic theory and substitute    
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( ) ( ),N nsj nsjE y E P=  where ( )NE ⋅  is again the large sample mean. In this way, Equation 
(15) becomes equivalent to that given in Sándor and Wedel (2002). 

2.4.3 Panel MMNL and error components models 
Relative to the other models explored herein, the second derivatives of the log-likelihood 
functions of the panel MMNL and EC models are far more complex to compute as a result 
of the product terms resident in Equations (12a) to (12b). Nevertheless, such derivations are 
possible. Bliemer and Rose (2008) show that the second derivatives of Equation (12c) is 

( )
( )

( )( )
( ) ( )

( ) ( )( )

1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

2 * * *2

2* *1

2 * * *

2* *1

log ( ) 1 1

1 1 ,

N
n n n

nk m k m k m k m k m k mn n

N
n n n

n k m k m k m k mn n

E P E P E PE L
E P E P

P P PE E E
E P E P

θ θ θ θ θ θ

θ θ θ θ

=

=

⎛ ⎞∂ ∂ ∂∂ ⎜ ⎟= −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎜ ⎟
⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎜ ⎟= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

∑

∑

 (16)

 

where  
 

*
* ,

n ns

nsj nsjn k
n

s S j Jkm km nsj k

y PP P
P

β
θ θ β∈ ∈

∂∂ ∂
=

∂ ∂ ∂∑ ∑  (17)
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∑ ∑
 (18)

and where /njs kP β∂ ∂  is the first derivative of the multinomial logit probability, 
 

.
ns

nsj
nsj nsjk nsi nsik

i Jk

P
P x P x

β ∈

⎛ ⎞∂
= −⎜ ⎟

∂ ⎝ ⎠
∑  (19)

As with the cross sectional MMNL and EC models, the choice index, ,njsy  does not drop 
out when taking the second derivatives of the log-likelihood function of this model. 
Nevertheless, it is possible once more to for the choice outcomes to be replaced by 

probabilities, since ( )N nsj nsjE y P=  (y follows a multinomial distribution). However, 
( )*

N nE P
 cannot be approximated that easily, as it describes a generalized multinomial 

distribution (Beaulieu, 1991). It is therefore necessary, unlike for designs generated 
specifically for the MNL and cross sectional MMNL and EC models, to simulate a sample 
based on the design x in order to calculate the second derivatives of the model. To do this, 
for each respondent n, we first draw a random parameter kβ  from each given parameter 
distribution, then determine the observed utility nsjV  for each choice situation s based on 
design x. Next we separately draw random values for the unobserved component nsjε  for 
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each alternative in each choice situation, and determine nsjy  by selecting the alternative 

with the highest utility in each choice situation. Note that the same random draw for kβ  is 
used over all choice situations for each respondent, representing the panel formulation. 
 

3. Generation of efficient designs 
In this section, we discuss the general approach used in constructing efficient designs before 
moving onto discussion specifically related to the generation of the efficient designs 
assuming multiple possible econometric model types. 
 

3.1 Efficient design generation process 
Figure 1 outlines the generation process typically associated with the construction of 
efficient designs. The first stage in generating an efficient design is to specify the 
alternatives, attributes, and attribute levels to be used in the experiment as well as the 
number of choice situations that are to be shown to each respondent. The experimental 
design itself, once constructed, describes which hypothetical choice situations the 
respondents will be presented with over the course of a SC experiment. Typically, an 
experimental design represents nothing more than a matrix X of numbers in which each row 
represents a choice situation. The numbers in the table correspond to the attribute levels for 
each attribute (e.g., -1, 1) associated with the alternatives and are replaced by their actual 
attribute levels later on in the questionnaire (e.g., $1, $1.50). Different coding schemes can 
be used for representing the attribute levels in the experimental design. The most common 
ones used in practice are design coding (0, 1, 2, 3, etc.), orthogonal coding ({-1,1} for two 
levels, {-1,0,1} for three levels, {-3,-1,1,3} for four levels, etc.), or coding according to the 
actual attribute level values. Note that the alternatives, attributes and attribute levels must be 
defined prior to the design construction process and may be determined by use of secondary 
research such as focus groups or in-depth interviews.  

The number of choice tasks to be shown to respondents is determined by the analyst, 
however, pilot surveys may offer insight into the maximum number that any one respondent 
may reasonably be able to handle. The theoretical minimum number of choice tasks, S, 
required for a design is determined by the number of parameters to be obtained from that 
design and is calculated simply as the number of parameter estimates, not including 
constants, plus one. This lower bound exists as any number of choice tasks lower than this 
value will not allow for the Fisher information matrix, ,NI to be inverted, and hence the 
AVC matrix to be calculated for the design. Factors such as attribute level balance (where 
each attribute level appears an equal number of times across the experiment) may also 
influence the minimum number of choice situations that may be required for a given design. 
Note that with blocking or random assignment of choice tasks to subsets of respondents, the 
minimum number of choice tasks required for a given design need not be equal to the 
number of choice tasks shown to each respondent. 

Once the alternatives, attributes and attribute levels have been determined, the next stage is 
to define the utility specification in full for the design. This involves determining (i) what 
parameters will be generic and alternative specific; (ii) whether attributes will enter the 
utility function as dummy/effects codes or some other format; (iii) whether main effects 
only or interaction terms will be estimated; (iv) the values of the parameter estimates likely 
to be obtained once the model is estimated; and (v) the precise econometric model that is 
likely to be estimated from data collected using the experimental design. Points (i) to (iii) 
impact directly upon the design matrix X, whereas point (iv) influences the AVC matrix via 
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the choice probabilities and point (v) via the choice probabilities as well as influencing the 
dimensionality of the AVC matrix itself. Points (i) to (iii) also impact upon the minimum 
number of choice situations required for the design. 
 

 
Figure 1: Design generation process 

Given the design dimensions, the next stage is to generate an initial design. The initial 
design can be either orthogonal or simply randomly generated, however it is worth noting 
that it might not always be possible to construct an orthogonal design as such designs only 
exist for a subset of cases. The next step is to evaluate the statistical efficiency of the 
design. Many efficiency measures have been proposed in the literature in order to calculate 
an efficiency value based on the AVC matrix for the assumed model type. Typically these 
measures are expressed as an efficiency ‘error’ (i.e., a measure for the inefficiency), with 
the objective then to locate a design that minimizes this efficiency error. The most widely 
used measure is called the D-error, which takes the determinant of the AVC matrix 1,Ω  
assuming only a single respondent.2 Other measures exist, such as the A-error, which takes 
the trace (sum of the diagonal elements) of the AVC matrix, however, in contrast to the D-
error, the A-error is sensitive to scaling of the parameters and attributes, hence here only the 
D-error will be discussed. 

The D-errors are a function of the experimental design X and the prior values (or prior 
probability distributions)β , and can be mathematically formulated as: 

( )1/
1-error det ( ,0) ,K

zD X= Ω  (20)

( )1/
1-error det ( , ) ,K

pD X β= Ω  (21)

                                                           
2 The assumption of single respondent is just for convenience and comparison reasons and does not have any further 
implications. Any other sample size could have been used, but it is common in the literature to normalize it to a single respondent. 
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( )1/
1-error det ( , ) ( | ) .K

bD X d
β

β φ β θ β= Ω∫  (22)

where K is the number of parameters to be estimated. Within the literature, designs which 
are optimized without any information on the priors (i.e., assuming β =0) are referred to as 
Dz–efficient designs (Equation (21), whereas designs optimized for specific fixed (non-
zero) prior parameters are referred to as Dp–efficient designs (Equation (21)). In (Bayesian) 
Db– efficient designs (Equation (22)), the priors β  are assumed to be random variables 
with a joint probability density function ( )φ ⋅  with given parameters .θ  

The next stage in the design generation process involves changing the location of some or 
all of the attribute levels in the design matrix, X, and recalculating the efficiency measure 
for the new design, using the same parameter priors. This step is repeated R number of 
times, each time recording the designs relative level of statistical efficiency and storing the 
design matrix with the best relative efficiency measure. By changing the design R number 
of times, the analyst is in effect able to compare the efficiency of each of the R different 
design matrices. It is important to note that only for designs with relatively small numbers 
of alternatives, attributes and attribute levels, will it be possible to search the full 
enumeration of possible attribute level combinations that exist. As such, it is often 
necessary to turn to algorithms to examine as many different designs as is possible in a 
given time frame. In order to achieve this, a number of algorithms have been proposed and 
implemented within the literature for determining how best to change the attribute levels in 
locating efficiency designs, however a detailed discussion of these algorithms is beyond the 
scope of the current paper. Interested readers are directed to, for example, Bliemer and Rose 
(2006), Kessels et al. (2006) or Rose and Bliemer (2008) for a detailed discussion of such 
algorithms.  

Once an efficient design has been generated, it is common practice to test the expected 
design performance prior to its use in practice. Such tests have typically taken one of two 
forms in the past. Firstly, some researchers use a similar approach to the design generation 
process, however rather than fixing the parameter priors (or distributions), changing the 
design and then testing the efficiency of each new design, they fix the design, change the 
parameter priors and then test the efficiency of the design under the new set of assumed 
parameters (see e.g., Rose and Bliemer 2008b). By taking this approach, the analyst is able 
to observe the robustness of the design to parameter prior misspecification, particularly if 
the parameter values explored are outside of the range considered in the design generation 
process.  

Other researchers have employed a different approach to testing generated designs in the 
past, by taking the design and applying Monte Carlo simulations to test i) whether a correct 
data generation process has been used in constructing the design and ii) the accuracy of the 
parameter estimates likely to be obtained from the design at various sample sizes should 
that design be used in practice (see e.g.,. Kessels et al. 2006 or Ferrini and Scarpa 2007). 
Figure 2 demonstrates the Monte Carlo simulation process often employed within the 
literature. Starting with the generated experimental design, data based on a sample of 

respondents (or choice observations) is first simulated, including a choice variable, .njsy The 
choice variable is created by first calculating the utilities for each choice observation based 
on the design attributes and a set of known prior parameter estimates which when added to 
an additional simulated random error term, produces different utility values for each of the 
alternatives. Once the utilities for each alternative are calculated, the alternative with the 
highest utility is assumed to be the one selected. Once a sample has been simulated, discrete 
choice models are estimated on the simulated data with the resulting outputs (e.g., 
parameter values, standard errors) then compared to the known input values (e.g., parameter 
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priors). By simulating different random error terms, different samples may be generated, 
and the process repeated over each new simulated sample, a total of R times. 
 

  
Figure 2: Monte Carlo simulation process 

A number of different measures have been proposed to compare the input parameters to 
those obtained from the Monte Carlo simulation process. In this paper, we rely on three, the 
first two being the mean square error (MSE) and the relative absolute error (RAE). 
Equations for the calculating the MSE and RAE statistics are given in Equations (23) and 
(24) respectively for the parameter estimates. Similar equations may be used for other 
model outputs, such as the standard errors, or even D-error values if so desired. 

( )2( )

1

1 ,
R

r
k

r

MSE
R

β β
=

= −∑  (23)

( )( )

1

1 ,
rR

k

r

RAE
R

β β
β=

−
= ∑  (24)

where ( )r
kβ  is the parameter estimate obtained at sample iteration r, and β is the known 

prior parameter estimate used in constructing the Monte Carlo simulation. 

The final measure we use is the expected mean square error of the parameter estimates 
(EMSE). Unlike the MSE and RAE which capture statistical evidence of any potential 
biases in the individual parameters, the EMSE provides a single summary statistic of the 
overall bias and variances across all parameter estimates which may be used easily to 
compare different designs. The EMSE is given as Equation (25). 

( ) ( )( ) ( )

1

1 .
R

r r
k k

r

EMSE
R

β β β β
=

′
= − −∑  (25)

3.3 Uncertainty in the model type: Model averaging 
The statistical efficiency of a design as discussed in Section 3.1 relates to the AVC matrix 
for a single assumed model type. As discussed in Section 2.4 however, different discrete 
choice models will result in different AVC matrices and as such, it follows that the 
efficiency of a given design will relate to the specific model assumed in its construction. 
Given this situation, it is likely that a design generated for a specific model type will be less 
(or possibly more) efficient if applied to a different model type for which it was generated 
for. As with the parameter priors, however, it is possible to take a somewhat Bayesian 
approach to the problem, by constructing multiple AVC matrices for a given design 
assuming different model types and calculating an efficiency measure for each AVC matrix 
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thus derived. Note that it is also possible to assume different prior parameter estimates for 
the different models assumed in the design construction process.  

Assuming that the same efficiency measure is used for each AVC matrix (e.g., D-error), the 
analyst may then apply some form of weight to each measure to arrive at a composite 
weighted average measure of efficiency over all model types. In taking this approach, the 
relative weight applied to each efficiency measure would reflect the likelihood that the 
model to which the efficiency measure belongs would be the one that is estimated on the 
final data collected using that design. In the case where the likelihood that the final model 
type to be estimated is unknown, it is possible that each efficiency measure be given an 
equal weight in the averaging process. If however one expects that for example, a panel 
MMNL model is more likely to be estimated on the final data set collected, then the 
efficiency measure for the AVC matrix of this model type can be given a greater weight 
than for other model types assumed when generating the composite efficiency measure. 
Independent of the weights applied, the design construction process proceeds as previously 
described, the only difference being that the weighted average efficiency measure is used to 
compare different designs as opposed to the individual model type efficiency measures. 

Problems arise however if different efficiency measures (e.g., D-error and A-error) are used 
for the different model types assumed in the weighted averaging of the efficiency measure. 
This is because the different efficiency measures are measured on different metric scales 
and are likely to produce values with widely different relative magnitudes. For example, a 
design might produce a D-error value of 0.2 and an A-error value of 100. In such a case, the 
analyst would need to at a minimum normalize in some manner the different measures to 
some form of common metric. Unfortunately, to do this would require advanced knowledge 
of the likely magnitudes of the different efficiency measures, which is unlikely to be known 
prior to design generation. As such, it is recommended that a common efficiency measure 
type be applied to all model types when using the model averaging approach.  
 

3.4 A note on the relationship between statistical efficiency and sample size 
Although within the confines of this paper, we use D-error as our sole criteria of efficiency, 
it is worth highlighting the precise link that exists between the statistical efficiency of a 
design and the sample size required for that design. As suggested by Equations (13a) and 
(13b), the AVC matrix NΩ  can be computed for any sample size N. Indeed, 
mathematically, Bliemer and Rose (2009) argue that 1,NI N I= ⋅  and hence 

( )1 11 1
1.N N NN NI I− −Ω = = = Ω   Given such a relationship, it follows that the standard error for 

the kth attribute of a design may be represented as  

,k
k N

sese
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=  (25)

and the asymptotic t-ratio  
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Re-arranging Equation (24), we obtain 
2

. ,k k

k

se tN
β

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 (27)

an equation that may be used to compute the theoretical minimum sample size for each 
parameter of the design.  

In generating a design however, the values of kβ  are not estimated but rather are assumed 
inputs in the form of the parameter priors. Similarly, the values of kt are not estimated, but 
must be pre-specified by the analyst, with a logical value being 1.96 or greater to ensure 
that the parameter will be statistically significant with at least 95 percent certainty. In taking 
this approach, each parameter of the design will have a different theoretical minimum 
sample with the theoretical minimum sample size for the overall design being the value of 
the largest calculated N, thus ensuring that all parameters of the design are likely to be 
found statistically significant post data collection. Note that the sample sizes calculated in 
this manner represent a theoretical minimum sample size as other factors, such as parameter 
stability may require larger sample sizes than suggested by Equation (27). 
 

4. Case study 
In order to illustrate the theory of efficient designs and the use of model averaging in the 
construction of such designs, we now consider a case study examining a specific discrete 
choice problem. In doing so, we generate 10 separate designs for purposes of comparison. 
The first two designs we generate are orthogonal designs. We construct two different 
orthogonal designs firstly to highlight that different orthogonal designs often exist for the 
same problem, and secondly to show that different orthogonal designs can and will display 
different levels of statistical efficiency. Thirdly, the construction of two separate orthogonal 
designs allows for a better comparison of the predominant method of experimental design 
construction used within the literature to date. At present, it is common practice to 
randomly generate a single orthogonal design, without reference to the statistical efficiency 
of the design, and as such, the results obtained from the design, in terms of statistical 
efficiency, may also be considered to be random. Next we generate designs specifically 
optimized for each of the model types discussed earlier; MNL, MMNL panel and cross 
sectional and EC panel and cross sectional. Finally we generate three separate designs 
applying the model averaging approach, allowing for different weights for each design 
generated.   

Before we discuss the results obtained for each of the designs generated, we first outline the 
specific design dimensions (i.e., number of alternatives, attributes, etc.) as well as the utility 
specifications for each of the model types, as utilized for the purposes of the case study. In 
Section 5, we discuss the resulting designs before demonstrating the statistical tests that 
may be performed on each design post construction in Section 6. 
 

4.1 Case study design dimensions 
Consider a choice experiment involving three alternatives, the first two of which are 
described by four attributes, and the last representing a no choice or status quo alternative 
and hence having no associated attributes. For simplicity we assume that all parameters are 
generic, although the theory and application is easily extended to alternative specific 
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parameter estimates. In generating the design, we assume that each respondent will view 16 
choice situations each.  

Within the SC experiment, the eight attributes (four per each alternative) can take on 
different levels over the different choice situations shown to respondents. Let us assume 
that the first three attributes can take on one of four levels such that the first attribute for 
each alternative can take the values {5,10,15, 20},  and the second and third attributes can 
take the levels{0,1, 2,3}.Assume that the last attribute can take two levels, {0,1}.These 
values were chosen for demonstrative purposes only, and any values could have been 
selected for the case study. Following common practice, we constrain ourselves to balanced 
designs (although such a constraint may result in the generation of a sub-optimal design).  

Equation (28) shows the utility specification set up used for the case study.  

{ } { } { } { }

{ } { } { } { }

0 1 1 2 2 3 3 4 4 ,5,10,15,20 0,1,2,3 0,1,2,3 0,1

0 1 1 2 2 3 3 4 4 ,5,10,15,20 0,1,2,3 0,1,2,3 0,1

( ) ,

( ) ,

( ) 0,

A A A A A A B

B B B B B A B

U A x x x x

U B x x x x

U C

β β β β β η

β β β β β η

= + + + + +

= + + + + +

=

 (28)

were 2
, ~ (0, ),A B Nη σ representing the error components applicable only for the EC cross 

sectional and panel models. 
 

4.2 Case study prior parameters 
Table 1 shows the prior parameter and error component estimates associated with each 
model used as part of the case study. In specifying the priors for generating the case study 
designs, we have assumed different parameter values for each of the models. In each case 
we have assumed alternative specific constants for the two non-status quo alternatives and 
in the case of the EC models we have assumed a generic error component across these same 
two alternatives. For the MNL model, we have assumed Bayesian prior parameter 
distributions for the first two parameter estimates, representing uncertainty as to the precise 
parameter values these estimates will take once data has been collected. For the same 
model, we have assumed fixed prior parameters for the remaining two estimates. For the EC 
models, we have employed Bayesian prior parameter distributions for the first parameter, 
but fixed parameter priors for the remaining three estimates. For both the panel and cross-
sectional EC designs, we have also utilized the Bayesian approach to design generation for 
the error component priors, drawing the assumed standard deviation parameters from 
uniform distributions.   

For the panel and cross sectional MMNL models, we have assumed the first two parameters 
to be random parameters drawn from Normal distributions, thus representing preference 
heterogeneity over the sampled population for these two attributes. In specifying the prior 
parameter values for these distributions, we have again assumed a Bayesian design 
generation approach for the first random parameter, with the mean of the random parameter 
distribution being drawn from a Normal distribution and the standard deviation prior from a 
uniform distribution. In this way, we have incorporated uncertainty as to the precise values 
both population moments will take post data collection for this random parameter.  For the 
second random parameter distribution, we have assumed fixed or known mean and standard 
deviation parameter priors for the design generation process. To compute the AVC matrices 
for the panel designs, it is necessary to simulate a sample data set. For the present study, we 
generate samples of 2,500 respondents (40,000 choice observations). Although not reported 
here, we tested the impact that different simulated sample sizes have upon the efficiency 
measures and found that the efficiency measures were stable at levels far lower than the 
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2,500 respondents used. Finally, taking the draws for the MMNL and EC models, we used 
Gaussian quadrature with four points each for the random parameter and Bayesian prior 
parameter draws. 
 

Table 1: Case study parameter priors 

   Panel Cross Sectional 
  MNL MMNL EC MMNL EC 

Parameter Priors 

0 Aβ  Mean -3.2 -2.4 -3.0 -3.2 -3.3 

0Bβ  Mean -3.4 -2.2 -2.8 -3.0 -3.2 
Mean ( 0.07,0.03)N −  ( 0.08,0.01)N −  ( 0.06,0.02)N −  ( 0.02,0.01)N −  ( 0.05,0.02)N −  

1β  
Std Dev. - (0.02,0.04)U  - (0.01,0.03)U  - 

Mean (1.2,0.2)N  1.2 1 1.4 1.1 
2β  

Std Dev. - 0.4 - 0.3 - 

3β  Mean 1.8 1.2 1.5 1 1.2 

4β  Mean -0.6 -0.7 -0.5 -0.6 -0.4 

Error Component Priors 

1 ,A Bη  Std Dev. - - (1.0, 2.0)U  - (1.5, 2.5)U  

 

In order to explore the impact different weights have on the model averaging process during 
design generation, we generate three different model average designs using different sets of 
assumed weights. In the first two cases, we apply larger weights to the MMNL and EC 
panel models than for the cross-sectional MMNL and EC models, to reflect the greater 
preponderance within the literature for estimating such models. The final weights we apply 
assume an equal chance of each model being estimated once data is collected using the 
design. The weights used are summarized in Table 2. 
 

Table 2: Model average prior weights 

Model Weight 1 Weight 2 Weight 3 
MNL 0.2 0.125 0.2 

MMNL (Pan.) 0.2 0.25 0.3 
EC (Pan.) 0.2 0.25 0.3 

MMNL (C.S.) 0.2 0.125 0.1 
EC (C.S.) 0.2 0.25 0.1 

 

5. Case study designs 
Table 3 presents the 10 designs generated as part of the case study. Each design was 
generated using Ngene, an experimental design software package currently under 
development by ChoiceMetrics. For each choice set s, we omit the final alternative (j = 3) 
given that this alternative represents a no choice option and as such has no attribute levels. 
Aside from the orthogonal designs, all efficient designs reported where the best designs 
located after evaluating a number of potential candidates using a randomize-and-swap 
algorithm. The average time per design evaluation depended upon the model type being 
evaluated. Based on a notebook computer running Windows XP with a 2.0Ghz Pentium 
processor and 2GB RAM, the average time per design evaluation for each model type is 
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given in Table 4. Also reported is the number of potential designs explored by model type 
during the design construction process. 
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Table 3: Case study designs 

  Orthogonal 1 Orthogonal 2 MNL Design MMNL (pan.) MMNL (C.S.) EC (pan.) EC (C.S.) Model Average 1 Model Average 2 Model Average 3 

S J x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4 

1 1 5 0 0 1 5 0 0 1 10 1 0 0 5 3 0 1 5 1 3 1 5 1 3 1 5 3 2 0 10 1 0 0 5 1 3 1 20 2 2 0 

1 2 5 0 0 1 5 0 0 1 15 2 0 1 20 0 3 0 20 2 0 0 20 2 0 0 20 2 2 1 15 2 0 1 20 3 2 0 5 3 1 1 

2 1 15 1 3 1 15 1 3 1 10 1 1 1 5 0 3 0 20 2 2 0 20 2 2 0 10 2 0 1 10 2 0 1 5 3 1 0 5 3 1 0 

2 2 20 0 2 1 20 0 2 1 15 1 0 0 15 2 1 1 15 0 3 1 15 0 3 1 15 0 0 0 15 0 2 0 20 1 3 1 20 1 3 1 

3 1 10 1 2 0 20 1 2 0 15 2 2 0 15 2 0 1 5 3 1 0 5 3 1 0 10 1 1 0 15 2 2 1 20 2 2 0 10 1 0 0 

3 2 5 1 2 0 5 1 2 0 10 0 3 1 10 1 0 0 10 2 1 1 10 2 1 1 15 1 0 1 10 2 0 0 5 3 2 1 15 2 0 1 

4 1 20 0 1 0 10 0 1 0 20 0 3 0 15 3 1 0 15 2 0 1 15 2 0 1 20 2 3 1 10 0 1 1 10 1 0 0 15 2 0 1 

4 2 20 1 0 0 20 1 0 0 5 3 1 1 10 0 2 1 10 0 1 0 10 0 1 0 5 3 1 0 15 2 0 0 15 2 0 1 10 1 0 0 

5 1 10 3 1 1 10 3 1 1 5 0 3 0 20 3 2 1 5 2 0 0 5 2 0 0 15 1 1 1 20 3 1 0 15 0 1 1 15 3 1 0 

5 2 15 0 3 0 15 0 3 0 20 3 2 1 5 1 2 0 15 1 1 1 15 1 1 1 10 0 0 0 5 0 3 1 15 2 0 0 5 0 3 1 

6 1 20 2 2 1 20 2 2 1 20 3 2 1 20 2 2 0 20 0 3 1 20 0 3 1 5 0 3 0 20 2 2 0 20 1 3 1 10 0 3 0 

6 2 10 0 1 0 10 0 1 0 5 1 2 0 5 3 1 1 5 0 1 0 5 0 1 0 20 3 1 1 5 3 1 1 5 3 1 0 15 2 1 1 

7 1 5 2 3 0 15 2 3 0 15 2 0 0 10 1 1 0 15 1 2 1 15 1 2 1 15 0 1 1 15 2 0 1 15 3 1 0 15 0 1 0 

7 2 15 1 1 1 15 1 1 1 10 2 0 1 15 3 2 1 20 1 3 0 20 1 3 0 10 2 0 0 10 1 0 0 5 0 3 1 10 0 1 1 

8 1 15 3 0 0 5 3 0 0 5 3 1 1 20 2 2 0 15 0 3 0 15 0 3 0 20 2 2 0 5 3 1 0 10 0 3 0 20 1 2 0 

8 2 10 1 3 1 10 1 3 1 20 1 3 0 5 2 2 1 10 2 0 1 10 2 0 1 5 2 3 1 20 1 3 1 15 2 1 1 5 1 3 1 

9 1 15 2 2 0 5 2 2 0 20 1 3 1 20 1 3 0 20 3 1 0 20 3 1 0 15 0 0 0 15 1 3 1 20 3 2 1 10 0 1 1 

9 2 15 2 2 0 15 2 2 0 5 3 1 0 5 3 1 1 5 3 2 1 5 3 2 1 15 0 2 1 5 3 1 0 10 1 1 0 15 2 0 0 

10 1 20 1 3 0 10 1 3 0 10 0 3 1 10 0 3 1 5 0 3 0 5 0 3 0 20 3 2 1 5 1 3 1 10 0 1 0 20 3 2 1 

10 2 5 2 1 1 5 2 1 1 10 3 1 0 20 3 0 0 15 3 0 1 15 3 0 1 5 1 2 0 20 3 2 0 10 0 1 1 10 1 2 0 

11 1 15 3 1 1 15 3 1 1 15 0 2 1 5 3 0 0 20 3 2 1 20 3 2 1 10 1 2 1 5 0 3 0 5 0 3 0 5 1 3 1 

11 2 5 3 0 0 5 3 0 0 10 2 0 0 20 1 3 1 5 3 0 0 5 3 0 0 15 2 3 0 15 2 1 1 20 3 2 1 20 3 2 0 

12 1 20 0 0 1 20 0 0 1 10 2 0 1 15 0 3 1 10 0 0 0 10 0 0 0 5 0 3 1 10 0 3 0 20 1 2 0 20 1 3 1 

12 2 15 3 3 1 15 3 3 1 15 0 2 0 10 2 0 0 20 0 2 1 20 0 2 1 20 3 1 0 20 3 2 1 5 1 3 1 5 3 1 0 

13 1 10 2 1 0 20 2 1 0 15 2 0 0 10 2 0 1 10 2 1 0 10 2 1 0 5 3 1 1 15 0 1 0 10 2 0 1 5 3 0 1 

13 2 10 2 2 1 10 2 2 1 15 1 1 1 15 0 3 0 10 3 2 1 10 3 2 1 20 1 3 0 10 0 1 1 15 0 2 0 20 0 3 0 

14 1 5 1 0 0 15 1 0 0 5 3 1 1 5 1 2 0 10 1 1 1 10 1 1 1 10 3 0 0 20 1 2 0 15 2 2 1 10 2 0 1 

14 2 20 2 1 0 20 2 1 0 20 0 3 0 20 2 3 1 5 1 3 0 5 1 3 0 10 1 3 1 5 1 3 1 10 2 0 0 15 0 2 0 

15 1 10 3 2 1 10 3 2 1 5 1 2 0 10 1 1 1 10 3 0 1 10 3 0 1 20 2 3 0 5 3 0 1 15 2 0 1 5 0 3 0 

15 2 20 3 0 1 20 3 0 1 20 2 2 1 10 0 1 0 15 1 3 0 15 1 3 0 5 3 1 1 20 0 3 0 10 1 0 0 20 3 2 1 
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16 1 5 0 3 1 5 0 3 1 20 3 1 0 15 0 1 1 15 1 2 1 15 1 2 1 15 1 0 0 20 3 2 1 5 3 0 1 15 2 2 1 

16 2 10 3 3 0 10 3 3 0 5 0 3 1 15 1 0 0 20 2 2 0 20 2 2 0 10 0 2 1 10 1 2 0 20 0 3 0 10 2 0 0 



Incorporating model uncertainty into the generation of efficient stated choice experiments: A model 
averaging approach 
Rose, Scarpa & Bliemer 
 

22 

Table 4: Average design evaluation time by assumed model type 

Model Evaluation Time (seconds) # of design replications tested 

MNL 0.0015 100,000 
MMNL (Pan.) 174 10,000 

EC (Pan.) 50 50,000 
MMNL (C.S.) 0.125 10,000 

EC (C.S.) 0.04 50,000 
Model average 400 5,000 

 

Care is required in comparing the time differences required in computing the efficiency of each 
model type given that each of the different design model types had different number of Bayesian 
parameters from which simulated draws were required to be taken. Also, the panel MMNL and 
EC models, and by implication the weighted average designs, required the generation of simulated 
sample data in order to compute the AVC matrix for the design, and hence require additional 
computation time.  

Table 5 reports the efficiency results for the 10 generated designs calculated as if the designs were 
used to estimate different model forms. In calculating the efficiency measures for each design by 
and model type, we have employed the prior parameter estimates given in Table 1. Within Table 
5, efficiency results are presented for the three weighted average measures (Table 2) as well as for 
the unweighted efficiency measures. The bold values represent the Db-errors for the model type 
that a specific design was optimised for. In each case, designs generated for a specific model type 
were found to be more statistically efficient than designs generated for another model type. For 
example, if the estimated model is of the MNL type, then the MNL design will perform best, with 
a Db-error of 0.0897 (which is smaller than the Db-errors of the other nine designs). Similarly, the 
panel MMNL design will perform best when estimating a panel MMNL model (with a Db-error of 
0.0752), and the panel EC design and will perform best for estimating the panel EC model (with a 
D-error of 0.1539). Likewise, the cross-sectional MMNL and EC designs would be expected to 
perform best when estimated using the same model for which they were optimised for. 
Examination of the two orthogonal designs suggest that these designs are likely to perform poorly 
in terms of their efficiency levels independent of the model type estimated when compared to all 
other remaining designs.  

At the base of Table 5 is the minimum sample sizes and number of choice observations rounded 
to the nearest respondent required for each design to obtain significant asymptotic t-ratios for all 
parameters at the 95 percent confidence level. Reading across the table, bolded values represent 
the smallest sample size required from each of the 10 designs based on the five different model 
estimations assumed. As is to be expected, the design specifically generated with a particular 
model form in mind tends to produce the lowest expected sample size requirement when 
estimated using that model type. Nevertheless, it is worth noting that with the exception of the 
MMNL and EC cross sectional models, the MNL model design appears to perform extremely well 
in terms of the expected minimum sample size required independent of the model type estimated. 
Of note is the poor performance of the two orthogonal designs in terms of expected minimum 
sample size requirements with both orthogonal designs expected to require substantially more 
respondents when applied to all model types when compared to all of the other designs generated. 
Such an observation is not surprising given that other researchers have noted similar findings 
elsewhere (notably Bliemer and Rose, 2008, 2009, Scarpa and Rose, 2008 and Rose and Bliemer, 
2009). One possible explanation of this is that the orthogonality of a design suggests nothing 
about the choice probabilities obtained from the design, and given that the choice probabilities are  
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Table 5: Case study d-error results 
  Model Assumed for Design 
  Orthogonal 1 Orthogonal 2 MNL MMNL (Pan.) EC (Pan.) MMNL (C.S.) EC (C.S.) Model Av. 1 Model Av. 2 Model Av. 3 

   D-error Value (non-weighted) 
MNL 0.2263 0.1994 0.0897 0.1124 0.0903 0.1599 0.1177 0.0960 0.0969 0.0938 

MMNL (Pan.) 0.1200 0.1136 0.0804 0.0752 0.0799 0.0905 0.0821 0.0792 0.0812 0.0791 
EC (Pan.) 0.2772 0.2601 0.1553 0.1726 0.1539 0.2142 0.1731 0.1588 0.1588 0.1565 

MMNL (C.S.) 0.2853 0.2709 0.2533 0.2246 0.2333 0.1616 0.2333 0.2132 0.2175 0.2199 
EC (C.S.) 0.4508 0.4154 0.3354 0.2935 0.3318 0.3313 0.2463 0.2761 0.2711 0.2772 
Model Av. 1.3596 1.2594 0.9141 0.8783 0.8892 0.9574 0.8525 0.8233 0.8255 0.8265 

  D-error Value (Model Average Weighting 1) 
MNL 0.0453 0.0399 0.0179 0.0225 0.0181 0.0320 0.0235 0.0192 0.0194 0.0188 

MMNL (Pan.) 0.0240 0.0227 0.0161 0.0150 0.0160 0.0181 0.0164 0.0158 0.0162 0.0158 
EC (Pan.) 0.0554 0.0520 0.0311 0.0345 0.0308 0.0428 0.0346 0.0318 0.0318 0.0313 

MMNL (C.S.) 0.0571 0.0542 0.0507 0.0449 0.0467 0.0323 0.0467 0.0426 0.0435 0.0440 
EC (C.S.) 0.0902 0.0831 0.0671 0.0587 0.0664 0.0663 0.0493 0.0552 0.0542 0.0554 
Model Av. 0.2719 0.2519 0.1828 0.1757 0.1778 0.1915 0.1705 0.1647 0.1651 0.1653 

  D-error Value (Model Average Weighting 2) 
MNL 0.0283 0.0249 0.0112 0.0140 0.0113 0.0200 0.0147 0.0120 0.0121 0.0117 

MMNL (Pan.) 0.0300 0.0284 0.0201 0.0188 0.0200 0.0226 0.0205 0.0198 0.0203 0.0198 
EC (Pan.) 0.0693 0.0650 0.0388 0.0431 0.0385 0.0536 0.0433 0.0397 0.0397 0.0391 

MMNL (C.S.) 0.0357 0.0339 0.0317 0.0281 0.0292 0.0202 0.0292 0.0267 0.0272 0.0275 
EC (C.S.) 0.1127 0.1039 0.0839 0.0734 0.0829 0.0828 0.0616 0.0690 0.0678 0.0693 
Model Av. 0.2759 0.2561 0.1856 0.1774 0.1819 0.1992 0.1692 0.1672 0.1671 0.1674 

  D-error Value (Model Average Weighting 3) 
MNL 0.0453 0.0399 0.0179 0.0225 0.0181 0.0320 0.0235 0.0192 0.0194 0.0188 

MMNL (Pan.) 0.0360 0.0341 0.0241 0.0226 0.0240 0.0271 0.0246 0.0238 0.0244 0.0237 
EC (Pan.) 0.0832 0.0780 0.0466 0.0518 0.0462 0.0643 0.0519 0.0476 0.0476 0.0470 

MMNL (C.S.) 0.0285 0.0271 0.0253 0.0225 0.0233 0.0162 0.0233 0.0213 0.0218 0.0220 
EC (C.S.) 0.0451 0.0415 0.0335 0.0294 0.0332 0.0331 0.0246 0.0276 0.0271 0.0277 
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Model Av. 0.2380 0.2206 0.1475 0.1486 0.1447 0.1727 0.1481 0.1395 0.1402 0.1392 

    S-error rounded to nearest N (N.S) 

  MNL 15 (240) 15 (240) 5 (80) 8 (128) 6 (96) 9 (144) 8 (128) 7 (112) 7 (112) 6 (96) 

  MMNL (Pan.) 8 (128) 8 (128) 5 (80) 5 (80) 5 (80) 6 (96) 5 (80) 6 (96) 6 (96) 5 (80) 

  EC (Pan.) 29 (464) 24 (384) 12 (192) 16 (256) 12 (192) 18 (288) 14 (224) 13 (208) 13 (208) 12 (192) 
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  MMNL (C.S.) 262 (4192) 233 (3728) 205 (3280) 201 (3216) 187 (2992) 147 (2352) 173 (2768) 194 (3104) 217 (3472) 218 (218) 

  EC (C.S.) 221 (3536) 158 (2528) 167 (2672) 132 (2112) 148 (2368) 121 (1936) 80 (1280) 96 (1536) 87 (1392) 99 (1584) 
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instrumental in calculating the AVC matrix, an orthogonal design would not be expected to 
result in low standard error values when compared to designs specifically generated for this 
purpose. 

The three model average designs generated suggest moderate sample size requirements 
compared to the other designs generated. Examination of Table 5 suggests that the three 
model average designs appear to outperform the orthogonal, MNL, panel MMNL and EC 
designs when applied to the cross sectional MMNL and EC model forms, but tend to 
perform at least as well or only marginally worse than the other non-orthogonal designs 
when applied to the other model types. As such, the model averaging process appears to 
offer some form of robustness in terms of sample size across all the model types explored 
herein when the exact model type to be used in estimation is unknown at the time of design 
generation. Table 6 details the percentage of respondents required for each of the three 
model average designs relative to all of the other designs. Percentage values less than 100 
suggest that the model average design would require fewer respondents relative to the 
comparison design, whilst values greater than 100 percent suggest more respondents would 
be required. Based on the table, all three model average designs outperform all the other 
designs in terms of sample size requirements when different model types are used in 
estimation. Nevertheless, the MNL and EC panel designs appear to offer superior sample 
size requirements when applied to all model types other than the EC cross sectional model. 
 

Table 6: Percentage of respondents comparison with model average designs  
  Orth. 1 Orth. 2 MNL MMNL (Pan.) EC (Pan.) MMNL (C.S.) EC (C.S.) 
 Model Average 1 

MNL 46.67% 46.67% 140.00% 87.50% 116.67% 77.78% 87.50% 
MMNL (Pan.) 75.00% 75.00% 120.00% 120.00% 120.00% 100.00% 120.00% 

EC (Pan.) 44.83% 54.17% 108.33% 81.25% 108.33% 72.22% 92.86% 
MMNL (C.S.) 74.05% 83.26% 94.63% 96.52% 103.74% 131.97% 112.14% 

EC (C.S.) 43.44% 60.76% 57.49% 72.73% 64.86% 79.34% 120.00% 
Model Average 2 

MNL 46.67% 46.67% 140.00% 87.50% 116.67% 77.78% 87.50% 
MMNL (Pan.) 75.00% 75.00% 120.00% 120.00% 120.00% 100.00% 120.00% 

EC (Pan.) 44.83% 54.17% 108.33% 81.25% 108.33% 72.22% 92.86% 
MMNL (C.S.) 82.82% 93.13% 105.85% 107.96% 116.04% 147.62% 125.43% 

EC (C.S.) 39.37% 55.06% 52.10% 65.91% 58.78% 71.90% 108.75% 
Model Average 3 

MNL 40.00% 40.00% 120.00% 75.00% 100.00% 66.67% 75.00% 
MMNL (Pan.) 62.50% 62.50% 100.00% 100.00% 100.00% 83.33% 100.00% 

EC (Pan.) 41.38% 50.00% 100.00% 75.00% 100.00% 66.67% 85.71% 
MMNL (C.S.) 83.21% 93.56% 106.34% 108.46% 116.58% 148.30% 126.01% 
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EC (C.S.) 44.80% 62.66% 59.28% 75.00% 66.89% 81.82% 123.75% 
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6. Post design generation testing 
In order to evaluate the robustness of the designs generated, a number of statistical tests are 
performed. In Sections 6.1 and 6.2 we present the results of tests discussed in Section 3.1. 
Section 6.1 presents the results of parameter misspecification tests whilst Section 6.2 
discusses the results from Monte Carlo simulations designed to examine possible parameter 
biases that might derive from use of the various generated designs.  

 

6.1 Parameter prior misspecification 
In constructing each of the non-orthogonal designs, we have assumed that the prior 
parameter values correspond to the true parameter values held by the population, although 
we have allowed for some degree of uncertainty via the use of Bayesian prior parameter 
distributions. Nevertheless, this remains a strong assumption that is unlikely to hold in 
practice. To test the impact misspecification of the prior parameters has on an experimental 
design once generated, it is possible to fix the design and apply different sets of priors to it 
and in doing so recalculate the expected AVC matrix. 

Taking the parameter priors given in Table 1 as the true parameter population estimates, we 
apply each of the 10 generated designs to the five estimation model types and vary the 
parameter estimates by ±50 percent. For parameters for which Bayesian parameter 
distributions were employed, we assume the mean of the distributions represent the true 
population parameter values (e.g., the mean and standard deviation for the first design 
parameter of the panel MMNL were assumed to be ( 0.08,0.01)N −  and (0.02,0.04)U in which 
case we assume the true population mean and standard deviation parameters to be -0.08 and 
0.03 respectively).  Figure 3 graphs the impact upon D-error and sample size requirements 

given misspecification of the 1β  random parameter assuming estimation of a panel MMNL 
model. Note that the sample sizes shown tend to be larger than those given in Table 5, even 
when the parameter is assumed not to have been misspecified. This is because the sample 
sizes calculated for Table 5 were generated assuming the population moments of several 
parameters were drawn from Bayesian distributions, whereas those shown in Figure 3 
where not and hence the two are not directly comparable. 

The D-error values for the two orthogonal designs are consistently higher than for all other 
designs independent of the degree of misspecification for this parameter assuming 
estimation of a panel MMNL model. As is to be expected, the MMNL panel design appears 
to perform best in terms of D-error even given parameter prior misspecification. 
Interestingly, the MNL design also performs well in given the range of prior parameters 
examined. The D-error values for the three model average designs appear to be somewhere 
in between those of the MMNL panel and MNL designs, and the two orthogonal designs, 
across all misspecification values explored.  

In terms of expected sample size requirements, the sample sizes required for statistical 
significance for the mean of the parameter distribution largely mirror the D-error values in 
terms of the observed results based on the 10 designs generated. Similar results are 
observed for small values of the standard deviation parameter across all designs however as 
the magnitude of the parameter increases, all designs converge to a similar ability to detect 
statistical significance at relatively small sample sizes. Nevertheless, the two orthogonal 
designs still require slightly larger samples than the other designs for this parameter and 
model type even given significantly wider population standard deviation. 
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Similar results are observed for other model types and parameters, both in terms of 
statistical efficiency results and sample sizes. Rather the present all the results here (there 
being 360 parameter misspecifications to explore; 36 parameters across 10 design types), 
the D-error and theoretical minimum sample sizes values may be downloaded from 
http://www.econ.usyd.edu.au/19129.html in table form. We note that in some cases, 
misspecification of a prior parameter can results in D-error values increasing (decreasing) 
whilst the sample size actually decreases (increase). Bliemer and Rose (2008) argue that 
such a result is possible given that the D-error represents a form of average over all 
parameters, while the sample size requirements relate only to parameter that is most 
difficult to estimate. As such, it is possible that on average, the standard errors for each 
design are decreasing, but that the largest standard error within the AVC matrix actually 
decreases.  

 
(a) 1β  Mean d-error               (b) 1β  Mean sample size 

http://www.econ.usyd.edu.au/19129.html
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(c) 1β  Standard deviation d-error                     (d) 1β  Standard deviation sample size 

 
Figure 3: 1β  parameter prior misspecification assuming estimation of a MMNL panel model 

 

Independent of the design type, the results shown here demonstrate that misspecification of 
the prior parameter values can potentially have a significant impact upon the overall 
efficiency of different designs and model types. Thus, for design efficiency to be truly 
translated into estimation efficiency, the parameter priors assumed during the generation 
process should be as close to possible to the true, but as yet unknown, population level 
parameters. Bliemer and Rose (2008) offer some suggestions as to how this might be best 
achieved. 
 

6.2 Parameter prior misspecification 

As well as test the impact parameter misspecification is likely to have upon the different 
designs, a number of Monte Carlo simulations were performed on each design assuming the 
five different model estimation types. A total of 15,000 model simulations were performed 
with r = 100 iterations per each of the five model estimation types over the 10 design types 
assuming three different samples sizes (N = 100, 250 and 500). The MSE and RAE results 
for these simulations may be found at http://www.econ.usyd.edu.au/19129.html. Table 7 
presents the EMSE results for the simulations.  Bolded values in the table represent the 

http://www.econ.usyd.edu.au/19129.html
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design type with the smallest EMSE for a given model type at the three different sample 
sizes.  
 

Table 7: EMSE results 
      Model Assumed for Estimation 
    N MNL MMNL (Pan.) EC (Pan.) MMNL (C.S.) EC (C.S.) 

100 0.00481 0.00438 0.00481 0.00653 0.01425 
250 0.00170 0.00143 0.00167 0.00225 0.01344 Orthogonal 1 
500 0.00073 0.00063 0.00055 0.00100 0.00910 
100 0.00607 0.00557 0.00451 0.00590 0.02678 
250 0.00200 0.00146 0.00168 0.00182 0.02331 Orthogonal 2 
500 0.00065 0.00070 0.00057 0.00048 0.02169 

100 0.00302 0.00321 0.00260 0.00614 0.01637 
250 0.00109 0.00126 0.00075 0.00298 0.01299 MNL 
500 0.00040 0.00028 0.00024 0.00198 0.01040 
100 0.00378 0.00272 0.00320 0.00408 0.00507 
250 0.00138 0.00106 0.00106 0.00130 0.00315 MMNL (Pan.) 
500 0.00038 0.00025 0.00030 0.00069 0.00270 
100 0.00217 0.00435 0.00260 0.00341 0.03147 
250 0.00067 0.00129 0.00083 0.00117 0.02448 EC (Pan.) 
500 0.00032 0.00031 0.00032 0.00059 0.02085 
100 0.00673 0.00446 0.00525 0.00443 0.02155 
250 0.00209 0.00157 0.00171 0.00195 0.01927 MMNL (C.S.) 
500 0.00068 0.00053 0.00057 0.00099 0.01863 

100 0.00317 0.00435 0.00352 0.00660 0.01625 
250 0.00094 0.00143 0.00105 0.00271 0.01362 EC (C.S.) 
500 0.00047 0.00039 0.00048 0.00102 0.01308 
100 0.00222 0.00470 0.00299 0.00410 0.00990 
250 0.00085 0.00242 0.00107 0.00143 0.00799 Model Av. 1 
500 0.00029 0.00099 0.00069 0.00048 0.00741 

100 0.00287 0.00490 0.00295 0.00392 0.01619 
250 0.00084 0.00263 0.00110 0.00168 0.01385 Model Av. 2 
500 0.00025 0.00135 0.00050 0.00050 0.00731 
100 0.00202 0.00425 0.00264 0.00416 0.00812 
250 0.00079 0.00248 0.00098 0.00149 0.00628 
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Model Av. 3 
500 0.00029 0.00108 0.00060 0.00046 0.00600 

Percent of cells in which model average designs have lower EMSE values 
Model Av. 1 95.00% 5.00% 40.00% 80.00% 90.00% 
Model Av. 2 95.00% 5.00% 55.00% 85.00% 70.00% 
Model Av. 3 100.00% 25.00% 50.00% 85.00% 90.00% 
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Not surprisingly, the two orthogonal designs tend to offer the highest amounts bias as 
represented by the EMSE values, although these designs do offer the least amount of bias 
for several specific parameter estimates as suggested by the MSE and RAE statistic values 
reported (e.g., the first orthogonal design produces the lowest MSE and RAE values for the 
β2 parameter estimated using the cross sectional EC model with 500 respondents). 
However, somewhat of a surprise is the fact that only in the case of the MMNL panel 
design estimated using that same model type is a design generated for a specific model type 
found to produce the least amount of bias when estimated on the model type for which it 
was generated. Indeed, the MMNL panel design appears to outperform the EC cross 
sectional design at all sample sizes whilst the EC panel design appears to have less bias in 
the parameter estimates obtained from the design when estimated using the cross sectional 
MMNL  model. 

At the base of Table 7, the percentage of times the model average designs are observed to 
have a lower EMSE value than the other designs are presented for each model estimation 
type. All three model average designs appear to perform well in comparison to the other 
designs generated in terms of the biases produced for all model types except for the two 
panel models.  For the panel MMNL model, the first and second model average designs 
tend to produce larger errors than those observed for 95 percent of the other designs with 
the third model average design only marginally better with higher EMSE values than only 
75 percent of designs. For the panel EC model, the three model average designs produce 
lower EMSE values than 40, 55 and 50 percent of the other designs over the three sample 
sizes used in the Monte Carlo simulations. When compared to the MNL and cross sectional 
MMNL and EC models, the three model average designs appear to perform exceptionally 
well compared to the other experimental designs.   
 

7. Discussion and conclusions 
This paper addresses the issue of how to generate efficient SC experiments under 
uncertainty over the final model that will be estimated on data collected using the design. 
As we have shown, the AVC matrix likely to be obtained from a SC design will differ 
depending upon the model type that will be estimated once data is collected. To overcome 
this problem, the paper examines the use of a model averaging process of measures of 
statistical efficiency in generating experimental designs for SC studies. In our case study, 
we have also examined the impact of applying different priors on the model averaging 
process is likely to have. Finally, in exploring the idea of using model averaging techniques 
to generate efficient designs, we have further examined the use of Bayesian prior parameter 
distributions to compensate for a lack of a priori understanding of the exact parameter 
estimates that are also likely to result during application. As such, this paper attempts to 
handle the two major sources of uncertainty that exists when generated experimental 
designs for SC studies. 

Whilst we have attempted to show via the use of a case study the importance of generating 
experimental designs specifically for econometric models for which they are likely to be 
applied to once data has been collected, the model averaging process explained herein 
provides a degree of robustness if the analyst is unsure as to exactly what model will be 
estimated post data collection. One short coming of this process however is that the model 
averaging process requires a much larger computational effort than generating designs 
specifically for a given model type. Furthermore, designs that are efficient for the cross-
sectional MMNL and EC appear to be typically very different in terms of efficiency to other 
model types making inclusion of such model types difficult in the model averaging process. 
The results here also suggest that a good starting point in generating an efficient design 
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would appear to be firstly generating a design specifically for the MNL model type and 
evaluate the efficiency this design under the other model assumptions, as the MNL design 
appears to perform very well independent of the final model estimated. Whilst Bliemer and 
Rose (2008) found similar results, further research is required to confirm this finding. 
Nevertheless, the model averaging process does offer many benefits, appearing to produce 
lower levels of parameter bias than most other design types, except when applied to panel 
MMNL and EC model estimation. Whilst this finding is the result of a single case study, if 
such a result is confirmed to be more widespread, then one potential solution would be to 
weight these model types much more in the averaging process than the other model forms.  

This paper also suffers from a number of limitations that need to be acknowledged. Firstly, 
we have employed here only a single case study, with fixed design dimensions. As such, the 
results presented herein are specific to the case study selected for analysis and does not 
allow for a detailed analysis of the impact different design dimensions might play in terms 
of design efficiency for model average type designs. Questions such as does having more or 
less choice situations impact upon the statistical efficiency of such designs or provide more 
or less bias or does having a wider attribute level range improve or detract from the 
efficiency of such designs? Similar questions can be asked as to the number of attributes 
and alternatives of designs? Whilst these questions have been asked about designs 
generated for other model types and answers attempted to be given (see e.g., Bliemer and 
Rose, 2005, and Rose and Bliemer, 2005), we have not attempted to address these issues 
here. 

Secondly, in generating each of the designs, we have remained true to the growing number 
of experimental design papers by imposing a number of limitations such as attribute level 
balance within each of the designs. This means that each level of an attribute will appear an 
equal number of times over the course of the experiment. Whilst there may be reasons for 
imposing such a restriction, there also exist arguments against such restrictions. The main 
argument against such an imposition is that attribute level balance acts as a constraint in 
terms of allocating appropriate attribute levels across a design. For example, a particular 
choice situation may be improved if one particular level is swapped with that of another 
choice situation, however the swap may detract from the second choice situation. As such, 
attribute level balance may cause a number of choice situations to include dominant 
alternatives, despite the design being overall more efficient. This problem was identified by 
Toner et al. (1999) and Kanninen (2002) who proposed different methods such as allowing 
one attribute to be continuous, to provide substantial efficiency gains over designs with 
fixed attribute levels. Similar research for more advanced models is necessary.  
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