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1.  Introduction 
 
Stated choice (SC) data has proven useful in solving many transportation related 
problems. For example, SC data has been used to examine the demand for a cycle-way 
networks (e.g., de Dios Ortúzar et al. 2000), to examine the benefits derived from 
various calming measures on traffic (e.g., Garrod et al. 2002)., to study the influences 
on parking choice (e.g., Shiflan and Bard-Eden 2001; Hensher and King 2001; van der 
Waerden et al. 2002) and to establish the Value of Travel-Time Savings (VTTS) of 
commuters and non-commuters (e.g., Hensher 2001a,b). Typically, SC experiments 
present sampled respondents with a number of different choice situations, each 
consisting of a universal but finite set of alternatives defined on a number of attribute 
dimensions. Respondents are then asked to specify their preferred alternatives given a 
specific hypothetical choice context. These responses may then be used by transport 
modellers to estimate models of choice behaviour, which depending on the type of 
experiment conducted, may allow for the estimation of the direct or cross elasticities (or 
marginal effects) of the alternatives as well as on the marginal rates of substitution 
respondents are willing to make in trading between two attributes (i.e., willingness to 
pay measures, for example, VTTS). 
 
Unlike most data, SC data requires that the analyst design the data in advance by 
assigning attribute levels to the attributes that define each of the alternatives which 
respondents are asked to consider. Traditionally, the attribute levels are allocated to the 
each of the alternatives according to some generated experimental design, with the most 
common approach being to use a fractional factorial design to generate a series of single 
alternatives which are then allocated to choice situations using randomised, cyclical, 
Bayesian or foldover procedures (see for example, Bunch et al. 1994; Louviere and 
Woodworth 1983; Huber and Zwerina 1996; Kanninen, 2002; Sandor and Wedel 2002).   
 
A significant amount of research effort has recently been devoted to how better to 
assign the attribute levels to alternatives and in turn, the resulting alternatives to choice 
situations. By and large, these efforts have concentrated on methods to promote greater 
gains in the statistical efficiency of SC experiments (e.g., Anderson and Wiley 1992; 
Laziri and Anderson 1994; Bunch et al. 1994; Huber and Zwerina 1996; Sándor and 
Wedel 2001; Carlsson and Martinsson 2002; Kanninen 2002). With regards to SC 
experiments, a number of different criteria exist which may be used to both define and 
measure statistical efficiency. Most commonly used is the D-optimality criterion, which 
seeks to simultaneously minimise all the elements of the asymptotic (co)variance matrix 
of models to be estimated from data collected from an experimental design. Independent 
of the specific criterion used to define statistical efficiency, all are related to the 
asymptotic (co)variance matrix of the choice model to be estimated.  
 
In order to estimate the likely asymptotic (co)variance matrix of a SC experiment, the 
analyst is required to assume a set of prior parameter estimates (Huber and Zwerina 
1996; Sándor and Wedel 2001). These priors are used to calculate the expected utilities 
as well as choice probabilities of each of the alternatives. From these choice 
probabilities, it becomes a straightforward exercise to calculate the asymptotic 
(co)variance matrix of the model to be estimated. Through manipulation of the design, 
the analyst is able to minimize the elements within the asymptotic (co)variance matrix, 
which in the case of the diagonals means lower standard errors and hence greater 
reliability in the estimates at a fixed sample size.  
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Traditionally, researchers were limited to the examination of the statistical efficiency of 
unlabeled SC experiments assuming generic parameter estimates. The assumption of 
generic parameter estimates arose as a direct result of the way the log-likelihood 
function for discrete choice models have been presented in the past. The literature on 
generation of optimal designs for SC experiments state as their basis, the seminal work 
by McFadden (1974) and described in detail in Ben-Akiva and Lerman (1985) and 
Louviere, Hensher and Swait (2000). An examination of the original derivation of the 
MNL model offered by McFadden (1974) reveals that this work was limited to that of 
the MNL assuming generic parameter estimates. Recently, Bliemer and Rose (2005) 
demonstrated the presence of alternative-specific parameter estimates (or the 
presence/absence of different attributes across alternatives) requires a different 
derivation of the log-likelihood function used to obtain the asymptotic (co)variance 
matrix of discrete choice models, without which, attempts to minimize the elements of 
the asymptotic (co)variance matrix cannot be guaranteed. This research however, was 
incomplete; being itself limited to the specific case of models estimated solely with 
alternative specific parameter estimates.  
 
In this paper, we derive the log-likelihood function for the MNL model allowing for 
both generic and alternative specific parameter estimates. We then use derivation to 
demonstrate how optimal designs for alternative specific experiments may be generated, 
doing so for orthogonal and non-orthogonal designs. We next evaluate these designs by 
comparing the resulting asymptotic variance-covariance matrices, and in doing so, 
demonstrate how one can directly compare these results for any sample size without the 
use of Monte Carlo experiments. In the last section, we discuss limitations and 
extensions to our proposed methodology.  

 

2.  The MNL model with generic and alternative-
specific parameters 
 
In this section, we outline the derivation of the most general case of the MNL model. 
The model follows the seminal work of McFadden (1974) on random utility theory 
(RUT) which has been summarized in a number of sources (e.g., Ben-Akiva and 
Lerman 1985; Louviere et al. 2000; Train 2003; Hensher et al. 2005). To demonstrate 
RUT, consider a situation in which an individual is faced with a number of choice tasks 
in each of which they must make a discrete choice from a universal but finite number of 
alternatives. Let subscripts s and j refer to choice situation s = 1, 2, …, S, and alternative 
j = 1, 2, …, J. RUT posits that the utility possessed by an individual for alternative j 
present in choice set s may be expressed as: 
 
(1)  ,js js jsU V ε= +  

 
where Ujs is the overall utility associated with alternative j in choice situation s, Vjs is the 
component of utility associated with alternative j that is observed by the analyst in 
choice situation s, and εjs represents the component of utility that is not observed by the 
analyst.  
 
RUT assumes that individuals attach parameter weights to each of the attributes 
associated with the alternatives specified within an experiment. For a given attribute, a 
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parameter weight may be the same for any two alternatives (i.e., generic) or different 
across alternatives (i.e., alternative-specific). Let there be *K  attributes which have 
generic parameter weights, and jK  attributes with alternative specific parameters. 
Assuming a linear additive utility function, the observed component of utility may be 
expressed as: 
 

(2) 
*

* *

1 1

, 1, , , 1, , .
jKK

js k jks jk jks
k k

V x x j J s Sβ β
= =

= + ∀ = ∀ =∑ ∑ K K  

 
The generic and alternative-specific parameters are denoted by *

kβ  and ,jkβ respectively, 

with their associated attribute levels *
jksx  and jksx  for each choice situation s. Under the 

assumption that the unobserved component of utility, ,jsε  are independently and 
identically extreme value type I distributed, we are able to derive the multinomial logit 
model in which jsP  is the probability of choosing alternative j in choice situation s: 
 

(3)  
( )

( )
1

exp
, 1, , , 1, , .

exp

js
js J

is
i

V
P j J s S

V
=

= ∀ = ∀ =

∑
K K    

 

3.  Derivation of the asymptotic covariance matrix 
 
Most commonly used to determine the parameters *( , )β β in the MNL model (2)-(3) is a 
method known as maximum likelihood estimation. Consider a single respondent facing 
S choice situations. The log-likelihood as a function of the parameters is given by 
 

(4) * *

*

1 1

* * * *

1 1 1 1 1 1 1

( , ) log

log exp
j j

S J

js js
s j

K KS J K J K

js k jks jk jks k iks ik jks
s j k k i k k

L y P

y x x x x

β β

β β β β

= =

= = = = = = =

=

     
= + − +            

∑∑

∑ ∑ ∑ ∑ ∑ ∑ ∑
 

 
where the vector y describes the outcomes of all choice tasks, that is, yjs is one if 
alternative j is chosen in choice task s and is zero otherwise. The asymptotic 
(co)variance matrix can be derived from the second derivative of the log-likelihood 
function. Allowing for both alternative-specific and generic parameters, this leads to the 
following (see Appendix A): 
 

(5a) 
1 2 2

1 2

2 *
* * * *

1 2* *
1 1 1

( , )
, , 1, , ,

S J J

jk s js jk s is ik s
s j ik k

L
x P x P x k k K

β β
β β = = =

∂  
= − − ∀ = ∂ ∂  

∑∑ ∑ K  

 

(5b) 
1 1 1 1 2 2 1

1 1 2

2 *
* * *

1 1 2*
1 1

( , )
, 1, , , 1, , , 1, , ,

S J

j k s j s j k s ik s is j
s ij k k

L
x P x x P j J k K k K

β β
β β = =

∂  
= − − ∀ = = = ∂ ∂  

∑ ∑ K K K  
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(5c) 

( )

1 1 2 2 1 2

1 1 2 2

1 1 2 2 1 2

1 22 *
1

1 2
1

, if  ;
( , )

1, , , 1, , .
1 , if  .

i

S

j k s j k s j s j s
s

i i jS
j k j k

j k s j k s j s j s
s

x x P P j j
L

j J k K
x x P P j j

β β
β β

=

=

 ≠∂ = ∀ = =
∂ ∂ − − =



∑

∑
K K  

 
Note that these second derivatives do not depend on the outcomes y. It is also worth 
noting that assuming M respondents each complete the same S choice situations, then 
equations (5a,b,c) will be simply multiplied by M.  
 
The maximum likelihood (ML) parameter estimates (both generic and alternative 
specific) can be found by maximizing the log-likelihood function, or alternatively, 
setting the first derivatives (the score vector) equal to zero (it can be shown that the log-
likelihood function is concave). Call these ML estimates *ˆ ˆ( , ),β β  then 
 

(6) 
*

* *

( , )

ˆ ˆ( , ) arg max ( , ).L
β β

β β β β=  

 
Suppose that the true parameter values are *( , ).β β  McFadden (1974) has shown for the 
case with only generic parameters, the ML estimates *β̂  are asymptotically normally 
distributed with mean *β  and (co)variance matrix Ω , which is equal to the negative 
inverse of the Fisher information matrix. It can be shown that the same holds for the 
more general specification of the MNL model allowing for generic and alternative 
specific parameter estimates. The Fisher information matrix I  is defined as the 
expected values of the second derivative of the log-likelihood function, hence with M 
respondents 
 

(7) 
2 *

* ( , )ˆ ˆ( , ) .
'

L
I M

β β
β β

β β
∂

= ⋅
∂ ∂

 

 
Therefore, the asymptotic (co)variance matrix may be computed as  
 

(8) 

12 *1
* 1 ( , )ˆ ˆ( , ) .

'
L

I
M

β β
β β

β β

−
−  ∂ Ω = − = −    ∂ ∂ 

 

 
This symmetric asymptotic (co)variance matrix will be of dimension corresponding to 
the total number of parameters, ,K  where * .jj

K K K= +∑ ∑  Clearly, the (co)variances 

become smaller with larger sample sizes, that is, with an increasing number of 
respondents M. Summarising, 
 

(9) 

12 *
* * 1 ( , )ˆ ˆ( , ) ( , ), .

'
L

N
M

β β
β β β β

β β

−  ∂ → −   ∂ ∂  
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4. Measuring Statistical Efficiency in SC Experimental 
Designs 
 
A statistically efficient design is a design that minimizes the elements of the asymptotic 
(co)variance matrix, resulting in more reliable parameter estimates for a fixed number 
of choice observations. In order to be able to compare the statistical efficiency of SC 
experimental designs, a number of alternative approaches have been proposed within 
the literature (see e.g., Bunch et al. 1994). The most commonly used measure within the 
literature is that of D-error. The D-error of a design may be computed by taking the 
determinant of the asymptotic (co)variance matrix and applying a scaling factor 1/ K  in 
order to take the number of parameters into account: 
 

(10) ( )
1/

2 *
1/ 1 ( , )

D-error det det ,
'

K
K L

M
β β

β β

  ∂
= Ω = −    ∂ ∂  

 

 
where usually only one complete design for a single respondent is taken into account, 
that is, M = 1. The determinant will always yield a positive value as the asymptotic 
(co)variance matrix is positive definite given that the log-likelihood function is concave. 
If the D-error is low, meaning that the (co)variances of the parameter estimates are low, 
then the statistical efficiency is high. 
 
A practical problem exists, however, in that rarely will the true parameters, *( , ),β β  be 
known a priori. Therefore, in computing the D-error it is necessary to assume a set of 
prior parameter values, *( , ),β β% %  which it is hoped will be close to the true underlying 
population parameter values. This necessity has resulted in two popular approaches for 
computing the D-error of experimental choice designs. The first approach assumes that 
there exists no information on the true parameter values (including sign). Assuming no 
a priori information exists, it is common to set the prior parameters values to zero. This 
leads to what the literature has termed the Dz-error measure. In contrast, if prior 
information is available, then these priors can be used to compute the D-error, yielding 
what is known as the Dp-error measure. Assuming a single respondent, the Dz-error can 
be computed as: 
 

(11) 

1/
2

z

(0,0)
D -error det ,

'

K
L
β β

−
  ∂

=   ∂ ∂  
 

 

while the Dp-error assuming knowledge of prior parameter estimates *( , )β β% %  may be 
computed as 
 

(12) 

1/
2 *

p

( , )
D -error det .

'

K
L β β

β β

−
  ∂

=    ∂ ∂  

% %
 

 
For designs of the same dimensions (i.e., number of choice sets, alternatives, attributes 
and attribute levels), the design(s) with the lowest D-error is (are) termed the D-optimal 
design(s). Given the large number of possible attribute level combinations for a design 
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of fixed dimensions, it will be unlikely that for all but the smallest of designs, that the 
D-error measure will be calculable for all possible design permutations. Unless one can 
examine all design permutations keeping the design dimensions constant, it will 
therefore be impossible to demonstrate that a design has the lowest possible D-error, 
and hence, it will often be more appropriate to discuss D-efficient designs rather than D-
optimal designs.  
 
Manipulation of the attribute levels of the alternatives within a design will result in 
different D-error values (Dz or Dp), assuming fixed prior parameter estimates. Over a 
number of iterations, it may be possible to locate designs with lower D-error values. 
Methods of manipulating the attribute levels so as to generate and locate D-efficient 
designs are discussed in detail in Kuhfeld et al. (1994), Huber and Zwerina (1996), 
Sándor and Wedel (2001), Kanninen (2002), Carlsson and Martinsson (2002), and 
Burgess and Street (2005) amongst other sources. 
 

5. Generating D-efficient Stated Choice Designs 
 
Using Equations (5a,b,c) and (11) or (12) in order to compute the statistical efficiency 
of a design, it is possible to assess SC experiments of any dimension allowing for both 
generic and alternative specific parameter estimates. In this section, we generate a 
number of choice experiments involving two labeled alternatives, both with four 
attributes; two of which are generic. Fixing the prior parameter estimates, we construct 
a number of different Dp-efficient designs, including both orthogonality and non-
orthogonality as a criterion in their construction. In all cases, we have assumed attribute 
level balance, though such an assumption is not necessary to locate either Dp-efficient 
orthogonal or non-orthogonal designs (indeed, it is possible that such an assumption 
will result in less than efficient designs). Given the predominance in the use of 
orthogonal designs in SC studies, we also generate the worst Dp-efficient orthogonal 
design. Whilst it is improbable that one would specifically set out to generate and use 
such a design in practice, the fact that most orthogonal are randomly generated suggests 
that such a design could indeed actually be used in reality. Therefore, the generation of 
such a design allows for an examination of the worst case scenario.  
 
The parameter estimates and attribute levels used in the construction of the SC designs 
are shown in Table 1. The designs were generated with 12 choice sets each, which is the 
minimum amount of choice sets for a balanced orthogonal SC design with this number 
of attributes and attribute levels. 
 

Table 1:  Prior parameters and design attribute levels 

 Alternative Attribute Parameter Parameter Prior Attribute levels 
A x11 G1 0.4 2, 4, 6 
A x12 G2 0.3 1, 3, 5 
A 

x13 13β  0.3 2.5, 3, 3.5 

A 
x14 14aβ  0.6 4, 6, 8 

B Constant ß20 -1.2 - 
B x21 G1 0.4 2, 4, 6 
B x22 G2 0.3 1, 3, 5 
B 

x23 23β  0.4 2.5, 4, 5.5 

B 
x24 14aβ  0.7 4, 6, 8 
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Three SC designs were generated and are shown in Table 2. Design 1 represents the 
most Dp-efficient (balanced) orthogonal design located whilst design 2 represents the 
worst Dp-(in)efficient (balanced) orthogonal design. As stated previously, the reason for 
including the worst Dp-efficient design is because many researchers tend to consider 
only one orthogonal design, which may have either a high or a low Dp-efficiency (which 
is generally not computed). Design 3 is the most efficient non-orthogonal design that we 
were able to construct. All designs were generated using algorithms programmed in 
Matlab, which used a heuristic to generate a large number of orthogonal and non-
orthogonal designs in a smart way and determine which of these was the most Dp-
(in)efficient. For the non-orthogonal designs, the algorithm employed a simple 
swapping procedure similar to that discussed in Huber and Zwerina (1996) and Sándor 
and Wedel (2001).  
 

Table 2:  SC experimental designs 

 

  
Design 1: Best Dp-error  

Orthogonal Design 
Design 2: Worst Dp-error  

Orthogonal Design 
Design 3: Best Dp-error  

(Non-Orthogonal Design) 

Cset # Alternative 
x11 
x21 

x12 
x22 

x13 
x23 

x14 
x24 Prob 

x11 
x21 

x12 
x22 

x13 
x23 

x14 
x24 Prob 

x11 
x21 

x12 
x22 

x13 
x23 

x14 
x24 Prob 

1 1 4 5 3.5 8 0.56 4 1 3.5 6 0.84 4 5 3 6 0.43 
 2 6 1 4 8 0.44 2 3 4 4 0.16 6 1 5.5 6 0.57 

2 1 4 3 3 4 0.33 2 1 3.5 8 0.05 4 1 2.5 4 0.39 
 2 6 5 2.5 4 0.67 6 5 4 8 0.95 2 5 4 4 0.61 

3 1 2 5 3.5 6 0.89 2 3 3 4 0.18 2 5 3.5 4 0.32 
 2 2 3 4 4 0.11 6 1 5.5 4 0.82 6 1 5.5 4 0.68 

4 1 6 1 3.5 8 0.81 2 3 3 6 0.87 6 5 3 4 0.67 
 2 4 5 2.5 6 0.19 2 3 2.5 4 0.13 2 1 2.5 8 0.33 

5 1 4 1 2.5 6 0.19 4 3 3 6 0.21 2 5 2.5 8 0.49 
 2 2 3 4 8 0.81 2 3 5.5 8 0.79 4 1 4 8 0.51 

6 1 6 5 2.5 4 0.76 6 1 2.5 4 0.08 4 1 3.5 8 0.28 
 2 4 1 2.5 6 0.24 4 5 5.5 6 0.92 6 3 2.5 8 0.72 

7 1 6 1 3.5 4 0.28 6 5 3.5 8 0.93 2 3 3 6 0.62 
 2 4 1 5.5 6 0.72 4 1 5.5 6 0.07 4 5 2.5 4 0.38 

8 1 6 5 2.5 8 0.76 6 1 2.5 8 0.91 6 3 2.5 8 0.63 
 2 4 5 5.5 6 0.24 4 1 2.5 6 0.09 4 5 5.5 6 0.37 

9 1 2 3 3 4 0.00 4 5 2.5 8 0.82 4 3 3 6 0.15 
 2 6 5 5.5 8 1.00 6 5 4 4 0.18 6 3 2.5 8 0.85 

10 1 2 3 3 6 0.29 6 5 3.5 4 0.56 6 1 3.5 8 0.81 
 2 2 3 2.5 8 0.71 4 5 2.5 6 0.44 4 3 4 6 0.19 

11 1 4 3 3 6 0.82 4 3 3 4 0.09 6 1 3.5 4 0.32 
 2 2 3 5.5 4 0.18 6 1 2.5 8 0.91 2 3 5.5 6 0.68 

12 1 2 1 2.5 8 0.68 2 5 2.5 6 0.26 2 3 2.5 6 0.63 
 2 6 1 4 4 0.32 2 3 4 8 0.74 2 5 4 4 0.37 
  Dp = 0.31470 Dz = 0.19031 Dp = 0.45368 Dz = 0.19031 Dp = 0.24836 Dz =0.20930 

 
 
It is worthwhile noting that orthogonality represents a constraint on the statistical 
efficiency of SC experiments and hence it will typically be possible to construct non-
orthogonal designs with lower Dp-errors. This is borne out in the designs shown in 
Table 2. Table 2 also shows the Dz-error (i.e., assuming the priors are all equal to zero) 
for the three designs. Consistent with the findings of Bliemer and Rose (2005), the Dz-
errors for the orthogonal designs are lower than for the best Dp-efficient non-orthogonal 
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design and the Dz-error of the orthogonal designs are also the same1. This demonstrates 
a danger in assuming priors equal to zero, as this will generally result in the generation 
of an orthogonal design, which will more than likely be less efficient than a best Dp-
efficient non-orthogonal design if the parameter estimates are something other than zero 
in reality.  
 
Table 3 demonstrates the asymptotic (co)variance matrix derived for each design shown 
in Table 2, assuming a single respondent. Despite design 1 being orthogonal, Table 3 
clearly demonstrates that the resulting covariances for this design are non-zero. This 
result demonstrates an important property of the MNL model. Whilst the design (data) 
employed may be orthogonal, the estimation procedure works by taking the differences 
in the attribute levels of the chosen and non-chosen alternatives (see Louviere et al. 
2000; Lindsey 1996). Thus, whilst the design itself may be orthogonal, the differences 
between the chosen and non-chosen alternatives will likely be correlated, resulting in 
non-zero covariances from the estimated model. This result will hold for any orthogonal 
design when the parameter estimates from the experiment are non-zero. The 
enforcement of orthogonality may represent a limiting assumption and actually result in 
greater covariances than would be induced from a non-orthogonal design given the 
(much) greater number of possible combinations of attribute levels available for non-
orthogonal designs in which to locate designs with lower Dp-efficiency values. As such, 
non-orthogonal designs may actually produce more reliable estimates than orthogonal 
designs when estimating MNL models. In the example above, assuming that the 
specified priors are correct, a better Dp-efficiency (i.e., a lower Dp-error) is obtained 
from the non-orthogonal design represented in Table 2 than for the best-case orthogonal 
design.  

                                                           
1 All orthogonal designs of the same dimensions will produce the same Dz-error, see Appendix B. 
However, when there are generic parameters, an orthogonal design will not necessarily give the minimum 
Dz-error, as is believed to be the case when only alternative-specific parameters are included in the utility 
functions of the model (see Bliemer and Rose, 2005). 
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Table 3:  (co)variance matrix for each design 

 
 Design 1 
 G1 G2 ß13 ß14 ß20 ß23 ß24 

G1 0.17 0.04 0.05 0.09 -0.29 0.12 0.10 
G2 0.04 0.11 0.02 0.03 -0.32 0.06 0.07 
ß13 0.05 0.02 2.88 0.07 7.72 0.10 0.16 
ß14 0.09 0.03 0.07 0.25 0.66 0.13 0.10 
ß20 -0.29 -0.32 7.72 0.66 39.00 -1.41 -1.02 
ß23 0.12 0.06 0.10 0.13 -1.41 0.47 0.13 
ß24 0.10 0.07 0.16 0.10 -1.02 0.13 0.28 

  Design 2 
 G1 G2 ß13 ß14 ß20 ß23 ß24 

G1 0.18 0.05 -0.26 -0.02 -1.14 -0.05 0.07 
G2 0.05 0.22 0.05 0.01 0.01 -0.01 0.05 
ß13 -0.26 0.05 5.23 0.44 20.32 -0.17 -0.25 
ß14 -0.02 0.01 0.44 0.33 3.33 0.02 -0.03 
ß20 -1.14 0.01 20.32 3.33 103.70 -2.16 -2.49 
ß23 -0.05 -0.01 -0.17 0.02 -2.16 0.49 -0.03 
ß24 0.07 0.05 -0.25 -0.03 -2.49 -0.03 0.28 

 Design 3 
 G1 G2 ß13 ß14 ß20 ß23 ß24 

G1 0.14 0.09 0.21 0.14 0.07 0.10 0.17 
G2 0.09 0.12 0.15 0.13 -0.30 0.11 0.18 
ß13 0.21 0.15 2.84 0.40 7.47 0.20 0.43 
ß14 0.14 0.13 0.40 0.35 1.00 0.13 0.30 
ß20 0.07 -0.30 7.47 1.00 40.09 -1.64 -0.83 
ß23 0.10 0.11 0.20 0.13 -1.64 0.39 0.24 
ß24 0.17 0.18 0.43 0.30 -0.83 0.24 0.49 

 
Minimization of a single global measure (i.e., either Dp-error or Dz-error) representing 
all elements contained within the asymptotic (co)variance matrix explains why in this 
case, no single design performs best in terms of producing the lowest standard errors for 
all attributes considered. The D-error criterion will minimize the (co)variances of all 
attributes concurrently resulting in trade-offs being made between the efficiencies 
displayed for each of the individual parameter estimates (e.g., the best and worst 
orthogonal designs will produce a lower standard error for ß24 than will the best Dp-
efficient design generated, assuming a correct specification of the priors). Thus, only in 
the special case where there exists a design in which all elements in the asymptotic 
variance-covariance matrix are smaller than all for other designs, will that design 
produce lower asymptotic standard errors for all attributes. The existence of such a 
design on the efficiency frontier in design space, however, will likely be rare.   
 
The presence of M in Equation (8) provides a useful result for comparing designs over 
various sample sizes without having to resort to the use of Monte Carlo 
experimentation. Dividing each element of the asymptotic (co)variance matrix for the 
single respondent case by M will produce the asymptotic (co)variance matrix for that 
sample size. This will be equivalent to the asymptotic (co)variance matrix obtained 
from Monte Carlo experiments conducted over a large number of iterations, thus 
negating the need to conduct such experiments for problems of this type. Denote the 
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asymptotic standard errors when the number of respondents are M by *ˆ( )M kse β  and 
ˆ( )M jkse β  for each of the generic and alternative-specific parameters. Then it holds that 

 

(13) * *
1

ˆ ˆ( ) ( ) / ,M k kse se Mβ β=    and   1
ˆ ˆ( ) ( ) / .M jk jkse se Mβ β=  

 

For example, for design 1, 1 14
ˆ( ) 0.25 0.5.se β = =  The asymptotic standard error with 

50 respondents will therefore be 50 14
ˆ( ) 0.25 / 50 0.07.se β = ≈  It is worth noting that 

dividing the asymptotic standard errors by the square root of M as explained above will 
produce diminishing improvements to ˆ( )M jkse β  as M increases. As such, the MNL 
model will exhibit diminishing increases in reliability (as measured by lower asymptotic 
standard errors) as we increase the sample size 
 
This property allows for an examination of the influences of sample size upon the 
statistical significance of the parameter estimates likely to be obtained from the 
experiment. Given that the asymptotic t-statistic is calculated as the ratio of the 
parameter estimate to the asymptotic standard error, it is possible to determine what 
sample size will be required in order to demonstrate statistical significance of the 
parameter estimates. Table 4 demonstrates the predicted asymptotic t-statistics for each 
of the designs at various sample sizes. In calculating the asymptotic t-statistics for the 
three designs, we have assumed that the parameter priors used in the construction of the 
designs are correct. From Table 4, the best Dp-efficient (balanced) orthogonal design 
would require a sample size of 123 in order to determine that all attributes are 
statistically significant (at the 95 percent confidence level), whilst the corresponding 
worst Dp-efficient (balanced) orthogonal design would require a sample size of 223 
respondents (ignoring the constant term which is often dispensed with in SC 
experiments; see Hensher et al., 2005). The non-orthogonal Dp-efficient design would 
require a minimum sample size of 121 respondents.  
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Table 4:  Sample size influences upon attribute level significance (assuming correct priors) 
 

 Design 1: Best Dp-error Orthogonal Design 
M G1 G2 ß13 ß14 ß20 ß23 ß24 
1 0.98 0.91 0.18 1.20 -0.19 0.58 1.31 
2 1.39 1.28 0.25 1.70 -0.27 0.83 1.85 
3 1.70 1.57 0.31 2.08 -0.33 1.01 2.27 
4 1.96 1.81 0.35 2.40 -0.38 1.17 2.62 
5 2.20 2.02 0.40 2.68 -0.43 1.31 2.93 

123 10.89 10.04 1.96 13.30 -2.13 6.49 14.54 
 Design 2: Worst Dp-error Orthogonal Design 

1 0.94 0.64 0.13 1.04 -0.12 0.57 1.32 
2 1.32 0.90 0.19 1.47 -0.17 0.81 1.86 
3 1.62 1.11 0.23 1.80 -0.20 0.99 2.28 
4 1.87 1.28 0.26 2.08 -0.24 1.15 2.63 
5 2.09 1.43 0.29 2.32 -0.26 1.28 2.94 

223 13.98 9.53 1.96 15.52 -1.76 8.57 19.64 
 Design 3: Best Dp-error (Non-Orthogonal Design) 

1 1.08 0.88 0.18 1.01 -0.19 0.64 1.00 
2 1.53 1.24 0.25 1.43 -0.27 0.90 1.41 
3 1.87 1.52 0.31 1.75 -0.33 1.11 1.73 
4 2.16 1.76 0.36 2.02 -0.38 1.28 2.00 
5 2.42 1.96 0.40 2.26 -0.42 1.43 2.23 

121 11.89 9.65 1.96 11.13 -2.08 7.02 10.97 
 
One benefit of the methodology is that it is easy to calculate the sample sizes assuming 
incorrect specification of the parameter priors. Table 5 shows the sample size 
requirements for the three designs assuming a different set of parameter priors (given in 
Table 5) than those used in generating the designs. Ignoring the constant, a 
misspecification of the priors in this case would result in a requirement of a smaller 
sample size than required if the priors were correctly specified. For the new priors 
assumed, Design 1 would require only 69 respondents whilst Designs 2 and 3 would 
require 125 and 68 respondents respectively. 
 
Note that, keeping the design constant, a misspecification of a parameter prior for any 
attribute will have an impact upon the asymptotic standard errors for all parameter 
estimates within the model. This is because for any given design, a change in any 
parameter value for an attribute will influence the choice probabilities within all choice 
sets n where that attribute appears. Changes in the choice probabilities will in turn feed 
through to the asymptotic (co)variance matrix and hence influence the resulting 
expected standard errors for all parameters.   
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Table 5:  Sample size influences upon attribute level significance (assuming incorrect priors) 
 

 Design 1: Best Dp-error Orthogonal Design 
 0.5 0.4 0.4 0.7 -1.2 0.5 0.8 

M G1 G2 ß13 ß14 ß20 ß23 ß24 
1 1.23 1.21 0.24 1.40 -0.19 0.73 1.50 
2 1.74 1.71 0.33 1.98 -0.27 1.03 2.12 
3 2.13 2.09 0.41 2.42 -0.33 1.27 2.60 
4 2.45 2.41 0.47 2.80 -0.38 1.46 3.00 
5 2.74 2.70 0.53 3.13 -0.43 1.64 3.35 

69 10.20 10.03 1.96 11.62 -1.60 6.07 12.45 
 Design 2: Worst Dp-error Orthogonal Design 

1 1.17 0.85 0.17 1.21 -0.12 0.72 1.50 
2 1.66 1.20 0.25 1.71 -0.17 1.01 2.13 
3 2.03 1.47 0.30 2.10 -0.20 1.24 2.60 
4 2.34 1.70 0.35 2.43 -0.24 1.43 3.01 
5 2.62 1.90 0.39 2.71 -0.26 1.60 3.36 

125 13.08 9.51 1.96 13.56 -1.32 8.02 16.81 
 Design 3: Best Dp-error (Non-Orthogonal Design) 

1 1.35 1.17 0.24 1.18 -0.19 0.80 1.14 
2 1.91 1.65 0.34 1.67 -0.27 1.13 1.61 
3 2.34 2.03 0.41 2.04 -0.33 1.38 1.97 
4 2.70 2.34 0.48 2.36 -0.38 1.60 2.28 
5 3.02 2.62 0.53 2.64 -0.42 1.78 2.55 

68 11.14 9.65 1.96 9.73 -1.56 6.58 9.40 

 

6. Conclusion and Discussion  
 
In this paper, we have extended the proof offered by McFadden (1974) for the generic 
(or unlabeled) MNL model and the alternative-specific case specified by Bliemer and 
Rose (2005) to the more general case allowing of both alternative-specific and generic 
parameter estimates. In doing so, we have been able to demonstrate the appropriate 
asymptotic (co)variance matrix for the most general model specification, thus allowing 
for the first time, the correct generation of efficient designs for any form of SC 
experiment. Beyond the ability to generate efficient designs for alternative-specific SC 
experiments, a number of additional aspects contained within this paper are worth 
emphasizing. 
 
First, we demonstrate that for an experiment of given dimensions, it may be possible to 
generate a number of different orthogonal designs, each with differing levels of 
efficiency as measured after model estimation (assuming that the estimated parameters 
are non-zero). Within this paper, we have demonstrated that the Dz-efficiency measure 
often employed within the literature on the generation of efficient generic (or unlabeled) 
SC experiments, provides a meaningless basis of comparison amongst orthogonal 
designs. 
 
Second, for any given sample size, one may examine the likely standard errors and 
asymptotic t-statistics of a design to be estimated using the MNL model directly from 
the asymptotic (co)variance matrix. This means that for this class of models, one does 
not have to rely on Monte Carlo simulations to determine the expected standard errors 
for various sample sizes for different designs as has been done by some researchers in 
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the past (e.g., Sándor and Wedel 2001). The ability to use the asymptotic (co)variance 
matrix to estimate the standard errors directly extends to being able to examine likely 
biases in the expected t-statistics given misspecification of the parameter priors. This 
can be done relatively quickly, allowing for an assessment of the implications of 
misspecification of the priors even before an experiment has been implemented.   
 
The ability to derive efficient alternative specific designs introduces a number of 
possible interesting research directions. First, the limitation of being only able to 
estimate efficient designs for generic SC experiments has meant that the literature has 
not addressed the issue of efficient designs assuming differences in scale across 
alternatives. An interesting research direction therefore would be to extend the 
designing of SC experiments beyond the MNL model to models that allow for scale 
differences such as the nested logit model (Sándor and Wedel (2002) have examined 
efficient design generation for the mixed logit model). Second, the designs generated 
here do not assume the presence of a no-choice base alternative. Although only a simple 
extension, the effect of having a no-choice alternative needs to be examined for 
alternative-specific designs, as has occurred with the unlabeled SC case (see Carlsson 
and Martinsson 2002).  
 
We would also promote research into wider aspects of constructing efficient 
experimental designs. Of particular interest is the construction of efficient designs for 
experiments in which the attribute levels are pivoted from the revealed levels obtained 
from respondents prior to the commencement of a SC experiment (see for example, 
Greene et al. 2005). Of issue for such designs is that not only are the prior parameter 
estimates needed to generate efficient designs not known with any certainty, but so are 
the attribute levels for each respondent. Urgent research examining the use of internet or 
CAPI technology with in-built design optimization routines is required for such 
experiments. 
 
A further research issue involves the investigation of what constitutes the best source 
for determining the priors used in generating optimal designs. Should the analyst 
conduct a pilot study, and if so, what represents a sufficient sample size to obtain the 
priors? Alternatively, should the analyst rely upon managers and other practitioners 
beliefs and how best should such beliefs be captured?  
 
Finally, we propose further research be conducted into various possible measures for 
defining the efficiency of designs. Although for this paper, we have relied upon D-error 
as our measure of, numerous other possible measures exist. One such possible measure 
not yet considered by the literature is that of using some form of weighting procedure to 
indicate which elements within the asymptotic (co)variance matrix should receive 
priority in terms of minimisation. Such a measure would be of interest, if for example, 
one were mainly interested in estimating the willingness to pay for a specific attribute. 
In such a case, it would be conceivable that the researcher could believe that it is more 
important to produce lower standard errors for both this and the cost attribute within the 
design whilst other attributes are of less importance to the study. In such a case, the 
reliance on a global measure to determine the efficiency of the overall asymptotic 
(co)variance matrix will be inadequate. 
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Appendix A 
 
1st derivative of the loglikelihood function (Jacobian/score vector) 
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Derivative with respect to alternative-specific parameter 
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2nd derivative of the loglikelihood function (Hessian/information matrix) 
 
Derivatives with respect to generic parameter 
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Derivatives with respect to alternative-specific parameter 
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Appendix B 
 
Theorem 1 – All balanced orthogonal designs using the same attribute levels have the 
same Dz-error. 
 
Proof: Consider the Fisher information matrix of designs using generic and alternative-
specific attributes. For the Dz-error, the Fisher information matrix assumes that all 
parameters are equal to zero. Since 1/jsP J=  for all alternatives j and all choice 
situations s, the Fisher information matrix will become (after rearranging summations): 
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Since orthogonality holds, the levels of one attribute for all choice situations are 
uncorrelated with the levels of any other attribute. Using the definition of correlation it 
holds that 
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Therefore, we can write the cells of Fisher information matrix as follows: 
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Since we also assume balancedness, it holds that 
1

S
jkss

x
=∑  is constant for each 

alternative j and attribute k, independent of the order of the attribute levels over the 
choice situations. Therefore, the cells of the Fisher information matrix are the same for 
each orthogonal design, hence also the (co)variance matrix and the Dz-error. 
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