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1. Introduction 

Traffic assignment models need not much introduction. They are widely used all over the 
world in transport planning to assist in policy decisions with respect to infrastructure 
investments. Even though the (academic) research in traffic assignment is shifting towards 
dynamic traffic assignment, static assignment still remains the most widely used tool in 
strategic transport planning and will continue to be for some time, as computational efficiency 
and its simplicity remain important for policy makers. As is known, static models make 
several very limiting assumptions, resulting in traffic flow predictions that are infeasible 
(flows exceeding the capacity of the road) and network travel times (important for cost-
benefit analyses) that are implausible. In this paper, we propose a new framework for the 
static network loading problem that takes away most of the current limitations, in particular 
adding hard capacity constraints and the possibility for traffic flow to spillback to upstream 
links. Our approach will not take the traditional static traffic assignment model as a starting 
point, as several others have done, but will take a dynamic traffic assignment model as the 
base model and derive the static counterpart as a special case. To the best of our knowledge, 
this is the first time such an approach has been proposed. 

Traditional static traffic assignment models consider some given travel time functions (such 
as the well-known BPR function) in order to determine the link travel times depending on the 
link flows. Many dynamic traffic assignment models have been proposed that are based on 
the same concept of travel time functions, depending on the link flows and/or densities at the 
time of link entrance. These dynamic models have been developed as some kind of dynamic 
extension to the static traffic assignment problem. The formulation in Janson (1991) is a 
dynamic version of the traditional static traffic assignment model. Many other DTA model 
formulations that use travel time functions exist, e.g., Ran et al. (1993), Chen and Hsueh 
(1998), and Bliemer and Bovy (2003). Also in several dynamic network loading procedures 
these link travel time functions have also been applied, e.g., see Xu et al. (1999).  

Using link travel time functions in a dynamic model causes many problems, as detailed in 
Bliemer (2007). In general, it becomes impossible to satisfy hard capacity constraints, queues 
appear in the bottleneck instead of upstream the bottleneck, and spillback is typically 
neglected. Many traffic flow phenomena cannot be taken into account using travel time 
functions. Flow propagation should not depend on travel time functions, but rather on traffic 
flow fundamentals, such that it is consistent with the fundamental diagram.  

Therefore, instead of deriving dynamic models from static counterparts, many other dynamic 
models have been proposed based on theories of traffic flow, such as dynamic models that 
follow the Lighthill and Whitham (1955), and Richards (1956) model, like the simplified 
traffic flow theory of Newell (1993), the cell transmission model (Daganzo, 1994, 1995), and 
the link transmission model (LTM) (Yperman, 2007). These models have shown to be able to 
more realistically simulate traffic in which shockwaves, queues, and spillback can be 
accommodated.  

Using the knowledge and experience we have with dynamic models, it is now time to revisit 
the static traffic assignment model. Therefore, in this paper we will derive a static traffic flow 
model as a special case of a dynamic model. To be more specific, we will use a network 
extension of Newell’s simplified model and derive the static counterpart by making the 
regular ‘static’ assumptions, such as considering only a single time period with stationary 
travel demand. This way, we end up with a static traffic assignment model that will be 
consistent with traffic flow theory (often captured in a fundamental diagram), explicitly 
taking capacity constraints into account and accounting for physical queues and spillback. 
Since such a static model inherits many features from a dynamic model, it is often called 
quasi-dynamic. These quasi-dynamic models do not rely on travel time functions, but rather 
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on some more realistic traffic flow propagation procedure, from which travel times can be 
derived afterwards. 

4CAST (2009) and Bundschuh et al. (2006) present two of such quasi-dynamic models. These 
models ensure that link flows do not exceed the link capacity, and determine delays in queues. 
They describe procedures to determine the flows through a network and the build up of 
queues at bottlenecks. It should be stressed that only a single time period (with a given 
stationary flow) is considered in these models, hence they are essentially still static traffic 
assignment models. Although providing much more realistic results than traditional static 
models, these models still suffer from a solid theoretical basis, as they are merely presented as 
algorithms, while the underlying model and assumptions are not made specific. Furthermore, 
the queues and delays predicted by these models are not consistent with traffic flow theory.  

The main contributions of this paper can be stated as follows. First, a quasi-dynamic (static) 
traffic assignment model is proposed that leads to more realistic outcomes (in terms of link 
flows, congestion locations, queue lengths, delays, etc.) than any quasi-dynamic (static) 
model thus far. Secondly, this model has been derived from the dynamic link transmission 
model, explicitly showing which assumptions have to be made, and providing a solid 
theoretical basis instead of merely providing a heuristic. Thirdly, we propose an efficient 
procedure for solving the network loading phase, which is an exact procedure.  

The outline of the paper is as follows. Section 2.1 describes the traditional static traffic 
assignment model and extensions to it in order to include capacity constraints are discussed in 
Section 2.2. None of these extensions to include capacity constraints seem to lead to realistic 
results in terms of congestion locations, queues, and spillback. Quasi-dynamic models that 
have been proposed in the literature are discussed in more detail in Section 2.3. In Section 3 
we derive an event-based formulation of the link transmission model, which serves as the 
starting point for deriving a quasi-dynamic (static) version of this model in Section 4, 
assuming stationary flow and other ‘static’ assumptions. In Section 5 we propose an efficient 
solution procedure for solving our quasi-dynamic traffic assignment problem. Section 6 
presents a case study on the network of the city of Amsterdam. Finally, Section 7 closes with 
a discussion, conclusions, and directions for future research. 

2. Static traffic assignment models in the literature 

2.1 Traditional static traffic assignment models 
In this section, we briefly describe the classical model for static traffic assignment, and 
introduce notation that we will use in the remainder of the paper. 

Consider a transport network ( ),G N A=  with a set of nodes N and a set of directed links, A. 
Let O N⊆  denote the set of origins, and D N⊆  the set of destinations. The travel demand 
between origin-destination (OD) pair ( ), ,o d  with o O∈  and ,d D∈  is assumed to be given 
by .odH  This travel demand is assumed to be representative for a certain time period [0, ].T  
Let odP  be the (non-empty) set of available paths from origin o to destination d, and define 
the total route set as ( ), .od

o dP P=    

Wardrop (1952) defined a user equilibrium in traffic assignment as the situation in which no 
traveller can be better off (i.e., obtain smaller travel times) by unilaterally switching routes. 
Traditional static traffic assignment models consider explicit link travel time functions, i.e., 
continuous monotonously increasing functions ( )a auτ  that describe the travel time on link a, 

,aτ  as a function of the flow into link a, .au  Beckmann et al. (1956) showed that Wardrop’s 
user equilibrium flows could be determined by solving the following nonlinear programming 
problem for the vector of link flows u: 
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( )
0

min ,
au

au a w

w dwτ
∈Ω

=
∑ ∫  (1) 

where the set of feasible link flows, ,Ω is defined by the following constraints: 

( , )
,od od

a ap p
o d p

u Fδ= ∑∑  (2) 

,od od
p

p
F H=∑  (3) 

0.od
pF ≥  (4) 

The first constraint is a definitional constraint that states that the flow into link a is defined by 
summing all path flows od

pF  that pass through link a. The route-link incidence indicator od
apδ  

equals one if link a is part of path p from o to d, and is zero otherwise. The second constraint 
is a flow conservation constraint, which ensures that all travel demand is allocated to one of 
the available paths. Finally, the third constraint describes the nonnegativity constraints, 
simply stating that path flows need to be nonnegative. Note that if the path flows are 
nonnegative, then also the link flows are nonnegative, following from Equation (2).  

Several algorithms have been developed to solve for a static user equilibrium, of which the 
Frank-Wolfe algorithm and the method of successive averages (MSA) are the most well-
known ones.  

Since in the link travel time functions the travel time merely increases when the link flow 
exceeds capacity, the capacity is not included as a hard constraint but as a soft constraint. One 
can therefore not prevent the link flow from exceeding the link capacity. Daganzo (1998) 
proposed to use a travel time function with an asymptote near the capacity, which aims to 
prevent the link flow from exceeding the capacity, but cannot guarantee this. Unrealistically 
high travel times and numerical issues in solving the problem make this choice of travel time 
function not very popular. Therefore, in the next subsection we will look at traffic assignment 
problems with explicit (hard) capacity constraints.  

2.2 Static traffic assignment models with capacity constraints 
Beckmann et al.’s original formulation does not take any explicit link capacity constraints into 
account. All path flows are assumed to be able to pass through each link, such that the link 
flows can be determined by a simple mapping from the path flows, given by Equation (2).  

In order to take into account that each link a has a limited capacity, the following 
straightforward constraints can be added that defines the set of feasible link flows, ,Ω  

, .a au C a≤ ∀  (5) 

This results in a so-called capacity constrained or what others have defined as the extended 
Beckmann formulation, and has been investigated by several researchers (e.g., Larson and 
Patriksson, 1999). Although adding these constraints to the problem seems easy, solving the 
problem becomes much more tedious, as instead of iteratively solving a shortest path 
problem, now a multi-commodity minimum cost flow problem needs to be solved (Nie et al., 
2004). 

Although adding the capacity constraints seems natural, it is not consistent with the link travel 
time functions ( ),a auτ  such that ‘tricks’ with Lagrange multipliers or interior penalty 
functions are needed. The main problem is, that such travel time functions are not suitable for 
describing the link flows and link travel times consistently. For example, link travel times 
depend on the flows on downstream links, as they could block the flow, hence separable 
travel time functions are not valid. Also note that none of these traditional approaches to 
capacity constrained assignment result in actual queues. Determining link travel time 
functions that realistically describe congestion is an almost impossible task. Therefore, other 
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problem descriptions have been developed that avoid the usage of such functions, as will be 
described in the next subsection. 

2.3 Static traffic assignment models with more realistic traffic propagation 
In order to overcome some of the above mentioned problems when using explicit link travel 
time functions, static traffic assignment models have been proposed that adopt certain flow 
propagation rules ensuring that the flow does not exceed capacity, such that the travel times 
are an implicit result. 

Bifulco and Crisalli (1998) determine iteratively which number of vehicles of a link can 
proceed to the next link on their path by checking the corresponding link capacities. Spillback 
is not taken into account. Nesterov and De Palma (2000) assume lower bounds on the travel 
time (free-flow travel time) and upper bounds on the flow (link capacity) instead of using link 
travel time functions. They search for stable traffic equilibria in which the fundamental 
relationship between flow, speed, and density holds. Queues longer than the link length are 
assumed not to occur, hence spillback is again not taken into account.  

Bundschuh et al. (2006) developed an operation model that they term quasi-dynamic, as it 
takes capacity constraints and spillback into account, however, at a much smaller 
computational complexity. They use a kind of incremental assignment (temporarily keeping 
route choice fixed), in which iteratively a fraction of the travel demand is put on the network, 
say increases of 5%. The flow is propagated over the consecutive links of a path until the 
capacity of a link is reached. The extra flow on that link will be stored in the queue of the 
bottleneck link, and blocked back to upstream links if the queue exceeds the storage capacity 
of the link. Link travel times are determined afterwards by taking the free-flow travel time 
and adding delays that refer to the time it takes for the queues to disappear. 

4Cast (2009) has developed an operational model called QBLOK, which they also termed 
quasi-dynamic. This model is a heuristic that ensures that link capacities are not exceeded. 
The queue starts, similar to the model of Bundschuh et al., in the bottleneck link, and not 
upstream this link. Queues longer than the link length can occur, such that spillback is taken 
into account in this model. Since this procedure is a heuristic and not exact, it may produce 
unrealistic travel times and route choices. The link travel times are derived implicitly from the 
queues that form.  

It is important to note that in traditional static traffic assignment models, we merely talk about 
link flows, while in these more realistic flow models, we typically talk about link inflows and 
outflows, as the link inflow and outflow need not be the same due to queues building up on 
the links. So in the remainder of the paper we will refer to link inflows au  and link outflows 

.av  

2.4  Newly proposed quasi-dynamic traffic assignment model 
In this paper we propose a static traffic assignment model in which capacity constraints, 
spillback, and even shockwaves are explicitly taken into account. This model can be seen as a 
static version of a network extension of Newell’s simplified model, in which a single time 
period is assumed with a stationary flow. In contrast to Bundschuh et al. and 4Cast, we use 
traffic flow theory and realistic fundamental diagrams to come to a more rigorous problem 
formulation. More realistic queuing, including shockwaves, can be taken into account. 
Heuristics are avoided by computing an exact solution.  

In the following sections our quasi-dynamic model will be discussed in more detail, which we 
will refer to as STAQ (Static Traffic Assignment with Queuing). We will focus on the 
network loading part and not on the route choice part of the traffic assignment problem, as the 
route choice part is similar to the traditional approaches. In the next section, we describe the 
extended Newell model that will serve as the basis for our model derivations. 
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3. A flow-rate based network extension of Newell’s model 

This section will describe a network extension of Newell’s model. Instead of using 
cumulative flows as in the original model by Newell and in the LTM model, we will derive a 
flow-rate based model, as is common in static assignment. Later in Section 4, instead of 
deriving a time-based algorithm to find an approximate solution as presented in Yperman 
(2007), our formulation will enable us to formulate an exact event-based algorithm. In this 
event-based algorithm, the problem will be primarily defined in terms of flow rates (veh/h) 
rather than cumulative flows (veh) as in Newell (1993) and Yperman (2007). In case of 
stationary travel demand, an assumption made in static traffic assignment, the link flow rates 
are (temporarily) constant over time, such that an event-based algorithm will become 
computationally efficient. 

Instead of assuming a fixed, travel demand, we will first consider the more general case of 
time-varying travel demand between OD pair ( ), ,o d  ( ) ,odH t  and later on make simplifying 
assumptions. 

3.1 Route choice model: Path flows 
Let ( )od

pf t  denote the path flow rate following path odp P∈  from origin o to destination d. 
This path flow is a result of a route choice model, and depends on the situation one aims to 
model, e.g., all-or-nothing assignment, deterministic user-equilibrium assignment, stochastic 
user-equilibrium assignment, or system optimal assignment, etc., and depends on a possible 
iterative procedure to find this situation, e.g., Frank-Wolfe algorithm, MSA, projected 
gradient algorithm, etc. Since this paper focuses on the network loading and not on the route 
choice, we assume that the path choice probabilities are exogenous and given by ( ) ,od

p tψ  
denoting the probability that at time instant t path odp P∈  is chosen among all route 
alternatives in set .odP  Hence, we can write 

( ) ( ) ( ).od od od
p pf t t H tψ=  (6) 

In the following we will omit the indices ,od as each path p (being a sequence of links) also 
uniquely defines the origin and destination.  

3.2 Definitions 

Denote the inflow into and outflow rates out of link a A∈  following path p P∈  at time 
instant [ ]0,t T∈  by ( )apu t  and ( ) ,apv t  respectively.  

These path-specific link flow rates can be aggregated by summing over all paths, such 
that the link inflow and outflow rates are respectively defined as  

( ) ( ),a ap
p

u t u t=∑    and   ( ) ( ).a ap
p

v t v t=∑  (7) 

The corresponding cumulative inflows ( ) ,aU t  which denotes the total number of vehicles 
that have entered link a at time instant t, and cumulative outflows ( ) ,aV t denoting the total 
number of vehicles that have exited link a at time instant t, are then defined by 

( ) ( )
0

,
t

a aU t u w dw= ∫    and   ( ) ( )
0

,
t

a aV t v w dw= ∫  (8) 

3.3 Flow conservation 
The (path-specific) inflow rate into link a is given by the (path-specific) outflow rate out of 
the previous link, say ,a′  on a certain path p. In case the link under consideration is the first 
link on the path, the (path-specific) link inflow rate equals the path flow, ( ) ,pf t  as an 
outcome of the route choice model, see Section 3.1. Therefore, 
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( )
( )
( )

, if  is the first link on path ,
, if  is the previous link on path .

p
ap

a p

f t a p
u t v t a p−

−

= 


 (9) 

3.4 Link model: Sending and receiving flow rates 
Following Newell (1993) and Yperman (2007), we assume that the simplified piecewise 
linear flow-density relationship describes the traffic states on the link, see Figure 1. The 
functional relationship is given by 

( ) ( )

, if  0 ,

, if  < ,

a
a a a

a

a a a a a a
a a

a a
a

a

Qk k

q k Q K k Q k KQK

γ
γ

γ
γ

 ≤ ≤
= −

≤
 −


 (10) 

where ,aQ  ,aK  and aγ  denote the capacity (veh/h), the jam density (veh/km), and the free-
flow speed (km/h), respectively. The wave speed aω  (km/h) as indicated in Figure 1, can be 
determined from these three (given) quantities, namely ( )/ / .a a a a aQ K Qω γ= −  

 

Figure 1:  Newell’s simplified fundamental diagram  
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Figure 2 shows the characteristic lines for four different traffic states, corresponding to the 
traffic states indicated in Figure 1. For illustration purposes, several trajectories through this 
link have been indicated (in red). Note that the slopes of the shockwaves in Figure 1, which 
indicate a transition between two different traffic states, are equal to the slopes of the lines 
connecting the two traffic states in Figure 1. For example, the slope of the line connecting 
traffic state 1 to traffic state 2 in Figure 1 is the speed of the shockwave between the 
uncongested state 1and the congested state 2, hence the speed of the tail of the queue. 

As derived in Yperman (2007), if at time instant t an exiting vehicle traversed the link 
completely under free-flow conditions, then it holds that 

( ) 0.a
a a

a

LU t V t
γ

 
− − = 

 
 (11) 

If there is congestion anywhere on the link, this value is greater than zero. By taking the time 
derivative of Equation (11), we can formulate the following relationship (again assuming 
free-flow conditions): 

( ) .a
a a

a

Lv t u t
γ

 
= − 

 
 (12) 

Furthermore, if at time instant t an entering vehicle is facing a queue that has reached the 
beginning of the link (e.g., spillback occurs), then it holds that 

( ) 0.a
a a a a

a

LU t V t K L
ω

 
− − − = 

 
 (13) 

In other cases, this value is smaller than zero. Taking the time derivative of Equation (13), the 
following relationship (assuming spillback occurs): 

( ) .a
a a

a

Lu t v t
ω

 
= − 

 
 (14) 

The flow rate that potentially could leave link a at time instant t, also referred to as the 
sending flow rate, denoted by ( ) ,as t  is equal to ( )av t  given by Equation (12) during free-
flow conditions, and is equal to the capacity aQ  in case of congestion (anywhere on the link). 
Therefore, we can compute the sending flow rates as 

( )
( )

( )

, if  0,

, if  0.

a a
a a a

a a
a

a
a a a

a

L Lu t U t V t
s t

LQ U t V t

γ γ

γ

    
− − − =    

    = 
  − − >   

 (15) 

The flow rate that could enter the link at time instant t, also referred to as the receiving flow 
rate, denoted by ( ) ,ar t  is equal to ( )au t  given by Equation (14) during spillback conditions, 
and is equal to the capacity aQ  in case there is no spillback. Therefore, we can compute the 
receiving flow rates as 

( )
( )

( )

, if  ,

, if  .

a a
a a a a a

a a
a

a
a a a a a

a

L Lv t U t V t K L
r t

LQ U t V t K L

ω ω

ω

    
− − − =    

    = 
  − − <   

 (16) 
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The sending flow rate in Equation (15) equals the inflow rate exactly /a aL γ  (the free-flow 
travel time) earlier if there is no congestion, and is equal to the capacity in case of congestion. 
The receiving flow rate in Equation (16) equals the outflow rate exactly /a aL ω  (the time for 
the wave to reach the beginning of the link) earlier if the queue is blocking back, and is equal 
to the capacity otherwise. As an example, consider again Figure 2.  For all 2t t<  and 6 ,t t>  
the sending flow rate is ( ) ( )/ ,a a a as t u t L γ= −  while ( )a as t Q=  for 2 6.t t t< <  The receiving 
flow rate is ( ) ( )/a a a ar t v t L ω= −  for all 3 5 ,t t t< <  while ( )a ar t Q=  for 3t t<  and 5.t t>   

These sending and receiving flow rates are merely potential outflow and inflow rates. The 
actual flow rates depend also on the upstream and downstream links, as determined by the 
node model, which will be discussed next.  

3.5 Node model: Transition flow rates 
The sending and receiving flow rates are flows that would eventuate in case no constraints are 
put on these flows. However, the sending flow rate is for example constrained by the 
receiving flow rate of the next link. In general, the sending flow rates will be constrained by 
intersections where multiple flows come together. A node model is therefore required to 
determine the actual flow rates in each direction, also referred to as transition flows.  

First, we have to decompose the sending flow rates into different directions. The proportion of 
inflow into link a that follows path p can be computed as 

( ) ( )
( )

.ap
ap

a

u t
t

u t
ξ =  (17) 

The proportion of the inflow rate into link a that is travelling in the direction of link b is then 
given by the sum of the path-specific flow rates for which link b is the next link,   

( ) ( ),ab bp ap
p

t tϕ δ ξ=∑  (18) 

where bpδ  is a link-route incidence indicators that equal one if link b is part of route p, and 
zero otherwise. These splitting proportions ( )ab tϕ  can also be used to decompose the traffic 
flow rates at the end of the link. Consider a vehicle that exits link a at time instant t. Then we 
can determine the time instant that this vehicle has entered the link, denoted by ( ) ,a tθ  by 
solving ( )( ) ( )a a aU t V tθ =  (since in Newell’s model the first-in-first-out condition, FIFO, 
holds). Therefore, we can apply the splitting proportions ( )( )ab a tϕ θ  to the sending flow rates 
to obtain the directional sending flow rates, ( ) ,abs t  namely, 

( ) ( )( ) ( ).ab ab a as t t s tϕ θ=  (19) 

In this paper we will use the demand-proportional node model proposed in (6) to directly 
determine the transition flows to each of the directions. More sophisticated, often iterative and 
more time-consuming, node models could be used, see e.g., Tampère et al. (2011). The actual 
(directional) transition flow rates from link a to link b, denoted by ( ) ,abg t  can be determined 
from the sending and receiving flow rates as in (see Bliemer, 2007): 

( ) ( ) ( ){ }min ,1 ,ab ab ag t s t tζ= ⋅   with  ( )
( ){ } ( )out

in

| 0
min .

a ab

b

b
a

b A s t a b
a A

Qt
s t

ζ
′

′

′

′∈ > ′ ′
′∈

 
 

=  
 
 
∑

 (20) 

where in
bA  is the set of links upstream of link b, and out

aA  is the set of links downstream of 
link a.  

Using these transition flow rates, the flow rate that actually flows out of link a at time instant t 
is  
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( ) ( )
out

,
a

a ab
b A

v t g t
∈

= ∑  (21) 

and the path-specific link outflow rate is given by 

( ) ( )( ) ( ).ap ap a av t t v tξ θ=  (22) 

3.6 Travel times 
The link travel time for vehicles entering link a at time instant t, denoted by ( ) ,a tτ  can due to 
the FIFO condition easily be derived from the cumulative inflows and outflows by solving 

( ) ( )( ).a a aU t V t tτ= +  (23) 

In other words, we can calculate the link travel times as 

( ) ( )( )1 .a a at V U t tτ −= −  (24) 

The actually experienced route travel time when departing at time instant t, ( ) ,p tτ  can be 
calculated by recursively adding the appropriate link travel times on the path, 

( ) ( )( ) ( ) ( ) , where  is the previous link on path ,
, with 

, otherwise.
a

p ap a a a
a

t t a p
t t t

t
τ

τ δ τ η η ′ ′ +
= = 


∑  (25) 

4. Quasi-dynamic network loading 

The flow-rate based dynamic network model as described in the previous section could be 
efficiently solved using an event-based algorithm if the flow rates do not vary (much) over 
time. Assuming a stationary travel demand is one way of achieving this, such that in a simple 
corridor network we can compute the network loading in only a few time steps (events), 
instead if simulating with small time steps (typically 1 to 5 seconds). However, in a general 
network with multiple OD pairs, link flow rates change often, since flows from different 
origins arrive at different time instants at a certain link. Hence, the event-based simulation 
will quickly become computationally inefficient in realistic networks. Therefore, we make the 
additional assumption, similar to static assignment models, that traffic flows propagate 
instantaneously (at least in the free-flowing part of each route) within a single period, 
ensuring that the link flow rates remain largely stationary. Then the event-based network 
loading becomes computationally efficient also on large networks. 

In this section we derive a quasi-dynamic network loading procedure based on an event-based 
algorithm to solve the (dynamic) model presented in the previous section, which will be a mix 
of a static and a dynamic model. Essentially, we make the flow propagation static, but keep 
parts of the queuing principles dynamic, producing much more realistic traffic flows, queues, 
and travel times than the traditional static traffic assignment models.  

Starting from the dynamic model presented in Section 3, we make two ‘static’ assumptions. 
The first assumption is, that the travel demand is stationary for a given time period. In other 
words, we assume an average travel demand for each path, denoted by ,pF  for a single time 
period (we will assume one hour as the basis for the computations; one can reason that in a 
static model it does not matter what the time period is that one assumes, as long as the travel 
demand and capacities are consistent with each other). Secondly, we assume that traffic 
propagates instantaneously through the network, as we essentially consider a single time 
period, and is only held up by bottlenecks. These two assumptions are consistent with 
traditional static traffic assignment models, except for the fact that in our model not all traffic 
will reach its destination at the end of the considered time period, as some traffic may be held 
up at one or more bottlenecks. In the derivations that follow, we first consider the beginning 
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of the time period, that is 0,t =  and then the remainder of the time period, 0.t >  Due to the 
instantaneous flow propagation assumption, at 0t =  traffic flow rates will immediately be 
propagated through the network, but the link inflow rates cannot exceed the link capacities. 
Therefore, inflow rates will be capped by the capacities, and the remaining flow rates will 
again be instantaneously propagated. We call this the squeezing phase of the network loading, 
in which only the flow rates at 0t =  are determined.  Next, for 0,t >  at places where the 
inflow exceeded the capacity, traffic is held up and will be queued. This will be done in a 
dynamic fashion, consistent with the link transmission model in which forward and backward 
shockwaves can occur. We call this the queuing phase, in which the cumulative inflows and 
outflows are determined. The squeezing phase is the static part of the model (for 0t = ), while 
the queuing part is the dynamic part of the model (for 0t > ).  

4.1 Squeezing phase ( 0t = ) 
First, consider time instant 0.t =  Assuming stationary (static) path flows ,pF  we can write 
the flow conservation equation as  

( ) ( )
, if  is the first link on path ,

0 0 , if  is the previous link on path .
p

ap
a p

F a p
u v a p−

−

= 


 (26) 

These path-specific link flow rates can by definition be aggregated to the link flow rates, 

( ) ( )0 0 .a ap
p

u u=∑     (27) 

Since ( )0 0aU =  and ( )0 0aV =  for all links a, no queues exist yet in the network, so the 
sending flow rate at 0t =  will be equal to the inflow rate. Since we assume instantaneous 
traffic flow propagation, there is no time lag /a aL γ  in this inflow rate. The receiving flow 
rate will be equal to the capacity of the link, as no spillback occurs yet at 0.t =  Hence, the 
sending and receiving flow rates of the event-based link transmission model simplify to 

( ) ( )0 0 ,a as u=    and   ( )0 .a ar Q=  (28) 

Using these sending and receiving flow rates, the transition flow rates in the node model can 
be simplified to  

( ) ( ) ( ){ }0 0 min 0 ,1 ,ab ab ag s ζ= ⋅    

with  ( )
( ){ } ( )out

in

| 0 0
0 min ,

0a ab

b

b
a

b A s a b
a A

Q
s

ζ
′

′

′

′∈ > ′ ′
′∈

 
 

=  
 
 
∑

  and  ( ) ( )δ=∑0 0 .ab bp ap
p

s u  
(29) 

The link outflow rate is the sum of the transition flow rates in any direction out of the link. 
The path-specific outflow proportions are equal to the path-specific inflow proportions. 
Hence,  

( ) ( )
out

0 0 ,
a

a ab
b A

v g
∈

= ∑    and   ( ) ( )
( ) ( )

0
.

0
ap

ap a
a

u
v t v t

u
=  (30) 

The system of equations (26) – (30) defines the squeezing phase, and results in a solution in 
which at 0t =  all link inflow rates into each link are determined, taking capacity constraints 
into account. The resulting path-specific link inflow rates ( ) ,apu t  obtained through Equation 
(26), are input into the queuing phase. Note that the above equations are path-based, such that 
a path-based (iterative) algorithm for solving this system of equations will be proposed in 
Section 5.1. 
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4.2 Queuing phase ( 0t > ) 
Now let us look at the traffic flows for time instants 0.t >  Since we assumed instantaneous 
flow propagation in the squeezing phase, queues will start building up in front of all 
bottleneck links at 0.t =  Using the equations in the link and node models from the event-
based link transmission model, see Sections 2.4 and 2.5, these queues may spillback to 
upstream links, and thereby also block outflows of other links, creating forward shockwaves. 
This may lead to some queues disappearing again over time, as the inflow decreases. This 
whole dynamic process is kept intact in the quasi-dynamic model we propose here. 

The number of events will increase each time a shockwave hits the beginning or end of a link, 
therefore events may spread out over the entire network. In heavily loaded networks this may 
lead to an explosion of events being created. Even though the computations remain local for 
each event, the exponentially increasing number of them may make it computationally 
infeasible. Therefore, in the algorithm described in the next section we will not add 
shockwaves when the change in the inflow or outflow rate of a link is very small. The path-
based event-based algorithm for solving the queuing phase will be proposed in Section 5.2.  

5. Algorithms 

In this section we present algorithms for solving the squeezing and queuing phases of the 
model that were previously described. 

5.1 Algorithm for the squeezing phase 
In the squeezing phase, we perform a normal network loading according to some given path 
flows, however, we cut off all path flows that exceed a link capacity. In contrast to other 
quasi-dynamic traffic assignment models, this algorithm is completely path-based (instead of 
link based using split proportions), which guarantees that upstream bottlenecks always have 
the correct effect on downstream flows. A simple algorithm would be to put the first path 
flow on the network, then the next, etc., and whenever one of the link inflows exceeds 
capacity, block that link from path flows to enter. However, such an algorithm would be 
sensitive to the order in which paths are processed, such that path flows from OD pairs that 
are processed in the beginning could be passing through all links, while the last path flows 
that are processed may all be blocked. This result is unwanted and therefore we will propose a 
smarter algorithm in which such an ordering problem does not occur. One way to avoid it is to 
conduct an incremental assignment, in which in each increment all path flows are considered 
simultaneously, and within an increment the processing order does not matter since we choose 
the increments in such a way that no blocking occurs within an increment, only between 
increments.  

While fixed increments of the path flows, say 5%, have been proposed by Bundschuh et al. 
(1996), this may be both inefficient and inaccurate. It may be inefficient because no link 
blockings may happen until for example 70% of the flow is assigned, therefore the increment 
of 5% may be too small. On the other side, it may be inaccurate, as some links may have only 
a little bit of capacity left, and adding 5% of the path flows may exceed the link capacity, 
therefore the increment of 5% may be too large. We propose to use varying increments that 
can be large when possible, and can be small when required. To be more precise, we compute 
the increments in such a way that the capacity of the link that is closest to capacity will just 
reach its capacity. Looking back at the previous increment and the impact that had on the link 
inflow rates, we can predict which link is expected to next reach its capacity, and accordingly 
adapt the next increment. It may be that in the next iteration the link that was expected to 
reach its capacity does not reach it due to blocking of path flows through an upstream link 
that got blocked in the previous increment. Hence, the increment we determine can be too 
small (loosing efficiency), but is never too large (keeping accuracy). When the link does reach 
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capacity, for the next increment this link will be termed ‘blocked’ and no more path flows 
will be able to enter (and exit), thereby cutting off some path flows.  

The first increment is computed somewhat differently. First, all path flows are loaded to the 
network without any capacity constraints (like a traditional static traffic assignment). Then the 
link with the highest inflow/capacity ratio is determined, say 1.4, Then the first increment will 
be 1/1.4 = 71%, which guarantees that no path flows need to be blocked in this first 
increment. 

The algorithm terminates when 100% of all path flows have been loaded onto the network. 
Due to space limitations we cannot give a detailed description of the algorithm, but a flow 
chart of the squeezing algorithm is given in Appendix A. 

5.2 Algorithm for the queuing phase 
Since we are using an event based algorithm for the queuing phase (consistent with the link 
transmission model), we need to find the time instants in which there is a change in the inflow 
or outflow rate of a link. For each link we will keep track of their events. We first note that 
the node model in Equation (20) determines the (directional) link outflow rates depending on 
sending and receiving flow rates from connecting links, while the link inflow rates are 
determined from the link outflow rates in a straightforward fashion. Therefore, only when the 
sending or receiving flow rates change, there will be an event. Thus the algorithm comes 
down to determining the time instants at which there is such a change. The sending flow rates 
in Equation (15) only change when either the state of the link changes from free-flow to 
congestion (or vice versa), or when the (past) inflow rate has changed. The receiving flow 
rates in Equation (16) only change when the state of the link changes from spillback to no 
spillback (or vice versa), or when the (past) outflow rate has changed. By just keeping track of 
these traffic states and changes in inflow and outflow rates, we can exactly compute these 
time events for each link.  

The time instants for the above mentioned four events can quite easily be determined. The 
simplest ones are the events generated by past changes in inflow and outflow rates. Let ( 1)

u,
i
at −  

and ( 1)
v,
i
at −  denote the time instants (of the ( )1 thi −  events of link a) at which the inflow and 

outflow rate changed for the last time, respectively.  Then according to Equation (15) the 
sending flow rate is expected to change at time instant ( ) ( 1)

u, u, / .i i
a a a at t L γ−= +  Similarly, 

according to Equation (16) the receiving flow rate is expected to change at 
( ) ( 1)
v, v, / .i i

a a a at t L ω−= +  Note that we use the word ‘expected’, as this change will occur when no 
other events before this time occur. If there are other events before these time instants, it may 
be that the event time has to be adapted, or the event may not even occur at all. Therefore, we 
keep track of a list of future events (per link) and update them when needed.  

Now we will derive the time instants for events in which there is a change of traffic state, 
which are slightly more complicated. Since ( )aU t  is piece-wise linear between time instants 

(0) (1) ( 1)
u, u, u,, , , ,i

a a at t t −  we can write 

( )
( ) ( )( )
( ) ( )( )

( 1) ( 1) ( 1) ( 1) ( )
u, u, u, u, u,

( 1) ( 1) ( 1) ( 1)
u, u, u, u,

, if  ,  for 1 ,

, if  .

j j j j j
a a a a a a a

a i i i i
a a a a a a

U t u t t t t t t j i
U t

U t u t t t t t

− − − −

− − − −

 + − ≤ < ≤ <= 
+ − ≥

 (31) 

Similarly, it holds that ( ) ( ) ( )( )( 1) ( 1) ( 1)
v, v, v,

j j j
a a a a a aV t V t v t t t− − −= + −  when ( 1) ( )

v, v,
j j
a at t t− ≤ <  (1 j i≤ < ) 

or  ( ) ( ) ( )( )( 1) ( 1) ( 1)
v, v, v,
i i i

a a a a a aV t V t v t t t− − −= + −  when ( 1)
v, ,i

at t −≥ where ( 1)
v,
i
at −  denotes the time instant 

in which the outflow rate changed for the last time.  

Assuming stationary inflow and outflow rates ( )( 1)
u,
i

a au t −  and ( )( 1)
v, ,i

a av t −  the time instant ( )
u,
i
at  at 

which the state changes from spillback to no spillback (or vice versa) on link a can be 
computed by solving ( ) ( )( ) ( )

u, u, / ,i i
a a a a a a a aU t V t L K Lω− − =  yielding 
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( ) ( ) ( ) ( )( )
( ) ( )

( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
u, v, u, u, v, v,( )

u, ( 1) ( 1)
u, v,

/
,

i j i i j j
a a a a a a a a a a a a a ai

a i j
a a a a

K L U t V t u t t v t t L
t

u t v t

ω− − − − − −

− −

− + + − +
=

−
 (32) 

where ( 1) ( ) ( )
v, u, v,/ /j i j

a a a a a a at L t t Lω ω− + ≤ < +  for 1 .j i≤ ≤  Furthermore, it needs to hold that 
( ) ( 1)
u, u, .i i

a at t −≥  In case this last condition does not hold, the time instant found in Equation (32) 
can be ignored, as no spillback is expected to occur under the current stationary inflow and 
outflow rates.  

At the downstream side of the link, the time instant ( 1)
v,
i
at −  at which the state changes from free-

flow to congestion (or vice versa) on link a can be computed by solving 
( ) ( )( ) ( )

v, v,/ 0,i i
a a a a a aU t L V tγ− − =  yielding 

( ) ( ) ( )( ) ( )
( ) ( )

( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
u, v, u, u, v, v,( )

v, ( 1) ( 1)
v, u,

/
,

j i j j i i
a a a a a a a a a a a ai

a i j
a a a a

U t V t u t t L v t t
t

v t u t

γ− − − − − −

− −

− − + +
=

−
 (33) 

where ( 1) ( ) ( )
u, v, u,/ /j i j

a a a a a a at L t t Lγ γ− + ≤ < +  for 1 .j i≤ ≤  Furthermore, it needs to hold that 
( ) ( 1)
v, v, .i i

a at t −≥  In case this last condition does not hold, the time instant found in Equation (33) 
can be ignored, as free-flow conditions are expected to remain under the current stationary 
inflow and outflow rates. 

The time instants stated in Equations (32) and (33) will be added to the event lists for each 
link, together with the events triggered by changed in inflow and outflow rates. All these 
(predicted) events will be time-sorted for each link, and the algorithm will work 
chronologically through these events over all links. The algorithm will terminate at the end of 
the (one hour) time period.  A detailed presentation of the algorithm is beyond the scope of 
this paper, but for the interested reader an outline of the algorithm is presented in Appendix B, 
where state I refers to free-flow, state II refers to congestion but no spillback, and state III 
refers to a congested state with spillback.  

5.3 Computation of link travel times 
The (average) link travel times can be computed from the cumulative inflow and outflow 
curves of each link. Observing that the link travel times can be derived from the horizontal 
distance between the cumulative inflow and outflow curve, the total travel time spent on the 
link by all vehicles that have entered the link can therefore be determined by the surface 
between the two curves (which is a straightforward computation, as the cumulative curves are 
piece-wise linear). This travel time includes the delay experienced by travellers in the queue. 
When we divide this total travel time by the total number of inflowing vehicles, we obtain the 
average link travel time.  

6. Case studies 

In this section we present two case studies. The first case study will be a simple corridor 
network with multiple bottlenecks, illustrating how the model works. The second case study 
will be on a realistic network of the city of Amsterdam, in which we focus on computational 
efficiency.  

6.1 Simple corridor network 
Let us first consider a simple 7-link corridor network as depicted at the top of Figure 3, in 
which we have 1, 2, 3, and 4-lane road segments, where we assume each lane has a capacity 
of 2,000 veh/h, and the travel demand into the corridor is given by an inflow of 4,400 veh/h. 
Each link is assumed to have the same length (3 km), maximum speed (80 km/h), jam density 
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(170 veh/km) and the same wave speed (15 km/h). Given the travel demand and the network 
supply, we expect a queue to form upstream links 2 and 6.  

In the squeezing algorithm, the most critical link will be link 6, with a inflow/capacity ratio of 
4,400/2,000 = 2.2, yielding an initial increment of 1/2.2 = 45.5%. Link 6 will be blocked, and 
the next critical links are links 2 and 5. The second increment will also be 45.5%, blocking 
links 2 and 5, and the third and final increment will be such that 100% of the travel demand is 
loaded onto the network.  

The link inflow rates from the squeezing phase are then transferred to the queuing phase. 
Starting at 0,t =  a queue will build up upstream links 2 and 6. At time t = 0.195 (h) the queue 
on link 5 will spillback to link 4, spilling back further to link 3 at t = 0.645. In this case, only 
2 event time instants had to be determined. Note that the queuing speed on link 3 is lower 
than the queuing speed on link 4, which is in turn lower than the queuing speed on link 5. The 
speed inside the bottlenecks is the speed at capacity. The (average) travel times on link 1 
through link 7 are (in hours): 0.089, 0.038, 0.121, 0.268, 0.227, 0.038, and 0.038, 
respectively, where 0.038 is the free-flow travel time.  

The final outcome of our STAQ model is depicted in the bottom picture of Figure 3, where 
the thickness of the flow shows the inflow rate (at each cross-section), and the colour 
indicates the speed (green represents high speeds, red low speeds). For comparison, we also 
show the outcomes of the other models that were discussed in the introduction. Clearly, 
STAQ provides much more realistic outcomes with respect to the location of the queues, the 
speeds on the different road segments, and consequently also with respect to the resulting 
travel times.  

 

 

Figure 3:  STAQ outcome on corridor network and comparison 
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6.2 Amsterdam network 
In order to illustrate an application on a larger more realistic network, we implemented the 
algorithms in Matlab and used the OmniTRANS toolbox of Matlab to interact with the GUI 
and databases of OmniTRANS. The travel demand and network supply are taken from a study 
in which a tactical dynamic model of Amsterdam was built using the dynamic traffic 
assignment model StreamLine in OmniTRANS. It consists of a total travel demand of almost 
100,000 vehicles per hour, and the network has 279 zones, and about 77,000 links, see Figure 
4.  

We found that in these larger networks, the number of increments in the squeezing algorithm 
can be quite high (with sometimes extremely small increments) when we would like to have 
all exact increments, yielding long computation times. In order to decrease the number of 
increments, we added a minimum increment of 2%. Hence, when possible the exact increment 
can be large, but when very small increments are computed, we require a minimum of 2% in 
order to limit the number of increments needed. In this case, we may exceed the link capacity 
by at maximum 2%, hence the results become only slightly less accurate. This decreased the 
number of increments in our case by approximately 50%. 

In this case study we mainly focus on the computationally efficiency of our STAQ network 
loading algorithm by comparing it to computation times of a standard network loading 
algorithm (using BPR functions) within a single (route choice) iteration. 

 
 

Figure 4:  STAQ outcome on Amsterdam network 
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We also found that the number of events in the queuing phase may increase exponentially 
each time a forward or backward shockwave (generated by changing link inflow and outflow 
rates) reaches the end of the link and spreads to the adjacent links. The changes in flow are 
often very minor, such that we added another rule that skips an event if the inflow or outflow 
rate of a link does not change more than 1% compared to the previous time the rate was 
changed. This significantly reduces the number of events while limiting the error in the link 
flow rates to at maximum 1%.  

Further, our new method (with the above mentioned techniques to limit the number of 
increments and events) seems 8 to 10 times slower than the traditional method (per iteration), 
mainly due to the squeezing phase and to a lesser extent the queuing phase, as this last phase 
is performed more locally instead of network wide. Although this is a significant increase in 
the computation time for a static traffic assignment, it is still much less than running a true 
dynamic model (with typical time steps of a few seconds), and provides much more realistic 
traffic patterns. It therefore seems to fill the current gap between static and dynamic models.  

It is important to point out that we have not yet investigated the route choice convergence 
when applied in an iterative procedure. It could be that more iterations are necessary for 
reaching convergence compared to traditional static assignment. This topic is part of current 
ongoing research. 

7. Conclusions 

In this paper we have proposed a new static (or: quasi-dynamic) network loading technique to 
be used in static traffic assignment, that follows a realistic fundamental diagram and is 
therefore able to predict more accurate speeds in the queues. The capacity restricts the inflow 
of the link and therefore queues will correctly build up upstream the bottleneck links. The 
queuing densities are typically lower than the jam densities considered in the other quasi-
dynamic model approaches, such that the queue lengths will be longer.  

Comparing our results with the Beckmann and extended Beckmann approach clearly shows 
that flows following our approach fall in between the two Beckmann approaches. The flows 
following from Beckmann are too large (not constrained enough), while the flows from 
extended Beckmann are too small (too much constrained). Further, low speeds and delays 
occur not in the bottleneck links, but upstream the bottleneck links. 

We believe that this new approach is a major improvement over current static network 
loading models, and fills the gap with the much more elaborate dynamic (simulation based) 
network loading models. Comparing the computational efficiency with the traditional static 
procedures, our quasi-dynamic approach requires roughly 10 times more computation time, 
which is significantly longer, but still much faster than many existing dynamic simulators 
(taking roughly 100 times more computation time). 

Two main research directions have been identified. First, this paper has only dealt with the 
network loading part and deriving path travel times, and not with the route choice component. 
The rate of convergence of the traffic assignment with a quasi-dynamic loading is still to be 
investigated. Secondly, the methodology presented in this paper also opens the door for 
possibly fast event-based dynamic network loading procedures, which is a subject for future 
research. 

 

 

 

 



Quasi-dynamic network loading:  Adding queuing and spillback to static traffic assignment 
Bliemer, Brederode, Wismans & Smits 

 

17 
 

References 

4Cast (2009) Qblok_2004: toedelingsprocedure LMS/NRM. (in Dutch; working report) 

Beckmann, M.J., C.B. McGuire, and C.B. Winsten (1956) Studies in economics of 
transportation, Yale University Press, New Haven CT, USA. 

Bifulco, G. and U. Crisalli (1998) Stochastic user equilibrium and link capacity constraints: 
formulation and theoretical evidences. Proceedings of the European Transport Conference 
1998. 

Bliemer, M.C.J. (2007) Dynamic queuing and spillback in an analytical multiclass dynamic 
network loading model. Transportation Research Record 2029, pp. 14-21. 

Bliemer, M.C.J. and P.H.L. Bovy (2003) Quasi-variational inequality formulation of the 
multiclass dynamic traffic assignment problem. Transportation Research Part B, Vol. 37, pp. 
501-519. 

Bundschuh, M., Vortisch, P. and T. Van Vuuren (2006) Modelling queues in static traffic 
assignment. Proceedings of the European Transport Conference 2006. 

Chen, H.-K, and C.-F. Hsueh (1998) A model and an algorithm for the dynamic user-optimal 
route choice problem. Transportation Research Part B, Vol. 32(3), pp. 219-234. 

Daganzo, C.F. (1994) The cell transmission model: a dynamic representation of highway 
traffic consistent with hydrodynamic theory. Transportation Research Part B, Vol. 28(4), pp. 
269-287. 

Daganzo, C.F. (1995) The cell transmission model, Part II: network traffic. Transportation 
Research Part B, Vol. 29(2), pp. 79-93. 

Daganzo, C. (1998) Queue spillovers in transportation networks with a route choice. 
Transportation Science, Vol. 32(1), pp. 3-11. 

Janson, B.N. (1991) Dynamic traffic assignment for Urban Road Networks. Transportation 
Research Part B, Vol. 25(2/3), pp. 143-161. 

Larsson, T. and M. Patriksson (1999) Side constrained traffic equilibrium models – analysis, 
computation and applications. Transportation Research Part B, Vol. 33, pp. 233-264. 

Lighthill, M.H., and G.B. Whitham (1955) On kinematics II: a theory of traffic flow on long, 
crowded roads. Proceedings of the Royal Society of London, Series A, No. 299, pp. 317-345. 

Nesterov, Y. And A. De Palma (2000) Stable dynamics transportation systems. Proceedings 
of the European Transport Conference 2000. 

Newell, G.F. (1993) A simplified theory of kinematic waves in highway traffic, Part I: 
General theory, Part II: Queuing at freeway bottlenecks, Part III: Multi-destination flows, 
Transportation Research Part B, Vol. 27, pp. 281-313. 

Nie, Y., Zhang, H. and D. Lee (2004) Models and algorithms for the traffic assignment 
problem with link capacity constraints. Transportation Research Part B, Vol. 38, pp. 285-
312. 

Ran, B., D.E. Boyce, and L.J. LeBlanc (1993) A new class of instantaneous dynamic user-
optimal traffic assignment models. Operations Research, Vol. 41(1), pp. 192-202. 

Richards, P.I. (1956) Shockwaves on the highway. Operations Research, Vol. 4, pp. 42-51. 

Tampère, C.M.J. , Corthout, R., D. Cattrysse and L.H. Immers (2011) A generic class of first 
order node models for dynamic macroscopic simulation of traffic flows, Transportation 
Research Part B, Vol. 45, pp. 289-309. 



Quasi-dynamic network loading:  Adding queuing and spillback to static traffic assignment 
Bliemer, Brederode, Wismans & Smits 
 

18 
 

Wardrop, J.G. (1952) Some theoretical aspects of road traffic reseach. Proceedings of the 
Institute of Civil Engineers, Part II, pp. 325-378. 

Xu, Y.W., H. Wu, M. Florian, P. Marcotte, and D.L. Zhu (1999) Advances in the continuous 
dynamic network loading problem. Transportation Science, Vol. 33(4), pp. 341-353. 

Yperman, I. (2007) The Link Transmission Model for Dynamic Network Loading. PhD 
Thesis, Katholieke Universiteit Leuven, Belgium. 

 



Quasi-dynamic network loading:  Adding queuing and spillback to static traffic assignment 
 Bliemer, Brederode, Wismans & Smits 

 

19 

Appendix A:   Outline of the squeezing algorithm 
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Appendix B:  Outline of the queuing algorithm 
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