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ABSTRACT: 
Due to the increasingly complex nature of the modern supply 

chain networks (SCNs), a recent research trend has focussed on 

modelling SCNs as complex adaptive systems. Despite the 

substantial number of studies devoted to such hypothetical 

modelling efforts, studies analysing the topological properties of 

real world SCNs have been relatively rare, mainly due to the 

scarcity of data. This paper aims to analyse the topological 

properties of twenty-six SCNs from the manufacturing sector. 

Moreover, this study aims to establish a general set of 

topological characteristics that can be observed in real world 

SCNs from the manufacturing sector, so that future theoretical 

work modelling the growth of SCNs in this sector can mimic 

these observations.  It is found that the manufacturing sector 

SCNs tend to be scale free with degree exponents below two, 

tending towards hub and spoke configuration, as opposed to 

most other scale-free networks which have degree exponents 

above two.  This observation becomes significant, since the 

importance of the degree exponent threshold of two in shaping 

the growth process of networks is well understood in network 

science. Other observed topological characteristics of the SCNs 

include disassortative mixing (in terms of node degree as well as 

node characteristics) and high modularity.  In some networks, 

we find that node centrality is strongly correlated with the value 

added by each node to the supply chain. Since the growth 

mechanism that is most widely used to model the evolution of 

SCNs, the Barabasi - Albert model, does not generate scale-free 

topologies with degree exponent below two, it is concluded that 

a novel mechanism to model the growth of SCNs is required to 

be developed.  
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1. Introduction

Traditionally, supply chains have been modelled as multi agent systems, in order to represent explicit 

communications between various autonomous entities involved (Thadakamalia et al., 2004). However, 

due to the increasingly complex and interconnected nature of the global supply chain networks (SCNs), 

recent research has focused on modelling supply chains as complex adaptive networks (Choi et al., 

2001). 

In order to understand, quantify and ultimately control various dynamical processes operating 

on SCN topologies, the first step is to construct realistic network models with tractable topological 

properties. Such models can be used to generate an ensemble of networks which can be studied 

analytically or by using numerical simulations (Bianconi, 2016). This can indeed provide remarkable 

insights into how the topological structure of a SCN can influence various dynamical processes, such 

as how efficiently information can be exchanged between individual entities, or how quickly can the 

overall system return to normal operations after a perturbation.  

Following on from the influential work published by Thadakamalla et al. in 2004, which utilised 

network science to investigate the topological robustness of SCNs, a large number of theoretical 

research papers have appeared in this area (Xuan et al., 2011; Zhao et al., 2011(a); Zhao et al., 2011(b); 

Wen and Guo, 2012; Li et al., 2013; Yi et al., 2013; Li, 2014; Xu et al., 2014; Mari et al., 2015; Kim et 

al., 2015; Perera et al., 2016). Most of these studies have theoretically formulated plausible and 

generalizable growth mechanisms underlying the firm partnering process in SCN formation. 

Subsequently, the network topologies generated based on various growth models have been studied in 

depth for their topological characteristics, such as robustness and efficiency.   

Despite the large number of theoretical papers published within the past few years, on network 

modelling of SCNs, the effort on empirical validation of the theoretical findings has been limited. This 

is mainly due to difficulty in obtaining information about supplier/customer relationships, which is often 

proprietary and confidential. Hitherto, majority of the research effort in this area has been focused on 

developing a generalizable network growth model which can generate topologies which can mimic the 

real world SCNs. Papers which topologically analyse real world supply chain data, the conclusions of 

which can then be used to inform modelling efforts, have been relatively scarce. 

In light of the above, this study presents a comprehensive network and node level analysis of 

twenty-six SCNs across various manufacturing industry sectors, based on the data presented in Willems 

(2008). It is noted that all the SCNs considered include the full depth in terms of tiers (from suppliers 

to retailers).  
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In summary, this study aims to answer the following key research questions; 

1. What common network level characteristics (if any) can be expected from real world SCNs in the

manufacturing industry sector?

2. Do cost and time, at each stage of each SCN, correlate with any node level centrality metrics?

3. What are the similarities and/or differences between the real world SCNs analysed in this study

and other real world complex (particularly scale-free) networks, such as the world-wide web

(WWW), power grids, social and biological networks?

4. What key features should a generalised growth mechanism for the emergence of SCNs, through

firm partnering, reflect?

The remainder of this manuscript is structured as follows.  Section two will elaborate in the background 

to this study, and introduce key concepts in terms of topological analysis. Section three presents data 

analysis and results. In section four, we present a discussion of the results. Section five concludes the 

paper. 

2. Background

2.1 Complex adaptive system nature of SCNs 

Complex systems theory is a field of science that is used to investigate how the individual 

components and their relationships give rise to the collective behaviour of a given system (Ladyman et 

al., 2013). Complex adaptive systems (CAS) are dynamic systems which are capable of adapting and 

evolving with the environment within which they are embedded. It is important to note that in CAS, 

there exists little or no distinction between the system and the environment in which the system finds 

itself (Chan, 2001). Due to this, the adaptation of the system with respect to its environment is referred 

to as ‘co-evolution’ since the term ‘evolution’ is typically used to refer to a process that occurs 

independent of the environment.  

Recent papers such as Choi et al. (2001) have argued that large scale supply networks are 

complex adaptive systems, where an interconnected network of multiple entities exhibit adaptability in 

response to changes in both the environment and the system itself. The collective system behaviour 

emerges as a nonlinear and dynamic function of the large number of activities made in parallel by 

interacting entities (Pathak et al., 2007). Therefore, from the point of view of a single firm, the overall 

SCN is a self-organising system which comprises individual entities engaging in localised decision-

making. Given this distributed nature of decision making, the configuration of the final SCN structure 

is beyond the realm of control of one central organisation. Due to its self-organising nature, the actual 



A network science approach to analysing manufacturing sector supply chain networks: Insights 

on topology 

Perera, Bell, Piraveenan and Bliemer 

 

3 
 

structure of the SCN is probabilistic rather than deterministic, where the local choices are combined to 

create a stochastic structure. Indeed, individual firms may obey deterministic selection processes (Choi 

and Hartley, 1996) to account for self-interests and to promote their own fitness criteria. However, the 

final organisation of the overall SCN eventually emerges over time through the natural process of order 

and spontaneity (Choi et al., 2001).  

As is evident from the above discussion, the characteristics of modern large scale SCNs 

unambiguously demonstrate CAS features, where the overall SCN, comprising dynamic entities, is 

embedded in a market environment. Co-evolution can therefore be observed when both the SCN and 

the market of which it is a part, evolve together over time.   

2.2 Network modelling of SCNs  

Traditionally, supply chains have been modelled as multi agent systems, in order to represent explicit 

communications between various entities involved (Swaminathan et al., 1998; Gjerdrum et al., 2001; 

Julka et al., 2002; Macal and North, 2005). Such agent-based models provide autonomy to each 

constituent entity and define behaviours in terms of observables accessible to the individual agent, 

which leads away from reliance on system-level information (Parunak et al., 1998). These models are 

generally effective in specifying how macro level patterns may emerge from the bottom-up (Jennings, 

2000; Tesfatsion, 2002; Erez and Gati, 2004). However, due to the complex adaptive nature of modern 

supply networks, predicting the behaviour of the overall system based on its constituent components is 

extremely difficult (sometimes impossible) because of the strong possibility of emergent behaviour 

(Kremers, 2013). As such, adopting a macro model that would allow investigation of the overall system 

from a top-down view, through network analysis, is justified.  

Although complex systems represent a vast range of real world systems, there exists no 

commonly established approach to investigate such systems. However, any complex system invariably 

consists of individual components interacting with each other – therefore such a system can be 

approximated as a network of components (Mitchell, 2006).  

Broadly classified, the modelling of SCNs has mainly focused on the following network models for 

benchmarking purposes; 

1) Random graphs (Erdȍs and Rényi, 1959) - where nodes are randomly connected to each other. 

2) Small-world networks (Watts and Strogatz, 1998) - where most nodes are not neighbours of 

one another, but most nodes can be reached from every other node by a small number of steps.  

3) Scale-free networks (Barabási and Albert, 1999) – where node degrees are in a power 

distribution, at least asymptotically. 

 

http://www.sciencedirect.com/science/article/pii/S0272696300000681#BIB11
http://www.sciencedirect.com/science/article/pii/S0272696300000681#BIB11


A network science approach to analysing manufacturing sector supply chain networks: Insights 

on topology 

  Perera, Bell, Piraveenan and Bliemer 

 

4 
 

The key characteristics of the above mentioned network structures are presented in Figure 1.  

 

 

Figure 1. Comparison of random, small-world and scale free network - typical topologies 

2.3 Modelling SCN evolution 

In the context of supply networks, the concept of growth represents how firms join together to form 

SCNs. As new entrants join the supply network, they select partners from within the network. This 

partner selection is indeed a multi-objective problem and involves numerous factors, such as price, 

performance, quality, goodwill, etc (Jain et al., 2009; Li et al., 2013). Nevertheless, most research work 

in modelling SCN growth has hitherto given primary consideration to variants of degree based 

preferential attachment model, where the probability of attracting a connection from a new node is 

proportional to the number of existing connections possessed by each node within the network and/or 

other topological factors. Examples of such customised preferential attachment rules include the 

Hierarchy +/Ad-Hoc attachment model proposed by Thadakamalla et al. (2004), the Degree and 

Locality based Attachment (DLA) model proposed by Zhao et al. (2011a), and the Randomised Local 

Rewiring (RLR) model introduced by Zhao et al. (2011b). Each of the aforementioned growth models, 

over time, generate networks with distinct topologies. The topological characteristics arising from 

networks behaving according to the aforementioned growth model, can then be compared with the 

known features of other network benchmark models (as illustrated in Figure 1).  
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2.4 Data driven studies 

Even though most modelling efforts of SCN focused on variants of preferential attachment as 

mentioned above, there have indeed been some studies which too have adopted a data-driven approach. 

For instance,  Kim et al. (2011) have undertaken a node and network level topological analysis, 

using three case studies of automotive supply networks (namely, Honda Accord, Acura CL/TL, and 

Daimler Chrysler Grand Cherokee) presented by Choi and Hong (2002). Although the SCNs used in 

this study are complete, the SCNs are rather small in size (with a maximum of 34 firms in a given 

network), which limits the observations of emergent network topological properties. Kito et al. (2014) 

have constructed a SCN for Toyota using the data available within an online database operated by 

Marklines Automotive Information Platform. By analysing the SCN topology, the authors have 

identified the tier structure of Toyota to be barrel-shaped, in contrast to the previously hypothesized 

pyramidal structure. Another fundamental observation reported in this study is that Toyota SCN 

topology was found to be not scale free (even with finite-size effects taken into account). Although the 

dataset used in this study is sufficiently large (with 3,109 firms), it is limited to only the top three tiers 

of the overall SCN.   

More recently, using Bloomberg data, Brintrup et al. (2015) and Orenstein (2016) have undertaken 

topological analysis of various SCNs. Brintrup et al. (2015) have studied the SCN of Airbus and have 

reported that this SCN displays assortative mixing and communities based on geographic locations of 

the firms. Orenstein (2016) has undertaken topological analysis of retail and food industry SCNs by 

considering the suppliers within the top three tiers. The SCNs considered in this study were found to 

have scale free topologies with degree exponent below 2. Although the dataset used in this study is 

sufficiently large and allows observation of temporal variations to the SCN topology, consideration of 

only a part of the SCN depth in terms of tiers has limited the generalisability of the results.  

It should be noted that the key limitation in using the Bloomberg database, for constructing SCNs, 

is that the data are not exhaustive since the database only includes publicly listed firms. Therefore, the 

SCNs constructed using Bloomberg data may only provide a part of the full picture.   

Although the above studies have provided a number of insights about the topological structure of 

various SCNs, no study to date has systematically investigated a large collection of SCNs in any 

particular industry using a comprehensive set of node and network level metrics. By considering a 

collection of twenty-six SCNs from the manufacturing industry, this study is able to investigate and 

establish the general topological properties of such networks in this sector. This effort will complement 

the large body of theoretical literature on modelling SCN topologies through various growth models, 

by revealing what specific topological characteristics are needed to be captured in an appropriate growth 

model. In addition, the correlation analysis presented in this study, between various node level centrality 
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measures and two exogenous factors (stage cost and stage time), can be powerful in demonstrating how 

the position of firms can influence the overall functionality of the SCN.  

Finally, this study has used a reliable dataset provided in published work by Willems (2008), which 

includes a large sample of manufacturing industry SCNs. Our study offers distinct insights from 

previous studies because (i) it is based on a large collection of real word SCNs belonging to  a particular 

sector (ii) most of the SCNs are large (have a relatively high number of nodes) so that various emergent 

properties can be sufficiently demonstrated (iii) we extract topological properties to specifically 

compare them with the topological properties of networks generated by widely used SCN growth 

models, thus being able to comment on the suitability or otherwise of existing growth models for supply 

chain networks (iv) our correlation analysis of node centrality measures with exogenous factors 

provides insights into the impact of the position of firms in the dynamics of supply chains.  Thus, this 

study is unique in several counts from previous studies described above. 

2.5 Characterising complex networks 

The metrics used to characterise the topology of complex networks can be broadly classified into node 

and network level metrics. See Costa et al. (2007) and Rubinov and Sporns (2010) for a comprehensive 

range of measurements used for characterization of complex networks. In this section, we describe the 

metrics we used in this study to analyse the topological properties of SCNs.   

2.5.1 Mathematical Representation of Networks 

 A supply chain network can be represented as an unweighted, undirected graph

( , )G N L , with N nodes and L links. In the SCN models constructed in this paper, the nodes are 

assumed to represent individual firms, which are connected through links which represent contractual 

relationships between the firms. This network can also be represented by an adjacency matrix (A). Any 

element of the adjacency matrix [ ]ijA a   is given as:

1,    if  and  and  nodes are connected by an edge 

0,    if  and  and  nodes are not connected

0,    if .

ij

i j i j

a i j i j

i j
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2.5.2 Network level metrics 

Table 1 presents the list of network level metrics used for analysis in this study, and their implications 

within a SCN context.  

Table 1: Network level metrics used and their SCN implications 

Mathematical representation SCN Implication 

Average degree (<k>) 

i

i

k

k
N

 


where N is the total number of nodes in the network 

Indicates, on average, how many connections a given 

firm has. Higher average degree implies good inter-

connectivity among the firms in the SCN. 

Network diameter 

,
diameter max  ( , )

i j
l i j

where l is the number of hops traversed along the 

shortest path from node i to j.  

The diameter of a SCN is the largest distance between 

any two firms in the network. More complex 

manufacturing processes can include large network 

diameters (i.e. many stages of production) indicating 

difficulty in governing the overall SCN under a 

centralised authority.  

Network density (D) 

D
1

k

N

 




where <k> is the mean degree of all the nodes and 

N is the total number of nodes, in the network  

Density of a SCN indicated the level of interconnectivity 

between the firms involved. SCNs with high density 

indicate good levels of connectivity between firms which 

can be favourable in terms of efficient information 

exchange and improved robustness due to redundancy 

and flexibility (Sheffi and Rice, 2005). 

Network centralisation (C) 

max( )
C Density

2 1

N k

N N

 
  

  

where N is the total number of nodes in the network 

and max(k) is the maximum degree of a node 

within the network. Density is determined as per 

the equation below.  

Network centralisation provides a value for a given SCN 

between 0 (if all firms in the SCN have the same 

connectivity) and 1 (if the SCN has a star topology). This 

indicates how the operational authority is concentrated in 

a few central firms within the SCN. Highly centralised 

SCNs can have convenience in terms of centralised 

decision implementation and high level of controllability 

in production planning. However, highly centralised 
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SCNs lack local responsiveness since relationships 

between firms in various tiers are decoupled (Kim et al., 

2011).  

 

Network heterogeneity (H) 

( )
H

variance k

k


 
 

 

where <k> is the mean degree and variance (k) is 

the variance of the degree, of all the nodes in the 

network.  

Heterogeneity is the coefficient of variation of the 

connectivity. Highly heterogeneous SCNs exhibit hub 

firms (i.e. firms with high number of contractual 

connections). In extreme cases, there may be many super 

large hubs (winner take all scenario, indicating 

centralised control of the overall SCN through a very few 

firms).   

 

Average clustering coefficient (<C>) 

ii
C

C
N

 


 

where N is the total number of nodes in the network 

and Ci is the number of triangles connected to node 

i divided by the number of triples centered around 

node i.  

 

Clustering coefficient indicates the degree to which firms 

in a SCN tend to cluster together around a given firm. For 

example, it can indicate how various suppliers behave 

with respect to the final assembler at the global level 

(Kim et al., 2011). Therefore, the higher the clustering 

coefficient, the more dependent suppliers are on each 

other for production (Brintrup et al., 2016). 

 

Degree exponent (γ) (Barabasi and Albert, 1999) 

The degree distribution Pk of a scale free network 

is approximated with power law as follows; 

kP k 
 

 

where k is the degree of the node and γ is the degree 

exponent (also known as the power law or scale 

free exponent).  

SCNs with γ<2 include very large hubs which acquire 

control through contractual relationships with other firms 

at a rate faster than the growth of the SCN in terms of new 

firm additions. As γ continues to increase beyond 2, the 

SCNs include smaller and less numerous hubs, which 

ultimately leads to a topology similar to that of a random 

network where all firms have almost the same number of 

connections.  

 

Assortativity (ρ) (Newman, 2002) 

Assortativity is formally defined as a correlation 

function of excess degree distributions and link 

distribution of a network.  

 

Positive assortativity means that the firms with similar 

connectivity would have a higher tendency to connect 

with each other (for example, highly connected firms 

could be managing sub-communities in certain areas of 

production and then connect to other high-degree firms 
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For undirected networks, when degree distribution 

is denoted as pk and excess degree (remaining 

degree) distribution is denoted as qk, one can 

introduce the quantity ej,k as the joint probability 

distribution of the remaining degree distribution of 

the remaining degrees of the two nodes at either 

end of a randomly chosen link.  

 

Given these distributions, the assortativity of an 

undirected network is defined as; 

 

,2

1
( )j k j k

jkq

jk e q q


 
  

 
  

 

where σq is the standard deviation of qk. 

 

undertaking the same function). This structure can lead to 

cascading disruptions – where a disruption at one leaf 

node can spread quickly within the network through the 

connected hubs (Brintrup et al., 2016). In contrast, a 

negative assortativity indicates that it is the firms with 

dissimilar connectivity that tend to pair up in the given 

network. 

Modularity (Q) (Newman and Girvan, 2004) 

2

1 2

k
s s

s

l d
Q

L L

  
   

   
  

 

where k is the number of modules, L is the number 

of links in the network, ls is the number of links 

between nodes in module s, and ds is the sum of 

degrees of nodes in the module s.  

 

To avoid getting a single module in all cases, this 

measure imposes Q=0 if all nodes are in the same 

module or nodes are placed randomly into 

modules.   

SCNs with high modularity contain pronounced 

communities – i.e. partially segregated subsystems or 

modules embedded within the overall SCN system 

(Ravasz et al., 2002; Newman, 2003). 

 

Percolation threshold for random node removal (fc) (Cohen et al., 2000) 

The percolation threshold for random node 

removal is given as; 

2

1
1

1
cf

k

k

 
 


 

 

 

The percolation threshold of a SCN indicates the 

percentage of firms needed to be randomly removed prior 

to the overall SCN breaks into many disconnected 

components. In summary, this indicates the number of 

random firm failures that would drive the SCN from a 

connected state to a fragmented state (loss of overall 

interconnectivity).  
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where <k> is the mean degree and <k2> is the 

second moment of the degree, of all the nodes in 

the network.  

 

It is noted that in the above formulation represents 

the proportion of nodes required to be removed 

from the network before the giant component 

ceases to include all the nodes. 

2.5.3 Node level metrics 

Node level metrics characterize, in various ways, the importance of a particular node for the 

functionality of the overall network, based on its embedded position in the broader relationship network. 

Most node level metrics therefore relate to node centrality. Depending on the context, various centrality 

measures can be adopted to identify the key players of a given network. Table 2 presents the list of node 

level metrics used in this study, and their implications within a SCN context.  

 

Table 2: Node level metrics used and their SCN implications  

Mathematical representation SCN Implication 

Degree (k) 

The degree ki of any node i is represented by; 

i ij

j

k a  

where aij is any element of the adjacency 

matrix A. 

Represents the number of direct neighbours (connections) a 

given firm has. For instance, in a given SCN, the firm with 

the highest degree (such as the integrators that assemble 

components) is deemed to have the largest impact on 

operational decisions and strategic behaviours of other firms 

in that particular SCN. Such a firm has the power to reconcile 

the differences between various other firms in the SCN and 

align their efforts with greater SCN goals (Kim et al., 2011). 

Betweenness centrality (normalised) (Freeman, 1977) 

The betweenness centrality of a node n is 

defined as; 

 

,

,

( )2
( )

( 1)( 2)

s t

b

s n t s t

n
C n

N N



 


 

  

 

where s and t are nodes in the network, which 

are different from n, 
,s t denotes the number of 

Betweenness centrality of a firm is the number of shortest 

path relationships going through it, considering the shortest 

path relationships that connect any two given firms in the 

SCN. Therefore, it indicates the extent to which a firm can 

intervene over interactions among other firms in the SCN by 

being a gatekeeper for relationships. 
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shortest paths from s to t, and 
, ( )s t n is the 

number of shortest paths from s to t that n lies 

on. 

Closeness centrality (Sabidussi, 1966) 

The closeness centrality of a node n is defined 

as; 

1
( )

( , )
cC n

L n m

 

 

 

where <L(n,m)> is the length of the shortest 

path between two nodes n and m (note that for 

unweighted graphs with no geodesic distance 

information, each link is assumed to be one unit 

of distance). The closeness centrality of each 

node is a number between 0 and 1. 

 

Closeness centrality is a measure of the time that it takes to 

spread the information from a particular firm to the other 

firms in the network. While it is closely related to 

betweenness centrality, closeness more relevant in situations 

where a firm acts as a generator of information rather than a 

mere mediator/gatekeeper. For example, due to various 

hindrances, the market demand information can easily be 

distorted when it flows from the downstream firms towards 

upstream firms. Such distortions can lead to undue deviation 

between production plans of manufacturers and supply plans 

of suppliers, leading to a phenomenon known as the bullwhip 

effect. Firms with high closeness centrality levels therefore 

play a major role in sharing the actual market demand 

information with upstream firms in the SCN, thus 

diminishing the adverse impacts arising from bullwhip effect 

(Xu et al., 2016). 

Eigenvector centrality (Ruhnau, 2000) 

If the centrality scores of nodes are given by the 

matrix X and the adjacency matrix of the 

network is A, then x can be defined iteratively 

as; 

 

x Ax

i.e.

λx = Ax



 

 

The eigenvector centrality scores are obtained 

by solving this matrix equation. It can be 

shown that, while there can be many values for

λ , only the largest value will result in positive 

scores for all nodes. 

Eigenvector centrality measures a firm's influence in the 

SCN by taking into account the influence of its neighbours. 

It assumes that the centrality score of a firm is proportional 

to the sum of the centrality scores of the neighbours. A firm 

with a high eigenvector centrality is assumed to derive its 

influential power through its highly connected neighbours.  
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3. Data analysis and Results 

3.1 Data source and structure 

Willems (2008) provides a dataset of real world multi echelon supply chains, used for inventory 

optimization purposes. The overall dataset includes a total of 38 multi echelon supply chains, from 

various industries. The chains described in this paper comprise actual supply chain maps created by 

either company analysts or consultants. Since these maps have been implemented in practice, they 

demonstrate how users have modelled actual supply chains. 

The above-mentioned dataset includes the following key information; 

 The industry sector of each supply chain network; 

 For each supply chain;  

o The stages representing each firm involved; and  

o The arcs representing precedence relationship between stages.  

 For each stage; 

o Its classification and tier based on its function within the overall supply chain; 

o The direct cost added at the stage (stage cost); and 

o The average processing time at the stage (stage time).  

 

Please note that, even though in the context of an individual supply chain, the terminology ‘stage’ makes 

sense (manufacturing stage, retail stage etc), when we represent them as supply chain networks, it does 

not. Each ‘stage’ in a supply chain therefore simply represents a node, which is also a firm, within the 

SCN. 

From the original dataset, the networks with more than 100 firms (i.e. nodes) were selected for 

our analysis, and there were twenty-eight such large networks. Smaller networks were omitted in this 

analysis since they do not offer any interesting insights into emergence of various complex topological 

features. Then, using the industry sector information, these SCNs were categorised into six main groups 

as illustrated in Table 3.  As can be seen, the set of SCNs considered by us vary in size (with a minimum 

of 108 to a maximum of 2025 nodes). 
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Table 3: Classification of SCNs considered in the study 

Group Industry Sector 
SCN Ref # No. of 

Nodes 

No. of 

Links 

Aircraft Parts (2) 

  

Aircraft Engines and Engine Parts 

  

1 468 605 

2 2025 16225 

Chemicals (7) 

  

  

  

  

  

  

Perfumes, Cosmetics, and Other Toilet 

Preparations 

  

3 186 359 

4 844 1685 

5 976 1009 

Paints, Varnishes, Lacquers, Enamels, and 

Allied Products 

6 
271 524 

Industrial Organic Chemicals, Not 

Elsewhere Classified 

7 
1479 2069 

Soap and Other Detergents, Except 

Specialty Cleaners 

8 
133 164 

Pharmaceutical Preparations 9 253 253 

Electrical (6) 

  

  

  

  

  

Electro medical and Electrotherapeutic 

Apparatus 

  

10 145 224 

11 482 941 

12 1386 1857 

Telephone and Telegraph Apparatus  13 1206 4063 

Primary Batteries, Dry and Wet 14 617 753 

Power-Driven Hand tools 15 334 1245 

Computer (6) 

  

  

  

  

  

Computer Peripheral Equipment 

  

  

16 152 211 

17 154 224 

18 156 263 

19 156 169 

Computer Storage Devices 20 577 2262 

Semiconductors and Related Devices 21 108 452 

  

Arrangement of Transportation of Freight and Cargo (2) 

  

22 116 119 

23 
626 632 

  

Farm Machinery and Equipment (3) 

 

24 409 853 

25 706 908 

26 1451 4812 

 



A network science approach to analysing manufacturing sector supply chain networks: Insights 

on topology 

Perera, Bell, Piraveenan and Bliemer 

14 

3.2 Limitations of the dataset 

A key limitation of the available dataset is the lack of information in relation to the geographical 

locations of individual firms. This information was not provided in the original dataset in Willems 

(2008) due to confidentiality reasons. Unlike the virtual networks (such as WWW or social networks), 

the SCN structure is largely influenced by geographical aspects (since the congregation or dispersion 

of the suppliers depend on the raw material distribution over various geographic regions). Therefore, if 

geographic location information was available, in depth conclusions could have been made about 

various observed structural features of the SCNs. 

In addition, this study is unable to investigate the dynamic nature of the SCNs since the dataset 

does not provide any information pertaining to temporal changes in the SCN topology. Lastly, the 

relationship strength between firms are not captured in the dataset in terms of the amounts material 

flow. Although specific production capabilities of firms within each tier are known, no information is 

available in relation to how much each upstream firm supplies to the downstream firms.  

Nevertheless, the size of the dataset, both in terms of the number of networks available and in 

terms of number of nodes in each network, as well as the cost and time data associated with nodes 

(called stage cost and stage time by Willems (2008)), make this a very attractive dataset to study. 

3.3 Data analysis and results 

Using the stage and arc data from the dataset, we constructed SCNs, where the nodes represent the 

individual firms and the links represent the contractual relationships between firms (undirected). 

Cytoscape software and JAVA programming language were used to visualise and analyse the SCNs. 

The results are presented below. 

3.3.1 Network level metrics 

Table 4 represents the results of network level metrics for each SCN analysed. The three key 

observations that can be made from the table are (i) most SCNs are scale-free, and most of them have a 

power-law exponent less than 2.0 (ii) most SCNs are disassortative, in terms of both degree 

assortativity, as well as assortativity calculated based on stage cost and stage time, and (iii) all SCNs 

include high levels of modularity indicating presence of closely knit communities. These observations 

have important implications, which are discussed in more detail in the following sub-sections. 
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Table 4: Summary of results obtained for each SCN analysed 

Industry 

Group Industry Sector

SCN 

Ref# No. of Nodes No. of Links

Average 

Degree

Network 

Diameter

Characteristic 

Path Length

Network 

Centralization

Network 

Density

Network 

Heterogeneity

Degree 

Exponent

Power Law 

Correlation

Assortativity 

(Degree based)

Assortativity 

(Cost based)

Assortativity 

(Time based) Modularity Communities

Percolation 

Threshold for 

Random Failures

1 468 605 2.59 9 4.07 0.20 0.06% 3.03 1.09 0.96 -0.46 0.22 -0.34 0.78 17 96.1%

2 2025 16225 16.03 6 4.11 0.11 0.80% 2.45 0.85 0.87 -0.72 -0.55 -0.98 0.28 5 99.1%

3 186 359 3.86 8 4.30 0.08 2.10% 1.06 1.20 0.97 0.25 0.13 0.06 0.61 11 86.1%

4 844 1685 3.99 13 5.43 0.07 0.50% 1.56 1.38 0.98 -0.14 -0.03 -0.03 0.63 8 92.1%

5 976 1009 2.07 18 9.43 0.02 0.02% 0.97 1.81 0.85 0.00 -0.02 0.02 0.90 35 66.9%

Paints, Varnishes, Lacquers, 

Enamels, and Allied Products 6 271 524 3.87 8 4.06 0.08 1.40% 1.21 1.49 0.99 -0.31 -0.16 -0.07 0.59 10 88.2%

Industrial Organic Chemicals 7 1479 2069 2.80 14 6.49 0.03 0.02% 1.57 1.50 0.89 -0.06 -0.19 -0.46 0.76 15 88.5%

Soap and Other Detergents, 

Except Specialty Cleaners 8 133 164 2.47 6 3.88 0.20 1.90% 1.09 1.23 0.91 0.03 -0.40 0.20 0.70 11 77.2%

Pharmaceutical Preparations
9 253 253 2.00 10 5.78 0.13 0.08% 1.68 1.29 0.88 -0.25 0.47 0.05 0.79 7 84.9%

10 145 224 3.09 8 4.96 0.08 2.10% 0.92 1.33 0.95 -0.08 -0.09 -0.29 0.66 14 78.8%

11 482 941 3.91 8 4.36 0.18 0.80% 2.68 1.07 0.94 -0.61 -0.62 -0.58 0.56 8 96.8%

12 1386 1857 2.68 20 9.82 0.04 0.20% 2.06 1.49 0.96 -0.29 -0.04 -0.20 0.88 16 92.3%

Telephone and Telegraph 

Apparatus 13 1206 4063 6.74 5 3.65 0.12 0.60% 2.75 1.09 0.99 -0.73 0.12 -0.55 0.50 12 98.2%

Primary Batteries, Dry and Wet
14 617 753 2.44 10 6.48 0.04 0.40% 1.51 1.56 0.97 -0.64 -0.62 -0.12 0.81 19 85.7%

Power-Driven Handtools
15 334 1245 7.46 7 3.50 0.18 2.20% 1.83 0.89 0.95 -0.60 -0.03 -0.24 0.31 27 96.8%

16 152 211 2.78 6 3.46 0.20 1.80% 1.72 1.13 0.89 -0.18 0.19 -0.22 0.52 29 90.0%

17 154 224 2.91 12 4.95 0.07 1.90% 1.02 1.31 0.96 0.16 -0.04 0.06 0.60 9 79.8%

18 156 263 3.37 12 4.28 0.16 2.20% 1.28 1.23 0.65 -0.25 -0.22 -0.02 0.59 10 87.3%

19 156 169 2.17 13 5.38 0.20 1.40% 1.65 1.21 0.80 -0.28 -0.17 -0.11 0.74 19 85.8%

Computer Storage Devices 20 577 2262 7.84 10 3.52 0.34 1.40% 2.47 0.91 0.59 -0.47 -0.03 -0.75 0.60 17 98.2%

Semiconductors and Related 

Devices 21 108 452 8.37 4 2.06 0.74 7.80% 1.83 0.69 0.44 -0.82 -0.76 -0.82 0.12 3 97.2%

22 116 119 2.05 8 4.88 0.07 1.80% 0.99 1.59 0.97 -0.06 -0.11 -0.17 0.79 13 67.4%

23 626 632 2.02 8 5.45 0.07 0.30% 1.17 1.54 0.69 0.06 -0.05 0.03 0.91 29 73.5%

24 409 853 4.17 4 3.24 0.34 1.00% 1.91 1.26 0.99 -0.12 0.02 -0.12 0.62 8 94.6%

25 706 908 2.57 6 5.38 0.04 0.40% 1.78 0.93 0.85 -0.81 -0.26 -0.71 0.87 32 89.7%

26 1451 4812 6.63 5 3.18 0.40 0.50% 2.68 1.22 0.98 -0.11 -0.05 -0.01 0.71 8 98.1%

Computer

Computer Peripheral Equipment

Arrangement of Transportation of Freight and 

Cargo

Farm Machinery and Equipment 

Aircraft Parts Aircraft Engines and Engine Parts

Chemicals

Perfumes, Cosmetics, and Other 

Toilet Preparations

Electrical 

Electromedical and 

Electrotherapeutic Apparatus
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3.3.1.1 Scale-freeness and degree exponent (γ) 

Interestingly, most SCNs analysed indicate scale-free topology – i.e. the degree distribution follows the 

power law. More specifically, 22 out of the 26 networks analysed display 80% or higher correlation 

with a power-law fit, and these can undoubtedly labelled as scale-free networks. Moreover, all of these 

scale-free networks display a degree exponent which is less than 2.0. 

Indeed, most real world networks have been observed to be scale-free, including technological, 

social, and biological networks (Barabasi et al., 2000). However, in most cases, it has been found that 

scale-free networks have degree exponents between 2 and 3 (Barabasi, 2016). The growth mechanisms 

underlying such networks have been related to some form of preferential attachment, most notably the 

Barabasi-Albert (BA) model, which is known to generate scale-free networks with approximately γ =3. 

Therefore, despite its elegance and simplicity, networks with a γ below 3 cannot be generated by the 

BA growth model (Nguyen and Tran, 2012).    

Many properties of a scale-free network depend on the value of the degree exponent, γ 

(Barabasi, 2016). Therefore, it is interesting to establish how the network properties vary with γ. For a 

scale-free network, the expected maximum degree maxk  (also known as the natural cut-off) which 

represents the expected size of the largest hub is estimated as follows (Barabasi, 2016); 

1

1

max mink k N  
  (Eq. 1) 

where maxk and mink are the expected maximum and minimum degree of a node, respectively. N is the

system size, in terms of the number of nodes. 

Based on Eq. 1 above, the link acquisition rate of the biggest hub (i.e. node with maxk ) behaves as

follows; 

 When γ<2, the exponent
1

g -1
 is larger than 1. Therefore, the link acquisition rate of the largest 

hub is faster than the growth of the network in terms of the number of nodes present.

 When γ=2, the exponent
1

1 
 is 1. Therefore, the biggest hub acquires links linearly with the 

network size, thus forcing the network towards a hub and spoke configuration.

 When γ>2, the exponent
1

1 
 is less than 1. Therefore, as γ increases beyond 2, the degree 

distribution decays faster, thus making the hubs smaller and less numerous.
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Based on equation 1, when γ<2 the link acquisition rate of the largest hub is faster than the growth of 

the network in terms of the number of nodes it contains (indeed no large networks can exist in this 

regime, since the largest hub will eventually run out of nodes to connect to). In this scenario, the high-

degree nodes are disproportionately attractive. This winner-takes-all dynamic leads to a hub-and-spoke 

network topology in which all nodes are within a short distance from each other. 

As can be seen from the above discussion, the threshold for degree exponent γ = 2.0 is critical, 

and decidedly influences link acquisition rates and the resultant evolution of the network. Therefore, 

our observation that most SCNs that we analysed have degree exponents less than 2.0 implies that they 

cannot be successfully modelled by a mechanism like the Barabasi-Albert (BA) model. 

3.3.1.2 Network centralisation  

All the SCNs included have relatively lower network centralisation values – indicating the largely 

distributed and decentralised nature of modern SCNs. This lower centralisation could also be due to the 

recent supply chain practice known as modular assembly, where manufacturers obtain pre-assembled 

modules from a reduced base of suppliers (such as through intermediate sub-assemblers), as opposed 

to the traditional approach in which individual components are procured and assembled by the 

manufacturer (Hu et al., 2008).  

However, it was noted that in general, more complex and specialised manufacturing and 

assembly processes, such as aircraft parts, computer equipment, electrical and farm machinery, SCNs 

were more centralised than other SCNs such as cargo and chemicals.  

3.3.1.3 Network heterogeneity 

Network heterogeneity is the coefficient of variation of a given network’s degree distribution (Dong 

and Horvath, 2007). Past research has shown that heterogeneity in the degree distribution can inhibit 

global synchronisation of networks (Nishikawa et al., 2003). However, heterogeneity can be a desirable 

property in SCNs, since global synchronisation of a SCN could facilitate cascading failures due to 

disruptions (Pereira, 2010).  

Jun et al (2007) has shown that scale free networks with γ ≈ 1.7 is most heterogeneous and the 

scale-free networks become more homogeneous as γ increases beyond 1.7. The SCNs analysed in this 

study indicate generally high levels of heterogeneity (between 0.9 and 3). This is indeed attributable to 

the γ of these networks (generally in the vicinity of 1.7).   As noted by Ou et al., 2009, empirical studies 

indicate that most real world complex networks are generally highly heterogeneous with the γ ranging 

from 1 to 3.  
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3.3.1.4 Assortativity 

In terms of degree assortativity, Majority of the SCNs (23 out of 26) were found to be slightly or strongly 

disassortative, where the hubs tend to avoid each other, instead linking to lower-degree nodes. As a 

result, the network structure of these SCNs tends to display hub and spoke character (as opposed to core 

periphery structure observed in assortative networks).  Some networks such as ‘Perfumes, Cosmetics, 

and Other Toilet Preparations’ and ‘Semiconductors and Related Devices’ were strongly disassortative. 

We found no SCN which was strongly assortative. 

The SCNs mostly displayed slight or strong disassortative tendencies in terms of stage-cost and 

and stage-time as well. That is, firms which contribute high stage-cost are on average more likely to be 

connected with firms that contribute low stage-cost, and vice-versa, and the same is true for stage-time. 

No SCN that we studied displayed strong assortative tendency in terms of these attributes.  

Disassortative mixing has been observed commonly in economic systems (Barabasi, 2016). For 

example, in economic settings, trade typically takes place between individuals or organisations of 

different skills and specialties. The above is certainly true in the SCN – where a supplier is most likely 

to link with a manufacturer, rather than to another supplier. This inherent functional property, in the 

SCN context, is likely to be responsible for forcing the SCNs towards disassortative mixing. 

An unfavourable implication of the disassortativity observed in the SCNs (particularly in terms 

of degree) is that since high degree nodes are less connected to one another, many paths between nodes 

in the network are dependent on high degree nodes. Therefore, failure of a high degree node in a 

disassortative network would have a relatively large impact on the overall connectedness of the network 

(Noldus and Van, 2015). On the other hand, disassortative networks are generally resilient against 

cascading impacts arising from targeted attacks – since hub nodes are not connected with each other, 

the likelihood of disruption impacts cascading from one hub node to another is minimised (Song et al, 

2006).  

3.3.1.5 Modularity and Communities  

Majority of the SCNs analysed were found to have moderate to high levels of modularity, which 

indicates the presence of partially segregated subsystems or modules embedded within a SCN system 

(Ravasz et al., 2002; Newman, 2003). This reveals the organisational intricacies underlying the SCN 

structure. Indeed, the individual firms which form SCNs, tend to be well partitioned based on the 

heterogeneity of their respective functions.  

At first glance, it may appear that since SCNs have tiered structures, each tier could represent 

a ‘community’ or module, resulting in high modularity. However, it was noted that in the SCN dataset 

considered, no horizontal connections were observed (i.e. no connections between firms within the same 



A network science approach to analysing manufacturing sector supply chain networks: Insights 

on topology 

Perera, Bell, Piraveenan and Bliemer 

 

19 
 

functional tier). Therefore, the communities or modules observed in these SCNs are due to vertical 

connections. This could be due to more complex manufacturing processes, which bring together many 

parts, demanding connections with multiple suppliers. Another reason could be that firms intentionally 

link with multiple firms at upper and lower tiers (known as multi-sourcing), as to improve the reliability 

of maintaining production levels over the demand threshold through redundancy and flexibility (Sheffi, 

2001). 

Indeed, more efficient SCNs will possess communities that allow for improved information 

flow and innovation diffusion (Hearnshaw and Wilson, 2013). Past research measuring network 

modularity (Newman, 2003) reveal that networks with communities which are fuzzy in their segregation 

are better at diffusing and transmitting information across the entire network than networks with a more 

distinct community structure (Danon et al., 2008). 

Hearnshaw and Wilson (2013) note that for supply chain systems to function efficiently from 

initial suppliers to final consumers it is necessary that vertical connections between communities are 

formed and maintained. However, such inter-tier connections are likely to be costly compared to intra-

tier connections, particularly due to differing interests and functions between each tier. Accordingly, 

the leader firms (i.e. hubs), within each tier, are more likely to initiate and maintain inter-tier 

connections, due to their enhanced capacity to link across different functions, and their ability to tackle 

riskier exchange relationships given their greater resources (Goyal, 2012). 

3.3.1.6 Structural robustness to random failures 

A crude indicator of the structural robustness of a given network is its integrity in terms of the presence 

of a giant component. For a network to have a giant component, most nodes that belong to it must be 

connected to at least two other nodes (Barabasi, 2015). The presence of a giant component within a 

given network can be established using the Molloy-Reed criterion (Reed, 1995), as shown below; 

2

2
k

k


 
 
 

                 (Eq. 2) 

Based on the above equation, networks with κ>2, are deemed to include a giant component. On the 

other hand, when κ<2, the overall network is composed of many disconnected clusters. Almost all of 

the SCNs analysed in this paper include κ values well above 2, indicating the presence of a giant 

connected component, in which all firms belong to a single component which is the SCN itself.  

Based on the insights provided by the Molloy-Reed criterion, using Eq. 3 below, one can predict the 

percentage of nodes required to be randomly removed from the overall network in order to rid the 

network of its overall integrity by destroying the giant component (Cohen et al., 2000).   
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2

1
1

1

cf
k

k

 



                   (Eq. 3)  

It is noted that 
cf in the above formulation represents the proportion of nodes required to be removed 

from the network before the giant component ceases to include all the nodes.  

In fact, the above equation can also be written as; 

1
1

1
cf


 


                    (Eq. 4) 

Where   is defined as Eq. 2 above 

The 
cf values calculated for the majority of SCNs indicate very high level of robustness against random 

node removals (on average, about 88% of nodes should be randomly removed before the giant 

connected component disintegrates).  

Note that for networks with γ <3, the second moment of the degree distribution <k2> diverges 

as N tends to infinity limit. This in turn forces fc to converge to 1, implying that in order to fragment a 

scale free network of infinite size, one must randomly remove all of its nodes (Barabasi, 2015).  

Indeed the enhanced robustness of SCNs with respect to random node removals derives from the hub 

structure of these networks. Random node removals, by definition, affect nodes irrespective of their 

degrees. Since scale-free networks with 	g >0 comprise mainly less connected nodes and a few hubs, 

the chance of randomly removing a hub is almost negligible. Therefore, random node removals are 

likely to affect mainly the less connected nodes, which although numerous, play a limited role in 

maintaining a network’s integrity (Barabasi, 2015). 

3.3.2 Node level metrics 

Since node level metrics themselves provide information about individual nodes rather than networks 

as a whole, here we choose to primarily study some correlations between them. In particular, we studied 

the correlation coefficients between node level centrality metrics (namely, degree centrality (DC), 

betweenness centrality (BWC), closeness centrality (CC) and eigenvector centrality (EVC)) and (1) 

stage cost and (2) stage time for each node. The results of this assessment are presented in Figure 2 and 

3 below.  
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Figure 2: Correlation between stage cost and; (a) degree centrality, (b) betweenness centrality, (c) closeness 

centrality, and (4) eigenvector centrality, for each SCN 

 

 

Figure 3: Correlation between stage time and; (a) degree centrality, (b) betweenness centrality, (c) closeness 

centrality, and (4) eigenvector centrality, for each SCN 

 

These figures provide important insights and demonstrate how, from a SCN point of view, the position 

of an individual firm with respect to the others, can influence both strategy and behavior (Borgatti and 

Li, 2009). In terms of stage cost, we found that the correlation between stage cost and centrality metrics 

is mostly positive or neutral for most firms.  In particular, some computer, and freight and cargo 

networks, the correlation was strongly positive, implying that the more centrally placed the firm is, the 
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higher cost in contributes to the SCN. In most other SCNs the correlation was in the indifferent band, 

and no SCN displayed a strongly negative correlation. No qualitative difference was observed between 

different centrality metrics used overall, though in terms of individual SCNs, some centrality metrics 

returned stronger correlations than others. 

In terms of stage time however, the observations were slightly different. While for some firms 

stage-time was positively correlated with centrality metrics, for others it appeared that it was negatively 

correlated with centrality metrics. For example, one of the computer SCNs (SCN 21) displays strong 

negative correlation between stage time and centrality metrics, except closeness centrality. 

Interestingly, SCNs also seem in general more sensitive to the centrality metric used, when stage time 

is considered. Therefore, we may conclude that there is no overall tendency in terms of correlation 

between stage time and node centrality, and the context and characteristics of individual SCNs 

determine whether more centrally located firms are likely to have relatively longer or shorter stage 

times. 

Figure 4 and 5 represent the same set of results in a different representation, where sector based 

differences are highlighted. From these figures, we could see that cargo sector displays the most positive 

correlation between sage time and centrality, while aircraft, electrical, computer and farm equipment 

sectors display slightly negative correlations between stage time and centrality. Of course, each entry 

in Fig 4 and 5 was obtained by averaging correlation values for all networks in a particular sector, which 

has limited meaning. One network with high positive or negative correlation might cause an entire 

sector to be misrepresented, where in reality most other SCNs might be insensitive to node centrality. 

Nevertheless, taken together with figures 2 and 3, figures 4 and 5 represent a useful insight. Another 

interesting observation is that where there is negative correlation observed, closeness centrality often 

bucks the trend. That is, even when some SCNs have negative correlation between stage time and all 

other centrality measures, they have slightly positive correlation between closeness centrality and stage 

time. Therefore, it appears that in some sectors, like aircraft parts and computers, firms with relatively 

high stage time a peripherally placed in terms of all other centrality measures but centrally placed in 

terms of closeness centrality. This is a catalyst for further research, but beyond the scope of this broad 

preliminary study.  



A network science approach to analysing manufacturing sector supply chain networks: Insights 

on topology 

Perera, Bell, Piraveenan and Bliemer 

 

23 
 

 

Figure 4: Average correlation levels of stage cost with node level centrality metrics for SCNs in each sector 

 

 

Figure 5: Average correlation levels of stage time with node level centrality metrics for SCNs in each sector 
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4. Discussion of results 

The results that we have obtained have some important implications, which we discuss below. 

4.1 What are the similarities and/or differences between the real world SCNs analysed in 

this study and other real world instances of complex networks? 

It is interesting to note that although most real world scale free networks tend to have γ between 2 and 

5, all the SCNs analysed in this study possess γ < 2. Similar findings were also reported by Orenstein 

(2016), where SCNs in food industry (General Mills, Kellogg’s and Mondelez) and in retail markets 

(Nike, Lowes and Home Depot), included γ between 1.2-1.8.  Although there are many other instances 

of real world networks which have γ<2, such cases have received much less attention in the network 

science literature (Seyed-Allaei et al., 2006).  

Table 5 illustrates some instances of real world networks and their respective degree exponents, 

as reported by various studies.   

 

Table 5: Real world instances of complex networks and their respective degree exponents 

Network Degree Exponent γ Reference 

Power-grid 4 Chung et al (2003) 

Citations 3.0 Redner (1998) 

WWW 2.7/2.1 Broder et al (2000) 

Internet 2.5 Medina et al (2000) 

Actors 2.3 Watts and Strogatz (1998) 

Phone calls 2.1-2.3 Chung et al (2003) 

E-mails 1.8 Ebel et al (2002) 

Yeast Protein-Protein Net 1.5, 1.6, 1.7, 2.5  

Chung et al (2003) E.coli Metabolic Net 1.7, 2.2 

Yeast Gene Expression Net 1.4-1.7 

Gene functional interactions 1.6 

Dependency of software packages 1.6/1.4 Newman (2003) 

Word web 1.5 i Cancho and Solé (2001)  

Gnutella 1.4 Annexstein et al (2001) 

 

* In the case of directed networks, the exponents is shown in the form of in/out 
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It is evident from the information presented in the above table, that most biological networks include γ 

<2. Indeed, this observation was first made by Aiello et al. (2000). In addition, some other virtual 

networks, such as emails, software packages and Gnutella also indicate γ<2.  

Seyed-Allaei et al. (2006) reproduce the properties of networks with γ<2 by a simple prototype 

model. They note that the key feature of such networks is that their average degree grow linearly with 

the system size (see Eq. 1), which implies that link creation between nodes is inexpensive. The above 

is certainly true for almost all the networks with γ<2, outlined in the table above. For example, the nodes 

in Gnutella networks represent computers and the links are simply the logical connections between two 

computers which is essentially costless to create.  

Seyed-Allaei et al. (2006) also notes that the model which generates networks with γ<2, also 

involves global interaction of nodes which require some sort of a global information exchange 

mechanism that is not part of the network itself. Using software package networks as an example, the 

authors stipulate that information exchanges in such a scenario occurs among programmers, where these 

programmers are responsible for the evolution of the system although they do not exchange information 

only through that system. Finally, the authors postulate that global interaction and information diffusion 

plays an essential role in establishing dense collaboration networks. 

Indeed the above argument also holds in the case of SCNs – where contract establishment cost 

between firms, which are already within the SCN is almost negligible compared to involving a new 

firm into the system. Also, SCNs include global interaction of the firms involved – in terms of delivering 

the right amount of product at the right time to the right location. In fact, this global information 

exchange mechanism is not facilitated by the SCN itself – rather it relies upon other networks such as 

email, telephone and the internet. 

Recent momentous advancements in network science has encouraged researchers to move 

beyond understanding and quantifying towards controlling complex networks. For instance, Nacher and 

Akutsu (2012), and Molnar et al. (2013) have examined the dynamical control of a network by 

considering a model of reduced complexity, where a minimum set of possible nodes dominates the 

whole system, called the minimum dominating set (MDS). An important finding on this front suggests 

that only a few nodes are needed to control the entire network if the power law degree exponent of the 

network is less than 2, whereas many nodes are required if it is larger than 2. When γ < 2, the number 

of connections in the network increase faster than the number of nodes, resulting in a highly 

heterogeneous network connectivity. Such networks tend to be dense and centralised with small average 

shortest path lengths, and therefore are inherently easy to dominate.  

Given the vital role of coordination and control in SCNs, particularly due to largely 

unpredictable market demand conditions, it could be that SCNs self-organise themselves towards hub 
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and spoke topologies, where γ < 2, so as to minimize the size of the MDS. Indeed, being able to control 

the overall network through control of a handful of firms can have remarkable advantages in an 

economic context.  

So far, the concept of MDS has been applied to the design and control of various network 

systems such as mobile ad hoc networks, transportation routing and computer communication networks 

(Hanson et al., 2016). Given these advancements, it is tempting to envision the future SCNs being easily 

synchronized and controlled through a very few firms, owing to various applications of the MDS 

concept.  

4.2 The viability of the Barabasi - Albert (BA) and similar as growth models for supply 

chain networks 

Past studies of supply chain networks have relied upon BA model for benchmarking purposes 

(Thadakamalia et al., 2004, Zhao et al., 2011(a)). However, based on the results presented in this paper, 

it can understood that the BA model cannot sufficiently represent the growth mechanisms underlying 

SCNs, due to the following reasons: 

1) The BA model or any generalised preferential attachment mechanisms generate networks with 

γ between 2 and 3. The SCNs presented in this study consistently display γ <2. As explained 

before, the threshold of γ = 2 has important characteristics which influence the evolution 

dynamics of networks. 

2) The BA model cannot generate networks with communities which are prevalent across all 

SCNs presented in this paper.  

3) The predominantly dis-assortative mixing as observed in the SCNs considered in this paper, is 

not a feature of networks generated by the BA model. 

 

While SCNs in real world may not evolve through a single mechanism, it is possible to infer general 

growth and design principles from the global properties of existing SCNs. While most real world 

networks have been convincingly modelled with preferential attachment mechanism (Barabasi et al., 

1999, Albert et al., 1999), it cannot explain exponents of power-law graphs less than 2.0.  For biological 

networks, Chung et al. (2003) has demonstrated that partial duplication can produce power-law graphs 

with exponents less than 2, consistent with data on biological networks.  However, such a growth 

mechanism in a SCN context, is yet to be comprehensively formulated, which needs to incorporate 

features such as dis-assortativenes and high modularity. Our study has highlighted the necessity of such 

a mechanism. 
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5. Conclusions and future directions 

This study has presented an investigation of 26 manufacturing sector SCNs using network 

theoretic measurements.  We have found that manufacturing SCNs are generally scale free with scale-

free exponent <2. Also, these SCNs tend to demonstrate high modularity and disassortative mixing. We 

have also shown that most SCNs show weak correlation between stage cost and centrality, indicating 

that the more central the firm is in the SCN, the higher its stage cost contribution. Whereas, in terms of 

stage time, both positive and negative correlations with node centrality was observed, depending on the 

network under scrutiny. 

Our work for the first time attempted to generalize the topological features of a large number 

of SCNs from a particular sector. It is notable that since we only considered relatively large networks, 

finite size effects are minimal. While some topological features were indeed network specific, the 

topological similarities between the networks was striking. Our work could be used as a bench mark for 

developing generalized growth mechanisms for supply chain networks in future. 
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