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1 Introduction 
 
Discrete choice modelling has, in the main, focussed on a simplified functional form for the 
way in which the observed sources of utility are represented. It is typically assumed that agents 
act as if they are utility maximisers under a linear in the parameters and additive in the 
attributes (LPAA) paradigm. This simplified but appealing context independent form is 
unambiguously consistent with the Random Utility Maximisation (RUM) model – see Hess et 
al. (2018) for a comprehensive review of compliance (and approximate compliance) with RUM. 
It is also typically assumed that agents when making a choice act as if they are taking into 
account all the attributes and alternatives presented to them in a stated choice experiment or 
obtained from questions on revealed preferences, and value the attribute levels exactly as 
presented in a choice experiment or as reported in a series of revealed preference questions. 
A growing number of studies have questioned the behavioural richness of this paradigm, 
investigating the role of a range of process heuristics in choice modelling, including multiple 
heuristics (see Hensher et al. 2015 for a review). However, the existing literature remains 
limited even though there are commonly suggestions that the consideration of multiple 
heuristics, which is referred to in this study as process heterogeneity, significantly improves 
the goodness of fit of choice models, and provides a richer understanding of individuals’ 
behaviour.  
 
Given the popularity and ease of estimating a RUM model under LPAA with random 
parameters and obtaining estimates of willingness to pay, but also the interest in a number of 
alternative process rules that may be used by agents to assess the attributes defining choice 
options and arrive at a choice, we wonder whether there is an informative behavioural 
relationship between the two. Namely, can the appealing LPAA specification that accounts for 
preference heterogeneity through random parameters (hence a non-systematic allocation of 
agents over the preference distribution), which in a sense hides potentially important 
behavioural information, be a further representation of preference heterogeneity captured by 
specific process rules (or heuristics) that can reveal systematic sources of influence? This is 
effectively a created interaction between the utility identified under LPAA preference 
heterogeneity (i.e., non-systematic random parameters) and additional sources of utility 
identified through process heterogeneity which we call conditioning by random process 
heterogeneity (CRPH) (Balbontin et al., 2017a). A number of previous studies have also 
suggested (but not tested for) a possible interaction between preference heterogeneity 
embedded in process heuristics  and that captured in  the simplified LPAA form (Hess et al., 
2012; Hensher et al., 2013a; Collins et al., 2013; Campbell et al. 2014).  
 
LPAA and two process heuristics will be the focus of this paper as well as three additional 
behavioural refinements (see below). The first process heuristic considers that competing 
alternatives influence the way an individual assesses an alternative (referred to as the local 
choice context dependent heuristics). Specifically, we consider Relative Advantage 
Maximisation (RAM) where an individual will ponder the advantages and disadvantages of an 
alternative relative to the competing alternatives as a function of the difference between the 
alternatives’ attributes. The other process heuristic considers that, when individuals are faced 
with more than one choice sequentially, the previous scenarios have an effect on their current 
choices (referred to as choice set interdependent heuristics). We include this effect through a 
Value Learning (VL) heuristic which assumes that the best attribute levels of the alternatives 
that have been previously chosen will have an effect on how an individual assesses the 
alternatives in a current scenario.  
 
Traditional choice studies also usually assume that respondents act as if they are neutral to 
risk (i.e., indifferent towards a risky alternative or a sure alternative of equal expected value), 



How to better represent preferences in choice models: the contributions to preference heterogeneity 
attributable to the presence of process heterogeneity  

Balbontin, Hensher and Collins 
 

2 
 

although respondents can be risk averse or risk takers. Choice studies also often consider 
that respondents perceive the levels of attributes in choice experiments in a way that suggests 
the absence of perceptual conditioning. However, heterogeneity is also present for perceptual 
conditioning in cases where there is variability in the outcomes of an attribute(s), which allows 
for differences between the stated probability of occurrence (in a choice experiment) and the 
perceived probability used when evaluating the prospect. Finally, the (accumulated) overt 
experience that individuals’ have with each alternative might also influence their decisions.  
 
In summary, the motivation of this study is to explore potential relationships between LPAA, 
process heuristics, random parameters, behavioural refinements and experience, as 
contributions to revealing preference heterogeneity within a sampled population. The concept 
of process homogeneity refers to the assumption that all respondents use one process 
strategy, which in this study refers to either VL or RAM; the LPAA is considered as the 
reference model. Alternatively, process heterogeneity refers to a situation when more than 
one process strategy might be being used across respondents in decision-making, together 
with LPAA. Preference heterogeneity will be included in this study in the form of random 
parameters, and preference homogeneity will be represented by fixed parameters. The 
proposed model form, that includes all of the features defining CRPH will be compared to (i) 
a model that considers the presence of either LPAA or one process strategy in the 
heterogeneous (i.e. random parameter) or homogeneous (i.e., fixed parameter) form and (ii) 
a model that allows for LPAA together with process heterogeneity (i.e., multiple process 
strategies) through fixed parameters under a latent class functional form (i.e., implicitly 
assuming preference homogeneity). This latter is referred to as the probabilistic decision 
process (PDP) method and it will be the only other approach – besides CRPH – that will 
consider multiple process strategies (i.e., process heterogeneity) so it will be very relevant for 
comparison between them and with the mixed and MNL logit models.  
 
The paper is structured as follows. In Section 2 we present the process heuristics of interest 
and provide additional commentary on the interactive nature of such heuristics with the more 
commonly identified preference heterogeneity under LPAA. Section 3 details the model forms 
and how the various behavioural elements are integrated and the derived willingness to pay 
estimates. We then overview the two data sets in section 4, followed by the estimated models 
and their interpretation and implications in section 5. The concluding section summarises the 
main findings of the paper and directions for ongoing research. 
 

2 Background 
 
Mainstream discrete choice modelling approaches have evolved in a setting in which some 
very specific behavioural assumptions are made in specifying choice models and estimation 
methods. While they have served the literature well and are often the ‘bread and butter’ 
procedures in practical applications, they are not without question. The great majority of choice 
studies assume that decision makers act as if they are rational (Luce, 1959), take into account 
all the attributes included in a stated choice experiment or as listed in a revealed preference 
model, and value the levels exactly as are presented to them. The attributes are also assumed 
to be adequately represented as sources of (relative) utility under a linear in the parameters 
and additive in the attributes (LPAA) assumption, with allowable linear interactions. Criticisms 
of these assumptions as behaviourally appropriate, especially in psychology and marketing 
research, have led to the development of a growing number of process strategies (or rules or 
heuristics) as possible alternative ways of representing choice making.  
 
The spectrum of process rules or heuristics that have been presented in the literature can be 
divided into three categories: (1) those that are independent of the alternatives presented in 
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the choice set – context free heuristics; (2) those that depend on all the alternatives shown in 
a choice set – local choice context dependent; and (3) those that depend on the multiple 
choice tasks shown to an individual – choice set interdependent. The focus of this study is on 
studying the role of LPAA and two heuristics: Relative Advantage Maximisation (the second 
category); and Value Learning (the third category). 
 
2.1 Extremeness Aversion Heuristics: Relative Advantage Maximisation 
Simonson and Tversky (1992) propose two hypotheses of how context might influence 
respondent decisions. The first hypothesis states that the attractiveness of an alternative 
depends on whether the trade-offs within the choice set are favourable towards that 
alternative. The second hypothesis, which they refer to as extremeness aversion, states that 
an alternative is more attractive if it is an intermediate option within the choice set. Hence, the 
extreme options are less attractive to respondents. They define the extreme alternatives within 
a choice set as the ones that have high advantages and high disadvantages relative to each 
other, and have small advantages and small disadvantages relative to the intermediate 
alternative. The intermediate alternatives are the ones that have small advantages and small 
disadvantages relative to the extremes (there are two extreme alternatives). Simonson and 
Tversky (1992) developed the extremeness aversion heuristic within the framework of loss 
aversion, according to which individuals assign a higher weight to losses than they do to gains 
(Tversky and Kahneman 1991). The losses or gains of an alternative are measured using a 
reference point, which in this case is considered to be the other alternatives presented in the 
choice set. The extremeness aversion heuristic has been implemented in papers such as  
Chernev (2004); Sharpe et al. (2008); Leong and Hensher (2012a); Hensher et al. (2018), and 
several theoretical models accommodate its effects, such as random regret minimisation, 
RRM (Chorus et al., 2008; Chorus, 2010; Chorus, 2012; van Cranenburgh et al., 2015), and 
relative advantage maximisation (RAM). 
 
The RAM model was introduced by Tversky and Simonson (1993) to consider how individuals 
compare the attribute levels across alternatives taking into account the compromise and 
polarisation effect, which they referred to as the ‘componential context model’. They suggest 
that each attribute level is an advantage or disadvantage relative to the other alternatives, and 
therefore, the utility function for each alternative is the sum of its advantages and 
disadvantages. Kivetz et al. (2004) first refer to this model formulation as the ‘relative 
advantage model’. Their starting point is the Tversky and Simonson (1993) model described 
above, defining the disadvantage of an alternative with respect to another alternative as an 
increasing convex function. 
 
Leong and Hensher (2014, 2015) propose a new version of the RAM model, which has some 
desirable properties from the classical RRM functional forms, and has the symmetry between 
advantage and disadvantage as proposed by Tversky and Simonson (1993). This is the form 
used in this study and the utility functions will be presented in section 3.2. 
 
As was initially proposed by Tversky and Simonson (1993), RAM required at least three 
alternatives. However, Leong and Hensher (2014) show that, oppositely to the RRM model, 
the RAM model can still take into account the relative advantage/regret effects in binary choice 
data. The Leong and Hensher (2015) results show that the differences in these models’ fit 
were quite small. However, they state that this decision process requires further investigation 
and has the real potential to improve the performance of choice models.  
 
2.2 Reference Points: Value Learning 
Several studies have proposed decision rules under which alternatives are evaluated relative 
to a reference point. However, the use and/or origin of the reference point changes across the 
proposed processing rules. For example, the reference point might be used as a rational 
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comparison to evaluate the attribute levels of the alternative presented, as is the case of the 
‘reference revision’ heuristic (DeShazo, 2002; Day and Pinto, 2010; McNair et al., 2011), and 
‘value learning’. It could also be considered as past experiences influencing the expected 
outcome, referred to as ‘Case Based Decision Theory’ (Gilboa and Schmeidler, 1995; Gilboa 
and Pazgal, 2001), or it might be considered as “real” market levels to evaluate the fairness 
of the alternatives, as the ‘Cost Expectations Model’ (Carson et al., 1994; Alberini et al., 2017).  
 
The value learning heuristic defines a situation where the principle of preference stability is 
violated, and assumes that throughout the experiment, individuals discover their preferences. 
This heuristic underlies a theory that individuals have weak preferences and can be influenced 
by the alternatives shown to them. This was originally proposed by Plott (1996) and was later 
analysed in a discrete choice experiment context by Bateman et al. (2006), Bateman et al. 
(2008), McNair et al. (2011), and Hensher and Collins (2011). Although they have similarities, 
there is not one common way of incorporating this heuristic. For instance, Bateman et al. 
(2006) state that repetition was the key for learning, and so the starting point bias, i.e., the 
comparison to the initial level, is reduced as the respondent is presented with more decisions 
or choice sets. McNair et al. (2011) test whether choices are affected when a respondent faces 
four choice tasks instead of one, and their focus is in the cost attribute. Hensher and Collins 
(2011) incorporate this heuristic by including a dummy variable that is equal to 1 if the 
alternative was chosen in the previous choice set, and 0 otherwise.  
 
2.3 Multiple Heuristics or Process Heterogeneity 
The evidence reviewed thus far suggests that the traditionally used LPAA paradigm is not 
always adequate, and decision process strategies are sometimes better at describing 
decision-making. However, the majority of the literature on alternative heuristics has focussed 
on explaining decision-making using only one decision process strategy. Some studies have 
studied the possibility that individuals might be using different heuristics in decision making by 
including multiple heuristics in the modelling (e.g., Hensher et al., 2018), even though the 
literature on this topic is rather limited. One of the most common approaches used in literature 
to incorporate process heterogeneity is the probabilistic decision process approach (PDP), 
which will be explained in more detail in the methodology section.   
 
The current literature on multiple heuristics, also referred to as process heterogeneity when 
more than one heuristic is included in the model, suggests significant improvements in the 
statistical performance of choice models (Hensher and Collins, 2011; McNair et al., 2012; 
Leong and Hensher, 2012b; Balbontin et al., 2017; Balbontin et al. 2017a); however this topic 
is relatively new and evidence is still accumulating. The consideration of multiple heuristics 
has helped researchers to further understand individual behaviour by differentiating the 
influence of several heuristics. The majority of these studies have shown significant influences 
on the WTP estimates (in their mean and standard deviation). However, some studies did not 
find significant differences compared to a Mixed Multinomial Logit (MML) model under LPAA. 
Nevertheless, the choice set specific preferences suggested by alternative heuristics produce 
different behavioural insights which lead to a richer interpretation of the trade-offs which is 
equally as relevant in decision-making. 
 
2.4 Interaction between Process and Preference Heterogeneity 
The relationship between process and preference heterogeneity has been mentioned 
numerous times in choice studies; however it has rarely been studied in detail. Collins (2012) 
demonstrated the biasing impact that attribute non-attendance (ANA) behaviour can have on 
the mean and the variance of random parameters through simulated data, suggesting a highly 
dependent relationship between the ANA process strategy and random parameters. Hensher 
et al. (2013a) included two process rules in a mixed latent class model structure. Their results 
showed a small improvement in statistical performance when adding the random parameters 
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into the latent class structure. In their conclusions, they mention a possible ‘confoundment’ 
between attribute processing - as a mechanism to reveal process heterogeneity - and random 
parameters. Campbell et al. (2014) studied one process strategy and the LPAA paradigm 
using a latent class approach where they acknowledge a possible confounding of preference 
and process heterogeneity, but do not test it any further. 
 
Hess et al., (2012) propose latent mixed logit models, where the first class considers the 
traditional RUM heuristic and the second class is a process strategy (i.e., they test different 
heuristics in the second class, one at a time). Their results show that when allowing for random 
parameters in the RUM class, there is a reduction in the share of the other class. Their results 
also show a decrease in the degree of random heterogeneity in the RUM class compared to 
a simple multinomial mixed logit model by itself as a one class model. They suggest that what 
might be retrieved as taste heterogeneity in traditional models may be heterogeneity in 
decision rules, leading to a questioning of whether there is confoundment, which they 
suggested should be investigated further in future research.  
 
Balbontin et al. (2017a) propose a method to incorporate an interaction between the traditional 
LPAA estimates of an attributes’ mean and standard deviation parameters – and the properties 
of the VL heuristic, which we refer to as Conditioning by Random Process Heterogeneity 
(CRPH). As mentioned above, the current paper extends the CRPH method to include more 
than one process strategy (while extending the definition of VL which will be seen in the next 
section) and to incorporate, risk attitudes and perceptual conditioning, and overt experience. 
Moreover, this study defines the method necessary to calculate the willingness to pay 
estimates with their confidence intervals in such models. 
 
This section has provided a short review of what has been conducted in the field of process 
heuristics and other behavioural refinements. The growing number of studies have shown a 
significant influence on the model estimates and the interpretation derived from them. 
However, there are still many research gaps related to process heterogeneity when more than 
one heuristic is included (i.e. the idea of multiple heuristics), especially considering their 
relationship with random parameters (under LPAA in particular), experience, risk attitudes and 
perceptual conditioning, which is the focus of this paper. 

3 Proposed Method 
As the literature on process heuristics grows in interest within a discrete choice setting, and 
especially where preference heterogeneity is increasingly accommodated by a random 
parameter specification, the question arises as to whether there is a systematic relationship 
between random parameters as a representation of preference heterogeneity under LPAA 
and one or more process heuristics. Specifically, is there a relationship between preference 
heterogeneity and process heterogeneity such that process heterogeneity, as represented by 
specific multiple heuristics, conditions the distribution of preferences in a sampled population 
in such a way that it adds a systematic (in contrast to random) explanation of preference 
heterogeneity? Effectively, is a treatment under a process heuristic aligned with LPAA as an 
interaction effect and thus a contribution to a richer specification of preference heterogeneity? 
And how does the interaction effect work together with behavioural refinements and overt 
experience? 
 
The traditionally used LPAA model is set out within a theory of random utility (McFadden, 
1974) which assumes that each individual behaves rationally and it is assumed that they act 
as if they choose the alternative that maximises utility. The utility of each alternative is defined 
as a function of its attributes, where each attribute is weighted by an estimated coefficient as 
a measure of the marginal (dis)utility associated with a specific attribute. We can describe this 
utility for each individual q with a utility function iqU  assigned to each alternative iA , as 
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described in equation (1). This utility function has a systematic component which is 
measurable, iqV , that is a function of the alternatives’ attributes measurable by the modeller. 
It also has a random component, iq , which allows for possible preference heterogeneity and 
for potential errors induced by the modeller (i.e., in measuring or observing) including excluded 
relevant attributes. It is important to understand that the modeller is likely only able to see or 
account for a subset of the attributes considered by sampled individuals when reaching a 
decision, and hence is not able to include all the attributes that could influence the respondent 
choice. 

iq iq iqU V = +             (1) 
 
The systematic part described above in its simplest form can be written as follows (Hensher 
et al., 2015; Ortúzar and Willumsen, 2011)  in the LPAA form: 

1 1 2 2 3 3 iq i i q i i q i i q in inqV x x x x   =    + + ++        (2) 
 

in  represents the parameter estimate (or marginal (dis) utility) associated with attribute n, 
which is assumed to be fixed for all individuals but can vary between alternatives 𝑖, and inqx  
represents the level of attribute n of alternative i for the individual q. This is referred to as the 
multinomial logit model (MNL) 
 
A more complex model that is widely used in transportation studies, is the mixed logit model 
(MML). The current form was proposed by two research groups: Ben-Akiva and Bolduc (1996) 
and McFadden and Train (2000) (see also Hensher and Greene 2003). The ML form consists 
of any model for which choice probabilities can be expressed as an open form (Ortúzar & 
Willumsen 2011): 

( ) ( )( )     iq iqE P P f d  =             (3) 

 
( )iqP   represents the standard MNL probabilities evaluated at a set of parameters   , and 
( )f   is their density function (also known as a ‘mixing distribution’). If the density function is 

degenerate at fixed parameters  , the choice probability is equivalent to the MNL form shown 
above. If, however, the density function is discrete, the MML becomes a latent class model. 
This latter is the model form used by the PDP approach, which will be explained in section 
3.4. 
  
A specification of the MML model considers random parameter estimates, which is the base 
of the CRPH method that will be outlined below. In this case, the parameters are allowed to 
vary over individuals q (but not over choice sets t) with density function ( )f   in order to 
capture preference heterogeneity. Not all the parameters   have to be considered random; 
some can be specified as preference homogeneous. The utility function of alternative i for 
individual q in choice situation t (t=1,…,T), where attribute n is defined as random, is defined 
as follows: 

θ ...iqt inq inqt iqtU x =  ++           (4) 

where the parameter θ inq  can be decomposed in its mean, m
in , which is common for all 

individuals q, and standard deviation across the sample, in ; and a distribution v  specified by 
the modeller: 

( )... ...m m
iqt in inqt in inqt iqt in in inqt iqtU x v x v x     + +=  +   = ++ +      (5) 

 
The main objective of this paper is to estimate and compare models that consider preference 
revelation under: (a) LPAA or one process rule (i.e., process homogeneity treatment) that 
assumes preference homogeneity (fixed parameters), as MNL models; (b) LPAA or one 
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process rule (i.e., process homogeneity treatment) assuming preference heterogeneity 
(random parameters), as MML models; (c) LPAA and multiple process rules assuming 
preference homogeneity (fixed parameters), which is the PDP (latent class) model; and (d) 
LPAA and multiple process rules assuming preference heterogeneity, which is the CRPH 
model. All the models analysed in this study include behavioural refinements and experience1. 
Table 1 and Table 2 provide a description of the LPAA and process homogeneity (models ‘a’ 
and ‘b’) and process heterogeneity models (models ‘c’ and ‘d’), respectively, together with the 
acronyms that will be used to refer to them in the section 5. The two models that include LPAA 
and multiple heuristics are the PDP and CRPH, and each one proposes a different way in 
which these multiple heuristics are being used (which will be explained in the sections below). 
Therefore, the comparison between our proposed CRPH model and the PDP model will be of 
particular interest as the PDP is the most common method in literature that has been used to 
include multiple heuristics. 
  

Table 1: Description of standalone LPAA and four process homogeneity (i.e., a single 
heuristic) models 

 LPAA RAM VL Parameters* Behavioural 
refinements Experience 

LPAA_MNL Yes No No Fixed Yes Yes 
LPAA_MML Yes No No Random Yes Yes 
VL_MNL No No Yes Fixed Yes Yes 
VL_MML No No Yes Random Yes Yes 
RAM_MNL No Yes No Fixed Yes Yes 
RAM_MML No Yes No Random Yes Yes 

*If the parameters are fixed, then the model accommodates preference homogeneity, and if they are 
random then it accommodates preference heterogeneity. 

 
Table 2: Description of the process heterogeneity (i.e., multiple heuristics) models: including 

LPAA, RAM and VL 
 Parameters* Behavioural 

refinements Experience Description 

PDP Fixed Yes Yes LPAA and each heuristic is represented 
by a different class 

CRPH Random Yes Yes 

Interactions between the mean and 
standard deviation normally defined 
under  LPAA, and the process 
strategies VL and RAM 

*If the parameters are fixed, then the model accommodates preference homogeneity, and if they are 
random then it accommodates preference heterogeneity. 

 
We now present the various components of an integrated model that captures the VL and 
RAM process heuristics, behavioural refinements and experience, together with testable 
interactions with the LPAA components. We include a brief explanation of the PDP approach, 
followed by a detailed explanation of the CRPH method that includes LPAA and the two three 
process strategies (VL and RAM). We also present the formulae used to obtain willingness to 
pay estimates including the form of the confidence intervals. The method is set out in the 
context of a stated choice experiment, given the data will be using, although all components 
can also be studied within a revealed preference setting. 
 

                                                
1 The behavioural refinements and experience included in each model are those found to be statistically 
significantly different from zero. The reader is referred to Balbontin (2018) for a detailed comparison of 
the models with and without behavioural refinements and experience.  
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3.1 Value Learning 
Value Learning assumes that throughout a choice experiment individuals’ preferences 
change. The reason for their preferences to change can be due to the attribute levels 
presented to them, often referred to as “rules of the market” (i.e., institutional learning), or 
simply because they are gaining knowledge and discovering their preferences. Both can be 
influencing preferences, and the way in which they change is defined in each study. We 
propose that when valuing the alternatives, individuals compare each of the alternatives’ 
attribute levels to a reference level (De Borger and Fosgerau, 2008). For example, there is 
one reference level for the travel time (whether it is car or public transport) and individuals will 
compare the travel times of the alternatives to that reference level. Our value learning proposal 
is that when an individual faces a new decision, an attribute’s reference level is updated only 
if the attribute level of the chosen alternative is better (i.e., preferred) than the current 
reference level. In a stated preference experiment, the starting reference level corresponds to 
the attribute levels of the mode they use in real life.  
 
One of the simplest model formulations of Value Learning is to consider directly the difference 
between the attribute levels and reference level, without any type of transformation, as used 
in Balbontin et al. (2017b). In this case, the observed part of the utility function for alternative 
i can be written as follows: 

( ) ( ) ( )1 1 2 21 2 iq i i q i i q in iq nn qq q iqref rex reU x xf f   = + +  −+ −  − +      (6) 

 
in  are the estimates representing the difference between the level of attribute n and alternative 

i and the reference level for that same attribute n; inqx  represents the level of attribute n of 
alternative i and individual q ; and refnq represents the reference level for attribute n and 
individual q. This is a very simple model formulation and has some restrictions. For example, 
it collapses to a simple MNL model when the choice context is unlabelled, or when the same 
attributes are present in all the alternatives and their parameters are considered generic in a 
labelled experiment. In these cases, the reference levels will be the same for all the 
alternatives, and since the MNL models are estimated based on the differences, the reference 
levels will be nulled. Moreover, as has been widely mentioned in the literature, the valuation 
of gains and losses represented by ( )ninq qrefx −  may not be linear. Therefore, in this study 
we incorporate a concavity factor   to transform the differences between the attribute levels 
and the reference levels2 as follows: 

( ) ( ) ( )11 1 2 2 2 qiq i i q i i q in inq in qq qref ref reU fx x x
  

    −  −  −+ += + +    (7) 

The difference between the attribute levels and the reference levels can be positive or 
negative3. As   has to be a continuous parameter (with decimal points), to avoid any 
estimation problems when the difference is negative, the transformation explained above will 
be considered as follows:  
 

( ) ( )
( ) ( )

                   if   0
(x )

            if   0  

inq inq

inq

inq inq

nq nq

nq nq

ref ref
VL

re xf re

x

f

x

x





− − 
= 
− − − −  

     (8) 

                                                
2 A different concavity factor can be estimated for gains and for losses. This was tested, but the results 
did not show statistically significant differences between the parameters, so the results consider a 
common concavity factor in gains and losses.   
3 We tested estimating a separate concavity factor for negative and positive differences, but the results 
showed that the difference was not statistically significant.  
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1 1 2 2(x ) (x ) ( x )iq i i q i i q in inq iqVL LU VL V     + += + +      (9) 

 
Figure 1 presents the Value Learning transformation for different values of , where 0  . 
As can be seen,  acts upon the difference between the attribute levels, having a different 
influence over attributes that have larger differences between their levels than others that have 
smaller differences. The purpose of  is to test whether the influence of VL in the utility 
function is non-linear, which will be considered common across attributes despite them having 
different units of measure. The in  parameters will vary according to the units of the attribute 
levels to represent the effect of the Value Learning transformation in the utility function.  
 

 
Figure 1: Value Learning transformation of attribute levels 

 
3.2 Relative Advantage Maximisation (RAM) 
The relative advantage maximisation (RAM) heuristic included in this study was proposed by 
Leong and Hensher (2014) and Leong and Hensher (2015), as mentioned in the background 
section. The authors define the disadvantage of alternative i relative j, ( , j)D i , using the RRM 
formulation as follows: 

( , j) ln(1 exp( ))jm jm im im
m

D i x x = +  − 
                                                     (10) 

where im  and jm  represent the estimates for attribute m in alternatives i and j, respectively; 
imx  and jmx  represent the level of attribute m of alternatives i and j, respectively. 

 
With the symmetry condition between advantages and disadvantages, the advantage of 
alternative j over i, (j, i)A , can be expressed as follows: 

(j, i) ( , j) ln(1 exp( ))jm jm im im
m

A D i x x = = +  − 
                                          (11) 

The relative advantage of i over j, denoted as ( , j)R i  can be written as: 

( , j)( , j)
( , j) ( , j)
A iR i

A i D i
=

+
            (12) 

where the utility function of alternative i will be equivalent to the utility function under an LPAA 
heuristic plus the relative advantage of alternative i over all other alternatives j as follows: 
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 ( , )im imq
m

iq iq
j S

U x R i j 


 += +          (13) 

As can be noted, (j, i)A  and ( , j)D i  are both positive; so the relative advantage of one 
alternative over another will always be a positive number lower than 1. That is why it is directly 
inserted in the utility function. 
 
3.3 Behavioural Refinements and Experience 

3.3.1 Behavioural Refinements 
The models in this study consider risk attitudes and perceptual conditioning. Eeckhoudt et al. 
(2005) define risk aversion as “the rate at which marginal utility decreases when wealth is 
increased by 1%”. In general, we consider that people are risk averse if their utility function is 
concave and risk takers if their utility function is convex (Kahneman and Tversky, 1979). In 
this paper, risk attitudes are specified in the form of Constant Relative Risk Aversion (CRRA) 
as follows: 

( )
1

1
inqt

inqt

x
u x





−

=
−

         (14) 

 represents the risk attitude towards attribute inqtx 4: if  = 0 then there is risk neutrality, if 
 < 0 then there is risk taking attitude, and if  > 0 then there is risk aversion.  
 
The definition of perceptual conditioning refers to outcome conditioning by an attribute 
influenced by perception (Kahneman and Tversky, 1979). The weighting function ( )w p
proposed by Kahneman and Tversky (1979) is a specific case of perceptual conditioning, 
where the outcome is conditioned by its probability of occurrence, and this probability is 
subject to perception (through the weighting function). The Tversky and Kahneman functional 
form has proven to be the most adequate in several discrete choice studies (Camerer and Ho, 
1994; Hensher et al., 2011), and it will be the one used in this study as follows: 

1/( )
( (1 ) )

pw p
p p



  =
+ −         (15) 

This function is an inverse S-shape where   represents the degree of curvature of the 
weighting function and p the probability of occurrence. An estimated parameter   with a value 
between 0 and 1 suggests that individuals will over-weight low belief probabilities and under-
weight medium to high belief probabilities.  
 
In this study, risk attitudes and perceptual conditioning will be included in the LPAA 
specification in two cases: 

(1) Attributes that are presented with levels of variation: will take into account risk attitudes 
and perceptual conditioning. 

(2) Attributes that do not vary across occurrences: will take into account risk attitudes only.  

 
For explanation purposes, we consider a utility function that has three attributes: a cost 
attribute, 1  i qx ; an attribute presented with L levels of variation, 2i qx ; and a third attribute with 
no levels of variation and which does not represent cost, 3  i qx . The utility function can be 
written as: 
 

                                                
4 The special case where =1, collapses to 1/0 which is undefined (it goes to infinity); however the 
occurrence of such a case is very unlikely. 
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1 2 , 2 , 31 3( ) ( ) iq i i q i q ii q l i q l i
l L

w p uU x xx  


  = + + +      (16) 

where 2 ,i q lx  is the level l of variation for attribute 2  i qx and 2 ,i q lp  is the associated probability of 
occurrence; 2 ,( )i q lw p  is the weighting function which will be referred as perceptual conditioning; 
and 2 ,( )i q lu x  the value function which is referred to as risk attitudes.  
 
The utility function initially under LPAA when considering behavioural refinements can be 
written as: 
 

32
2 , 2

11
, 3

1 1
2 3

2 31/
2 , 2 ,( (1 ) 1 1)

 i q l i q l i q
iq i i

l L i q l i
i

l
q

q
i q i

p x
U

p
x

x
p



  



   
 

−− 
    

 
= + + + 

− −  + − 
  (17) 

where   represents the degree of curvature of the weighting function, and   represents the 
risk attitudes towards the second and third attribute.  
 

3.3.2 Experience 
The overt experience that individuals’ have with specific  alternatives has been shown to 
influence their decisions (Hensher, 1975; Goodwin, 1977; Ben-Akiva and Morikawa, 1990; 
Cantillo et al., 2007). We consider experience as the alternative chosen in their most recent 
revealed preference decision. In a transportation context, this refers to the most recent mode 
used by the respondent. It will be included by conditioning the utility function (Hensher and 
Ho, 2016; Balbontin et al. 2017a), as follows: 
 

( ), ,1   experience
iq exp i experience iq iqU x U= +           (18) 

 
where experi e

iq
encU  is the transformed utility function; experiencex  is defined as a dummy variable 

equal to 1 if alternative i was chosen by respondent q in their most recent decision and 0 
otherwise; and ,exp i  is the associated parameter. The utility function of mode i can be negative 
in one scenario and positive in another scenario, depending on its characteristics. Thereby, 
the modeller needs to define the parameter ,exp i with a consistent interpretation across 
scenarios, as follows:  
 

0
,

, 0
,

        if  0  
       if    0 

exp i iqt
exp i

exp i iqt

U
U





=

−



                  (19) 

In transportation, one would expect that if an individual uses a certain mode he is more likely 
to choose it again. Hence, the hypothesis is that if the respondent used the mode in a most 
recent trip, he will scale the (dis)utility for that mode in such a way that it becomes (smaller) 
larger, so that ,0 1exp i  . If the opposite is true, where an individual is less likely to choose the 
same alternative used in his most recent trip, then ,1 0exp i−  . However, the absolute value 
of ,exp i  has to be smaller than 1, otherwise it would imply a change in the sign of the utility 
when it is negative. 
 
The model form is consistent with the overall utility maximisation assumption with the 
conditioning component (referred to as heteroscedastic conditioning) derived from information 
associated with the variance of the unobserved effects, effectively delimiting an observable 
and systematic way of accommodating heterogeneous scaling (see Swait and Adamowicz, 
2001; Hensher and Ho, 2016 for details). This approach was preferred over including 
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experience as an additional variable in the utility function, as it suggests that experience 
affects all the attributes that describe the experienced mode, and is not independent to them.  
 
The model formulation also introduces correlation between choice sets, taken into 
consideration the panel nature of the stated choice data. This treatment relaxes the 
assumption of independence across choice sets within a respondent. As this conditioning is a 
form of scaling of utility, it will not change the distribution of the error term(s).   
 
3.4 Probabilistic Decision Process (PDP)  
One estimation method that allows for process heterogeneity is a latent class model. Every 
class can be defined to represent a different processing strategy (hence the reference to a 
probabilistic decision process), and every sampled individual is associated with each class up 
to a probability. The assigned probability can be specified as a function of other characteristics, 
such as the socioeconomic characteristics of respondents. However, the modeller implicitly 
assumes that each sampled individual only uses one decision process strategy. Several 
choice studies have used this approach to include multiple processing strategies (Swait and 
Adamowicz, 2001; Hensher and Collins, 2011; Campbell et al., 2012; Hess et al., 2012; Weller 
et al., 2014). With LPAA and two heuristics included in the current study, the model equations 
for each class have been prescribed as heuristic-specific utility expressions. Parameter 
estimates associated with each attribute are then specific to each class; with fixed parameters 
under process heterogeneity and preference homogeneity. When including behavioural 
refinements and experience in the PDP model, the risk attitudes and perceptual conditioning 
are included in the LPAA class only and experience is included in every class.  
 
3.5 Conditioning by Random Process Heterogeneity (CRPH) 
Our primary focus is on investigating the possible interaction between process heuristics and 
the random parameters obtained for an LPAA utility specification in order to see whether this 
increases our understanding of preference heterogeneity which we refer to as Conditioning by 
Random Process Heterogeneity (CRPH). The approach recognises that the parameters 
defined under LPAA may be conditioned by alternative process strategies. It analyses the 
degrees of potential substitution or complementarity between the non-systematic 
representation of preference heterogeneity through random parameters and a systematic 
representation through a conditioning of the heterogeneous preference distribution, where the 
latter may offer up a behaviourally richer (and statistically improved) explanation of the choice 
process. Theoretically, the CRPH approach represents a decision made using multiple 
process strategies simultaneously while allowing for differences between respondents. This 
proposal is very novel since the PDP approach – which has been used to include multiple 
process strategies in decision making - considers that each individual uses one process 
strategy up to a probability. Other approaches, such as the hybrid model (Chorus et al., 2013; 
Hess et al., 2014) consider that different subsets of attributes are evaluated using a different  
process strategy. Therefore, the idea that a respondent might use more than one process 
strategy to evaluate each attribute – with the intention of replicating the complex process that 
respondents actually use when reaching a decision – has not been undertaken before in 
discrete choice modelling, to the best of our knowledge.  
 
The CRPH methodology takes into account the possibility that the mean and standard 
deviation of each attribute under LPAA with behavioural refinements is conditioned by multiple 
process strategies, thus including process heterogeneity. When there are multiple process 
strategies influencing the mean estimate, this approach is saying that – on average – 
respondents do not use a process strategy by itself but rather a combination of different 
strategies to a certain level. In terms of the standard deviation, the CRPH approach is saying 
that different respondents might use a different combination of process strategies and this 
partly explains the random component of the estimates. Therefore, this approach is testing 
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the relationship between process and (LPAA linked) preference heterogeneity. All the models 
in this paper were estimated using PythonBiogeme (Bierlaire, 2016). For the CRPH models, 
the parameters were estimated using MML with random parameters under an LPAA 
framework as starting values.  
 
The mixed logit model that considers random parameters, as was presented previously, 
decomposes parameter θ in  in its mean and standard deviation. To incorporate process 
heuristics using the CRPH approach, the mean and standard deviation of attribute inx  under 
an LPAA mixed logit model, are written as a function of each of the process heuristics. The 
utility expression can be written as follows: 
 

( ) ( )
( ) ( )

, ,

, ,

 
m m
VL in RAM i

m
in inqt inqt

iqt inqt iqt

in inqt in

n

s s
n VL in qtRAM in

VL RAM

VL

x x
U x

x M x vRA

  


  

  
  =  +
  +   

+  + 

 +  +  
   (20) 

 
where ( )inqtVL x represents the transformation of inqtx  for the VL heuristic; ( )inqtRAM x for the 
RAM heuristic; ,

m
VL in  represents the relationship between the mean estimate and VL; ,

m
RAM in  

represents the relationship between the mean estimate and RAM; ,
s
VL in  is the relationship 

between the standard deviation estimate of the random parameter distribution and VL; and 
,

s
RAM i  is the relationship between the standard deviation and RAM.  

 
The parameters estimated in RAM are equivalent to the ones in LPAA, since both are related 
to the direct values of the attribute: inqtx . However, they are not equivalent to the parameters 
estimated in a VL heuristic since they represent the difference between the attribute level and 
the reference level: ( )ninqt qtrefx


− . Therefore, the parameters m

in  can be considered common 
between LPAA and RAM, but not for VL, which will have its own parameters VL

in . The 
transformations of inx  associated with VL and RAM are as follows:  
 

( ) ( )VL
ninqt i i qn t tnqVL rx fx e


=  −        (21) 

( ) ( , )inqt in i t
j S

nqRAM Rx x i j


=  +        (22) 

 
Merging equation (20) with (21) and (22), the expression for CRPH that includes VL and RAM 
results in the following form: 
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(23) 

 
The part of the equation that considers the VL transformation includes two parameters: ,VL in  
and VL

in . As both are alternative and attribute specific, it is not possible to estimate them 
separately in this form (the issue of identification). Therefore, a parameter representing both 
of them together will be estimated, equal to:  
 

'
, ,VL in VL

V
inin
L  =            (24) 

 
Therefore, equation (23) can be written as: 
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     (25) 

 
in  can be unique or identical amongst the attributes between the process heuristics. If they 

are considered identical, then the relationship between the alternative process strategies and 
the mean or standard deviation estimate for a random parameter will be the same for all the 
attributes. An appeal of the CRPH approach is that the in  parameters can be attribute-specific 
(i.e., they depend on n) to allow for individuals to use alternative process heuristics for some 
attributes, but not for all of them. An example of how this could work in decision-making is an 
individual that compares the choice set travel times with a reference level but not for the other 
attributes. If this is the situation, the attributes that are not being influenced by a process 
heuristic would have 0m s

in in = =  (in its mean and standard deviation). This form also allows 
process strategies to have an influence over the mean but not the standard deviation of an 
attribute, with 0m

in =  and 0s
in   or, oppositely, over its standard deviation but not over its mean, 

with 0m
in   and 0s

in = .  
 
Another appeal of this approach is that behavioural refinements and experience can be 
independent of the process strategies. That is, risk attitudes and perceptual conditioning will 
only influence inx  and overt experience will affect the entire utility function.  
 
These models are complex, but one can think of this specification along similar lines of a 
standard mixed logit model where a specified random parameter is conditioned on sources of 
systematic variation. These can include socioeconomic characteristics and reinterpretations 
of the role of specific attributes in choice making. If, for example, a particular attribute is in the 
LPAA formulation and in the interaction (via a process heuristic) with the LPAA parameter, 
then we are effectively creating a non-linearity and this gets reflected in the overall form of 
input into a utility expression as well as in the WTP formula which as we show is relatively 
complex and highly non-linear. 
 
It is important to note that the CRPH approach estimates more than one parameter related to 
the mean and more than one related to the standard deviation (assuming there are significant 
influences of alternative process strategies). Therefore, the parameters estimated are not 
behaviourally interpretable by themselves but only in terms of their significance level - and 
should be removed if not significantly different from zero. However, they can be grouped to 
analyse the overall influence over the mean and over the standard deviation by calculating the 
marginal (dis)utilities of each attribute, which is the derivate of the utility function relative to a 
certain attribute inqtx :  
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If the purpose of a study is to compare the CRPH attribute estimates with a traditional model, 
such as an LPAA, then it would have to compare the attribute’s marginal (dis)utilities derived 
from each model, as the CRPH parameters estimates have a different formulation than 
traditional models. Nevertheless, the willingness to pay estimates are one of the most 
important outcomes in choice studies so this study will focus on the comparison of them 
instead of the marginal (dis)utilities.  
 
3.6 Willingness to Pay Estimates 
The willingness to pay estimates (WTP) represent how much is a person willing to pay for a 
one unit increase (decrease) in an attribute inqtx  expressed as follows: 

( )
$.

iqt

inqt
inq

iqt

iqt

t

U
x

UWTP x

x







=          (27) 

where $,iqtx  represents the cost attribute; and iqt

inqt

U
x




 the marginal (dis)utilities associated 
with the attribute of interest. 
 
In some cases, as will be seen later, cost is represented by more than one attribute. For 
example, the cost of using a car be described by fuel and parking costs. To account for this, 
a weighted average for the marginal (dis)utilities of the cost attributes is used to calculate the 
denominator of WTP (Hensher et al., 2012; Hensher et al., 2013a; Leong and Hensher, 2015):  

$1, $2,
$1, $2,

$, $1, $2,

i i
i i

i ii

i i i

U Ux xx xU
x x x

  +  
=

 +
       (28) 

 
The majority of the models estimated are non-linear and, hence the WTP estimates are subject 
to the value of the attributes and other relevant parameters. We estimate a WTP for each 
individual given the attribute levels presented to them and sum up to obtain moments for the 
sample. 
 
3.7 Willingness to Pay Confidence Intervals 
To compare the willingness to pay estimates between models, confidence intervals are 
required, which are somewhat complex for WTP estimates derived from more than one 
parameter estimate in a non-linear form.  
 
We use the Delta method to calculate the standard error of the WTP estimates (Oehlert, 1992; 
Scarpa and Rose, 2008; Bliemer and Rose, 2013; Hensher et al. 2015). Considering that ̂   
represents a vector of (maximum likelihood) estimates for the unknown parameters in , the 
delta method states that if ̂  is asymptotically distributed, then a function of ˆ( )f   is 
asymptotically normally distributed with a mean of ( )f   and a variance of: 

T( ) ( )f f                 (29) 
 

where ( )f   denotes the Jacobian of ( )f  . Bliemer and Rose (2013) use the Delta 
method to obtain confidence intervals in linear mixed logit models. To implement this method, 
we have to re-write the parameter estimateŝ  equivalent to equation (5) in terms of the 
distributional parameters m

in  and in , which together will be referred to as  , and a 
parameter-free distribution v , as follows: 
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( )| m
in iin in in n inv    = = +           (30) 

 
We assume that all random parameters are normally distributed5. The Jacobians (first 
derivatives) for normal distributed parameters are the following: 
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In a linear mixed logit model (LPAA) where both the cost attribute ( $i  ) and attribute n ( in ) 
are random, the WTP estimate for attribute n is: 

( ) $ $
i$ $ $

( )( , , )|
|(
|

)
in in in

inqt in in i in i
i i

WTP v vx vw
v





 


= =       (32) 

 
which is asymptotically normally distributed around the true value of the WTP with a mean and 
a variance: 
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where 

in inw  and 
$i inw  represent the first derivatives (Jacobian) of the WTP estimate  of 

attribute n  relative to in  and $i , respectively; and 
in inw  and 

$i inw  are relative to in  and 
$i , respectively.  is the submatrix of the variances and covariances of the distributional 

parameters in  and $i ; 0 represents a matrix with zeros and magnitude of 
( ) ( )$ $# # # #in i in i   +  + , where # represent the number of elements of in , $i , in  and $i ; 
and diag(1,…,1) is a diagonal matrix with ones and magnitude of ( ) ( )$ $# # # #in i in i   +  + .  
 
The Jacobians can be calculated as follows: 
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Given (34), equation (33) can be re-written as: 
 
                                                
5 Different distribution assumptions were tested (e.g., triangular and lognormal), but we found 
that the normal distribution gave the best fit and behaviourally most appealing results. 
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If both parameters are fixed, then $ 0in in in i   = = = = . The expected WTP estimate ˆ inw  is: 
 

$

$ $ $ˆ ˆ ( , )d ( )d ( )
in i

in in in i in in i iw w F F
 

   =         (36) 

where ( )in inF   and $ $( )i iF   are the cumulative distribution functions of the standard distributed 
in  and  $i , respectively. Since normal distributions are defined on the complete domain of

( , )− + , the willingness to pay estimate would be undefined when $ 0i  . Daly et al. (2012) 
demonstrate that for the moments to be finite, the probability of observing $ 0i   should be 
zero as in, for example, a log-normal distribution.  
 
Bliemer and Rose (2013) suggest the use of the median instead of the mean, as it would 
represent a more robust estimator across different models, considering that the mean does 
not exist when the cost attribute is normally distributed. When estimating mixed logit models 
in this study, all the attributes are considered to be normally distributed; hence the results are 
presented using the median WTP estimates and median standard errors.  
 
The expected WTP can be approximated by Monte Carlo simulation as: 
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r

w w
R

 
=

          (37) 

where 1, ,r R=   are pseudo random draws such as Halton sequences, to ensure more 
uniform coverage over the distribution (Train, 1999). The approximation is expected to be 
more accurate under a larger number of draws. We use 25,000 pseudo random draws to 
calculate the median and the variance (standard errors).  
 
In non-linear models, as presented in this study, the function ( ) ( )

$ˆ ( , )r r
in in iw    involves sample 

data (e.g., attribute levels). They can be evaluated using the mean levels of the data, or they 
can be averaged over the observations (Hensher et al. 2015). Both methods were used to 
verify that the results do not change significantly, although the results presented will report 
findings using the first method. The levels for the expected WTP with a confidence level of α, 
where ˆ( )inse w  is the standard error, are as follows: 
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( )1 /2 1 /2ˆ ˆ ˆ ˆ( ), ( )in in in inw t se w w t se w − −−  +        (38) 
 
In the following two subsections will present the formulae for the confidence intervals when 
using the PDP and CRPH methods, both of which are highly non-linear.  
 

3.7.1 PDP method 
The PDP approach considers a ‘latent class’ structure, where each class represents a pre-
defined heuristic. Applying the Delta method in a similar way to above, we have that:  
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The classes consider specific and fixed parameters for each attribute, as shown in section 3.4. 
Since the parameters are fixed, m

in in = . 
1in C , 2in C , and 

3in C  represent the estimate for 
attribute n alternative i for the RAM heuristic (class 1), VL heuristic (class 2) and LPAA (class 
3), respectively; n and $  represent the risk attitudes for attribute n and for the cost attribute, 
respectively, for the LPAA heuristic (class 1); n  represents perceptual conditioning for 
attribute n (it is different from zero when it refers to the travel time attribute) for the LPAA 
heuristic (class 1);  represents the concavity factor for the VL heuristic (class 2); 

,exp ,ex1 2 , 3p exp, ,C i iC Ci   represents the parameter estimated for experience on mode i for each 
class; and 1 2 3, ,C C CCte Cte Cte  represent the class specific constants for the class assignment. 
 

3.7.2 CRPH method 
The CRPH approach considers interactions between the process heuristics and the mean 
and/or standard deviation of the estimates associated with the LPAA form with behavioural 
refinements, as presented in section 3.5. Applying the Delta method while assuming the 
attribute estimates are all normally distributed, we have: 
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where n and $  represent the risk attitudes for attribute n and for the cost attribute, 
respectively; n  represents perceptual conditioning for attribute n (it is different from zero 
when it refers to the travel time attribute); ,

m
VL in  and , $

m
VL i  represents the relationship between 

the mean estimate and VL for attribute n and the cost attribute; ,
m
RAM in  and , $

m
RAM i  represent 

the relationship between the mean and RAM for attribute n and the cost attribute; ,
s
VL in  and 

,
s
VL in  defines the relationship between the standard deviation and VL for attribute n and the 

cost attribute; ,
s
RAM in  and , $

s
RAM i  defines the relationship between the standard deviation and 

RAM for attribute n and the cost attribute;  represents the concavity factor for the VL 
heuristic; and ,expi represents the parameter estimated for experience in using mode i. 

4 Datasets 
 
The first dataset used in this study, referred to as Metro Rail, was collected to evaluate the 
New South Wales government proposal to build a new Metro rail system for Sydney (Hensher 
et al., 2011). The survey included four alternatives: bus, metro, train and car. Each of them 
was described by access, main mode and egress attributes. The travel times for the car and 
bus are described using three attributes: slowest trip time, quickest trip time and travel time 
on average. Figure 2 presents an illustrative choice experiment screen. For more information 
the reader is referred to Hensher et al. (2011) and Balbontin (2018). 
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Figure 2: Illustrative screenshot of Metro Rail Sydney choice experiment 

 
The second dataset, referred to as Northwest, was collected as part of a larger study to 
evaluate public transport investment options (train and bus) in the north west of Sydney, one 
of the fastest growing areas in Sydney (Hensher and Rose, 2007). The projects under 
consideration included variations of new heavy rail systems, new light rail and dedicated 
busway systems along the same corridor. The sample covered residents that made trips within 
the region (intra-regional) and outside of the region (inter-regional). If an individual made intra-
regional trips, the survey presented three public transport modes: new light rail, new heavy 
rail and bus, plus a car alternative if it was available for him. If an individual made inter-regional 
trips, the survey included five public transport modes: new light rail, new heavy rail, bus, 
existing M2 busway and existing train line, plus a car alternative if available. Each alternative 
was described by access, egress and main mode attributes. Figure 3 presents an illustrative 
choice screen. For more information the reader is referred to Hensher and Rose (2007) and 
Balbontin (2018). 
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Figure 3: Illustrative screenshot of North West Sydney choice experiment 

The choice models associated with the two surveys used labelled choice data (obtained by a 
D-optimal design that accounted for random parameters) and included new and existing modal 
alternatives. One of the main differences between the two designs is that the Metro Rail 
dataset included reliability (trip time variability) and crowding attributes that were not 
considered in the Northwest data. Reliability allows for perceptual conditioning, which cannot 
be tested in Northwest. Moreover, the Northwest data considered seven different alternatives, 
while the Metro Rail data only four. Even though both datasets were collected in Sydney, they 
do represent different geographical catchment areas. This will provide an opportunity to study 
preferences in settings that are sufficiently different as a way to inform the extent to which 
there are common behavioural traits (i.e. replicability) in travel choice making. 

5 Analysis of Results 
 
As explained in the introduction of section 3, different models were estimated: (a) three MNL 
models: under LPAA, VL and RAM framework; (b) three MML models: under a LPAA, VL and 
RAM framework; (c) a PDP model; and (d) a CRPH model. The parameter estimates for the 
final models are presented in Appendix A. The acronyms for the models that will be used in 
this section are presented in Table 1 and Table 2. 
 
5.1 Comparison of the LPAA or process homogeneity and process heterogeneity 

models 
The first question that arises is whether preferences are better represented (in a statistical 
sense) when considering multiple decision process strategies. The Akaike’s Information 
Criterion (AIC) was proposed by Akaike (1974) and it can be used to compare the models in 
regards to their overall fit. It takes into account the log likelihood ( )l   of a model while 
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penalising the number of parameters estimated, #Params . The indicator also takes into 
account the number of observations #Obs and it is calculated as follows: 

( )2 2 #
#

Params
AI

Obs
l

C
−  + 

=        (41) 

 
Table 3Error! Reference source not found. presents the difference between the AIC 
indicators for the models with LPAA or process homogeneity and process heterogeneity.  
 

Table 3: Comparison of AIC indicators for models with process homogeneity and LPAA or 
process heterogeneity 

 
*Colour scale represents a detriment (red) or improvement (green) in the AIC indicator when considering process 

heterogeneity relative to process homogeneity. A darker colour tone represents a higher detriment or 
improvement. 

 
The red shading scale represents a detriment in the AIC indicator when allowing for process 
heterogeneity relative to LPAA or process homogeneity, and a darker (lighter) red shading 
represents a larger (lower) detriment. The green colour shading represents an improvement 
in the AIC indicator, where a larger (lower) improvement is represented by darker (lighter) 
green. As can be seen, the PDP approach used to integrate multiple process strategies has a 
worse AIC value than most of the LPAA or process homogeneity models (with the exception 
of the VL_MML in the Metro Rail dataset). Contrarily, the CRPH models used to account for 
process heterogeneity have a much improved AIC reinforces  a position the importance and 
impact of random parameters when understanding preferences, and raises the question of 
what role random parameters play in capturing process heterogeneity when specific 
processing heuristics are also accommodated. 
 
5.2 Comparison of the experience and behavioural refinement results 
It is of interest to establish the differences in these models attributable to experience and 
behavioural refinements, and see how they interact with LPAA or process homogeneity and 
heterogeneity, given both are statistically significant in capturing preference variations, Table 
4 summarises the parameters that are statistically significant in the estimated models. The 
last column in the table shows the percentage of the parameters that were statistically 
significant out of all that were tested. In the LPAA_MNL model, which represents a relatively 
simple model with fixed parameters and including one – and the most commonly used - 

LPAA or Process 
Homogeneity Model

Process Heterogeneity 
Model

LPAA_MNL PDP -0.014
LPAA_MML CRPH 0.007
VL_MNL PDP 0.003
VL_MML CRPH 0.024
RAM_MNL PDP -0.014
RAM_MML CRPH 0.007
LPAA_MNL PDP -0.12
LPAA_MML CRPH 0.048
VL_MNL PDP -0.08
VL_MML CRPH 0.088
RAM_MNL PDP -0.14
RAM_MML CRPH 0.028

Models

Metro Rail

Northwest

Difference AIC (LPAA or 
process homegeneity model - 
Process heterogeneity model)
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process strategy, 50% of the parameters tested were statistically significant in the Metro Rail 
dataset, and 82% in the Northwest dataset. The notable difference between these 
percentages is in perceptual conditioning, which was only tested in the Metro Rail dataset on 
travel time reliability but excluded for the Northwest data because no attribute was presented 
with levels of variation within an alternative and choice scenario. Encouragingly, both data 
sources found the experience parameter for all the modes and more than half of the possible 
risk attitudes to be statistically significant. When adding random parameters to the LPAA 
(LPAA_MML) model, we see a decrease in the number of parameters found to be statistically 
significant: in the Metro Rail dataset from 50% to 43%, and in Northwest data from 82% to 
36%. The larger decrease for the Northwest data relative to the Metro Rail is due primarily to 
the experience parameters where half were not statistically significant, whereas in the Metro 
Rail dataset all remained statistically significant. The models that considered VL or RAM as 
the only process strategy, only included experience and not behavioural refinements. In the 
Metro Rail dataset 2/3 of the experience parameters were statistically significant in the VL 
models, and all were significant in the RAM models. In the Northwest dataset, all the 
experience parameters were statistically significant in the VL and RAM models. There was no 
difference in the number of significant behavioural refinements and/or experience parameters 
when adding random parameters in the VL or RAM models for both datasets. 
 
The last two rows in each dataset in Table 4 summarise the evidence for the process 
heterogeneity models. There is a large decrease in the percentage of behavioural refinements 
and experience parameters found to be statistically significant for these models.  
 
For the PDP model in the Metro Rail dataset, only a 25% of these parameters were statistically 
significant and 22% in the Northwest dataset. Even though the PDP model tested many more 
experience parameters (three times more, representing each class), approximately only 1/4 
of them were statistically significant. For the CRPH model, these percentages decrease even 
more: in the Metro Rail dataset, to 21%, and in the Northwest dataset, to 18%.  
 
It is also relevant to interpret the behavioural refinement results. In the Metro Rail dataset, the 
LPAA_MML evidence suggests risk aversion towards bus cost and risk taking attitude towards 
parking cost. In the PDP approach, the LPAA class had a significant risk taking attitude 
towards the parking cost, similarly for the LPAA_MML model. Perceptual conditioning was 
only statistically significant in the LPAA_MML model for car. In the Northwest dataset, the 
LPAA_MML model results show a risk aversion towards all public transport fares (for the 
currently available modes and the new modal investments); and the PDP model, the LPAA 
class showed a significant risk averse attitude towards the costs of the currently available 
modes. The other models did not include risk attitudes and/or perceptual conditioning.  
 
What does this mean for model selection? The finding that the process heterogeneity models 
identified statistically significantly fewer behavioural refinements and experience parameters 
is an important finding. This suggests that the importance of including additional behavioural 
components is reduced in the presence of process heterogeneity (i.e., the PDP and CRPH 
models) relative to LPAA or process homogeneity (i.e., VL or RAM models), and that the risk 
of confoundment may increase with more complex model forms. This statement suggests that 
by including process heterogeneity, other behavioural refinements are not as important. It 
could certainly be because process heterogeneity is to a greater extent interacted with the 
behavioural refinements, but we cannot be certain of this. We can only argue that less 
attention is required on other behavioural refinements when including process heterogeneity. 
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Table 4: Summary of the behavioural refinements and experience significant in the preferred models 

Dataset Preferred 
Models 

Model Characteristics Behavioural Refinements and Experience Parameters 
Random 

Parameters 
Multiple decision 

process strategies Experience*  Risk attitudes* Perceptual 
conditioning* 

Number of 
Parameters 

% of Total 
Possibilities 

Metro 
Rail 

LPAA_MNL No No Yes (3/3) Yes (3/4 travel 
time + 1/5 cost) No (0/2) 7 50% 

LPAA_MML Yes No Yes (3/3) Yes (0/4 travel 
time + 2/5 cost) Yes (1/2) 6 43% 

VL_MNL No No Yes (2/3) - - 2 67% 
VL_MML Yes No Yes (2/3) - - 2 67% 
RAM_MNL No No Yes (3/3) - - 3 100% 
RAM_MML Yes No Yes (3/3) - - 3 100% 

PDP No Yes Yes (4/9) Yes (0/4 travel 
time + 1/5 cost) No (0/2) 5 25% 

CRPH Yes Yes Yes (3/3) No (0/4 travel 
time + 0/5 cost) No (0/2) 3 21% 

North- 
west 

LPAA_MNL No No Yes (4/4) Yes (2/3 travel 
time + 3/4 cost) - 9 82% 

LPAA_MML Yes No Yes (2/4) Yes (0/3 travel 
time + 2/4 cost) - 4 36% 

VL_MNL No No Yes (4/4) - - 4 100% 
VL_MML Yes No Yes (4/4) - - 4 100% 
RAM_MNL No No Yes (4/4) - - 4 100% 
RAM_MML Yes No Yes (4/4) - - 4 100% 

PDP No Yes Yes (4/16) Yes (0/3 travel 
time + 1/4 cost) - 5 22% 

CRPH Yes Yes Yes (2/4) No (0/3 travel 
time + 0/4 cost) - 2 18% 

*The numbers in parenthesis represent how many parameters are significant out of the total of parameters that were tested. 
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5.3 Comparison of the process heterogeneity methods 
Another objective of this paper is to compare the process heterogeneity methods used. The 
PDP approach (as a latent class form) suggests, from the perspective of the decision maker, 
that there is no statistically significant interaction between two or three process strategies; 
rather that an individual respondent will select an independent process strategy, in the 
presence of other process heuristics, up to a probability. In contrast, the CRPH approach 
hypothesises that the assessed decision process strategies interact with each other with 
individuals using more than one rule to evaluate a specific attribute. This interaction between 
process strategies is included in the mean parameter estimate across the sample and in the 
standard deviation (capturing preference heterogeneity). The CRPH approach is an innovative 
approach to test for preference heterogeneity at the attribute level in a setting of process 
heuristics compared to the PDP approach, the most common approach used in the transport 
literature (and other literatures) to integrate multiple heuristics in choice making models.  
 
Table 5 summarises the AIC indicators for the preferred PDP and CRPH models for each 
dataset. There is a significant improvement in the AIC for the CRPH approach: in the Metro 
Rail dataset this improvement is 0.021 and in the Northwest dataset it is 0.169.  These 
differences are statistically significant and show that the CRPH provides an improved 
representation of preferences in both datasets. This supports the position that process 
strategies can and often do interact with each other in preference revelation.  
 
 

Table 5: AIC indicator of preferred PDP and CRPH models 
Dataset Model Number of 

Parameters 
Estimated 

Log 
Likelihood at 
convergence 

Log 
likelihood at 

zero 
AIC 

Metro Rail PDP 47 -5,007.53 
-13,125.44 

1.068 
CRPH 35 -4,922.41 1.047 

Northwest PDP 44 -4,864.47 
-7,838.25 

2.167 
CRPH 32 -4,494.74 1.999 

 
The interactions that are statistically significant for the preferred CRPH models (CRPH) are 
shown in Table 6 with different colours for each dataset, where yellow represents statistically 
significant interactions in the preferred CRPH model for both datasets. Four interactions 
between the standard deviation and the process strategies were present in both datasets: 
access time with RAM; fare public transport with both VL and RAM; and travel time public 
transport with VL. There was only one interaction between the mean and process strategies 
present in both datasets: headway public transport and VL. The attributes transfer in public 
transport, % seating probability and density were only available in the Metro Rail dataset.  
 
There are both similarities and differences between the models’ interactions, with the evidence 
suggesting dataset specific effects. In both datasets, several interactions were found 
significant between the mean and standard deviation estimates – traditionally defined under 
an LPAA assumption - with both the VL and RAM heuristic. This is not surprising as there is a 
sense that more complex model forms typically reveal differences in evidence between 
datasets that is not observed in simpler models because of the absence of additional sources 
of behavioural variance. What this suggests is that if the behaviourally richer models are an 
improved explanation of choice making, then it becomes more likely that data must be 
collected in the setting in which a study is focussed, limiting the ability to make inferential 
statements about the portability of evidence. This may not be such good news for practitioners 
who are looking for evidence of WTP estimates that can be taken from one context and used 
into another context. Intuitively we have uncovered further support for the view that accounting 



How to better represent preferences in choice models: the contributions to preference heterogeneity 
attributable to the presence of process heterogeneity  

Balbontin, Hensher and Collins 
 

26 
 

for more sources of variability in preferences of a sample of choice reduces the ability to 
transfer evidence.  
 

Table 6: Process strategies’ interactions in CRPH preferred models for the datasets 

 
 
The CRPH method proposes that there is a relationship between the preferences identified 
through process heterogeneity and those identified through the simpler LPAA representation 
of taste heterogeneity by including interactions between the parameters’ mean and standard 
deviation as well as different process strategies. The interactions presented in Table 6 support 
the existence of a relationship between sources of preference heterogeneity identified through 
the process heuristic treatment and the LPAA treatment, both included in an interaction form. 
In both datasets there are numerous statistically significant interactions between these two 
sources of preference heterogeneity. The results show that these relationships are statistically 
significant and contribute behaviourally appealing evidence in representing choice making in 
both datasets. Moreover, the findings suggest that the relationship between these two sources 
of preference heterogeneity is attribute-specific and should not be considered common 
between all the attributes. This is shown in Table 6 where each attribute is represented by a 
different combination of interactions.  
 
5.4 Willingness to Pay Estimates and Confidence Intervals 
The median WTP is the main focus (in contrast to mean estimates) of the analysis because 
when estimating all parameters as random, the mean WTP is highly dependent on the draws, 
and thus is not very stable; in fixed parameters models the mean and median WTP are 
equivalent as was explained in section 3.7. We compare the main findings for the attributes 
present in both datasets: travel times, access time, egress times, and headway. Table 7 
presents the median WTP estimates for the attributes on each dataset relative to year 20096, 
where the last column represents the percentage difference between the datasets.  
 
There are statistically significant differences between the datasets, especially in the access 
times, egress times and headway. The egress times were presented very differently in the 
surveys, where the Metro Rail survey presented more detailed egress time information (i.e., 
walk time, public transport time, car pick up or taxi time), and the Northwest survey presented 
it only as the total time (i.e., time getting from main mode to destination). This we believe is 
contributing to differences in evidence between the datasets. The travel times for bus and car 
were also presented differently in the Metro Rail survey, with different levels of variation. The 

                                                
6 Calculated using the annual inflation rate provided by the Reserve Bank of Australia. Respondents 
were asked for the interval that best represented their income, so a uniform distribution was assumed 
within each intervals to include inflation. 

VL RAM VL RAM
Access Time 2 0 0 3 Northwest
Fare Public Transport 0 0 3 3 Metro Rail
Fuel + Toll Cost Car 0 0 1 2 Both
Parking Cost Car 1 0 1 0
Travel Time Public Transport 0 2 3 0
Travel Time Car 2 0 2 0
Egress Time 0 0 0 0
Transfer Public Transport 0 0 0 0
Headway Public Transport 0 3 0 0
% Seat Public Transport 1 0 0 0
Density Public Transport 0 0 0 1

Mean Standard deviation
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remaining attributes were relatively similar in both surveys. The results show that there are 
statistically significant differences in the median WTP estimates between the datasets.  
 
Table 8Error! Reference source not found. presents the percentage change in the median 
WTP estimates when considering process heterogeneity relative to LPAA or the different 
process homogeneity models. In the Metro Rail dataset, there is a clear increase in the median 
WTP when using the PDP (latent class) approach to allow for process heterogeneity versus 
all the LPAA or process homogeneity models, and a decrease when using the MML CRPH 
approach (except for the car travel time relative to the VL model and the public transport 
egress time and headway relative to the LPAA model, where there are minor increases). 
 
In the Northwest dataset, there is an increase in the majority of the median WTP estimates 
when considering process heterogeneity relative to all the LPAA or process homogeneity 
models, with a few exceptions. There appears to be no common pattern between the datasets 
in the median WTP estimates when assessing process heterogeneity versus LPAA or process 
homogeneity. This suggests, given the proviso of data differences, that the proposed CRPH 
method will not always lead to higher or lower WTP estimates; however they provide a 
statistically improved and behaviourally more appealing way to represent preferences that 
underlie choice making. 
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Table 7: Median WTP estimates for the different models in each dataset relative to year 
2009 

  
*Colour scale represents a decrease (red) or increase (green) in the WTP estimates in the Metro Rail data models 
relative to the Northwest data models. A darker colour tone represents a larger increase or decrease. 
  

Metro Rail Northwest % change (Metro Rail - 
Northwest)

LPAA_MML 5.52 7.68 -39%

VL_MML 6.43 6.33 2%
RAM_MML 6.36 5.09 20%
PDP 8.41 12.11 -44%
CRPH 5.20 11.76 -126%
LPAA_MML 15.26 11.06 28%
VL_MML 13.94 17.95 -29%
RAM_MML 8.80 33.87 -285%
PDP 23.60 31.03 -31%
CRPH 13.74 22.94 -67%
LPAA_MML 5.98 7.61 -27%
VL_MML 6.46 5.18 20%
RAM_MML 7.47 4.07 46%
PDP 11.31 9.64 15%
CRPH 3.98 7.13 -79%
LPAA_MML 7.28 6.09 16%
VL_MML 9.89 3.64 63%
RAM_MML 9.03 3.18 65%
PDP 14.37 7.43 48%
CRPH 7.70 8.79 -14%
LPAA_MML 18.08 7.81 57%
VL_MML 26.96 10.41 61%
RAM_MML 14.74 15.41 -5%
PDP 32.89 15.65 52%
CRPH 14.44 13.86 4%
LPAA_MML 0.03 0.06 -61%
VL_MML 0.04 0.11 -178%
RAM_MML 0.04 0.08 -74%
PDP 0.06 0.06 -6%
CRPH 0.04 0.10 -181%

Car Egress 
Time

($ per person 
hour)

Headway
($ per person 

minute)

WTP median estimates

Public 
Transport 

Travel Time 
($ per person 

hour)

Car Travel 
Time

($ per person 
hour)

Public 
Transport 

Access Time
($ per person 

hour)

Public 
Transport 

Egress Time
($ per person 

hour)
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Table 8: Influence on the median WTP estimates when considering process heterogeneity versus LPAA or process homogeneity 

 
*Colour scale represents a decrease (red) or increase (green) in the median WTP when considering process heterogeneity relative to LPAA or process homogeneity. A darker 
colour tone represents a larger increase or decrease. 

PDP CRPH PDP CRPH
LPAA_MML 52% -6% 58% 53%

VL_MML 31% -19% 91% 86%
RAM_MML 32% -18% 138% 131%
LPAA_MML 55% -10% 181% 107%

VL_MML 69% -1% 73% 28%
RAM_MML 168% 56% -8% -32%
LPAA_MML 89% -33% 27% -6%

VL_MML 75% -38% 86% 38%
RAM_MML 51% -47% 137% 75%
LPAA_MML 97% 6% 22% 44%

VL_MML 45% -22% 104% 141%
RAM_MML 59% -15% 134% 177%
LPAA_MML 82% -20% 101% 78%

VL_MML 22% -46% 50% 33%
RAM_MML 123% -2% 2% -10%
LPAA_MML 63% 6% 8% 85%

VL_MML 46% -5% -44% -4%
RAM_MML 26% -18% -23% 32%

Public Transport 
Access Time

($ per person hour)

Public Transport 
Egress Time

($ per person hour)

Car Egress Time
($ per person hour)

Headway
($ per person minute)

Public Transport 
Travel Time 

($ per person hour)

Car Travel Time
($ per person hour)

% change in median WTP estimates when considering process heterogeneity
Metro Rail NorthwestAttribute LPAA or Process 

Homogeneity Model
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Given that the value of travel time savings (VTTS) is the most researched and important user 
benefit in transport appraisal, we take a closer look at the WTP evidence across the models 
by presenting and discussing the confidence levels around the median estimates. Confidence 
intervals obtained when considering preferences under LPAA or process homogeneity, LPAA 
heterogeneity and process heterogeneity for VTTS are given in Figure 4. We graph the median 
VTTS and 95% confidence intervals for the three preferred models with LPAA or process 
homogeneity (LPAA_MML, VL_MML, and RAM_MML) and with process heterogeneity 
(CRPH; and PDP) for both datasets. As indicated above, the standard errors for the PDP 
models are lower because it does not estimate any parameter as random, contrary to all the 
other models.  
 

Public Transport Value of Travel Time Savings ($/person hour) 
Metro Rail dataset 

AA the 

 

Northwest dataset  

A   

Car Value of Travel Time Savings ($/person hour)  

Metro Rail dataset 

 

Northwest dataset 

 

 
Figure 4: VTTS median and 95% confidence intervals for the models with LPAA or process 
homogeneity versus process heterogeneity 

In the Metro Rail dataset, the lowest median VTTS for public transport is estimated using the 
CRPH model ($5.20 per person hour), followed by the LPAA_MML model ($5.52 per person 
hour). The highest median VTTS for public transport is estimated using the PDP model ($8.41 
per person hour). The standard error is lower in the PDP model, followed by the LPAA_MML 
model ($15.46) and by the VL_MML model ($17.79). The largest standard error is found in the 
CRPH model ($23.14). In the Northwest dataset, the LPAA or process homogeneity models 
have a lower VTTS median for public transport relative to the process heterogeneity models. 
The lowest is for the RAM_MML model ($4.30 per person hour) and the highest for the PDP 
model ($10.24). The standard error for the VTTS under the PDP approach is very low as it 
estimates fixed parameters. For the other models, the standard error for the public transport 
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VTTS is lower in the LPAA model ($10.65) followed by the CRPH model ($11.54), and larger 
in the RAM model ($13.02). 
 
For the car median VTTS, the differences are larger than for public transport, as can be seen 
in Figure 4. In the Metro Rail dataset, the lowest car median VTTS is estimated using the 
RAM_MML model ($8.80 per person hour). The highest car median VTTS is estimated using 
the PDP model ($23.60 per person hour). The largest standard errors are found in the 
VL_MML and the CRPH models. In the Northwest dataset, the median for the car VTTS is 
lower in the LPAA preferred model ($9.35 per person hour), followed by the VL ($15.17) and 
then followed by the CRPH model ($19.39). The car VTTS median is larger under the PDP 
approach. The standard error is lower in the PDP models, followed by the LPAA model ($15.13 
per person hour), VL model ($31.56), the CRPH ($41.88), and larger in the RAM model 
($116.99). 
 
Table 9 presents a comparison of the median VTTS using t-test of differences (including the 
mean and standard error estimates) for the preferred models with process heterogeneity and 
homogeneity, indicating which estimates are statistically significant from each other. The first 
three columns compare the CRPH model (which considers preference heterogeneity 
associated with the interaction between the LPAA form and process heuristics) with the three 
preferred models with LPAA or process homogeneity (VL and RAM), and the last two columns 
compare the PDP model (which considers preference heterogeneity through the process rule 
and preference homogeneity through the LPAA form) with the three preferred models. The 
results in the Metro Rail dataset show that the majority of the median VTTS estimates using 
the CRPH final model are statistically significantly different (absolute value larger than 1.96 
with a 95% confidence level) from the ones estimated using the LPAA or process homogeneity 
models. The exceptions are for the bus median VTTS for the stand alone LPAA model, metro 
median VTTS for all the LPAA or process homogeneity models, and car median VTTS for the 
VL model, where there is not enough evidence to suggest they are statistically different to the 
CRPH preferred model. When comparing the PDP model with the LPAA or process 
homogeneity models, the median VTTS estimates are always larger for the PDP model. The 
results also show that the PDP median VTTS estimates are all statistically different from the 
LPAA or process homogeneity median VTTS estimates.  
 

Table 9: Comparison of attributes’ median VTTS for models with process homogeneity using 
the t-test of differences 

 
Note: Bold and italic estimates are the ones significant at a 95% confidence level 

 

LPAA_MML VL_MML RAM_MML LPAA_MML VL_MML RAM_MML

Bus 0.07 -3.27 -3.06 17.19 5.68 5.36

Train -2.24 -3.12 -2.89 10.65 7.49 7.04

Metro -0.56 -1.85 -1.47 13.37 9.39 9.03

Car -2.73 -0.27 8.70 36.72 16.99 58.66

New Light Rail 8.25 9.67 12.97 22.28 21.18 24.18

New Heavy Rail 6.01 7.61 10.81 19.77 19.10 22.06

New Busway 17.26 21.80 23.59 9.19 15.92 18.40

Bus 23.08 29.60 32.31 24.70 33.90 36.63

Busway 15.35 20.98 23.78 21.88 29.56 32.22

Train 3.66 5.35 9.22 32.51 28.98 31.87

Car 14.08 5.02 -4.64 58.88 20.94 -1.28

Northwest

 Travel Time
CRPH vs. PDP vs.

Metro Rail 
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In the Northwest dataset, the results show that all the median VTTS estimates are significantly 
different and higher in the CRPH and PDP model than in the LPAA or process homogeneity 
models, except for the car VTTS that is lower in the CRPH and PDP models than in the RAM 
model. However, the car VTTS difference between the CRPH and RAM model is significant, 
while it is not significant between the PDP and RAM model (with 95% confidence level).  
 
The results show that there are many significant differences in the VTTS estimates under 
LPAA or process homogeneity in contrast to models that allow for process heterogeneity. This 
is an important finding, suggesting significant differences under alternative behavioural 
assumptions. Although there is no common pattern in the relative estimates of the median 
WTP estimates when assessing process heterogeneity and LPAA or process homogeneity 
between the datasets, there is a significant improvement in the statistical performance of the 
CRPH models. This suggests that in ongoing research, with a focus on identifying 
behaviourally relevant WTP estimates to be used in real applications, WTP estimates should 
be obtained from both to ensure that behavioural simplification is not at the expense of 
behavioural relevance.  
 

6 Conclusions 
 
Given the evidence, we are able to propose a revision of the preference process and choosing 
behavioural paradigm. This is summarised in Figure 5 as a conceptual framework, with our 
evidence supporting behaviourally relevant roles for multiple process strategies, behavioural 
refinements and experience, each in turn offering additional bases of understanding 
preferences.  
 
The results using the Northwest dataset support a position where risk attitudes are present 
even where there is limited or no variability in the levels of the attributes, encouraging the 
assessment of behavioural refinements despite the characteristics of the design of the 
available choice experiments. Overt experience also has an important role to play in decision-
making. The empirical evidence supports McFadden's (2001) call for more effort in building in 
process rules and experience in choice modelling. Specifically we offer new evidence on how 
experience, multiple decision process strategies and behavioural refinements all interact. 
When adding more behavioural relevance (often seen as modelling complexity) into discrete 
choice models through random parameters and process heterogeneity, the inclusion of 
additional behavioural refinements may not be necessary. 
 
The preferred preference revelation model form, conditioning by random process 
heterogeneity (CRPH), supports a behavioural paradigm in which individuals use more than 
one process heuristic in decision making, supporting heterogeneity in processing information 
related to alternatives on offer. The impact on important behavioural outputs such as 
willingness to pay is profound, and has important policy relevance in project appraisal.  
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Figure 5: Proposed conceptual framework for decision making 

 
In summary, we recommend that a choice study should allow for taste heterogeneity through 
the standard random parameter specification (under LPAA) as well as an overlay (or 
interaction) with one or more process heuristics, overt experience and behavioural 
refinements, especially with risk attitudes (we suggest to test for the inclusion of perceptual 
conditioning).  What this tends to do is to provide a better representation of preferences which 
is translated into significantly different (higher or lower) median WTP estimates of key 
attributes such as the value of travel time savings. The dataset requirements to be able to 
include process heterogeneity are more demanding since greater variance in attribute levels 
is required to identify the various contributions.  
 
The two datasets used in this paper were constructed through a Bayesian-efficient design 
using D-error as the optimality criterion. Other datasets required for further inquiry and 
practical application only need to have enough variability in the attribute levels. If any of the 
attributes is presented with more than one level of occurrence, then perceptual conditioning 
can and should be tested for those attributes. Otherwise, only risk attitudes can and should 
be tested. In terms of data collection, it is strongly advised to include questions regarding 
individual experience in the alternatives presented, since this is a way that experience can be 
included in the modelling. No questions regarding the process strategies used by respondents 
are necessary to estimate this type of models, although they could be asked to help guide the 
selection of process strategies, but this was not studied in this paper. 
 
This research has proposed and tested the role that different choice model forms (from 
relatively simple to complex forms) might play in improving our understanding of sources of 
influence on preference revelation in choice making. For the first time, we have simultaneously 
integrated into a discrete choice model multiple decision process strategies, risk attitudes, 
perceptual conditioning and overt experience, and investigated the relationship between the 
richer behavioural paradigms design to reveal preferences embedded in process 
heterogeneity and LPAA specified heterogeneity (commonly defined through random 
parameters). Two datasets were used to provide a more generalised overview of the outcomes 
under these different behavioural assumptions. The datasets used do have a degree of 
commonality in terms of design and presentation which is a limitation when generalisation 
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testing is of interest. However, they do have some differences in the design, such as the 
presentation of travel times and number of alternatives, and in terms of respondents’ profile.  
 
One of the most important findings is that when process heterogeneity is accounted for 
through specific heuristics such as value learning, behavioural refinements and overt 
experience may not be needed to be incorporated as explicitly influencing sources. This helps 
in identifying appealing parsimonious preference expressions in choice models. When 
preference heterogeneity captured through process rules is overlayed in more parsimonious 
models through random parameters, we find that the interaction between LPAA specified 
random parameters and processing heuristics adds new insights into the relationship between 
an increasing number of sources of preference heterogeneity. These phenomena are 
correlated, and hence behaviourally condition each other in important ways, supporting the 
use of the interaction mechanism. The evidence is strong enough to suggest empirically that 
there exists (in two datasets at least) a significant attribute-specific relationship between 
process strategies and random parameters associated with the LPAA model form. In future 
research it would be interesting to test how these models behave in a simulated dataset 
considering process and LPAA specified preference heterogeneity together with behavioural 
refinements, and to what extent the components of the CRPH functional form complement 
each other. 
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Appendix 
Table 10: Metro Rail dataset process homogeneity models’ estimates (t-values in parenthesis) 

  LPAA_MNL_BRExp VL_MNL_Exp RAM_MNL_Exp LPAA_MML_BRExp VL_MML_Exp RAM_MML_Exp 

Number of Parameters Estimated 24 17 17 31 27 28 

Log Likelihood at convergence -6,133.04 -5,944.52 -6,140.35 -4,958.17 -5,043.60 -4,963.32 

Log likelihood at zero -13,125.44 

AIC                         
1.301  

                        
1.259  

                        
1.301  

                              
1.054  

                              
1.071  

                              
1.054  

Parameters Acronym Alternatives Mean Mean Mean Mean Std Dev Mean Std 
Dev Mean Std 

Dev 

Alternative Specific 
Constant Bus ASCBUS Bus 1.46 

 (2.78) 
0.39 

 (3.16) 
0.43 

 (2.04) 
1.47 

 (2.59) - 1.19 
 (4.68) - 1.90 

 (3.28) - 

Alternative Specific 
Constant Train ASCTRAIN Train 1.76 

 (3.75) 
0.46 

 (4.37) 
0.79 

 (4.68) 
2.45 

 (5.10) - 1.57 
 (6.91) - 2.95 

 (6.07) - 

Alternative Specific 
Constant Metro ASCMETRO Metro 2.01 

 (4.12) 
0.74 

 (7.39) 
1.20 

 (8.57) 
2.63 

 (5.78) - 1.47 
 (6.98) - 3.07 

 (6.25) - 

Alternative Specific 
Constant Car ASCCAR Car - - - - - - - - - 

Access Time ACTIMEPT Bus, Train, 
Metro 

-0.05 
 (18.63) 

-0.04 
 (9.53) 

-0.05 
 (19.00) 

-0.10 
 (10.83) 

0.14 
 (12.95) 

-0.09 
 (9.83) 

0.15 
 (8.76) 

-0.09 
 (10.22) 

0.17 
(14.12) 

Fare Public Transport COSTPT Bus, Train, 
Metro 

-0.23 
 (12.41) 

-0.24 
 (13.65) 

-0.21 
 (12.51) 

-0.64 
 (13.88) 

0.56 
 (11.59) 

-0.56 
 (13.12) 

0.51 
 (7.60) 

-0.56 
 (13.48) 

0.44 
 (9.11) 

Fuel + Toll Cost Car COSTCRTRC Car -0.05 
 (2.23) 

-0.08 
 (4.90) 

-0.07 
 (3.56) 

-0.24 
 (3.80) 

0.35 
 (6.03) 

-0.21 
 (4.26) 

0.39 
 (6.96) 

-0.25 
 (4.43) 

0.38 
 (7.36) 

Parking Cost Car COSTCRPC Car -0.23 
 (10.02) 

-0.05 
 (7.50) 

-0.06 
 (8.16) 

-0.58 
 (5.08) 

0.53 
 (5.73) 

-0.21 
 (8.56) 

0.20 
 (7.67) 

-0.38 
 (10.64) 

0.38 
 

(11.62) 

Travel Time Public 
Transport TTPT Bus, Train, 

Metro 
-0.16 

 (2.33) 
-0.01 

 (7.66) 
-0.03 

 (14.80) 
-0.09 

 (14.42) 
0.08 

 (12.77) 
-0.09 

 (15.59) 

0.08 
 

(12.88) 

-0.08 
 (13.20) 

0.05 
 (9.99) 

Travel Time Car TTCR Car -0.04 
 (11.80) 

-0.02 
 (6.52) 

-0.04 
 (12.10) 

-0.16 
 (4.74) 

0.06 
 (3.64) 

-0.07 
 (7.11) 

0.08 
 (7.92) 

-0.07 
 (7.10) 

0.07 
 (9.55) 

Egress Time EGTIME All 
Alternatives 

-0.06 
 (16.84) 

-0.04 
 (9.23) 

-0.05 
 (16.26) 

-0.12 
 (10.06) 

0.15 
 (9.63) 

-0.14 
 (11.93) 

0.15 
 (9.95) 

-0.11 
 (10.65) 

0.10 
 (4.98) 

Transfer Public Transport TRANPT Bus, Train, 
Metro 

-0.11 
 (3.88) 

-0.09 
 (3.86) 

-0.11 
 (4.07) 

-0.29 
 (5.79) 

0.38 
 (3.23) 

-0.24 
 (5.24) 

0.30 
 (2.65) 

-0.24 
 (5.72) 

0.11 
 (0.64) 
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  LPAA_MNL_BRExp VL_MNL_Exp RAM_MNL_Exp LPAA_MML_BRExp VL_MML_Exp RAM_MML_Exp 

Headway Public Transport  FREQPT Bus, Train, 
Metro 

-0.01 
 (6.96) 

-0.01 
 (5.90) 

-0.01 
 (7.06) 

-0.03 
 (9.50) 

0.05 
 (12.65) 

-0.03 
 (9.55) 

0.05 
 

(12.89) 

-0.03 
 (9.89) 

0.05 
 

(12.89) 

% Seat Public Transport SEATPT Bus, Train, 
Metro 

0.44 
 (4.43) 

0.30 
 (3.29) 

0.39 
 (4.28) 

1.07 
 (5.90) 

1.60 
 (4.90) 

0.99 
 (5.99) 

1.84 
 (7.34) 

0.93 
 (5.64) 

0.91 
 (1.73) 

Density Public Transport STANDPT Bus, Train, 
Metro 

-0.19 
 (11.93) 

-0.16 
 (11.89) 

-0.18 
 (12.04) 

-0.37 
 (11.98) 

0.42 
 (9.12) 

-0.37 
 (12.36) 

0.39 
 (9.30) 

-0.35 
 (12.13) 

0.37 
 (8.62) 

Experience Bus EXPBS Bus 0.30 
 (9.37) - 0.37 

 (9.07) 
0.34 

 (10.52) - 0.29 
 (4.88) - 0.42 

 (10.06) - 

Experience Train EXPTR Train 0.09 
 (3.70) 

-0.11 
 (2.13) 

0.11 
 (3.97) 

0.07 
 (2.74) - - - 0.09 

 (2.11) - 

Experience Car EXPCR Car 0.44 
 (16.36) 

0.43 
 (8.99) 

0.65 
 (23.54) 

0.54 
 (15.22) - 0.30 

 (3.24) - 0.65 
 (13.97) - 

Risk Attitudes Travel Time 
Bus ALPHABSTT Bus 0.44 

 (3.73) - - - - - - - - 

Risk Attitudes Travel Time 
Train ALPHATRTT Train 0.46 

 (3.72) - - - - - - - - 

Risk Attitudes Travel Time 
Metro ALPHAMTTT Metro 0.60 

 (3.91) - - - - - - - - 

Risk Attitudes Cost Bus ALPHABSCS Bus - - - -0.23 
 (2.53) - - - - - 

Risk Attitudes Cost Metro ALPHAMTCS Metro - - - - - - - - - 

Risk Attitudes Fuel+Toll 
Car ALPHACRTRCS Car - - - - - - - - - 

Risk Attitudes Parking Car ALPHACRPCS Car 0.65 
 (8.79) - - 0.20 

 (2.06) - - - - - 

Perceptual Conditioning 
Car GAMMACR Car - - - 1.83 

 (2.96) - - - - - 

Concavity VL CONC All 
Alternatives - 1.16 

 (5.35) - - - - - - - 

 
  



How to better represent preferences in choice models: the contributions to preference heterogeneity attributable to the presence of process heterogeneity  
Balbontin, Hensher and Collins 

 

40 
 

Table 11: Metro Rail dataset process heterogeneity models’ estimates (t-values in parenthesis) 

  PDP_BRExp CRPHms_BRExp 

Number of Parameters Estimated 47 35 

Log Likelihood at convergence -5,007.53 -4,922.41 

Log likelihood at zero -13,125.44 

AIC                                                 
1.068                                                                                                        1.047  

Class Identification Class 1 Class 2 Class 3 - 

Heuristic RAM VL LPAA LPAA, VL and RAM 

Behavioural Refinements Y N N Y 

Experience Y Y Y Y 

Class Membership (%) 37% 18% 45% - 

Parameters Acronym Alternatives Mean Mean Mean Mean Std Dev M_VL M_RAM S_VL S_RAM 

Alternative Specific Constant 
Bus ASCBUS Bus -2.18 

 (3.51) 
-2.08 

 (4.23) 
2.54 

 (5.15) 
1.60 

 (2.63) - - - - - 

Alternative Specific Constant 
Train ASCTRAIN Train -1.45 

 (2.78) 
-1.03 

 (2.88) 
2.86 

 (6.41) 
2.44 

 (4.41) - - - - - 

Alternative Specific Constant 
Metro ASCMETRO Metro 0.14 

 (0.32) 
-3.11 

 (7.88) 
2.67 
 (6.5) 

2.75 
 (5.27) - - - - - 

Alternative Specific Constant 
Car ASCCAR Car - - - - - - - - - 

Access Time ACTIMEPT Bus, Train, 
Metro 

-0.05 
 (5.09) 

-0.07 
 (5.45) 

-0.06 
 (10.01) 

-0.08 
 (8.93) 

-0.22 
 (10.81) - - - -0.05 

 (3.63) 

Fare Public Transport COSTPT Bus, Train, 
Metro 

-0.25 
 (3.93) 

-0.24 
 (4.15) 

-0.42 
 (10.74) 

-0.92 
 (10.36) 

-0.82 
 (9.12) - - -0.03 

 (6.84) 
-0.05 

 (6.12) 

Fuel + Toll Cost Car COSTCRTRC Car - -0.12 
 (2.13) 

-0.23 
 (5.29) - 0.18 

 (3.49) - - -0.27 
 (5.53) - 

Parking Cost Car COSTCRPC Car -0.34 
 (5.71) 

-0.12 
 (4.80) 

-0.24 
 (4.42) 

-0.33 
 (6.77) 

0.13 
 (3.55) 

-0.002 
 (2.05) - -0.01 

 (4.74) - 

Travel Time Public Transport TTPT Bus, Train, 
Metro 

-0.05 
 (6.57) 

-0.02 
 (4.23) 

-0.05 
 (11.29) 

-0.10 
 (9.06) 

0.03 
 (6.86) - - -0.003 

 (3.53) - 

Travel Time Car TTCR Car -0.14 
 (6.49) 

-0.06 
 (5.03) 

-0.03 
 (4.81) 

-0.09 
 (7.47) 

0.07 
 (8.10) - - - - 
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  PDP_BRExp CRPHms_BRExp 

Egress Time EGTIME All Alternatives -0.08 
 (6.05) 

-0.04 
 (2.82) 

-0.09 
 (10.51) 

-0.13 
 (10.52) 

0.12 
 (7.53) - - - - 

Transfer Public Transport TRANPT Bus, Train, 
Metro - -0.18 

 (1.81) 
-0.25 

 (4.86) 
-0.26 

 (5.82) - - - - - 

Headway Public Transport  FREQPT Bus, Train, 
Metro 

-0.02 
 (3.04) 

-0.01 
 (2.21) 

-0.02 
 (5.41) 

-0.03 
 (10.00) 

0.09 
 (11.10) - -0.001 

 (5.09) - - 

% Seat Public Transport SEATPT Bus, Train, 
Metro 

0.58 
 (1.88) 

0.80 
 (2.51) 

0.63 
 (3.36) 

1.59 
 (6.79) - -1.45 

 (3.88) - - - 

Density Public Transport STANDPT Bus, Train, 
Metro 

-0.43 
 (7.40) 

-0.19 
 (3.35) 

-0.24 
 (7.65) 

-0.33 
 (10.90) 

0.53 
 (8.15) - - - 0.26 

 (3.19) 

Experience Bus EXPBS Bus - 0.78 
 (6.88) 

0.26 
 (4.59) 

0.29 
 (9.94) - - - - - 

Experience Train EXPTR Train - - - 0.09 
 (3.56) - - - - - 

Experience Car EXPCR Car 0.73 
 (20.61) 

0.34 
 (2.85) - 0.37 

 (7.49) - - - - - 

Risk Attitudes Parking Car ALPHACRPCS Car - - 0.75 
 (5.88) - - - - - - 
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Table 12: Northwest dataset process homogeneity models’ estimates (t-values in parenthesis) 

  LPAA_MNL_BRExp VL_MNL_Exp RAM_MNL_Exp LPAA_MML_BRExp VL_MML_Exp RAM_MML_Exp 

Number of Parameters Estimated 14 15 14 26 25 25 

Log Likelihood at convergence -6,170.72 -6,004.14 -6,169.89 -4,611.45 -4,702.90 -4,566.35 

Log likelihood at zero -7,838.25 

AIC                          
2.731  

             
2.657  

                  
2.730                     2.047                     2.087                     2.027  

Parameters Acronym Alternatives Mean Mean Mean Mean Std Dev Mean Std 
Dev Mean Std 

Dev 

Alternative Specific 
Constant New Light Rail ASCLR New Light Rail 1.76 

 (8.97) 
1.37 

 (11.12) 
2.10 

 (10.65) 
5.48 

 (8.39) - 1.76 
 (8.44) - 4.74 

 (12.25) - 

Alternative Specific 
Constant New Heavy 
Rail 

ASCNHR New Heavy Rail 1.84 
 (10.83) 

1.16 
 (12.10) 

2.19 
 (12.48) 

5.66 
 (8.89) - 1.83 

 (10.63) - 4.86 
 (13.19) - 

Alternative Specific 
Constant New Busway ASCNBW New Busway 0.63 

 (3.21) 
-0.07 

 (0.51) 
0.99 

 (4.85) 
4.47 

 (6.83) - 0.52 
 (2.53) - 3.64 

 (9.44) - 

Alternative Specific 
Constant Bus ASCBS Bus 1.51 

 (8.86) 
0.80 

 (8.03) 
1.85 

 (10.39) 
5.13 

 (7.98) - 1.02 
 (5.83) - 3.94 

 (10.57) - 

Alternative Specific 
Constant Busway ASCBW Busway 1.23 

 (7.19) 
0.53 

 (5.43) 
1.58 

 (8.94) 
4.85 

 (7.51) - 0.84 
 (4.72) - 3.91 

 (10.71) - 

Alternative Specific 
Constant Train ASCTRAIN Train 1.31 

 (7.60) 
0.66 

 (6.78) 
1.68 

 (9.55) 
4.15 

 (6.53) - 0.53 
 (2.94) - 3.38 

 (9.40) - 

Alternative Specific 
Constant Car ASCCAR Car -     - -         

Access Time ACTIMEPT Public Transport -0.04 
 (13.76) 

-0.02 
 (8.90) 

-0.03 
 (13.97) 

-0.07 
 (9.33) 

0.11 
 (13.90) 

-0.06 
 (7.93) 

0.11 
 (13.77) 

-0.04 
 (8.09) 

0.09 
 (11.13) 

Fare Public Transport COSTPT Public Transport -0.25 
 (26.49) 

-0.16 
 (13.50) 

-0.17 
 (25.08) 

-1.03 
 (11.62) 

0.90 
 (15.05) 

-0.47 
 (17.35) 

0.50 
 (16.17) 

-0.37 
 (17.46) 

0.45 
 (14.99) 

Fuel + Toll Cost Car COSTCRTRC Car -0.17 
 (9.68) 

-0.10 
 (8.49) 

-0.11 
 (9.74) 

-0.86 
 (12.40) 

0.81 
 (19.05) 

-0.41 
 (8.38) 

0.50 
 (10.02) 

-0.06 
 (2.25) - 

Parking Cost Car COSTCRPC Car -0.03 
 (5.52) 

-0.02 
 (4.45) 

-0.02 
 (5.33) 

-0.10 
 (5.88) 

0.15 
 (8.43) 

-0.05 
 (4.76) - -0.12 

 (5.86) 
0.15 

 (5.70) 

Travel Time Public 
Transport TTPT Public Transport -0.04 

 (31.69) 
-0.02 

 (8.65) 
-0.03 

 (30.07) 
-0.07 

 (22.46) 
0.06 

 (19.39) 
-0.07 

 (21.56) 
0.07 

 (19.17) 
-0.05 

 (17.79) 
0.06 

 (16.24) 

Travel Time Car TTCR Car -0.03 
 (11.74) 

-0.01 
 (5.04) 

-0.02 
 (12.08) 

-0.08 
 (11.02) 

0.07 
 (15.58) 

-0.07 
 (9.29) 

0.07 
 (11.56) 

-0.08 
 (10.33) 

0.14 
 (12.86) 
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  LPAA_MNL_BRExp VL_MNL_Exp RAM_MNL_Exp LPAA_MML_BRExp VL_MML_Exp RAM_MML_Exp 

Egress Time EGTIME All Alternatives -0.04 
 (12.89) 

-0.01 
 (7.28) 

-0.02 
 (12.63) 

-0.06 
 (7.11) 

0.07 
 (6.10) 

-0.04 
 (6.68) 

0.08 
 (9.17) 

-0.03 
 (7.06) 

0.07 
 (8.37) 

Headway Public 
Transport  FREQPT Public Transport -0.02 

 (2.10) 
-0.04 

 (6.43) 
-0.01 

 (2.01) 
-0.03 

 (1.93) 
0.19 

 (13.83) 
-0.08 

 (4.59) 
0.22 

 (14.93) 
-0.05 

 (4.27) 
0.19 

 (14.53) 

Experience Bus EXPBS Bus - - - - - 0.18 
 (3.00) - 0.19 

 (4.27) - 

Experience Busway EXPBW Busway - - - - - 0.21 
 (3.63) - 0.11 

 (2.96) - 

Experience Train EXPTR Train - - - 0.25 
 (9.46) - 0.30 

 (5.77) - 0.32 
 (8.98) - 

Experience Car EXPCR Car - - - 0.17 
 (2.68) - -0.97 

 (4.59) - 0.66 
 (11.43) - 

Risk Attitudes Cost 
Currently Available 
Modal Facilities 

ALPHAEXCS Bus, Busway, 
Train and Car - - - 0.45 

 (9.54) - - - - - 

Risk Attitudes Cost New 
Modal Investments ALPHANEXCS 

New Light Rail, 
New Heavy Rail, 
New Busway 

- - - 0.45 
 (9.24) - - - - - 

Concavity VL CONC All Alternatives - 1.22 
 (7.57) - - - - - - - 
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Table 13: Northwest dataset process heterogeneity models’ estimates (t-values in parenthesis) 

  PDP_BRExp CRPHms_BRExp 

Number of Parameters Estimated 44 32 

Log Likelihood at convergence -4,864.47 -4,494.74 

Log likelihood at zero -7,838.25 

AIC                                    2.167                                                                              1.999  

Class Identification Class 1 Class 2 Class 3 - 

Heuristic RAM VL LPAA LPAA, VL and RAM 

Behavioural Refinements Y N N Y 

Experience Y Y Y Y 

Class Membership (%) 15% 34% 50% - 

Parameters Acronym Alternatives Mean Mean Mean Mean Std Dev M_VL M_RAM S_VL S_RAM 

Alternative Specific Constant New 
Light Rail ASCLR New Light Rail -3.50 

 (3.90) 
1.54 

 (6.49) 
3.68 

 (4.76) 
3.89 

 (7.69) - - - - - 

Alternative Specific Constant New 
Heavy Rail ASCNHR New Heavy Rail -2.34 

 (4.42) 
1.38 

 (7.13) 
3.41 

 (4.24) 
4.52 

 (9.35) - - - - - 

Alternative Specific Constant New 
Busway ASCNBW New Busway -2.12 

 (3.06) 
-0.64 

 (2.14) 
3.12 

 (3.92) 
2.96 

 (6.05) - - - - - 

Alternative Specific Constant Bus ASCBS Bus 1.36 
 (4.85) 

-0.64 
 (2.23) 

3.00 
 (3.74) 

3.62 
 (7.65) - - - - - 

Alternative Specific Constant 
Busway ASCBW Busway -0.26 

 (0.88) 
-0.03 

 (0.14) 
3.01 

 (3.81) 
3.46 

 (7.24) - - - - - 

Alternative Specific Constant Train ASCTRAIN Train -1.06 
 (2.45) 

-1.40 
 (5.58) 

3.17 
 (3.8) 

2.70 
 (5.59) - - - - - 

Alternative Specific Constant Car ASCCAR Car - - - - - - - - - 

Access Time ACTIMEPT Public Transport -0.10 
 (6.95) - -0.05 

 (7.99) 
-0.03 

 (8.96) - -0.002 
 (7.85) - - 0.05 

 (14.98) 

Fare Public Transport COSTPT Public Transport -0.08 
 (5.85) 

-0.06 
 (4.02) 

-0.60 
 (14.89) 

-0.64 
 (17.53) 

0.47 
 (15.64) - - -0.04 

 (21.39) 
0.04 

 (18.63) 
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  PDP_BRExp CRPHms_BRExp 

Fuel + Toll Cost Car COSTCRTRC Car -0.04 
 (2.90) 

-0.11 
 (4.45) 

-0.09 
 (2.38) 

-0.14 
 (6.11) - - - - 0.14 

 (8.25) 

Parking Cost Car COSTCRPC Car -0.03 
 (6.61) - -0.22 

 (4.77) 
-0.21 

 (10.02) 
-0.24 

 (13.90) - - - - 

Travel Time Public Transport TTPT Public Transport -0.02 
 (5.55) 

-0.01 
 (2.92) 

-0.08 
 (23.5) 

-0.07 
 (12.62) 

-0.08 
 (16.84) - 0.0002 

 (2.65) 
0.002 
 (2.28) - 

Travel Time Car TTCR Car - -0.01 
 (2.93) 

-0.09 
 (5.02) 

-0.12 
 (4.78) 

0.08 
 (11.65) 

-0.001 
 (2.84) - -0.01 

 (5.04) - 

Egress Time EGTIME All Alternatives - -0.01 
 (2.93) 

-0.05 
 (7.14) 

-0.06 
 (8.80) 

0.06 
 (9.05) - - - - 

Headway Public Transport  FREQPT Public Transport - -0.03 
 (3.70) - -0.04 

 (2.68) 
-0.34 

 (13.38) - 0.01 
 (6.52) - - 

Experience Bus EXPBS Bus - - 0.18 
 (3.57) - - - - - - 

Experience Train EXPTR Train - - 0.19 
 (6.02) 

0.29 
 (9.11) - - - - - 

Experience Car EXPCR Car 0.72 
 (5.81) - -0.28 

 (2.52) 
0.19 

 (3.08) - - - - - 

Risk Attitudes Cost Currently 
Available Modal Facilities ALPHAEXCS Bus, Busway, 

Train and Car - - 0.11 
 (3.52) - - - - - - 

Concavity VL CONC All Alternatives - 1.38 
 (4.56) - - - - - - - 

 

 


