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1.  Introduction 
 
Stated choice (SC) methods are not new. Since first being introduced ([0] and [0]), SC 
methods have been used in such diverse fields as marketing, transport and 
environmental and health economics. In the process, SC methods have become the 
dominant data paradigm in the study of behavioral responses of individuals, households 
as well as other organizations. Within the health economics literature, SC methods have 
been used to measure the willingness to pay to reduce risk of fractures [0], to estimate 
the preferences for the introduction of new vaccinations (e.g., [0]), to evaluate the 
prescribing decisions of Doctors [0] and to determine the likely public responses to 
health care [0-0]. 
 
Despite recently being called into question [0-0], SC methods have remained the 
dominant method for revealing individuals preferences as well as marginal rates of 
substitution between attributes (i.e., willingness to pay) due to the ability of such 
methods to mimic, realistically, decisions made in actual markets [0]. Typically, SC 
experiments involve sampled respondents completing one or more choice tasks in which 
they are asked to choose from amongst a number of either labeled or unlabeled 
alternatives defined on a number of attribute dimensions, each in turn described by pre-
specified levels drawn from some underlying experimental design. 
 
Since first being introduced to the literature, research on SC theory and methods has 
centered on identifying sources of cognitive burden placed upon respondents 
undertaking SC tasks (e.g., [0-0]) as well as reducing the cognitive load placed on those 
same respondents (e.g., [0-0]). These studies have tended to focus on within respondent 
information processing and cognition and have not specifically addressed methods of 
identifying the minimum sample size requirements in accordance with specific criteria 
of performance. 
 
Identifying methods for reducing the number of respondents required for SC 
experiments is important for many studies given increases in survey costs. Such 
reductions, however, must not come at the cost of a lessening in the reliability of the 
parameter estimates obtained from models of discrete choice. For whilst SC studies 
provide a realistic means of capturing decisions made in real markets, reliability in the 
parameter estimates is attained through the pooling of choices made by different 
respondents. For example, a typical SC experiment might require the pooling of choices 
made by 200 respondents, each of whom is observed to make eight choices, thus 
producing a total of 1600 choice observations. Several authors, publishing mainly in the 
marketing literature, have examined various methods to reduce the number of sampled 
respondents required to complete choice tasks whilst maintaining reliability in the 
results generated (e.g., [0-0]).  
 
The usual method of reducing the number of sampled respondents in SC experiments 
conducted in health studies appears to be using orthogonal fractional factorial 
experimental designs with respondents assigned to choice situations via either a 
blocking variable (e.g., [0]) or via random assignment (e.g., [0]). Through the use of 
larger block sizes (i.e., each block has a larger number of choice situations) or by the 
use of a greater number of choice situations being randomly assigned per respondent, 
analysts may decrease the number of respondents whilst retaining a fixed number of 
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choice observations collected. It should be noted, however, that whilst such strategies 
reduce the number of respondents required for SC experiments, they also reduce the 
variability observed in other covariates collected over the sample.  
 
Yet despite practical reasons to reduce survey costs, particularly through reductions in 
the sample sizes employed in SC studies, questions persist as to the minimum number 
of choice observations required to obtain reliable parameter estimates for discrete 
choice models estimated from SC data. Unfortunately, current sampling theory does not 
address the issue of minimum sample size requirements in terms of the reliability of the 
parameter estimates produced. Rather, sampling theory as applied to choice modeling is 
designed to minimize the error in the choice proportions of the alternatives under study. 
Given that the choice proportions in SC experiments are determined not only over 
respondents, but over choice situations, sampling theory as it exists is inadequate to 
determine what sample sizes choice modelers collecting SC data should be employing. 
Rather than rely on current sampling theories, we demonstrate how it is possible to 
determine the likely asymptotic efficiency (i.e., reliability) of the parameter estimates of 
discrete choice models estimated from SC data at different sample sizes.  
 
The article is organized as follows: The next section reviews the current theory of 
calculating the minimum sample size requirements for SC studies after which we derive 
the multinomial logit (MNL) model, used throughout this paper. Next, we discuss the 
theory on the optimization of SC experiments. In the following section, we provide a 
numerical example, showing the results for three different designs; an orthogonal, D-
optimal and what we have termed S-optimal (sample size optimal) design. Then, we 
demonstrate the influence various design dimensions (e.g., the number of choice 
situations, number of levels, etc), have upon the sample size requirements of SC 
experiments. Finally, we draw conclusions and suggest recommendations for future 
research. 

 

2. Sampling Theory for Stated Choice Experiments 
 
For studies of discrete choice, several sampling strategies exist, each of which provide 
for different methods to calculate the minimum sample sizes required. The three most 
dominant sampling strategies include simple random sampling (SRS), exogenous 
stratified random sampling (ESRS) and choice based sampling (CBS) (for a detailed 
description of these and alternative sampling strategies, see [0] or [0]). CBS is a 
sampling strategy used only in studies where the choice shares for a population are 
known a priori, as in revealed preference (RP) data. CBS involves under or over 
sampling on the endogenous choice variable so that rarely chosen alternatives are 
disproportionately represented in the data compared to their occurrence in the 
population. This allows for estimation of parameter estimates for those alternatives that 
could not otherwise be estimated given the lack of observations from which estimates 
may be derived. Given that CBS is not used in SC studies, we do not discuss this 
sampling strategy further in this paper. We now outline the calculations used to 
determine the minimum sample size requirements under the SRS and ESRS sampling 
strategies. 
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2.1 SRS sampling strategies 
 
For simple random samples (SRS), the minimum acceptable sample size, N, is 
determined by the desired level of accuracy of the estimated probabilities, p̂ . Let p be 
the true choice proportion of the relevant population, a be the level of allowable 
deviation as a percentage between p̂  and p, and γ  be the confidence level of the 
estimations such that ˆPr( )p p ap γ− ≤ ≥  for a given N. The minimum sample size is 
defined as (see [0]): 
 

( ) 21 1
2 21 ,

q
N

pa
αΦ− ≥ −          (1) 

 

where 1 ,q p≡ −  1 ,α β≡ −  and ( )1 1
21 α−Φ −  is the inverse cumulative distribution 

function of a standard normal evaluated at 1
21 .α−   

 
Equation (1) is used to determine the minimum sample size required assuming that the 
analyst possesses only a single choice observation for each sampled respondent. 
Nevertheless, the usual practice in SC studies is for sampled respondents to complete 
multiple treatment combinations (in the form of choice situations) of the design over the 
course of the experiment. Denoting the number of treatment combinations assigned to 
each sampled individual as S, the minimum sample size in terms of sampled 
respondents N, taking into account the multiple responses per individual, becomes  
 

( ) 21 1
22 1 .

q
N

Spa
α− ≥ Φ −          (2) 

 
The total number of choice observations required is therefore .N S⋅  
 
Equation (2) only holds if choices made by sampled respondents are independent over 
decision tasks (see [0]). Interdependence over observations means that one cannot 
increase the number of choice situations shown to each decision maker in order to 
decrease the number of decision makers required to be sampled (unfortunately this 
cannot be tested a priori). Further, reductions in the number of sampled respondents 
result in corresponding decreases in the variability of socio-demographic characteristics 
and contextual effects observed within the sample, which in turn is likely to pose 
problems at the time of model estimation if such effects are to be included in within the 
model. 

 

2.2 ESRS sampling strategies 
 
With exogenous stratified random sampling (ESRS), the population is first divided into 
G mutually exclusive groups, each representing a proportion of the total population, 

.gW  As discussed in [0], the basis for creating the groups can be any characteristic 
common to the population (e.g., age, income, location, gender, etc.) with the exception 
of choice. That is, the analyst cannot form groups based upon the observed choice of 



Efficiency and Sample Size Requirements for Stated Choice Studies 
Bliemer & Rose 
 

4 

alternative as would occur with choice based sampling. To maintain randomness within 
the sample (a desirable property if one wishes to generalize to the population), a random 
sample is drawn within each stratum. The sample sizes drawn within each stratum need 
not be equal across stratums.  
 
To calculate the sample size for a stratified random sample, the analyst may either (a) 
apply Equation (2) to establish the minimum total sample size and subsequently 
partition the total sample size into the G groups or (b) apply Equation (1) to each 
stratum and sum the sample sizes calculated for each stratum to establish the total 
sample size. Strategy (a) will produce smaller minimum sample sizes than strategy (b); 
however the analyst must recognize the effect on the acceptable error in using strategy 
(a) as the accuracy of the results when using strategy (a) will be related to the overall 
proportion whilst the accuracy of the results for strategy (b) will be relative to the 
within-group proportions [0].  
 
Strategy (a) suggests the use of the overall population proportions to first derive the 
minimum sample size after which, the sample sizes of each of the G groups is 
determined either by (i) dividing the total sample size into the G groups equally, or (ii) 
apportioning the total sample size in accordance with the observed division of strata. 
Strategy (b) on the other hand requires the calculation of minimum sample size 
requirements for each of the strata, G, and summing the derived minimum samples sizes 
for each strata to calculate the overall minimum sample size required for the study. 

 

2.3 Sampling for Stated Choice Studies 
 
Neither SRS nor ESRS sampling strategies are appropriate for SC studies. Both 
equations (1) and (2) assume a priori knowledge of the choice proportions. For RP 
studies, these proportions may be known in advance, and if not known, may at least be 
inferred to some level of accuracy. For SC studies, the choice proportions are 
determined over choice situations completed by numerous respondents, and as such, 
may not readily be known in advance. Further, p in Equations (1) and (2) generally 
represents the choice proportions for the most important alternative under study. For SC 
experiments, this alternative may not currently exist within real markets, making a 
determination of p, a priori, difficult, if not impossible. Further yet, many SC 
experiments conducted, employ unlabeled or generic designs. In unlabeled choice 
experiments, respondents are asked to choose from amongst a number of hypothetical 
alternatives that are defined solely by the attributes and attribute levels of the 
alternatives, as determined by the underlying experimental design (i.e., the names of 
each of the alternatives do not meaningfully convey information (usually) beyond the 
order of presence of each of the alternatives within each choice situation). Whilst it is 
possible to assume that each alternative will be chosen an equal number of times over 
the experiment (i.e., 1/p J= where J is defined as the number of alternatives), this 
assumption will hold only if (i) each alternative is dominant, as defined by the attributes 
and attribute levels, an equal proportion of times across choice situations or (ii) each 
alternative is equally preferred over all choice situations. In situation (i), no information 
is captured from the experiment and in situation (ii) the choice of an alternative will 
likely be random, hence making the results of the experiment suspect. Fractional 
factorial designs are unlikely to result in experiments in which alternatives will be 
chosen an equal proportion of times. Clearly, therefore, Equation (2) is inappropriate to 
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calculate the sample size requirements for both unlabeled and labeled choice 
experiments. 

 

3.  Multinomial logit model 
 
The multinomial logit (MNL) model is the most widely used model for predicting 
choice behavior of people in discrete choice situations. This well-known model will 
serve as the basis for our analysis and will be described here mainly to introduce the 
various concepts that are necessary to understand in reading the remainder of the paper.  
 
The MNL model has as its basis random utility theory (RUT), which is used to explain 
choice behavior. In a choice situation with multiple alternatives (e.g., choosing between 
different health care products), it is assumed that one will choose the alternative that 
generates the highest utility. Suppose there are J alternatives, and each alternative j has 
its own utility .jU Within the RUT framework, utility will be comprised of both an 

observed, jV , and an unobserved component, ,jε  such that 
 

, 1, , .j j jU V j Jε= + = K         (3) 

 
Each alternative will be characterized by a set of attributes (e.g., efficacy, duration of 
action, indications). Each alternative is assumed to have a corresponding ‘global’ utility 
made up of the marginal (dis)utilities associated with each of the attribute dimensions 
(referred to as part-worths in some literature). Within RUT, these attribute related 
marginal (dis)utilities are reflected as ‘taste’ weights (i.e., the unknown population 
parameters). For the MNL model, these parameters may be specified as either generic or 
alternative-specific. If a parameter is generic, then the weight associated with the 
corresponding attribute is the same for each alternative that attribute appears in. For 
example, the taste weights or parameters for an attribute, duration of action, could be 
the same between different AIIRA+ drug alternatives. On the other hand, the taste 
weights attached to the reduction at starting dose to systolic BP between different drug 
alternatives may be different, such that the marginal utility for one drug given a 
reduction in systolic BP (as measured in mm Hg) is much greater than that given a 
similar reduction for another alternative. 
 
Consider a certain alternative j. Suppose this alternative has *K  attributes with generic 
parameters and jK  attributes with alternative-specific parameters. The observed utility, 

jV , may be written as 
 

*

*

1 1

, 1, , ,
jKK

j k jk jk jk
k k

V x x j Jβ β
= =

= + ∀ =∑ ∑ K       (4) 

 
where *

jkx  denotes a generic attribute with associated generic parameter *,kβ  and jkx  
denotes an alternative-specific attribute with associated alternative-specific parameter 

.jkβ  The unobserved component of the model, jε , is assumed to be a stochastic variable. 
In the MNL model, these stochastic variables for all alternatives are assumed to be 
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independently and identically extreme value type I distributed. It has been shown by 
McFadden [0] that the probability of choosing alternative j, which we denote by ,jP  is 
given by  
 

1

exp( )
, 1, , .

exp( )

j
j J

i
i

V
P j J

V
=

= ∀ =

∑
K        (5) 

 
Hence, given the attribute values and corresponding parameters for each alternative, it 
will be possible to predict the overall ‘attractiveness’ of each alternative, as well as the 
probability that each alternative will be chosen. Unfortunately, it is unlikely that the 
analyst will know the population parameters *( , )β β  prior to undertaking the study. It 
therefore becomes necessary to obtain these parameters from data. In order to estimate 
the parameters, the analyst may collect data using one of two different data paradigms 
(or if more advanced models are to be used – in particular the nested logit model – both 
data types can be combined within one study). The first data paradigm relies on the 
collection of revealed preference (RP) data. Revealed preferences consists of data 
collected on the choices made by those operating in real markets (i.e., choices made in 
real life choice situations). The second data paradigm, data collected on stated 
preference (SP), of which SC data is a specific case, is data that is collected on choices 
made in hypothetical situations usually presented to sampled respondents in some form 
of survey.  
 
Given that RP data is collected on the events occurring in real markets, the data will 
usually provide the analyst with a high degree of reliability as well as validity. 
Unfortunately, RP data is limited in that it is restricted to the current technological 
frontier. That is, RP data can only be gathered on the alternatives, attributes and 
attribute levels existing on the market place at the time the data is collected. Stated 
preference data, however, allows the analyst to gather information on contexts that may 
or may not necessarily currently exist and therefore allows an exploration of new likely 
situations that could arise in the future. As such, SP (or SC) data can be powerful in 
predicting choice behavior on a wider range of attribute values as well as allowing for 
an examination of the impact currently non-existent alternatives will have upon the 
choices made by those operating in real markets. For example, how will a new generic 
drug affect the preference for existing drugs within a market? The design of these 
experiments will be the topic of the next section. 

 

4. Design of stated choice experiments 
 
In a stated choice (SC) experiment, sampled respondents are presented with a series of 
hypothetical choice situations in each of which they asked to select the alternative that 
they find most attractive, given the attribute levels of all alternatives present within each 
specific choice situation. Stated choice experiments may be either unlabeled or a 
labeled. As discussed in Section 2, in a labeled choice experiment, each alternative is 
given a branded name, which provides some meaningful reference of distinction from 
the other alternatives present within the choice task. In an unlabeled choice experiment, 
the alternatives in the experiment are given generic names such that each alternative 
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cannot be associated with any specific branded product (for example Alternative A, B, 
C, etc.). Depending on whether an experiment is labeled or unlabeled, the analyst may 
specify that the parameters be either generic of alternative-specific. As unlabeled 
experiments are not brand specific, it is necessary that the parameters related to the 
alternatives of such experiments be estimated as generic. For labeled choice 
experiments, the parameters may be specifically related to each brand, and hence be 
estimated as alternative-specific, however, it is also possible that (some of) the 
parameters of labeled choice experiments be estimated as generic parameter estimates 
(e.g., the parameter for price may be different for different brands, hence reflecting 
different price sensitivities, whilst a parameter associated with the number of clinical 
trials supporting each brand might be generic, indicating that the same weight is 
attached to this attribute independent of the brand).  
 
Underlying each SC experiment is what is known as an experimental design. An 
experimental design consists of S different choice situations. In each choice situation, s , 
different combinations of attribute levels are shown to the respondent and the 
respondent is asked to select the best alternative. The levels for the attributes are 
typically selected from a fixed set of possible values. Let *

jkL  be the set of possible 

levels of generic attribute k of alternative j and let jkL  denote the set of levels for 
alternative-specific attribute k of alternative j. The problem then becomes to locate a 
‘good’ design *( , )x x  with * *

jks jkx L∈  and jks jkx L∈  for all {1, , },s S∈ K  satisfying a 
number of possible analyst-imposed constraints. One such constraint typically imposed 
is that of attribute level balance, which states that for each attribute, all levels are 
represented an equal number of times over the S choice situations.  
 
In the past, two main approaches have been considered for finding a ‘good’ design: (a) 
finding an orthogonal design, and (b) finding a D-optimal design. The first design 
approach aims to minimize the correlations between attribute levels shown to the 
respondents, while the second approach aims to minimize the (co)variances in the 
parameter estimates assuming some prior knowledge of the parameter values. Clearly, it 
is possible to combine both approaches in creating a design. Nevertheless, recent 
research has shown (e.g., [0-0],[0-0]) that D-optimal designs can provide (much) better 
parameter estimates than orthogonal designs, assuming that prior knowledge is 
available, at much smaller sample sizes. For this reason, we will mainly focus on D-
optimal designs that are statistically efficient. 
 
The statistical efficiency of a design can be expressed by a single term, which the 
literature has termed D-error. The D-error of an experimental choice design will be low 
if the asymptotic (co)variances of the parameter estimates are low and high of these 
(co)variances are high. As such, a low D-error indicates a more efficient design. Let NΩ  
denote the asymptotic (co)variance matrix for the parameter estimates based on N 
respondents. This is a symmetric matrix of dimension equal to the number of parameters 
to estimate. The total number of (generic and alternative-specific) parameters to 
estimate is * .jj

K K K= + ∑  The D-error is computed as the determinant of 1Ω  

(assuming just a single respondent) to the power of the inverse of the number of 
parameters to be estimated (for scaling purposes),  
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( )1/
1D-error det .K= Ω          (6) 

 
The design yielding a minimum D-error is called a D-optimal design. Finding a D-
optimal design is typically a difficult problem, as there exist exponentially many 
designs with different combinations of attribute levels. Therefore, instead of using the 
term D-optimal design, it is more appropriate to use the term D-efficient design for a 
design with a low D-error, as we cannot guarantee finding a design with the lowest D-
error. 
 
 Two types of D-optimal designs have been discussed in the literature, these being pD -

optimal and zD -optimal designs. Assuming that the asymptotic (co)variance matrix is 
computed based on some prior non-zero parameter values (obtained from, e.g., literature 
or pilot studies), then the design with lowest D-error is termed a pD -optimal design. If 
no prior information is available (even if only on the expected sign of the parameter 
estimates) and the asymptotic (co)variance matrix is computed assuming that all 
parameters are simultaneously equal to zero, then the design with the lowest D-error is 
called a zD -optimal design. Common sense suggests that having information can 
potentially result in more efficient designs than having no information. In the case of a 
labeled choice experiment, there is a clear relationship between a zD -optimal design 
(having no prior information) and an orthogonal design, as shown in [0]. In this paper 
we will focus on pD -optimality. 
 
The most common method of estimating the parameters from an MNL model, *( , )β β , 

is to find *ˆ ˆ( , )β β  through maximizing the log-likelihood function: 
  

*

* *

( , ) 1 1

ˆ ˆ( , ) argmax ( , ) log ,
n

N J

jsn js
n s S j

L y P
β β

β β β β
= ∈ =

= = ∑ ∑ ∑      (7) 

 
where nS  is the set of choice situations respondent n is faced with, jsny  equals one if 

respondent n chooses alternative j in choice situation s and zero otherwise, and jsP  is 
the choice probability for alternative j in choice situation s, using Equation (5) with the 
attribute levels of choice situation s and the (estimated) parameter values. Although it is 
possible to show respondents different choice situations (this may be done by blocking 
the design or by random assignment of different choice situations to different 
respondents), in the theory of D-optimality, it is common to assume a single design, and 
hence, {1, , }.nS S= K  McFadden [0] has shown for the generic case that the maximum 

likelihood estimates *ˆ ˆ( , )β β  are asymptotically normally distributed with means equal 
to the true parameter values and a covariance matrix NΩ  equal to the negative inverse 
of the Fisher information matrix. Therefore, assuming that the prior parameter values 
are the true parameter values and noting that the parameter estimates converge to the 
true parameter values, it becomes a relatively straightforward task to compute the Fisher 
information matrix based on the prior parameter values, *( , )β β , and from this, the pD -
error. The Fisher information matrix consists of the second derivatives of the log-
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likelihood function. Assuming that all respondents face the same choice situations, 
taking the second derivatives yields the following expressions (see [0]): 
 

1 2 2

1 2

2 *
* * *

* *
1 1 1

( , )
,

S J J

jk s js jk s ik s is
s j ik k

L
N x P x x P

β β
β β = = =

∂  = − − ∂ ∂  
∑∑ ∑      (8) 

 

1 1 1 1 2 2

1 1 2

2 *
* *

*
1 1

( , )
,

S J

j k s j s j k s ik s is
s ij k k

L
N x P x x P

β β
β β = =

∂  = − − ∂ ∂  
∑ ∑      (9) 

 

( )

1 1 2 2 1 2

1 1 2 2

1 1 2 2 1 2

1 22 *
1

1 2
1

, if  ;
( , )

1 , if  .

S

j k s j k s j s j s
s

S
j k j k

j k s j k s j s j s
s

N x x P P j j
L

N x x P P j j

β β
β β

=

=

 ≠∂ = 
∂ ∂ − − =



∑

∑
    (10) 

 
Note that these second derivatives are independent of the experiment outcomes y.  
 
If a model is estimated using only generic parameters, then only Equation (8) is required 
(which is similar to the equation stated originally by McFadden [0] and reported in 
several other sources (e.g., [0-0], [0]) to obtain the asymptotic (co)variance matrix. If 
only alternative-specific parameters are to be estimated, then only Equation (10) is 
required (which is same as the equation stated in [0]). Software packages such as 
NLOGIT produce the same results when using Monte Carlo simulation and computing 
the Fisher information matrix by means of numerical approximation. However, using 
these analytical equations it becomes no longer necessary to conduct Monte Carlo 
simulations, as it is possible to directly locate the asymptotic (co)variance matrix using 
the above equations. 
 
By implicitly assuming that the prior parameter values are the true parameter values, it 
becomes possible to derive statistically efficient designs. While this seems a very strong 
assumption, we note that any information on the parameter values (e.g., the signs) can 
represent a significant contribution towards improving the efficiency of a design. 
Typically, there will exist some information available to the analyst, or alternatively, 
some indication (even if only the likely direction of the parameter) might be obtained 
from focus groups or pilot studies. Sensitivity analysis on the assumed priors may give 
clues on the stability of the efficiency. Assuming that the prior parameters are correct, 
let *( , )Nse β β  denote the vector of asymptotic standard errors of the generic and 
alternative-specific parameter estimates for a study with sample size N. These are 
simply the square roots of the diagonal elements of matrix NΩ . Let the Fisher 

information matrix with N respondents be denoted by *( , ).NI β β  Since 
* *

1( , ) ( , ),NI N Iβ β β β= ⋅  it holds that ( ) ( )1 1* *1
1( , ) ( , )N N NI Iβ β β β

− −
Ω = =  1

1,N= Ω  

such that  
 

*
* 1( , )

( , ) .N

se
se

N
β β

β β =                    (11) 
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Hence, the asymptotic standard errors provide diminishing improvements (decreases) 
for larger sample sizes.  
 
Summarizing, given a SC experimental design and prior parameter values, it is possible 
to determine the asymptotic standard errors for any sample size. An efficient design 
based on good priors may provide more useful data and yield more reliable parameter 
estimates (i.e., parameter estimates with smaller asymptotic standard errors) with fewer 
respondents. As such, the required sample size in terms of the number of respondents 
may be (much) smaller if a design is more efficient (or similarly, more accurate 
parameter estimates can be obtained with a fixed sample size). The next section 
discusses the issue of sample sizes in more detail. 

 

5. Sample size 
 
Within the literature, there does not appear to exist a formula for computing the required 
sample size in case of performing stated choice experiments. As discussed in Section 2, 
the current sampling theory as exists does not directly address the issue of minimum 
sample size requirements in terms of the reliability of the parameter estimates produced 
(see for example, [0-0]). Rather, sampling theory as applied to choice modeling is 
designed to minimize the error in the choice proportions of the alternatives under study. 
As such, sampling theory as it exists with regards to SC experiments is only applicable 
to the collection of RP choice data.   
 
The previous section demonstrated how it is possible for the analyst to determine the 
asymptotic standard errors for any arbitrary SC experimental design given any sample 
size, N. The procedure outlined in Section 4 is useful for obtaining an indication 
regarding the sample size requirements for the model estimation. Furthermore, it will 
give insight into the efficiency of the design with respect to each of the parameters to be 
estimated. As will be shown by way of a numerical example, a D-optimal design may 
result in some parameters being estimated with much higher levels of reliability (i.e., 
lower standard errors) than others, due to the use of a single ‘global’ measure of 
efficiency. An interesting proposition therefore, is to consider a more egalitarian 
approach that will minimize the sample size required for the experiment in such a way 
that it will improve the level of reliability of those parameters with high standard errors.  
 
One appealing approach is to use the asymptotic t-ratios assess the efficiency of the 
experiment. While the D-error only indicates overall combined efficiency, the 
asymptotic t-ratios give information about the efficiency of each of the parameters 
individually. Further, unlike the asymptotic standard errors, the asymptotic t-ratios are 
scaled in accordance to the magnitude of the attributes that they correspond with. We 
call this approach the S-efficiency approach.  
 
Given a certain sample size, the asymptotic t-ratios based on prior parameter estimates 
are calculated by dividing the prior parameters with their corresponding standard errors. 
A theoretical minimum sample size for a parameter estimate to be statistically 
significant can then be determined. For example, consider generic parameter *

kβ . Then 
the asymptotic t-ratio should be larger than 1.96 in order to state with 95 percent 
certainty that it is statistically significant. That is, 
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Substituting Equation (11) into (12) and rearranging terms, yields 
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                  (13) 

 
A similar equation holds for the alternative-specific parameters. We can view the 
sample size requirement stated in Equation (13) as a theoretical lower bound for finding 
a statistically significant parameter estimate for that parameter. Different parameters 
may have different lower bounds. Parameters with high lower bounds will be more 
difficult to estimate than parameters with low lower bounds. In case we would like to 
find the minimum theoretical sample size for which all parameters are statistically 
significant, then we would probably prefer to change the design in such a way that the 
parameters that are difficult to estimate obtain more information from the design in 
order to decrease its standard error. In other words, we may prefer to have all parameter 
estimates in the same range with their asymptotic t-values such that all parameters get 
equal attention in the design. We term a design that minimizes the sample size needed 
for all parameters to be statistically significant an S-efficient design.  
 
Instead of changing the design itself given the attribute levels to choose from, it is 
possible to change other aspects of the experiment. For example, it may be possible to 
change the attribute levels (i.e., the number of levels and/or the level range) of the 
design or change the number of choice situations presented to each individual 
respondent. In the next section we will present some results using a numerical example 
of a design that is optimized for standard errors and sample size. We will show that the 
design may be improved by increasing the level range, having fewer levels, and 
focusing on the asymptotic t-ratios instead of on just the D-error.  

 

6. Numerical analysis 
 
6.1 D-efficient and S-efficient designs 
 
In order to illustrate the theory of efficient designs and discuss issues of sample size, we 
will consider the following discrete choice problem. Suppose there are two alternatives, 
each having several generic and alternative-specific attributes. The first alternative has 
two generic attributes and two alternative-specific attributes. The second alternative has 
the same two generic attributes, an alternative-specific constant, and two alternative-
specific attributes. This is stated in the following two utility functions: 
 

* * * *
1 1 11 2 12 11 11 12 12 , 1, ,12,s s s s sV x x x x sβ β β β= + + + = K                (14) 

 
* * * *

2 21 1 21 2 22 22 22 23 23 , 1, ,12.s s s s sV x x x x sβ β β β β= + + + + = K               (15) 
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In total, there are seven parameters to estimate, whilst there are eight attributes that 
change attribute levels. The constant, 21,β has a fixed attribute level of one. Within the 
SC experiment, the eight attributes can take on different levels over the different choice 
situations shown to respondents. Let us assume that each attribute can take on one of 
three levels and that each sampled respondent will review twelve choice situations. 
Assume that the attributes may take on the following levels: * *

11 21 22 {2,4,6},L L L= = =  
* *
12 22 21 {1,3,5},L L L= = =  and 12 23 {4,6,8}.L L= =  Following common practice, we 

constrain ourselves to balanced designs (although such a constraint may result in the 
generation of a sub-optimal design).  
 
We will examine three different design types: (a) a D-efficient design, (b) an orthogonal 
design, and (c) an S-efficient design. The D-efficient design aims to minimize all 
(co)variances of all parameter estimates, the orthogonal design minimizes to zero the 
correlations between the attribute values, and the sample size efficient design aims to 
minimize the sample size needed to obtain statistically significant parameter estimates 
(i.e., all asymptotic t-ratios must be greater than 1.96). The three designs are presented 
in Table 1. The first and last designs assume prior knowledge of the parameter values. 
The used priors are stated in Table 2. In all designs the constant is ignored when 
computing the D-error, the correlation coefficients, or the minimum sample size (the 
constant is not ignored when computing the probabilities in the logit model. It is merely 
eliminated at the final stage when computing values such as the D-error for judging the 
efficiency or orthogonality of a design). The constant is typically ignored in these kind 
of studies, since usually the constant is of less importance to the researcher (indeed the 
constant is often considered meaningless in stated choice experiments as it is based on 
the choice shares over the hypothetical situations, S). Further, in many SC studies, it is 
often the ratios of two parameter values (e.g., to derive willingness to pay) that is of 
primary importance. Therefore, in calculating the D-errors for each design we ignore the 
row and column for the constant in the asymptotic (co)variance matrix when computing 
the determinant in Equation (6). In calculating the minimum sample size, the constant 
need not be statistically significant.  
 
The D-error of the orthogonal design is approximately twice as high as the D-error of 
the D-efficient design. This means roughly that on average the standard error of the 
parameter estimates using the orthogonal design will be 2  times larger than the 
average standard error of the estimates using the D-efficient design. This in turn means 
that approximately twice as many observations using the orthogonal design are required 
in order to obtain the same values for the standard errors. This demonstrates that 
information on prior parameter estimates can clearly help significantly in making a 
more efficient design. In cases where one has no information on the parameter estimates 
whatsoever, it is common practice to assume that the prior parameter estimates are all 
equal to zero. As mentioned in [0], when only alternative-specific parameters are to be 
estimated, an orthogonal design will be the most efficient design, assuming that the 
parameter estimates are zero. Therefore, an orthogonal design will be a good design in a 
worst-case scenario (i.e., when no prior information is available to the analyst). 
Unfortunately, it may be possible to generate a large number of different orthogonal 
designs for any given choice experiment. As such, the orthogonal design presented in 
Table 1 is but one out of many possible orthogonal designs that could have been 
generated. It is therefore worth noting that had another orthogonal design been 
generated, that it may have performed better or worse than the design shown here, given 
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the priors that we have assumed (although theoretically, an orthogonal design can never 
outperform a D-optimal design). Regrettably, when no prior information is available, 
there is no way of telling which orthogonal design will be the best. In line with common 
practice, the orthogonal design generated was selected at random.  
 

Table 1:  Designs 
 

    D-efficient design  Dp-error: 0.1308 

s  *
11sx  *

12sx  11sx  12sx  *
21sx  *

22sx  21sx  22sx  23sx  1sP  2sP  

1 6 5 5 4 2 1 1 6 8 0.48 0.52 
2 4 5 3 8 4 3 1 2 6 0.92 0.08 
3 2 3 5 6 6 1 1 2 8 0.25 0.75 
4 4 1 5 8 4 5 1 6 4 0.75 0.25 
5 6 1 3 4 2 3 1 4 4 0.75 0.25 
6 4 3 5 4 6 5 1 2 6 0.21 0.79 
7 6 1 1 8 2 5 1 2 8 0.57 0.43 
8 6 1 1 4 2 5 1 6 4 0.29 0.71 
9 2 3 1 6 6 3 1 4 6 0.09 0.91 

10 2 5 3 6 4 1 1 4 8 0.25 0.75 
11 2 3 3 8 4 3 1 6 6 0.38 0.62 
12 4 5 1 6 6 1 1 4 4 0.75 0.25 

    orthogonal design  Dp-error: 0.2617 

s  *
11sx  *

12sx  11sx  12sx  *
21sx  *

22sx  21sx  22sx  23sx  1sP  2sP  

1 6 3 3 4 2 5 1 6 8 0.08 0.92 
2 4 3 3 4 2 5 1 2 4 0.75 0.25 
3 6 1 5 6 6 3 1 4 4 0.79 0.21 
4 2 5 5 8 4 5 1 2 6 0.85 0.15 
5 4 1 5 8 2 1 1 4 8 0.75 0.25 
6 2 1 1 8 4 5 1 6 6 0.09 0.91 
7 4 5 1 6 6 3 1 4 8 0.09 0.91 
8 6 5 1 8 2 1 1 4 4 0.99 0.01 
9 2 1 1 4 4 1 1 2 6 0.13 0.87 

10 6 3 3 6 6 3 1 2 8 0.33 0.67 
11 4 3 3 6 6 3 1 6 4 0.43 0.57 
12 2 5 5 4 4 1 1 6 6 0.25 0.75 

   S-efficient design Dp-error: 0.1782 

s  *
11sx  *

12sx  11sx  12sx  *
21sx  *

22sx  21sx  22sx  23sx  1sP  2sP  

1 4 5 3 8 2 5 1 2 6 0.94 0.06 
2 6 1 3 6 2 5 1 6 8 0.13 0.87 
3 2 1 1 8 6 1 1 2 4 0.75 0.25 
4 4 5 1 6 4 3 1 4 8 0.18 0.82 
5 2 5 3 8 4 1 1 4 6 0.82 0.18 
6 6 3 1 6 2 5 1 6 6 0.38 0.62 
7 2 3 5 4 4 1 1 4 4 0.62 0.38 
8 4 1 1 4 6 1 1 2 4 0.38 0.62 
9 4 3 3 4 4 3 1 6 8 0.03 0.97 

10 6 5 5 6 6 3 1 4 6 0.75 0.25 
11 2 1 5 8 6 3 1 6 4 0.52 0.48 
12 6 3 5 4 2 5 1 2 8 0.43 0.57 
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Table 2:  Asymptotic t-ratios by design for different sample sizes 
 

Parameter *
1β  *

2β  11β  12β  21β  22β  23β  

Prior values 0.4 0.3 0.3 0.6 -1.2 0.4 0.7 
D-efficient 3.46 2.67 1.68 3.16 -0.69 2.09 3.35 
Orthogonal 1.77 1.23 1.13 2.28 -0.64 2.19 2.82 N = 7 
S-efficient. 2.14 2.00 1.98 2.91 -0.67 2.13 2.42 

D-efficient 4.90 3.77 2.38 4.47 -0.98 2.95 4.74 
Orthogonal 2.51 1.74 1.60 3.23 -0.91 3.10 3.99 N  = 14 
S-efficient 3.03 2.83 2.80 4.12 -0.94 3.01 3.42 

D-efficient 6.00 4.62 2.92 5.48 -1.20 3.62 5.81 
Orthogonal 3.07 2.13 1.96 3.96 -1.11 3.80 4.88 N = 21 
S-efficient 3.71 3.47 3.43 5.05 -1.16 3.68 4.18 

 
Methods of manipulating the attribute levels so as to generate and locate D-efficient 
designs are discussed in detail in, [0-0], [0-0], [0] amongst other sources. For finding D-
efficient designs and sample size efficient designs presented in this paper, we used 
several simple randomization and swapping heuristics on the attribute levels, 
programmed into Matlab. 
 
For each design, the asymptotic (co)variance matrix corresponding to the parameter 
estimates can be determined using the priors in Table 2. For example, the asymptotic 
(co)variance matrix of the parameter estimates when using the D-efficient design (with 
N = 1) is shown in Table 3 (from which also the D-error can be computed). Taking the 
square roots of the diagonals, we can determine the asymptotic standard errors as well 
as the asymptotic t-ratios for any sample size using Equations (11) and (12). The 
asymptotic standard errors corresponding to the D-efficient design for different sample 
sizes are shown in Figure 1, as calculated using Equation (9). The diminishing 
contribution of an extra sample (respondent), as noted in Section 4, is clearly visible.  
  

Table 3:  Asymptotic covariance matrix for D-efficient design 
 

*
1β  *

2β  11β  12β  21β  22β  23β  
*
1β  0.093 0.053 0.053 0.081 -0.077 0.070 0.075 
*
2β  0.053 0.089 0.023 0.069 -0.332 0.061 0.094 

11β  0.053 0.023 0.222 0.081 0.272 0.071 0.100 

12β  0.081 0.069 0.081 0.252 0.808 0.063 0.114 

21β  -0.077 -0.332 0.272 0.808 21.023 -1.390 -1.495 

22β  0.070 0.061 0.071 0.063 -1.390 0.257 0.153 

23β  0.075 0.094 0.100 0.114 -1.495 0.153 0.305 
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Figure 1:  Standard errors when using the D-efficient design for different sample sizes 
 
Table 2 provides an insight into the design and statistical characteristics of the 
parameter estimates. In all three designs, it appears difficult to obtain a statistically 
significant parameter estimate for the constant ( 21β ). The asymptotic standard error of 
the parameter estimates can be positively influenced by making the attribute level range 
wider as will be demonstrated in Section 6.2. For the constant, this is not possible (i.e., 
the attribute level of the constant is fixed at one), however, as stated previously, the 
constant is typically ignored in SC experiments. Estimating parameter 11β  seems to be 

much more difficult than estimating parameters *
1β  and 23.β  Using the S-efficient 

design, a sample size of seven respondents (yielding 7 12 84× =  choice observations) 
appears to be sufficient for obtaining significant parameter estimates for all of the 
attributes (except the constant), while larger sample sizes are necessary when using the 
other two designs. The orthogonal design performs poorly as a sample size of 14 
respondents still yields several non-significant parameter estimates. It will need at least 
a sample size of 21 respondents to have all statistically significant parameter estimates 
(except the constant).  

 

6.2 Effect of number of choice situations, attribute levels, and 
attribute level range 
 
In order to analyze the impact of different designs on the D-error (expressing the overall 
statistical efficiency of a design) and sample size efficiency, we will analyze the 
following effects: (i) effect of the number of choice situations S; (ii) effect of the 
number of attribute levels; and (iii) the effect of the attribute level range. 
  
First, let us change the number of choice situations S. In the analysis before we used 
twelve choice situations, which is essentially arbitrarily chosen (although for 
balancedness it should be a multiple of the number of attribute levels). Typically, all 
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choice situations are shown to each respondent and in order to avoid a too high burden 
on the respondent, the number of choice situations is preferably limited. Whilst it is 
possible that a design could be blocked into subsets, such that each individual is only 
faced with a smaller number of choice situations, we do not consider this given that it is 
not necessary to do so for D-optimal designs. 
 
The minimum number of choice situations is typically determined by the number of 
degrees of freedom (that is, the number of parameters to estimate plus one) and then 
possibly some extra choice situations in order to be able to obtain a balanced design. A 
D-efficient design can be found using this minimum number of choice situations, 
whereas there may not exist an orthogonal design with this number of choice situations. 
As such, in many instances orthogonal designs will be required to be larger than is 
necessary. Using the same attribute levels as before, we vary the number of choice 
situations, from nine (the minimum) to 21. For each design size, a D-efficient and an S-
efficient design is determined. The D-errors and minimum sample size for having all 
statistically significant parameters are shown in Table 4. For comparison purposes, the 
D-error is normalized to twelve choice situations by scaling the Fisher information 
matrix, which translates directly into scaling the D-error. Also for comparison reasons, 
the minimum sample size is translated in the number of observations, which is .N S⋅  
The minimum sample size N is the lowest number for which satisfies Equation (12) for 
all parameters (excluding the constant). It can be concluded from Table 4 that the 
number of choice situations S does not have any important effect on the efficiency of 
the design or on the sample size. Hence, a small design performs as well as a large 
design, and hence, the number of choice situations shown to individual respondents may 
be kept at a level deemed to be acceptable by the analyst (see for example, [0], [0]).  
 

Table 4:  Effect of the number of choice situations on D-error and sample size  
 

 S = 9 S = 12 S = 15 S = 18 S = 21 

D-error (D) 0.1864 0.1308 0.1089 0.0868 0.0749 

normalized D-error ( /12)D S⋅  0.1398 0.1308 0.1361 0.1302 0.1310 

minimum sample size ( )N  8.7 6.8 5.1 4.6 3.9 

minimum observations ( )N S⋅  78 82 77 82 81 

 
Secondly, consider changes in the number of attribute levels and attribute level range. 
Using twelve choice situations, we vary the number of levels for each attribute from two 
to four levels, and we make the attribute level range narrower and wider. The attribute 
levels are shown in Table 5. For each combination of number of levels and level range, 
in total nine combinations, we again find a D-efficient and an S-efficient design. The 
lowest D-errors and the minimum sample sizes for all combinations are listed in Table 
6. There is a consistent pattern that favors two level designs with wide level range, both 
in terms of D-error and of sample size (such designs are sometimes referred to as end-
point designs. See [0]).  
 
A remark has to be made here. Designs with only a few attributes (e.g., three or four 
attributes) may not benefit from using two levels and a wide level range. This is due to 
the fact that designs are likely to have dominant alternatives (that is, an alternative that 
will be chosen with a high probability). Dominant alternatives do not provide much (if 
any) information and therefore yield high D-errors. Including more attribute levels 
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avoids these dominant alternatives and therefore, for very small designs using more than 
two attribute levels seems to be preferred. Furthermore, for small designs not many 
possible attribute level combinations exist when using only two levels. This means that 
the number of choice situations should be small, otherwise repetitions in the design may 
occur or choice situations with dominant alternatives occur. Again, adding more 
attribute levels solves this problem. In practice, the number of attributes will be (much) 
larger than three or four attributes, such that it does not really cause problems. A 
negative of using only two levels, however, is that one is restricted to testing linear 
relationships for that attribute (see [0]). 
 
The design with a narrow level range and with four levels has the highest D-error and 
the highest minimum sample size, whereas the design with a wide level range and just 
two levels has the lowest D-error and minimum sample size. Whilst it does appear that 
the number of levels does make a difference, it is the attribute level range, which is 
likely to have the largest impact upon the overall efficiency of the design.  

 
Table 5:  Different number of attribute levels and level ranges 

 

  narrow range medium range wide range 

2 levels ( 3, 5 ) ( 2, 6 ) ( 1, 7 ) 
3 levels ( 3, 4, 5 ) ( 2, 4, 6 ) ( 1, 4, 7 ) * *

11 21 22, ,L L L  
4 levels ( 3, 3? , 4? , 5 ) ( 2, 3? , 4? , 6 )  ( 1, 3, 5, 7 ) 

2 levels ( 2, 4 ) ( 1, 5 ) ( 0, 6 ) 
3 levels ( 2, 3, 4 ) ( 1, 3, 5 ) ( 0, 3, 6 ) * *

12 22 21, ,L L L  
4 levels ( 2, 2? , 3? , 4 ) ( 1, 2? , 3? , 5 ) ( 0, 2, 4, 6 ) 

2 levels ( 5, 7 ) ( 4, 8 ) ( 3, 9 ) 
3 levels ( 5, 6, 7 ) ( 4, 6, 8 ) ( 3, 6, 9 ) 12 23,L L  
4 levels (5, 5? , 6? , 7 ) ( 4, 5? , 6? , 8 ) ( 3, 5, 7, 9 ) 

 
 

Table 6:  Effect of number of levels and level range on D-error and sample size 
 

  narrow range medium range wide range 

2 levels 
D-error 
Sample size 

0.3057 
191 

0.1016 
67 

0.0580 
42 

3 levels 
D-error 
Sample size 

0.4300 
274 

0.1308 
82 

0.0750 
48 

4 levels 
D-error 
Sample size 

0.4974 
337 

0.1650 
103 

0.0874 
54 

 

6.3 Effect of wrong priors on the efficiency of the design 
 
Up to this point, we have assumed that the prior parameter values correspond to the true 
parameter values held by the population. This represents a strong assumption that is 
unlikely to hold in practice, but it is necessary for creating D-efficient designs. In this 
section we will examine the stability/robustness of a design assuming that the design is 
constructed using priors that are different from the true parameter values.  
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Let us keep the prior values as stated in Table 2, but assume that the true parameter 
values are different. Given the designs in Table 1, we can compute the asymptotic 
(co)variance matrix based on the true parameter values and compare these with the 
asymptotic (co)variance matrix using the prior parameter values.  
 
Considering the D-efficient and orthogonal designs in Table 1, we will examine the 
following three cases for the effect on the efficiency of the design: (i) one wrong prior 
parameter; (ii) more than one wrong prior parameter; and (iii) correct prior parameter 
ratios but incorrect absolute prior parameter values.  
 
Consider the case when only one prior parameter is incorrectly specified. For example, 
suppose that 23β  is half the value of the prior parameter value, that is 23 0.7β =  
and 23 0.35.β =  The asymptotic (co)variance matrix corresponding to the true parameter 
value is shown in Table 7. Comparing Table 7 with Table 3, it is clear that incorrectly 
specifying only one prior parameter has a negative effect on the whole asymptotic 
(co)variance matrix, not only on the standard error of parameter that was incorrectly 
specified. Using the D-error as the measure expressing the overall efficiency of the 
design, we determine the D-errors when each true parameter independently deviates 
between -50 percent and +50 percent of its prior parameter value. The results when 
using the D-efficient design as well as the orthogonal design are shown in Figure 2. The 
D-efficient design outperforms the orthogonal design, even if one of the prior parameter 
values is incorrect. As can be seen from the figure, deviations in the parameters 12β  and 

23β  mainly have a negative affect upon the design. This could be expected, as the 
corresponding attributes have the largest impacts on the utility function.  
 

Table 7:  Asymptotic covariance matrix for D-efficient design when 23 0.35.β =  
 

*
1β  *

2β  11β  12β  21β  22β  23β  

*
1β  0.169 0.077 -0.001 0.158 -0.457 0.189 0.066 
*
2β  0.077 0.192 0.020 0.058 -1.642 0.116 0.238 

11β  -0.001 0.020 0.311 0.029 0.571 -0.082 0.136 

12β  0.158 0.058 0.029 0.531 0.511 0.279 0.208 

21β  -0.457 -1.642 0.571 0.511 47.994 -3.407 -4.698 

22β  0.189 0.116 -0.082 0.279 -3.407 0.642 0.319 

23β  0.066 0.238 0.136 0.208 -4.698 0.319 0.809 
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Figure 2:  Effect of deviation of true parameter from prior parameter on D-error 
 
Suppose now that two prior parameter values were incorrectly specified. In the worst-
case scenario, these two parameters will be 12β  and 23β  as these were shown to have the 
largest impact upon the efficiency of the design in the previous analysis. Suppose that 

1
12 122β β=  and 1

23 232 .β β=  The D-error of the design then becomes 0.12, which is an 
even better result than the case in which the priors were correctly specified. Assuming 

12 122β β=  and 23 232 ,β β=  however, the D-error then becomes 0.28. This increase in 
the D-error is not as bad as the increase in D-error observed when only one of the 
parameter values deviated from the true population parameter (see Figure 2). Therefore, 
if these two parameter values deviate in the same direction, the efficiency of the design 
appears stable. Assuming that the parameters deviate in opposite directions, however, 
for example, 1

12 122β β=  and 23 232 ,β β=  or 12 122β β=  and 1
23 232 ,β β=  then the D-

errors are 6.29 and 5.75, respectively. Thus, the resulting standard errors will be 
extremely large. This suggests that of particular importance is that the ratios between 
the parameters do not deviate too much in order maintain stability of the design.  
 
Finally, assume that the ratios between the parameters are correct, but that the absolute 
values are incorrect. In other words, assume that * *

k kβ αβ=  and ,jk jkβ αβ=  where α  is 
a constant multiplier. Varying this multiplier between zero and three and examining the 
effect on the asymptotic standard errors and the asymptotic t-ratios (assuming a sample 
size of one) results in outcomes shown in Figure 3. In case 0α =  (corresponding to the 
case in which all true parameter estimates are zero) the orthogonal design performs 
slightly better. Conforming to our earlier statement, an orthogonal design will perform 
well if there is no information available, that is, under the assumption that all parameters 
are equal to zero. However, in general, when 0α >  the D-efficient design outperforms 
the orthogonal design. The asymptotic standard errors are much lower as the multiplier 
increases, yielding better asymptotic t-ratios as well. When the multiplier becomes even 
larger, the asymptotic t-ratio decreases because the standard errors increase more 
rapidly than the parameter values. From this analysis, we would conclude that there 
appears to exist some optimal parameter values for which the asymptotic t-ratios are the 
highest. In this case, the design would perform best if the true parameter values are two 
to 2.5 times higher than the prior parameter values assumed. The S-efficient design 
(results not shown here) performs in between the D-efficient and orthogonal design. The 
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lowest asymptotic t-ratio value is higher than in the D-efficient design (as is to be 
expected), but the average asymptotic t-ratio over all parameters is lower.  
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Figure 3:  Effect of the true parameter being a multiple of the prior parameter 

 
Summarizing, the efficiency of the D-efficient design seems to be quite robust against 
wrong assumptions on the prior parameter values as long as the ratios between the 
parameters do not change excessively.  

 

6. Conclusions and discussion 
 
This paper addresses the issue of how to determine the theoretical minimum sample size 
for SC studies using the MNL model. In the paper, we argue that the current theory on 
sample size calculation is inappropriate for SC experiments. From this point, we then go 
on to demonstrate methods that not only allow for a calculation of the sample size 
requirements of SC studies, but demonstrate how health economists may generate 
experimental choice designs that will minimize the necessary sample size without 
compromising the reliability of the model results. In developing our arguments, we have 
presented the full formulation for the MNL model allowing for the explicit estimation of 
both generic and alternative-specific parameter estimates. This derivation is in itself 
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innovative as it differs from previous research, which cite as the basis of their work, 
McFadden [0]. As shown by Bliemer and Rose and Rose and Bliemer [0-0], the original 
work of McFadden was limited to the specific case of the MNL model with generic 
parameter estimates only. Nevertheless, despite this limitation, some authors have 
incorrectly used the MNL specification provided by McFadden to optimize designs with 
alternative specific parameter estimates (see for example [0]). As such, as well as 
addressing the issues of sample size, this paper also addresses the issue recently raised 
by Viney et al. [0] as to the generation of efficient designs for problems requiring the 
estimation of alternative-specific parameter estimates. Viney et al. [0] state in their 
concluding remarks “it is clear that for health care, the choice contexts are often 
complex, and the relevant alternatives may not be readily captured in experiments with 
relatively small numbers of attributes, or in experiments with generic attributes, for 
which optimal design results are known. There are challenges in determining optimal 
experimental designs for choice experiments where attributes are labelled and both 
attributes and levels vary across alternatives, or where there are both context and choice 
variables that are relevant to the choice.” (p361).  
 
The results from our analysis show that D-efficient and S-efficient designs outperform 
orthogonal designs in terms of the reliability of the parameter estimates as well as in 
terms of the need for lower sample sizes, provided that there exists some prior 
information which may be used to help generate the design. Given even limited 
information (even if only on the sign of the parameter estimates), it is possible to 
generate statistically more efficient designs that require significantly smaller sample 
sizes. Although there exists the need to conduct further research on a wider number of 
designs, from the results shown herein, we would suggest that orthogonal designs 
should only ever be used when there exists no information with regards to the likely 
parameter estimates for the design to be generated.  
 
However, even in such cases where no information is available, we have demonstrated 
that D-efficient and S-efficient designs may possibly outperform orthogonal designs, 
even if the priors used in their construction are incorrectly specified. The methods we 
have outlined within this paper allow for a sensitivity analysis (without having to rely 
on Monte Carlo methods) with regards to the priors specified in the generation of 
optimal designs. This sensitivity analysis provides a means to determine whether one 
should rely on an orthogonal design, or assume some information about the priors, even 
if such information is likely to be incorrect. In support of this supposition, it would 
appear that an (D- or S-) efficient design is stable as long as the parameter ratios are 
more or less correct. 
 
In this paper, we have also examined the role various design dimensions play in 
producing optimal SC designs. From our analysis, we would conclude that the number 
of choice situations provided to respondents does not impact (at least statistically; 
behaviorally this may not be the case) the reliability of the parameter estimates. 
Importantly, the attribute level range employed in the study does appear to have a 
significant impact on the ability to locate designs with greater levels of statistical 
efficiency. Our results suggest that the wider the range, the easier it is to produce 
designs with greater reliability in the parameter estimates. This should be tempered, 
however, with other considerations, particularly related to the sampled respondents. For 
behavioral reasons, the attribute levels should be designed such that respondents can 
reasonably answer the survey in a serious manner. Our analysis also suggests that fewer 
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attribute levels are better than many. Indeed, our results have shown that end point 
designs (designs using only the two widest attribute levels) will be much more efficient 
than designs with attribute levels positioned within the attribute level width. Again, this 
finding should be considered with some caution. End point designs allow only for the 
estimation of linear marginal effects. Thus, such designs are appropriate only when the 
analyst is willing to make the assumption that the marginal utilities for an attribute are 
linear between the two design points (i.e., attribute levels) used. This may prove too 
strong an assumption in many instances, particularly when an attribute is categorical in 
nature.  
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