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1. Introduction 

The extent to which a transport system is considered to be cost inefficient and/or cost ineffective is of 

concern to transport operators, public transport (PT) authorities and regulators as PT systems play a 

significant role in the urban areas throughout the world (Mulley et al., 2014). Evaluating the operational 

performance of PT provides information on which to understand how potential improvements in 

efficiency, service quality/quantity (effectiveness) and financial plans can be implemented with 

potential implications for fare determination.  

In common with other approaches to measuring performance, this paper compares multiple transport 

systems. However, there is a specific emphasis on how the transport operator performs in terms of their 

service outputs relative to physical inputs and costs for the set of transport systems under consideration. 

Moreover, this paper is concerned with a comparison of the efficiency of Bus Rapid Transit (BRT) 

systems globally which is new to the literature in terms of mode and spatial coverage. The evaluation 

of BRT performance is important and timely as BRT systems have evolved from their early 

implementation in Lima (Peru) and Curitiba (Brazil) in the early 1970s to systems being built around 

the world in very different shapes and sizes.  There are now over 190 cities with BRT systems of one 

form or another, carrying over 32m passengers daily (BRTdata, 2015). Yet, many scholars still exclude 

BRTs when evaluating the use and performance of rapid transit systems (e.g., Shyr et al., 2017). This 

makes studying the efficiency of BRT systems both interesting and worthwhile as a basis for identifying 

best practice and providing opportunities for benchmarking.  

BRT is a rapid mass transit mode of PT which combines the speed and dependability of rail service 

through having access to dedicated infrastructure with the operating flexibility and cost effectiveness 

of a conventional/regular bus service1 (Deng and Nelson, 2011). BRT systems have now emerged as a 

leading and popular mode of urban transport in many cities in the world (Darido, 2006; Wright and 

Hook, 2007; Hinebaugh and Diaz, 2009; Deng and Nelson, 2011; Vermeiren et al., 2015). As of August 

2015, the cities implementing BRT have a combined total of 5112 km total system length (BRTdata, 

2015). Beyond the cities already implementing a BRT system, there are many cities considering BRT 

as a cost effective and flexible way of rapid transit system given the lower initial capital cost, in relation 

to comparable rail based PT. However, significant differences exist among the BRT systems in terms 

of standard and practices. In particular, open systems have a framework where patronage is fed from 

neighbourhoods and funnelled onto dedicated trunk sections of the route (using the same bus) in contrast 

                                                 

1 In the remainder of the paper we use the term conventional buses which is interchangeable with the term regular 

buses and essentially represents bus operations that are not BRT. 
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to a closed BRT system where passengers take conventional/regular buses to the dedicated BRT 

infrastructure and use interchanges to board vehicles using the dedicated trunk sections of the BRT 

system. Compared to conventional bus transport, BRTs are successful at offering speed, reliability and 

comfort improvements with these improvements being achieved by all or parts of the BRT trunk routes 

being operated on segregated infrastructure so that services are not affected by congested car traffic. 

Other elements of full BRT usually include high-frequency, high-capacity bus services, bus stop designs 

which emulate rail stations, off-vehicle fare payment and intelligent transportation systems both for 

informing passengers (e.g. real-time information), or for prioritising vehicles at junctions. These 

different levels of BRT characteristics come, of course, not only with benefits but also with costs. While 

BRTs cost more than conventional bus services, the cost is less than light rail solutions for equivalent 

contributions to the PT network.  This is the rationale for considering BRT implementation (as 

compared to conventional bus) at different levels of infrastructure implementation so as to identify the 

determinants of BRT revenue generation and effectiveness. This work will support the work of ITDP 

(2014) which has attempted with their BRT Standard, underpinned by a scoring system, to provide a 

fairer and more transparent comparison of standards of different BRT systems. 

Benchmarking reports for BRT systems around the world (such as Menckhofff, 2010, LeighFisher, 

2011 or Nabavi and Leurent, 2011) have not delivered a comprehensive empirical performance analysis 

of BRTs that combines various inputs and outputs of such systems, with a particular focus on capital 

and ongoing costs and changes to revenue potential that comes with improved BRT standards/scores 

associated with higher standard systems. This means that there is no opportunity for systems within the 

set under consideration be able to learn from best practice. The analysis of BRTs to date is in the main 

based on published data, primarily the published data collected by the Observatory of the BRT Centre 

of Excellence (BRTdata, 2015), supplemented with data from other sources in the public domain and 

confidential data provided by the operators. The paper aims to identify what data is available and to 

contribute to the development of a methodological framework (extending Fielding’s, 1985 work) that 

provides stakeholders with an opportunity to achieve international performance benchmarking of BRTs, 

including a better understanding of the determinants of BRT system effectiveness. 

From a policy perspective, such benchmarking is important as, at the end of the day, it reveals 

whether stakeholders benefit from value for money. Particularly relevant are questions around the extent 

(if any) to which improved BRT standards generate additional revenues/patronage and how 

effectiveness gains can be made by a trade-off between one-off capital (fixed) costs of infrastructure 

and on-going revenue generating (variable) cost. 

The paper is organised as follows. Section 2 presents the literature review and the identified gaps in 

the literature addressed by this paper. This is followed by the methodology and details of the sample 
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used in this paper in section 3. Section 4 discusses the results with section 5 summarising the findings 

of the analysis and offering policy recommendations. 

2. Literature review 

In recent years, a considerable amount of research has been carried out in the area of efficiency and 

effectiveness of different transit systems (e.g. Chu et al. 1992; Kerstens, 1996; Viton, 1997; Mulley, 

2003; Karlaftis 2004; Hirschhausen and Cullmann, 2010; Jarboui et al., 2013; Munoz et al., 2013; Tsai 

et al., 2015).  At the early stage of PT performance research, Tomazinis (1977) measured the 

performance of PT systems by using simple indicators and evaluation of efficiency, productivity and 

quality of services. Fielding et al. (1978, 1985) adopted a framework and set service indicators (inputs, 

outputs and consumption) to evaluate the efficiency and effectiveness of PT performance as 

schematically shown in Figure 1 (see next section). Efficiency in this framework refers to the total 

service outputs, usually measured by car-km travelled or car-hour operated with respect to service inputs 

(labour, fuel consumption, or operating cost) for rail-based systems, whereas effectiveness represents 

the service consumption by passengers, such as number of passengers, or passenger-km against service 

inputs. Cost efficiency is also referred to as supply-side efficiency in contrast to cost effectiveness which 

is also referred to as demand side efficiency. The ratio of service consumption to service outputs is 

defined as service-effectiveness, with the distinction between efficiency and effectiveness highlighting 

the different aspects of performance evaluation from the operator and consumer perspective, 

respectively. In a recent literature review on performance evaluation research in the context of PT 

Daraio et al. (2016) presented a similar framework confirming the importance of both efficiency and 

effectiveness in the sense of accounting for the relevance of different viewpoints of producers 

(efficiency), users (quality) and the community (effectiveness).  

In terms of performance measurement approaches, scholars (e.g., Windle and Drenser, 1992) have 

used Partial Productivity Measures (PPM) which are intuitively easy for policy decision makers to 

understand and or communicate since they revolve around a ratio of a single output to a single input in 

the PT system context. However, even with multiple formulations, PPMs consider only a subset of 

inputs and outputs and can potentially produce a misleading overall indication of productivity and can 

even lead to conflicting results if multiple PPMs are used. Total Factor Productivity (TFP) methods 

have also been used to evaluate the efficiency and effectiveness of PT systems (Benjamin and Obeng, 

1990; Karlaftis and McCarthy, 1997) but as a methodology it requires very significant resources to be 

devoted to wide scale data collection. 

The advance of computing power and the development of more sophisticated methods have meant 

that new approaches have become more common for evaluating PT performance, most notably 
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Stochastic Frontier Analysis (SFA) (e.g., Cambini et al., 2007; Lin et al., 2010; Sakai and Shoji, 2010; 

Holmgren, 2013; Jarboui et al., 2013; Ayadi, and Hammami, 2015) and Data Envelopment Analysis 

(DEA) (e.g., Viton, 1997; Cowie and Asenova, 1999; Pina and Torres, 2001; Boame, 2004; Karlaftis, 

2004; Odek, 2008; Chiu et al., 2011; Caulfield et al., 2013; Georgiadis et al. 2014; Zheng et al., 2014). 

Both SFA and DEA use multiple inputs and outputs to estimate a single efficiency indicator thus 

providing an improvement over the multiple indicators required for PPM monitoring. In SFA, a 

production or cost function is estimated using econometric (parametric) methods to obtain productivity 

based on service inputs. This method requires large (often longitudinal/panel) data sets to deliver robust 

results (Karlaftis and Tsamboulas, 2012) and also requires the assumption of cost minimisation as the 

key objective of all firms under evaluation.  This may well be unrealistic as an objective in the context 

of many PT systems. DEA does not require this assumption and is also less demanding in terms of 

sample size for yielding robust results. DEA is a non- parametric method and uses linear programming 

to identify the efficient production frontier and then estimates inefficiency by determining the distance 

of individual observations from the efficient frontier (Farell, 1957; Charnes et al., 1978).  

In the PT context, DEA has been primarily used to understand the determinants of inefficiency. As 

such Chu et al. (1992) were able to demonstrate a negative correlation between PT system efficiency 

and effectiveness; so systems with higher effectiveness ratings were identified as having low efficiency 

scores and vice versa. More recent papers have identified the drivers of PT firms’ inefficiency by using 

second-stage regression models (e.g. Tsai et al., 2015 in the metropolitan train operation context). In a 

very recent paper, Obeng et al. (2016) separated stochastic and systematic technical inefficiencies and 

analysed determinants for the latter, most notably subsidies and regulation. Their results suggest that 

capital expenditure subsidies for single mode bus PT systems have a very significant positive impact 

on PT efficiency. This leads to the question as to whether the same applies to BRT systems which 

typically exist in a multi-modal environment (which would be reflected by high BRT standards having 

a positive impact on BRT efficiency) or whether this trade-off behaves differently in the BRT context.  

Although, the implementation of BRT systems has increased globally (as discussed above and also 

summarised in Finn and Munoz, 2014), research and academic journal papers on BRT benchmarking 

efficiency are scarce (for a comprehensive review on efficiency and effectiveness studies related to 

urban PT see Daraio et al., 2016). Wright and Hook (2007) documented cost and performance based 

information of selective BRT systems but did not apply econometric methods. Hensher and Golob 

(2008) evaluated 44 BRT systems in operation throughout the world by comparing infrastructure costs 

and a range of design and service specifications through a formal statistical analysis but relied on PPM 

measures only. Hidalgo and Graftieaux (2008) reviewed BRT systems of 11 cities in Latin America and 

Asia and found that improved speed had a positive impact on ridership of BRT systems. Hensher and 

Li (2012) assessed 46 BRT systems in 15 countries and found price elasticity, frequency of service, 
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offered capacity and connectivity are the most important impact factors for increasing ridership. Currie 

and Delbosc (2014) reviewed BRT system performance in Australasia and revealed that BRT ridership 

growth had surpassed non-BRT transit ridership changes in all of their analysed cities, with significant 

impact factors being high service levels, speed of vehicles, shorter station spacing, segregated rights of 

way, modern accessible vehicles, lower fares, system integration and pre-boarding ticketing. Whilst this 

literature relies either on PPM or even simpler ratios, a good range of potential explanations of 

efficiency or inefficiency in BRT operation are provided. In this paper, these factors are used in a 

second-stage regression model to determine underlying causal explanations for efficiency scores 

estimated in the first stage (DEA) of the analysis.  

Overall, the existing literature lacks international comparison on a single comprehensive measure of 

performance for BRT systems. A key aim of this paper is to contribute a first attempt of benchmarking 

in the BRT context, which includes providing evidence on what data is actually available and what 

methods can therefore be deployed. This includes potentially extending existing frameworks by 

evaluating, in addition to cost effectiveness, input effectiveness. BRTs are a very heterogeneous set of 

PT with considerable differences in standard of service and it is hoped that looking at the BRT systems 

using DEA methods will reveal determinants of both revenue/patronage potential and effectiveness (and 

trade-offs between these) of interest to both BRT operators and the jurisdictions in which they are 

located.  In addition, such analysis could enhance the value of the scoring system of different BRT 

standard elements proposed by ITDP (2014) so that both operators and transport authorities have a 

better sense as to whether they achieve their desired goals.  

3. Methodology and sample 

To meet the aim of the paper, the analysis is divided into two parts, one investigating the revenue 

potential of BRT systems and the other being focused on performance. Of particular interest is the 

impact of BRT standard of service on both revenue potential and effectiveness. We use the definition 

and BRT standard data established by ITDP (2014). IDTP have classified as Gold, Silver and Bronze 

systems, depending on complex point system, the majority of BRT systems around the world with at 

least 3km length of dedicated BRT lanes.2  

 

 

                                                 
2 In this definition systems have points added to their BRT standard (up to 100 points) through performing well 

in regard to BRT basics (such as Dedicated Right-of-Way, Busway Alignment, Off-board Fare Collection, or 

Platform-level Boarding), Service Planning aspects, Infrastructure characteristics, Station characteristics, 

Communication aspects and Access and Integration aspects. Further details are provided in the next section.  
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3.1 Determinants of the revenue potential of BRT systems 

The first step of the analysis is to establish whether the standard of the BRT system (IDTP, 2014) and 

other factors have a significant impact on the revenue potential of global BRT systems. Revenue 

potential is thereby defined as a combination of average fare revenues (yields), patronage per network-

km and total farebox revenues. Initially the analysis focused on yields but this approach is extended to 

account for, and to be able to reward systems that aimed for higher effectiveness (increasing the 

passenger per network-km) giving rise to eventually higher total farebox revenues rather than simply 

higher yields.   

The analysis thus evaluates the role of the determinants of BRT systems on revenue potential and 

tests the hypothesis that full or higher standard BRT systems generate on average higher fare revenues 

per passenger, higher patronage per network-km and higher total farebox revenues than systems of 

lower standards. The following four OLS regression models (equations 1-3) were investigated: 

 

𝐹𝐴𝑅_𝑅𝐸𝑉𝑖

𝑃𝐴𝑋𝑖
= α + 𝛽1𝑆𝑇𝐴𝑅𝑇_𝑌𝐸𝐴𝑅𝑖 + 𝛽2𝑂𝑊𝑁𝐸𝑅𝑆𝐻𝐼𝑃𝑖 + 𝛽3𝐵𝑅𝑇_𝑆𝑇𝐴𝑁𝐷𝐴𝑅𝐷𝑖  

+𝛽4𝐺𝐷𝑃_𝐶𝐴𝑃𝑖 + 𝛽5𝑃𝑂𝑃_𝐷𝐸𝑁𝑆𝐼𝑇𝑌 𝑖         (1) 

 

𝐹𝐴𝑅_𝑅𝐸𝑉𝑖

𝑃𝐴𝑋𝑖
= α + 𝛽1𝑆𝑇𝐴𝑅𝑇_𝑌𝐸𝐴𝑅𝑖 + 𝛽2𝑂𝑊𝑁𝐸𝑅𝑆𝐻𝐼𝑃𝑖 + 𝛽3𝐵𝑅𝑇_𝑆𝑇𝐴𝑁𝐷𝐴𝑅𝐷𝑖            (1a) 

 

𝑃𝑎𝑥𝑖

𝑁𝑒𝑡𝑤𝑜𝑟𝑘_𝑘𝑚𝑖

= α + 𝛽1𝑆𝑇𝐴𝑅𝑇_𝑌𝐸𝐴𝑅𝑖 + 𝛽2𝑂𝑊𝑁𝐸𝑅𝑆𝐻𝐼𝑃𝑖 + 𝛽3𝐵𝑅𝑇_𝑆𝑇𝐴𝑁𝐷𝐴𝑅𝐷𝑖  

+𝛽4𝐺𝐷𝑃_𝐶𝐴𝑃𝑖 + 𝛽5𝑃𝑂𝑃_𝐷𝐸𝑁𝑆𝐼𝑇𝑌 𝑖            (2) 

 

𝐹𝐴𝑅_𝑅𝐸𝑉𝑖 = α + 𝛽1𝑆𝑇𝐴𝑅𝑇_𝑌𝐸𝐴𝑅𝑖 + 𝛽2𝑂𝑊𝑁𝐸𝑅𝑆𝐻𝐼𝑃𝑖 + 𝛽3𝐵𝑅𝑇_𝑆𝑇𝐴𝑁𝐷𝐴𝑅𝐷𝑖  

+𝛽4𝐺𝐷𝑃_𝐶𝐴𝑃𝑖 + 𝛽5𝑃𝑂𝑃_𝐷𝐸𝑁𝑆𝐼𝑇𝑌 𝑖            (3) 

 

where START_YEARi is the year the ith BRT system in the sample commenced operation and is a 

measure of the maturity of the system. Many BRT systems in are still in transition as they upgrade from 

lower standards to full or higher quality BRT or are extended by one or more BRT corridors or stations. 

OWNERSHIPi is a dummy variable representing ownership (1 is private operational ownership of the 

system and 0 being public operational ownership of the system). BRT_STANDARDi is the most 

important variable in this model, reflecting the level/standard of the BRT system in question. For this 

variable data provided by ITDP (2014) which categorises BRTs around the world into four categories 

are used: gold (85–100 points), silver (70–84 points), bronze (55–69 points) and basic (less than 55 

points) with higher scores being associated with “fuller” or higher standard systems. The scoring system 
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recognises that there are many dimensions to establishing the standard of a BRT system and that 

different systems are made up of a combination of features. Thus each system has a final score based 

on points for desirable attributes and points deductions for the absence of some desirable attributes 

which make up a BRT system. The scoring system covers dedicated right-of-way (maximum score 8), 

off-board fare collection (8 points), service planning including integration with other PT (19 points over 

a number of categories), infrastructure overall (14 points) including pavement quality (maximum score 

2) and deductions (such as Significant Gap Between Bus Floor and Station Platform (-5) or Poorly 

Maintained Busway, Buses, Stations, and Technology Systems (-10)), only relevant to systems in 

operation, are introduced to mitigate classifying a BRT system that has design, operational or 

performance weaknesses such as low peak frequency (maximum score -3) (ITDP, 2014). As not all the 

systems analysed in this paper had an exact verified BRT score, they have been allocated a numerical 

score equal to the average of the achieved category (e.g. a gold scoring BRT was allocated 94 points). 

In the initial model a measure of the country’s economic activity, GDP_CAPi, the Gross Domestic 

Product per capita in $US, and POP_DENSITYi, million inhabitants per km2, for population density are 

used to capture elements that economic theory would suggest as being determinant of revenue potential 

and that are regularly deployed as determinants of transport efficiency in the extant literature (Daraio 

et al., 2016). A sub-model of model 1 (1a) which excludes the demographic variables from the analysis 

is focussed entirely on system variables. All models (models 1-3) contain a range of BRT system 

attributes through the use of the variable BRT_STANDARDi. Variables representing specific features of 

BRT systems such as the number of stations (STATIONSi), PEAK_FREQi (buses per hour in the peak), 

PRE_BOARDi (dummy variable for pre-boarding fare collection) and ST_DISTANCEi (station distance 

in m) were found to be insignificant but had been initially included because of the way in which the 

literature identified their importance to efficiency. 

 

3.2 Determinants of BRT system effectiveness 

In order to examine the determinants of BRT effectiveness, the analysis must first establish a 

comprehensive single performance indicator which accounts for various inputs and outputs of the BRT 

provision process. Whilst the choice of and specification of the methodology to determine the single 

performance indicator has potential impact on the findings (as discussed in the literature review section 

and detailed in Karlaftis and Tsamboulas, 2012), the availability, selection and appropriate use of input 

and output data may have even larger consequences on the effectiveness of performance benchmarking 

of BRT systems. As schematically shown in Fig. 1, the extant literature has predominantly focused cost-

efficiency, cost-effectiveness and services-effectiveness when assessing PT performance. 
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Fig. 1. Public transport efficiency and effectiveness 

Initially the aim was to evaluate all of these types of performance.  However, it became apparent 

that benchmarking BRT systems globally is not straightforward as the availability, coherence and 

quality of data are problematic. For example, service outputs such as car-km or seat-km were, despite 

all efforts and support from international partners, impossible to obtain from most operators. The same 

applies to passenger-km and most cost data related to BRT systems, with the exception of BRT 

infrastructure cost which is available from BRTdata (2015). Whilst we expected that most data would 

not be available in the public domain, many operators were not only hesitant to share any data but more 

importantly claimed that they did not even possess that data themselves. This may be explained by the 

way in which most companies and/ or authorities run mixed BRT and conventional bus operations, 

making it not only difficult to for example separate/ allocate cost across the different types of operations 

but also problematic to share such data because of sensitivity issues related to public support, regulation 

or competitive advantage. As a result of an intense data collection the cost of capital for the BRT 

infrastructure was obtained which permits the partial assessment of cost-effectiveness. More interesting 

may be however the extension in this paper of Fielding et al.’s (1985) framework to consider the 

community perspective by adding a fourth key indicator, namely input-effectiveness (in addition to 

cost-effectiveness, both representing different aspects of demand side efficiency). Similar to the concept 

of productivity (or technical efficiency as opposed to allocative and cost efficiency of discussed of 

traditional production processes, for further details see Merkert and Cowie, 2018) this indicator does 

not require any cost or input price data and allows us to assess the effective use of physical measures 
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of BRT capital inputs such as BRT network length and fleet size in relation to available BRT service 

consumption outputs such as number of passenger and revenues. 

While focusing our analysis on partial cost-effectiveness and input-effectiveness, these first-stage 

single performance indicators are computed using the Data Envelopment Analysis (DEA) methodology 

and are then used in a second stage regression to systematically identify key determinants of BRT 

performance in terms of underlying characteristics such as BRT standard, design, management or 

demographic factors of the operating territory. As with Merkert et al. (2010), we argue that the use of 

two-stage DEA is superior to SFA in the BRT context as the latter does require much larger samples as 

well as cost minimisation assumptions that appear unrealistic for BRT systems (i.e. for those in public 

ownership). 

 

3.2.1 Specification of the first stage DEA modelling 

The first DEA stage consists of non-parametric bootstrapped and also non-bootstrapped/original3 

models to compute the efficiency of the relevant BRT systems. As with previous studies (e.g. Tsai et 

al., 2015), the DEA specifications in this paper focus on two important choices, firstly input versus 

output orientation, and secondly whether constant returns to scale (CRS) or variable returns to scale 

(VRS) are assumed. This paper focuses on the variable returns to scale (VRS) model, as the requirement 

for a CRS model is that all BRT systems in the sample are producing at their optimal size, an unrealistic 

assumption given the level of regulation and other constraints, such as financial constraints, in their 

operation. In terms of orientation, there is an on-going debate in the literature (e.g. Merkert and Assaf, 

2015) as to whether input or output oriented models are more appropriate for the transportation sector. 

The input-oriented DEA model can be expressed as follows (based on Coelli et al.’s (2005) optimisation 

approach): 

 

 min ,

0

0

0   ,

i

i

st q Q

x X

 



 



  

 



              (4) 

 

where   represents the weights for the inputs and outputs which is a 1I  vector of constants, X  and 

Q are input and output matrices, and   measures the distance between the observations xi and qi and 

                                                 

3 Since the bootstrapped algorithm for DEA is now well established in the literature, we refer to Simar and Wilson 

(1998, 2007) for more details. 
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the frontier (where the frontier represents efficient operation). In other words, the distance ( ) 

represents the technical efficiency scores, and ranges between zero (i.e. least efficient) and one (i.e. 

most efficient). To account for the variable returns to scale (VRS) the term ( I1' 1  ), is added as an 

additional convexity constraint which ensures that inefficient or in our case ineffective firms are only 

benchmarked against firms of a similar size. While it could be argued that the output oriented model 

would be preferable as it assumes that BRT operators can influence outputs more effectively than inputs 

(as modifying the one-off infrastructure capital cost of BRT infrastructure is difficult in the short to 

medium run), this paper follows the majority of extant studies that have applied DEA in the PT context 

(e.g., Georgiadis et al., 2014) and adopts an input-oriented framework. The justification is that BRT 

outputs are often heavily impacted by endogenous factors or substantially regulated or pre-specified by 

the procuring authorities (e.g. through managed contracts, fare regulation and subsidies). In addition, 

the aim is to evaluate the impact of different BRT standards and it is therefore by definition more 

interesting to evaluate the effect of minimising inputs or on other words levels of BRT infrastructure 

(as an indication of fixed cost) and/or fleet size (as an indication of variable cost) for a given quantity 

of outputs (observed demand). 

The choice of inputs for the analysis is heavily influenced by the theoretical consideration of a trade-

off between the one-off capital (fixed) cost of providing infrastructure and on-going (variable) costs 

associated with generating revenue. To compute partial cost effectiveness (PCEVRS) INFRACOSTi (m 

$US of infrastructure for the entire BRT network length) was chosen as the proxy for capital cost and 

FLEETi (fleet size measured in number of buses operating on the BRT system) as the on-going costs 

associated with generating revenue. In order to control for the potential distortion arising from a 

comparison of money costs across different jurisdictions, separate DEA models focused on input 

effectiveness (IEVRS) were run using NETWORK_KMi (the entire BRT network length in km) instead of 

INFRACOSTi as the proxy for one-off capital (fixed) input. A capital and labour trade-off was frustrated 

by the lack of available data, particularly for staff numbers, and the way in which labour, represented 

by the number of drivers and FLEETi,, for capital,  are highly correlated (which allows some conclusions 

on this trade-off anyway). The outputs are represented by PAXi (passenger numbers in m) and 

FARE_REVi (fare revenue in m $US). The attempt to evaluate the impact of the type of BRT system 

(closed versus an open system with the latter being characterised by dedicated trunk lines with feeder 

routes & conventional bus services), did not yield significant results.  

 

3.2.2 The second stage analysis 

As identified above, VRS demand side efficiency or effectiveness (EVRS) scores are most appropriate 

for the BRT context and these are used in the second stage regressions for both partial cost effectiveness 

(PCEVRS) and input effectiveness (IEVRS). However, the analysis also estimates effectiveness scores 
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under the assumption of constant (IECRS) and non-increasing economies of scale (IENIRS). Putting the 

IECRS and IENIRS effectiveness scores into a relationship with the estimated VRS effectiveness scores 

allows the scale demand side efficiency (SE) for each operator and its direction (DIR), increasing or 

decreasing returns to scale to be determined. 

The second-stage regression models seek to evaluate the impact of several variables,4 most notably 

BRT standards on the single effectiveness scores. For this the following truncated regression model 

(truncated at 0 as a result of the non-negativity of the input-oriented effectiveness scores) is used: 

 

𝑦𝑖 = α + 𝛽1𝑆𝑇𝐴𝑅𝑇_𝑌𝐸𝐴𝑅𝑖 + 𝛽2𝑂𝑊𝑁𝐸𝑅𝑆𝐻𝐼𝑃𝑖 + 𝛽3𝐵𝑅𝑇_𝑆𝑇𝐴𝑁𝐷𝐴𝑅𝐷𝑖  

                                          + 𝛽4𝑆𝑇𝐴𝑇𝐼𝑂𝑁𝑆𝑖+𝛽5𝐷𝐸𝑉𝐸𝐿𝑂𝑃𝐸𝐷𝑖                  (5) 

 

where yi represents PCE and PCEcorr (the original and bootstrapped/bias-corrected partial cost-

effectiveness VRS scores) in the first model and IE and IEcorr (the original and bootstrapped/bias-

corrected input-effectiveness VRS scores) in the second model. The interpretation in this paper is 

mainly on the bootstrapped models but both the original and bias corrected efficiency scores are used 

as the debate on the value of bootstrapping is ongoing (e.g. Simar and Wilson, 2008). This paper uses 

the smoothing homogenous bootstrap approach with 2000 iterations to overcome the potential problem 

of biased results in the second-stage regressions (Simar and Wilson, 2000, 2007, 2008). The hypothesis 

for the paper is that higher values of the BRT_STANDARDi have a significant and positive impact on 

both cost- effectiveness and input-effectiveness. While there is no experimental evidence or literature 

supporting the claim that fuller BRT systems are more effective, the existing literature on general PT 

performance (e.g., Daraio et al., 2016) suggests such a relationship as for example segregated lanes will 

have an impact on commercial speed and hence fleet productivity. A more diverse set explanatory 

variables could have been used to include variables such as car ownership levels but the set employed 

were chosen as being the most appropriate given the need for comparability and the need to take account 

of a relatively small number of observations in the sample. This decision was also driven by that data 

for the selected variables are available from the BRTdata (2015) database for the majority of the 

operators thus offering a certain amount of comparability and meant that this study only needed to 

contact those operators where observations of these variables were not available from BRTdata (2015): 

this provided a more effective and consistent approach than trying to introduce more variables, 

                                                 

4 For a definition of the exogenous variables see section 3.1 and models 1-4. DEVELOPEDi is additional and is a 

dummy variably that identifies whether a BRT system is based in a developed (1) or developing (0) country. 



Determinants of Bus Rapid Transit (BRT) system revenue and effectiveness – A global 
benchmarking exercise 

Merkert, Mulley and Hakim 

12 

 

especially as many of the analysed BRT systems are in developing countries where official statistics 

are not readily available or questionable in terms of their reliability. 

 

3.3 Sample and data 

This paper evaluates 58 BRT systems. While the sampling was partially driven by data availability (a 

number of systems such as Edinburgh were removed either because of missing data points or because 

the data was too far out of date), particularly regarding infrastructure cost.  Nevertheless, the sample 

includes the largest and most heavily patronaged systems from around the world. The descriptive 

statistics presented in Table 1 show the sample spans 25 countries and is representative for global BRT 

systems through its inclusion of very large systems such as Sao Paulo but also relatively small systems 

such as Orlando, with an average fleet size of 370 buses (taking account of differences in open and 

closed BRT operation). There is significant variation in the one-off infrastructure unit cost with 7.24m 

$US per km being the average of the sample which is broadly in line with the previous literature (e.g. 

LeighFisher, 2011). Table 1 also illustrates that BRT systems are on average large in terms of passenger 

numbers but less so in regard to fare revenue: this suggests that some, if not most, of the systems will 

need to receive additional support from local or federal transport/public authorities. One system 

(Orlando) offers the BRT services free of charge (in terms of fare revenue) and to provide a fair 

comparison, the fare revenue in this case was proxied and replaced by the average fare revenue of 

similarly sized North American BRT systems. We also tried to run the model without Orlando but the 

aggregated results did not differ significantly, indicating that Orlando is a rather average system at 

neither end of the spectrum. The majority of the data for the sample comes from the publicly available 

BRTdata (2015). However, for some BRT systems this is not wholly reliable, coming from secondary 

sources such as research papers or newspaper items, or inconsistent with data sourced from various 

years. BRTdata also has many gaps. We therefore filled these gaps and verified many BRTdata 

observations with the help of the relevant BRT operators or BRT administrating authorities (via email 

data requests). All observations used in the analysis are the 2011-2014 average of the data, as some 

systems only have observations for say 2011 while others have 2013 data only and others again had 

observations for both or even all years. For most BRTs, data exists for 2013 across all variables. Overall, 

the data collection for this efficiency analysis was much more difficult than expected. The last two 

columns of Table 1 summarise the choice of inputs and outputs in the IE and PCE DEA models.  

For the independent variables used in the second stage analysis, Table 1 illustrates that most systems 

in the sample are publicly owned. Developed countries are slightly under-represented with some 

countries being very poor while others are appearing at the relative upper end of economic activity per 

capita (GDP_CAPi) globally. Approximately 50 percent of the analysed systems collect the fares pre-
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boarding and the average number of corridors at 2.8 per system and the average peak frequency, at 

nearly 70 buses per hour, is relatively high. Again, there is significant variation across the analysed 

operators with regard to all these variables. 

 

Table 1. Descriptive statistics of DEA efficiency models & regressions (N=58; mean 2011-2014) 

  Mean  Std. dev.  Min  Max IE  PCE 

  First-stage DEA variables     

Inputs            

FLEETi  370.74  703.6  10  3966 x  x 

INFRACOSTi (m $US) 244.24  429.01  2.76  2995.23   x 

NETWORK_KMi (km) 40.15  39.18  4.5  206.75 x   

Outputs            

PAXi (m)  97.56  190.31  0.7704  949.2 x  x 

FARE_REVi (m $US) 68.61  164.63  0.26   877.06 x  x 

            

  Second-stage regression variables     

START_YEARi 2002.74  9.62  1972  2013    

OWNERSHIPi (1=private) 0.14  0.35  0  1    

BRT_STANDARDi 63.32  13.72  50  92    

STATIONSi 55.78  54.97  3  240    

DEVELOPEDi (1=yes) 0.48  0.50  0  1    

  Dropped or yield regression variables     

GDP_CAPi 26883.6  22538.3  1299  67468    

POP_DENSITYi (m/km2) 1833.84  1888.26  28.8  7227    

PEAK_FREQi (buses/h) 69.62  107.51  5  600    

PRE_BOARDi (1=yes) 0.58  0.45  0  1    

CORRIDORSi 2.81  3.38  1  16    

ST_DISTANCEi (m) 822.04  632.15  300  5000    

 

4. Results 

4.1 Discussion of OLS regression results  

The first part of the analysis focusses on evaluating the impact of BRT standards (ITDP, 2014) and 

other variables on the BRT system revenue potential or in other words yields (average fares), passengers 

per network-km and/or total farebox revenue. As shown in Table 2, in model 1, where the impact on 

average fare levels is evaluated, BRT_STANDARDi only becomes significant once the demographic 

variables GDP_CAPi and POP_DENSITYi (both of which have the significant positive impact on yields 

as economic theory would suggest) are removed from the model. The negative direction of the 

BRT_STANDARDi in the reduced model suggests higher standard BRT systems (gold/silver) are 
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associated with lower fare revenues per passenger which may be a function of size as larger systems 

tend to have a higher BRT_STANDARDi and lower fares since larger passenger numbers result in higher 

total revenue and break even points being achieved even with relatively lower yields. The volume trend 

is confirmed in model 2, as BRT_STANDARDi is highly significant and positively impacting passenger 

per network-km numbers. The overall effect, as suggested by the results of model 3, is that 

BRT_STANDARDi has a significant positive effect on total farebox revenue, although not quite as 

significant as this same variable in model 2 in explaining passengers per network-km as a result of the 

inclusion of the GDP and population density variables. While yields decrease with higher BRT 

standards (model 1a), increased patronage overcomes that effect and results in increased total farebox 

revenues (model 3). However, an alternative explanation might be just that the larger systems are more 

likely to have a high BRT standard as well as higher farebox revenues. A likely further contribution to 

this effect is that the regulatory or PT authority decisions may impact on the determination of fares 

particularly when such decisions may aim to increase patronage and affordability. All this highlights 

that sometimes statistical and practical significance are not aligned, likely as a result of not accounting 

for all potential endogenous variables. The range of model fit results of 0.82 for model 1 to 0.68 for 

model 3 are also indicative of this. Both GDP_CAPi and POP_DENSITYi appear to have no significant 

effect on either passengers per network-km or farebox revenues. As BRT systems with high standards 

also cost more to operate (both in terms of capex and opex) it is likely that, despite their overall potential 

for positive revenues (if they are able to materialise the expected passenger growth and are not just left 

with a decrease in yields) they will not break even. In these cases the systems will require additional 

public support, which would explain why so many of the analysed BRT systems are still in public 

ownership.  

 

Table 2. Regression results for determinants of BRT system revenue indicators 
  

Model 1 

Yield  

($/pax) 

 
Model 1a 

Yield  

($/pax) 

 
Model 2 

Pax/ 

Network-km 

 
Model 3 

Farebox Rev  

(m $) 

CONSTANT 18.178 
 

66.975* 
 

4.52E+07 
 

5656.29 

START_YEARi -0.009 
 

-0.032* 
 

-23574.8 
 

-2.93 

OWNERSHIPi (1=private) -0.472 
 

0.248 
 

-19948.7 
 

-19.61 

BRT_STANDARDi -0.0006 
 

-0.024* 
 

70765.9*** 
 

4.47** 

GDP_CAPi 0.0001*** - 
 

-21.6 
 

-5.4E-05 

POP_DENSITYi (m/km2) 0.0002* 
 

- 
 

-24.2 
 

0.0003 

Note: *p<0.1, **<0.05, ***p<0.01; these represent significant p values. 

 

The initial hypothesis that the higher standard BRT systems achieve higher yields and total revenue 

is hence only partially supported, leaving the following question to answer “If BRT standards don’t 
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improve yields but increase passenger numbers per network-km, do they overall improve BRT system 

effectiveness?” 

Figure 2 shows the various PPM results and orders the top 5 systems under different PPM measures. 

The results support the claim made in the literature review that while a PPM measure can in itself be 

useful for identifying a trend they can often be inconclusive and even misleading when trying to 

understand the overall performance of BRT systems. While Rio de Janeiro’s BRT system appears to 

perform well in all the presented PPM measures, Changzhou’s BRT is 2nd best ranked when measured 

by passengers per bus on an annual basis (bus productivity) but does not even make it into the top ten 

of the second indicator of bus productivity (Fare revenue per bus) or into any of the two station 

productivity PPMs. Brisbane on the other hand scores well on the fare revenue per bus and fare revenue 

per station.   

The diversity of outcomes, depending on the PPM measure used, illustrated in Figure 2 reinforces 

the importance of the DEA methodology and a single effectiveness indicator that combines the various 

inputs and outputs which will add value to the overall understanding of the effectiveness of the BRTs 

under consideration.
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Rank Pax/bus  FareRev/bus Pax/station 
 

FareRev/station 

1 Rio de Jan. Rio de Janeiro Guangzhou  Brisbane 

2 Changzhou Las Vegas  Istanbul 
 

Adelaide 

3 Las Vegas  Orlando  Guatemala 
 

Sao Paulo 

4 Guadalajara Gothenburg Sao Paulo 
 

Rio de Janeiro 

5 Curitiba  Caen  Rio de Janeiro 
 

Istanbul 

Fig 2. Partial productivity of analysed BRT 
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4.2 Discussion of two-stage DEA results 

Table 3 presents the aggregated DEA effectiveness (demand side efficiency) scores. A comparison 

of the non-bootstrapped efficiency with the bias-corrected bootstrapped scores confirms (in line with 

the previous literature) that the original scores overestimate efficiency.  

 

Table 3. DEA efficiency results by region 

Region  obs  IE IEcorr  PCE PCEcorr 

         
Africa  2  0.267 0.221  0.097 0.074 

Asia  12  0.546 0.441  0.659 0.491 

Europe  12  0.552 0.444  0.507 0.388 

Latin America 18  0.526 0.414  0.585 0.448 

Northern America 8  0.567 0.438  0.658 0.487 

Oceania  6  0.601 0.479  0.219 0.166 

Total average 58  0.540 0.429  0.539 0.408 
Note: All DEA scores have been computed with Frontier Efficiency Analysis with R package FEAR 2.0 (Wilson, 

2014). 

 

Table 3 also shows while African systems have relatively low input effectiveness scores (IEcorr), the 

performance gets even worse once the cost of infrastructure is accounted for in partial cost effectiveness 

(PCEcorr). Given the strength and power purchasing parity of the Australian dollar it is not unexpected 

that also for Oceanian systems PCEcorr is smaller than IEcorr, however the magnitude of this effect is 

surprising. Interestingly all three Sydney BRTs (different parts of the Sydney Parramatta to Rouse Hill 

T-way) have relatively low PCEcorr scores which are perhaps explained by being operated as managed 

contracts and being located on the outskirts of Sydney, rather than forming the more usual key trunk 

route function of a BRT to the centre of the city. Given that the regional averages differ so little it is 

worth discussing some of the individual BRT system effectiveness scores, summarised in Table 4. 

Interestingly, Guangzhou comes out as the relatively most effective BRT system regardless of which 

indicator is used. Similarly, the Brazilian systems of Rio de Janeiro and Sao Paulo perform well across 

the board. In contrast, while smaller systems in developed countries such as Belfort, Brisbane and 

Auckland do well in regards to input effectiveness, they do not make it into the top 20 once partial cost-

effectiveness is considered. Table 4 further identifies the reason for the difference between original and 

bootstrapped scores shown in Table 3 with many fully effective systems (score of 1), ranked by 

alphabetical order of the city name. This lack of variation makes the regression of the original scores in 

second stage regressions less reliable. However, given that the overall ranking does not change when 

applying the bootstrapping procedure (in contrast to when deploying output oriented models) there can 

be confidence that the DEA results are robust enough for a second-stage investigation. 
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Table 4. DEA technical efficiency score rankings 

 

City/Rank IE  City/Rank IEcorr  City/Rank PCE PCEcorr 

Belfort 1  Guangzhou 0.796  Guangzhou 1 0.754 

Brisbane 1  Belfort 0.727  Gothenburg 1 0.733 

Guangzhou 1  Orlando 0.726  Hangzhou 1 0.705 

Las Vegas 1  Las Vegas 0.725  Jaipur 1 0.677 

Orlando 1  Changzhou 0.702  Las Vegas 1 0.715 

Rio de Jan. 1  Auckland 0.699  Manchester 1 0.714 

Sao Paolo 1  Brisbane 0.697  New York 1 0.689 

Changzhou 0.866  Sao Paolo 0.687  Orlando 1 0.702 

Nantes 0.837  Rio de Jan. 0.674  Rio de Jan. 1 0.65 

Auckland 0.835  Nantes 0.671  Sao Paolo 1 0.651 

Gothenburg 0.776  Eugene 0.637  Taipei 1 0.651 

Eugene 0.775  Gothenburg 0.619  Guadalajara 0.987 0.835 

Nagoya 0.731  Sydney-BRH 0.605  Curibita 0.907 0.680 

Jaipur 0.709  Nagoya 0.593  Mexico City 0.905 0.707 

Sydney-BRH 0.703  Bhopal 0.583  Quito 0.894 0.707 

Taipei 0.679  Jaipur 0.567  Changzhou 0.884 0.653 

Bhopal 0.669  Ecatepec 0.546  Guayaquil 0.873 0.662 

Bogotá 0.664  Guadalajara 0.541  Eugene 0.813 0.643 

Caen 0.653  Taipei 0.520  Bhopal 0.769 0.622 

Guadalajara 0.649  Enschede 0.519  Ecatepec 0.687 0.581 
 

 

At the individual BRT system level it is further interesting to evaluate scale efficiency. Table 5 

presents the scale efficiency and its direction (Dir) in relation to both input-effectiveness (IE SE) and 

partial cost-effectiveness (PCE SE). The results show why it is valuable to consider in addition to input-

effectiveness some indication of infrastructure cost in the form of partial cost-effectiveness as for the 

former almost all systems would benefit from further growth (economies of scale) while for the latter 

many systems suffer from diseconomies of scale at their current size of operation (from fleets above 

approximately 300 buses). This becomes most notable for the top two systems Sao Paulo and Santiago 

(when using number of buses as an indication of firm size). At the other end of the spectrum all small 

BRT systems are associated with increasing economies of scale (starting from systems with 270 or less 

buses) suggesting benefits from economies of scale if the fleets were expanded, which is similar to other 

industries.  
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Table 5. DEA economies of scale results, ranked by fleet size 

 Fleet # Length # Infco #  IE SE DIR PCE SE DIR 

Sao Paolo 1 3 6 1 E 0.800 D 
Santiago 2 6 4 0.875 I 0.880 D 
Madrid 3 42 41 0.547 I 0.801 I 
Bogotá 4 4 1 0.968 D 0.882 D 
Taipei 5 13 55 0.999 I 1 E 
Guangzhou 6 34 31 1 E 0.663 D 
Cali 7 20 14 0.933 I 0.848 D 
Jakarta 8 1 17 0.818 I 0.846 D 
León de los Aldama 9 24 50 0.765 I 0.936 I 
Quito 10 11 25 0.947 I 0.600 D 
Lima 11 30 18 0.856 I 0.951 D 
Brisbane 12 28 3 1 E 1 I 
Istanbul 13 15 5 0.936 I 0.885 I 
Rio de Janeiro 14 2 2 1 E 1.000 E 
Mexico City 15 5 15 0.939 I 0.764 D 
Cape Town 16 39 44 0.206 I 0.547 I 
Johannesburg 17 37 24 0.350 I 0.594 I 
Pittsburgh 18 27 29 0.583 I 0.961 I 
New York 19 9 42 0.872 I 1 E 
Auckland 20 56 47 0.298 I 0.761 I 
Ottawa 21 26 19 0.783 I 0.972 I 
Curibita 22 7 26 0.903 I 0.995 D 
Beijing 23 10 7 0.816 I 0.909 I 
Pereira 24 46 34 0.566 I 0.817 I 
Syd-Par-Rouse Hill 25 50 28 0.134 I 0.337 I 
Syd-Liv-Parramatta 26 25 8 0.125 I 0.229 I 
Ahmedabad 27 8 27 0.647 I 0.780 I 
Guatemala 28 23 33 0.700 I 0.915 I 
Syd-Blacktn-RouseHill 29 55 30 0.043 I 0.124 I 
Adelaide 30 49 32 0.533 I 0.971 I 
Guayaquil 31 17 45 0.786 I 0.990 I 
Hangzhou 32 14 54 0.795 I 1 E 
Guadalupe 33 51 36 0.127 I 0.250 I 
Paris 34 18 9 0.827 I 0.851 I 
Medellin 35 36 40 0.379 I 0.612 I 
Rouen 36 21 12 0.446 I 0.460 I 
Dalian 37 29 16 0.483 I 0.730 I 
Lahore 38 47 48 0.620 I 0.659 I 
Ecatepec 39 41 37 0.600 I 0.809 I 
Changzhou 40 16 22 0.868 I 0.850 I 
Belfort 41 58 46 0.292 I 0.498 I 
Merida 42 48 52 0.229 I 0.428 I 
Guadalajara 43 43 43 0.592 I 0.788 I 
Manchester 44 45 57 0.304 I 0.769 I 
Cambridge 45 19 21 0.325 I 0.327 I 
Los Angeles 46 33 10 0.593 I 0.669 I 
Metz 47 22 23 0.398 I 0.435 I 
Kansas City 48 38 51 0.190 I 0.307 I 
Bhopal 49 31 39 0.498 I 0.596 I 
Nagoya 50 54 11 0.214 I 0.303 I 
Caen 51 44 13 0.725 I 0.876 I 
Jaipur 52 52 38 0.060 I 0.195 I 
Nantes 53 53 58 0.309 I 0.402 I 
Gothenburg 54 40 53 0.691 I 0.985 I 
Enschede 55 32 35 0.032 I 0.032 I 
Eugene 56 35 49 0.168 I 0.201 I 
Las Vegas 57 12 20 0.993 I 0.993 I 

Orlando 58 57 56 0.537 I 0.830 I 

Note: All DEA scores have been computed with Frontier Efficiency Analysis with R package FEAR 2.0 (Wilson, 

2014). E-Efficient, I=Increasing returns to scale. D= I=Decreasing returns to scale. 
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While this would justify an argument for larger fleets, it is not necessary an indication of benefits of 

larger networks in the sense of network length. For example, while Madrid has a large fleet, it is still 

associated with increasing returns to scale which may be a result from being one of the smaller systems 

in terms of network length. In contrast, Guangzhou is similarly large in fleet size and small in network 

length and infrastructure cost but associated with very significant decreasing returns to scale in relation 

to cost-effectiveness. This becomes even more noticeable in the context of Hangzhou, which has a 

relatively small fleet size and a medium sized network but one of the lowest infrastructure cost leading 

to scale efficiency in regards to partial cost-effectiveness, which suggests that big is not always beautiful 

and that context matters when evaluating BRT systems. 

The second-stage truncated regressions results presented in Table 6 provide some explanation of the 

potential underlying reasons for BRT ineffectiveness. While the majority of the BRT systems do not 

significantly impact on either form of effectiveness, it is notable that the BRT standard has a positive 

impact on input-effectiveness which disappears once partial cost-effectiveness is considered. A similar 

effect occurs in regards to whether the BRT system in question is based in a developing or developed 

country with the latter type only benefiting until the costs of the BRT infrastructure are accounted for. 

This may also be a result of BRTs in developed countries competing with other lines or modes of 

transport of good quality, while in developing countries the BRT is often the only form of PT with good 

reliability and quality of service. In contrast, the number of stations and ownership is are only 

statistically significant in the partial cost-efficiency model which suggests that publicly owned BRT 

systems with a large number of stations are more partially cost-effective than their counterparts. While 

the findings in regards to ownership are contrary to economic theory predictions, the sample is 

dominated by systems in public ownership and, of course, the nature of ownership is a matter of political 

orientation, particularly in Europe but also in other regions. Moreover, ownership is typically not linked 

to the level of subsidies as both private and public entities can and often do receive some public support 

in the form of subsidies, transfer payments or contractual revenue guaranties.  

 

Table 6. Second-stage truncated regression results 

  IEcorr   PCEcorr 

CONSTANT  -5.0700  -5.8715    

START_YEARi  0.0026  .00026  

OWNERSHIPi (1=private)  -0.0024  -0.1621** 

BRT_STANDARDi 
 0.0029*  0.0005 

STATIONSi  -0.0006   0.0007* 

DEVELOPEDi (1=yes)  0.0793*   0.0079  

Note: *p<0.1, **<0.05, ***p<0.01; these represent significant p values. 
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5. Conclusions 

This paper is a first attempt to evaluate the determinants of BRT system revenue/patronage potential 

and effectiveness. While the data collection for this analysis was more difficult than expected, by using 

BRTdata (2015) as a base and closing the gaps in this database with the help of BRT operators, it has 

been possible to establish sufficient data to evaluate not only input (and thereby extending existing PT 

performance measurement frameworks) but also partial cost effectiveness of BRT systems globally. 

This in itself is an important finding as it shows that the benchmarking of international BRT systems is 

possible and that such an exercise yields findings that are useful to operators, regulators transport 

authorities and policy makers. 

The findings suggest that, in contrast to the two initial hypotheses, increasing the standard of the 

BRT system does not on average improve average fare levels (yields) but increases passenger numbers 

per network-km and thereby improves input effectiveness but not partial cost effectiveness. These 

results suggest that higher BRT standards would be favoured by operators (who are often regulated and 

therefore cannot set their fares freely) as this on average increases effectiveness (both when measured 

as PPM in terms of patronage per network-km and also as DEA input effectiveness) and total farebox 

revenues. In the discussion above, it was suggested that there might be a trade-off between capex (BRT 

standard) and revenue generating opex (Fleet). Whilst the analysis does not find that cost effectiveness 

is impacted by the BRT standard, the positive impact of BRT standard on input effectiveness suggests 

that the results for the BRT context are in line with already published literature around the performance 

measurement of conventional/ regular public bus transport (Obeng et al., 2016). Moreover, the results 

show similarity with heavy rail and metro systems (Tsai et al., 2015) with BRT systems generally 

benefiting from economies of scale, however also suffering from diseconomies of scale when cost 

effectiveness is considered (starting at BRT systems having an excess of 300 buses in their fleet).  

Whilst the results presented in this paper are robust and provide useful insights to BRT system 

effectiveness across the globe, there are important limitations which present opportunities for future 

research. Most importantly, the analysis represents only a snapshot in time. It has become apparent, 

through talking to operators and examining individual BRT system data that many BRTs are still 

evolving or are in transition (being upgraded to a higher BRT standard or extended by one or more 

corridors). In the future it would be useful, data availability permitting, to evaluate the BRT system 

effectiveness and also efficiency over time and potentially also to treat different BRT corridors as 

separate businesses (assuming their accounts can be separated and appropriate control can be made for 

cross-subsidisation and network effects). Whilst great care was taken to ensure the sample of this 

analysis is representative in terms of size and spatial distribution, it does not include all BRT systems 

globally and the number of systems in existence is still growing. Future studies should aim to include 
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more systems with all data for a consistent time period coming from the operators or their respective 

transport authorities, rather than secondary sources as this could improve data quality. In terms of our 

choice of input and output variables it is acknowledged that using monetary variables such as 

infrastructure cost and revenues instead of pure physical measures, may insert some bias to the model 

results. This follows from the way in which fare policies are often determined by PT contracts together 

with levels of subsidies (which are not always reflected by the status of the systems' ownership) and the 

way in which living costs, tax regulations, etc. greatly vary across different jurisdiction and are not 

captured by a simple conversion of local currency to $US. Once power purchasing parity (PPP) data of 

all countries in our sample becomes available the monetary values should be converted into PPP$ rather 

than US$ to account for these international differences. Moreover, the variable for fleet size does not 

account for the size of the buses and future research should attempt to use "equivalent number of buses" 

(as with FTE) once such data becomes available. Further research planned on comparing the results of 

our BRT analysis with the standards, level of services and effectiveness of cities and the PT system as 

a whole. In that sense our BRT analysis can be extended by analysing BRT synergies with the rest of 

PT lines, tariff integration, transfer points, etc. 

Despite these limitations and suggestions for future research, the analysis shows that the existing 

data and proposed two-stage DEA benchmarking approach still produces valuable results which have 

the potential to improve the operation of current BRT systems, the planning and implementation of 

future systems and more generally to enrich the transport policy debate surrounding international BRT 

systems. Whilst the difficulty in obtaining data was initially a hurdle, the result has meant that this paper 

has developed an innovation in the extension of PT performance measurement frameworks by adding 

input effectiveness to the mix and perhaps more importantly, the analysis has demonstrated that this 

innovation contributes to knowledge and that there is a differentiation between input and cost 

effectiveness levels which is indeed useful to know but also that their determinants differ. 
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