

INSTITUTE of TRANSPORT and
LOGISTICS STUDIES
The Australian Key Centre in
Transport and Logistics Management

The University of Sydney
Established under the Australian Research Council’s Key Centre Program.

WORKING PAPER

ITLS-WP-18-21

General solution scheme for the
Static Link Transmission Model

By
Mark P.H. Raadsen1 and Michiel C.J.
Bliemer1

1Institute of Transport and Logistics Studies (ITLS), The
University of Sydney Business School, Sydney

November 2018

ISSN 1832-570X

NUMBER: Working Paper ITLS-WP-18-21

TITLE: General solution scheme for the Static Link Transmission
Model

ABSTRACT: Until the present day most static traffic assignment models are
neither capacity constrained nor storage constrained. Recent
studies have resulted in novel approaches that consider capacity
constraints and sometimes storage constraints. We build upon
the results of these works and the model formulated in our
companion paper Bliemer and Raadsen (2018a) which
comprises a static assignment model formulation that is both
capacity constrained as well as storage constrained. The
formulation of this model is derived from a continuous time
dynamic network loading model proposed in Bliemer and
Raadsen (2018b). The prospect of being able to capture spillback
effects in static assignment provides new opportunities for
making this modelling method more capable. It is well known
that the absence of spillback typically results in significant
underestimation of path travel times. This is especially true for
paths that do not traverse bottleneck(s) directly, but that are
affected by the space occupied of queues that are spilling back.
Similar to Smith (2013) and Smith et al. (2013), Bliemer and
Raadsen (2018a) did not provide a solution algorithm. In this
paper, we take their model formulation and propose a general
solution scheme suitable for large scale networks.

KEY WORDS: Network loading, static traffic assignment, link transmission
model, storage capacity, capacity constrained, network
modelling, strategic transport planning

AUTHORS: Raadsen, Bliemer

Acknowledgements: -

CONTACT: INSTITUTE OF TRANSPORT AND LOGISTICS STUDIES
(H73)

The Australian Key Centre in Transport and Logistics
Management

The University of Sydney NSW 2006 Australia

Telephone: +612 9114 1813

E-mail: business.itlsinfo@sydney.edu.au

Internet: http://sydney.edu.au/business/itls

DATE: November 2018

http://sydney.edu.au/business/itls

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

1

1 Introduction

Transport planning models are the most widely used method to forecast (future) traffic conditions on
transport networks. They can broadly be categorised in three distinct categories based on their planning
horizons. Strategic planning methods concerned with long term predictions, i.e. typically spanning 5 or
more years into the future. This in contrast to operational planning approaches which look at short-term
forecasts, ranging from a few hours to a few months. Tactical planning methods bridge the gap between
strategic and operational models. Because strategic transport planning models adopt a long planning
horizon, their forecasts are inherently subject to significant uncertainties. The adopted modelling techniques
reflect this in the sense that they typically adopt a more aggregate approach than their short-term
counterparts, mainly because it makes little sense to try and capture micro-effects such as vehicle
acceleration, lane choice, and/or driver heterogeneity in this context. Consequently, traditional static
assignment models still dominate this application area, even though their inception stems from the 1950s.

Traditional static assignment models based on the seminal work of Beckmann et al. (1956) have a number
of appealing properties that suit strategic transport planning very well. They guarantee the existence and
uniqueness of – equilibrium based – approaches when adopting a strictly monotone (increasing) cost
function, also known as a link performance function. The readily available solution algorithms are
computationally attractive compared to other more sophisticated assignment methods, and results, in terms
of link flows and path costs, are easy to interpret due to the lack of an endogenous time dimension. However,
the reasons that make this method so attractive are also its biggest drawback. While mathematically elegant,
the traditional static assignment model is in many ways unrealistic compared to how traffic flow behaves.
Its most notable drawbacks are: (i) the model allows link flows to exceed link capacities making the model
capacity restrained, rather than capacity constrained. Therefore, queues that should form due to a lack of
supply (in reality) are absent in this model. (ii) The adopted link performance functions cannot capture
travel time based on – nor are they consistent with - queue formation. Instead, they estimate delay based on
the v/c ratio, i.e. the ratio between flow (volume) and capacity. The resulting travel times are therefore not
consistent with traffic flow theory for all but uncongested conditions. (iii) Link performance functions
require additional calibration for their physically infeasible component (when flow exceeds capacity) which
is both a time-consuming exercise and inherently inaccurate. (iv) Traditional static models capture delays
inside the bottleneck rather than in front of the bottleneck, resulting in the delay being imposed in the wrong
location. (v) Because queues are not modelled, spillback effects where queues grow beyond a link’s
available storage space, are not considered. Therefore, this model is not storage constrained either.

To get around some of these limitations alternative model formulations have been proposed over the last
few decades, a discussion of which is to be found in Section 2. However, it has proven difficult to
incorporate support for spillback in a static context. Yet, the importance of being able to capture spillback
effects is readily apparent. Not doing so typically results in underestimation of path travel times. This is
most obvious for travellers who are delayed due to queues that spill back but do not traverse any of the
bottleneck(s) directly. In the absence of spillback effects this delay is not accounted for. In our companion
paper Bliemer and Raadsen (2018a) a mathematical model formulation for a static model that does consider
spillback is proposed. As far as the authors are aware, the only other static models attempting to capture
spillback are found in Smith et al. (2013) and Smith (2013). However, in their work, they assume a stable
queue that is not a result of the considered steady-state flow rates, necessitating the assumption that their
(stable) queue originates from an unmodelled preceding period. In our work, the queues are consistent with
the steady-state flow rates obviating the need to “choose” the queue, it simply follows from the link inflow
and outflow rates.

1.1 Original contributions
Similar to Smith (2013) and Smith et al. (2013), Bliemer and Raadsen (2018a) do not provide a solution
algorithm for their mathematical model formulation. In this study we propose a general solution scheme
for this model that is suitable for general networks. This is the main contribution of this work. The resulting
algorithm solves the static network loading problem capable of capturing spillback, i.e. is storage
constrained, does not allow flows to exceed capacity, i.e. is capacity constrained, does not utilise link
performance functions but adopts a Fundamental Diagram (FD) based approach, and places queues in front
of bottlenecks instead of in them by incorporating a node model. This solution scheme is termed the Static
Link Transmission Model (sLTM). It can be regarded as the static equivalent within the family of (dynamic)
link transmission models that exist in the literature, even though the proposed solution scheme bears no
resemblance to the existing dynamic LTM solution methods.

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

2

In some ways, the results of this study can be regarded as an extension to the point queue model formulation
(and solution scheme) originally presented in Bliemer et al. (2014). There are however two major
differences. First, the model in Bliemer et al. (2014) does not capture spillback effects, allowing for a far
simpler solution method, mainly because traffic flow interactions only occur in a downstream direction
through path flow propagation. By introducing spillback effects, new complex interactions occur via
upstream propagating queues. Now an average steady-state solution with both forward and backward
interaction effects needs to be constructed such that they are consistent with the underlying FD and model
formulation. This is a far from trivial exercise as will become clear in the remainder of the text. Second,
the novel model formulation can be relaxed to reduce to the special case that is the model in Bliemer et al.
(2014). However, the resulting – simplified - solution algorithm is more capable than the original algorithm
proposed in Bliemer et al. (2014) because it solves previously unsolvable networks as demonstrated via a
special – rare - case where multiple solutions exist.

1.2 Assumptions and outline
To keep a clear focus, we make the following simplifying assumptions in the remainder of this work: (i)
we only consider network loading, i.e. path flows are assumed known and given such that path choice,
mode choice and/or departure time choice remain exogenous, (ii) we only consider a single user class, i.e.
private vehicles, (iii) queue formation is conditioned on the prevailing link inflow and outflow rates, (iv)
steady-state traffic flow is assumed to be consistent with a two-regime FD, and (v) intersections are
modelled through a first order node model in which we do not consider signals.

This study is organised as follows: In Section 2 we discuss the current state of the literature with respect
to capacity and/or storage constrained network loading models, followed by the model formulation of
sLTM in Section 3. Section 4 describes the rationale behind the solution scheme that is being proposed. In
Section 5 we demonstrate that a simplified version of this scheme can be regarded as a more capable
version of the point-queue solution algorithm of Bliemer et al. (2014). We then proceed to discuss the
base solution algorithm by including storage constraints in Section 6. Sections 7 and 8 introduce the two
model extensions required to solve general networks. Parameter calibration and a conceptual comparison
to existing static models is the topic of Section 9, while the large scale Gold Coast case study is discussed
in Section 10. Conclusions and future research comprise the last section of this work. If the reader is
mainly interested in implementing the proposed solution method, we kindly refer him/her to Appendix D,
where we provide the full algorithm, including the extensions.

2 Capacity and storage constrained network loading in
the literature

In this section we discuss the literature from two perspectives, the perspective where traditional static
models are extended to incorporate additional features and the perspective where dynamic models – which
already consider capacity and storage constraints - are simplified to yield static equivalents.

Early extensions to the traditional static model formulation introduced additional capacity constraints to the
optimisation formulation, examples of which can be found in (Shahpar et al., 2008; Nie et al., 2004; Larsson
and Patriksson, 1995; Yang and Yagar, 1994; Hearn, 1980). The resulting constrained optimisation
problems were typically solved using penalty-based solution methods (inner penalties, outer penalties) or
Lagrange multipliers. These models yield flows that no longer violate a link’s physical capacity, but also
do not actively withhold excess flows and instead reroute them to other links. In such models the inflow
rate still equates to the outflow rate and queues are not considered. Lam and Zhang (2000) and Bifulco and
Crisalli (1998) were among the first to explicitly model residual queues. Lam and Zhang withhold excess
flows on so called shadow links, while Bifulco and Crisalli (1998) consider a stochastic user equilibrium
setting and adopt an iterative solution scheme to solve their model. An early operational static approach
with capacity constraints is found in Hungerink (1989), but this method lacks insight in any of the
underlying model properties and is therefore difficult to assess. These methods extend or build upon the
traditional modelling paradigm where both queues and/or delays emerge only within bottlenecks and
storage constraints remain unconsidered. The only methods underpinned by a mathematical model and that
do consider storage constraints are found in Smith (2013) and Smith et al. (2013), but unlike the model
proposed in our companion paper, their queue formation is not consistent with the adopted flow rates, nor
do they provide a solution algorithm for general networks. Further, there exist a few algorithm driven static

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

3

(and/or semi-dynamic1) models that do consider spillback (Davidson et al., 2011; Bundschuh, 2006; Bakker
et al., 1994; van Vliet, 1982; Hall et al., 1980), but due to their algorithmic nature little is known about the
underlying model properties similar to their non-storage constrained counterparts, and they also place
queues inside bottlenecks.

Recently, novel static model formulations are proposed that are directly derived from existing dynamic
modelling approaches. This has the benefit that (dynamic) model features such as capacity and storage
constraints can be transferred to the static context. One of the main motivations to do so is the fact that
static models yield a single average result as a solution, while dynamic models do not. This coarser result
dimension simplifies analysis and is a good fit with respect to applications that mainly consider long-term
traffic forecasts. In such applications the time varying aspect of dynamic models is of less importance but
being able to capture the effects of capacity and storage constraints are still desired. The first static
assignment method to be derived explicitly from a dynamic model is found in Bliemer et al. (2014), as was
demonstrated in Bliemer and Raadsen (2018b). This model incorporates a first order node model ensuring
that residual queues emerge in front of bottlenecks instead of inside them. This type of model is gaining
traction in applications as well, recent examples of which can be found in Brederode et al. (2018), or
Tajtehranifard et al. (2018). However, the model proposed in Bliemer et al. (2014) is a point queue model
and as such does not yet consider storage constraints. Another interesting method is proposed in Himpe et
al. (2016) which is effectively the dynamic link transmission model, but one can adjust the discretised time
step size beyond the commonly restricting Courant, Friedrich and Lewy (CFL) conditions (Courant et al.,
1928), which is achieved by conducting an iterative solution scheme. Hence, choosing a step size equal to
the entire period should theoretically result in a static model result, although the model is clearly not
formulated with this purpose in mind and might not solve either under such an extreme configuration.

3 Methodology and model formulation

Let us now briefly reiterate the original model formulation and the necessary notation required to discuss
the sLTM solution scheme. For a more in-depth discussion of the model formulation we refer the interested
reader to our companion paper (Bliemer and Raadsen, 2018a).

3.1 Network and Fundamental diagram
Consider transport network (,),G N A with links a∈A and nodes .n∈N Each link has a length a [km],
maximum speed max

aϑ [km/h], maximum throughput, i.e. capacity, max
aq [veh/h], and maximum density,

also known as jam density jam
ak [veh/km]. We adopt a general concave two-regime concave FD. The FD

has an uncongested branch (I) where density increases with increasing flow, and a congested branch (II)
where density increases with decreasing flows. Density [veh/km] is denoted via inverse flux functions

1 1
, ,(), (),I a a II a aq q− −Φ Φ for the uncongested and congested branch respectively, with flow rate [veh/h] denoted

by max[0,],a aq q∈ see Figure 1(a). We utilise these inverse formulations because they allow us to formulate
the model in terms of flow rates rather than densities.

Figure 1: (a) General concave two-regime fundamental diagram, with an uncongested branch and congested branch,

(b) Quadratic-Linear (QL) fundamental diagram, (c) Triangular fundamental diagram.

Having two regimes, or branches, allows one to adopt specific functional forms of the FD for each branch
separately. For example, one can construct a Quadratic-Linear form (Bliemer and Raadsen, 2018b;
Smulders, 1987, 1990) as depicted in Figure 1(b), or the popular triangular FD (Newell, 1993). Even link

1 In these semi-dynamic models consider multiple time slices, where each time slice is modelled via a static assignment
procedure which has some form of interaction with its neighbouring period(s) by means of transferring demand and/or
residual queues between consecutive periods.

q

0

max
aq

1()I q−Φ 1()II q−Φ

Uncongested
branch

Congested
branch

flo
w I II

0

max
aq

I IIjamk

density0

max
aq

I II

()a ()b ()c

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

4

performance functions can be considered as a special type of FD. In that case the congested branch becomes
non-existent because density only increases with increasing flows, again highlighting why such an approach
is inconsistent with how (congested) traffic flow operates.

3.2 Network loading
Analogous to most contemporary dynamic models, the network loading consists of a link model and a node
model. The link model is responsible for the propagation of traffic flows along a homogeneous road section,
i.e. link, while the node model distributes the incoming traffic flows, obtained from the link model, across
the available outgoing links’ capacities at intersections. Because we explicitly consider queue formation,
we distinguish link inflow rates, denoted au [veh/h] from link outflow rates, denoted av [veh/h].
Consequently, the portion [0,1]aα ∈ of accepted flow is given by .a

a

v
u In traditional static models,

1,a aα = ∀ ∈A since .a au v= In our approach this is no longer necessarily the case.

3.2.1 Link Model
Travel occurs between origins and destinations via paths. Origin-destination pairs are captured via w∈W
such that any path p connecting an origin to a destination is defined through ,wp∈P with overall path set

.w
w∈

=
W
P P Given that we only consider network loading, desired path flows are assumed known and
given via , .pf p∀ ∈P Further, path incidence indicator apδ yields zero if link a is not on path p and one
otherwise. Link set apA contains all links preceding link a on path .p The link model is then formulated
as follows:

, with , , ,a

a
ap

v
ap ap p a a u

a

u f a pδ α α
′∈

= = ∀ ∈ ∀ ∈∏
A

A P (1)

, ,a app
u u a

∈
= ∀ ∈∑ P A (2)

where the link-path inflow rate apu [veh/h] depends on the preceding path links and their acceptance factors.
The construction of α depends on the node model function, denoted ().nΓ ⋅

3.2.2 Node model
The node model function distributes competing sending flows []

n
n a a

s −∈
=s
A

 [veh/h] from node n its
incoming links na −∈A over outgoing links , .na n+∈ ∈A N It does so conditional on the available receiving
flows []

n
n b b

r +∈
=r
A

 [veh/h] on the aforementioned outgoing links. The splitting rates
,

[]
n n

n ab a b
ϕ − +∈ ∈

=φ
A A

convert the link sending flows to turn sending flows. Hence, the implicit (general) node model function’s
input and outputs are defined as follows:

1 , , ,
aab bp ap n nu p

u a b nϕ δ − +
∈

= ∀ ∈ ∀ ∈ ∀ ∈∑ P A A N (3)

,
(,) (, ,), [] , [] , [] , [] , [] ,

n n n n n n
n n n n n n n b n a n a n b n abb a a b a b

u v s r ϕ+ − − + − +∈ ∈ ∈ ∈ ∈ ∈
=Γ = = = = =u v s r φ u v s r φ
A A A A A A

 (4)

where for any node ,n∈N the node model yields the incoming links’ accepted outflows nv and the
outgoing links inflows ,nu respectively. We make no assumptions on what node model function is adopted
except for the fact that we assume it is compliant with a first order macroscopic node model following the
conditions outlined in Tampère et al. (2011).

3.2.3 Link and node model interaction
Interaction between the link and node model occurs by transforming the (outgoing) link inflow rates to
(downstream) sending flows. Because this is a static model and flow propagation is instantaneous, the
sending flow is identical to the inflow rate and is only restricted by the link capacity. Receiving flows are
constructed based on the link outflow rates, the available storage capacity, and are similarly bounded by
the link capacity as well, via:

maxmin{ , }, ,a a as u q a= ∀ ∈A (5)
1 max1
,min{ (), }, .a a a II a a aTr v v q a−= + Φ ∀ ∈A (6)

It is Equation (6) that makes this model storage constrained. The fact that the available receiving flow
depends on the link’s outflow rate results in an interdependency between the downstream and upstream

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

5

propagation of flows and queues. This dependency is a direct result of the derivation of this formulation
from a dynamic model. In a dynamic context this interaction takes time to propagate due to the endogenous
time dimension. Here however, the interactions are instantaneous and the time dimension is only used for
scaling via 1 ,T where T [h] denotes the simulation duration. Intuitively, this equation is best interpreted as
follows: the possible receiving flow must be larger or equal than the link’s outflow rate av due to the
conservation of vehicles. At the same time, the congested density on the link – in case of an explicit queue
- is given by 1

, ().II a av−Φ Therefore, the maximum number of vehicles on the link in spillback conditions, i.e.
the storage capacity is given by 1

, ().a II a av−Φ To make sure a link - with outflow rate av - that is in spillback
has as many vehicles on the link as its storage capacity dictates, it must hold that the inflow rate equates to
the receiving flow, and the receiving flow must exceed the outflow rate by exactly the storage capacity
which in turn must be scaled by the simulation duration.

4 Solution scheme concept

The network loading model in equations (1)-(6) can be formulated as a fixed-point problem via the flow
acceptance factor vector .α Bliemer and Raadsen (2018b) demonstrated this through (), [] .a aα ∈= Ψ =α α α A
In their formulation, Ψ denotes the implicit (composite) self-mapping function. However, to introduce the
reader to the rationale behind the proposed solution scheme it is preferable to provide a slightly modified
fixed point formulation by decomposing the flow acceptance factor into its two original components, i.e.
the inflow and outflow rates respectively. The resulting self-mapping is graphically depicted in Figure 2.

Figure 2:Self-mapping of inflow/outflow rates and the composition of variables (and node model function) involved,

including the relevant equation references.

Due to the instantaneous propagation of flows, the link model is a straightforward conversion of desired
path flows to link inflows. Instead, the complexity is found in the node model function where each of the
three inputs independently influences the incoming links’ outflows and outgoing links’ inflows. A naïve
solution approach would be to construct initial inflows and outflows which lead to the initial node model
inputs, then conduct a node model update, which lead to updated inflows and outflows, which lead to
updated node model inputs etc. etc., to the point convergence is reached. This approach would be in line
with a basic iterative fixed-point algorithm. This is the method adopted in Bliemer et al. (2014) for solving
their capacity constrained point queue model without storage constraints where max , .a ar q a A= ∀ ∈
However, because the receiving flow is fixed there is relatively little instability in the system and therefore
this naïve method works in all but some very rare cases, see also the next section. However, it was quickly
found that when one considers explicit storage constraints, i.e. the receiving flow become dependent on the
outflow, such that this solution scheme no longer suffices because it often does not converge due to flip-
flopping. Significant additional effort is needed to address the instabilities caused by the - network wide -
upstream and downstream interactions. These interactions are exacerbated by the static nature of the model
because they all occur instantaneously unlike in dynamic models where there is an endogenous time lag.

In dynamic traffic assignment, some solution algorithms fix the splitting rates ,ϕ either temporarily or
during the whole simulation, even though this leads to (temporal) inconsistencies with the path flows
(Raadsen et al., 2016; Gentile, 2010). The benefit however, is found in a more stable model that solves
more quickly. Following this line of thought, we propose to decompose the original fixed-point problem
into two separate fixed-point problems, denoted (), (),I= Ψ = Ψs s r r

respectively. The first fixed point sub-

problem ()= Ψs s

 is responsible for the downstream (forward) propagation consistency of inflow

ϕ

s

r

()Γ ⋅

u

v

α

Link model

Node model

(1) (2), (3)

(5)

(6)

(4)

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

6

rates/sending flows conditional on the adopted node model. This first sub-problem adopts temporarily fixed
splitting rates and receiving flows. The second fixed point sub-problem ()I= Ψr r

 is responsible for the

upstream (backward) propagation consistency of outflow rates/receiving flows conditional on the adopted
node model. This second sub-problem adopts fixed splitting rates and sending flows. The fact that these
two sub-problems are again fixed-point problems is graphically illustrated in Figure 3(b) and (d).

Figure 3: Decomposition of problem in two interconnected fixed point sub-problems, (a) and (c) connect the two fixed
point problems via a path splitting rate update, (b) downstream propagation fixed point sub-problem, (c) upstream
propagation fixed point sub-problem. Non-fixed variables highlighted in red (box).

Each sub-problem solution captures either updated inflow rates or outflow rates which in turn are used to
update the splitting rates before continuing to the next sub-problem, as shown in Figure 3(a) and (c). It is
worth noting that the update of splitting rates does not require an iterative process. The splitting rates follow
from the path-based network loading procedure of (1) after the new flow acceptance factors have been
computed. Hence, there is no involvement of the node model that causes a feedback loop. Clearly, this
decomposition adds complexity to the solution algorithm, but it is needed to increase the stability of the
(sub-)algorithm(s) such that we no longer experience the non-convergence one suffers when trying to solve
the network loading problem. In the remainder of this work we further explore this solution approach,
discuss the implementation, and justify its design choices, starting with how this solution scheme is both
more general and more capable when it is deployed – in simplified form - to solve the point-queue model
of Bliemer et al. (2014).

5 Point queue model

In a static point queue model, the steady-state inflow rates can exceed steady-state outflow rates. If so an
explicit queue results which can grow infinitely without spilling back onto the upstream link boundary
because max , .a ar q a= ∀ ∈A Therefore, the steps in Figure 3(c) and (d) drop out. Instead, the sending flow
update yields new inflows and outflows which in turn provide updated splitting rates, but only after local
convergence has been reached. This, as shown in Figure 4(a), is different from the original solution
algorithm in Bliemer et al. (2014) who propose an all-in-one iterative feedback loop in which both splitting
rates and sending flows/inflows are updated simultaneously, as per Figure 4(b). Here, demand, network and
paths are all symmetric, with the two paths each having a demand of 1000 veh/h. To find a solution, they
initialise the flow acceptance factors aα at 1 allowing all flow to pass through initially. Then a node model
update is conducted. Here, only the two diverge nodes downstream of links 1 and 4 are affected by a lack
of supply. They adopt the well-known diverge node model of Daganzo (1995) to distribute the sending
flows via:

ϕ

u

v

α
(1)

(2), (3)

ϕ

s

r

()Γ ⋅

u (5)

(4)

s

r

()Γ ⋅

v

α ϕ

s

r

()Γ ⋅

v
(6)

(4)

α

u

ϕ

u

v

α
(1) (2), (3)

s

r

()Γ ⋅

()a

()b

()c

()d

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

7

max

min 1, .
n

b
a a n

b
a ab

q
v s a

s ϕ+

−

∈

= ∈

 A
A (7)

Figure 4: (a) Simplified ‘two-step’ point queue version of our proposed solution approach temporarily fixing splitting
rates, and (b) original ‘one-step’ fixed point solution scheme proposed in Bliemer et al. (2014). Non-fixed variables

highlighted in red (box).

In their original approach, the authors acknowledge that their solution scheme can lead to flip-flopping and
non-convergence illustrated by their original example which we depict in Figure 5(a).

Figure 5: (a) non-converging example as per Bliemer et al. (2014), (b) which does solve utilising our simplified

algorithm yielding the depicted symmetric solution.

As a result 250

1 4 10002000 500v v= = ⋅ = and based on (1) we find updated flow acceptance factors of
1

1 4 4 .α α= = However, since each path traverses both links 1 and 4, each path’s flow is affected by both
factors. Hence, the path flow is first reduced from 1000 250 at the first bottleneck and reduced further
from 250 62.5 at the second bottleneck. As a result, the inflows/sending flows on the final link of each

ϕ

u

v

α
(1) (2), (3)

ϕ

s

r

()Γ ⋅

u (5)

(4)

s

r

()Γ ⋅

v

α

()a

ϕ

s

r

()Γ ⋅

u (5)

(4)

v

α

()b

(1) (2), (3)

A

BA’

1000

1000

B’

max
2 250q =

max
5 250q =

max
1 2000q =

max
4 2000q =

max
6q = ∞

max
3q = ∞

4
1
2

α =

1
1
2

α =750

750

(a)

(b)

A

A’

1000

B1000

B’

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

8

path drop below the available capacity. Therefore, in the next iteration, the updated flow acceptance factors
revert to their initial value and no solution can be found due to flip-flopping.

5.1 Solution scheme
As mentioned, we propose to avoid the above described non-convergence by temporarily fixing the splitting
rates while searching for a consistent sending flow-based (intermediate) solution. By doing so, an overall
solution to the above problem - which can alternatively be rewritten to 1

1 4 4α α = - is found quickly.
Initialisation is outlined in Algorithm 1. As before, no flow is initially withheld such that all inflows,
outflows and sending flows equate to the summation of the desired path link inflows.

Algorithm 1: Point queue initialisation procedure.
Initialisation

(a) Initial link exit flow acceptance factors, 0 1, .a aα = ∀ ∈A
(b) Initial in/outflows via network loading, , with , .a a ap ap ap pp

v u u u f aδ
∈

= = = ∀ ∈∑ P A
(c) Initial sending and receiving flows, max, , .a a a as u r q a= = ∀ ∈A
(d) Set iteration number 1.i =
(e) Continue to 1(b).

We then conduct path-based network loading conditional on the current flow acceptance factors, yielding
link inflows. The new (path-based) link inflows provide updated splitting rates as shown in Algorithm 2,
this constitutes the splitting rate update step of the algorithm.

Algorithm 2: Point queue splitting rate update through network loading.
Step 1 - splitting rate update

(a) Update inflows via network loading, 1, ,
pa

i
ap ap p aa

u f a pδ α −
′′∈

= ∀ ∈ ∀ ∈∏ A A P.
(b) Update splitting rates, 1 , with , , .

aab bp ap a apu p p
u u u a bϕ δ

∈ ∈
= = ∀ ∈∑ ∑P P A

(c) Continue to Step 2(b).

The sending flow update that follows – and is described in Algorithm 3 - is an iterative (fixed-point) process
that terminates upon convergence. Its increased stability is due to the splitting rates remaining fixed.
Convergence, is tested via a configurable ε [-]. This internal iterative procedure does not rely on path-
based network loading, but instead conducts local node model updates conditional on the splitting rates.
This propagates flows through the network by updating each node’s outgoing link inflows which then
determine the sending flows of its subsequent downstream node(s).

Algorithm 3: Point queue sending flow update.
Step 2. sending flow fixed point – lock splitting rates

(a) Update link inflows via node model, (,) (, ,), .n n n nn n n= Γ ∀ ∈u v s r φ N
(b) Update sending flows, maxmin{ , }, .a a as q u a= ∀ ∈ A
(c) Verify local convergence, 1

a aa
H s s

∈
= −∑
A A

 and set , .a as s a= ∀ ∈ A
(d) If H ε> return to Step 2(a), otherwise continue to overall convergence check.

Overall network loading convergence is verified by comparing the previous’ iteration flow acceptance
factors with the updated values. If not converged, a new iteration is started until convergence has been
reached as illustrated through Algorithm 4.

Algorithm 4: Point queue overall convergence check.
Verify overall convergence

(a) Update flow acceptance factors, { }min 1, .a

a

vi
a uα =

(b) Verify overall convergence, 11 .i i
a aa

H α α+
∈

= −∑A A
(c) Increment iteration index : 1.i i= +
(d) If not converged return to Step 1(a), else done, i.e. .H ε<

To illustrate that this method is able to solve the example, let us consider the results in Table 1, where we
provide each algorithm step for each of the first three iterations. We only consider links 1-3 as the results

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

9

of link 4-5-6 are identical due to symmetry. Highlighted entries - in grey - reflect a change compared to a
variable’s previous value.

Table 1: First three iterations of solving the previously non-converging example first discussed in Bliemer et al. (2014).

Iteration Step Description Variable Links
1 2 3

1i =

Init

acceptance factors 0α 1 1 1
receiving flows r max

1q = ∞ 250 max
3q = ∞

network loading:
 Inflows/sending flows s u v= = 2000 1000 1000

1 splitting rates ϕ 1000 1
1,2 1,3 2000 2 ϕ ϕ= = =

2

node model: outflows v 500 250 250
 sending flows s u= 2000 250 250
node model: outflows 500 250 250
 sending flows2 s s u= = 1250 250 250

 acceptance factors 1α 500 2
1250 5= 1 1

2i =

1
network loading: inflows u 1400 100 400
splitting rates 400 1000 52

1,2 1,31400 7 1400 7, ϕ ϕ= = = =

2

node model: outflows 875 250 625
 sending flows 1250 250 625
node model: outflows 875 250 625
 sending flows s s u= = 1625 250 625

 acceptance factors 2α 875 7
1625 13= 1 1

3i =

1
network loading: inflows 1538.46 289.94 538.46
 splitting rates 538.46 7 1000 13

1,2 1,31538.46 20 1538.46 20, ϕ ϕ= = = =

2

node model: outflows 714.28 250 464.29
 sending flows 1625 250 464.29
node model: outflows 714.28 250 464.29
 sending flows s s u= = 1464.29 250 464.29

 acceptance factors 3α 714.29
1464.29 0.49≈ 1 1

4i = … … … … … …

As can be seen the flow acceptance factors quickly converge towards the symmetric and intuitively logical
solution of 1

1 4 2 .α α= = When the gap is chosen such that 610ε −= the algorithm terminates after 12
iterations, yielding point queues as depicted in Figure 5(b).

6 Capacity and Storage constraint model

Let us now discuss the full solution method by introducing storage constraints. To do so, we first provide
a base solution scheme demonstrating the feasibility of our approach for a simple corridor network.

6.1 Flow acceptance factor decomposition
Before discussing the receiving flow and additional splitting rate update steps as depicted in Figure 3(c)
and (d), we first provide an alternate formulation for flow acceptance factor aα where without loss of
generality we can state ,a

aa
β
γα = with and , ,a a

a a

v u
a ar r aβ γ= = ∀ ∈A where we decompose aα into a flow

capacity factor [0,1]aβ ∈ and storage capacity factor [0,1],aγ ∈ respectively. Besides our findings that
this increases the flexibility in the solution method, this separation also provides a more meaningful insight
in the state of the link. Whereas aα only provides an indication whether a link is congested when 1aα <
or uncongested when 1,aα = we can now distinguish a range of different traffic states. When 1aγ = for
example, the inflow is constrained by the receiving flow such that the link is in spillback, with the notable
exception when 1,aβ = in that case the link is at capacity flow. Further, when 0 a aγ β< < the link is in
congestion, but not spilling back, while when both factors are zero the link is empty, see also Table 2. We

2 Whenever we reach final (local) result we do not depict next internal iteration with identical results.

v

ϕ
v

s u=
v

u
ϕ
v

s u=
v

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

10

refer the reader to Appendix A for an updated visual depiction of the (conceptual) solution scheme replacing
Figure 3, incorporating these two newly introduced factors.

Table 2: Link traffic states identified by (used) storage capacity factor aγ and (used) flow factor ,aβ respectively.

 Flow capacity factor

St
or

ag
e

ca
p.

 fa
ct

or

 0aβ = 0 1aβ< < 1aβ =

0aγ = No flow - -

0 1aγ< <

Congestion, no
spillback, no
outflow

a aγ β< a aγ β=

- Congestion, no
spillback, non-
zero outflow

No congestion

1aγ = Spillback, no
outflow Spillback, non-zero outflow Capacity flow

Using this alternative definition of the flow acceptance factor, the network loading in (1) is replaced by the
following mathematically equivalent formulation:

, with where and , .
ap

a a a
ap ap p a a a a

a a a a

v u
u f a p

r r
β

δ α α β γ
γ′∈

= = = = ∀ ∈ ∀ ∈∏
A

A P (8)

6.2 Base solution scheme with storage constraints
The storage constraint solution scheme largely follows the initialisation, splitting rate, sending flow, and
convergence criterion steps discussed in the previous section, i.e. Algorithms 1-4. To avoid repeating
ourselves, we only discuss changes to existing algorithm components when needed. Two steps are added
to ensure that storage constraints - consistent with (6) - are accounted for. First, another splitting rate update
is conducted after the sending flow update. After that the - now variable - receiving flows are updated while
temporarily fixing the splitting rates and sending flows. The full base solution algorithm is provided in
Appendix B for the reader’s convenience.

The changes required with respect to Algorithms 1-4 are minimal and mostly stem from the proposed
decomposition of the flow acceptance factor, they comprise: (i) receiving flows are no longer initialised at
capacity, but are conditioned on the initial outflow consistent with (6), (ii) network loading is conducted
based on (8), replacing (1) and therefore the iteration specific flow acceptance factor i

aα is replaced by i
aγ

and , ,i
a aβ ∀ ∈A accordingly, (iii) after the inflows/sending flows are found, we construct .a

a

ui
a rγ =

Similarly, i
aβ becomes the result of the newly added receiving flow update step discussed in Section 6.2.2.

6.2.1 Splitting rate updates
After finding a (local) solution for the sending flows, one could attempt to immediately proceed with
updating the receiving flows instead conducting another network loading/splitting rate update as proposed
here, recall Figure 3(c). One could even argue that this would be a ‘more natural’ approach since each of
the main variables, , , ,a s as r ϕ then conducts exactly one update before repeating the procedure. However,
we found this to be a suboptimal approach which often failed to converge, especially on large(r)-scale
networks. The underlying reason, is likely due to the receiving flows being constructed based on splitting
rates that are inconsistent with the sending flows because they have been constructed based on previous’
iteration results. To avoid this, splitting rates should be updated whenever new information regarding either
the inflows/sending flows or outflows/receiving flows is available. Therefore, we instead update splitting
rates after the inflow/sending flow update as well as after the outflow/receiving flow update. This way, the
sending flow and receiving flow sub-algorithms utilise up to date splitting rates while enjoying the added
stability of temporarily fixing all but one of the node model inputs.

6.2.2 Receiving flow update
While the sending flow update is responsible for the forward propagation of inflows/sending flows, the
receiving flow update conducts the backward propagation of queues by updating the outflow/receiving
flows. For example, when the outflow of a link changes, its upstream receiving flow changes as well, as

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

11

per (6). Therefore, the upstream node’s outflow might change which in turn affects its incoming links’
receiving flows etc. The resulting fixed-point algorithm is provided in Algorithm 5.

Algorithm 5: Receiving flow update.
Step 4 - receiving flow update – lock splitting rates and sending flows

(a) Update link outflows via node model, (,) (, ,), .n n n n nn n= Γ ∀ ∈v s φu r N
(b) Update receiving flows, { }max 11, () , .a a a a II aTr q v v a−= + Φ ∀ ∈A
(c) Verify local convergence, 1

a aa
H r r

∈
= −∑A A and set , .a ar r a= ∀ ∈ A

(d) If not converged, i.e. ,H ε> return to 4(a)
(e) Update betas, , .a

a

vi
a r aβ = ∀ ∈A , continue to overall convergence check

The outflows provided by the node model are utilised to iteratively find a consistent solution with respect
to the receiving flows. Once this solution is found, the flow capacity factors ,i

a aβ ∀ ∈A are updated which
serve as the (partial) input for both the overall convergence check as well as the next splitting rate update.
The result is a symmetric approach where each of the two internal fixed points serve one of the two
propagation directions that need to be considered, separated by the distribution of these entities through
intermediate splitting rate updates.

Let us illustrate how this algorithm works by considering the single path corridor network depicted in Figure
6. Depending on the adopted network loading model we find either no queues in Figure 6(a), point queues
in Figure 6(b), or physical queues through sLTM in Figure 6(c).

Figure 6: Corridor network, (a) traditional static assignment result, (b) point queue result following Section 5, (c)

capacity and storage constrained result for the static link transmission model.

We adopt a triangular FD with jam 180ak = [veh/km] and max
4 1800,q = max

3 3600,q = and max
1 2 5400q − =

[veh/h]. In this simple example, the number of vehicles in both the point queue and physical queue model
are identical, except for the fact that in the physical queueing model the queue takes up space and spills
back as would happen in reality.

The steps to find this solution are outlined in Table 3. It is worth noting that we can easily identify that links
2 and 3 move to spillback, link 1 is merely congested, and link 4 is at capacity flow just by looking at the
storage and flow capacity factors at the end of iteration 2. Further, in iteration 1, we see how the receiving
flow first decreases on link 3, i.e. 3 2385,r = reducing link’s 2 outflow rate accordingly, in turn reducing
the link 2 receiving flow, i.e. 2 3349,r ≈ forcing a reduction on the outflow on link 1. In other words, the
receiving flow update indeed propagates information in the upstream direction in contrast to the sending
flow update which propagates sending flows downstream.

Table 3: Constructing the static link transmission model solution for the corridor network in Figure 6(c).

Iteration Step Description Variable Links

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

12

1 2 3 4

1i =

Init

acceptance factors
0

0
β
γ

α =
0

0
1
1 1β

γ
= =

receiving flows r 4520 4520 3600 1800
inflows/sending flows s u v= = 4000 4000 4000 4000

1 splitting rates3 ϕ 1

2 node model: outflows v 4000 3600 1800 1800
 sending flows4 s s u= = 4000 4000 3600 1800

 storage capacity factors 1 u
rγ = 4000

4520 0.88≈ 4000
4520 0.88≈ 3600

3600 1= 1800
1800 1=

3 acceptance factors
0

1
β
γ

α = 1.13 1≈ → 1.13 1≈ → 1 1
network loading: inflows u 4000 4000 4000 4000

4

node model: outflows v 4000 3600 1800 1800
receiving flows r 4520 4230 2385 1800
node model: outflows v 4000 2385 1800 1800
receiving flows r 4520 3349.13 2385 1800
node model: outflows v 3349.13 2385 1800 1800
receiving flows r r= 4048.12 3349.13 2385 1800
flow capacity factors 1 v

rβ = 3349
4048 0.83≈ 2385

3349 0.71≈ 1800
2385 0.75≈ 1800

1800 1=

 acceptance factors
1

1
β
γ

α = 0.93≈ 0.80≈ 0.75≈ 1

2i =

1 network loading: inflows u 4000 3739.53 3009.21 2271.1

2

node model: outflows 3349.13 2385 1800 1800
 sending flows s s u= = 4000 3349.13 2385 1800

storage capacity factors 2 u
rγ = 4000

4048 0.99≈ 3349
3349 1= 2385

2385 1= 1800
1800 1=

3 acceptance factors
1

2
β
γ

α = 0.84≈ 0.71≈ 0.75≈ 1

 network loading: inflows u 4000 3349.13 2385 1800

4
node model: outflows v 3349.13 2385 1800 4000
receiving flows r r= 4048.12 3349.13 2385 1800
flow capacity factors 2 v

rβ = 1800
2385 0.75≈

 acceptance factors
2

2
β
γ

α = 0.84≈ 1

7 Extension 1: Supporting overlapping alternative
routes with spillback

The solution algorithm presented in the previous section can solve the sLTM on a simple corridor. However,
it does not suffice as a general-purpose solution method yet due to the complexities of capturing spillback
under instantaneous flow propagation. Consider the example network in Figure 7(a), where

max1, 4, 100, .a aT aϑ= = = ∀ ∈A Also, the maximum density is 180 veh/km/lane with all links having four
lanes, except for link 2 which has only 1 lane. The network has one low capacity route, i.e. an older
motorway through the city centre, and two identical high capacity routes (with equal demand), i.e. two
newly built motorways around the city centre. The three paths merge on link 5 with the total demand
exceeding the supply on that link.

Of interest is the merge node which distributes the sending flows 2 3 4, , ,s s s respectively across the available
supply. Assuming the merge node model proposed in Daganzo (1995) where we choose the priority of each
incoming link based on its capacity, in line with Tampère et al. (2011), we find, as depicted in Figure 7(b),
that only on link 2 a queue starts to form. Based on (6) we initially find that on average this link also spills
back. It spills back because the storage capacity is reduced due to the reduced outflow which in turn puts a
restriction on the receiving flow which now exceeds the initial inflow. Hence, the diverge node on the
upstream border of link 2 reduces the flow into link 2, but due to the First-In-First-Out (FIFO) principle of

3 We do not depict any further updates of splitting rates as they remain one due to corridor structure.
4 Whenever we reach final (local) result we do not depict next internal iteration with identical results.

v

3349
4048 0.83≈ 2385

3349 0.71≈ 1800
1800 1=

0.71≈ 0.75≈

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

13

the model this also reduces the flows into links 3 and 4 with the same proportion. This results in a queue
withholding flow for all three routes, see Figure 7(c). Consequently, the sending flow offered at the merge
node now drops below the available supply, i.e. 1 2 3 5 ,s s s r+ + ≤ dissipating the queue on link 2 to the point
that it no longer spills back. When this happens, the diverge node’s accepted flows revert to their initial
state causing the queue on link 2 to start growing again etc. etc. In a dynamic setting this causes an infinite
back-and-forth between a growing and shrinking queue state, but in a static model, this (legitimate) back-
and-forth behaviour manifests itself as internal flip-flopping which complicates matters when one tries to
construct a single average solution. Even though this is a very specific example constructed to demonstrate
this behaviour, it should be obvious that this type of situation does occur, albeit possibly through a far more
complex set of interactions than shown here.

Figure 7: (a) example network with continuously growing and shrinking queue due to upstream and downstream
traffic flow interactions, (b) growing queue state before spillback, (c) shrinking queue state when in spillback, (d)

steady-state solution with link 2 in spillback and link 1 in congestion.

Table 4 demonstrates explicitly how the base solution algorithm suffers from the above described
behaviour, switching between a growing and shrinking queue and reverting to the initial sending flows after
three iterations as highlighted in red (link 5 its sending flow is slightly different, but it exercises no influence
on the system).

Table 4: Lack of convergence under unstable conditions utilising the initial sLTM solution algorithm presented in
Section 6.

Iteration Step Description Variable Links
1 2 3 and 4 5

1i =

Init

acceptance factors
0

0
β
γ

α =
0

0
1
1 1β

γ
= =

receiving flows r 7980 1740 4920 7000
inflows/sending flows s u v= = 7500 1500 3000 7500

1 splitting rates5 ϕ 1500 30001 2
1,2 1,3 1,47500 5 7500 5= and =ϕ ϕ ϕ= = =

2 node model: outflows v 7500 1000 3000 7000
 sending flows6 s s u= = 7500 1500 3000 7000

 storage capacity factors 1 u
rγ = 7500

7980 0.94≈ 1500
1740 0.86≈ 3000

4920 0.61≈ 7000
7000 1=

3 acceptance factors
0

1
β
γ

α = 1.06 1≈ → 1.16≈ → 1.64 1≈ → 1
network loading: inflows u 7500 1500 3000 7000

4
node model: outflows v 7500 1000 3000 7000
receiving flows r 7980 1400 4920 7000
node model: outflows v 7000 1000 3000 7000

5 Splitting rates remain constant in this example, so subsequent updates are ignored in this table
6 Whenever we reach final (local) result we do not depict next internal iteration with identical results.

A
3000

A’
max
5 7000q =max

2 2000q =

max
3 8000q =

max
1 8000q =

max
4 8000q =

3 3000s =

4 3000s =

2 2000s =

1 2 3 5s s s r+ + <1 2 3 5s s s r+ + >

()a

()b ()c ()d

3 7000u =

2 742u ≈
2 1108v ≈

1 7366v ≈
1 7500u =

3 3 2946u v= ≈

4 4 2946u v= ≈

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

14

receiving flows r r= 7640 1400 4920 7000
flow capacity factors 1 v

rβ = 7000
7640 0.92≈ 1000

1400 0.71≈ 3000
4920 0.61≈ 7000

7000 1=

 acceptance factors
1

1
β
γ

α = 0.97≈ 0.83≈ 1 1

2i =

1 network loading: inflows u 7500 1462.3 2924.6 7060.83

2

node model: outflows 7000 1000 3000 7000
 sending flows s u= 7500 1400 2800 7000
node model: outflows 7000 1400 2800 7000
 sending flows s s u= = 7500 1400 2800 7000
storage capacity factors 2 u

rγ = 7500
7640 0.98≈ 1400

1400 1= 2800
4920 0.57≈ 7000

7000 1=

3 acceptance factors
1

2
β
γ

α = 0.93≈ 0.71≈ 1.07≈ 1
 network loading: inflows u 7500 1400 2800 6600

4

node model: outflows v 7000 1400 2800 6600
receiving flows r 7640 1672 4784 6946.29
node model: outflows v 7500 1346.29 2800 6600
receiving flows r r= 7980 1635.47 4784 6946.29
flow capacity factors 2 v

rβ = 7500
7980 0.94≈ 1346

1635 0.82≈ 2800
4784 0.59≈ 6600

6946 0.95≈

 acceptance factors
2

2
β
γ

α = 0.96≈ 0.82≈ 1.03 1≈ → 1

3i = 1 network loading: inflows u 7500 1436.1 2872.18 6926.52
 2 node model: outflows v 7500 1346.29 2800 6946.29
 sending flows s s u= = 7500 1500 3000 6946.29

It is important to realise that in reality this scenario is unlikely to ever reach a point with stable flow rates
but there does exist an average steady-state solution to this problem when modelled statically, see Figure
7(d). We leave it to the reader to verify that in this case indeed 1

2 2 2 2 2().IIu r v v−= = + Φ However, to find
this solution we can no longer directly transfer each intermediate result to the next algorithm step. Instead,
a configurable step-size is required which takes a more conservative step in the direction of the suspected
solution. In existing static traffic assignment methods this is common practice with respect to finding
equilibrium (in route choice), the most well-known approach being the Franke-Wolfe algorithm (Frank and
Wolfe, 1956) which determines an optimal step size in each iteration to shift flows from one path to the
other conditional on adopting a strictly monotone and convex cost function. Often, contemporary traffic
assignment methods rely on some form of the Method of Successive Averages (MSA), see for example
Brederode et al. (2018), which is simpler, computationally more attractive, and can also be used when the
underlying objective function does not exhibit attractive mathematical properties. Although in that case the
uniqueness of the result is no longer guaranteed.

Given the highly non-linear nature of our model due to the adoption of a general node model, we are not
able to construct a method that determines an optimal step size. Also, an MSA like method is undesirable
because in our context it often leads to an infeasible result where the averaged storage capacity is for
example not consistent with the averaged outflow rate. In other words, while MSA guarantees convergence
the result might not be a valid solution. Hence, we propose a straightforward fixed step-size applied after
each of the three main algorithm components. The smoothing applied to the splitting rate result after Steps
1 and 3 is given by:

1
1 1: (1) , , ,i i

ab ab ab a bϕ λ ϕ λϕ−= − + ∀ ∈A (9)

where 1 [0,1]λ ∈ is the splitting rate specific fixed step-size and i

abϕ is the smoothed splitting rate.
Subsequently, we conduct smoothing on the result of the sending and receiving flow fixed-point result,
albeit indirectly via the storage capacity and flow capacity factors respectively such that:

1 1
2 2 3 3: (1) , and : (1) , ,a a

a a

u vi i i i
a a a ar r aγ λ γ λ β λ β λ− −= − + = − + ∀ ∈A (10)

with dedicated step-sizes 1 2, [0,1],λ λ ∈ respectively. We deliberately do not smooth the sending and
receiving flows directly because in that case the (non-smoothed) end state of the sending flow update
becomes inconsistent with (the smoothed sending flow of) the start state of the receiving flow update. This

v

v

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

15

inconsistency is avoided when smoothing the factors instead. Calibration of 1 2, ,λ λ and 3λ is discussed in
Section 9. The solution algorithm including smoothing factors is provided in Appendix C for reference.

8 Extension 2: Supporting spillback on general
networks

While the introduction of smoothing improves the likelihood of attaining overall convergence, it does not
improve convergence rates of the internal fixed point sub-steps. With respect to the sending flow fixed
point approach - discussed in Section 5 - this is not an issue as our method improves upon the existing, and
practically applied, method in Bliemer et al. (2014). However, finding a solution for the receiving flow
fixed point is much more difficult for general networks. This difficulty is due to the possibility of a
‘snowball’, or queue multiplication effect where a queue that spills back on one link might generate more
congestion on its upstream links. For example, flows initially not impacted when diverting at the link’s
upstream node are affected once the link moves to a spillback state (whenever FIFO is partially or fully
considered). Hence, a small change in receiving flows in one iteration can lead to a larger change in the
next iteration violating the conditions for a contraction mapping. To avoid this, we a-priori estimate the
extent of this multiplication effect and utilise it to limit the allowed change in receiving flow. In other
words, we aim to avoid that a backward propagating queue - due to spillback - increases in size leading to
non-convergence. To achieve this, we no longer directly update the receiving flow ar based on (6) but
instead ‘intelligently’ nudge it in the right direction as much as possible via:

 { }max 11: , with min , () , ,a
a a a a a a a II aT

a

r
r R r R q v v a

µ
−∆

= − ∆ = − + Φ ∀ ∈A (11)

where ,aR a∈A is the reference flow being nudged, while the magnitude of the desired change - consistent
with (6) - is given by ar∆ [veh/h]. This desired change is then dampened by 1 [0,1],

aµ
∈ resulting in the

nudging aiming to avoid local non-convergence. The benefit of this procedure is found in that we can, a-
priori to the receiving flow fixed point, estimate the queue multiplication factor ,a aµ ∀ ∈A [-] on a per link
basis. Let us illustrate how to construct aµ through the intersection depicted in Figure 8(a). To quantify the
extent of the unwanted queue growth, we require ‘regular’ splitting rates (Figure 8(b)) as well as backward
splitting rates, denoted [0,1].abϕ ∈

 Backward splitting rates determine the portion of flow on the outgoing
link that originated from the incoming link, see Figure 8(c). We compute the backward splitting rates via:

, , .a ab
ab

b

v
a b

u
ϕ

ϕ = ∀ ∈A
 (12)

Now consider the situation that link 3 in the example starts to spill back leading to a reduction of its
receiving flow from 200 to 100, i.e. 3 3 100.u r= = In that case7 1,3 : 50 25,v → Then, due to FIFO and the
conservation of turning fractions the flow on the other turn also halves, i.e. 1,2 : 950 475.v → So, outflow
on link 1 drops from 1000 500→ due to a 25 veh/h reduction on the turn towards link 3. Hence, the queue
multiplies by a factor 20 when propagating upstream from link 3 to 1. Similarly, on link 2, we find a queue
multiplication factor of 2, i.e. 2,3 :150 75,v → hence 2,4 :150 75,v → i.e. the 75 veh/h reduction on the turn
towards 3 results in 150 veh/h reduction on link 2.

7 Assuming the node model function reduces link 1’s outflow proportionally which is a justifiable assumption since it
results in the worst-case multiplication factor.

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

16

Figure 8: (a) Intersection with quantifiable ‘snowballing effect’ on link 1 based on regular and backward splitting

rates., (b) regular splitting rates, (c) backward splitting rates.

We find that the total multiplication factor of queues due to spillback on link 3 is 1
2(500 150) /100 6 ,+ =

which we can alternatively obtain via the two splitting rates, i.e. 1,3 2,3

1,3 2,3

1 1
2 25 1 6 .ϕ ϕ

ϕ ϕ+ = + =

In general, this
multiplication factor is therefore obtained via:

 , , ,
n

ab
b na

ab

b n
ϕ

µ
ϕ−

+
∈

= ∀ ∈ ∀ ∈∑ A A N

 (13)

with [0,1], .a aµ ∈ ∀ ∈A As can be seen in our example, utilising the reciprocal of this multiplication factor
ensures that a desired change of 3 100r∆ = veh/h, results in a reduced propagated change of

1
2

100
3 6200 185r = − ≈ veh/h, and leads to combined additional queues of no more than 100 veh/h in total.

With this adjustment in place receiving flow changes now ‘dilute’ in a similar way to how sending flow
changes decrease when propagating through nodes and being distributed across exit links via splitting rates
as discussed in Section 5.

The price one pays for applying this method is that the resulting fixed-point solution, even though receiving
flows move towards (6), are in fact not (yet) consistent with (6). However, with each global iteration they
move closer until it is considered sufficient based on the chosen gap. This therefore does require more
iterations on a relatively uncongested network, but in congested networks it can avoid non-convergence in
the local receiving flow fixed-point algorithm that otherwise makes it impossible to find a solution. To
embed this procedure in the solution method, (12) and (13) are incorporated in the second splitting rate
update (Step 3) before commencing the receiving flow update, as shown in Algorithm 6.

Algorithm 6: Second splitting rate update including backward splitting rate estimate and multiplication factor.
Step 3 - splitting rate update

(a) Update inflows via network loading,
1

, with , ,
i
a
i

pa a
ap ap p a aa

u f a pβ

γ
δ α α

−

′′∈
= = ∀ ∈ ∀ ∈∏ A A P.

(b) regular splitting rates, 1 , with , , .
aab bp ap a apu p p

u u u a bϕ δ
∈ ∈

= = ∀ ∈∑ ∑P P A
(c) Update smoothed splitting rates, 1

1 1: (1) , , .i i
ab ab ab a bϕ λ ϕ λϕ−= − + ∀ ∈A

(d) Estimate multiplication factor, , with ; , ,
i

ab a ab

b b

v
b ab a a aua

v u bϕ ϕ
ϕµ ϕ α−∈

= = = ∀ ∈∑ A A
 continue to 4(a)

Further, (11) now drives the updated local receiving flow as shown in Algorithm 7. We choose a aR u= for
best performance. This way, when the storage capacity restricts a link’s inflow, the inflow/receiving flow
is nudged towards a (smaller) value consistent with (6), while otherwise the result is nudged towards a
(larger) value8 such that .a ar u≥ The complete solution scheme with both extensions in place is provided
in Appendix D for reference. Finally, observe how the backward splitting rates – which we compute once
before Step 4 - depend on the outflow rates. Given that outflow rates are updated in Step 4, we could
alternatively update the backward splitting rates (and multiplication factor) within the receiving flow fixed
point loop. However, we choose not to do this because (i) it is computationally more expensive, (ii) we
found that an a-priori (fixed) factor solves the local non-convergence issue satisfactorily, and (iii) it defies

8 Alternatively, one can also choose to set aR to the previous’ iteration receiving flow, but in our experience, this more
often leads to non-convergence. We point out that both approaches yield the same result upon convergence because the
inflow/sending flow result is only affected by the receiving flow when the receiving flow is restricting. In this case both
choices for aR lead to the same result consistent with (6).

1

2

3

41,1 50v =

1,2 950v =

2,3 150v = 2,4 150v =

1

2

3

4
1,3

1
20

ϕ =

1,4
19
20

ϕ =

2,3
1
2

ϕ = 2,4
1
2

ϕ =

1

2

3

4

1,3
1
4

ϕ =

1,4
19
22

ϕ =

2,4
3

22
ϕ =

2,3
3
4

ϕ =
3 200u =

4 1100u =

()a ()b ()c

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

17

the design rationale of fixing all but one variable within each step to maximise algorithm stability and
increase the likelihood of convergence within each local fixed-point.

Algorithm 7: Receiving flow update incorporating queue growth dilution method.
Step 4 - receiving flow update – lock splitting rates and sending flows

(a) Update link outflows via node model, (, ,) (, ,), , .i
n n n n n nn b n+= Γ ∀ ∈ ∀ ∈φu v s r A N

(b) Update receiving flows, (){ }max 11 1, with min , () , .
aa a a a a a a II aTr u r r u q v v aµ

−= − ∆ ∆ = − + Φ ∀ ∈A
(c) Verify local convergence, 1

a aa
H r r

∈
= −∑A A and set , .a ar r a= ∀ ∈ A

(d) If not converged, i.e. ,H ε> return to 4(a)
(e) Update smoothed betas, 1

3 3: (1) , .a

a

vi i
a a r aβ λ β λ−= − + ∀ ∈A , continue to overall convergence check

9 Model comparison and parameter calibration

In this section we calibrate the step-size variables introduced in Section 7, i.e. 1 2, ,λ λ and 3.λ We aim to
find a combination of step-sizes which under worst-case conditions find solutions and if they do, do so in
the least amount of time/iterations. A worst-case scenario in this context implies a heavily congested
network that is severely affected by spillback. However, as long as queues only spillback onto upstream
uncongested links, finding a solution is relatively straightforward, recall for example the corridor network
in Section 6. However, once queues spill back to the point that they reach their own origin and start ‘biting
their own tail’, finding a consistent average steady-state solution becomes truly challenging. We point out
that this is not just a hypothetical scenario, it occurs frequently on for example roundabouts, in congested
metropolitan areas, and under non-recurrent traffic conditions such as incidents. It is also a common side-
effect of early iterations of traffic assignment models, when one has only poor estimates of route choice
behaviour. In these conditions, queues that spill back cause circular dependencies that instantaneously (in
our model) affect both upstream and downstream flow rates. We argue it therefore qualifies as an ideal
scenario to test which step-sizes are still viable to use. To construct such a scenario, we utilise a square grid
network of configurable size as depicted in Figure 9.

Figure 9: Generic grid network structure with uni-directional links and XY zones/centroids, A, A’, A’’ etc. Dashed

links are connector links and solid lines represent physical links.

Links have two lanes, adopt a triangular FD, have a capacity max 2 1800 3600,aq = ⋅ = maximum density
jam 2 180 360ak = ⋅ = maximum speed max 50,aϑ = length 1, ,a a= ∀ ∈A except for connector links which

have infinite length to ensure that all demand can enter the network. Simulation duration is set to 2,T =
while the convergence gap is set to a commonly argued acceptable value of 610 .ε −= The node model
function is based on Tampère et al. (2011). Od-pairs are initialised with a random number of trips [0,1],∈
and are (uniformly) scaled up to the point that the network exhibits severe congestion in its centre. We
adopt an All-Or-Nothing (AON) routing strategy where each od-pair only selects a single fastest route to
load its demand on, since we leave the incorporation of route choice for future research.

9.1 Illustrative example of adopting different model types
Before discussing the results of the step-sizes let us illustrate the significant differences in results that can
occur between various static modelling paradigms. For this example we adopt a grid with 100 zones, i.e.
10,000 od-pairs, where 10.X Y= = Under our chosen demand scenario a traditional static model identifies
a number of bottleneck links where demand exceeds capacity, indicated by the red dots in Figure 10(a).
With capacity constraints in place, the point-queue model discussed in Section 5 yields explicit non-spatial

A

A’

A’’

Y

X

X Y⋅

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

18

queues (that do not spill back) in front of the bottleneck links depicted in grey, see Figure 10(b). There are
less bottlenecks in this model since flow is withheld from propagating further when supply is insufficient.
The results of sLTM are depicted in Figure 10(c). Because the (point) queues exceed the storage capacity
on their respective links, it results in queues spilling back when imposing storage constraints. In this highly
saturated example this occurs to the point that they spillback onto their origin causing circular dependencies
in both directions and severe degradation of the network throughput. This is similar to what one would
observe when adopting a dynamic network loading model, only without the explicit time dynamics. It
demonstrates how the inclusion of storage constraints can drastically affect modelling results, providing
benefits in terms of capturing real-world phenomena such as spillback, but bringing with it the complexities
of increased flow interdependencies.

Figure 10: Comparing impact of link saturation in different models, (a) traditional static assignment with bottleneck
links where demand exceeds capacity, (b) capacity constrained point-queue model solution as per Section 5, where
links have physical queues that do not spill back, (c) static link transmission model result, queues do spill back when
exceeding storage constraints.

9.2 Parameter calibration
To calibrate our step-size variables we adopt a similarly congested scenario, only with a larger grid network
comprising 400 zones, i.e. 160,000 od-pairs, where 20.X Y= = Modelling a total of 208,000≈ trips
equating to an average of 1.3 trips per od-pair. We considered the following step-sizes,

1 {0.1,0.25,0.5,0.75,1}λ ∈ for splitting rate smoothing and 2 3, {0.1,0.2, ,1.0},λ λ ∈ for both the sending
flow (applied to storage capacity factor aγ) and receiving flow (applied to flow capacity factor aβ)
smoothing. In total 500 simulations were conducted of which the results are depicted in Figure 11, where
each grid depicts the results for all combinations of 2 3, ,λ λ given some fixed value of 1.λ

Clearly, too aggressive step-sizes lead to non-convergence which is to be expected given our discussion in
Section 7. Non-convergence correlates most with respect to splitting rate smoothing, i.e. 1λ , where it
becomes very difficult to solve for 1 0.5,λ ≥ whereas more aggressive choices for 2 3,λ λ have a
comparatively less detrimental effect. For a conservatively chosen 1λ , i.e. 1 0.1,λ = we can find a solution
irrespective of the values for the other two smoothing variables in this case study. Further, it is also worth
noting that even though we cannot guarantee uniqueness analytically, we found the exact same solution
across all converging step-size combinations. For this particular worst-case scenario, the best result was
found to take 134 iterations 1 2 3(0.1, 0.2, 0.3)λ λ λ= = = equating to 63s≈ of simulation time9, see Figure
11(a). The main takeaway here is that the convergence of the algorithm mainly depends on the extent to
which splitting rates are altered between iterations. When adopting fixed step-sizes we therefore
recommend: (i) a conservative splitting rate step-size 10.1 0.25,λ≤ ≤ (ii) sending flow (storage capacity
factor) step-size 20.2 0.5,λ≤ ≤ and (iii) receiving flow (flow capacity factor) step-size 30.2 0.3.λ≤ ≤

9 All simulations are conducted on Windows 10 with an Intel Xeon E-2186G CPU 3.80GHz (single core execution).
Solution algorithm implemented in Visual Studio C++ (2008 SP1 compiler).

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

19

Figure 11: Iterations needed for convergence with 610ε −≤ on grid network with various splitting rate step-sizes, (a)

1 0.1,λ = (b) 1 0.25,λ = (c) 1 0.5,λ = (d) 1 0.75,λ = and (e) 1 1.λ = Red cells indicate a larger number of iterations
required to solve while green cells require less (no colour means no solution possible or a solution requiring more
than 1000 iterations).

10 Real world Case study

Let us now showcase the suitability of our method on the large-scale real-world network of Gold Coast
(Australia) during a fictitious morning peak period (kindly provided by Veitch Lister Consultancy). An
impression of the network and its characteristics is provided in Figure 12. We should point out that our goal
here is not to equilibrate nor calibrate this model. We merely demonstrate suitability of the solution
algorithm – given the adopted link characteristics - provide insight in to what extent the existence of
congestion and spillback impacts on the difficulty of solving the network and expose possible limitations
of our current implementation.

Figure 12: Gold Coast network characteristics.

We consider demand scenarios with severe spillback where we load the maximum demand as well as
scenarios with some or no congestion at all by uniformly downscaling the maximum demand in incremental
steps. Results are provided in Table 5, and confirm the expectation that when a network moves from largely

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.1

0.2 0.2

0.3 0.3

0.4 0.4

0.5 0.5

0.6 0.6

0.7 0.7

0.8 0.8

0.9 0.9

1 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.1 0.1

0.2 0.2 0.2

0.3 0.3 0.3

0.4 0.4 0.4

0.5 0.5 0.5

0.6 0.6 0.6

0.7 0.7 0.7

0.8 0.8 0.8

0.9 0.9 0.9

1 1 1

()a ()b

()c ()d ()e

134

3λ
2λ

3λ
2λ

3λ
2λ

3λ
2λ

3λ
2λ

958

Infrastructure:
- Links : 11,140 (total length 2,818 km)
- Nodes : 4,675
- Zones : 1,068

Trips:
- Max. AM peak trips : ≈ 139,246
- Paths : 1,104,374 (a-priori generated)

Simulation:
- Duration (𝑇) :1 hour
- FD :Quadratic-Linear
- Route choice : MNL with logit scale parameter of -5

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

20

uncongested to extremely congested, i.e. more links in spillback state, the forward and backward
interactions make it more difficult to find a solution, even with conservative step-sizes.

Table 5: Gold Coast network loading results under various demand levels, where the percentages indicate scaling from
the maximum demand considered.

Demand level 0-30% 40% 50% 60% 70% 80% 90% Max.
Iterations 2 39 79 99 - - - 180
Network loading [s] 26 266 595 826 - - - 1093

We also see that under certain demand levels we are unable to find a solution. The reason for this is largely
due to the coding of the network’s infrastructure. This network has over 3,000 very short links < 0.1 km as
it frequently models slip lanes and approach lanes separately and explicitly, something uncommon in
strategic models, see Figure 12. The effect this has on the algorithm is the following: the difference between
a link in uncongested state and the same link in spillback state for these short links - on average over the
considered time period - can be as little as a few vehicles causing small changes in flows between
subsequent iterations to cause a reversal to the initial link state. This makes it challenging to find a solution.
Also, in congested conditions the number of separate queues existing in the network is highest and therefore
this phenomenon is most likely to manifest itself here. Fortunately, most strategic transport planning models
are coarser, and its links are generally longer. Nevertheless, this is a noteworthy shortcoming of the current
method. To confirm this theory, we solved the model again, but now by introducing a configurable relaxing
of a link’s storage capacity via:

1 max min1
,min{ (), }, min{ , }, .a a a II a a a a a aTr v v q a−= + Φ = ∀ ∈A (14)

with min 0.2a = [km]. The results are provided in Table 6. As can be seen, the introduction of min

a ensures
a minimum amount of storage on very short - and therefore potentially unstable – links. Subsequently, we
now find a solution across the demand levels and the same demand levels can be solved more quickly and
in less iterations. To give an indication of how congested the resulting network is, we also provide the
number of links that are in congestion and/or spillback for each demand level, and a graphical impression
of the 60%,80%, and maximum demand levels in Figure 13.

Table 6: Gold Coast network loading results under various demand levels and relaxing storage constraints on links
with a length small than min ,a where the percentages indicate scaling from the maximum demand considered.

Demand level 0-30% 40% 50% 60% 70% 80% 90% Max.
Iterations 2 37 51 74 207 91 91 105
Network loading [s] 27 150 275 466 2907 566 501 567
Congested links 0 6 26 108 350 522 790 1063

Lastly, we point out that for the 70% demand level a significant higher number of iterations is needed,
illustrating that the algorithm is still somewhat vulnerable to certain (local) cases of demand-supply
interactions that are particularly hard to solve.

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

21

Figure 13:links in congestion or spillback with normalised queue densities for (a) 60% demand level, (b) 80% demand
level, (c) maximum demand.

11 Conclusions and future research

In this study we proposed the first solution algorithm capable of solving the path based Static Link
Transmission Model which captures both capacity constraints as well as storage constraints, the underlying
theory of which originates from Bliemer and Raadsen (2018a). The algorithm revolves around the separate
treatment of each of the node model’s inputs, namely the splitting rates, receiving flows, and sending flows.
Each algorithm component temporarily fixes two of the three inputs to update the remaining non-fixed
variable. We argue that at least two extensions to the base algorithm are required to make it suitable for
general purpose large-scale networks, either to minimise the risk of local or global non-convergence.
Further, we calibrated the algorithm’s smoothing parameters, where each of the three different algorithm
components adopts its own smoothing: (i) splitting rate smoothing should be chosen conservatively, i.e.

10.1 0.25,λ≤ ≤ while the sending and receiving flow smoothing is recommended to be set as
20.2 0.5,λ≤ ≤ and 30.2 0.3,λ≤ ≤ respectively.

Finally, we conducted a large-scale case study on the Gold Coast network to verify the suitability of our
method. We found that the proposed solution method is capable of finding solutions under different demand
scenarios and that the difficulty of finding a solution correlates heavily with the amount of
congestion/spillback that occurs on the network (as is to be expected). We also identified two limitations
of the method in its current form: (i) the smaller the links in the network, the smaller the change in flow
required to let a link switch states from complete spillback to free flow (uncongested). Hence, the existence
of many such links increases instability because we only consider the situation on each link separately in
our method. We found that imposing a (virtual) minimum link length of 0.2 km and above results in
sufficient “slack” in storage capacity to avoid global non-convergence in this case study. (ii) The
computational cost of finding a static steady-state path-based solution to the network loading model is more
in line with a dynamic model than with a traditional static model, or even a capacity constrained point-
queue model. The difficulty of incorporating storage constraints with instantaneous propagating flows is
the main reason for this.

11.1 Future research
Our first objective is to combine our network loading method with route choice to be able to equilibrate a
and perform a complete traffic assignment model. We also hope to address the mentioned method
limitations in future work, possibly by moving away from a (single) link-based methodology. We also hope
that this work contributes to providing insights in how one might construct solution methods for static
assignment models with storage constraints and generate interests in the wider community to develop
alternative solution methods for this relatively new type of modelling approach.

()a ()b ()c

180 [veh/km/lane]

1 [veh/km/lane]
link queue

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

22

Appendix A

Conceptual visualisation of base solution scheme after decomposing the flow acceptance factor. The main
benefit of this decomposition besides additional insight in the traffic state is found in the fact that the direct
connection between inflow/outflow and flow acceptance factor is removed. This allows for selective
smoothing of the two factors (see Section 7), while not having to smooth the inflows/sending flows or
outflows/receiving flows.

Figure A.1: Updated conceptual solution scheme of solving the static LTM through two interconnected fixed point sub-
problems, (a) and (c) connect the two fixed point problems via a path splitting rate update, (b) downstream propagation
fixed point sub-problem, (c) upstream propagation fixed point sub-problem. Non-fixed variables highlighted in red
(box).

ϕ

v

(1) (3)−
γ

β
(8)

s

r

()Γ ⋅

(5)

(4)

s

r

()Γ ⋅

s

r

()Γ ⋅

v

(4)

(6)

u

s

r

()Γ ⋅

()a

()b

()c

()dϕ

u

v

γ

β

u

ϕ

v

(1) (3)−
γ

β

(8)
u

ϕ

v

γ

β

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

23

Appendix B

Base solution algorithm:

Initialisation

(a) Set iteration number 1.i =
(b) Initial link flow and storage factors, 0 0 1, .a a aβ γ= = ∀ ∈A
(c) Initial in/outflows via network loading, , given .a a ap ap ap p

a A
v u u u fδ

∈

= = =∑
(d) Initial sending and receiving flows, { }1 ()max, min , , .II av

a a a a a Ts u r q v a A
−Φ= = + ∀ ∈

(e) Continue to 1(b).

Step 1 - splitting rate update
(a) Update inflows via network loading,

1

1, with , ,
i
a
i

pa a
ap ap p a aa

u f a pβ

γ
δ α α

−
′
−
′

′ ′′∈
= = ∀ ∈ ∀ ∈∏ A A P.

(b) Update splitting rates, 1 , with , , .

aab bp ap a apu p p
u u u a bϕ δ

∈ ∈
= = ∀ ∈∑ ∑P P A

(c) Continue to 2(b).

Step 2 - sending flow update – lock splitting rates and receiving flows

(a) Update link inflows via node model, (,) (, ,), , .nn n n n n nb n+= Γ ∀ ∈ ∀ ∈u r φv s A N
(b) Update sending flows, { }maxmin , , .a a as q u a= ∀ ∈A
(c) Verify local convergence, 1

a aa
H s s

∈
= −∑A A and set .a as s=

(d) If not converged, i.e. H ε> return to 2(a).
(e) Update gammas, ,a

a

ui
a rγ = continue to 3(a).

Step 3 - splitting rate update

(a) Update inflows via network loading,
1

, with , ,
i
a
i

pa a
ap ap p a aa

u f a pβ

γ
δ α α

−
′

′
′ ′′∈

= = ∀ ∈ ∀ ∈∏ A A P.

(b) Update splitting rates, 1 , with , , .

aab bp ap a apu p p
u u u a bϕ δ

∈ ∈
= = ∀ ∈∑ ∑P P A

(c) Continue to 4(a).

Step 4 - receiving flow update – lock splitting rates and sending flows
(a) Update link outflows via node model, (, ,) (, ,), , .n n nn n n nb n+= Γ ∀ ∈ ∀ ∈φu v s r A N
(b) Update receiving flows, { }max 11, () , .a a a II aTr q v v a−= + Φ ∀ ∈A
(c) Verify local convergence, 1

a aa
H r r

∈
= −∑A A and set , .a ar r a= ∀ ∈ A

(d) If not converged, i.e. ,H ε> return to 4(a)
(e) Update betas, , .a

a

vi
a r aβ = ∀ ∈A , continue to overall convergence check

Verify overall convergence

(a) Verify overall convergence, { }{ }1 1

1 1
1 , min , 1 .

i i i i
a a a a
i i i i
a a a aa

H aβ β β β

γ γ γ γ

− −

− −∈
= − = ∈ <∑ AA A A

(b) Increment iteration index : 1.i i= +
(c) If not converged return to 1(a), else done, i.e. .H ε<

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

24

Appendix C

Base solution algorithm and extension 1; smoothing of internal-step results

Initialisation

(a) Set iteration number 1.i =
(b) Initial link flow and storage factors, 0 0 1, .a a aβ γ= = ∀ ∈A
(c) Initial in/outflows via network loading, , given .a a ap ap ap p

a A
v u u u fδ

∈

= = =∑
(d) Initial sending and receiving flows, { }max 11, min , () , .a a a a a a II aTs u r q v v a−= = + Φ ∀ ∈A
(e) Continue to 1(b).

Step 1 - splitting rate update

(a) Update inflows via network loading,
1

1, with , ,
i
a
i

pa a
ap ap p a aa

u f a pβ

γ
δ α α

−
′
−
′

′ ′′∈
= = ∀ ∈ ∀ ∈∏ A A P.

(b) Determine splitting rates, 1 , with , , .

aab bp ap a apu p p
u u u a bϕ δ

∈ ∈
= = ∀ ∈∑ ∑P P A

(c) Update smoothed splitting rates, 1
1 1: (1) , , 1,i i

ab ab ab a b iϕ λ ϕ λϕ−= − + ∀ ∈ >A. continue to 2(b).

Step 2 - sending flow update – lock splitting rates and receiving flows
(a) Update link inflows via node model, (,) (, ,), , .n

i
n n n n n nb n+= Γ ∀ ∈ ∀ ∈vu s r φ A N

(b) Update sending flows, { }maxmin , , .a a as q u a= ∀ ∈A
(c) Verify local convergence, 1

a aa
H s s

∈
= −∑A A and set .a as s=

(d) If not converged, i.e. H ε> return to 2(a).
(e) Update smoothed gammas, 1

2 2: (1) , ,a

a

ui i
a a r aγ λ γ λ−= − + ∀ ∈A continue to 3(a).

Step 3 - splitting rate update

(a) Update inflows via network loading,
1

, with , ,
i
a
i

pa a
ap ap p a aa

u f a pβ

γ
δ α α

−

′′∈
= = ∀ ∈ ∀ ∈∏ A A P.

(b) Update splitting rates, 1 , with , , .

aab bp ap a apu p p
u u u a bϕ δ

∈ ∈
= = ∀ ∈∑ ∑P P A

(c) Update smoothed splitting rates, 1
1 1: (1) , , ,i i

ab ab ab a bϕ λ ϕ λϕ−= − + ∀ ∈A continue to 4(a).

Step 4 - receiving flow update – lock splitting rates and sending flows
(f) Update link outflows via node model, (, ,) (, ,), , .i

n n n n n nn b n+= Γ ∀ ∈ ∀ ∈φu v s r A N
(g) Update receiving flows, { }max 11, () , .a a a II aTr q v v a−= + Φ ∀ ∈A
(h) Verify local convergence, 1

a aa
H r r

∈
= −∑A A and set , .a ar r a= ∀ ∈ A

(i) If not converged, i.e. ,H ε> return to 4(a)
(j) Update smoothed betas, 1

3 3: (1) , .a

a

vi i
a a r aβ λ β λ−= − + ∀ ∈A , continue to overall convergence

check

Verify overall convergence
(a) Verify overall convergence, { }{ }1 1

1 1
1 , min , 1 .

i i i i
a a a a
i i i i
a a a aa

H aβ β β β

γ γ γ γ

− −

− −∈
= − = ∈ <∑ AA A A

(b) Increment iteration index : 1.i i= +
(c) If not converged return to 1(a), else done, i.e. .H ε<

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

25

Appendix D

Final solution scheme including the two extensions

Initialisation

(a) Set iteration number 1.i =
(b) Initial link flow and storage factors, 0 0 1, .a a aβ γ= = ∀ ∈A
(c) Initial in/outflows via network loading, , given .a a ap ap ap p

a A
v u u u fδ

∈

= = =∑
(d) Initial sending and receiving flows, { }1 ()max, min , , .II av

a a a a a Ts u r q v a A
−Φ= = + ∀ ∈

(e) Continue to 1(b).

Step 1 - splitting rate update
(a) Update inflows via network loading,

1

1, with , ,
i
a
i

pa a
ap ap p a aa

u f a pβ

γ
δ α α

−
′
−
′

′ ′′∈
= = ∀ ∈ ∀ ∈∏ A A P.

(b) Determine splitting rates, 1 , with , , .

aab bp ap a apu p p
u u u a bϕ δ

∈ ∈
= = ∀ ∈∑ ∑P P A

(c) Update smoothed splitting rates, 1
1 1: (1) , , 1,i i

ab ab ab a b iϕ λ ϕ λϕ−= − + ∀ ∈ >A. continue to 2(b).

Step 2 - sending flow update – lock splitting rates and receiving flows
(a) Update link inflows via node model, (,) (, ,), , .n

i
n n n n n nb n+= Γ ∀ ∈ ∀ ∈vu s r φ A N

(b) Update sending flows, { }maxmin , , .a a as q u a= ∀ ∈A
(c) Verify local convergence, 1

a aa
H s s

∈
= −∑A A and set .a as s=

(d) If not converged, i.e. H ε> return to 2(a).
(e) Update smoothed gammas, 1

2 2: (1) , ,a

a

ui i
a a r aγ λ γ λ−= − + ∀ ∈A continue to 3(a).

Step 3 - splitting rate update and multiplication factor estimate

(a) Update inflows via network loading,
1

, with , ,
i
a
i

pa a
ap ap p a aa

u f a pβ

γ
δ α α

−

′′∈
= = ∀ ∈ ∀ ∈∏ A A P.

(b) Update splitting rates, 1 , with , , .

aab bp ap a apu p p
u u u a bϕ δ

∈ ∈
= = ∀ ∈∑ ∑P P A

(c) Update smoothed splitting rates, 1
1 1: (1) , , .i i

ab ab ab a bϕ λ ϕ λϕ−= − + ∀ ∈A
(d) Estimate multiplication factor, , with ; , ,

i
ab a ab

ab bn

v
b ab a a aua

v u bϕ ϕ
ϕµ ϕ α−∈

= = = ∀ ∈∑ A A
 continue

to 4(a).

Step 4 - receiving flow update – lock splitting rates and sending flows
(a) Update link outflows via node model, (, ,) (, ,), , .i

n n n n n nn b n+= Γ ∀ ∈ ∀ ∈φu v s r A N
(b) Update receiving flows, { }1 ()max1 , with min , , .II a

a

v
a a a a a a a Tr u r r u q v aµ

−Φ= − ∆ ∆ = − + ∀ ∈A
(c) Verify local convergence, 1

a aa
H r r

∈
= −∑A A and set , .a ar r a= ∀ ∈ A

(d) If not converged, i.e. ,H ε> return to 4(a)
(e) Update smoothed betas, 1

3 3: (1) , .a

a

vi i
a a r aβ λ β λ−= − + ∀ ∈A , continue to overall convergence

check

Verify overall convergence
(d) Verify overall convergence, { }{ }1 1

1 1
1 , min , 1 .

i i i i
a a a a
i i i i
a a a aa

H aβ β β β

γ γ γ γ

− −

− −∈
= − = ∈ <∑ AA A A

(e) Increment iteration index : 1.i i= +
(f) If not converged return to 1(a), else done, i.e. .H ε<

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

26

References

Bakker, D., P. Mijjer, F. Hofman, 1994. QBLOK: een toedelingsmethodiek voor het
modelleren van de afhankelijkheid tussen knelpunten en de voorspelling van
blokkades. In Proceedings of CVS Congres, Rotterdam (pp. 313-332)

Beckmann, M., McGuire, C. B., Winsten, B. W., 1956. Studies in the economics of
transportation. New Haven CT, USA: Yale University Press.

Bifulco, G., Crisalli, U., 1998. Stochastic user equilibrium and link capacity constraints:
formulation and theoretical evidencies. In Proceedings of the European Transport
Conference. (pp. 85–96).

Bliemer, M. C. J., Raadsen, M. P. H., Smits, E.-S., Zhou, B., Bell, M. G. H., 2014.
Quasi-dynamic traffic assignment with residual point queues incorporating a first
order node model. Transportation Research Part B: Methodological, 68, 363–384.
https://doi.org/10.1016/j.trb.2014.07.001

Bliemer, M.C.J., Raadsen M.P.H., 2018a. Static traffic assignment with residual queues
and spillback. Submitted to ISTTT23 to be held in Lausanne Switzerland.

Bliemer, M. C. J., Raadsen, M. P. H., 2018b. Continuous-time general link transmission
model with simplified fanning, part I: Theory and link model formulation.
Transportation Research Part B: Methodological, 0, 1–29.
https://doi.org/10.1016/j.trb.2018.01.001

Brederode, L., Pel, A., Wismans, L., de Romph, E., Hoogendoorn, S., 2018. Static
Traffic Assignment with Queuing: model properties and applications.
Transportmetrica A: Transport Science, 0(0), 1–36.
https://doi.org/10.1080/23249935.2018.1453561

Bundschuh, M., Vortisch, P., van Vuuren, T., Mott McDonald., 2006. Modelling queues
in static traffic assignment. European Transport Conference Proceedings.

Courant, R., Friedrichs, K., Lewy, H., 1928. Über die partiellen Differenzengleichungen
der mathematischen Physik. Mathematische Annalen.
https://doi.org/10.1007/BF01448839.

Daganzo, C. F. (1995). The cell transmission model, part II: Network traffic.
Transportation Research Part B: Methodological, 29(2), 79–93.
https://doi.org/10.1016/0191-2615(94)00022-R

Davidson, P., Thomas, A., Teye-Ali, C., 2011. Clocktime assignment: a new
mesoscopic junction delay highway assignment approach to continuously assign
traffic over the whole day. In European Transport Conference Proceedings.
Retrieved from http://trid.trb.org/view.aspx?id=1237885.

Frank, M., Wolfe, P., 1956. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 3, 95–109. https://doi.org/10.1016/S0377-2217(87)80152-2

Gentile, G., 2010. The General Link Transmission Model for Dynamic Network
Loading and a comparison with the DUE algorithm. In New Developments in
Transport Planning: Advances in Dynamic Traffic Assignment (Chapter 8) (pp.
1615–1620).

Hall, M.D., Vliet van D., Willumsen, L.G., 1980. Saturn - a Simulation-Assignment
Model for the Evaluation of Traffic Management Schemes. Traffic Engineering &
Control, 21(4), 168–170. Retrieved from https://trid.trb.org/view/159897

Hearn, D.W., 1980. Bounding flows in traffic assignment models. In: Research Report
80–4. Gainesville, FL: Department of Industrial and Systems Engineering,
University of Florida.

https://doi.org/10.1016/j.trb.2018.01.001
https://doi.org/10.1007/BF01448839
http://trid.trb.org/view.aspx?id=1237885

General solution scheme for the Static Link Transmission Model Raadsen and Bliemer

27

Himpe, W., Corthout, R., Tampère, M. J. C., 2016. An efficient iterative link
transmission model. Transportation Research Part B: Methodological, 92, 170–
190. https://doi.org/10.1016/j.trb.2015.12.013

Hungerink G.J., 1989. Q-Net: Assignment on Over-Congested Networks by Link
Inflow Constraint. In Proc., U.S.-Italy Joint Seminar on Urban Traffic Networks:
Dynamic Control and Flow Equilibrium. Capri.

Lam, W., Zhang, Y., 2000. Capacity-constrained traffic assignment in networks with
residual queues. Journal of Transportation Engineering, (April), 121–128.
Retrieved from http://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-
947X(2000)126:2(121)

Larsson, T., Patriksson, M., 1995. An augmented lagrangean dual algorithm for link
capacity side constrained traffic assignment problems. Transportation Research
Part B: Methodological. https://doi.org/10.1016/0191-2615(95)00016-7.

Newell, G. F. (1993). A simplified theory of kinematic waves in highway traffic, part II:
Queueing at freeway bottlenecks. Transportation Research Part B:
Methodological, 27(4), 289–303. https://doi.org/10.1016/0191-2615(93)90039-D

Nie, Y., Zhang, H., Lee, D., 2004. Models and algorithms for the traffic assignment
problem with link capacity constraints. Transportation Research Part B 38, 285–
312.

Raadsen, M. P. H., Bliemer, M. C. J., Bell, M. G. H., 2016. An efficient and exact
event-based algorithm for solving simplified first order dynamic network loading
problems in continuous time. Transportation Research Part B: Methodological,
92, 191–210. https://doi.org/10.1016/j.trb.2015.08.004

Shahpar, A. H., Aashtiani, H. Z., Babazadeh, A., 2008. Dynamic penalty function
method for the side constrained traffic assignment problem. Applied Mathematics
and Computation, 206(1), 332–345. https://doi.org/10.1016/j.amc.2008.09.014

Smith, M. J., 2013. A link-based elastic demand equilibrium model with capacity
constraints and queueing delays. Transportation Research Part C: Emerging
Technologies, 29, 131–147. https://doi.org/10.1016/j.trc.2012.04.011

Smith, M., Huang, W., Viti, F., 2013. Equilibrium in Capacitated Network Models with
Queueing Delays, Queue-storage, Blocking Back and Control. Procedia - Social
and Behavioral Sciences, 80(Isttt), 860–879.
https://doi.org/10.1016/j.sbspro.2013.05.047.

Smulders, S., 1987 Modelling and filtering of freeway traffic flow. Report OS-R8706,
Centre of Mathematics and Computer Science, the Netherlands.

Smulders, S., 1990. Control of freeway traffic flow by variable speed signs. Transp.
Res. Part B 24 (2), 111–132.

Tajtehranifard, H., Bhaskar, A., Nassir, N., Haque, M. M., Chung, E., 2018. A path
marginal cost approximation algorithm for system optimal quasi-dynamic traffic
assignment. Transportation Research Part C: Emerging Technologies.
https://doi.org/10.1016/j.trc.2018.01.002

 assignment. Transp. Res. Part C: Emerg. Technol. 88, 91–106.
https://doi.org/10.1016/J.TRC.2018.01.002.

Tampère, C.M.J., Corthout, R., Cattrysse, D., Immers, L.H., 2011. A generic class of
first order node models for dynamic macroscopic simulation of traffic flows.
Transp. Res. Part B Methodol. 45, 289–309. doi:10.1016/j.trb.2010.06.004

van Vliet, D., 1982. SATURN: a modern assignment model. Traffic Engineering and
Control, 23, 575–581.

https://doi.org/10.1016/0191-2615(95)00016-7
https://doi.org/10.1016/j.trc.2012.04.011
https://doi.org/10.1016/j.sbspro.2013.05.047

	cover
	General solution scheme for the Static Link Transmission Model

	Abstract
	Paperv2
	1 Introduction
	1.1 Original contributions
	1.2 Assumptions and outline

	2 Capacity and storage constrained network loading in the literature
	3 Methodology and model formulation
	3.1 Network and Fundamental diagram
	3.2 Network loading
	3.2.1 Link Model
	3.2.2 Node model
	3.2.3 Link and node model interaction

	4 Solution scheme concept
	5 Point queue model
	5.1 Solution scheme

	6 Capacity and Storage constraint model
	6.1 Flow acceptance factor decomposition
	6.2 Base solution scheme with storage constraints
	6.2.1 Splitting rate updates
	6.2.2 Receiving flow update

	7 Extension 1: Supporting overlapping alternative routes with spillback
	8 Extension 2: Supporting spillback on general networks
	9 Model comparison and parameter calibration
	9.1 Illustrative example of adopting different model types
	9.2 Parameter calibration

	10 Real world Case study
	11 Conclusions and future research
	11.1 Future research

	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

	Blank Page
	Blank Page

