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1. Introduction

Stated choice (SC) data has proven useful in solving many transportation related
problems. For example, SC data has been used to examine the demand for a cycle-way
networks (e.g., de Dios Ortlzar et a. 2000), to examine the benefits derived from
various calming measures on traffic (e.g., Garrod et al. 2002)., to study the influences
on parking choice (e.g., Shiflan and Bard-Eden 2001; Hensher and King 2001; van der
Waerden et a. 2002) and to establish the Value of Travel-Time Savings (VTTS) of
commuters and non-commuters (e.g., Hensher 2001a,b). Typically, SC experiments
present sampled respondents with a number of different choice situations, each
consisting of a universal but finite set of alternatives defined on a number of attribute
dimensions. Respondents are then asked to specify their preferred alternatives given a
specific hypothetical choice context. These responses may then be used by transport
modellers to estimate models of choice behaviour, which depending on the type of
experiment conducted, may allow for the estimation of the direct or cross elasticities (or
marginal effects) of the alternatives as well as on the marginal rates of substitution
respondents are willing to make in trading between two attributes (i.e., willingness to
pay measures, for example, VTTS).

Unlike most data, SC data requires that the analyst design the data in advance by
assigning attribute levels to the attributes that define each of the aternatives which
respondents are asked to consider. Traditionally, the attribute levels are alocated to the
each of the alternatives according to some generated experimental design, with the most
common approach being to use a fractional factorial design to generate a series of single
alternatives which are then allocated to choice situations using randomised, cyclical,
Bayesian or foldover procedures (see for example, Bunch et a. 1994; Louviere and
Woodworth 1983; Huber and Zwerina 1996; Kanninen, 2002; Sandor and Wedel 2002).

A significant amount of research effort has recently been devoted to how better to
assign the attribute levels to alternatives and in turn, the resulting alternatives to choice
situations. By and large, these efforts have concentrated on methods to promote greater
gains in the statistical efficiency of SC experiments (e.g., Anderson and Wiley 1992;
Laziri and Anderson 1994; Bunch et al. 1994; Huber and Zwerina 1996; Sandor and
Wedel 2001; Carlsson and Martinsson 2002; Kanninen 2002). With regards to SC
experiments, a number of different criteria exist which may be used to both define and
measure statistical efficiency. Most commonly used is the D-optimality criterion, which
seeks to simultaneously minimise al the elements of the asymptotic (co)variance matrix
of modelsto be estimated from data collected from an experimental design. Independent
of the specific criterion used to define statistical efficiency, all are related to the
asymptotic (co)variance matrix of the choice model to be estimated.

In order to estimate the likely asymptotic (co)variance matrix of a SC experiment, the
analyst is required to assume a set of prior parameter estimates (Huber and Zwerina
1996; Sandor and Wedel 2001). These priors are used to calculate the expected utilities
as well as choice probabilities of each of the aternatives. From these choice
probabilities, it becomes a straightforward exercise to calculate the asymptotic
(co)variance matrix of the model to be estimated. Through manipulation of the design,
the analyst is able to minimize the elements within the asymptotic (co)variance matrix,
which in the case of the diagonals means lower standard errors and hence greater
reliability in the estimates at afixed sample size.
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Traditionally, researchers were limited to the examination of the statistical efficiency of
unlabeled SC experiments assuming generic parameter estimates. The assumption of
generic parameter estimates arose as a direct result of the way the log-likelihood
function for discrete choice models have been presented in the past. The literature on
generation of optimal designs for SC experiments state as their basis, the seminal work
by McFadden (1974) and described in detaill in Ben-Akiva and Lerman (1985) and
Louviere, Hensher and Swait (2000). An examination of the original derivation of the
MNL model offered by McFadden (1974) reveals that this work was limited to that of
the MNL assuming generic parameter estimates. Recently, Bliemer and Rose (2005)
demonstrated the presence of alternative-specific parameter estimates (or the
presence/absence of different attributes across alternatives) requires a different
derivation of the log-likelihood function used to obtain the asymptotic (co)variance
matrix of discrete choice models, without which, attempts to minimize the elements of
the asymptotic (co)variance matrix cannot be guaranteed. This research however, was
incomplete; being itself limited to the specific case of models estimated solely with
aternative specific parameter estimates.

In this paper, we derive the log-likelihood function for the MNL model allowing for
both generic and alternative specific parameter estimates. We then use derivation to
demonstrate how optimal designs for alternative specific experiments may be generated,
doing so for orthogonal and non-orthogonal designs. We next evaluate these designs by
comparing the resulting asymptotic variance-covariance matrices, and in doing so,
demonstrate how one can directly compare these results for any sample size without the
use of Monte Carlo experiments. In the last section, we discuss limitations and
extensions to our proposed methodology.

2. The MNL model with generic and alternative-
specific parameters

In this section, we outline the derivation of the most general case of the MNL model.
The model follows the seminal work of McFadden (1974) on random utility theory
(RUT) which has been summarized in a number of sources (e.g., Ben-Akiva and
Lerman 1985; Louviere et a. 2000; Train 2003; Hensher et a. 2005). To demonstrate
RUT, consider a situation in which an individua is faced with a number of choice tasks
in each of which they must make a discrete choice from a universal but finite number of
alternatives. Let subscripts sand j refer to choice situations=1, 2, ..., S and aternative
] =1, 2, ..., J. RUT podits that the utility possessed by an individual for aternative j
present in choice set s may be expressed as.

1) U=V te,

where Ujs is the overall utility associated with alternative j in choice situation s, Visis the
component of utility associated with alternative j that is observed by the analyst in
choice situation s, and gs represents the component of utility that is not observed by the
analyst.

RUT assumes that individuals attach parameter weights to each of the attributes
associated with the aternatives specified within an experiment. For a given attribute, a
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parameter weight may be the same for any two alternatives (i.e., generic) or different
across alternatives (i.e., aternative-specific). Let there be K* attributes which have
generic parameter weights, and K, attributes with aternative specific parameters.

Assuming a linear additive utility function, the observed component of utility may be
expressed as:

o=

"
) Vi = é. kajks +

k=1

buXpe "j=1L...,d," s=1...,S.
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The generic and alternative-specific parameters are denoted by b, and b, respectively,
with their associated attribute levels x,, and x, for each choice situation s. Under the
assumption that the unobserved component of utility, e, are independently and

identically extreme value type | distributed, we are able to derive the multinomial logit
model inwhich P isthe probability of choosing alternative j in choice situation s:

®) F};M, "i=1...3" s=1....S

a exp(V,)

i=1

3. Derivation of the asymptotic covariance matrix

Most commonly used to determine the parameters (b”,b) in the MNL model (2)-(3) isa

method known as maximum likelihood estimation. Consider a single respondent facing
Schoice situations. The log-likelihood as a function of the parametersis given by

S J
L(b",b)=Q & v,slogP,
s=1 j=1
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where the vector y describes the outcomes of all choice tasks, that is, y;s is one if
aternative j is chosen in choice task s and is zero otherwise. The asymptotic
(co)variance matrix can be derived from the second derivative of the log-likelihood
function. Allowing for both alternative-specific and generic parameters, this leads to the
following (see Appendix A):

L ,b) _ & & .. J o)
(58) —— = X SPS s Xis= KLk, =LK
ﬂbklﬂbkz 2.121 kg Jg]k2 a )gkz p kl 2
°L(b" b) S & 3 . .0 .
() ———— X, P.oX, - A XePer "i=1...,3,k=1...,K k,=1...,K
b, To, " XueFle s & Niaie T . ke
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Note that these second derivatives do not depend on the outcomes y. It is also worth
noting that assuming M respondents each complete the same S choice situations, then
equations (5a,b,c) will be simply multiplied by M.

The maximum likelihood (ML) parameter estimates (both generic and alternative
specific) can be found by maximizing the log-likelihood function, or aternatively,
setting the first derivatives (the score vector) equal to zero (it can be shown that the log-

likelihood function is concave). Call these ML estimates (b, b), then

©  (b'.b)=agmaxL(b’,b).
(b ,b)

Suppose that the true parameter values are (b”*,b). McFadden (1974) has shown for the
case with only generic parameters, the ML estimates b* are asymptotically normally

distributed with mean b™ and (co)variance matrix W, which is equal to the negative

inverse of the Fisher information matrix. It can be shown that the same holds for the
more genera specification of the MNL model allowing for generic and alternative
specific parameter estimates. The Fisher information matrix | is defined as the
expected values of the second derivative of the log-likelihood function, hence with M
respondents

ﬂZL(E*,E)_

I(b",b) =M
@) ( ) b

Therefore, the asymptotic (co)variance matrix may be computed as

oo At 1 €éf° L(b” b)u
8 W=-€l(b",b)U =- e— :
) &l (b ,b)d ME ot

This symmetric asymptotic (co)variance matrix will be of dimension corresponding to
the total number of parameters, K, where K =3 K*+3 K. Clearly, the (co)variances

become smaller with larger sample sizes, that is, with an increasing number of
respondents M. Summarising,

© (6 .0)® Né(b b)-iwﬂ -
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4. Measuring Statistical Efficiency in SC Experimental
Designs

A satistically efficient design is a design that minimizes the elements of the asymptotic
(co)variance matrix, resulting in more reliable parameter estimates for a fixed number
of choice observations. In order to be able to compare the statistical efficiency of SC
experimental designs, a number of alternative approaches have been proposed within
the literature (see e.g., Bunch et al. 1994). The most commonly used measure within the
literature is that of D-error. The D-error of a design may be computed by taking the

determinant of the asymptotic (co)variance matrix and applying a scaling factor 1/K in

order to take the number of parameters into account:

& (b’ 5)o0
detc———= ==

(10) D-error:(detvv)”K:-ﬁg 8 b ;E

where usually only one complete design for a single respondent is taken into account,
that is, M = 1. The determinant will always yield a positive value as the asymptotic
(co)variance matrix is positive definite given that the log-likelihood function is concave.
If the D-error islow, meaning that the (co)variances of the parameter estimates are low,
then the statistical efficiency is high.

A practical problem exists, however, in that rarely will the true parameters, (b”,b), be
known a priori. Therefore, in computing the D-error it is necessary to assume a set of
prior parameter values, (b”,b), which it is hoped will be close to the true underlying

population parameter values. This necessity has resulted in two popular approaches for
computing the D-error of experimental choice designs. The first approach assumes that
there exists no information on the true parameter values (including sign). Assuming no
a priori information exists, it is common to set the prior parameters values to zero. This
leads to what the literature has termed the D, -error measure. In contrast, if prior
information is available, then these priors can be used to compute the D-error, yielding
what is known as the Dy-error measure. Assuming a single respondent, the D-error can
be computed as:

-1/ K
(11) Dz-error:QdetgaLo’(?)g+
& & Tbib' gy

while the Dy-error assuming knowledge of prior parameter estimates (b",b) may be
computed as

. o~ _.-UK
- B 55

(12) D, -error = detgamgi .
§8 ' 5

For designs of the same dimensions (i.e., number of choice sets, alternatives, attributes
and attribute levels), the design(s) with the lowest D-error is (are) termed the D-optimal
design(s). Given the large number of possible attribute level combinations for a design
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of fixed dimensions, it will be unlikely that for al but the smallest of designs, that the
D-error measure will be calculable for all possible design permutations. Unless one can
examine al design permutations keeping the design dimensions constant, it will
therefore be impossible to demonstrate that a design has the lowest possible D-error,
and hence, it will often be more appropriate to discuss D-efficient designs rather than D-
optimal designs.

Manipulation of the attribute levels of the alternatives within a design will result in
different D-error values (D, or Dp), assuming fixed prior parameter estimates. Over a
number of iterations, it may be possible to locate designs with lower D-error values.
Methods of manipulating the attribute levels so as to generate and locate D-efficient
designs are discussed in detail in Kuhfeld et al. (1994), Huber and Zwerina (1996),
Sandor and Wedel (2001), Kanninen (2002), Carlsson and Martinsson (2002), and
Burgess and Street (2005) amongst other sources.

5. Generating D-efficient Stated Choice Designs

Using Equations (5a,b,c) and (11) or (12) in order to compute the statistical efficiency
of adesign, it is possible to assess SC experiments of any dimension alowing for both
generic and alternative specific parameter estimates. In this section, we generate a
number of choice experiments involving two labeled alternatives, both with four
attributes; two of which are generic. Fixing the prior parameter estimates, we construct
a number of different Dy-efficient designs, including both orthogonality and non-
orthogonality as a criterion in their construction. In all cases, we have assumed attribute
level balance, though such an assumption is not necessary to locate either Dy-efficient
orthogonal or non-orthogonal designs (indeed, it is possible that such an assumption
will result in less than efficient designs). Given the predominance in the use of
orthogonal designs in SC studies, we also generate the worst Dp-efficient orthogonal
design. Whilst it is improbable that one would specifically set out to generate and use
such adesign in practice, the fact that most orthogonal are randomly generated suggests
that such a design could indeed actually be used in reality. Therefore, the generation of
such adesign allows for an examination of the worst case scenario.

The parameter estimates and attribute levels used in the construction of the SC designs
are shown in Table 1. The designs were generated with 12 choice sets each, which isthe
minimum amount of choice sets for a balanced orthogonal SC design with this number
of attributes and attribute levels.

Table 1: Prior parameters and design attribute levels

Alternative  Attribute  Parameter  Parameter Prior  Attribute levels

A X11 G, 0.4 2,4,6

A X12 G, 0.3 1,35

A b 0.3 25,3 35
X13 13

A b 0.6 4,6,8
X14 l4a

B Constant 3 -1.2 -

B Xo1 G 0.4 2,4,6

B Xoo G2 0.3 1,35

B b 0.4 25,4,55
Xo3 23

B 0.7 4,6,8

Xo4 b14a
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Three SC designs were generated and are shown in Table 2. Design 1 represents the
most Dp-efficient (balanced) orthogonal design located whilst design 2 represents the
worst Dy-(in)efficient (balanced) orthogonal design. As stated previously, the reason for
including the worst Dp-efficient design is because many researchers tend to consider
only one orthogonal design, which may have either ahigh or alow Dy-€efficiency (which
is generaly not computed). Design 3 is the most efficient non-orthogonal design that we
were able to construct. All designs were generated using algorithms programmed in
Matlab, which used a heuristic to generate a large number of orthogonal and non-
orthogonal designs in a smart way and determine which of these was the most Dg-
(inyefficient. For the non-orthogonal designs, the algorithm employed a simple
swapping procedure similar to that discussed in Huber and Zwerina (1996) and Sandor
and Wedel (2001).

Table2: SC experimental designs

Design 1: Best Dy-error
Orthogonal Design

Design 2: Worst Dy-error
Orthogonal Design

Design 3: Best Dy-error
(Non-Orthogonal Design)

X11 X2 X3 Xua X111 X2 X1z Xua X111 X2 X3 Xua

Cset# Alternative X X Xoz Xoa Prob  Xo1 Xop Xoz Xoa Prob  Xoy X Xo3 Xoq  Prob
1 1 4 5 35 8 056 4 1 35 6 08 4 5 3 6 043
2 6 1 4 8 04 2 3 4 4 016 6 1 55 6 057

2 1 4 3 3 4 033 2 1 35 8 005 4 1 25 4 039
2 6 5 25 4 067 6 5 4 8 095 2 5 4 4 061

3 1 2 5 35 6 08 2 3 3 4 018 2 5 35 4 032
2 2 3 4 4 011 6 1 55 4 08 6 1 55 4 068

4 1 6 1 35 8 081 2 3 3 6 087 6 5 3 4 0.67
2 4 5 25 6 019 2 3 25 4 013 2 1 25 8 033

5 1 4 1 25 6 019 4 3 3 6 021 2 5 25 8 049
2 2 3 4 8 081 2 3 55 8 079 4 1 4 8 051

6 1 6 5 25 4 076 6 1 25 4 008 4 1 35 8 028
2 4 1 25 6 024 4 5 55 6 092 6 3 25 8 072

7 1 6 1 35 4 028 6 5 35 8 093 2 3 3 6 0.62
2 4 1 55 6 072 4 1 55 6 007 4 5 25 4 038

8 1 6 5 25 8 076 6 1 25 8 091 6 3 25 8 063
2 4 5 55 6 024 4 1 25 6 009 4 5 55 6 037

9 1 2 3 3 4 000 4 5 25 8 082 4 3 3 6 0.15
2 6 5 55 8 100 6 5 4 4 018 6 3 25 8 085

10 1 2 3 3 6 029 6 5 35 4 056 6 1 35 8 081
2 2 3 25 8 071 4 5 25 6 04 4 3 4 6 0.19

11 1 4 3 3 6 08 4 3 3 4 009 6 1 35 4 032
2 2 3 55 4 018 6 1 25 8 091 2 3 55 6 068

12 1 2 1 25 8 068 2 5 25 6 026 2 3 25 6 063
2 6 1 4 4 032 2 3 4 8 074 2 5 4 4 037
D,=0.31470D,=0.19031 D, =0.45368 D, = 0.19031 D, = 0.24836 D, =0.20930

It is worthwhile noting that orthogonality represents a constraint on the statistical
efficiency of SC experiments and hence it will typicaly be possible to construct non-
orthogonal designs with lower Dy-errors. This is borne out in the designs shown in
Table 2. Table 2 also shows the D-error (i.e., assuming the priors are al equal to zero)
for the three designs. Consistent with the findings of Bliemer and Rose (2005), the D,-
errors for the orthogonal designs are lower than for the best Dy-efficient non-orthogonal
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design and the D-error of the orthogonal designs are also the same’. This demonstrates
a danger in assuming priors equal to zero, as this will generally result in the generation
of an orthogonal design, which will more than likely be less efficient than a best Dy-
efficient non-orthogonal design if the parameter estimates are something other than zero
inreality.

Table 3 demonstrates the asymptotic (co)variance matrix derived for each design shown
in Table 2, assuming a single respondent. Despite design 1 being orthogonal, Table 3
clearly demonstrates that the resulting covariances for this design are non-zero. This
result demonstrates an important property of the MNL model. Whilst the design (data)
employed may be orthogonal, the estimation procedure works by taking the differences
in the attribute levels of the chosen and non-chosen alternatives (see Louviere et al.
2000; Lindsey 1996). Thus, whilst the design itself may be orthogonal, the differences
between the chosen and non-chosen alternatives will likely be correlated, resulting in
non-zero covariances from the estimated model. This result will hold for any orthogonal
design when the parameter estimates from the experiment are non-zero. The
enforcement of orthogonality may represent a limiting assumption and actually result in
greater covariances than would be induced from a non-orthogonal design given the
(much) greater number of possible combinations of attribute levels available for non-
orthogonal designs in which to locate designs with lower Dp-efficiency values. As such,
non-orthogonal designs may actually produce more reliable estimates than orthogonal
designs when estimating MNL models. In the example above, assuming that the
specified priors are correct, a better Dp-efficiency (i.e., a lower Dy-error) is obtained
from the non-orthogonal design represented in Table 2 than for the best-case orthogonal
design.

L All orthogonal designs of the same dimensions will produce the same D,-error, see Appendix B.
However, when there are generic parameters, an orthogonal design will not necessarily give the minimum
D,-error, asis believed to be the case when only alternative-specific parameters are included in the utility
functions of the model (see Bliemer and Rose, 2005).
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Table 3: (co)variance matrix for each design

Design 1
Gl GZ rS13 rS14 |320 823 |324
G. 017 004 005 009 -029 012 0.10
G, 004 011 002 003 -0.32 006 0.07
Rs 005 002 288 007 772 010 0.16
Rs 009 003 007 025 066 013 0.10
Ro -029 -0.32 7.72 0.66 39.00 -1.41 -1.02
s 012 006 010 013 -1.41 047 0.13
s 010 0.07 016 010 -1.02 013 0.28
Design 2
Gl GZ |313 |314 |320 |323 |324
G: 018 005 -026 -002 -1.14 -005 0.07
G, 005 022 005 001 001 -001 005
Ris -026 0.05 523 044 2032 -0.17 -0.25
R -0.02 001 044 033 333 002 -003
Rp -1.14 0.01 20.32 3.33 103.70 -2.16 -2.49
s -0.05 -001 -0.17 002 -216 049 -0.03
R4 007 005 -025 -0.03 -249 -0.03 0.28
Design 3
G G RBis B By B Ry
G: 014 009 021 014 007 010 0.17
G, 009 012 015 013 -030 0.11 018
Rs 021 015 284 040 747 020 043
Rs 014 013 040 035 1.00 013 0.30
Ro 007 -030 7.47 100 4009 -1.64 -0.83
3 010 011 020 0.13 -1.64 039 0.24
4 017 018 043 030 -0.83 0.24 049

Minimization of a single global measure (i.e., either Dy-error or D-error) representing
al elements contained within the asymptotic (co)variance matrix explains why in this
case, no single design performs best in terms of producing the lowest standard errors for
all attributes considered. The D-error criterion will minimize the (co)variances of all
attributes concurrently resulting in trade-offs being made between the efficiencies
displayed for each of the individua parameter estimates (e.g., the best and worst
orthogonal designs will produce a lower standard error for (34 than will the best Dp-
efficient design generated, assuming a correct specification of the priors). Thus, only in
the special case where there exists a design in which all elements in the asymptotic
variance-covariance matrix are smaller than al for other designs, will that design
produce lower asymptotic standard errors for al attributes. The existence of such a
design on the efficiency frontier in design space, however, will likely be rare.

The presence of M in Equation (8) provides a useful result for comparing designs over
various sample sizes without having to resort to the use of Monte Carlo
experimentation. Dividing each element of the asymptotic (co)variance matrix for the
single respondent case by M will produce the asymptotic (co)variance matrix for that
sample size. This will be equivalent to the asymptotic (co)variance matrix obtained
from Monte Carlo experiments conducted over a large number of iterations, thus
negating the need to conduct such experiments for problems of this type. Denote the
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asymptotic standard errors when the number of respondents are M by seM(BE) and
se, (6 i) for each of the generic and alternative-specific parameters. Then it holds that

13 sg,(by) =se(by)/VM, ad s, (b,)=se(b;)/VM.

For example, for design 1, sel(614) =4/0.25 = 0.5. The asymptotic standard error with

50 respondents will therefore be 3%0(614) =4/0.25/+/50 » 0.07. It is worth noting that
dividing the asymptotic standard errors by the square root of M as explained above will
produce diminishing improvements to sg, (b;,) as M increases. As such, the MNL

model will exhibit diminishing increasesin reliability (as measured by lower asymptotic
standard errors) as we increase the sample size

This property allows for an examination of the influences of sample size upon the
statistical significance of the parameter estimates likely to be obtained from the
experiment. Given that the asymptotic t-statistic is calculated as the ratio of the
parameter estimate to the asymptotic standard error, it is possible to determine what
sample size will be required in order to demonstrate statistical significance of the
parameter estimates. Table 4 demonstrates the predicted asymptotic t-statistics for each
of the designs at various sample sizes. In calculating the asymptotic t-statistics for the
three designs, we have assumed that the parameter priors used in the construction of the
designs are correct. From Table 4, the best Dy-efficient (balanced) orthogonal design
would require a sample size of 123 in order to determine that all attributes are
statistically significant (at the 95 percent confidence level), whilst the corresponding
worst Dp-efficient (balanced) orthogonal design would require a sample size of 223
respondents (ignoring the constant term which is often dispensed with in SC
experiments; see Hensher et al., 2005). The non-orthogonal D,-efficient design would
require a minimum sample size of 121 respondents.

10
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Table 4: Sample size influences upon attribute level significance (assuming correct priors)

Design 1: Best Dy-error Orthogonal Design

G, G, B3 Bia % R23 Boa

0.98 091 018 120 -019 058 131
1.39 128 025 170 -027 083 185
1.70 157 031 208 -033 101 227
1.96 18 035 240 -038 117 262
2.20 202 040 268 -043 131 293
123 1089 1004 196 1330 -213 649 1454

Design 2: Worst Dy-error Orthogonal Design
0.94 064 013 104 -012 057 132
132 090 019 147 -017 081 186
1.62 111 023 18 -020 099 228
1.87 128 026 208 -024 115 263
2.09 143 029 232 -026 128 294
223 1398 953 196 1552 -1.76 857 19.64
Design 3: Best D-error (Non-Orthogonal Design)

1.08 088 018 101 -019 064 100
153 124 0.25 143 -0.27 090 141
1.87 152 0.31 1.75 -033 111 1.73
2.16 176 036 202 -038 128 200
2.42 196 040 226 -042 143 223
121 1189 965 196 1113 -2.08 7.02 10.97

abhowonNnERrZ

gabh wnN -

ga b wnN -

One benefit of the methodology is that it is easy to calculate the sample sizes assuming
incorrect specification of the parameter priors. Table 5 shows the sample size
requirements for the three designs assuming a different set of parameter priors (givenin
Table 5) than those used in generating the designs. Ignoring the constant, a
misspecification of the priors in this case would result in a requirement of a smaller
sample size than required if the priors were correctly specified. For the new priors
assumed, Design 1 would require only 69 respondents whilst Designs 2 and 3 would
require 125 and 68 respondents respectively.

Note that, keeping the design constant, a misspecification of a parameter prior for any
attribute will have an impact upon the asymptotic standard errors for all parameter
estimates within the model. This is because for any given design, a change in any
parameter value for an attribute will influence the choice probabilities within all choice
sets n where that attribute appears. Changes in the choice probabilities will in turn feed
through to the asymptotic (co)variance matrix and hence influence the resulting
expected standard errors for al parameters.
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Table5: Sample size influences upon attribute level significance (assuming incorrect priors)

Design 1: Best Dp-error Orthogonal Design
0.5 0.4 0.4 0.7 -1.2 0.5 0.8

M G, G, B3 Bia % R23 Boa

1 123 121 024 140 -019 073 150
2 1.74 1727 033 198 -027 103 212
3 2.13 209 041 242 -033 127 260
4 2.45 241 047 280 -038 146 3.00
5 2.74 270 053 313 -043 164 335
69 1020 10.03 196 1162 -160 6.07 1245

Design 2: Worst Dy-error Orthogonal Design

1 117 0.85 0.17 121 -0.12 0.72 150
2 1.66 120 025 171 -017 101 213
3 2.03 147 030 210 -020 124 260
4 2.34 170 035 243 -024 143 301
5 2.62 190 039 271 -026 160 3.36

125 1308 951 196 1356 -1.32 802 16.81
Design 3: Best Dy-error (Non-Orthogonal Design)
135 117 024 118 -019 080 114
191 1.65 0.34 1.67 -0.27 113 1.61
2.34 203 041 204 -033 138 197
2.70 234 048 236 -038 160 228
3.02 262 053 264 -042 178 255
68 1114 965 19 973 -156 658 940

a b~ wbN Pk

6. Conclusion and Discussion

In this paper, we have extended the proof offered by McFadden (1974) for the generic
(or unlabeled) MNL model and the alternative-specific case specified by Bliemer and
Rose (2005) to the more general case allowing of both alternative-specific and generic
parameter estimates. In doing so, we have been able to demonstrate the appropriate
asymptotic (co)variance matrix for the most general model specification, thus allowing
for the first time, the correct generation of efficient designs for any form of SC
experiment. Beyond the ability to generate efficient designs for alternative-specific SC
experiments, a number of additional aspects contained within this paper are worth
emphasizing.

First, we demonstrate that for an experiment of given dimensions, it may be possible to
generate a number of different orthogona designs, each with differing levels of
efficiency as measured after model estimation (assuming that the estimated parameters
are non-zero). Within this paper, we have demonstrated that the D_-efficiency measure
often employed within the literature on the generation of efficient generic (or unlabel ed)
SC experiments, provides a meaningless basis of comparison amongst orthogonal
designs.

Second, for any given sample size, one may examine the likely standard errors and
asymptotic t-statistics of a design to be estimated using the MNL model directly from
the asymptotic (co)variance matrix. This means that for this class of models, one does
not have to rely on Monte Carlo simulations to determine the expected standard errors
for various sample sizes for different designs as has been done by some researchers in
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the past (e.g., Sdndor and Wedel 2001). The ability to use the asymptotic (co)variance
matrix to estimate the standard errors directly extends to being able to examine likely
biases in the expected t-statistics given misspecification of the parameter priors. This
can be done relatively quickly, alowing for an assessment of the implications of
misspecification of the priors even before an experiment has been implemented.

The ability to derive efficient alternative specific designs introduces a number of
possible interesting research directions. First, the limitation of being only able to
estimate efficient designs for generic SC experiments has meant that the literature has
not addressed the issue of efficient designs assuming differences in scale across
aternatives. An interesting research direction therefore would be to extend the
designing of SC experiments beyond the MNL model to models that allow for scale
differences such as the nested logit model (Sandor and Wedel (2002) have examined
efficient design generation for the mixed logit model). Second, the designs generated
here do not assume the presence of a no-choice base alternative. Although only asimple
extension, the effect of having a no-choice aternative needs to be examined for
alternative-specific designs, as has occurred with the unlabeled SC case (see Carlsson
and Martinsson 2002).

We would also promote research into wider aspects of constructing efficient
experimental designs. Of particular interest is the construction of efficient designs for
experiments in which the attribute levels are pivoted from the revealed levels obtained
from respondents prior to the commencement of a SC experiment (see for example,
Greene et al. 2005). Of issue for such designs is that not only are the prior parameter
estimates needed to generate efficient designs not known with any certainty, but so are
the attribute levels for each respondent. Urgent research examining the use of internet or
CAPI technology with in-built design optimization routines is required for such
experiments.

A further research issue involves the investigation of what constitutes the best source
for determining the priors used in generating optimal designs. Should the analyst
conduct a pilot study, and if so, what represents a sufficient sample size to obtain the
priors? Alternatively, should the analyst rely upon managers and other practitioners
beliefs and how best should such beliefs be captured?

Finaly, we propose further research be conducted into various possible measures for
defining the efficiency of designs. Although for this paper, we have relied upon D-error
as our measure of, numerous other possible measures exist. One such possible measure
not yet considered by the literature is that of using some form of weighting procedure to
indicate which elements within the asymptotic (co)variance matrix should receive
priority in terms of minimisation. Such a measure would be of interest, if for example,
one were mainly interested in estimating the willingness to pay for a specific attribute.
In such a case, it would be conceivable that the researcher could believe that it is more
important to produce lower standard errors for both this and the cost attribute within the
design whilst other attributes are of less importance to the study. In such a case, the
reliance on a global measure to determine the efficiency of the overall asymptotic
(co)variance matrix will be inadequate.
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Derivatives with respect to alternative-specific parameter b,
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Appendix B

Theorem 1 — All balanced orthogonal designs using the same attribute levels have the
same D-error.

Proof: Consider the Fisher information matrix of designs using generic and aternative-
specific attributes. For the D -error, the Fisher information matrix assumes that all
parameters are equal to zero. Since P =1/J for al dternatives j and al choice

situations s, the Fisher information matrix will become (after rearranging summations):
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Since orthogonality holds, the levels of one attribute for al choice situations are
uncorrelated with the levels of any other attribute. Using the definition of correlation it
holds that
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Therefore, we can write the cells of Fisher information matrix as follows:
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Since we also assume balancedness, it holds that a X;s 1S constant for each

aternative j and attribute k, independent of the order of the attribute levels over the
choice situations. Therefore, the cells of the Fisher information matrix are the same for
each orthogonal design, hence aso the (co)variance matrix and the D,-error.
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