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1. Introduction  
 
The entry of low cost airlines has thrown out a challenge to all airlines to find ways of 
attracting passengers, through a mix of fare discounting, greater frequency, improved 
flight times and no-frill’s levels of on-board service. All of these competitive strategies 
have an impact on cost recovery. As airlines seek business in an increasingly 
heterogeneous passenger market, a greater understanding of what matters to potential 
passengers in choosing an airline grows in importance. Which attributes really do matter 
to specific classes of passengers? Traditional studies of passenger airline choice assume 
that all attributes matter, but some to a lesser extent. What happens to the empirical 
evidence on willingness to pay when specific attributes are totally ignored by particular 
passengers?  
 
Stated choice (SC) experiments have become a popular method to model choice 
behaviour in aviation contexts. The behavioural outputs of SC models, including 
willingness to pay (WTP) estimates for specific service levels have been used 
extensively to derive demand forecasts for new and existing modes (e.g., Jovicic et al., 
2003), and to model influences on airline choice (e.g.,  Hensher et al. 2001). Given the 
growing risks resulting in large financial losses if an airline fails to deliver services that 
attract greater numbers of passengers to fill the low-fare seats, it has become 
increasingly important that stated choice models be capable of accounting for the 
greater diversity of preferences of the market in respect of fares and levels of service. 
Central to this new challenge is the role that attribute processing strategies play in 
establishing the relevance or otherwise of specific attributes. The majority of SC studies 
have assumed that all attributes are relevant to some degree. 
 
The paper is organised as follows. We begin with an overview of the appeal of stated 
choice methods and the need to take into account the attribute processing strategies of 
respondents. The next section outlines the econometric model. A brief overview of the 
empirical data is given followed by the set of model results comparing traditional SC 
models with those conditioned using information on the attribute inclusion/exclusion 
strategies used. The substantive implications of the analysis are set out followed by 
some conclusions and directions for ongoing research. 
 
 

2. Accommodating Attribute Processing Strategies in 
Stated Choice Experiments 
 
A key reason why stated choice methods are popular is their ability to mimic decisions 
made in real markets that otherwise could not be observed. With a greater diversity of 
levels of service and fares, the ability to identify preferences under a wide range of 
service offerings and to infer the willingness to pay for specific service levels, and to 
narrow the candidate set to trial in real markets, is very appealing.  Realism is captured 
through respondents being asked to undertake similar actions as they would in real 
markets. However, for any individual respondent, realism may be lost if the alternatives, 
attributes and/or attribute levels used to describe the alternatives do not realistically 
portray that respondent’s experiences or, in terms of ‘new’ or ‘innovative’ alternatives, 
are deemed not to be credible (Wittink and Cattin, 1989).  
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In establishing the attributes and attribute levels to be built into a stated choice 
experiment, careful consideration of candidate attributes is required to avoid possible 
inclusion of irrelevant or improbable product descriptors, or exclusion of relevant 
attributes, within the choice sets shown to respondents (Hensher et al., 2005). 
Additionally, for quantitative variables, typical of those applicable to airline service 
levels, pivoting the attribute levels of the SC task from a respondent’s current or recent 
experience1 is likely to produce attribute levels within the experiment that are consistent 
with those experiences, and hence, produce a more credible or realistic survey task for 
the respondent.  
 
Typically, SC studies have focussed on single pre-specified experimental designs with a 
fixed number of alternatives, attributes and attribute levels. Although significant 
research effort has been committed to the design of statistically efficient choice 
experiments (e.g., Bunch et al., 1994; Huber and Zwerina, 1996, Kanninen, 2002; 
Kuhfeld et al., 1994), whilst minimising the amount of cognitive effort required of 
respondents (e.g., Oppewal et al., 1994; Wang et al., 2001); there has been inadequate 
recognition that respondents might process SC tasks differently. That is, there may exist 
heterogeneity in the attribute processing strategies (APS) employed. This is borne out 
by the not uncommon observance of lexicographic choice behaviour in segments of 
respondents completing SC surveys and therefore should be tailored to be as realistic as 
possible at the level of the individual respondent.  
 
Adaptive-Choice-Based-Conjoint (e.g., see Toubia, et al., 2004) customises the attribute 
levels of a SC experiment shown to a respondent using the previous choices made. This, 
however, is not the same as customising the actual alternatives or attributes in order to 
make the choice task more realistic or believable to the individual respondent. Rose and 
Hensher (2004) address the mapping of alternatives in terms of their presence or 
absence in reality to choice experiments at the individual respondent level, however, 
research addressing the presence or absence of attributes at the individual level is 
noticeably absent. This is somewhat surprising given that in real markets, there exists 
heterogeneity in the information held with regards to the attributes and attribute levels 
of alternatives amongst decision makers as well heterogeneity in terms of the salience of 
and preference for specific attributes.  
 
Whilst advances in the econometric modelling of discrete choices, such as mixed logit 
models, may help in uncovering preference heterogeneity for attributes, these models 
assign non-zero parameter estimates to individual decision makers, even though their 
marginal (dis)utility for an attribute may be zero. Whilst this might apply to only a small 
number of decision makers, a bias in the population parameter estimates is still likely to 
exist. Therefore, the econometric models used to derive stated choice outputs such as 
willingness to pay need to be conditioned to assign a zero parameter estimate to those 
individuals who either ignore an attribute or do not have that attribute present. 
 
In the following sections we show how we can use exogenous information on the APS 
strategies employed by individual respondents undertaking SC tasks and how we can 

                                                                 
1 If a respondent has never flown, then specific design conditions can be introduced to offer service and 
fare levels that are sensible, comprehensible and deliverable within the application context. Within a 
computer-aided personal interview environment for data collection, the tailoring of the SC instrument to 
each respondent is very straightforward. 
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use such information to condition the parameter estimates derived from the econometric 
models. 
 

3. Model Development   
Consider a situation in which q=1,2,…,Q individuals evaluate a finite number of airline 
service alternatives. Let subscripts j and t refer to alternative j=1,2, …,J and choice 
situation t=1,2, ...,T. Random utility theory (RUT) posits that the utility for alternative j 
present in choice situation t may be expressed as: 
 

jtqjtqqjtq xU εθ += '  (1) 
 
where  
 
Ujtq is the utility associated with airline service alternative j in choice situation t held by 
individual q, xjtq is a vector of values representing attributes belonging to alternative j, 
characteristics associated with sampled decision makers q, and/or variables associated 
with context of the choice situation, t, and jtqε represents unobserved influences upon 

utility. '
qθ  is a vector of parameters such that ?=?1,?2,…,?K where K is the number of 

parameters, corresponding to the vector xjtq.  
 
The probability that alternative j will be chosen is given as multinomial logit2:  
 

∑
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Assuming a sample of choice situations, t = 1, 2, ..., T, has been observed with 
corresponding values xjtq, and letting j designate the alternative choice situation t, the 
likelihood function for the sample is given as 
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2 We limit the derivation to multinomial logit, although the same inferences apply to more advanced 
choice models. 
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Equation (5) may be re-written to identify the chosen alternative j : 
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Given that ? is unknown, it must be estimated from the sample data. To do this, we use 
the maximum likelihood estimator of ? which is the value of θ̂  at which L(?) is 
maximised. In maximising equation (6), it is usual to use the entire set of data 
for .jtV Assuming that over a sample of choice situations, t, not all k variables within the 

xjtq vector are considered in the decision process, the value of θ̂  conditioned on the 
assumption that all xjtq are considered, will likely be biased. For those choice situations 
in which an attribute, k, is excluded from consideration in the choice process, kθ̂   should 

be equal to zero. Note that this is not the same as saying that the attribute itself should 
be treated as being equal to zero.  
 
In cases where attribute k is indicated as being excluded from the decision process, 
rather than set the value for the kth element in the xjtq vector to zero and maximising 
equation (6), the algorithm used in searching for the maximum of equation (5), excludes 
that x from the estimation procedure altogether and automatically assigns to it a 
parameter value of zero. The parameter estimate, kθ̂ , is then estimated solely on the 
sample population for which the variable was not excluded. In this sense, the process is 
analogous to selectivity models (which censors the distribution, as distinct from 
truncation). To demonstrate, consider a simple example in which there are only two 
variables, x1 and x2, associated with each of J alternatives. Denote N as the number of 
attribute processing strategies such that n = 1 represents those decision makers who 
consider only x1 in choosing between the J alternatives, n = 2 represent those decision 
makers who consider only x2, and n = 3 represent those decision makers who consider 
both x1 and x2. The likelihood is defined by the partitioning of observations based upon 
subset membership defined above. The likelihood function is therefore given as: 
 

 ( ).)|(ln)(
1 1

* ∑∑
= =

=
T

t

N

n

JjPL θ  (7) 

 
The derivatives of the log likelihood for groups n1 and n2 have zeros in the position of 
zero coefficients and the Hessians have corresponding rows and columns of zeros. This 
partitioning of the log-likelihood function may be extended to any of the logit class of 
models, including the nested and mixed logit models. In the next section, we discuss the 
empirical application in which we estimate models of the form described above. 
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4. Empirical Application  
 
 The data was collected as part of a larger study examining differences between the 
temporal partitioning of the administration of stated choice data (see Rose et al. 2004). 
The sample was drawn from residents of Sydney and administered in early 2004. The 
empirical setting for the study is a labelled SC experiment, the context of which was the 
choice of airline carrier for an interstate holiday in Australia. The experiment involved 
four alternatives, three labelled alternatives and a no choice alternative. Each labelled 
alternative was described by four attributes, each further described by four attribute 
levels. Within the labelled experiment, three existing airlines were named as part of the 
experiment. The first airline, which we report as Airline A, represents the dominant 
domestic airline carrier in Australia. The second airline, (Airline B) is an international 
carrier that is perceived within the Australian domestic airline market as the budget 
carrier. The third alternative airline (Airline C) is a dominant international airline that 
competes with Airline A in terms of offering similar service levels within the marketing 
mix.  
 
Given that the experiment was a labelled choice experiment, the smallest possible 
experimental design (capable of estimating non- linear main effects in the marginal 
utilities of each attribute) consists of 16 treatment combinations (see Rose and Bliemer, 
2004). Rather than generate a design with 16 treatment combinations, a 4(3×4) orthogonal 
fractional factorial experimental design with 40 treatment combinations was gene rated. 
This design allows for the estimation of non- linearities in the marginal utilities over the 
attribute levels for all main effects. The attributes and attribute levels are shown in 
Table 1. 
 

Table 1: Attribute and attribute levels 
 

Attribute Attribute levels  
Ticket Price $79, $99, $119, $139 
Flight Time (minutes) 40, 50, 60, 70 
Departure Time 6.00am, 10.00am, 12.00pm, 

8.00pm 
Flight Time Variability  ±5%, ±7.5%, ±10%,  ±12.5% 

 
 
In addition to the attribute columns, two additional orthogonal blocking columns were 
generated as part of the experimental design. The first blocking column of two levels, 
divided the design into two orthogonal halves. The second blocking column of four 
levels, divided the design into four orthogonal quarters. These two blocking columns 
were used to establish two of three experimental conditions. The first experimental 
condition, involving neither blocking column, consisted of respondents completing the 
entire design in a single session (i.e., respondents completed all 40 choice sets in one 
sitting). The second experimental condition, using the first blocking column, saw 
respondents complete the entire experiment over two sessions, completing each half 
fraction of the experiment as determined by the blocking column, spaced one week 
apart. The second blocking column was used in the third experimental condition, with 
respondents asked to complete each of the four quarters in separate sessions spanning a 
four week time frame. In each condition, the order of choice sets was randomized so as 
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to avoid order effect biases. A second non- labelled choice experiment involving mobile 
phone choice was also conducted at the same time using the same principles described 
above (see Rose et al., 2004). 
 
Two hundred and thirty two (232) first and second year marketing undergraduate 
students were recruited to complete the experiment. Recruited students were randomly 
assigned to one of the three experimental conditions. Of the 232 students, 61 were 
randomly assigned to the first experimental condit ion, 81 to the second experimental 
condition and 90 to the last experimental condition. Greater numbers of students were 
assigned to each successive experimental condition so as to compensate for expected 
attrition over sessions. Table 2 shows the number of respondents completing each 
experimental condition of the study and the number of observations thus obtained. 
Percentages shown represent the within condition completion/non-completion rates. 
 

Table 2: Attribute and attribute levels 
 

Condition (choice 
sets per condition) 

Number of choice 
sets completed Number of respondents 

Number of choice 
observations 

1 (40) 40 61 (100%) 2440 
2 (20) 40 55 (67.9%) 2200 
2 (20) 20 26 (32.1%) 520 
3 (10) 40 34 (37.78%) 1360 
3 (10) 30 29 (32.22%) 870 
3 (10) 20 12 (13.33%) 240 
3 (10) 10 15 (16.67%) 150 

  Total 7780 
 
Table 3 shows the demographic breakdown of the sampled respondents by experimental 
condition. 
 

Table 3: Demographic breakdown of sample 
 

Condition (choice 
sets per condition) 

Number of choice 
sets completed 

Age 
(average) 

Gender 
(female) 

1 (40) 40 20.54 47.46% 
2 (20) 40 20.30 64.00% 
2 (20) 20 20.97 65.63% 
3 (10) 40 20.38 61.54% 
3 (10) 30 19.9 65.52% 
3 (10) 20 19.9 72.73% 
3 (10) 10 20.3 58.33% 

 
Upon completing the choice tasks for a session, sampled respondents were asked which 
attributes they had ignored in making the choices that they had made whilst undertaking 
the choice experiment. The response metric for this question was a simple binary yes/no 
for each attribute. Although we use a simple binary indicator to define the inclusion or 
exclusion of an attribute in an individual’s attribute processing strategy, we do not 
attribute the reason for the response herein, which could be due to cognitive burden or 
simply relevance (see Hensher, 2004). Table 5 summarises the number of times each 
attribute was stated as being ignored over choice observations. Ticket price was ignored 
in the choice process the least number of times and flight time variability the most 
number of times. Over the sample, flight time and departure time were ignored 
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approximately the same number of times. Significantly, a check of the data showed no 
respondent ignored all attributes in making their choices. 
 
 

Table 5: Number of observations in which an attribute was not considered 
 (percentage of choice observations in which an attribute were excluded from the  

choice process shown in brackets) 
 

Attribute Number 
Ticket Price 850 (10.93%) 
Flight Time (minutes) 1540 (19.79%) 
Departure Time 1510 (19.41%) 
Flight Time Variability  5130 (65.94%) 

 
 

4.1 Empirical Results 
 
Table 6 presents the model results for the experiment. The first two models were 
estimated using all data irrespective of whether a sampled individual indicated whether 
they had ignored an attribute throughout the experiment or not. This represents current 
practice whereby it is assumed that all attributes are relevant (to varying degrees) to all 
sampled respondents. The final two models are estimated using the procedure described 
earlier. Models 1 and 3 are MNL models, models 2 and 4 are mixed logit (ML) models. 
All four models were estimated using the pooled choice data from all three experimental 
conditions, irrespective of whether all 40 choice sets were completed or not.  
 
For all four models, all parameters associated with the design attributes are specified as 
generic random parameter estimates. With the exceptions of the flight time variability 
parameters of models 1 and 2, all parameters associated with the design attributes are 
statistically significant and of the expected sign. In specifying the ML models, the 
parameters associated with the design attributes were drawn from a constrained 
triangular distribution. Hensher and Greene (2003) have shown that for the triangular 
distribution, when the mean parameter is cons trained to equal its spread (i.e., β jk = βk + 
|βk| Tj , where Tj is a triangular distribution ranging between -1 and +1), the density of 
the distribution rises linearly to the mean from zero before declining to zero again at 
twice the mean. Therefore, the distribution must lie between zero and some estimated 
value (i.e., the β jk). As such, all individual specific parameter estimates are constrained 
to be of the same sign. Empirically the distribution will be symmetrical about the mean 
which not only allows for ease of interpretation, but also avoids the problem of long 
tails often associated with drawing from a log-normal distribution. The random 
parameter estimates of the ML models were drawn using 500 Halton draws. 
 
Comparison of models 1 and 2, and 3 and 4 reveal significant differences in the 
parameter estimates. The parameter estimates for the ticket price and flight time 
attributes for models 1 and 2 suggest that when the attribute processing strategy is not 
accounted for, the sample population is much more sensitive to both increases in price 
and flight times than when the inclusion/exclusion strategy of sampled respondents is 
considered during the modelling process. The flight time variability parameter estimates 
which were not significant and of the incorrect sign when the attribute 
inclusion/exclusion strategy is ignored, become highly significant and of the correct 
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sign when estimated only for those who considered the attribute. This suggests that 
including or excluding attributes is an important segmentation criterion. The departure 
time attribute, which was effects coded, produces similar population moments whether 
all data is used in the estimation process or only data for those who considered the 
attribute during the choice experiment.  

 
Table 6: Summary of Empirical Results for Models 1 through 4 

(Random Parameters mean = spread parameter) 
 

 Full Data Partial Data 
 MNL  ML  MNL  ML  
  Coeff. t-ratio Coeff. t-ratio Coeff. t-ratio Coeff. t-ratio 
Ticket Price -0.054 -52.87 -0.107 -32.26 -0.036 -41.41 -0.035 -32.69 
Flight Time -0.027 -18.78 -0.041 -20.13 -0.016 -14.67 -0.022 -16.04 
Flight Time Variability 0.483 0.78 0.378 0.46 -6.488 -11.26 -9.905 -12.56 
Departure Time (6am) -0.533 -17.36 -0.686 -17.29 -0.424 -8.26 -0.452 -8.29 
Departure Time (10am) 0.437 14.16 0.617 14.49 0.488 9.86 0.448 8.78 
Departure Time (12pm) 0.089 2.96 0.121 3.31 0.159 3.21 0.123 2.39 
  Non-Random Parameters 
Constant A 7.171 50.33 14.814 33.88 4.650 41.08 5.220 32.69 
Constant B 7.245 50.97 14.865 34.17 4.731 41.66 5.304 33.08 
Constant C 6.952 49.48 14.451 33.87 4.490 39.75 5.061 31.82 
  Model Fits 

LL(0) -10785.370 -10785.370 -10785.370 -10785.370 
LL(B) -8538.611 -8158.476 -9502.17 -9441.21 

Chi-square 4493.519 5253.788 2566.401 2688.324 
R2 0.199 0.243 0.118 0.124 

Observations 7780 7780 7780 7780 
Direct Marginal Effects 

Ticket A -2.9889 -3.37678 -2.04641 -1.73769 
Ticket B -2.92352 -3.32594 -1.99911 -1.69864 
Ticket C -3.09845 -3.66612 -2.0957 -1.69864 
Flight Time A -0.82258 -0.85364 -0.44935 -0.56842 
Flight Time B -0.80993 -0.84029 -0.44123 -0.55751 
Flight Time C -0.85125 -0.90675 -0.46243 -0.5891 
Flight Time Variability A 0.02344 0.01285 -0.12247 -0.17398 
Flight Time Variability B 0.0235 0.01303 -0.12057 -0.17116 
Flight Time Variability C 0.02567 0.01465 -0.12802 -0.1813 
Departure Time (6am) A -0.10316 0.0108 -0.06899 -0.01171 
Departure Time (6am) B -0.10942 0.01673 -0.07106 -0.01283 
Departure Time (6am) C -0.1043 0.00672 -0.06637 -0.0073 
Departure Time (10am) A 0.08469 -0.01244 0.07954 0.02069 
Departure Time (10am) B 0.08983 -0.00901 0.08192 0.02207 
Departure Time (10am) C 0.08563 0.0195 0.07652 0.02732 
Departure Time (12pm) A 0.01718 -0.00188 0.02582 0.0049 
Departure Time (12pm) B 0.01822 -0.00278 0.0266 0.00451 
Departure Time (12pm) C 0.01737 0.0013 0.02484 0.0046 

 
In interpreting the parameter estimates for models 3 and 4, it is important to note that 
the parameter estimates are specific only to sample segments who consider an attribute 
whilst undertaking the choice experiment. For those who do not consider an attribute, 
the parameter estimate for that individual is zero. As such the parameter estimates of 
models 3 and 4 are not inclusive of the entire sampled population. That is, the parameter 
estimates are specific to each attribute processing inclusion/exclusion strategy. In terms 
of segmentation and benefits studies, this is an important development. Assuming that 
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respondents only consider attributes which they perceive a benefit when making choice 
decisions, the parameter estimates shown in models 3 and 4 may be interpreted as those 
for the specific needs benefit segments. In traditional models, these AP or benefit 
segments may be lost if the segment is small relative to the size of the total population. 
This is demonstrated with the flight time variability attribute in which only a small 
segment of the sampled population considered this attribute in the choice process. When 
the parameters are estimated ignorant of the attribute processing strategy employed, the 
flight time variability parameter is not significant (indeed it is of the wrong sign) which 
would result in the analyst wrongly assuming that the parameter is not important in the 
choice process for the entire population, when in fact, for a small proportion of the 
sampled population, the attribute is a highly significant influence on airline choice.  
 
The impact of the attribute processing strategy carries through to the behavioural 
outputs derived from models of discrete choice. As well as the parameter estimates, 
Table 6 shows the direct marginal effects for the four estimated models. Supporting our 
earlier observations, ignoring the attribute processing strategy employed by sampled 
respondents tends to increase the sensitivities to increases in airline ticket prices and 
flight times. Indeed, the marginal effects for model 4 are approximately half those for 
model 2. Non-marginal changes are observed for the marginal effects for the flight time 
variability attribute when the attribute processing strategy is accounted for in the model 
estimation process compared to when it is ignored. Only marginal changes are observed 
within the magnitudes of the departure time effects coded attribute, however several 
sign reversals are noted.  
 
Figure 1 shows the willingness to pay (WTP) distributions for the flight time attribute 
estimated from the two ML models reported in Table 6. The estimation procedure 
assigns a zero parameter estimate to those who did not consider an attribute but assigns 
a parameter estimate from the assigned distribution for those who did, using the 
procedures described in Train (2003). For derivation of WTP distributions, this poses 
problems if one or both of the parameters in the WTP ratio are equal to zero. If the cost 
parameter is equal to zero, the denominator of the ratio is equal to zero and the WTP 
measure becomes infinite. This is similarly the case if both parameters are equal to zero. 
If on the other hand, the parameter located in the numerator of the WTP calculation is 
zero, the WTP estimate becomes zero. These issues do not arise if the attribute 
processing strategy is not accounted for in the estimation process. In deriving the WTP 
distributions shown in Figure 1, we have removed those WTP measures which are 
infinite or which are equal to zero. We discuss this in a later section. The WTP based on 
individual parameters are summarised in Table 7 for the mixed logit models. All WTP 
have a distribution in the positive range (Figure 1). 
 



Recovering costs through price and service differentiation: accounting for exogenous information 
on attribute processing strategies in airline choice 
Rose, Hensher & Greene 
 

10 

Table 7: Summary of Empirical WTP values from models 2 and 4 
 

 Willingness to Pay 
Attribute Mean 

Standard 
deviation Range 

Full data Flight Time (minutes) $25.14 $7.10 $16.20-
$76.16 

Attribute exclusion 
strategy 

Flight Time (minutes) $38.40 $11.75 $3.26-$58.34 

 
 
The WTP distributions derived by the ML models were plotted using the kernel 
densities functions. The kernel density estimator is a useful tool for plotting individual-
level parameter estimates and WTP outputs derived from mixed logit models. Similar to 
the construction of a histogram, the kernel density estimator selects points along the 
distribution and determines the proportion of sample observation that are ‘close’ to each 
point. Unlike histograms however, a weighting function, known as the kernel function, 
is used to weight each sample observation such that those observations furthest away 
from the selected point receive smaller weights than closer sample observations. In this 
way, the kernel density estimator constructs a ‘smooth’ plot of the sample distribution, 
necessary for representing continuous type data such as the WTP outputs derived from 
mixed logit models (see Hensher and Greene, 2003). The y-axis of the Figure shows the 
density, the x-axis WTP measured as Australian dollars per minute of flying time. The 
centre of gravity for the WTP distribution when the entire data is used in the estimation 
process is much greater than when the information processing attribute 
inclusion/exclusion strategy is accounted for. 
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Figure 1: Willingness to Pay Kernel Density Functions for Flight Times 
 
 

5. Conclusion 
 
This paper has examined attribute inclusion/exclusion strategies and their effect upon 
the parameter estimates, marginal effects and willingness to pay for specific service 
levels associated with choice between airline service packages.  
 
The evidence is a powerful reminder of the complexity of information processing 
strategies that individuals choose in considering service and fare level options in 
choosing an airline and class of travel. If we had assumed that all actual and potential 
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passengers considered every attribute offered to them in a market research study, then 
we run the risk of misrepresenting the role of such attributes in influencing specific 
individual’s choices. When we use that information to make inferences, through a 
choice model, for the population as a whole, we are likely, as shown herein, to over or 
underestimate the behavioural responsiveness to specific service level changes. 
 
This paper has focussed on one information processing strategy. There are many 
additional strategies worthy of consideration in ongoing research. 
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