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1. Introduction 
 
The mixed logit model has evolved to be a major innovation and a fundamentally useful 
tool in the analysis of discrete choice (see McFadden and Train, 2000; and Train, 2003). 
The hierarchical formulation and built in randomness of the model parameters allow the 
researcher to incorporate both observed and unobserved heterogeneity of individuals in 
the model. An increasing number of applications (e.g., Train, 2003; Hensher and 
Greene, 2003) have built this heterogeneity into the means of the distributions of the 
random parameters, and all but a very few studies, by Bhat1, have treated the 
conditional variances of these distributions as constants.  Our approach is more general 
than previous studies in that we allow the variance of any distribution to be a function of 
individual-specific characteristics that do not have to be related to the mean of the 
distribution.2 
 
In this paper, we explore the further impact of accounting for variance heterogeneity in 
the distributions of individual specific taste weights.3  We find in our application that 
accounting for individual specific variances of the distributions of random parameters 
brings a significant change in the estimated results. We also introduce the triangular 
distribution, initially promoted by Train (2001, 2003, pp 314-5), as an alternative to the 
normal and lognormal in mixed logit models.  
 
The interest in exploring the value of promoting more ‘complex’ discrete choice models 
is strictly a matter of behavioural relevance. While it is useful to demonstrate the 
econometric feasibility of a method, the gains in behavioural relevance must be 
paramount. In the context of mixed logit models, the justification for the proposed 
extension is the search for a greater understanding of sources of preference 
heterogeneity within a sampled population. For a given attribute associated with an 
alternative, the mixed logit model obtains a distribution of marginal (dis)utilities as a 
description of the nature of heterogeneity of preferences for that attribute within the 
sample. This distribution is analytical and can take any specified form such as normal, 
lognormal, triangular, or Rayleigh. Most distributions are unrestricted over the positive 
and negative domain but can be constrained by additional assumptions. As an 
unconditional distribution, we have no ex post information beyond random allocation as 
to the precise location in the distribution, of each sampled individual’s marginal 
(dis)utility. Given the information in the moments of the distribution (primarily the 
mean and standard deviation), further behavioural insights might be obtained by a 
knowledge of the relationship between the moments and individual-specific 
characteristics (e.g., personal income). Although many studies have established the 
extent to which the mean of the distribution of a random parameter might vary across 
market segments4 (i.e., socioeconomic-level or range specific means), it is possible that 
we could segment along the full distribution without regard for, or in addition to, the 
mean. Intuitively, we might imagine a number of segments (even latent classes), defined 
                                                           
1 We are aware of three studies by Bhat (1998, 2000) and Bhat and Zhao (2002).  
2 Bhat imposed a lognormal distribution on the random parameters, with the underlying normal having a 
constant variance and a mean that depends on demographics. Since the variance of a lognormal depends 
on the mean and variance of the underlying normal, the variance of the lognormal is automatically a 
function of demographics in these applications. 
3 Intuitively, this is analogous to accounting for heteroscedasticity across individuals in a random or fixed 
effects panel data style regression model.  The computations are rather more complex in the discrete 
choice context, however. 
4 We acknowledge a referee for reminding us of this salient point. 
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by personal income levels, but within each income class we have further deep 
identification of preference heterogeneity. Alternatively, a single segment for the entire 
sample may be the relevant specification (i.e., no decomposition around the mean), 
where we identify systematic variation in the distribution of otherwise unobserved 
preference heterogeneity due to personal income levels. This is the behavioural 
justification of the proposed extension which can importantly accommodate 
conditioning of the variance of attribute parameters on individual-specific effects. These 
individual-specific effects can also condition the mean, but they should not be required 
to do so. 
 
The paper is organised as follows. We first present the extension of the mixed logit 
model to allow for variance heterogeneity.  We then describe the application to the 
choice of mode for commuting between existing and prospective alternatives.  We set 
out the details of the design of a stated choice experiment, and present the results for the 
preferred models. The models are estimated on the sample data and so all parameters 
reflect the behavioural trade-offs made by the sampled individuals. A set of conclusions 
highlight the behavioural value of accounting for variance heterogeneity in the mixed 
logit model as well as the challenges that remain in delivering increased behavioural 
relevance while exposing the choice model to greater risk of an unacceptable range and 
sign domain of willingness to pay outputs.  
 
 

2.  A Heteroscedastic Mixed Logit Model 
 
We assume that a sampled individual q (q=1,…,Q) faces a choice among J alternatives 
in each of T choice situations.5 Individual q is assumed to consider the full set of offered 
alternatives in choice situation t and to choose the alternative with the highest utility. 
The utility associated with each alternative j as evaluated by individual q in choice 
situation t, is represented in a discrete choice model by a utility expression of the 
general form in (1):  
 

jtq q jtq jtqU ′= + εxβ , (1) 
 
where xjtq is the full vector of explanatory variables, including attributes of the 
alternatives, socioeconomic characteristics of the individual and descriptors of the 
decision context and choice task itself in choice situation t. The complexity of the 
choice task in stated choice experiments, as defined by number of choice situations, the 
number of alternatives, attribute ranges, data collection methods, etc., could also be 
included in the model to condition certain specific parameters. The components βq and 
εjtq are not observed by the analyst and are treated as stochastic influences.  Note that βq 
is assumed to vary across individuals. 
 
Individual heterogeneity is introduced into the utility function through βq.  We allow the 
‘individual-specific’6 parameter vector to vary across individuals both randomly and 

                                                           
5 In our implementation of the model, the number of alternatives could be different for different 
individuals, and could vary across choice situations as well.  We assume the choice set size is fixed across 
both dimensions purely for expositional convenience. 
6 Strictly, as explained after equation (11), these individual-specific parameters are draws from a 
conditional distribution of the sub-sample of observations that have the same choice alternative. 
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systematically with observable variables, zq.  If the random parameters are assumed to 
be uncorrelated, then the model may be written as  

 
βq  =  β + ∆zq + Σ1/2vq   
 (2) 
 =  β + ∆zq + ηq 
 
or  
 
βqk  = βk + δk′zq + ηqk, 
 
where βqk is the random coefficient for the kth attribute faced by individual q.  The term β + 
∆zq accommodates heterogeneity in the mean of the distribution of the random 
parameters.  The random vector ηq endows the random parameter with its stochastic 
properties. For convenience in isolating the model components, we define vq to be a 
primitive vector of uncorrelated random variables with known variances and denote the 
matrix of known variances of the random draws as W. The actual scale factors which 
provide the unknown standard deviations of the random parameters are then arrayed on 
the diagonal of the diagonal matrix Σ1/2. Thus, for example, if (conditioned on zq) βqk is 
normally distributed, then vqk would be drawn from a standard normal distribution, Wkk 
would equal 1.0 as the known variance of vqk would be 1.0, and σk would be the unknown 
scale factor.  If, on the other hand, βqk were assumed to be uniformly distributed, then Wkk 
would equal 1/12, and, once again, σk would be the unknown scale factor.7  In order to 
allow the random parameters to be correlated, we now introduce the lower triangular 
matrix Γ, and extend the model to: 
 
βq  =  β + ∆zq + ΓΣ1/2vq. 
 
Since the unknown scaling of the random components is already provided by the terms σk, 
the diagonal elements of Γ are normalized at one.  The uncorrelated parameters model 
assumed in (2) then arises by assuming Γ = I. The conditional variance of βq is now 
 
Var[βq | zq]  =  ΓΣ1/2WΣ1/2Γ ′. 
 
For the individual variance terms, denoting the kth row of Γ as γk, we have 
 
Var[βqk | zq]  =  γk Σ1/2WΣ1/2 γk′  =  2 2

1 ( )k
i ki i iw=Σ γ σ  where γkk = 1 (3) 

 
and 
 
Cov[βk,βm | zq]  =  γk Σ1/2WΣ1/2 γm′  = 2

1 ( )k
i ki mi i iw=Σ γ γ σ  where γki = 0 if i > k. 

 
where γk is the kth row of Γ.   
 

                                                           
7 In each case, we impose a normalization on Wkk by assuming that the underlying variable vk is 
standardized, in the normal case, to mean zero and variance one and in the uniform case, to the range 
[0,1] which gives a variance of 1/12. 
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The distribution of βqk over individuals depends in general on underlying structural 
parameters (βk,δk,σk,γk), the observed data, zq and the unobserved vector of K random 
components in the set of utility functions ηq =  ΓΣ1/2vq.  The last of these represents a 
stochastic element that enters the utility functions in addition to the J random elements in 
εtq. Since βq may contain alternative specific constants, covariation in ηqk induced by Γ ≠ I 
will induce correlation of the random elements in the model across choices.  Note that βq, 
its component structural parameters Ω = (β,∆,Γ,Σ,W) and the characteristics of the person, 
zq are choice situation invariant.  They do not vary across choice situations or across 
choices.   
 
Previous applications of the random parameter logit (RPL) model, and the specification 
above, have assumed homoscedasticity in the parameter distributions. We will introduce 
variance heterogeneity into the model as follows:  Let Σq

1/2 = Diag[σq1,σq2,…,σqK] where 
 
σqk  =  σk × exp(θk′hq) (4) 
 
and hq is a vector of M variables such as demographic characteristics that enters the 
variances (and possibly the means as well). This adds a K×M matrix of parameters, Θ, 
to the model whose kth row is the elements of θk.  With this explicit scaling, the full 
model for the variances in our model is now 
 
Var[βq|Ω, zq,hq] = Φq = ΓΣq

1/2
 WΣq

1/2
 Γ′. 

 
The conditional variance of any specific parameter is now 
 
Var[βqk|Ω, zq,hq] =  2 2

1 [ exp( )]k
i ki i i i qw= ′Σ γ σ hθ  (5) 

 
where wk is the known scale factor Wkk

1/2 and the covariance of any two parameters is 
 
Cov[βqk,βml] = 2

1 [ exp( )]k
i ki mi i i i qw= ′Σ γ γ σ hθ . (6) 

 
The mixed logit class of models assumes a general distribution for βqk and an IID extreme 
value type 1 distribution for εjtq. That is, βqk? can take on different distributional forms such 
as normal, lognormal, uniform or triangular. For a given value of βq, the conditional (on zq, 
hq and vq) probability for choice j in choice situation t is multinomial logit, since the 
remaining random term, εtjq, is IID extreme value:  
 
Pjtq(choice j  |Ω,Xtq,zq,hq,vq) = exp(βq′xjtq) / Σjexp(βq′xjtq) (7) 
 
where the full set of attributes and characteristics is gathered in Xtq = [x1tq,x2tq,…,xJtq].  For 
convenience, denote this as Pjtq(βq |Bqt,vq).  Denote the marginal joint density of 
[βq1,?βq2,...,?βqK] by f(βq |Ω,? zq,hq) where the elements of Ω are the underlying parameters of 
the distribution of βq, (β,∆,Γ,Σ,Θ,W) and (zq,hq) are observed data specific to the 
individual that enter the determination of βq, such as socio-demographic characteristics. 
The density, itself, is induced by the transformation of the primitive random vector, vq in 
βq =  β + ∆zq + ΓΣq

1/2vq. 
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We label as the unconditional choice probability the expected value of the logit probability 
over all the possible values of βq, that is, integrated over these values, weighted by the 
density of βq (it is still conditioned on the observable demographic information (zq,hq), but 
not on the unobservable vq). From (2), we see that this probability density is induced by the 
random component in the model for βq, vq (Hensher and Greene, 2003). Thus, the 
unconditional choice probability is 
 
Pjtq(choice j  |Ω,Xtq,zq,hq)  =  ( | , ) ( | , , )

q
jtq q tq q q q q q q qP f d∫ O X z h v O z h

β
β , , , β β  (8) 

 =  ( | , ) ( | )
q

jtq q tq q q q q qP f d∫v
X z h v v W vβ Ω , , ,  

 
where, once again, βq = β + ∆zq + ΓΣq

1/2vq (a Jacobian term would appear in the 
expression. The form given is intended to be generic).  Thus, the unconditional 
probability that individual q will choose alternative j given the specific characteristics of 
their choice set and the underlying model parameters is equal to the expected value of the 
conditional probability as it ranges over the possible values of βq.  The random variation in 
βq is induced by the random vector vq; hence, that is the variable of integration in (8).  The 
log likelihood function for estimation of the structural parameters is built up from these 
unconditional probabilities, aggregated for individual q over the T choice situations and the 
choices actually made: 
 
logL  =  

1
log

Q

q=∑ 1
( | , ) ( | )

q

T

jtq q tq q q q q qt
P f d

=∏∫v
X z h v v W vβ Ω , , , . (9) 

 
The log likelihood function in (9) cannot be evaluated because the integrals will 

not have a closed form solution.  But, it can be satisfactorily approximated by simulation.  
The simulated log likelihood function is given in equation (10). 
 

logLS  =  
1
log

Q

q=∑ 1 1

1
( | , )

TR

jtq rq tq q q rqr t
P

R = =∑ ∏ X z h vβ Ω , , , . (10) 

 
where R is the number of draws in the simulation, 
 
βrq  =  β + ∆zq + ΓΣq

1/2vrq   (11) 
 
and vrq is the rth primitive random draw from the marginal population that generates vq.  
Maximum simulated likelihood estimates are obtained by maximizing logLS with respect 
to all the unknown parameters in Ω.  Details on estimation of the parameters of the mixed 
logit model by maximum simulated likelihood may be found in Train (2003).  
 
One can construct estimates of ‘individual-specific preferences’ by deriving the 
conditional distribution based (within-sample) on known choices (i.e., prior 
knowledge), as originally shown by Revelt and Train (2000) (see also Train, 2003 
chapter 11). These conditional parameter estimates are strictly ‘same-choice-specific’ 
parameters, or the mean of the parameters of the subpopulation of individuals who, 
when faced with the same choice situation would have made the same choices. This is 
an important distinction8 since we are not able to establish for each individual, their 

                                                           
8 Discussion with Ken Train is appreciated.  
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unique set of estimates, but rather we are able to identify a mean (and standard 
deviation) estimate for the sub-population who make the same choice. For convenience, 
let Yq denote the observed information on choices by individual q, and let Xq denote all 
elements of xjtq for all j and t. Using Bayes Rule, we find the conditional density for the 
random parameters,  
 

f(βq|Ω, Yq,Xq,zq,hq) = 
( | , , , ) ( )

( | , , )
q q q q q q q q

q q q q

f P

f

Y X z h | z h

Y X z h

β Ω , β Ω, ,

Ω ,
. (12) 

 
The left hand side gives the conditional density of the random parameter vector given 
the underlying parameters and all of the data on individual q.  In the numerator of the 
right hand side, the first term gives the choice probability in the conditional likelihood – 
this is in (8).  The second term gives the marginal probability density for the random βq 
implied by (2) with the assumed distribution of vq.  The denominator is the 
unconditional choice probability for the individual – this is given by (8).  Note that the 
denominator in (12) is the integral of the numerator. This result can be used to estimate 
the ‘common-choice-specific’ parameters, utilities, and willingness to pay values or 
choice probabilities as a function of the underlying parameters of the distribution of the 
random parameters.  Estimation of the individual specific value of βq is done by 
computing an estimate of the mean of this conditional distribution.  Note that this 
conditional mean is a direct analog to its counterpart in the Bayesian framework, the 
mean of the posterior distribution, or the posterior mean.  More generally, for a 
particular function of βq, g(βq), such as βq itself, the conditional mean function is 
 

E[g(βq) | Ω, Yq,Xq,zq,hq]  = 
( ) ( | , , , , ) ( )

( | , , )q

q q q q q q q q q
q

q q q q

g f P
d

f∫
Y X z h | z h

Y X z hβ

β β Ω , β Ω, ,
β

Ω ,
 (13) 

 
The various integrals mentioned above generally cannot be calculated exactly because the 
integrals will not have a closed form solution. But, like the likelihood function, they can be 
accurately approximated by simulation. For given values of the parameters, Ω, and the 
observed data, (Yq,Xq,zq,hq) a value of βq is drawn from its distribution based on (2). For 
example, using this draw, the logit formula (13) for Ljtq(βq) is calculated. This process is 
repeated for many draws, and the mean of the resulting Ljtq(βq)’s is taken as the 
approximate choice probability  giving the simulated probability,   
 

ˆ( | , , )q q qP Y X z Ω   =   
1

1
( | )

R

jq qr q q q qr
r

L
R =

∑ X z hβ , , ,Ω,η  (14) 

 
R is the number of replications (i.e., draws of βqr), βqr is the rth draw, and the right hand 
side is the simulated probability that an individual chooses alternative j9.  Then, for 
example, the simulation estimator of the conditional mean for βq is 
 

                                                           
9 By construction, this is a consistent estimator of Pj for any R; its variance decreases as R increases. It is 
strictly positive for any R, so that ln(SPj) is always defined in a log-likelihood function. It is smooth (i.e., 
twice differentiable) in parameters and variables, which helps in the numerical search for the maximum of the 
likelihood function. The simulated probabilities sum to one over alternatives. Train (1998) provides further 
commentary on this. 
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 , ,1

,1

(1/ ) ( | )ˆ [ |  ] .
(1/ ) ( | )

R

q r q r qr
S q R

q r qr

R L data
E Individual q

R L data
=

=

β β
β =

β
∑
∑

 (15) 

 
 

3.  Empirical Application  
 
In 2003, the Institute of Transport Studies (ITS) (University of Sydney), on behalf of the 
New South Wales State government, undertook a patronage demand study as part of an 
evaluation of possible investment options in public transport infrastructure in the north-
west sector of metropolitan Sydney10.  The principle aim of the study was to establish 
the preferences of residents within the study area for private and public transport modes 
for commuting and non-commuting trip purposes.  Once known, the study called for the 
preferences to be used to forecast patronage levels for currently non-existing transport 
modes, specifically possible new heavy rail, light rail or busway modes. Independent of 
the ‘new’ mode type, the proposed infrastructure is expected to be built along the same 
corridor (Figure 1). 
 
To capture information on the preferences of residents, a stated choice (SC) experiment 
was generated and administered using computer aided program interview (CAPI) 
technology.  Sampled residents were invited to review a number of alternative main and 
access modes (both consisting of public and private transport options) in terms of levels 
of service and costs within the context of a recent trip and to choose the main mode and 
access mode that they would use if faced with the same trip circumstance in the future.  
Each sampled respondent completed 10 choice tasks under alternative scenarios of 
attribute levels, choosing the preferred main and access modes in each instance.   
 
The experiment was complicated by the fact that alternatives available to any individual 
respondent undertaking a hypothetical trip depended not only on the alternatives the 
respondent had available at the time of the ‘reference’ trip, but also on the destination of 
the trip.  If the trip undertaken was intra-regional, then the existing busway (M2) and 
heavy rail modes could not be considered viable alternatives as neither mode travels 
within the bounds of the study area.  If on the other hand, the reference trip was inter-
regional (e.g., to the CBD), then respondents could feasibly travel to the nearest busway 
or heavy rail train station (outside of the origin region) and continue their trip using 
these modes.  Furthermore, not all respondents had access to a private vehicle for the 
reference trip, either due to a lack of ownership or non-availability at the time when the 
trip was made.  Given that the objective of the study was to derive an estimate of 
patronage demand, the lack of availability of privately-owned vehicles (either through 
random circumstance or non ownership) should be accounted for in the SC experiment.  
 

                                                           
10 The north-west sector is approximately 25 kilometres from the Sydney central business district (CBD). 
It is the fastest growing sector of Sydney in terms of residential population and traffic build up. It is also 
one of the wealthiest areas with high car ownership and usage and a very poor public transport service 
with the exception of a busway system along the M2 tollroad into the CBD of Sydney. 
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Figure 1:  The North-West Sector and Proposed new rail link 
 
The master experimental design for the mode SC study required a total of 47 attributes 
(46 in four levels and one in six levels for the blocks) and had 60 runs; that is, there are 
six blocks of ten choice sets each. The design was constructed using a procedure that 
simultaneously optimised the minimisation of the D-error of the design as well as the 
correlations. The final design had correlations no greater than ± 0.06.  The design 
allowed for the estimation of all main mode and access mode alternative specific main 
effects. Within each block, the order of the choice sets has been randomised to control 
for order effect biases. The experiment consisted of different task configurations 
designed to reflect the alternatives realistically available to a respondent, given the 
reference trip circumstance reported by the respondent earlier in the CAPI interview. 
The configurations consisted of: (i) with/without car, (ii) inter/intra regional trips, (iii) 
new light rail versus new heavy rail, new light rail versus new busway and new heavy 
rail versus new busway.  These configurations were included to provide more realism in 
the scenarios shown to individual respondents. To maintain efficiency and minimise 
correlations within the data set, a maximum number of designs have to be completed 
within each configuration.  Using the CAPI program, if the first respondent had a car 
available for an intra-regional trip with new light rail and heavy rail alternatives present, 
she was assigned to block one for that configuration.  If the second respondent is in the 
exact same configuration, she was assigned to the second block; otherwise, she was 
assigned to block one of the appropriate design configuration.  Once a configuration has 
all blocks completed, the process started at block one again.  
 
The trip attributes associated with each mode are summarised in Table 1.  These were 
identified from extensive reviews of the literature and through input from a technical 
advisory committee chaired by the NSW Ministry of Transport.  
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Table 1:  Trip Attributes in the Stated Choice Design 
 

For existing public transport modes For new public transport modes For the existing car mode 
Fare (one-way) Fare (one-way) Running cost 

In-vehicle travel time In-vehicle travel time In-vehicle travel time 
Waiting time Waiting time Toll cost (one-way) 

Access Mode:   Walk time Transfer waiting time Daily parking cost 
Car time Access Mode:   Walk time Egress time 
Bus time Car time  
Bus fare Bus time  

Egress time Access Mode Fare (one-way)  
 Bus fare  
 Egress time  

 
 
For existing modes, the attribute levels where pivoted off the attribute levels captured 
from respondents for a reference trip.  Respondents were asked to complete information 
on the reference trip not only for the mode used for the reference trip, but also for the 
other modes they had available for that trip.  Whilst asking respondents to provide 
information for non-chosen alternatives may potentially provide inaccurate attribute 
levels, choices made by individuals are based on their perceptions of the attribute levels 
of the available alternatives and not the reality of the attribute levels of those same 
alternatives.  As such, asking respondents what they thought the levels were for the non-
chosen alternatives was preferable than imposing those levels on the experiment based 
on some heuristic, given knowledge of the attribute levels for the actual chosen 
alternative. 
 
The design attributes used in the SC experiment, each had four levels.  These were 
chosen as the following variations around the ‘reference’ trip base levels: -25 percent, 0 
percent, +25 percent, +50 percent.  The times and costs associated with currently non-
existent public transport modes were established from other sources.  The levels shown 
in Table 2 were provided by the Ministry of Transport as their best estimates of the most 
likely fare and service levels.  To establish the likely access location to the new modes, 
respondents were also asked to view the map (Figure 1 above) and choose a particular 
station11, which is used in the software to derive the access and linehaul travel times and 
fares.  Example SC screens are shown in Figures 2 (inter-regional trip with car) and 3 
(intra-regional trip with car). 

 
 

                                                           
11 The map was shown so that respondents will be able to locate the proposed stations in relation to their 
residential address.  This is essential so that we can gather the most reliable measure of access times to 
the stations/bus stops.  The attribute levels of the access times (the getting to main mode attributes) will 
be ‘switched or pivoted off’ these reported levels.  Without these, the attribute levels for the access modes 
cannot be determined and that part of the model cannot be estimated.  
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Table 2:  Base times and costs for new public transport modes  
 

 Dollars Busway Heavy rail Light Rail 
  $ (minutes) (minutes) (minutes) 
Mungerie Park 1.8 33 22 33 
Burns Road 1 27 18 27 
Norwest Business Park 1 22.5 15 22.5 
Hills Centre 1 18 12 18 
Castle Hill 0.2 13.5 9 13.5 
Franklin Road 0.2 7.5 5 7.5 
Beecroft         

 
A total of 223 commuters completed the survey.  The average survey response time was 
34 minutes, including preliminary screening questions. Respondents were not offered 
any incentive to participate.  
 

 
 

Figure 2:  Example inter-regional stated choice screen 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:  Example intra-regional stated choice screen 
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The empirical data on commuter trips is drawn from a larger study on all trip 
purposes.12 Table 3 shows the descriptive statistics for the work segment.  The mean age 
is 43.1 years with an average annual gross personal income of $64,100.  The proportion 
of males to females is equally split. Of the 223 commuters interviewed, 199 (or 89.42 
percent) had access to a car for the surveyed trip.   
 
 

Table 3:  Descriptive statistics for Work segment 
 

 N Mean Std. Deviation Minimum Maximum 
Age  223 43.1 12.5 24 70 
Hours worked per week 223 37.6 14.6 0 70 
Annual Personal Income ($000’s) 223 64.1 41.8 0 140 
Household size 223 3.78 2.30 1 8 
No. of children in household 223 1.05 1.09 0 4 
Gender (male =1) 223 50.4 - 0 1 

 
 

4. Results 
 
Table 4 presents the model results for the experiment.  Four models are summarised in 
the table.  The first model is a multinomial logit (MNL) model whilst the remaining 
three are mixed logit (ML) models.  Mixed logit models 1 and 2 do not allow for 
variance heterogeneity whilst ML model 3 does.  Within all three ML models, the cost, 
travel time and egress time parameters for both the car and public transport modes are 
specified as random parameters drawn using 500 Halton draws.  With the exception of 
the waiting and access time non-random parameters, the public transport parameters 
were specified as generic across the alternatives.  
 
All random parameter estimates for ML model 1 were drawn from constrained 
triangular distributions13 as were the random parameter estimates associated with the car 
alternative in ML models 2 and 3.  Hensher and Greene (2003) have shown that for the 
triangular distribution, when the mean parameter is constrained to equal its spread (i.e., 
βjk = βk + |βk| Tj, where Tj is a triangular distribution ranging between -1 and +1), the 
density of the distribution rises linearly to the mean from zero before declining to zero 
again at twice the mean. Therefore, the distribution lies between zero and some 
estimated value (i.e., the βjk).  As such, all parameter estimates are constrained to be of 
the same sign.  Empirically the distribution will be symmetrical about the mean which 
not only allows for ease of interpretation, but also avoids the problem of long tails often 
associated with drawing from a log-normal distribution as in Bhat (1998, 2000).   
 

 

                                                           
12 See Greene et al. (2005) or Hensher and Rose (2004) for details of results based on the non-commuter 
data.   
13 For example, the usual specification in terms of a normal distribution is to define βi = β + σvi where vi 
is the random variable. The constrained specification would be βi  = β +  βvi when the standard deviation 
equals the mean or βi  = β +  hβvi when h is the coefficient of variation taking any positive value.  We 
would generally expect h to lie in the 0-1 range since a standard deviation greater than the mean estimate 
typically results in behaviourally unacceptable parameter estimates. 
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Table 4:  Model Results 
 

  MNL 
ML (1) – constrained 

T 
ML (2) – 

unconstrained T 
ML (3)- 

unconstrained T 
Attribute Alternative Coeff. t-ratio Coeff. t-ratio Coeff. t-ratio Coeff. t-ratio 

Random parameter means 

Fare 
Main Mode  Public 

Transport -0.175 -9.20 -0.233 -10.66 -0.342 -9.20 -0.358 -10.20 

In-vehicle Travel Time 
Main Mode  Public 

Transport -0.053 -13.77 -0.065 -17.98 -0.073 -13.77 -0.075 -14.93 

Egress Time 
Main Mode  Public 

Transport -0.020 -3.93 -0.025 -3.87 -0.029 -3.93 -0.027 -3.84 
Cost (Running and Toll) Main Mode Car -0.109 -3.02 -0.168 -3.19 -0.218 -3.02 -0.204 -3.03 
In-vehicle Travel Time Main Mode Car -0.032 -5.22 -0.063 -5.50 -0.084 -5.22 -0.084 -5.72 
Egress Time Main Mode Car -0.054 -3.18 -0.081 -3.17 -0.105 -3.18 -0.106 -2.58 

Random parameter spread 

Fare 
Main Mode  Public 

Transport - - 0.233 10.66 0.763 6.84 0.653 5.67 

In-vehicle Travel Time 
Main Mode  Public 

Transport - - 0.065 17.98 0.088 6.09 0.074 5.64 

Egress Time 
Main Mode  Public 

Transport - - 0.025 3.87 0.029 3.93 0.027 3.84 
Cost (Running and Toll) Main Mode Car - - 0.168 3.19 0.218 3.02 0.204 3.03 
In-vehicle Travel Time Main Mode Car - - 0.063 5.50 0.084 5.22 0.084 5.72 
Egress Time Main Mode Car - - 0.081 3.17 0.105 3.18 0.106 2.58 

Non Random parameters 
Constant New Light rail 2.925 8.41 2.528 5.46 2.906 5.20 3.306 6.11 
Constant Heavy Rail Modes 2.266 6.80 1.791 3.95 2.088 3.82 2.514 4.76 
Constant New Busway 1.825 4.83 1.445 2.94 1.765 3.03 2.109 3.64 
Constant Bus 2.198 6.63 1.747 3.86 1.953 3.59 2.292 4.31 
Constant Busway 1.924 5.63 1.475 3.19 1.756 3.15 2.082 3.82 
Access and wait time All Rail Modes -0.060 -9.70 -0.067 -10.01 -0.076 -9.95 -0.079 -10.93 
Wait time Bus modes -0.101 -3.62 -0.111 -3.71 -0.124 -3.80 -0.115 -3.34 
Access time Bus modes -0.055 -5.72 -0.064 -6.06 -0.070 -6.00 -0.070 -5.92 
Access bus fare All Public Transport -0.075 -2.12 -0.081 -2.15 -0.099 -2.42 -0.109 -2.76 
Parking cost Car -0.017 -1.94 -0.031 -2.46 -0.041 -2.37 -0.038 -2.16 

Heteroscedasticity  in Random Parameters 
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Fare | Income 
Main Mode  Public 

Transport - - - - - - 0.910 2.95 

Fare | Household Size 
Main Mode  Public 

Transport - - - - - - 0.046 1.83 
In-vehicle Travel Time | Household 
Size 

Main Mode  Public 
Transport - - - - - - 0.050 2.18 

Egress Time | Household Size 
Main Mode  Public 

Transport - - - - - - 0.141 3.77 
Model Fits 

LL(0) -2769.127 -2769.127 -2769.127 -2769.127 
LL(B) -1929.411 -1912.880 -1899.230 -1888.288 

Chi-square 1679.432 1712.494 1739.794 1761.678 
Adj. pseudo R2 0.298 0.308 0.313 0.316 
Observations 1840 1840 1840 1840 
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In contrast to ML(1), in ML(2) and ML(3), the random parameter estimates associated 
with the generic fare, travel time and egress time random parameters for the public 
transport modes were drawn from an unconstrained triangular distribution. Although the 
unconstrained triangular distribution allows for parameter estimates either side of zero, 
the introduction of interaction terms (namely personal income and household size) 
designed to uncover variance heterogeneity14 can no longer guarantee that the parameter 
distribution will be limited to one side of zero15, despite constraints imposed on the 
underlying distribution.  To explain why, let the marginal utility associated with attribute k 
be given as 
 

[ ] ηθσββ ××+= )exp(ˆ
qkkkkk hv   (17) 

 
where kβ  is the mean of the random parameter distribution, vk is the random variable, 

kσ is the standard deviation or spread of the random parameter distribution, kθ  is the 
variance heterogeneity parameter uncovered through the interaction between hq and the 
random parameter distribution and η represents a draw from a known empirical 
distribution (e.g., normal, lognormal, triangular, uniform). 
 
A significant, non zero value for kθ  may allow for parameter estimates of either sign, 
given that the parameter estimate is no longer solely dependent on the draw (conditional or 
otherwise) from η , but also upon the additional information imparted through 

)exp( qkk hθσ × .  As such, even if all draws from η are constrained to one side of zero, the 

addition of )exp( qkk hθσ ×  within equation (17) allows for the possibility that some 
random parameter estimates will not be of the desired sign.  Although we do not show it 
here, this same issue exists when decomposing the mean of random parameter distributions 
to uncover sources of heterogeneity.  Whilst the literature has identified the need to employ 
distributions that dictate the sign of random parameters, research on the impact of 
accommodating heterogeneity around the mean of random parameter distributions and 
variance heterogeneity appears to be absent (see Hensher, 2004).  Given the above, there 
does not appear to be any guaranteed advantage in using a distribution that constrains the 
random parameter estimates to one side of zero when deeper parameter estimates are 
included within the model.   
 
For the models reported in Table 5, all parameter estimates associated with the design 
attributes are statistically significant and of the expected sign.  A direct test to determine 
whether ML model 1 statistically represents the data better than the MNL model is not 
possible given the use of constrained triangular distributions in the estimation of the 
random parameters in ML model 1.  This is because the spread parameters of the random 
parameter distributions are constrained to equal the means of the distributions, and hence 
no additional parameters are estimated in the ML model.  As such, any statistical test will 
have zero degrees of freedom.  The freely estimated spread parameters in ML model 2 and 

                                                           
14 In the current empirical study we found no statistically significant individual-specific characteristics 
influencing the mean of any random parameter. 
15 Hensher (2004) investigated the imposition of a fully exponential marginal (dis)utility function for any 
analytical distribution that captures all of the inputs as shown in equation (17). Estimation leading to 
convergence proved to be problematic. After extensive investigation with four data sets and five 
analytical distributions, we were only able to establish a final model for the Rayleigh distribution on one 
data set. The findings are however problematic for other reasons such as very low mean values.  
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the additional interaction terms introduced to uncover variance heterogeneity in ML model 
3, however, allow for tests of statistical significance between these models and the MNL 
model and ML model 1, as well as between each other.  The log-likelihood ratio tests are 
summarised in Table 5. ML models 2 and 3 are superior statistically to both the MNL 
model and ML model 1, whilst ML model 3 provides a better model fit to that provided 
from ML model 2.  

 
Table 5:  Log-likelihood ratio tests  

 

Test 
2χ  

Degrees 
of Freedom 

ML (2)-MNL 60.36 6 

ML (2)-ML (1) 27.3 6 

ML (3)-MNL 82.25 10 

ML (3)-ML (1) 49.18 10 

ML (3)-ML (2) 21.88 4 

 
Three of the four variance heterogeneity parameters are statistically significant at the 95 
percent level, whilst the remaining variance heterogeneity interaction parameter is 
significant at the 90 percent level, demonstrating the presence of variance heterogeneity 
within the model.  Comparison of the means of the random parameter estimates for the 
public transport fare, travel and egress time attributes across ML models 1 and 2 suggest 
that accounting for variance heterogeneity produces differences in the means of the 
parameter estimate distributions, however, some of these discrepancies may be attributable 
to differences in the distributions employed in the estimation of the two models (i.e., 
constrained versus unconstrained triangular distributions).  The differences in the marginal 
(dis)utilities for the public transport random parameters is demonstrated when the 
respective marginal utilities are written out in full, as below. 
 
ML Model 1 (where Tc is a draw from a constrained triangular distribution) 
 
MU(Fare) = {-0.233 + 0.233×Tc} 
 
MU(Travel Time) = {-0.065 + 0.065×Tc} 
 
MU(Egress Time) = {-0.025 + 0.025×Tc} 
 
ML Model 2 (where T is a draw from an unconstrained triangular distribution) 
 
MU(Fare) = {-0.342 + 0.763×T} 
 
MU(Travel Time) = {-0.073 + 0.088×T} 
 
MU(Egress Time) = {-0.029 + 0.029×T} 
 
ML Model 3 (where T is a draw from an unconstrained triangular distribution) 
 
MU(Fare) = {-0.358 + 0.653×[(exp(0.910×personal income) + exp(0.046×household 
size)]×T} 
 
MU(Travel Time) = {-0.075 + 0.074 ×(exp(0.050×household size)×T} 
 
MU(Egress Time) = {-0.027 + 0.027×(exp(0.141×household size)×T} 
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Behavioural values of travel time savings (VTTS) for the MNL model and ML models 
are summarised in Table 6.  The means of the VTTS distributions derived from all four 
models are intuitively plausible in absolute values16, however, the range of VTTS 
obtained from ML models 2 and 3 show both negative and large positive VTTS 
estimates. Removing the negative VTTS and positive VTTS which are greater than 
three times the standard deviation from the mean of the VTSS distributions produces 
much more sensible ranges for the VTTS values for both ML models 2 and 3, (as shown 
in Table 6). Table 7 summarises the number of cases removed from the distributions 
which represent less than 3% of the total number of cases (i.e., individuals × choice 
sets). Note that it was not necessary to remove any observations for the car alternatives 
given that the random parameter estimates were derived using constrained triangular 
distributions, and hence, all VTTS estimates for this alternative were of the correct sign. 
The findings from a policy perspective suggest that accounting for heterogeneity in the 
variance of the unobserved effects tends to significantly reduce the mean VTTS; with 
the reduction less significant when the negative VTTS and extreme positive values are 
removed. 
 
Although our main focus is on promoting the value of allowing for sources of 
observation-specific influence on the variance of the unobserved effects in choice 
models, as an additional way of linking unobserved heterogeneity to specific 
characteristics of sampled individuals, the supplementary contribution illustrates the 
challenge that remains in establishing behavioural distributions of willingness to pay 
outputs that are meaningful across the entire distribution. Sign changes and extreme 
values17 remain a challenge to estimation of random parameter logit models that pursue 
a deeper understanding of the dimensionality of heterogeneity that underlie these 
distributions. The VTTS evidence reinforces this. 

 

                                                           
16 It is noteworthy how similar the mean estimates are across MNL and ML2 where the comparison is 
straightforward (since there are no influences on unobserved variance). We often see papers only 
reporting the mean VTTS for mixed logit without acknowledging the range and we suspect sizeable 
negative and positive values at the extremes. 
17 The extreme values problem is especially noticeable for the lognormal distribution. 
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Table 6:  Behavioural Values of Travel Time Savings ($/person hour) (t-ratios) for full sample 
 

VTTS Alternative Mean Std. Dev. Range 
MNL 

In-vehicle Travel 
Time 

Main Mode  Public 
Transport $17.98 - - 

Egress Time 
Main Mode  Public 

Transport $7.00 - - 
Travel Time Main Mode Car $17.59 - - 
Egress Time Main Mode Car $29.90 - - 

A: Models Preserving the Total Data Set 
ML (1) Constrained Triangular 

Travel Time 
Main Mode  Public 

Transport $16.62 (291.29) $2.45 $5.92-28.79 

Egress Time 
Main Mode  Public 

Transport $6.44 (448.15) $0.62 $4.90-$12.27 
Travel Time Main Mode Car $22.57 (499.69) $1.94 $9.98-26.75 
Egress Time Main Mode Car $29.04 (1100.77) $1.13 $26.57-$38.21 

ML (2) Unconstrained Triangular 

Travel Time 
Main Mode  Public 

Transport $17.86 (3.87) $198.14 -$1776.91-$8127.61 

Egress Time 
Main Mode  Public 

Transport $7.74 (2.75) $120.96 -$1044.23-$5037.28 
Travel Time Main Mode Car $23.03 (504.77) $1.96 $10.61-$27.24 
Egress Time Main Mode Car $28.78 (1078.95) $1.14 $25.55-$38.99 

ML (3) Unconstrained Triangular 

Travel Time 
Main Mode  Public 

Transport $12.05 (3.84) $134.66 -$4116.19-$1816.29 

Egress Time 
Main Mode  Public 

Transport $3.25 (1.89) $73.60 -$2747.81-$622.36 
Travel Time Main Mode Car $24.61 (494.86) $2.13 $11.29-$29.32 
Egress Time Main Mode Car $31.12 (1166.07) $1.14 $27.24-$41.74 

B: Models that Eliminate Negative and Extreme Positive Values 
ML (2)1 Unconstrained Triangular 

Travel Time 
Main Mode  Public 

Transport $15.31 (58.09) $11.14 $2.39-$105.18 

Egress Time 
Main Mode  Public 

Transport $6.10 (55.16) $4.68 $2.35-$46.75 
Travel Time Main Mode Car $23.03 (504.77) $1.96 $10.61-$27.24 
Egress Time Main Mode Car $28.78 (1078.95) $1.14 $25.55-$38.99 

ML (3)1 Unconstrained Triangular 

Travel Time 
Main Mode  Public 

Transport $15.08 (57.15) $11.15 $0.95-$102.60 

Egress Time 
Main Mode  Public 

Transport $5.64 (48.10) $4.95 $1.26-$93.73 
Travel Time Main Mode Car $24.61 (494.86) $2.13 $11.29-$29.32 
Egress Time Main Mode Car $31.12 (1166.07) $1.14 $27.24-$41.74 

1 VTTS obtained after removing negative values and outliers 
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Table 7:  Summary of individual-specific VTTS removed 
 

 Number of negative VTTS estimates 
Model VTTS  Alternative # removed Total # (% of total) 

ML (2) 
In-vehicle Travel 

Time 
Main Mode  Public 

Transport 37 1840 2.01% 

ML (2) Egress Time 
Main Mode  Public 

Transport 37 1840 2.01% 

ML (3) 
In-vehicle Travel 

Time 
Main Mode  Public 

Transport 39 1840 2.12% 

ML (3) Egress Time 
Main Mode  Public 

Transport 39 1840 2.12% 
 Number of positive VTTS estimates 

Model VTTS Alternative # removed Total # (% of total) 

ML (2) 
In-vehicle Travel 

Time 
Main Mode  Public 

Transport 15 1840 0.82% 

ML (2) Egress Time 
Main Mode  Public 

Transport 13 
1840 

0.71% 

ML (3) 
In-vehicle Travel 

Time 
Main Mode  Public 

Transport 17 
1840 

0.92% 

ML (3) Egress Time 
Main Mode  Public 

Transport 15 
1840 

0.82% 
 

 

5. Conclusion 
The underlying behavioural assumptions used in the estimation of models of discrete 
choice are being increasingly relaxed, allowing not only for the possibility of 
identifying sources of heterogeneity associated with the mean of population parameters, 
but also the variances associated with random parameter distributions.  It is the issue of 
variance heterogeneity that is the focus of this paper. We introduce the Heteroscedastic 
Mixed Logit model which allows for a decomposition of variance heterogeneity in the 
random parameter estimates via an interaction with individual specific characteristics 
contained within the data.  We show that accounting for variance heterogeneity within 
the random parameter distributions, conditioned on person specific variables, produces 
better model fits as well as behaviourally sensible outputs in terms of the means of 
VTTS distributions. Unfortunately, the procedure outlined here is likely to produce 
unacceptable ranges in the behavioural outputs, including negative VTTS estimates.  
This remains a significant challenge within the literature; how best to decompose the 
various sources of heterogeneity that may exist within a data set whilst maintaining 
behaviourally sensible outputs in terms of sign and range. Hensher (2004) investigated 
this issue with limited empirical success. 
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