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1. Introduction 
 
The generation of stated choice (SC) experiments has evolved to become an 
increasingly important, but complex component of SC studies (Burgess and Street 2003; 
Carlsson and Martinsson 2003; Ferrini and Scarpa 2006; Huber and Zwerina 1996; 
Kanninen 2002; Kessels et al. 2006; Kuhfeld et al. 1994; Lazari and Anderson 1994; 
Sándor and Wedel 2001, 2002, 2005; Street and Burgess 2004; Street et al. 2001). 
Typically, SC experiments present sampled respondents with a number of hypothetical 
scenarios (known as choice situations) consisting of a universal but finite number of 
alternatives that differ on a number of attribute dimensions. These respondents are then 
asked to specify their preferred alternative from the set of alternatives presented within 
each choice situation based on the attribute levels shown. These responses are then 
pooled both over hypothetical choice scenarios and respondents before being used to 
estimate parameter weights for each of the design attributes (or in some cases, even 
attribute levels). Depending on the type of experiment conducted, researchers may 
obtain estimates of the direct or cross elasticities (or marginal effects) of the alternatives 
as well as the marginal rates of substitution respondents are willing to make in trading 
between two attributes (i.e., willingness to pay measures). 
 
Traditionally, researchers have relied upon the use of orthogonal experimental designs 
to populate the hypothetical choice situations shown to respondents (see Louviere et al., 
2000, for a review of orthogonal designs). More recently however, some researchers 
have begun to question the relevance of orthogonal designs when applied to SC 
experiments (e.g., Huber and Zwerina 1996; Kanninen 2002; Kessels et al. 2006; 
Sándor and Wedel 2001, 2002, 2005). Generally, the argument against the use of 
orthogonality as a design criterion in the construction process is that the property of 
orthogonality is unrelated to the desirable properties of the econometric models used to 
analyse SC data (i.e., logit and probit models). The orthogonality (or otherwise) of an 
experimental design relates to the correlation structure between the attributes of the 
design with designs in which all between attribute correlations are zero being said to be 
orthogonal (in some cases, this definition of an orthogonal design may be relaxed to 
define orthogonality as occurring when all attribute correlations are zero within 
alternatives but not necessarily between alternatives; see Louviere et al. (2000) for a 
discussion on sequential versus simultaneous generation of orthogonal designs). Whilst 
orthogonality is an important criterion to determine independent effects in linear 
models, discrete choice models are not linear (Train 2003). In models of discrete choice, 
the correlation structure between the attributes is not what is of importance. Rather, 
given the derivation of the models, it is the correlations of the differences in the 
attributes which should be of concern. 
 
Huber and Zwerina (1996) took the important step of relating the statistical properties of 
the SC experiments to the econometric models estimated on such data. In their paper, 
Huber and Zwerina showed that designs that let go of orthogonality as a consideration 
in generating SC experiments and which attempt to reduce the asymptotic standard 
errors of the parameter estimates (i.e., the square roots of the diagonal elements of the 
asymptotic variance-covariance (AVC) matrix) will generally result in designs that 
either (i) improve the reliability of the parameters estimated from SC data at a fixed 
sample size or (ii) reduce the sample size required to produce a fixed level of reliability 
in the parameter estimates with a given experimental design. The linking of the 
experimental design generation process to attempts to reduce the asymptotic standard 
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errors of the parameter estimates has resulted in a class of designs known as ‘efficient 
designs’ where designs that produce smaller asymptotic standard errors are thought of 
as being more efficient.  
 
In order to calculate the AVC matrix for a SC design, the analyst requires a priori 
knowledge of the utility functions for that design. This is because the values of the AVC 
matrix are directly dependent upon both the attribute levels and the choice probabilities 
of the alternatives contained within each of the designs choice situations. The choice 
probabilities for a given design are in turn a function of the attribute levels of the 
alternatives as well as the parameter weights associated with each of these attributes. As 
such, the parameter values play a key role in determining the level of efficiency of a 
design. Unfortunately, the exact parameter values are unlikely to be known at the design 
construction phase, and as such, the researcher may have to make certain assumptions 
as to what values (termed priors) these will be in order to generate an efficient design.  
 
Three different approaches have been used in the past regarding the parameter priors 
assumed in generating efficient SC experiments. In the first approach, researchers have 
made the strong assumption that all parameter priors for the design are simultaneously 
equal to zero (e.g., Burgess and Street 2003; Huber and Zwerina 1996; Street and 
Burgess 2004; Street et al. 2001). Whilst such an assumption is likely to aid in locating 
truly optimal designs (i.e., the most efficient design), optimality will only exist under 
the assumption of zero parameter estimates. Furthermore, the assumption of zero 
parameter priors is unlikely to hold in reality (and if it does, then there exist significant 
implications in terms of the attributes and/or levels used in the SC study). Thus, the 
efficiency of a design generated under such an assumption is highly unlikely to translate 
through to the data if the true parameter estimates are not zero in reality. A second 
approach that has sometimes been used is to assume that the parameter priors are non-
zero and known with certainty (e.g., Carlsson and Martinsson 2003; Rose and Bliemer 
2005). In such an approach, a single fixed prior is assumed for each attribute. Whilst the 
assumption of perfect certainty is a strong one, the design generation process is such 
that researchers are able to test its impact on a design’s efficiency assuming 
misspecification of the priors. Sándor and Wedel (2001) introduced a third approach by 
relaxing the assumption of perfect a priori knowledge of the parameter priors through 
adopting a Bayesian approach to the design generation process. Rather than assume a 
single fixed prior for each attribute, the efficiency of a design is now determined over a 
number of draws taken from prior parameter distributions assumed by the researcher. 
Different distributions may be associated with different population moments 
representing different levels of uncertainty with regards to the true parameter values1.  
 
The Bayesian approach to constructing efficient SC experiments requires that the 
efficiency of a design be evaluated over numerous different draws taken from the prior 
parameter distributions assumed in generating the design. The Bayesian efficiency of a 
design is then calculated as the expected value of whatever measure of efficiency is 
assumed over all the draws taken. The Bayesian approach therefore necessitates the use 
of simulation methods to approximate the expectations for differing designs.  

                                                 
1 For example, Sándor and Wedel (2001, 2002, 2005) assume normal distributions with different means and standard 
deviations, whilst Kessels et al. (2006) assume uniform distributions ranging between -1 and 1; the latter assumes no 
knowledge about the magnitude of the true parameter value other than it being between the suggested range, nor 
about the direction of the parameter. 
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A number of different simulation procedures are available to researchers, with the 
simplest being the use of pseudo random draws. In using pseudo random draws (often 
referred to as pseudo Monte Carlo, or PMC, draws), points from a distribution are 
randomly selected. Whilst simple in practice to implement, results obtained using PMC 
draws are susceptible to being specific to the particular draws taken from whatever 
distribution is assumed, with different sets of random draws likely to produce different 
coverage over the distribution space, possibly leading to widely different results when 
calculating the expectations. This risk is especially high with the use of a low number of 
draws. The precision of simulation processes may potentially be improved by using a 
more systematic approach in selecting points when sampling from a distribution. Such 
techniques are commonly referred to within the literature as quasi random Monte Carlo 
draws (see, for example, Bhat 2001, 2003; Hess et al. 2005; Sándor and Train 2003). 
The potential to provide better coverage of the distribution space for each prior 
parameter distribution should theoretically result in a lower approximation error in 
calculating the simulated choice probabilities for a given design. This in turn will result 
in greater precision in generating the design’s AVC matrix, resulting in greater 
precision in terms of the Bayesian efficiency measure of that design. Other methods, 
such as polynomial cubature, also aim to minimize the approximation error when 
calculating the Bayesian efficiency. 
 
Independent of the type of draws used, the researcher must decide on the number of 
draws to use. If too few draws are taken, it is probable that the resulting Bayesian 
measure of efficiency will be far from the true efficiency for a given design. If too many 
draws are used, the computation time in generating an efficient design will be 
unnecessarily high. The issue therefore becomes one of how many draws should be 
used before the Bayesian measure of efficiency will converge to the true efficiency level 
for a given design, or alternatively, fall within some acceptable error range around the 
true value. Unfortunately, the answer to this question will likely depend on the 
dimensions of the design itself, the number of Bayesian priors assumed, the population 
of the prior distributions, the type of econometric model used, as well as the type of 
draws employed. 
 
The purpose of this paper is to examine over a range of draws, the performance of 
various forms of draws in approximating the true level of efficiency for a number of 
different designs. This paper compares the performance of the PMC method to three 
different types of quasi random Monte Carlo draws, namely Halton, Sobol, and 
Modified Latin Hypercube Sampling (MLHS) draws, and one polynomial cubature 
method, namely Gauss-Hermite approximation. In making our comparisons, we vary 
not only the number of draws but also the dimensions of the designs. In doing so, we are 
able to make recommendations as to what are the best types of draws to use as well as 
how many to use when generating designs of different dimensions. 
 
The remainder of the paper is as follows. In the following section, we define efficiency 
as related to SC experimental designs. Section 3 further details Bayesian efficiency for 
SC experiments and discusses each of the approximation methods in more detail. 
Section 4 provides case studies in which we compare the performance of the types of 
draws varying the number of draws taken over a range of different experimental 
designs. Section 5 provides a discussion and conclusion to the paper. 
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2. Efficiency of Experimental Designs for Discrete 
Choice Models 
 
Historically, efficiency when dealing with SC studies has generally been related to how 
statistically reliable the parameters in a discrete choice model will likely be when 
estimated using data obtained from a SC experiment. Reliability of the parameters has 
been defined in terms of the asymptotic standard errors of the model to be estimated 
where improvements in reliability suggest a reduction in the asymptotic standard errors 
and hence an increase in the asymptotic t-ratios of the model estimates. As such, the use 
of more efficient designs leads to an expectation that a lower number of respondents 
will be required to produce statistically significant parameter estimates for a given SC 
study when compared to less efficient designs.  
 
Measurement of the (in)efficiency of a SC experimental design is typically expressed in 
terms of some form of error (e.g., D-error, A-error) derived from the AVC matrix for 
the design. Both the dimensions of the AVC matrix of a design and the values that 
populate it will influence the (in)efficiency of the design. In turn, the AVC of a design 
will depend on the following: 
 

(a) Econometric form of the discrete choice model estimated 

Different discrete choice models (e.g., multinomial logit (MNL), nested logit (NL), 
mixed logit (ML) models) lead to different AVC matrices; 

(b) Experimental design 

Different choice situations (i.e., different combinations of attribute levels in each 
choice situation) lead to different AVC matrices; and 

(c) Prior parameter values 

Different assumptions made regarding the true values of the parameter estimates 
result in different AVC matrices. 

 
Let the AVC matrix be denoted by ( | ),XβΩ �  where β�  represents the prior parameter 
values and X the attribute levels in the underlying experimental design. This matrix can 
be determined (analytically or by simulation) for each of the discrete choice models, see 
Appendix A. The D-error, describing the inefficiency of a design, can be expressed as 
 

( )1/
( | ) det ( | ) ,

K
f X Xβ β= Ω� �  (1)

 
where K is the number of parameters2. The lower this D-error, the higher the overall 
efficiency of the design will be. Hence, given the prior parameters and the discrete 
choice model, the aim in creating the experimental design is to find attribute levels X 
such that this D-error is as low as possible. The design with the lowest D-error is termed 
D-optimal. Other (in)efficiency measures exist which may be substituted for D-error. 
                                                 
2 In Rose and Bliemer (2005), it is suggested that the rows and columns for the parameters representing constants in 
the model should be removed from the AVC matrix when computing the D-error, as they may dominate the D-error 
while having no clear efficiency meaning in a stated choice experiment. 
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For example, some researchers prefer A-error, where Equation (1) now becomes 
(replacing the determinant by the trace of the matrix and normalizing it by dividing by 
the number of parameters): 
 

( )tr ( | )
( | ) .

X
f X

K

β
β

Ω
=

�
�  (2)

 
Up to this point, it has been assumed that the prior parameter values are fixed and 
known. Typically however, the parameters are unknowns to be estimated in the model 
using the data collected from some underlying SC experiment. The literature has 
suggested some starting points for identifying prior parameter values that may be useful 
in constructing efficient SC experiments such as obtaining them from previous studies, 
focus groups, pilot studies, managers, etc. (Sándor and Wedel 2001). Nevertheless, 
priors obtained using these methods will likely exhibit a certain degree of uncertainty. 
Unfortunately, an efficient experimental design is only efficient for the specified prior 
parameter values assumed; hence, if the priors are incorrectly specified, the 
experimental design may become less efficient3. In order to generate a more robust 
experimental design incorporating uncertainty in the parameter priors assumed (i.e., the 
design generation process does not solely depend on fixed priors), a Bayesian approach 
has been proposed within the literature (Sandor and Wedel 2001). Using this approach, 
(a subset of) prior parameters are assumed to have random distribution(s) rather than 
fixed values. Such designs are known as Bayesian efficient designs if the expected 
efficiency is high (or the associated expected error low). Let ( | )φ β θ�  denote the 
multivariate probability density function of the priors ,β�  where θ  are the 
corresponding parameters of this distribution (e.g., if β�  follows a normal distribution, 
then θ  represents the means and standard deviations of this multivariate normal 
distribution). The Bayesian D-error (or A-error) can then be written as the expected D-
error (A-error), 
 
( ) ( | ) ( | ) .E f f X d

β
β φ β θ β= ∫ � � � �  (3)

 
Minimizing the Bayesian D-error (denoted Db-error, as opposed to the Dz-error and the 
Dp-error assuming zero and fixed priors, respectively) will yield a Db-optimal 
experimental design. Unfortunately, computation of the above integral is complex as it 
cannot be calculated analytically. Therefore, it has to be approximated, typically by 
simulation. Approximation of this integral can be time consuming, especially given the 
fact that in general, millions of experimental designs may need to be evaluated when 
searching for a (Bayesian) efficient design, and where each evaluation requires 
simulation. For realistically sized experimental designs with many randomly distributed 
parameters, this may not be feasible if the Db-error cannot be computed quickly. In the 
next section, different approximations are outlined and discussed. We show that there 
are much better (and faster) approximation methods available than those currently used 
by most researchers.  
 

                                                 
3 In some cases, a design may actually be more efficient under mis-specified prior values. 
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3. Approximation of Bayesian Efficiency 
 
In this section we will describe several different methods for approximating the Db-error 
as stated in Equation (3). Three main types of approximations are considered, namely 
(a) pseudo-random Monte Carlo (PMC) simulation, (b) quasi-random Monte Carlo 
simulation, and (c) polynomial cubature. The most common method is PMC simulation, 
which is currently used by all but few researchers4.  
 
Independent of the method, the principles in generating efficient SC experiments remain 
the same: 
 

1) first, R values from the random distribution of the prior parameter values are 
drawn; 

2) next the D-error is evaluated for each one of the values; and 

3) an average D-error is computed over these values (giving the Db-error).  

 
The PMC and quasi-random MC methods all take a simple (unweighted) average of the 
different Db-errors, but differ in the way they take the draws from the random 
distribution. In the PMC method, these draws are completely random, whereas in the 
quasi-random MC methods they are intelligent and structured, and in most cases 
deterministic. The polynomial cubature methods construct intelligent and deterministic 
draws as well, but also determine specific weights for each draw and compute a 
weighted average.  
 
Rather than drawing from a multivariate distribution, all methods generally use 
independent draws from univariate distributions for each random prior kβ� , under the 
assumption that all parameters are independent. Under this assumption, Equation (3) 
can be written as 
 

1
1( ) ( | ) ( | ) ( | ) ( | ) .

K
k k k KE f f X d f X d d

β β β
β φ β θ β β φ β θ β β= =∫ ∫ ∫� � �
� � � � � � �" "  (4)

 
Equation (4) also allows priors to have different forms of random distributions, such as 
mixing priors with a normal and a uniform distribution. The distribution parameters kθ  
will determine the mean prior value and the standard deviation (uncertainty) of that 
prior. Hence, one can include uncertainty for each prior parameter by specifying the 
corresponding random distribution.  
 
Below, each of the approximation methods will be outlined. 
 

                                                 
4 Sándor and Wedel (2002, 2005) adopt a quasi random Monte Carlo approach; orthogonal array-based Latin 
hypercube sampling, and randomly shifted good lattice points, respectively. All other papers reviewed appear to use 
PMC methods. 
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3.1 Pseudo-Random Monte Carlo (PMC) Simulation 
 
In PMC simulation, for each of the K parameters, R independent draws are taken from 
their given prior distributions. For each of these R draws of the prior parameters, the Db-
error is computed. Finally, the average is taken of all computed D-errors. Let 

( ) ( ) ( )
1[ , , ]r r r

Kβ β β=� � �…  denote draw r, 1, , ,r R= …  from the corresponding prior random 

distributions described by the probability density functions ( | ).k k kφ β θ�  The 
approximation of the Db-error can be formalized as 
 

( )

1

1( ) ( | ).
R

r

r
E f f X

R
β

=

≈ ∑ �  (5)

 
The total number of D-error evaluations is equal to R. In order to determine the draws 

( )r
kβ� , we let the computer generate for each parameter R pseudo-random numbers ( )r

ku  
which are uniformly distributed on the interval [0,1], and then compute the draws by  
 

( )( ) 1 ( ) ,r r
k k kuβ −= Φ�  (6)

 
where ( | )k k kβ θΦ �  denotes the cumulative distribution function corresponding to the 

probability density function ( | ).k k kφ β θ�  
 
3.2 Quasi-Random Monte Carlo Simulation 
 
Randomness of the draws is not a prerequisite in the approximation of the integral in 
Equation (3); rather, it has been argued in the literature that (a) correlation between 
draws for different dimensions has a positive effect on the approximation, and (b) one 
should aim for the draws to be distributed as uniformly as possible over the area of 
integration. Hence, the draws can be selected deterministically so as to minimize the 
integration error. Quasi-random MC simulation methods for approximating the Db-error 
are almost identical to the PMC simulation method, except that they use deterministic 
draws for ( )r

kβ�  (as opposed to purely random draws). In fact, Equations (5) and (6) are 
still valid, but instead of generating pseudo-random numbers ( ) (0,1),r

ku U∼  these 
numbers ( )r

ku  are taken from different intelligent quasi-random sequences, also called 
low discrepancy sequences. In this paper, we examine three different sequences. MLHS 
aims to distribute the draws uniformly, while maintaining randomness between different 
dimensions. Halton and Sobol sequences provide a certain degree of uniformity in the 
distribution of the draws, but also introduce correlations between the sequences in 
different dimensions. We now look at these three approaches in turn. 
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3.2.1 Modified Latin Hypercube Sampling (MLHS) 
 
The MLHS method (Hess et al. 2005) produces multi-dimensional sequences by 
combining randomly shuffled versions of one-dimensional sequences made up of 
uniformly spaced points. Formally, the individual one-dimensional sequences of length 
R are constructed as: 
 

( ) 1 , 1, , ,r
k k

ru r R
R

ξ−
= + = …  (7)

 
where kξ  is a random number drawn between 0 and 1/ ,R  and where a different random 
draw is used in each of the K different dimensions. In the resulting sequence, the 
distances between adjacent draws are all equal to 1/ ,R  satisfying the condition of equal 
spacing. Multi-dimensional sequences are constructed by simple combination of 
randomly shuffled one-dimensional sequences, where the shuffling disrupts the 
correlation between individual dimensions. 
 

3.2.2 Halton Sequences 
 
Halton sequences (Halton 1960) are constructed according to a deterministic method 
based on the use of prime numbers, dividing the 0-1 space into kp  segments (with kp  
giving the prime used as the base for parameter k), and by systematically filling in the 
empty spaces, using cycles of length kp  that place one draw in each segment. Formally, 
the rth element in the Halton sequence based on prime kp  is obtained by taking the 
radical inverse of integer r in base kp  by reflection through the radical point, such that  
 

( )

0
,

L
r

kr b p
=

=∑ A
A

A
 (8)

 
where ( )0 1r

kb p≤ ≤ −A  determines the L digits used in base pk in order to represent r 
(i.e., solving Equation (8)), and where the range for L is determined by 1.L L

k kp r p +≤ <  
The draw is then obtained as:5 
 

( ) ( ) 1

0
.

L
r r

k ku b p− −

=

=∑ A
A

A
 (9)

 
To allow for the computation of a simulation error, the deterministic Halton sequence 
can be randomized in several ways. Here, we use the approach discussed by amongst 
others Tuffin (1996), where the modified draws are obtained by adding a random draw 

kξ  to the individual draws in dimension k, and by subtracting one from any draws that 
now fall outside the 0-1 interval. A different random draw is used for each dimension.  
                                                 
5 As an example, consider the 5th draw using 2 (the first prime number) as base. Then r = 5 can be expressed using 
three digits as 101 in base 2, because 0 1 25 1 2 0 2 1 2 .= ⋅ + ⋅ + ⋅  Using Equation (9) the 5th draw is then given by 

0 1 1 1 2 11 2 0 2 1 2 0.5 0 0.125 0.625.− − − − − −⋅ + ⋅ + ⋅ = + + =  
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3.2.3 Sobol Sequences 
 
The main problem with Halton sequences is the fact that the individual sequences are 
highly correlated, leading to problems with poor multi-dimensional coverage in higher 
dimensions. Aside from various transformations of the standard Halton sequence and 
other advanced methods (cf. Hess et al. 2005), one approach that has received exposure 
in the area of discrete choice modeling is the Sobol sequence, used amongst others by 
Garrido (2003). Like Halton sequences, Sobol sequences are based on Van der Corput 
sequences (cf. Niederreiter 1992). However, rather than in a K-dimensional problem 
using the first K primes (as in Halton sequences), Sobol sequences are based on prime 2 
in each dimension, where different permutations are used to ensure that the resulting K-
dimensional sequence obtains good coverage. We will use a randomized version of the 
Sobol sequences equivalent to the randomization in the Halton sequences by adding a 
random component to each of the draws in each dimension.  
 

3.3 Polynomial cubature 
 
Polynomial cubature methods aim to approximate integrals using orthogonal 
polynomials. Gaussian quadrature is the best-known method. In case of a single 
variable, the use of R draws yields an exact approximation if the integrand is a 
polynomial up to degree (2R-1). General functions can be approximated by (high order) 
polynomials, hence the higher the degree (yielding more draws), the more accurate the 
approximation will be.  
 
The principle of Gaussian quadrature is that not only the draws ( )r

kβ�  for the priors are 
selected intelligently, but also that weights ( )r

kw  are associated with each draw. The 
approximation of the Db-error using Gaussian quadrature can be formalized as 
 

1
1 1

1

( ) ( ) ( ) ( )
1 1

1 1

( ) ( , , | ).
K

K K

K

R R
r r r r

K K
r r

E f w w f Xβ β
= =

≈∑ ∑ � �" " …  (10)

 
The draws for the priors and the associated weights depend on the random distribution. 
Different draws for each individual parameter are called abscissas. In the case where 

( , ),k k kNβ μ σ� ∼  the abscissas and weights can be computed using so-called Hermite 

polynomials. If ( , ),k k kU a bβ� ∼  the abscissas and weights can be computed using so-
called Legendre polynomials. The abscissas and weights for both situations are listed in 
Table 1 for up to 10 draws for each individual parameter. The weights always sum up to 
one, i.e., ( )

1
1R r

kr
w

=
=∑  for each k. For each of the K parameters, the number of abscissas 

used, ,kR  can be different.  
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Table 1: Abscissas and weights for Gauss-Hermite and Gauss-Legendre integration 
 
 Normal distribution ( , )k kN μ σ

( ) ( ) 2r r
k k kxβ μ σ= +�  

 Uniform distribution ( , )k kU a b  
( ) ( )1 1

2 2( ) ( )r r
k k k k ka b b a xβ = + + −�  

kR  ( )rx  ( )r
kw   ( )rx  ( )r

kw  
1 0.0000000000 1.0000000000  0.0000000000 1.0000000000
2 ±0.7071067812 0.5000000000  ±0.5773502692 0.5000000000
3 0.0000000000 

±1.2247448714 
0.6666666667
0.1666666667

 0.0000000000 
±0.7745966700 

0.4444444444
0.2777777778

4 ±1.6506801239 
±0.5246476233 

0.0458758548
0.4541241452

 ±0.3399810400 
±0.8611363100 

0.3260725750
0.1739274250

5 0.0000000000 
±2.0201828705 
±0.9585724646 

0.5333333333
0.0112574113
0.2220759220

 0.0000000000 
±0.5384693100 
±0.9061798500 

0.2844444450
0.2393143350
0.1184634450

6 ±2.3506049737 
±1.3358490740 
±0.4360774119 

0.0025557844
0.0886157460
0.4088284696

 ±0.2386191800 
±0.6612093900 
±0.9324695100 

0.2339569650
0.1803807850
0.0856622450

7 0.0000000000 
±2.6519613568 
±1.6735516288 
±0.8162878829 

0.4571428571
0.0005482689
0.0307571240
0.2401231786

 0.0000000000 
±0.4058451500 
±0.7415311900 
±0.9491079100 

0.2089795900
0.1909150250
0.1398526950
0.0647424850

8 ±2.9306374203 
±1.9816567567 
±1.1571937125 
±0.3811869902 

0.0001126145
0.0096352201
0.1172399077
0.3730122577

 ±0.1834346400 
±0.5255324100 
±0.7966664800 
±0.9602898600 

0.1813418900
0.1568533250
0.1111905150
0.0506142700

9 0.0000000000 
±3.1909932018 
±2.2665805845 
±1.4685532892 
±0.7235510188 

0.4063492063
0.0000223458
0.0027891413
0.0499164068
0.2440975029

 0.0000000000 
±0.3242534234 
±0.6133714327 
±0.8360311073 
±0.9681602395 

0.1651196775
0.1561735385
0.1303053482
0.0903240803
0.0406371942

10 ±3.4361591188 
±2.5327316742 
±1.7566836493 
±1.0366108298 
±0.3429013272 

0.0000043107
0.0007580709
0.0191115805
0.1354837030
0.3446423349

 ±0.1488743400 
±0.4333953900 
±0.6794095700 
±0.8650633700 
±0.9739065300 

0.1477621100
0.1346333600
0.1095431800
0.0747256750
0.0333356700

 
Note that the total number of D-error evaluations is equal to 

1
,K

kk
R R

=
=∏  that is, the 

total number of all combinations of abscissas in all dimensions. This number of D-error 
evaluations grows exponentially if the number of random priors increases.6 Therefore, 
Gaussian quadrature is typically not suitable for integrals of high dimensionality, 
although it is extremely powerful for low-dimensional problems. 
 
 
 

                                                 
6 The minimum number of draws is typically two, such that with 10 random parameters, the minimum 
number of draws possible using Gaussian quadrature is 210 = 1,024. Using three draws per random 
parameter increases this number to 310 = 59,049. 
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4. Case studies 
 
4.1 Model and experimental design description 
 
We consider six different discrete choice models with the number of parameters ranging 
from two to 14 (cf. Table 2). They are all of the multinomial logit (MNL) type, although 
a similar analysis could be performed for nested logit (NL) and mixed logit (ML) by 
replacing the AVC matrix, see Appendix A. The constants in the model are assumed to 
have fixed priors (the constants are essentially design parameters in a stated choice 
experiment), where the uncertainty about the other parameters translates into random 
prior parameter values. In our case studies, each prior parameter kβ�  is assumed to be 
normally distributed with a mean kμ  and a standard deviation ,kσ  
 

( , ).k k kNβ μ σ� ∼  (11)
 
 

Table 2: Model specifications 
 
Model Utility functions Comments 
M1 1 1 11 2 12

2 1 21 2 22

U x x
U x x

β β
β β

= +
= +

 
0 constants 
2 generic par. 
0 alt.-spec. par. 

M2 1 01 1 11 2 12 3 13

2 1 21 2 22 4 23

U x x x
U x x x

β β β β
β β β

= + + +
= + +

 
1 constant 
2 generic par.  
2 alt.-spec. par. 

M3 1 01 1 11 2 12 3 13

2 02 1 21 2 22 4 23

3 1 31 2 32 5 33 6 34

U x x x
U x x x
U x x x x

β β β β
β β β β

β β β β

= + + +
= + + +
= + + +

 

2 constants 
2 generic par. 
4 alt.-spec. par. 

M4 1 01 1 11 2 12 3 13 4 14

2 02 1 21 2 22 5 23 6 24

3 1 31 2 32 7 33 8 34

U x x x x
U x x x x
U x x x x

β β β β β
β β β β β

β β β β

= + + + +
= + + + +
= + + +

 

2 constants 
2 generic par. 
6 alt.-spec. par. 

M5 1 01 1 11 2 12 3 13 4 14 5 15

2 02 1 21 2 22 6 23 7 24 8 25

3 1 31 2 32 9 33 10 34

U x x x x x
U x x x x x
U x x x x

β β β β β β
β β β β β β

β β β β

= + + + + +
= + + + + +
= + + +

 

2 constants 
2 generic par. 
8 alt.-spec. par. 
  (1 dummy) 

M6 1 01 1 11 2 12 3 13 4 14 5 15 6 16

2 02 1 21 2 22 3 23 7 24 8 25 9 26 10 27

3 1 31 2 32 3 33 11 34 12 35

U x x x x x x
U x x x x x x x
U x x x x x

β β β β β β β
β β β β β β β β

β β β β β

= + + + + + +
= + + + + + + +
= + + + +

 

2 constants 
3 generic par. 
9 alt.-spec. par. 
  (5 dummies) 

 
 
The means kμ  are listed in Table 3 while the standard deviations are taken as a function 
of the mean, 
 

, 0.k kσ α μ α= ≥  (12)
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We will consider two situations, namely a small uncertainty about the priors using 
0.1α =  and a large uncertainty about the priors using 0.3.α =  

 
 

Table 3: Prior parameter mean values 
 

 model 01β  02β  1β  2β  3β  4β  5β  6β  7β  8β  9β  10β  11β  12β  

 M1 - - -0.09 -0.3 - - - - - - - - - - 
 M2 1.2 - -0.09 -0.3 0.5 0.8 - - - - - - - - 
 M3 3.0 1.4 -0.09 -0.3 0.5 0.9 0.3 0.7 - - - - - - 
 M4 -1.2 0.8 -0.09 -0.3 0.5 0.6 0.9 1.2 0.3 0.7 - - - - 
 M5 -3.0 -1.5 -0.09 -0.3 0.5 0.9 0.6 0.3 0.8 1.2 0.3 0.8 - - 
 M6 -3.3 1.0 -0.09 -0.06 -0.3 0.5 0.9 0.6 0.3 0.8 1.2 -0.3 0.3 0.8 
 
 
The designs used for assessing the Db-errors with different approximations are listed in 
Appendix B. In the next subsection the Db-errors calculated using the different 
approximation methods will be compared for each model/design. 
 

4.2 Comparison of approximation methods 
 
For each design we calculate the Db-error using the five different approximations: PMC, 
MLHS, Halton sequences, Sobol sequences, and Gauss-Hermite. For each design, all 
approximation outcomes are compared to the true value of the Db-error, obtained by 
using a very large number of draws (all methods converged to the same true Db-error in 
the limit). The Db-errors are computed for different numbers of draws, from 20 draws 
up to 10,000–40,000 draws (depending on the model/design). The deviation from the 
true Db-error is computed as a percentage. 
 
Rather than computing a single percentage for the deviation from the true Db-error for a 
given number of draws in each approximation, 50 deviations are computed by changing 
the draws 50 times randomly, which is trivial for PMC and MLHS and is described for 
Halton and Sobol in Section 3. Using these values, we determine the 95 percent 
confidence intervals for the Db-errors. Since Gaussian quadrature is completely 
deterministic, these draws cannot be randomized; hence, there is no need to compute a 
confidence interval in this case. In Guassian quadrature, the number of draws cannot be 
chosen arbitrarily, as the number of draws should be a multiple of the number of 
abscissas used. We increase the number of draws each time by increasing the number of 
abscissas for a single parameter prior. Note that we do not require that each individual 
parameter prior has the same number of abscissas. Instead, we use different numbers of 
abscissas for each prior, depending on the impact this prior has on the utility. That is, if 
a prior has a large effect on the utility and has a large standard deviation, then we 
require more information on this prior in order to calculate the Db-error more accurately. 
The priors are ranked in decreasing order of the mean value multiplied with the 
corresponding average attribute level. Starting with a single abscissa for each prior, the 
prior with the highest order will face an increase in the number of abscissas first, then 
the second in order, etc., until all priors have two abscissas each. Then the procedure 
starts all over again by increasing the number of abscissas for each prior in the same 
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order. The total number of draws used in the Gauss-Hermite approximation is equal to 
the product of all prior abscissas, as mentioned in Section 3.3. 
 
Figure 1 depicts confidence intervals for the deviations from the true Db-errors for the 
different approximation methods for design D3 using different numbers of draws R and 
large standard deviations of the priors ( 0.3).α =  Note that this design corresponds to 
model M3 having six random priors (the constants are assumed to have fixed parameter 
priors). The figures for the other designs show very similar results and as such are not 
reproduced here. A summary of the confidence intervals for all designs with small and 
large standard errors are given in Table 4 and Table 5, respectively.  From 
Figure 1, we can conclude that PMC has the widest confidence interval (roughly -4 to +4 
percent using 1,000 draws), while all other methods produce more narrow confidence 
intervals. Halton and Sobol perform quite well, while MLHS is mainly performing 
better than PMC for small R and but less well with higher R. The single line for the 
Gauss-Hermite approximation in the figure can be regarded as the 100 percent 
confidence interval. Clearly, the Gauss-Hermite approximation outperforms all other 
methods.  
 

Table 4: Deviation from the true Db-error (in %), 0.1α =  
 

  PMC MLHS Halton Sobol  Gauss
design R Low high low high low high low high R - 
D1 40 -1.59 1.55 -0.44 0.43 -0.64 0.57 -0.57 0.56 36 0.00 
 100 -1.04 0.94 -0.18 0.18 -0.29 0.24 -0.27 0.23 100 0.00 
 200 -0.73 0.73 -0.12 0.11 -0.15 0.10 -0.17 0.12 196 0.00 
 500 -0.39 0.39 -0.04 0.06 -0.07 0.04 -0.07 0.05 506 0.00 
 1000 -0.26 0.31 -0.02 0.02 -0.04 0.03 -0.04 0.03 992 0.00 
 2000 -0.18 0.22 -0.02 0.02 -0.02 0.01 -0.02 0.02 1980 0.00 
D2 40 -1.50 1.59 -0.85 0.98 -0.79 0.83 -0.81 0.83 36 0.00 
 100 -0.79 0.91 -0.40 0.48 -0.42 0.36 -0.44 0.41 108 0.00 
 200 -0.54 0.67 -0.35 0.36 -0.25 0.23 -0.32 0.32 192 0.00 
 500 -0.38 0.41 -0.22 0.23 -0.14 0.15 -0.16 0.15 500 0.00 
 1000 -0.26 0.27 -0.15 0.13 -0.08 0.08 -0.08 0.06 1080 0.00 
 2000 -0.16 0.17 -0.12 0.11 -0.04 0.04 -0.04 0.04 2058 0.00 
 5000 -0.14 0.14 -0.06 0.08 -0.02 0.02 -0.02 0.03 5184 0.00 
 10000 -0.08 0.10 -0.06 0.05 -0.02 0.02 -0.02 0.02 10000 0.00 
D3 40 -1.67 1.59 -0.98 1.01 -1.05 1.24 -1.06 0.89 32 -1.86 
 100 -1.06 0.93 -0.48 0.60 -0.56 0.57 -0.55 0.48 96 -0.01 
 200 -0.68 0.69 -0.40 0.36 -0.32 0.33 -0.38 0.34 216 -0.01 
 500 -0.43 0.41 -0.26 0.25 -0.17 0.18 -0.17 0.14 486 -0.01 
 1000 -0.30 0.28 -0.18 0.19 -0.10 0.11 -0.11 0.10 972 0.00 
 2000 -0.22 0.21 -0.16 0.13 -0.05 0.07 -0.07 0.07 1728 0.00 
 5000 -0.14 0.11 -0.09 0.08 -0.03 0.03 -0.03 0.03 5120 0.00 
 10000 -0.11 0.10 -0.05 0.07 -0.01 0.02 -0.02 0.02 10000 0.00 
D4 40 -2.13 2.59 -1.57 1.77 -1.47 1.53 -1.95 1.46 32 -2.42 
 100 -1.20 1.32 -0.83 0.80 -0.92 1.07 -0.91 0.77 128 -1.98 
 200 -0.79 0.89 -0.76 0.71 -0.52 0.60 -0.52 0.46 256 0.00 
 500 -0.64 0.62 -0.47 0.44 -0.24 0.31 -0.26 0.23 576 0.00 
 1000 -0.41 0.36 -0.30 0.27 -0.14 0.20 -0.14 0.15 864 -0.01 
 2000 -0.32 0.32 -0.21 0.20 -0.10 0.12 -0.12 0.11 1944 -0.01 
 5000 -0.21 0.15 -0.14 0.12 -0.05 0.05 -0.05 0.05 4374 0.00 
 10000 -0.16 0.12 -0.09 0.09 -0.03 0.03 -0.03 0.03 11664 0.00 
 20000 -0.11 0.09 -0.04 0.06 -0.02 0.02 -0.02 0.02 20736 0.00 
D5 40 -1.96 2.31 -0.77 0.63 -1.93 1.62 -1.29 1.14 32 -0.48 
 100 -1.44 1.56 -0.46 0.44 -0.85 0.82 -0.56 0.45 128 -0.13 
 200 -1.30 1.17 -0.27 0.25 -0.49 0.43 -0.31 0.27 256 -0.05 
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 500 -0.79 0.67 -0.13 0.12 -0.21 0.22 -0.15 0.09 512 -0.03 
 1000 -0.59 0.46 -0.09 0.09 -0.11 0.12 -0.09 0.08 1024 -0.03 
 2000 -0.39 0.38 -0.08 0.07 -0.07 0.08 -0.03 0.03 2304 0.01 
 5000 -0.22 0.22 -0.03 0.04 -0.04 0.04 -0.02 0.02 5184 0.00 
 10000 -0.20 0.16 -0.03 0.03 -0.02 0.02 -0.01 0.01 11664 0.00 
 20000 -0.16 0.15 -0.02 0.02 -0.01 0.01 -0.01 0.01 17496 0.00 
 40000 -0.11 0.10 -0.01 0.01 -0.01 0.01 -0.01 0.01 39366 0.00 
D6 40 -1.15 1.11 -0.33 0.39 -0.94 0.90 -0.60 0.57 32 -0.29 
 100 -0.68 0.82 -0.21 0.22 -0.51 0.44 -0.36 0.29 128 -0.18 
 200 -0.58 0.64 -0.14 0.14 -0.35 0.27 -0.23 0.23 256 -0.14 
 500 -0.31 0.32 -0.10 0.10 -0.19 0.17 -0.06 0.08 512 -0.02 
 1000 -0.27 0.18 -0.07 0.06 -0.06 0.05 -0.05 0.06 1024 -0.01 
 2000 -0.20 0.17 -0.04 0.04 -0.03 0.03 -0.05 0.06 2048 0.01 
 5000 -0.13 0.09 -0.03 0.04 -0.02 0.01 -0.02 0.02 4096 0.00 
 10000 -0.07 0.07 -0.02 0.02 -0.01 0.01 -0.01 0.01 9216 0.00 
 20000 -0.04 0.05 -0.02 0.02 -0.01 0.01 -0.01 0.01 20736 0.00 
 40000 -0.03 0.04 -0.01 0.01 -0.00 0.00 -0.00 0.01 46656 0.00 

 
Table 5: Deviation from the true Db-error (in %), 0.3α =  

 
  PMC MLHS Halton Sobol  Gauss
design R low high low high low high low high R - 
D1 40 -5.04 5.14 -1.16 1.55 -1.91 1.77 -1.92 1.91 36 0.00 
 100 -3.43 3.22 -0.76 0.74 -0.88 0.73 -0.88 0.71 100 0.00 
 200 -2.27 2.31 -0.44 0.45 -0.50 0.36 -0.55 0.43 196 0.00 
 500 -1.21 1.22 -0.26 0.25 -0.23 0.15 -0.24 0.18 506 0.00 
 1000 -0.86 1.02 -0.18 0.17 -0.14 0.10 -0.12 0.11 992 0.00 
 2000 -0.58 0.73 -0.09 0.09 -0.06 0.06 -0.07 0.06 1980 0.00 
D2 40 -16.23 17.39 -9.64 9.93 -11.89 12.92 -9.96 9.95 36 -0.33 
 100 -7.94 9.75 -5.97 6.36 -5.83 6.00 -5.43 4.59 108 -0.04 
 200 -5.27 6.96 -4.54 4.51 -3.57 3.21 -3.98 3.72 192 -0.02 
 500 -4.04 4.39 -2.62 2.56 -2.27 2.34 -2.35 1.85 500 -0.00 
 1000 -3.04 3.16 -2.12 2.27 -1.43 1.20 -1.25 0.89 1080 -0.00 
 2000 -2.00 1.96 -1.37 1.25 -0.81 0.75 -0.76 0.75 2058 -0.00 
 5000 -1.44 1.52 -0.91 0.78 -0.45 0.51 -0.48 0.47 5184 -0.00 
 10000 -0.92 1.12 -0.58 0.66 -0.31 0.27 -0.35 0.31 10000 -0.00 
D3 40 -11.22 10.72 -7.62 6.75 -7.84 8.81 -7.85 6.33 32 -12.21
 100 -7.23 6.13 -4.64 5.66 -4.39 4.56 -4.39 3.74 96 -0.21 
 200 -5.00 4.83 -3.37 3.56 -2.83 3.01 -3.04 2.55 216 -0.19 
 500 -3.18 3.00 -2.23 2.01 -1.68 1.77 -1.52 1.07 486 -0.14 
 1000 -2.10 1.79 -1.37 1.40 -0.92 0.99 -1.02 0.75 972 -0.14 
 2000 -1.58 1.36 -0.89 0.80 -0.51 0.60 -0.65 0.55 1728 -0.14 
 5000 -1.00 0.69 -0.66 0.53 -0.33 0.31 -0.35 0.26 5120 -0.02 
 10000 -0.82 0.67 -0.46 0.36 -0.18 0.16 -0.25 0.19 10000 -0.02 
D4 40 -19.41 24.28 -16.32 16.94 -19.81 19.28 -18.87 13.95 32 -17.26
 100 -11.35 13.30 -10.50 10.68 -12.82 15.46 -10.37 8.82 128 -15.32
 200 -9.02 10.37 -7.67 5.97 -7.23 8.95 -6.41 5.12 256 -2.11 
 500 -6.62 6.16 -5.10 5.30 -3.67 4.21 -4.00 3.24 576 -0.72 
 1000 -4.49 3.62 -3.22 2.95 -2.46 2.95 -2.37 2.40 864 -0.65 
 2000 -3.27 3.10 -2.49 1.79 -1.67 1.68 -2.02 1.77 1944 -0.63 
 5000 -2.07 1.44 -1.22 1.20 -0.93 0.83 -0.87 0.67 4374 -0.60 
 10000 -1.44 1.01 -1.19 0.99 -0.59 0.46 -0.48 0.43 11664 -0.06 
 20000 -1.20 0.95 -0.68 0.66 -0.46 0.25 -0.42 0.27 20736 -0.06 
D5 40 -11.90 11.36 -5.13 4.84 -10.36 9.07 -7.66 7.00 32 -2.37 
 100 -9.07 8.92 -3.54 3.54 -4.14 4.22 -3.69 2.96 128 -1.93 
 200 -6.67 5.64 -2.78 2.50 -2.68 2.18 -2.04 1.64 256 -1.74 
 500 -4.11 3.42 -1.46 1.37 -1.51 1.69 -1.29 0.92 512 -1.70 
 1000 -2.89 2.40 -1.08 1.03 -0.77 0.95 -1.11 0.90 1024 -1.64 
 2000 -1.88 1.75 -0.86 0.59 -0.59 0.67 -0.42 0.33 2304 -0.07 
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 5000 -1.20 1.02 -0.45 0.40 -0.31 0.31 -0.32 0.22 5184 -0.02 
 10000 -1.02 0.83 -0.36 0.31 -0.19 0.18 -0.20 0.16 11664 -0.01 
 20000 -0.78 0.73 -0.23 0.24 -0.13 0.09 -0.16 0.10 17496 -0.01 
 40000 -0.53 0.48 -0.12 0.13 -0.08 0.05 -0.12 0.07 39366 -0.01 
D6 40 -7.10 7.16 -3.30 4.27 -4.97 6.24 -4.35 4.54 32 -2.07 
 100 -3.65 4.62 -1.85 2.27 -2.82 3.19 -2.94 3.17 128 -1.33 
 200 -3.11 3.90 -1.19 2.08 -1.65 1.99 -1.92 2.65 256 -0.96 
 500 -1.85 2.51 -0.51 0.81 -0.75 1.25 -0.45 1.09 512 -0.04 
 1000 -1.63 1.60 -0.44 0.82 -0.26 0.81 -0.26 0.88 1024 -0.02 
 2000 -1.07 1.42 -0.22 0.64 0.06 0.45 -0.18 0.81 2048 -0.15 
 5000 -0.58 0.83 0.07 0.45 0.11 0.39 0.07 0.46 4096 -0.16 
 10000 -0.24 0.74 0.12 0.48 0.15 0.35 0.15 0.38 9216 -0.02 
 20000 -0.06 0.58 0.13 0.36 0.20 0.33 0.19 0.32 20736 -0.00 
 40000 0.01 0.55 0.17 0.36 0.23 0.30 0.21 0.30 46656 -0.00 
 
 
 
In Table 4 and Table 5, the 95 percent confidence intervals (from low to high) of the 
deviations are indicated for PMC, MLHS, Halton, and Sobol for different numbers of 
draws R, while the deterministic deviations from Gauss-Hermite is indicated in the last 
column. As the number of draws for Gauss-Hermite in general does not match the 
number of draws from the other methods, the value of R that is as close as possible to 
the number of draws for the other methods are shown. 
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Figure 1: Confidence intervals for deviation of the true Db-error of design D3 ( 0.3)α =  
 
Comparing Table 4 and Table 5, larger standard deviations result in greater difficulty in 
approximating the Db-error than smaller standard deviations. Only a few draws are 
needed in order to have the 95 percent confidence interval of the deviation within ±1 
percent. Even though PMC is outperformed by all other methods (particularly by Gauss-



Approximation of Bayesian Efficiency in Experimental Choice Designs 
Bliemer, Rose & Hess 
 

16 

Hermite) in the case of small standard deviations, it can be concluded that the 
approximation method is of particular importance in cases where the standard 
deviations are larger, making it more difficult to compute the Db-error. As such, we will 
focus mainly on the results dealing with large standard deviations in the priors. 
 
As expected, Gauss-Hermite is preferred in designs with lower dimensions (designs D1 
and D2 have 2 and 4 random priors, respectively) as indicated in Table 5, where even 
with low numbers of draws, the true Db-error is accurately reproduced. In designs with 
higher numbers of dimensions (design D3–D6 have 6, 8, 10, and 12 random priors, 
respectively) Gauss-Hermite has slightly more problems with computing the Db-error, 
but still performs well. This result is somewhat surprising as some researchers have 
found in the past that Gauss-Hermite typically only works well with very low 
dimensions (1, 2, or 3) due to the exponentially growing number of draws needed (Bhat 
2001). However, in this paper we use a smarter approach (which we will term 
incremental Gaussian quadrature) in which not all priors are given the same number of 
abscissas, which significantly reduces the number of draws needed for higher-
dimensional problems. Overall, our findings suggest that Gauss-Hermite outperforms 
the other methods considered within this paper. However, it is worth noting that, mainly 
with designs D3 and D4, Gauss-Hermite has difficulty when a small numbers of draws 
(R<100) is used. This is due to the fact that with a small number of draws, the Gauss-
Hermite method is unable to pick up enough variance in the prior parameters. 
Nevertheless, it performs well with more draws.  
 
Halton and Sobol perform similarly, clearly outperforming PMC. It is interesting to note 
that in all designs, MLHS performs well compared to PMC and similar to Halton and 
Sobol when low numbers of draws are used. However, whenever the number of draws 
increases, the Db-error from MLHS does not converge as rapidly to the true value as 
Halton and Sobol do. This may be explained by the way the sequences are constructed. 
PMC lacks both a uniform spread of the integration area and correlation between the 
draws in different dimensions, which were argued to have a positive effect on the 
accuracy of the approximation (see Section 3). MLHS has a uniform spread by 
definition, but correlation is removed as much as possible by randomizing the order of 
the draws in each dimension. Halton and Sobol are less uniform in their spread 
(particularly with low number of draws), but the correlation between the dimensions has 
positive effect on the outcomes (at least for smaller dimensions). With small R, MLHS 
produces more uniform sequences than Halton or Sobol. However, with larger R this 
uniformity plays less of a role and the importance of the correlation between the 
sequences may become more important. 
 

Rather than looking at the percentage deviation from the true Db-error for different 
numbers of draws, we can consider the reverse by looking at the number of draws 

needed in order to ensure (with 95 percent certainty; and 100 percent certainty in case of 
Gauss-Hermite) that the deviation is not more than a certain percentage. The results are 
shown in Table 6, where the numbers of draws have been determined by inverting the 

lines in 
Figure 1 (and using linear interpolation). 
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Table 6: Number of draws for different allowed maximum deviations 
 
  Design 1, 0.1α =    Design 1, 0.3α =   
Dev. PMC MLHS Halton Sobol Gauss PMC MLHS Halton Sobol Gauss 
5.0% <20 <20 <20 <20 1 45 <20 <20 <20 1 
4.0% <20 <20 <20 <20 1 73 <20 <20 <20 2 
3.0% <20 <20 <20 <20 1 126 <20 27 27 4 
2.0% 26 <20 <20 <20 1 242 29 39 39 4 
1.0% 111 <20 26 22 1 1,033 74 78 85 4 
0.5% 352 37 52 51 2 >2,000 139 204 252 4 
  Design 2, 0.1α =    Design 2, 0.3α =   
Dev. PMC MLHS Halton Sobol Gauss PMC MLHS Halton Sobol Gauss 
5.0% <20 <20 <20 <20 1 294 116 115 110 16 
4.0% <20 <20 <20 <20 1 577 293 150 199 16 
3.0% <20 <20 <20 <20 2 1,115 348 288 327 24 
2.0% 21 <20 <20 <20 2 2,016 1,400 645 629 24 
1.0% 89 39 33 32 4 >10,000 4,543 1,592 1,389 24 
0.5% 293 85 88 83 8 >10,000 >10,000 3,947 4,810 36 
  Design 3, 0.1α =    Design 3, 0.3α =   
Dev. PMC MLHS Halton Sobol Gauss PMC MLHS Halton Sobol Gauss 
5.0% <20 <20 <20 <20 2 200 112 76 86 64 
4.0% <20 <20 <20 <20 2 297 161 121 115 64 
3.0% <20 <20 <20 <20 4 539 275 158 204 64 
2.0% 31 <20 <20 <20 32 1,415 647 420 351 64 
1.0% 106 64 56 44 64 4,987 1,943 997 1,247 64 
0.5% 367 154 119 111 64 >10,000 8,956 2,594 2,825 64 
  Design 4, 0.1α =    Design 4, 0.3α =   
Dev. PMC MLHS Halton Sobol Gauss PMC MLHS Halton Sobol Gauss 
5.0% <20 <20 <20 <20 4 871 441 390 320 256 
4.0% <20 <20 <20 <20 4 1,171 581 657 499 256 
3.0% 34 <20 <20 <20 8 2,398 1,087 984 769 256 
2.0% 65 32 <20 27 128 6,342 2,676 1,703 2,034 384 
1.0% 179 85 106 89 256 >20,000 11,525 4,749 4,278 384 
0.5% 691 270 243 210 256 >20,000 >20,000 14,343 9,758 6,561 
  Design 5, 0.1α =    Design 5, 0.3α =   
Dev. PMC MLHS Halton Sobol Gauss PMC MLHS Halton Sobol Gauss 
5.0% <20 <20 <20 <20 1 300 48 86 79 16 
4.0% <20 <20 <20 <20 1 540 75 107 95 16 
3.0% 24 <20 <20 <20 16 970 144 186 138 16 
2.0% 59 <20 37 <20 32 1,696 233 419 220 128 
1.0% 278 35 83 57 32 8,634 1,096 954 1,076 1,536 
0.5% 1,392 88 193 112 32 >40,000 4,604 2,820 1,624 1,536 
  Design 6, 0.1α =    Design 6, 0.3α =   
Dev. PMC MLHS Halton Sobol Gauss PMC MLHS Halton Sobol Gauss 
5.0% <20 <20 <20 <20 1 87 36 67 33 8 
4.0% <20 <20 <20 <20 1 187 45 85 55 8 
3.0% <20 <20 <20 <20 1 401 91 105 114 8 
2.0% <20 <20 26 <20 2 656 145 139 290 64 
1.0% 57 <20 39 <20 2 4,192 481 768 860 256 
0.5% 294 34 102 60 8 >40,000 4,452 1,888 4,129 512 

 
 
With small standard deviations ( 0.1),α =  the number of draws required to be within 
one percent from the true Db-error is typically not larger than 100 for all designs. 
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However, in the case where the prior parameter distributions are assumed to have large 
standard deviations ( 0.3),α =  a much larger number of draws is necessary. Compare 
the outcomes for design D1 using large standard deviations. If one would like to be with 
95 percent probability within 0.5 percent from the true Db-error, more than 2,000 PMC 
draws are needed, while MLHS, Halton, and Sobol only require 139, 204, and 252, 
respectively. Moreover, Gauss-Hermite approximation needs only four draws (two 
abscissas per prior parameter) to be within that 0.5 percent. This pattern repeats itself 
for other designs. For example, for design D2, PMC and MLHS need more than 10,000 
draws to be within the 0.5 percent range, Halton and Sobol require almost 4,000 and 
5,000, respectively, while Gauss-Hermite requires only 36 draws. As expected, in 
higher dimensions, Gauss-Hermite requires significantly more draws, but still less than 
when using the other methods. For example, in design D5, PMC needs more than 
40,000 draws, MLHS, Halton, and Sobol need approx. 4,600, 2,800, and 1,600, 
respectively, whilst Gauss-Hermite requires approx. 1,500 draws. Nevertheless, it is to 
be expected that Gauss-Hermite approximation in larger models with more than 10 
random prior parameters (as in model M6) will need significantly more draws, which 
may become prohibitive. It should be pointed out however, that the other methods may 
require more draws as well, meaning that choosing for Halton or Sobol may not 
necessarily provide better results than Gauss-Hermite with the same number of draws. 
Nonetheless, the number of draws in Gauss-Hermite approximation is dictated by the 
product of the prior abscissas and choosing a small value may therefore be impossible 
in a large design. In that case, there is always the option of using Halton or Sobol, as the 
number of draws can be selected arbitrarily, although one should realize that the 
approximated Db-error may deviate largely from the true value. 
 

5. Conclusions and discussion 
 
This paper compares the performance of PMC draws to several types of quasi random 
Monte Carlo draws, as well as to a single polynomial cubature method, when using 
Bayesian methods to generate efficient SC designs. The quasi random Monte Carlo 
draws include Halton, Sobol and MLHS draws whilst the polynomial cubature method 
examined is Gauss-Hermite. Performance comparisons are made for six SC designs 
with various design dimensions (attributes and alternatives) as well as over different 
assumptions regarding the standard deviations of the prior parameter distributions. In all 
but a few cases involving an extremely small number of draws, Gauss-Hermite 
approximation appears to outperform all other methods in reproducing the true level of 
a design’s level of efficiency, whilst the PMC method appears to perform worst in 
nearly all cases. When the standard deviations of the prior parameter distributions are 
relatively small (i.e., the researcher is more certain about the true parameter value), 
Halton, Sobol and MLHS draws appear to perform equally well. However, with larger 
standard deviations in the prior parameter distributions and with higher numbers of 
design dimensions, the performance of MLHS is slightly worse than both Halton and 
Sobol sequences. Furthermore, all approximation methods need more draws if the 
standard deviations of the priors are larger. 
 
Our findings call into question the predominant use within the literature of PMC draws 
to generate Bayesian efficient SC designs. Our findings suggest that designs generated 
using PMC methods are unlikely to be truly efficient under the assumptions made by 
the researcher (that is the population moments of the prior parameter distributions) 
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unless an impractically large number of draws are used. The results of this paper 
suggest that whilst quasi random Monte Carlo methods perform much better than the 
PMC method, better approximation to the true level of efficiency of a design may be 
achieved using polynomial cubature methods. This result conflicts with evidence 
offered in other areas using simulation methods (mainly in estimating the random 
parameters in mixed logit models) which suggest that Halton draws outperform Gauss-
Hermite approximations (Bhat 2001) in obtaining more correct results. In this paper, we 
have used an incremental Gauss-Hermite approximation, which is a more intelligent 
technique than used elsewhere in determining how many draws to use, which may 
partly explain these conflicting results.  
 
Of course, as we have noted on several occasions, as the number of dimensions 
requiring simulation increases, so does the number of draws required when using 
Gauss-Hermite approximations. Unlike with other methods, this cannot be avoided. 
That is, whilst the researcher can determine the number of draws to employ when using 
PMC or quasi random Monte Carlo methods, thus accepting a lower level of accuracy in 
return for lower computational cost, the number of draws required when using 
polynomial cubature methods is determined by the abscissas for a given design. Whilst 
the number of draws may be reduced using methods such as that used here, there still 
remains a minimum number of draws that must be used when employing polynomial 
cubature methods. No such limits exist for the other methods. It appears however, that 
for a given level of accuracy involving designs with large numbers of dimensions, the 
number of draws required when using polynomial cubature methods represents the 
minimum number of draws, independent of the type of draws taken. As such, whilst the 
researcher may rely on less draws when using say Halton draws, the reduction in the 
number of draws comes at the price of less accurate results.  
 
One limitation within the research presented here is that we have only examined the 
case of Bayesian efficient designs assuming the multinomial logit model form. The 
theory presented in this paper is still valid for other discrete choice models (such as 
nested logit and mixed logit). Whilst we would expect the results to hold for these other 
models, this is still to be confirmed. An interesting case to examine is the mixed logit 
model, whereby simulation is required not only for the Bayesian prior distributions, but 
also the random parameter distributions as well. Sándor and Wedel (2002, 2005) do 
report results for Bayesian efficient designs developed using mixed logit models, 
adopting a quasi random Monte Carlo approach; orthogonal array-based Latin 
hypercube sampling, and randomly shifted good lattice points, respectively. They report 
in a footnote (Sándor and Wedel 2005) that some exploration of the number of draws 
was undertaken but we call for a more structured examination of the issue, similar to 
that presented here. 
 
Additionally, the analyses presented only consider Normal distributions for the prior 
parameters. Additional research is required to investigate the impact of the different 
approximation methods when other probability distributions are assumed.  
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Appendix A. Deriving the asymptotic (co)variance 
matrix 
 
Consider an experimental design with alternatives (indexed by j) with associated 
attributes (indexed by k ). In each choice situation ,s  we assume that the levels of the 
attributes are given by .jksx  Let the utility of alternative j in choice situation s be given 
by  
 

,js js jsU V ε= +  (13)
 
where jsV  denotes the observed utility and jsε denotes the unobserved utility.  
 
Denote the complete experimental design by [ ].jksX x≡  Let the observed utility of 
alternative j in choice situation s be given by 
 

( | ) ,
j

js k jks
k K

V X b b x
∈

= ∑  (14)

 
where [ ]kb b≡  denotes the vector of attribute weights, which are typically the unknown 
parameters to be estimated. Depending on the set of attributes appearing in each 
alternative ,jK  both generic and alternative-specific weights can be present. In the 
generic case, parameter kb  appears in multiple utility functions of different alternatives, 
while in the alternative-specific case, the parameter only appears in the corresponding 
alternative.  
 
Let ( | )jsP X b  denote the probability of choosing alternative j in choice situation s, and 
let jsy  denote the outcome of the stated choice experiment based on the experimental 
design (assuming a single respondent), where jsy  equals one if alternative j is chosen in 
choice situation s, and zero otherwise. The log-likelihood function can be written as 
 

( | ) log ( | ) .js js
s j

L b X y P X b⎡ ⎤= ⎣ ⎦∑∑  (15)

 
Assuming that β  are the true parameter values, the Fisher information matrix can be 
written as 
 

2 ( | )( | ) .
'

L XI X
b b
ββ ∂

=
∂ ∂

 (16)

 
The asymptotic variance-covariance (AVC) matrix can be computed as the negative 
inverse of the Fisher information matrix: 
 

1( | ) ( | )X I Xβ β−Ω = −  (17)
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The probability ( | )jsP X b  depends on the assumptions regarding the unobserved 
components .jsε  Different assumptions yield different models. We will discuss three 
model types: 
 
(a) Multinomial logit (MNL) model – Assumes that all jsε  are distributed identically 

and independently following a type I extreme value distribution. The estimated taste 
parameters are assumed to be nonrandom; 

(b) Nested logit (NL) model – Assumes that the jsε follow a joint extreme value 
distribution, such that the errors are still distributed identically, but no longer 
independently. The estimated taste parameters are still assumed to be nonrandom; 

(c) Mixed logit (ML) model – Allows for additional errors on top of the type I extreme 
value errors, where no independence or identicality assumptions apply. 

 
In the following, we will show the formulae for the probabilities in each of these 
models. Only these probabilities are different, the theory in the paper therefore holds for 
each of these models. 
 

A.1 Multinomial logit (MNL) model 
In the MNL model, we assume that the parameters b are nonrandom. Assuming prior 
parameter values β�  for these parameters yields the following probability of choosing 
alternative j in choice situation s (see McFadden, 1974): 
 

( )
( )

exp ( | )
( | ) .

exp ( | )
js

js
isi

V X
P X

V X

β
β

β
=
∑

�
�

�  (18)

 
The resulting Fisher information matrix and the AVC matrix can be computed 
analytically. See McFadden (1974) for the Fisher information matrix in case all 
parameters are generic, and see Rose and Bliemer (2005) in case the parameters are 
alternative-specific or there is a mix of generic and alternative-specific parameters. 
 

A.2 Nested logit (NL) model 
In the NL model, the error terms for some of the alternatives are correlated, leading to 
heightened substitution between these alternatives (cf. Train, 2003). The situation can 
be represented most easily with the help of a tree, where the choice of an alternative is 
preceded by the choice of a nest that this alternative belongs to (with alternatives that 
have correlated errors sharing a nest). It is important to stress that this is an econometric 
notion, and not a behavioral one; the model does not imply a sequential choice process 
by the respondent.  
 
The simplest example is given by a two-level case, with composite nests at the upper 
level, and elementary alternatives at the lower level. Assume that the scales in the NL 
model are normalized at the lower level (corresponding to the RU1 model specification, 
see Hensher and Green, 2002) and that the scales of each nest m is given by .mλ  
Assume that model parameters b are nonrandom and that the prior parameter values for 
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these parameters and the scale parameters are given by β�  and ,λ�  respectively. Then the 
probability of choosing alternative j that belongs to nest m is given by (see Bliemer et 
al., 2005): 
 

( )( )
( )( )

( )
( )

exp ( | ) exp ( | )
( | , ) .

exp ( | )exp ( | )

m

m

n

n

is jsi J
js

isiisn i J

V X V X
P X

V XV X

λ

λ

β β
β λ

ββ

∈

∈

=
∑

∑∑ ∑

�

�

� �
� �

��
 (19)

 
The Fisher information and AVC matrix can be computed analytically for this two-level 
NL model as shown in Bliemer et al. (2005). 
 

A.3 Mixed logit (ML) model 
Now instead of assuming fixed parameters b we assume that the parameters follow a 
random distribution with distribution parameters β  (e.g., explaining the heterogeneity 
of agents in the discrete choice model). Suppose that the probability density function of 
b is given by ( | ).bψ β  Assuming prior values β�  of the distribution parameters, the 
(expected) probability of choosing alternative j in choice situation s is 
 

( )exp ( | )
( | ) ( | ) .

exp ( | )
js

js b
isi

V X b
P X b db

V X b
β ψ β= ∫ ∑
� �  (20)

 
Note that computing this probability requires the evaluation of an integral, similar to 
Equation (3). An analytical solution to solving this integral does not exist. The same 
approximation methods discussed in this paper can be applied for solving Equation (20). 
Comparisons of different approximation methods (pseudo-random, Halton, MLHS, 
(t,m,s)-nets, Gaussian quadrature) in the ML model can be found in Bhat (2001), Sándor 
and Train (2004), and Hess et al. (2005). Note that the computation of the Db-error for 
ML models means that for each draw of the prior parameters, a simulation of the 
probability in Equation (20) is needed. Different simulation methods can be used in 
combination, for example, one could use Halton draws for simulating the probability, 
while using Gaussian quadrature approximations for the computation of the Db-error. 
The computation time for evaluating a Bayesian efficient design for estimating an ML 
model is very high, making it only feasible to find Bayesian efficient designs for ML 
models with a limited number of random parameters. 
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Appendix B. Experimental designs 
 
The designs used in this paper are D-efficient (not necessarily D-optimal) designs using 
fixed priors created using the Ngene7 software. As an example, the syntax for 
generating the design for model M2 is given below. It generates a D-efficient design for 
the specified MNL model with six choice situations. The prior parameter values are 
given between brackets for each parameter b and the attribute levels are given between 
brackets for each attribute x. Note that b1 and b2 are generic since they have the same 
name in both utility functions for the two alternatives, while b0, b3 and b4 are 
alternative-specific. Tables B.1 through B.6 list the experimental designs used for the 
analyses in the paper. 
 
Efficient 
;mtype = mnl 
;alts = alt1, alt2 
;rows = 6 
;eff = d 
;model: 
U(alt1) = b0 [1.2] + b1[-0.09] * x1[0,20,30] + b2[-0.3] * x2[1,3,5]  + b3[0.5] * x3[2,4,6] / 
U(alt2) = b1 * x1 + b2 * x2 + b4[0.8] * x4[2,4,6]$ 
 
Table B.1: Experimental design D1 (for model M1) 

s 11x  12x  21x  22x  
1 20 3 10 1 
2 20 1 20 3 
3 30 5 30 1 
4 30 1 10 5 
5 10 3 20 3 
6 10 5 30 5 
D-error ( 0)α =  = 0.029186 
Bayesian D-error ( 0.1)α =  = 0.029352 
Bayesian D-error ( 0.3)α =  = 0.030671 
 
Table B.2: Experimental design D2 (for model M2) 

s 01x  11x  12x  13x  21x  22x  23x
1 1 10 3 6 30 3 6 
2 1 30 5 6 20 1 2 
3 1 20 1 4 20 5 6 
4 1 30 3 4 10 3 4 
5 1 20 1 2 10 5 2 
6 1 10 5 2 30 1 4 
D-error ( 0)α =  = 0.093658 
Bayesian D-error ( 0.1)α =  = 0.097006 
Bayesian D-error ( 0.3)α =  = 0.132040 
 

                                                 
7 Ngene is currently in prototype status and is being developed at the University of Sydney. 
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Table B.3: Experimental design D3 (for model M3) 

s 01x  11x  12x  13x  02x  21x  22x 23x 31x 32x 33x 34x
1 1 30 1 6 1 10 3 2 10 5 3 6 
2 1 10 5 2 1 20 1 2 30 1 3 4 
3 1 10 1 2 1 30 5 6 30 3 5 4 
4 1 10 5 6 1 30 1 6 20 3 5 4 
5 1 20 3 2 1 10 1 2 30 5 7 6 
6 1 20 1 4 1 20 3 4 10 5 3 8 
7 1 30 3 6 1 20 5 4 10 1 5 2 
8 1 30 5 4 1 30 5 4 10 1 7 2 
9 1 30 1 2 1 10 3 2 20 3 5 2 
10 1 20 3 4 1 10 5 6 20 1 3 8 
11 1 20 5 4 1 30 1 6 20 5 7 6 
12 1 10 3 6 1 20 3 4 30 3 7 8 
D-error ( 0)α =  = 0.056300 
Bayesian D-error ( 0.1)α =  = 0.059608 
Bayesian D-error ( 0.3)α =  = 0.086397 
 
Table B.4: Experimental design D4 (for model M4) 

s 01x  11x  12x  13x  14x  02x  21x 22x 23x *
24x 31x 32x 33x 34x

1 1 20 5 4 7 1 10 1 2 1 30 3 3 8 
2 1 10 3 4 4 1 30 1 6 0 10 5 5 4 
3 1 10 5 2 7 1 30 5 4 1 10 1 3 4 
4 1 30 1 6 4 1 20 5 4 0 20 1 7 2 
5 1 10 3 2 7 1 20 3 2 0 30 3 7 6 
6 1 20 1 2 10 1 10 5 6 0 30 3 5 6 
7 1 30 5 4 7 1 10 3 2 1 20 1 7 2 
8 1 30 3 6 10 1 20 5 6 1 20 1 3 6 
9 1 20 3 4 10 1 30 1 6 1 10 5 7 8 
10 1 30 5 6 10 1 10 1 4 0 20 3 5 4 
11 1 10 1 6 4 1 30 3 4 1 30 5 5 8 
12 1 20 1 2 4 1 20 3 2 0 10 5 3 2 
D-error ( 0)α =  = 0.096534 
Bayesian D-error ( 0.1)α =  = 0.10423 
Bayesian D-error ( 0.3)α =  = 0.17769 
* Attribute 24x  is dummy-coded.
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Table B.5: Experimental design D5 (for model M5) 
s 01x  11x  12x  *

13x  *
14x  15x  02x 21x 22x *

23x *
24x *

25x 31x 32x 33x  *
34x  

1 1 10 5 0 0 7 1 20 1 0 0 1 10 5 5 0 
2 1 10 3 0 1 4 1 30 5 1 0 0 30 3 7 0 
3 1 20 1 0 0 10 1 10 3 0 0 1 20 3 5 1 
4 1 30 5 1 0 4 1 30 1 0 1 0 10 5 3 0 
5 1 20 3 0 1 4 1 30 3 0 0 0 20 5 3 1 
6 1 20 1 1 0 7 1 30 1 1 0 1 10 5 7 1 
7 1 10 1 1 0 4 1 20 5 0 0 1 30 5 5 1 
8 1 10 3 0 0 7 1 30 1 0 1 1 30 3 7 0 
9 1 30 5 0 0 10 1 30 3 0 1 0 20 3 7 1 
10 1 30 1 0 1 10 1 20 3 0 1 1 20 3 5 1 
11 1 20 5 0 1 10 1 20 1 1 0 1 30 1 5 0 
12 1 20 3 1 0 10 1 10 5 0 1 1 10 1 7 0 
13 1 20 3 0 0 7 1 10 5 1 0 0 20 3 3 0 
14 1 30 5 1 0 10 1 20 1 1 0 0 30 1 3 1 
15 1 30 5 0 1 7 1 10 3 0 0 0 20 5 5 0 
16 1 10 1 0 0 7 1 10 3 0 0 0 10 1 3 1 
17 1 10 3 1 0 4 1 10 5 0 1 0 30 1 7 1 
18 1 30 1 0 1 4 1 20 5 1 0 1 10 1 3 0 
D-error ( 0)α =  = 0.28606 
Bayesian D-error ( 0.1)α =  = 0.49787 
Bayesian D-error ( 0.3)α =  = 0.63800 
* Attributes 13 14( , ),x x  23 24( , ),x x  25x  and 34x  are dummy-coded. 
 
Table B.6: Experimental design D6 (for model M6) 

s 01x  11x  12x  13x *
14x  *

15x  16x  02x 21x 22x 23x *
24x *

25x *
26x 27x 31x  32x  33x  34x  *

35x
1 1 10 5 3 0 0 10 1 10 5 3 1 0 1 1 10 10 1 7 1 
2 1 20 10 5 0 1 7 1 10 5 3 0 1 1 2 10 10 1 5 1 
3 1 20 5 3 0 0 7 1 20 10 1 0 1 0 3 10 5 5 3 1 
4 1 20 10 3 1 0 7 1 10 15 5 1 0 1 1 20 5 1 7 0 
5 1 10 5 5 0 0 4 1 10 5 3 0 0 0 1 10 15 3 3 0 
6 1 10 15 3 0 0 10 1 20 15 1 0 1 1 1 30 10 3 5 0 
7 1 10 15 3 0 1 4 1 20 15 5 1 0 1 2 30 5 3 5 1 
8 1 20 15 1 0 1 4 1 30 15 3 0 1 0 2 20 15 5 3 1 
9 1 20 10 1 0 1 4 1 30 5 5 1 0 0 3 30 10 3 7 0 
10 1 30 15 1 1 0 10 1 30 5 5 0 1 1 2 20 15 1 5 0 
11 1 10 10 5 0 1 4 1 20 15 3 0 0 1 3 30 5 3 7 0 
12 1 30 15 1 1 0 7 1 30 10 1 0 0 0 2 20 15 5 3 1 
13 1 30 5 3 1 0 7 1 30 15 1 1 0 0 2 10 5 5 5 1 
14 1 30 5 5 0 0 10 1 10 5 1 0 1 0 1 10 10 5 7 0 
15 1 10 10 1 1 0 4 1 20 10 3 0 0 1 3 30 15 1 3 1 
16 1 30 10 5 0 1 10 1 10 10 1 0 0 0 3 30 10 5 7 1 
17 1 30 5 5 1 0 10 1 30 10 5 1 0 1 3 20 15 1 5 0 
18 1 20 15 1 0 0 7 1 20 10 5 0 0 0 1 20 5 3 3 0 
D-error ( 0)α =  = 0.26361 
Bayesian D-error ( 0.1)α =  = 0.27163 
Bayesian D-error ( 0.3)α =  = 0.33554 
* Attributes 14 15( , ),x x  24 25( , ),x x  26x  and 35x  are dummy-coded. 


