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1. INTRODUCTION

A knowledge of the length of time that a household keeps an automobile, of the timing of a

change in the fleet, of the type of ensuing transaction (e.g. replace a used vehicle with a new

vehicle, replace a used vehicle with a used vehicle), and of the influences on the time frame

and transaction type are important issues in forecasting and hence transport planning. They

are of interest to many planning agencies. For example, government authorities need to

identify the time it takes for a household to dispose of older less fuel efficient vehicles under

various pricing and structural contexts, since this lag is important in the development of

forecasts of the impact of policies designed to meet emission reduction targets. An

understanding of the reasoning behind the turnover or lack of turnover of vehicles in

households is also important to automobile manufacturers; it provides some guidance on

how the demand for new vehicles is changing over time and what the likely influences on

the timing and speed of change might be. Scrappage rates of vehicle classes can be

developed out of this framework.

The growing availability of transport panel data has expanded the opportunities to develop

models to identify the temporal relationships (i.e. timing and duration) between automobile

acquisitions and disposals, and the influences on the timing and duration of automobile

ownership. Transport panels are typically of a limited life with repeat waves every 6 or 12

months over 4 to 6 years (see Raimond and Hensher 1993 for a review, also Axhausen

1992, Golob and Golob 1989, Murakami and Watterson 1990, and van Wissen and Meurs

1989). Some panels identify the precise date of key events (e.g. vehicle replacement),

enabling the richness of the timing and duration of events to be identified. The Sydney

automobile panel offers this richness. In each of the four waves of the Sydney automobile

panel (Hensher et al. 1992), spaced 12 months apart, details were sought on the annual

profile of the automobile fleet composition and utilisation, and the socioeconomic

description of each household member. Data on a selected set of items however were

obtained over a longer period using a retrospective recall strategy in order to identify the

initial conditions for the panel. This data is sufficiently rich to allow us to develop a 12 year

panel (1974-1985) on a limited number of socioeconomic and automobile variables.

The aim of this paper is to utilise the restricted 12 year panel to investigate alternative ways

of modelling the automobile transactions decision for a sample of 200 households in

Sydney. Three states or a maximum possible 9 changes of state (i.e. transactions or

transitions) are investigated. The states are no change (S1), replace a used vehicle with a
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used vehicle (S2), and replace a used vehicle with a new vehicle (S3). Other feasible states

infrequently observed in the data set (and excluded herein) are: dispose of a vehicle (S4),

acquire a used vehicle (S5) and acquire a new vehicle (S6). The modelling of movement

from multiple origin states to multiple destination states and the desire to preserve the

distinction between the OD transitions, as well as permitting repeated presence in each

transition type, adds considerable complexity although significant realism over the majority

of transportation applications of the tools outlined in this paper.

The paper is organised as follows. The next section provides an overview of methods

suitable for modelling event histories, followed by a discussion of the context in which the

models will be implemented. A set of estimated models are then reported and interpreted,

followed by a number of main conclusions.

2. AN EVENT HISTORY APPROACH TO STUDYING THE TIMING AND
DURATION OF CHANGE

Real choice opportunities and ensuing decisions are inherently dynamic. When we observe a

choice there is a history of events that have preceded the current outcome. By deduction,

the role of the forces that have shaped the timing and duration of an event history are likely

to have an important role to play in the continuing evolution of decision making. If the

analyst can ‘capture’ the structure of an event history through some formal quantitative

procedures, the ability to predict the timing of future change and hence the amount of time

spent in a particular event state is likely to be substantially enhanced. Given the inherent

uncertainties in any assessment of future event paths, all outcomes are probabilistic.

An event history can be profiled in a timeline (Figure 1). In principle the time dimension can

be graduated to any level of refinement; in practice however the recording of events is often

truncated to a number of finite discrete time periods. When the discretisation is sufficiently

fine such that a ratio-scale treatment is feasible in the time dimension, a continuous time

specification of an event history model is possible. This is essential if we are to study the

duration of events.

Event histories can be characterised as a time-sequenced set of events. For each unit of

analysis, event histories provide information about the exact duration until a state transition

as well as the occurrence and sequence of events. For example, such data can provide

information on the amount of time a household held a particular vehicle, the exact dates of

acquisition and disposal, and the nature of the transaction at the time of disposal (eg.
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replacement or disposal only). This information can be identified for each vehicle in a given

period of time.

A duration model in its statistical form is referred to as a hazard function. Formally, the

hazard function can be expressed in terms of a cumulative distribution function, F(t), and a

corresponding density function, f(t). The cumulative distribution is written as,

F(t) = Prob[T < t] (1)

where Prob denotes the probability, T is a random continuous time variable, and t is some

specified time. Equation (1) for example, identifies the probability of replacing a vehicle

before some transpired time (assuming no left censoring). The corresponding density

function is

f(t) = dF(t)/dt (2)

and the hazard function is,

h(t) = f(t)/[1 - F(t)] (3)

where h(t) is the conditional probability that an event will occur between time t and t+dt

given that the event has not occurred up to time t:

Prob (To≥t+1| To ≥ t) (4)

Information relating to duration dependence, as derived from the first derivative of the

hazard function with respect to time (ie. its slope) provides insights into the duration

process being modelled. Plotting the hazard function against time gives important empirical

information for the parameterisation of the baseline hazard (Hensher and Mannering 1994).

The probability of ending a duration or spell in a particular state may be dependent on the

length of the duration. There may also be important determinants of duration (eg.

socioeconomic characteristics) that should be included in the modelling approach. These

covariates are included in hazard-based models using two alternative methods; proportional

hazards and accelerated lifetime.
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Proportional hazards models operate on the assumption that covariates act multiplicatively

on some underlying or baseline hazard function. The proportionality is due to the

decomposition of the hazard rate into one term dependent upon time, and another

dependent only on the covariates (Prentice and Gloeckler 1978). To accommodate time

varying covariates we assume that they are well approximated by their mean over the

interval. This gives a clue to the interval size given the particular application (Hensher and

Raimond 1992). A relatively general form of the hazard is specified as:

ho(t) = λb(t) exp (zo(t)β) (5)

where λb(t) is an arbitrary baseline hazard and exp (zo(t)β) is the parametric component

including time varying covariates associated with an origin state o. A discrete set of time

intervals are observed. The conditional probability rule in (4) translates into the following

function, given (5):
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Prob (To≥t+1| To ≥ t) = exp ( -exp (γ (t) + zo(t) β)) (6)

where 
 γ (t) =  1n ( λb(u)du)

t

t+1

. u is any function in terms of time. The model allows for a
continuous ‘failure’ time To and (right) censoring co, but with observation taking place only

at to, t = 0,1,2,..., J-1, or in the final interval (J, ∞). If the baseline hazard is assumed to be

well approximated by its mean over the time interval, it is completely captured by the single

term γ (t). Left censoring may exist if an event was well under way when the panel

commenced. Right censoring exists since the endpoint of the last episode of an individual

cannot be observed. We allow for right censoring in model estimation.

An alternative approach for incorporating covariates in hazard-based models is the

accelerated lifetime model. This model assumes that the covariates rescale time directly (i.e.

accelerate time). Assuming that the covariates act in the form exp(βZ), as was the case for

the proportional hazards model, the accelerated lifetime model can be written in terms of

hazard functions as:

h(t|Z) = hb[texp(βZ)]exp(βZ) (7)

Accelerated lifetime models, along with proportional hazards (PH) models, enjoy wide-

spread use (see Kalbfleisch and Prentice, 1980). The selection of accelerated lifetime or

proportional hazards models is often determined on the basis of distributional assumptions

(i.e. the assumed distribution of durations - Weibull, normal, gamma etc.).  We concentrate

on the PH model for the rest of the paper.

2.1 Competing Risks and Multispell Models

The dominating emphasis in empirical analysis of event history data (particularly in

transportation, but also in economics (eg. Lancaster 1979) and marketing (eg. DuWors and

Haines, 1990)) involves the study of a single initial or origin state, a single final or

destination state, and a single period of time between successive events, often referred to as

a single episode or spell. In the marketing literature it is called a non-repeated event. An

example of the singular dimensionality would be studying the time before a traveller

switches from a free public route to a tolled private route (Hensher and Raimond 1992).

Multistate (or competing risks) and multispell situations are common in transportation, but

they impose substantial complexity on the estimation of models. The combination of

complexity and the general absence of packaged software for multistate and multispell

models has limited applications, despite the realism. LIMDEP (Econometric Software,
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1993), for example, currently only handles a single initial state, a single destination state and

a single spell. Hamed and Mannering (1992) and Paselk and Mannering (1992) are two

important transport applications using a single state single spell framework.

The application of interest herein involves three origin states (no change - O1, replace used

with used vehicle - O2, and  replace used with new vehicle - O3) and three destination

states (the same three states), to give 9 possible OD states or transitions. In reality the only

5 transitions likely to be observed are O1-D1, O1-D2, O1-D3, O2-D1 and O3-D1.

Furthermore we want to preserve the distinction between each pair of states and allow for

repeated transitions from one state to another or repeated occurrence of events.

In the past however, many researchers have assumed that a competing risks model with n

possible outcomes, had a likelihood function that could be separated into n distinct pieces.

Under such an assumption, estimation could proceed by estimating separate hazard models

for each of n possible outcomes.  Gilbert (1992) introduced a competing risks specification

and separate estimation for three transitions in a study of automobile ownership duration.

Separately estimating competing risks hazards inherently assumes independence among

risks. This is frequently done (e.g., Katz, 1986 and Gilbert, 1992) but may not always be

appropriate because it ignores potentially important interdependence among risks. Treating

competing risks independently is analogous to assuming recursivity in more traditional

simultaneous equations problems, which can be solved using three-stage-least squares and

similar methods (Hensher and Mannering 1994).

Some researchers also regard the various spells as being analysed as independent events,

and apply the methods developed to handle single spells. This is problematic if the

populations are heterogenous which would result in a mixing that may lead to a time

dependency and incorrect inferences. Since transport applications are characterised by high

levels of interdependency between variables, the homogeneity assumption is quite

improbable. Incorporating observed and unobserved heterogeneity is necessary, or at least

should be tested. Segmentation by socioeconomic characteristics is partially useful - it is

however unable to handle the sources of unobserved heterogeneity (and its probable

correlation with duration dependence). The importance of introducing time varying

covariates and unobserved heterogeneity into a proportional hazards (PH) model is

appreciated when it is understood that the PH model, in the presence of time invariant

covariates, assumes that the ratio of the hazard for any two sampled members of a

population should be constant throughout the observation (i.e. it is independent of time).

Accounting for interdependence among competing risks is not an easy task, but has been

undertaken by Diamond and Hausman (1984), Han and Hausman (1990), Sueyoshi (1992)
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and Meyer (1986,1990). Diamond and Hausman develop a model with strict parametric

assumptions on the nature of interdependence. Han and Hausman extend this work by

providing a flexible parametric form of interdependence but with time constant covariates,

and Meyer (1986) and Sueyoshi (1992) extended the Han-Hausman model to the time

varying covariates case. The approach allows one to statistically test whether the more

common assumption of independence among competing risks is valid. Meyer (1986)

combined non parametric distributions for both components of the hazard function.

Two important issues in the study of event histories are (i) ways of capturing the

unobserved heterogeneity in the sampled population (not investigated by Gilbert (1992))

and (ii) the dependency of duration and states over time. These important phenomenon

accommodate elements of the dynamics of event histories which influence the nature of

transitions. They can be introduced in single spell single state models as well as the more

complex multistate multispell models. To introduce these ideas, it is useful to define the

information requirements of an event history, and then introduce the essential formulae

required to parameterise a competing risks multispell duration model as extensions of

equations (5) - (7). Hensher and Mannering (1994) have reviewed the broader literature on

duration modelling and applications in transportation, but limited the discussion to single

state and single spell methods.

An event history of a sampled household over some observed time period requires

information on (i) the initial state (ii) the number of spells in the observation period (iii) the

points in time at which some state transition has occurred or a specific event has taken place

(iv) state occupancies corresponding to the above points in time (v) an indicator that

identifies whether a particular spell is censored and (vi) the  set of covariates, measured at

the beginning of each spell. Covariates take on three forms: time invariant (e.g. sex), time

dependent (e.g. age), and time varying (e.g. lifecycle stage).

If in estimating the hazard rate one aggregates the unobserved differences across the

sampled population, an apparent duration dependency occurs. This is potentially spurious

duration dependence. At the level of the hazard rate to be analysed it is no longer possible

to differentiate whether the hazard rate falls with increasing duration for each household or

if this is simply a methodological artefact due to neglected differences between households.

While some, hopefully much, of the differences can be accounted for by a set of observed

time invariant and/or time varying covariates, there is likely to remain a potentially

significant source of unobserved heterogeneity which needs special treatment.
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Heterogeneity in general is handled by a mixing distribution over separate (but jointly

estimated) hazard functions. A popular way of incorporating heterogeneity is as a random

multiplicative factor that shifts the baseline hazard:

ho(t) = exp(θoλb(t)) exp (zo(t)β) (8)

where θo is a random variable associated with initial state o with a distribution defined by

the analyst, representing the distribution of the unobserved heterogeneity within the

population of sampled households. The random variable must be limited to positive values

(given that the hazard rate is not negative). If we set E(θ) = 1, then on average one obtains
λb(t). Parametric specifications have been investigated, especially the gamma, normal, and

logistic mixing distributions. Heckman and Singer (1984) proposed a non parametric finite

mixture model to accommodate the highly sensitive nature of the parameter estimates

associated with the covariates to alternative distributional assumptions. A non parametric

specification for the heterogeneity profile (or finite mixture model) is defined by a set of

support values (typically up to 10), which are estimated jointly with the probability mass for

each point. Unlike the parametric specification of θo, a fraction of the population can have a

zero hazard rate. There is considerable debate in the literature as to whether the baseline

hazard or the mixture distribution should be non parametric. Trussell and Richards (1985)

for example, suggest that a non parametric baseline and a parametric mixture distribution

are equally plausible. This topic is ripe for extensive empirical inquiry. We investigate the

implications of parametric and non-parametric specifications of unobserved heterogeneity in

our empirical application. We impose the assumption that there is no omitted variable bias,

due to the correlation of any observed covariates and unobserved heterogeneity. The

possibility of dependency could be tested by specifying θo as a function of the covariates.

This greatly complicates the model, including the possibility of identification problems.

The hazard model for a competing risk model can be defined as:

h (tod|z,θ) = exp {δodb + zo(tod + τ) βod+ δodkΣ fk(tod) + codθ}    (9)

and 
fk(t) =Σ

k=1

K

(tod
λk  - 1)/λk; λk = µodk

(10)
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where δodb is the baseline hazard for a multi-state model, zo(tod) defines time-varying

covariates, zoτ defines time dependent covariates, and fk(tod) is defined by equation (10) as

a Box-Cox transformation over time to capture general duration dependence. Setting K = 1

and hence λ1 = 0 gives a Weibull distribution; setting K= 1 and λ1 = 1 gives a Gompertz

distribution. Other functional forms are possible. For example, setting K = 2  with λ1 = 1

and λ2 = 2 produces a quadratic duration dependence. Lillard (1993) chose a piecewise

linear spline to represent the dependence of hazards on calendar time.  codθ is a weighted

unobserved heterogeneity index, where θ is common across all transitions o to d, and the

weight, cod conditions the unobservable scalar to have a differentiating role in different

transitions or different spells. Equation (9) is a very general specification of a hazard

function allowing for time varying covariates, unobserved heterogeneity and duration

dependence. Setting βod = cod = fk (t) = 0 gives an exponential form for the hazard function.

Parametric or non-parametric assumptions can be imposed on θ as discussed above.

Equation (9) is the kernel of the specification of a multistate multispell model with

allowance for time varying covariates, unobserved heterogeneity and duration dependence.

The challenge now is to estimate a number of hazard functions under the most interesting

alternative specifications. In the context of the household’s timing and duration of

automobile transactions, four empirical model specifications are investigated:

M1: parametric baseline hazard, time varying covariates, no unobserved heterogeneity,

duration dependence

M2: parametric baseline hazard, time varying covariates, unobserved heterogeneity,

duration dependence

M3: parametric baseline hazard, no time varying covariates, no unobserved heterogeneity,

duration dependence

M4: parametric baseline hazard, no time varying covariates, unobserved heterogeneity,

duration dependence

In models M2 and M4 we investigate one parametric distribution - log normal - and a non-

parametric finite mixture model for unobserved heterogeneity. Duration dependence is

evaluated under Weibull, and Gompertz distributions.

3. AN EMPIRICAL STUDY OF AUTOMOBILE TRANSACTIONS

A sample of 200 households from the Sydney automobile panel (Hensher et al. 1992) who

provided complete information over a 12 year period on a limited number of socioeconomic

and vehicle characteristics (Table 1) were used in the empirical application. The data for the
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years 1981-1984 were obtained from an annual reinterview; the other data (1980-1974)

were collected retrospectively at the conclusion of the panel. Given the problems associated

with retrospective data, the number of items of data obtained were somewhat limited, but

adequate for the current purpose. The sample sizes for each transition are: 1 to 2 = 197, 1

to 3 = 137, 2 to 1 = 212, 3 to 1 = 140, 1 to 1 = 163, 2 to 2 = 23, 3 to 3 = 14, 2 to 3 = 0,

and 3 to 2 = 0. This gives 886 spells.

The importance of understanding the timing and duration of automobile transactions is well

documented (eg. Kitamura 1987, 1989, Smith et al. 1991). Despite this recognition, the

empirical efforts are few. The only substantive study is by Gilbert (1992), although the

interest in automobile transactions modelling is growing. Gilbert treated each transition as

independent events and ignored unobserved heterogeneity. The current study is the only

known application of competing risk multispell models in transportation in which the

transitions are estimated jointly with allowanc for unobserved heterogeneity. The purpose is

to identify the influences on the probability that a sampled household will undertake a

particular type of transaction over the period 1974-85 given the observation of one of three

states in each time interval. The three states are no change, replace a used vehicle with a

used vehicle, and replace a used vehicle with a new vehicle. Out of 2400 observations

across 200 households and 12 years, we have 2011 (83.8%) states of no change, 235

(9.8%) replacements with a used vehicle and 154 (6.4%) replacements with a new vehicle.

In this paper we limit the empirical assessment to joint estimation of transitions 1 to 2 and 1

to 3. The average duration of the transition from no change to replace with a used vehicle is

3.90 years; the equivalent mean for a replacement with a new vehicle is 4.41 years.

No. Acronym Definition Mean (sd)
1 END End of case identifier (1,0)
2 YR Year (74,75,76,....,85)
3 STATE State (1 = no change, 2 = replace used with used vehicle,

3 = replaced used with new vehicle)
4 HSIZE Household size ( 2.96 (1.44)
5 NHINC Number of Income earners in household 1.67 (0.64)
6 LIFA lifecycle A (1,0) young adults (<35), no children 0.053
7 LIFBCD lifecycle BCD (1,0) two heads, children up to 12 years old 0.196
8 LIFEF lifecycle EF (1,0) one or two heads, children over 16 years 0.191
9 LIFG lifecycle G (1,0) older adults, no children 0.228
10 LIFH lifecycle H (1,0) retired persons over 65 years old 0.226
11 LIFIJ lifecycle IJ (1,0) single head, 0.107
12 RGHH 1 or more vehs. are private registered (1,0) 0.705
13 REGHS 1 or more vehs are household business registered (1,0) 0.171
14 REGOT 1 or more vehs are other company registered (1,0) 0.127
15 LOCAL Prime county of manufacture (1 = local, 0 = other) 0.491

12 years of data for a sample of Sydney (Australia)
households, 2400 lines of data or 200 households
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Table 1. The Data Set Used in Model Estimation

There are 5 time varying covariates -  household size (HSIZE), number of income earners

(NHINC), household stage in the lifecycle (LIF..), number of vehicles in each registration

category (REG..) and the prime country of vehicle manufacture (LOCAL). Within the limits

of the data a number of broad issues are worthy of investigation. In  particular we want to

evaluate the role that changing household life cycle and vehicle registration status plays in

the households automobile replacement decision. To what extent are households loyal to

the used car market or are willing to trade up to new vehicles? Automobile manufacturers

are particularly interested in this question as might be proponents of alternative fuelled

vehicles in the early formative years. Since there is almost certainly likely to be some

important missing covariates, allowance for unobserved heterogeneity will be important to

the results.

The set of models estimated under different assumptions on the form of duration

dependence and unobserved heterogeneity for a given set of significant time varying

covariates are summarised in Table 3. The set of possible model forms is extensive. We

have limited Table 3 to a sufficiently broad range of situations to illustrate the diversity of

results. The Weibull and Gompertz distributions provide a good array of alternative

interpretations of behavioural response over time (see Hensher and Mannering 1994 for

further details) for duration dependence. Under a Box-Cox specification of duration

dependence (equation 10), we set K = 1 and lambda  equal to 0 and 1 respectively for

Weibull and Gompertz distributions.

The Weibull distribution is a generalised form of the exponential distribution. The Weibull

distribution imposes the monotonicity restriction on the hazard. We are able to identify

whether loyalty to the used car market is time-dependent or time-independent. The

Gompertz distribution, derived from the extreme-value distribution, is truncated at zero so

that no negative values are possible. Unobserved heterogeneity is evaluated as a parametric

lognormal distribution and as a non-parametric mixture specification. We have assumed 10

intervals on each side of the mean to approximate the lognormal distribution.Since the

distribution is asymmetric, the intervals will be of different lengths on each side of the mean.

A non-parametric cumulative density function with 3 support points on the unit interval is

specified with all of the support points and cumulative probabilities fixed. Allowing free

estimation of a range of support points, except the first and last points and the last

cumulative probability, gave spurious results. Further investigation is warranted.

3.1 Discussion of Illustrative Results



Duration Modelling with Competing  Risks and Multiple Spells
David Hensher

14

The hazard of replacing a vehicle with a used vehicle (transition 1 to 2) or with a new

vehicle (transition 1 to 3) varies quite noticeably between the transition types and the

distributional assumptions on duration dependence and unobserved heterogeneity.

Beginning with no unobserved heterogeneity, the shape parameter (gamma) for duration

dependence for both distributions is significantly positive in all models across both

transitions suggesting that for both distributions the hazard is an increasing function of time.

When we control for unobserved heterogeneity the shape parameter has a stronger influence

on the hazard, increasing the expected time in a state, ceteris paribus.

Adding in a set of time-varying covariates to remove the role of life cycle stage, number of

income-earning household members, and the registration status of the household vehicles (a

proxy for financial obligation in vehicle transactions) has very little impact on the scale (i.e.

constant) and shape parameters. The exception appears to be for the model with a Weibull

duration dependence and non-parametric unobserved heterogeneity. Here we find that the

scale parameter changes quite substantially for both transitions suggesting some influence of

time varying covariates. A closer examination however highlights the change in the middle

support point which was statistically significant in the full model and insignificant in the

absence of the covariates. The reason for this is unclear. One might postulate that the non-

parametric distribution in the presence of the covariates is ‘about right’ but completely

unsuitable when it has to carry more information.

The only three covariates approaching acceptable statistical significance are REGHS

(household has at least one household-business registered vehicle) in transition 1 to 2 , and

LIFBCD (households in lifecycle stage of two heads and children up to 12 years old) and

LIFG (households with older adults and no children) in transition 1 to 3 for Gompertz

duration dependence and non-parametric unobserved heterogeneity.  The negative sign on

REGHS suggests that the hazard of replacement with a used vehicle decreases, ceteris

paribus, where households have access to a household-business registered vehicle relative to

a privately registered vehicle. The life cycle effects are both positive implying that a

household in either of these life cycle stages, ceteris paribus, has a higher hazard of

replacement with a new vehicle.

A useful way of comparing the alternative specifications is to tabulate the hazard as a

function of time. Given the statistical insignificance of the covariates we limit this to the

models containing the scale, duration shape and unobserved heterogeneity parameters

(Table 2). The predicted hazards in parenthesis relate to parametric unobserved

heterogeneity. The Weibull and Gompertz specifications are monotonically increasing in

duration implying that the longer a household goes without exiting a duration, the more

likely it is to exit soon. The effect is stronger for transition 1 to 3 than transition 1 to 2. The



Duration Modelling with Competing  Risks and Multiple Spells
David Hensher

15

turnover is greater for used vehicles than new vehicles. For transition 1 to 2, the hazard is

higher for the Weibull distribution for 2 to 6 years with the Gompertz producing a greater

hazard for 7 to 10 years. For transition 1 to 3 the Gompetz has the  higher hazard up to 2

years and after 7 years with the Weibull higher in the middle time durations. When

allowance is made for unobserved heterogeneity we find some re-ordering of relativities and

some significant adjustments in the hazard for transition 1 to 3: allowance for unobserved

heterogeneity reduces the hazard with the gap increasing as duration increases. The

difference for transition 1 to 2 is not noticeable at all. This leads one to conclude that failure

to control for unobserved heterogeneity tends to lead to an over-estimate of the hazard for

transitions involving replacement of a vehicle with a used vehicle, but its has no effect in the

new car market.
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Time (years) DD=Weibull
1 to 2

DD=Weibull
1 to 3

DD=Gompertz
1 to 2

DD=Gompertz
1 to 3

1 0.038 (0.037) 0.012 (0.009) 0.052 (0.051) 0.028 (0.023)
2 0.077 (0.076) 0.036 (0.029) 0.070 (0.079) 0.041 (0.039)
3 0.116 (0.115) 0.071 (0.056) 0.094 (0.102) 0.059 (0.052)
4 0.156 (0.155) 0.114 (0.090) 0.126 (0.129) 0.087 (0.072)
5 0.196 (0.195) 0.165 (0.130) 0.170 (0.173) 0.127 (0.113)
6 0.237 (0.235) 0.223 (0.175) 0.229 (0.230) 0.185 (0.162)
7 0.277 (0.275) 0.287 (0.226) 0.309 (0.311) 0.270 (0.235)
8 0.318 (0.315) 0.358 (0.282) 0.416 (0.417) 0.395 (0.346)
9 0.358 (0.355) 0.435 (0.343) 0.560 (0.558) 0.577 (0.523)

10 0.399 (0.396) 0.518 (0.408) 0.755 (0.753) 0.843 (0.721)

Table 2. Estimated Hazard Functions

Variables DD=Weibull DD=Weibull DD=Gompertz DD=Gompertz
 1 to 2  1 to 3  1 to 2  1 to 3

UH=0 constant -3.139 (-9.33) -4.301 (-10.4) -2.820 (-8.65) -3.424 (-9.71)
gamma  1.069 (9.22)  1.723 ( 8.2)  0.314 (9.50)  0.399 (7.94)
lambda  0.00  0.00  1.00  1.00
nhinc -0.117 (-.77) -0.109 (-.71) -0.105 (-.72) -0.082 (-.53)
lifa  0.624 (1.46) -0.021 (-.04)  0.598 (1.31) -0.083 (-.13)
lifbcd  0.125 (0.45)  0.128 (0.46)  0.083 (0.30)  0.098 (0.35)
lifef -0.045 (-.17) -0.373 (-1.3) -0.085 (-.33) -0.038 (-1.31)
lifg  0.112 (0.44)  0.215 (0.75)  0.095 (0.37)  0.191 (0.67)
lifij  0.101 (0.33) -0.497 (-1.37)  0.103 (0.36) -0.483 (-1.34)
regot -0.195 (-.67) -0.011 (-.03) -0.126 (-.42)  0.052 (0.16)
reghs -0.392 (-1.7) -0.129 (-.56) -0.414 (-1.80) -0.153 (-.64)
LL (0) -1029.30 -1057.74
LL (C) -1021.46 -1052.30

UH=0 constant -3.278 (-18.5) -4.462 (-13.95) -2.963 (19.09) -3.582 (-16.04)
gamma  1.025 (9.49)  1.652 (8.52)  0.298 (9.54)  0.379 (8.27)
lambda 0.00  0.00  1.00  1.00
LL (0) -1069.32 -1061.8
LL (C) -1030.86 -1061.3

UH
=lognormal

constant -3.03 (-7.31) -4.086 (-8.47) -2.878 (-2.46) -3.535 (-2.51)

gamma  1.112 (8.82) 1.947 (8.10)  0.325 (7.24)  0.403 (5.40)
lambda  0.00 0.00 1.00 1.00
nhinc -0.127 (-.81) -0.150 (-.85) -0.117 (-.78) -0.085 (-.53)
lifa  0.638 (1.42) -0.008 (-.01)  0.609 (1.32) -0.060 (-.09)
lifbcd  0.156 (0.55)  0.214 (0.70)  0.085 (0.31)  0.103 (0.36)
lifef -0.037 (-.14) -0.370 (-1.15) -0.094 (-.36) -0.377 (-1.26)
lifg  0.128 (0.50)  0.251 (0.82)  0.093 (0.36)  0.191 (0.65)
lifij  0.090 (0.29) -0.547 (-1.44)  0.122 (0.43) -0.473 (-1.29)
regot -0.223 (-.75) -0.085 (-.25) -0.131 (-.44)  0.045 (0.13)
reghs -0.375 (-1.49) -0.052 (-.20) -0.427 (-1.78) -0.157 (-.66)
factor
loading

-0.103 (-.61) -0.341 (-1.24)  0.035 (0.05)  0.070 (.09)

LL (0) -2132.55 -1047.72
LL (C) -1016.11 -1047.45

UH=
lognormal

Constant -3.187 (-10.4) -4.293 (-9.4) -2.806 (-16.3) -3.357 (-12.2)

gamma  1.057 (9.36)  1.778 (8.03)  0.403 (11.1)  0.649 (10.7)
lambda  0.00  0.00  1.00  1.00
factor
loading

-0.084 (-.45) -0.239 (-.78) -0.278 (-3.09) -0.785 (-3.91)

LL (0) -1218.63 -1060.13
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LL (C) -1025.85 -1046.30
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Table 3 continued

UH=non-
parametric

constant -2.594 (-3.34) -2.484 (-1.84) -1.796 (-3.50) -0.180 (-.27)

gamma  1.144 (8.95)  2.104 (8.56)  0.422 (9.61)  0.768 (12.3)
lambda  0.00  0.00 1.00 1.00
nhinc -0.135 (-.83) -0.184 (-1.00) -0.131 (-.81) -0.193 (-.99)
lifa  0.651 (1.42)  0.0126 (0.02)  0.707 (1.52)  0.148 (0.24)
lifbcd  0.183 (0.63)  0.310 (0.95)  0.238 (0.84)  0.544 (1.70)
lifef -0.023 (-.09) -0.334 (-1.02) -0.017 (-.06) -0.200 (-.65)
lifg  0.139 (0.54)  0.293 (0.94)  0.203 (0.76)  0.519 (1.72)
lifij  0.092 (0.29) -0.553 (-1.45)  0.095 (0.32) -0.459 (-1.22)
regot -0.244 (-.82) -0.146 (-.43) -0.278 (-.94) -0.351 (-1.127)
reghs -0.381 (-1.44) -0.033 (-.12) -0.447 (-1.77) -0.176 (0.67)
factor
loading

-1.053 (-.79) -4.014 (-1.45) -2.152 (-3.17) -7.614 (-6.20)

support point 0.841 (4.58) 0.841 (4.58) 0.805 (17.99) 0.805 (17.99)
LL (0) -1021.46 -1052.30
LL (C) -1020.33 -1033.38

UH= non-
parametric

Constant -3.276 (-.00) -4.457 (-.016) -1.923 (-5.21) -0.681 (-1.20)

gamma  1.025 (8.85)  1.652 (5.65)  0.402 (10.3)  0.682 (12.5)
lambda 0.00  0.00  1.00  1.00
factor
loading

-0.002 (-.00) -0.005 (-.01) -2.187 (-3.17) -6.705 (-6.10)

support point  0.004 (0.01) 0.004 (0.01)  0.819 (17.4) 0.819 (17.4)
LL (0) -6724.37 -1065.36
LL (C) -1030.87 -1047.64

Table 3. Illustrative Model Results for Alternative Specifications

4. CONCLUSIONS

Event history data embedded in some panel or activity diary data sets in transportation offer

an opportunity to investigate the underlying structure of duration that a household is in a

particular state and the timing of a change into another state. The literature on multistate

multispell modelling in continuous time offers a future prospect for improving our

understanding of ‘when’ changes are likely to occur. The consequences for improved

forecasting of change into the future is clear. Existing methods of modelling travel

behaviour, including recent dynamic discrete choice models, are limited in the advice they

give on the timing of change. Knowing if a change will occur is handicapped if we lack a

procedure for identifying when it will occur. There is a lot more research required to

increase our empirical knowledge of the implications of alternative assumptions on how

duration dependence, unobserved heterogeneity and baseline hazards are specified. The

illustrative empirical study highlights the role of these various dimensions in establishing a

capability for predicting the timing of change. This paper is a contribution to this effort in

transportation. The greatest challenge however will continue to be the establishment of

sufficiently rich data sources capable of assisting the transport analyst in the search for



Duration Modelling with Competing  Risks and Multiple Spells
David Hensher

19

improved methods of forecasting the duration and timing of change, and the establishment

of efficient software capable of modelling the myriad of competing risks and multiple spell

event histories in transportation.
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