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1. Introduction 
 
Stated choice (SC) methods are used extensively in many application contexts to reveal 
the willingness to pay for specific attributes. Within the SC setting, sampled agents 
typically assess a number of alternatives defined by a set of attributes, each of which is 
offered as a level drawn from a pre-specified set of levels and range of levels, and they 
are asked to choose the most preferred alternative (including the choice to not choose any 
of the offered alternatives). This assessment is repeated a number of times up to the total 
number of choice sets being offered. The data is then subject to discrete choice modelling 
using tools such as multinomial logit (MNL), nested logit, mixed logit and latent class 
MNL.  
 
Stated Choice experiments typically are based on a pre-specified design plan in respect of 
the number of attributes (including their levels and range), the number of alternatives in a 
choice set and the number of choice sets to be assessed. While some studies allow for 
variations in some of these design dimensions, it is common for all sampled agents to be 
given the exact same number of attributes, alternatives and choice sets. While this is not, 
per se, a failing of a study, it does raise questions about the influence that the SC design 
has on the WTP. Without any variation in the dimensionality of the design, it is not 
possible to assess what influence the design per se has on WTP. Does the design impact 
in some systematic or non-systematic way on the parameters associated with each 
attribute? Is the impact stronger in respect of the mean or the variance associated with 
estimated parameters and the random component of each alternative’s utility expression? 
These important questions have been investigated in Hensher (2003, 2003a) with 
supporting evidence of design bias.  
 
In Hensher (2003, 2003a) it was assumed, however, that all attributes were deemed 
relevant in the assessment of the alternatives. To what extent might individuals adopt 
differing information processing (IP) strategies either to cope with the ‘complexity’ of an 
SC experiment and/or because specific attributes are not relevant in their choice? It is 
reasonable to propose that individuals do have a variety of IP styles, including the 
simplifying strategy of ignoring certain attributes (for whatever reason). Failure to account 
for such an IP strategy is tantamount to the imposition of the assumption that all designs 
are comprehensible, all design attributes are relevant (to some degree) and the design has 
accommodated the relevant amount of complexity necessary to make the choice 
experiment meaningful. It is important to recognise that simplistic designs may be 
‘complex’ in a perceptual sense, since an individual expects more information which they 
know is relevant in making such a choice in  a real market setting. The development of a 
series of designs embedded in the one choice experiment, supplemented with questions on 
how an individual processed the information, enables the researcher to explore sources of 
systematic influences on choice that if ignored, can lead to biases in key outputs such as 
willingness to pay.  
 
In this paper we investigate the implications of an individual bounding the information 
processing task by attribute elimination through ignoring them. In particular we 
investigate the influence on WTP of an individual stating that they ignored one or more 
attributes, for whatever reason. We like to think that the attributes were ignored because 
they are not behaviourally relevant, but we acknowledge that such attributes may be 
ignored for other reasons (e.g. task simplification).  
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Using a sample of car commuters in Sydney we estimate mixed logit models which 
assume that all attributes are candidate contributors, and models which assume that 
certain attributes are ignored (based on supplementary information provided by 
respondents). We derive individual-respondent parameters using a conditional choice 
specification of mixed logit and compare the value of travel time savings distribution 
under alternative information processing regimes.  
 
 

2. Information Processing Strategies 
 
Some researchers (eg Heiner 1983) suggest that an increase in choice set complexity will 
compromise choice consistency, preventing the variation in choice responses being 
explained by the underlying preference function. This is particularly problematic when 
the preference function imposes a condition of unlimited human capacity to process 
information of varying degrees of magnitude and quality in a costless and optimal 
(minimum effort) manner to arrive at a utility-maximising choice. Heiner argues that 
increasing choice complexity would widen the gap between an individual’s cognitive 
ability and the cognitive demands of the decision; which would lead to a restriction of the 
range of decisions considered. While this may satisfy a particular cognitive ability and 
produce greater predictability in the outcomes, they are not welfare maximising. What we 
see is an increase in unobserved influences on outcomes (or a relatively higher 
unexplained error or noise in the random utility function).  
 
In reality individuals adopt a range of bounded rationality conditions as a coping strategy 
to handle their perception of the complexity of the choice task. The cognitive processes 
used to evaluate trade-offs are complex with boundaries often placed on the task to assist 
the respondent. This can include ignoring subsets of attributes, aggregating attributes 
(where feasible; e.g. components of travel time), imposing thresholds on attribute levels 
(just noticeable difference), and conditioning one attribute on the level of other attributes. 
However analysts then proceed to estimate discrete choice models as if all attributes have 
influenced the outcome to some degree.  
 
In previous papers, Hensher (2003, 2003a) has investigated the complexity of the choice 
task, identified in terms of the number of attributes, the number of choice sets, the number 
of levels of each attribute and the range of each attribute. Task complexity can be 
represented by these ‘raw’ dimensions as well as by a range of representations broadly 
referred to as information load (a source of cognitive burden). The focus on choice 
complexity is only interesting when viewed more broadly under what we call the 
information processing strategy (IPS) of a decision maker. Individual’s use a range of 
IPS’s according to their capability to process which is linked to cognitive capability, 
commitment to effort etc. It is also related to the risk spectrum they wish to operate under, 
ranging from risk aversion to risk proneness. The greater the risk aversion the smaller the 
variance in the IPS. The variability in risk is often defined by constructs such as habit 
formation and variety seeking, both of which suggest mechanisms used to satisfy the 
individual’s commitment of effort and cognitive abilities. If we knew what role these 
constructs played in behavioural response then we could design an SC experiment 
tailored to a specific IPS1.  

                                                           
1 Such an SC experiment has some similarities to an adaptive choice experiment in which alternative 
behavioural choice response segments are identified as a way of recognising decision rules such as ‘hard-
core loyal’, ‘brand-type’, IIA-type and product or service form. This was considered by Kamakura et al 
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Our challenge becomes the inverse – to have a sufficiently wide ranging set of SC 
experiments that enable us to reveal the IPS of each decision maker. This setting enables 
us to investigate the use of attribute elimination (or ignoring an attribute) as a coping 
strategy or as a genuine process of assessing alternatives and making a choice, and its 
implications on the value of travel time savings distribution. 
 
 

3. Revealing Individual Parameters in Mixed Logit  
 
Mixed logit is increasingly used to estimate choice models. There are a number of useful 
summaries of the method (such as Train (2003) and Hensher and Greene (2003)) and so 
we will not detail it here. What we do want to do is to discuss the capability of mixed logit 
to derive observation-specific parameters for random parameters using conditional (on the 
within sample choice) distributions 
 
In the random utility model of the discrete choice family of models, we assume that a 
sampled individual (q = 1,…,Q) faces a choice among J alternatives in each of T choice 
situations2. The individual is assumed to consider the full set of offered alternatives in 
choice situation t and to choose the alternative with the highest utility. The (relative) 
utility associated with each alternative j as evaluated by each individual q in choice 
situation t is represented in a discrete choice model by a utility expression of the general 
form in (1).  
 
Ujtq = βq′xjtq + εjtq (1) 
 
where xjtq is a vector of explanatory variables that are observed by the analyst (from any 
source) and include attributes of the alternatives, socio-economic characteristics of the 
respondent and descriptors of the decision context and choice task itself (e.g., task 
complexity in stated choice experiments as defined by number of choice situations, 
number of alternatives, attribute ranges, data collection method etc) in choice situation t. 
The components βq and εjtq are not observed by the analyst and are treated as stochastic 
influences.  
 
Within a logit context we impose the condition that εjtq is independent and identically 
distributed (IID) extreme value type 1. The IID assumption is restrictive in that its does 
not allow for the error components of different alternatives to be correlated. We would 
want to be able to take this into account in some way.  One way to do this is to partition 
the stochastic component additively into two parts. One part is correlated over alternatives 
and heteroskedastic, and another part is IID over alternatives and individuals as shown in 
equation (2) (ignoring the t subscript for the present):  
 

Ujq = βq′xjq + (ηjq +εjq) (2) 
 

                                                                                                                                                                              
(1996) as a finite mixture of nested logits (brand and product), latent class (for hard-core) and multinomial 
logit (IIA) models.  
2 A single choice situation refers to a set of alternatives (or choice set) from which an individual chooses one 
alternative. They could also rank the alternatives but we focus on first preference choice. An individual who 
faces a choice situation on more than one occasion (e.g., in a longitudinal panel) or a number of choice sets, 
one after the other as in stated choice experiments, is described as facing a number of choice situations. 
Note that the assumption of a fixed choice set size, J, is made purely for convenience at this point; it is 
inessential. 
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where ηjq is a random term with zero mean whose distribution over individuals and 
alternatives depends in general on underlying parameters and observed data relating to 
alternative j and individual q; and εjq is a random term with zero mean that is IID over 
alternatives and does not depend on underlying parameters or data.  
 
The Mixed Logit class of models assumes a general distribution for ηjq and an IID extreme 
value type 1 distribution for εjq

 3. That is, ηjq can take on a number of distributional forms 
such as normal, lognormal, or triangular. Denote the joint density of (η1q, η2q,..., ηJq)  by f(ηq 
|Ω) where the elements of Ω are the fixed parameters of the distribution and ηq denotes the 
vector of J random components in the set of utility functions. For a given value of ηq, the 
conditional probability for choice j is logit, since the remaining error term is IID extreme 
value type 1:  
 

Ljq(βq|ηq) = exp(βq′xjq + ηjq) / ∑jexp(βq′xjq + ηjq ). (3) 
 
The unconditional choice probability is this logit probability integrated over all values of ηq 
weighted by the density of ηq is as shown in equation (4):  
 

Pjq (βq| Ω)  =∫η1q ∫η2q ... ∫ηJq Liq(βq|ηq ) f(ηq |Ω)dηJq ... dη2q dη1q . (4) 
 
Models of this form are called mixed logit because the choice probability Pjq is a mixture of 
logits with f as the mixing distribution. The probabilities do not exhibit the questionable 
independence from irrelevant alternatives property (IIA), and different substitution patterns 
may be obtained by appropriate specification of f. This is handled in by a random 
parameters specification, specifying each element of βq associated with an attribute of an 
alternative as having both a mean and a standard deviation. The choice probability in (4) 
generally cannot be calculated exactly because the integral will not have a closed form. The 
integral is approximated through simulation (see Train 2003 for more details).  
 
The standard deviation of an element of the βq parameter vector, which we denote σqk, 
accommodates the presence of preference heterogeneity in the sampled population, 
characterised by an unknown distribution which may take on a user-specified analytical 
distribution (e.g. normal, triangular).  
 
Of particular interest is the derivation of the conditional individual-specific parameter 
estimates and the associated values of travel time savings for each individual.  As 
described in Train (2003), we can obtain the conditional estimator for any individual by 
using Bayes Theorem.  The estimator will be (Hensher et al 2003): 
 

                                                           
3 The proof in McFadden and Train (2000) that mixed logit can approximate any choice model including 
any multinomial probit model is an important message. The reverse cannot be said: the multinomial probit 
model cannot approximate all mixed logit models since the multinomial probit relies critically on normal 
distributions. If a random term in utility is not normal, then mixed logit can handle it and multinomial probit 
cannot.  



Information Processing Strategies in Stated Choice Studies: The Implications on Willingness to Pay 
of Respondents Ignoring Specific Attributes 
Hensher 
 

5 

 

                                  

E[ | ]   ( | )

( | ) ( )
                   

( )

( | ) ( )
                   

( | ) ( )

( | ) ( )
                   =

q

q

q

q

q

q

q q q q q q

q q q
q q

q

q q q
q q

q q q q

q q q q q

data p data d

p data p
d

p data

p data p
d

p data p d

p data p d

p

β

β

β
β

β

β

β = β β β

β β
= β β

β β
= β β

β β β

β β β β

∫

∫

∫ ∫
∫
∫

.
( | ) ( )q q q qdata p dβ β β

 (5) 

 
 
The conditional density is the contribution of individual q to the likelihood function. The 
denominator in the conditional mean is the theoretical contribution of individual q to the 
likelihood function for the observed data, or the conditional choice probability4. The 
numerator of the expectation is a weighted mixture of the values of βq over the range of βq 
where the weighting function is, again, the likelihood function.  
 
Since the integrals cannot be computed analytically, we compute them by simulation. The 
simulation estimator of the conditional mean for βq is: 
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where the weighting function in each case is the contribution to the likelihood function, 
computed at the rth draw of βq,r in the simulation. The approach in (6) can also be used to 
estimate the conditional variance or standard deviation of βq by estimating the expected 
square and subtracting the square of the mean. This estimated conditional variance will be 
smaller than the average variance obtained simply by computing the sample variance of 
the estimated conditional means, as the latter is averaged over all the data in the sample 
while the former is averaged with respect only to the data for individual q.   
 
The distinction betweens conditional and unconditional distributions needs to be explained 
some more given its importance. A conditional distribution is one in which there are one or 
more very specific conditions associated with a specific outcome. The conditions of interest 
are: (i) (condition A) a choice probability for an individual that is conditional of the 
parameter value drawn from the distribution of the error component η (which in the random 
parameter model produces a parameter value on the distribution) and (ii) (condition B) a 
                                                           
4 Using Bayes Rule, we first define the conditional choice probability as Hjq(βq|Ω) = Ljq(βq)g(βq|Ω)/ Pjq (βq| 
Ω) where Ljq(βq)  is now the likelihood of an individual’s choice if they had this specific βq, g(βq|Ω) is the 
distribution in the population of βqs, and Pjq(Ω) is the choice probability function defined in open-form as 
(seeTrain (2003): 
 

Pjq (Ω) = ?βq Ljq(βq)g(βq|Ω) dβq. 
 

This shows how one can estimate the person specific choice probabilities as a function of the underlying 
parameters of the distribution of the random parameters.  
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parameter estimate associated with an explanatory variable that is influenced by the choice 
outcome. For mixed logit models, it is possible to have both conditions applying. To make 
matters slightly confusing, the literature often refers to an unconditional distribution in the 
context of not taking into account the outcome response (even though the parameter 
estimates are conditioned on the η (equivalent to condition A).   
 
The most recent advance in the application of mixed logit models is a recognition that the 
analyst can use the additional information on the observed outcome, as a way of 
establishing a more behaviourally useful location on the distribution curve for a random 
parameter to position each individual (in contrast to a random assignment under condition 
A). The Bayesian literature has always put the view that the inclusion of this additional 
information (a subjective prior) adds power to the performance of a model (Brownstone 
2001).  While this position is correct, it is by no means the claim of the Bayesian method 
per se and indeed is also applicable to classical inference methods that are used in this 
paper (see Hensher et al 2003 and Huber and Train (2001) for evidence).  
 

4. The Design Plan  
 
Using the context of a car commuter trip, we proposed five design dimensions as the key 
dimensions of stated choice experiments which are likely to have the greatest contextual 
influence on choice response and WTP. These dimensions are summarised in Table 15.  
 
 

Table 1 The Dimensions of the Design Plan 
 

Choice set 
size 

Number of 
alternatives 

Number of 
attributes 

Number of 
attribute levels 

Range o 
attribute levels 

6 2 3 2 Narrower than base 
9 3 4 3 Base 
12 4 5 4 Wider than base 
15 ---- 6 ---- ---- 

 

The SC experiment is 16 Designs embedded in one design each with two versions (ie 
blocking of 32 rows into sets of 16). Each run of the design determines the specification 
of a choice experiment that has two versions. For example, the first row might have 15 
choice sets of 3 alternatives each presenting 4 attributes at 3 levels. For these 
specifications an efficient design was created. Six attributes have been selected based on 
earlier studies (Hensher 2000, 2001). They are: a- free flow time (FFT), b- slowed down 
time (SDT), c- stop/start time (SST), d- trip time variability (TTV), e- toll cost (TLC), and 
f- running cost (RC) (based on c/litre, litres/100km). Given that the ‘number of attributes’ 
dimension has four levels, we have selected the following combinations of the six 
attributes, noting that the aggregated attributes are combinations of existing attributes. 
This is an important point because we did not want the analysis to be confounded by extra 
attribute dimensions.  
 
 
 

                                                           
5 Other possible elements might have been included but we selected those that most analysts have raised as 
possible sources of response bias. We excluded the ordering of attributes. Support for the selected 
dimensions is given in the literature (eg Ohler et al 2000, DeShazo and Fermo 2001, Dellaert et al 1999). 
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The 3, 4, 5 and 6 attribute levels are: 
 

3: (a+b+c) Total time, d, (e+f) Total costs 
4: a,(b+c) Slowed down/Stop Start, d, (e+f) 
5: a,b,c,d, (e+f) 
6: a,b,c,d,e,f 

 

The master plan gives 16 sub-designs to build as shown in Table 2 representing the 
attribute profiles in Table 3. Further details are provided in Hensher (2003) 

 
 

Table 2 The Sub-Designs of the Overall Design 
 

Choice sets 
of size

Number of 
alternatives

Number of 
attributes

Number of 
levels of 
attributes

Range of attribute levels

15 3 4 3 Base
12 3 4 4 Wider than base
15 2 5 2 Wider than base
9 2 5 4 Base
6 2 3 3 Wider than base
15 2 3 4 Narrower than base
6 3 6 2 Narrower than base
9 4 3 4 Wider than base
15 4 6 4 Base
6 4 6 3 Wider than base
6 3 5 4 Narrower than base
9 4 4 2 Narrower than base
12 3 6 2 Base
12 2 3 3 Narrower than base
9 2 4 2 Base
12 4 5 3 Narrower than base  

 
Note: The 16 rows represent the set of designs (referred to as  

Des0,Des1,…..,Des15 in model estimation). 
 

Table 3 Time-Defined attributes and Design Allocation 
 

Design Identifier Time components (excluding time 
variability which appears in every 
design) 

Cost components Number of 
attributes in design 

2 Free flow, slowed down, stop-start Total cost 5 
3 Free flow, slowed down, stop-start Total cost 5 

10 Free flow, slowed down, stop-start Total cost 5 
15 Free flow, slowed down, stop-start Total cost 5 
6 Free flow, slowed down, stop-start Run cost, toll cost 6 
8 Free flow, slowed down, stop-start Run cost, toll cost 6 
9 Free flow, slowed down, stop-start Run cost, toll cost 6 

12 Free flow, slowed down, stop-start Run cost, toll cost 6 
0 Free flow, slowed down-stop-start Total cost 4 
1 Free flow, slowed down-stop-start Total cost 4 

11 Free flow, slowed down-stop-start Total cost 4 
14 Free flow, slowed down-stop-start Total cost 4 

4, 5,7,13 Total time Total cost 3 
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The specific design pivots off of the attribute levels associated with a current car-
commuting trip. As a generic design we should not expect to find the parameter for each 
attribute to be different for the full set of alternatives. Thus we can just estimate one 
parameter per attribute. This reduces the whole design to a set of 8 identical choice sets 
for each respondent. By doubling the number of choice sets we can allow some 2-way 
interactions.  
 
The designs are computer-generated. They aim at minimising the correlations between 
attributes and maximising the amount of information captured by each choice task. 
Usually, experimental designs are constructed under the assumption of parameters equal 
to zero. However, to minimise the occurrence of dominant or dominated alternatives, the 
parameters were assumed to be different from zero. We maximised the determinant of the 
covariance matrix, which is itself a function of the estimated attribute parameters. Insights 
from past studies determined their approximate values. 
 
The levels applied to the choice task differ depending on the range of attribute levels as 
well as on the number of levels for each attribute. The levels are variations from the 
attribute value of a recent trip. The variations used in the choice tasks are given in the 
Appendix. The design dimensions are translated into SC screens as illustrated in Figure 1. 
The number of attribute levels and the range of these levels are identical within each of 
the 16 designs defined by the master plan. They only vary across designs. Each sampled 
commuter is given a varying number of choice sets, but the number of attributes and 
alternatives remain fixed. Variation in the number of attributes and alternatives occurs 
across commuters. 
 

 
 

Figure 1. An example of a stated choice screen 
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5. Mixed Logit Results 
 

514 face to face CAPI surveys were undertaken in the Sydney metropolitan area in 2002.  
502 of the 514 surveys were useable. The 12 rejected surveys were abandoned during the 
data collection phase due to errors made by interviewers (who entered the data incorrectly 
onto the CAPI on behalf of the commuter). Full details of the sampling and response rates 
are given in Hensher (2003).  
 
We estimated mixed logit models in which we (i) did not account for the presence or 
absence of one of more attributes in information processing and (ii) where we removed an 
attribute if the individual stated that they ignored it in the assessment of the alternatives.  
By conditioning the model on whether an attribute is ignored or not, the estimated 
distribution of parameters becomes the distribution of latent terms that get transformed 
into the utility function, just like any transformation of a distribution. 
 
The incidence of ignoring one or more attributes is summarised in Table 4. The 
uncertainty of travel time was ignored by a substantial proportion of the sample (e.g. 
36.4% of the individuals facing designs with 5 or 6 attributes) as was total cost (39.35%) 
for the individuals facing the design with 3 attributes.. In contrast, other mixtures of 
attributes exhibiting attribute exclusion varied from a high of 11.92% for the pair - slowed 
down time and stop start time, to a low of 0.49% for mixtures on 3 or 4 time and cost 
attributes.  
 

Table 4 Profile of Mixtures of Attributes Ignored 
 

Ignored Proportion 
Individuals Facing 5 or 6 attributes (Free flow time, slowed down time, stop 
start time, uncertainty with  run cost, toll cost or total cost): 

Sample =2341 

Free flow time, slowed down time, stop start time 5.28 
Slowed down time, stop start time 11.92 
Slowed down time 8.05 
Free flow time, slowed down time, stop start time, run cost 0.49 
Slowed down time, stop start time, run cost 0.98 
Free flow time, slowed down time, stop start time, toll cost 0.49 
Slowed down time, stop start time, toll cost 0.49 
Slowed down time,  toll cost 2.52 
Free flow time, slowed down time, stop start time, run cost, toll cost 0.49 
Uncertainty of time (in presence/absence of other attributes) 36.4 
Individuals facing 4 attributes (Free flow time, slowed down time plus stop 
start time, total cost, uncertainty): 

Sample = 1391 

Free flow time, slowed down time plus stop start time 8.65 
Free flow time 3.78 
Slowed down time plus stop start time 8.48 
Free flow time, slowed down time plus stop start time, total cost 1.62 
Free flow time, total cost 1.45 
Slowed down time plus stop start time, total cost 1.45 
Individuals facing 3  attributes (Total time, total cost, uncertainty): Sample = 1035 
Total cost 39.35 
Uncertainty 41.52 
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The mixed logit models in Table 5 used a triangular distribution for the random 
parameters and constrained the parameters to ensure that the willingness to pay for travel 
time savings was non-negative. For the triangular distribution, the density function looks 
like a tent: a peak in the centre and dropping off linearly on both sides of the centre6.  
 
Two model specifications are reported for each of the models defined on the full sample 
(NI-1, NI-2) and the sample in which attributes were reported as ignored (I-1, I-2). The 
model set 1 (NI-1, I-1) specified the travel time component parameters as random 
whereas the model set 2 (NI-2, I-2) included these same attribute parameters plus the 
running cost parameter as random. The selection of running cost and not the other costs 
was designed to illustrate the impact of random parameters on the numerator and 
denominator of the VTTS formula, to determine if the directional impact of the VTTS in 
the presence and absence of excluded attributes was impacted on by the selection of only 
the numerator parameter being random in model set 1. Since we are using individual 
observation-specific parameters derived from a conditional distribution (condition B) in 
deriving the VTTS for each individual, we have greater confidence (compared to using 
the population moments from the unconditional distribution – condition A) in matching 
the parameters from repeated draws for each of travel time and cost. 
 
Table 5 Mixed Logit Choice Models with alternative information processing conditions 

(4,593 observations). Time is in minutes, cost is in dollars. (100 Halton draws) Non-
ignored refers to all individuals assumed to take the attribute into account. 

 
 Non-ignored Ignored  

Attribute Alternatives NI-1 NI-2 I-1 I-2 
Free flow time 2-4, 6-8, 10-12, 14-16, 

18-20 
-.1583 (-17.9) -.1586 (-17.9) -.1588 (-17.4) -.1591 (-17.3) 

Slowed time 3,4, 7,8, 
11,12,15,16,19,20 

-.1169 (-11.59) -.1173 (-11.6) -.1119 (-11.1) -.1121 (-11.1) 

Stop/start time 3,4, 7,8, 
11,12,15,16,19,20 

-.1499 (-13.82) -.1503 (-13.8) -.1482 (-13.7) -.1484 (-13.6) 

Uncertainty time All -.0212 (-6.35) -.0213 (-6.4) -.0247 (-6.7) -.0248 (-6.6) 
Slowed/stop/start time 2, 6,10,14,18 -.1690 (-17.58) -.1691 (-17.6) -.1399 (-15.3) -.1399 (-15.3) 
Total time 1,5,9,13,17 -.1899 (-18.3) -.1899 (-18.3) -.1786 (-17.6) -.1787 (-17.6) 
Cost attributes:      
Running cost 4,8,12,16,20 -.8489 (-7.7) -.8739 (-7.4) -1.0142 (-7.27) -1.0468 (-7.0) 
Toll cost 4,8,12,16,20 -1.6952 (-24.1) -1.7043 (-24.1) -2.3311 (-24.26) -2.345 (-24.2) 
Total cost 1-3,5-7,9-11,13-15,17-

19 
-1.0661 (-17.8) -1.067 (-17.8) -1.4818 (-18.68) -1.4824 (-18.7) 

Standard deviations of 
random parameters: 

     

Free flow time 2-4, 6-8, 10-12, 14-16, 
18-20 

-.1583 (-17.9) -.1586 (-17.9) -.1588 (-17.4) -.1591 (-17.3) 

Slowed time 3,4, 7,8, 
11,12,15,16,19,20 

-.1169 (-11.59) -.1173 (-11.6) -.1119 (-11.1) -.1121 (-11.1) 

Stop/start time 3,4, 7,8, 
11,12,15,16,19,20 

-.1499 (-13.82) -.1503 (-13.8) -.1482 (-13.7) -.1484 (-13.6) 

Slowed/stop/start time 2, 6,10,14,18 -.1690 (-17.58) -.1691 (-17.6) -.1399 (-15.3) -.1399 (-15.3) 
Total time 1,5,9,13,17 -.1899 (-18.3) -.1899 (-18.3) -.1786 (-17.6) -.1787 (-17.6) 
Running cost 4,8,12,16,20  -.8739 (-7.4)  -1.0468 (-7.0) 
Pseudo-R2  0.6485 0.6504 0.6519 0.6519 

Log-Likelihood  -4832.78 -4807.6 -4786.49 -4786.2 
 

Notes: All random parameters have a triangular distribution in which the mean = standard deviation. 
(see Hensher and Greene 2003 for a justification). 

                                                           
6 Let c be the centre and s the spread. The density starts at c-s, rises linearly to c, and then drops linearly to 
c+s. It is zero below c-s and above c+s. The mean and mode are c. The standard deviation is the spread 
divided by 6 ; hence the spread is the standard deviation times 6 . The height of the tent at c is 1/s (such 
that each side of the tent has area s×(1/s)×(1/2)=1/2, and both sides have area 1/2+1/2=1, as required for a 
density). The slope is 1/s2. See Evans et al (1993) for formal proofs. 
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The overall goodness of fit of all models in impressive, as is often the experience with 
stated choice studies. All parameters are statistically significant and of the expected sign. 
The values of travel time savings (VTTS) associated with the conditional distribution are 
reported in Table 6 for all four models. 
 
As expected, assuming that all attributes are not ignored and duly processed leads to 
biased estimates of parameters which may under-or over-estimate willingness to pay 
(WTP) depending on how the bias affects the numerator or denominator of the WTP 
estimate. In our example where we treat (i) the travel time parameter as random and the 
cost parameter as fixed and (ii) both time and running cost parameters as random, failure 
to recognise and account for the information processing strategy of the respondent leads 
to a significant over-estimate of the mean value of travel time savings, on average of the 
order of 6-44% depending on the specific attribute. It also impacts on the distribution of 
VTTS, reducing the variance as well as the minimum and maximum values. 
 

Table 6 Values of travel time savings inclusive and exclusive of individuals who 
ignored specific attributes 

 
(i) time = random parameter, cost = fixed parameter 
 

Attribute Non-ignored (NI-1) Ignored (I-1) 
 Mean (std dev) Min - Max Mean (std dev) Min - Max 
Free flow time 11.18 (0.65) 6.02 – 14.90 9.39 (0.49) 5.86 – 12.06 
Slowed time 8.26 (0.28) 5.53 – 9.97 6.62 (0.22) 4.54 – 8.44 
Stop/start time 10.60 (0.42) 5.33 – 13.20 8.77 (0.33) 4.46 – 11.19 
Slowed/stop/start time 11.94 (0.64) 5.79 – 15.29 8.28 (0.34) 4.68 – 10.36 
Total time 11.23 (0.69) 3.38 – 15.55 10.57 (0.58) 3.29 – 12.69 
 

(ii) time and running cost = random parameters 
 

Attribute Non-ignored (NI-2) Ignored (I-2) 
 Mean (std dev) Min - Max Mean (std dev) Min - Max 
Free flow time 10.89 (0.71) 5.85 - 17.0 9.12 (0.56) 5.32 – 15.68 
Slowed time 8.06 (0.35) 5.16 – 11.4 6.43 (0.28) 3.78 – 9.75 
Stop/start time 10.32 (0.52) 5.82 – 15.6 8.51 (0.42) 4.84 – 15.25 
Slowed/stop/start time 11.62 (0.31) 5.29 – 16.05 8.03 (0.41) 4.38 – 11.63 
 

(iii) ratio of non-ignored to ignored mean VTTS 
 

Attribute Ratio NI/I 
Free flow time 1.19 
Slowed time 1.25 
Stop/start time 1.21 
Slowed/stop/start time 1.44 
Total time (model set (i) only) 1.06 
 

Note: for all times except total time, running cost is the cost parameter; 
 for total time the cost parameter is total time. 
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6. Conclusions 
 
The evidence in this paper that a recognition of varying information processing strategies 
in respect to how specific attributes are processed, in terms of exclusion and inclusion, is 
compelling. Although we cannot suggest whether the exclusion of an attribute is due to 
some underlying behavioural rationale for the attribute’s role, or simply a coping strategy 
in processing the amount of information presented in the stated choice experiment, we 
have empirical evidence which supports the position that imposing a condition of 
unlimited human capacity to process information of varying degrees of magnitude and 
quality is not a reflection of how individuals actually make choices. It also artificially 
produces a willingness to pay distribution for a specific attribute (in our case valuation of 
travel time savings) that is only true when we assume that all presented attributes matter 
and individuals are capable of processing the information content of all attributes, as well 
as wishing to process it.  
 
Indeed in real markets the choice process is simplified for both behavioural and process 
coping reasons, and as such both sources of potential influence are at play, interacting to 
produce a specific choice outcome and implied trade-off, and hence valuation of attributes 
influencing the choice outcome. Accounting for the inclusion vs exclusion of an attribute 
in an individual’s decision calculus does appear to impact significantly on the behavioural 
outputs of a discrete choice model; in our example the behavioural value of travel time 
savings distribution and its associated moments are greatly influenced by the assumption 
made on how attributes are processed. 
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Appendix 
 
1. Percentage variations for base range 
 
Table A1.                    Table A2. 
Values for designs presenting two levels     Values for designs presenting 
three levels 
 

Label of the attribute Level 1 Level 2
Free flow time -20% 20%
Slowed down time -40% 40%
Stop/start time -40% 40%
Congestion time -40% 40%
Total time -40% 40%
Trip time variability -40% 40%
Running cost -20% 20%
Toll cost -20% 20%
Total cost -20% 20%  

Label of the attribute Level 1 Level 2 Level 3
Free flow time -20% 0% 20%
Slowed down time -40% 0% 40%
Stop/start time -40% 0% 40%
Congestion time -40% 0% 40%
Total time -40% 0% 40%
Trip time variability -40% 0% 40%
Running cost -20% 0% 20%
Toll cost -20% 0% 20%
Total cost -20% 0% 20%

 
Table A3. 
Values for designs presenting four levels 
 

Label of the attribute Level 1 Level 2 Level 3 Level 4 
Free flow time -20% -10% 10% 20%
Slowed down time -40% -20% 20% 40%
Stop/start time -40% -20% 20% 40%
Congestion time -40% -20% 20% 40%
Total time -40% -20% 20% 40%
Trip time variability -40% -20% 20% 40%
Running cost -20% -10% 10% 20%
Toll cost -20% -10% 10% 20%
Total cost -20% -10% 10% 20%  
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2. Percentage variations for narrower than base range 

Table A4.                    Table A5. 
Values for designs presenting two levels     Values for designs presenting 
three levels 
 

Label of the attribute Level 1 Level 2
Free flow time -5% 5%
Slowed down time -20% 20%
Stop/start time -20% 20%
Congestion time -20% 20%
Total time -20% 20%
Trip time variability -20% 20%
Running cost -5% 5%
Toll cost -5% 5%
Total cost -5% 5%  

Label of the attribute Level 1 Level 2 Level 3
Free flow time -5% 0% 5%
Slowed down time -20% 0% 20%
Stop/start time -20% 0% 20%
Congestion time -20% 0% 20%
Total time -20% 0% 20%
Trip time variability -20% 0% 20%
Running cost -5% 0% 5%
Toll cost -5% 0% 5%
Total cost -5% 0% 5%

 
 
Table A6. 
Values for designs presenting four levels 

Label of the attribute Level 1 Level 2 Level 3 Level 4 
Free flow time -5% -3% 3% 5%
Slowed down time -20% -3% 3% 20%
Stop/start time -20% -3% 3% 20%
Congestion time -20% -3% 3% 20%
Total time -20% -3% 3% 20%
Trip time variability -20% -3% 3% 20%
Running cost -5% -3% 3% 5%
Toll cost -5% -3% 3% 5%
Total cost -5% -3% 3% 5%  

 

 
3.  Percentage values for wider than base range 
 
Table A7.                    Table A8. 
Values for designs presenting two levels     Values for designs presenting 
three levels 
 

Label of the attribute Level 1 Level 2
Free flow time -20% 40%
Slowed down time -30% 60%
Stop/start time -30% 60%
Congestion time -30% 60%
Total time -30% 60%
Trip time variability -30% 60%
Running cost -20% 40%
Toll cost -20% 40%
Total cost -20% 40%  

Label of the attribute Level 1 Level 2 Level 3
Free flow time -20% 10% 40%
Slowed down time -30% 15% 60%
Stop/start time -30% 15% 60%
Congestion time -30% 15% 60%
Total time -30% 15% 60%
Trip time variability -30% 15% 60%
Running cost -20% 10% 40%
Toll cost -20% 10% 40%
Total cost -20% 10% 40%
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Table A9. 
Values for designs presenting four levels 
 

Label of the attribute Level 1 Level 2 Level 3 Level 4 
Free flow time -20% 0% 20% 40%
Slowed down time -30% 0% 30% 60%
Stop/start time -30% 0% 30% 60%
Congestion time -30% 0% 30% 60%
Total time -30% 0% 30% 60%
Trip time variability -30% 0% 30% 60%
Running cost -20% 0% 20% 40%
Toll cost -20% 0% 20% 40%
Total cost -20% 0% 20% 40%  


