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Abstract

This thesis begins by developing a time series model which has generalised (Gegen-

bauer) long memory in the mean process with stochastic volatility errors where each

process is assumed to have Gaussian errors. We subsequently develop and derive a

new Bayesian posterior simulator that couples advanced posterior maximisation tech-

niques, as well as traditional latent stochastic volatility estimation procedures. Details

are provided on the estimation process, data simulation, and out of sample perfor-

mance measures. Several rigorous simulation studies are conducted and verified on

the simulator for in and out of sample behaviour. Further, the goodness of fit of the

generalised long memory model is compared to the standard long memory model by

considering two empirical studies on the US CPI and the US ERP. This model provides

a distinct advantage by measuring the long memory attributes in the mean process,

whilst also estimating the daily time varying volatility of the error process. The long

memory process in particular is generalised so that it encompasses the standard long

memory case, as well as the ARMA family.

These findings are then extended to a Gegenbauer long memory stochastic volatil-

ity model with leverage and a bivariate Student’s t-error distribution to describe the

innovations of the observation and latent volatility jointly, with applications to Cryp-

tocurrency time series. The main advantage of pursuing such a model is incorpo-

rating the robustness of the Student’s t-distribution, and leverage effects to address

the deep rooted characteristics found in Cryptocurrencies. The mixing variables in

the scale mixture representation of the Student’s t-distribution are able to capture

outliers which are the occasional jumps found in Cryptocurrency return series’. Un-

derstanding the leverage effect and jump behavior helps to evaluate their investabil-

ity. To date, the literature remains underdeveloped in understanding the properties
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of Cryptocurrencies and is a promising area to pursue. In order to do this, a rigor-

ous in-sample simulation study is conducted to assess the performance of the model

with nested alternatives and applied to study the behavior of many Cryptocurren-

cies - in particular Bitcoin. The data analysis is initiated with a broad scope of 114

Cryptocurrencies and then a more detailed understanding of the five most popular

Cryptocurrencies and followed up with a specific focus on Bitcoin. The model pa-

rameters are estimated using a Bayesian approach and sampled via MCMC. In order

to implement model selection, the DIC is used. This is then compared with many

popular models including those commonly used in industry. The models are applied

to Value-at-Risk (VaR) forecasts and several measures are used to assess the forecast

performance.

Finally, it is found that Cryptocurrencies do indeed show highly distinct behaviours

that are not present in fiat currencies, and thus require specialized analysis. Cryp-

tocurrencies as of late have commanded global attention on a number of fronts. Most

notably, their variance properties are known for being notoriously wild, unlike their

fiat counterparts. The third part of this thesis highlights some stylized facts about the

variance measures of Cryptocurrencies using the logarithm of daily return range and

relates these results to their respective cryptographic designs such as intended trans-

action speed. This final model in which we arrive to includes even more additional

features including buffered autoregressive regime effects as well as jumps. The ad-

vantages of including such effects into a more comprehensive model is able to discern

between the extreme volatility of Cryptocurrencies as jumps, or from the stochastic

volatility itself. The results favor instantaneous oscillatory long run autocorrelations

over standard long run autocorrelation filters to model the log daily return range.

The overarching implication of this result is the volatility of Cryptocurrencies can be

better understood and measured via the use of fast moving autocorrelation functions,

as opposed to smoothly decaying functions for fiat currencies.
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Chapter 1

Introduction

“Begin at the beginning," the King said, very gravely,“and go on ’till you come to the end:

then stop."

Lewis Carroll, Alice in Wonderland

1.1 Thesis motivation

This thesis is motivated by the intricacies of measuring risk, which have a long and

rich history. The initial developments of risk quantification came about due to port-

folio performance being judged purely on portfolio return. This however changed

when Harry Markowitz published his groundbreaking seminal paper titled “Portfo-

lio Selection" (Markowitz, 1952), which argued that a fund manager’s performance

should not only be judged by return, but also by risk. For example, shares are a riskier

investment than bonds and should therefore provide a higher return. The concept of

risk was indeed a vague concept, and so Markowitz used a simplified measure, the

variance of returns (or volatility). Together with other insights, such as portfolio di-

versification, this academic movement became known as ‘modern portfolio theory’. It

was this pioneering effort that enabled Markowitz to develop a model that investors

could measure the trade-offs they faced between risk and return and by doing so, he

ensured volatility to be a proxy for risk.

The impact of measuring risk was so profound that in 1973 three academics named

Fisher Black, Robert Merton and Myron Scholes published a model to efficiently cal-

culate the value of options based on volatility (Black and Scholes, 1973). This became

popularized into the classical Black-Scholes model, and has become the cornerstone
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of option pricing until today. The model however assumes the underlying volatil-

ity is constant over the life of the derivative, and unaffected by the changes in the

price level of the underlying security. This of course is far from reality as there is

overwhelming evidence that volatility is not constant across time.

As the financial industry grew, volatility modelling became more important in all

aspects of money management. As this was happening, a young academic named

Stephen Taylor had suggested a more robust volatility measuring tool that took into

account the stochastic nature of the volatility for a financial time series, known as

the Stochastic Volatility (SV) model. Research showed that prices of European call

options on currencies based on SV models were far more accurate than those based

on the simplistic Black-Scholes model.

Further risk management techniques emanated as a result of major losses by financial

institutions in the 1980’s. The most famous example was after the Black Monday

crash of 1987, when JP Morgan Chase Manahattan chairman at the time, Sir Dennis

Weatherstone, ordered staff to provide him with a daily report outlining how much

value was at risk in any single trading day. This ultimately became known as Value at

Risk (VaR), and subsequently became wide spread within the financial industry. The

initial proponents of VaR used the most simplistic methodology, known as historical

VaR which relies on a pre-specified number of previous observations to serve as the

future return distribution. From this point, the race to develop a more sophisticated

version of VaR was intensified, with financial services firms hiring statisticians and

computer scientists to develop even more sophisticated VaR methodologies.

Additionally, in the 1960s Benoit Mandelbrot was intensely working on mathemati-

cal finance, in particular, on his “Random walk hypothesis” (Mandelbrot and Ness,

1968). He proposed that financial assets incrementally innovate from one point to

another, and from this work, he came up with the idea of long memory (LM). Long

memory refers to the long range dependence between various points in a time series

and is characterized by the fact that decay of such dependence is slower than an ex-

ponential decay, usually in the form of hyperbolic decay. Long memory time series

are rarely introduced with more robust volatility measuring techniques such as the

SV model. The intertwining of two great concepts provides opportunities for great

model exploration, and therefore a higher level of data extrapolation. Although theo-

retically and intuitively pleasing, the SV model was unable to be efficiently estimated
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with the level of computing power at the time, and the estimation methodology was

not clear. It was only until Kim, Shephard, and Chib (1998) provided an efficient

Bayesian MCMC method to estimate the SV model that arguably lead to its popular-

ity.

The financial industry is again going through rapid transformation with the advent

of digital currencies which early pioneers never anticipated their methods would be

applied to. As Cryptocurrencies are emerging, will it gradually replace fiat currency?

What is the implication to the world economic order? To answer these questions,

there is now a resurgence for more sophisticated models to understand these newly

created asset classes. There is indeed overwhelming evidence that Cryptocurrencies

display wild volatility and leverage effects, which refers to the negative correlation

between current returns and future volatility. Further, there is evidence to suggest the

presence of jump diffusion and buffer threshold type effects. These features and their

root causes challenge statisticians and econometricians to enhance model structures

for measuring Cryptocurrency risk.

The current literature has discussed some features of Cryptocurrencies. Urquhart

(2017) stated that the Cryptocurrency market is still in its infancy and is ineffi-

cient. Some properties of Cryptocurrencies have also been explained including price

clustering (Urquhart, 2017), generalised autoregressive conditional hetereoscedastic

(GARCH) effects (Katsiampa, 2017) and standard long run autocorrelation (Jiang,

Nie, and Ruan, 2017; Lahmiri, Bekiros, and Salvi, 2018). Lastly, broader risk manage-

ment issues for Cryptocurrencies were also considered by Hotz-Behofsits, Huber, and

Zörner (2018), Catania, Grassi, and Ravazzolo (2018), and Hencic and Gouriéroux

(2015).

From the early pioneers of charting financial time series in the 1950s, through to the

highly sophisticated artificial intelligence (AI) algorithms currently being deployed

by hedge funds in the thousands, there has always been an increasing movement to-

wards greater sophistication to time series estimation. We are deeply motivated by

these events to make further contributions to the level of understanding, sophistica-

tion and estimation of risk modelling.
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1.2 Background

This section provides some basic definitions and fundamental properties of important

statistical models considered in this thesis. Literature reviews on SV models and long

memory models can be found in Chapters 3, 5 and 8.

1.2.1 Stochastic volatility

Over the last few decades, there has been an increased uptake in the interest of the

dynamic nature of volatility. The developmental beginnings of dynamic volatility

models initiated from the Black-Scholes rubric in which the stock price St is assumed

to be geometric Brownian motion and is described by the following stochastic differ-

ential equation (SDE)

dSt = µStdt+ σStdWt. (1.1)

The parameter Wt is a standard Brownian motion process at time t, and the expected

growth rate µ and the volatility σ are both assumed to be constant. There is how-

ever overwhelming evidence from time-series and option price data that indicates the

volatility parameter σ in (1.1) should be allowed to vary in time ((G)ARCH model),

or vary stochastically in time (SV model).

A widely used class of models for the condition volatility is the ARCH specification of

Engle (1982) and the GARCH specification of Bollerslev (1986). These models are

able to characterize the stylized features of volatility. The most notable feature of

(G)ARCH models is the conditional variance is a deterministic function of previously

observed conditional variances and past values of the return itself.

The ARCH(q) model of Engle (1982) is

yt = εt, εt ∼ N(0, σ2
1,t),

σ2
1,t = α

(1)
0 +

q∑
i=1

α
(1)
i ε2

t−i,
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and the GARCH(p, q) model of Bollerslev (1986) is

yt = εt, εt ∼ N(0, σ2
2,t),

σ2
2,t = µ(1) +

p∑
i=1

α
(2)
i ε2

t−i +

q∑
i=1

βiσ
2
2,t−i.

These two models are in stark contrast to the SV model first proposed by Taylor

(1986) which is given by

yt = εt, εt ∼ N(0, eht), (1.2)

ht = α+ β(ht−1 − α) + ηt, ηt ∼ N(0, σ2), (1.3)

where yt is the return series which is observed at time t and ht is the latent pro-

cess which governs the volatility of yt. The innovations ηt of ht is assumed to be a

Gaussian white noise process with variance σ2. This ‘volatility of volatility’ parameter

σ2 intuitively indicates the uncertainty about future volatility and it can be assumed

that data with lower estimates of σ2 have better forecasting power. If the volatility

persistence parameter β → 1, then the models become explosive and non-stationary.

However, it is found that in most financial time series, β is typically close to 1 (Kim,

Shephard, and Chib, 1998). Further, we note that as β → 1 and σ2 → 0, then ht

becomes constant over time and therefore the model is homoscedastic.

In comparison to the (G)ARCH models which explains the volatility process in a de-

terministic equation, the SV model is a more robust representation of the real world.

SV models have gradually emerged as a successful alternative to the (G)ARCH class

of models in accounting for time-varying persistence and volatility of financial re-

turns. The SV model is motivated by the mixture-of-distributions hypothesis which

was postulated by Clark (1973). Under this approach, asset returns follow a mixture

of normal distributions with a mixing process depending on the unobservable flow

of price-relevant information. Further additions include Tauchen and Pitts (1983)

and Gallant, Hsieh, and Tauchen (1991) who noted that if the unobserved informa-

tion flows are positively autocorrelated, then the resulting process with time-varying

and autocorrelated conditional variance reveals volatility clustering - a typical fea-

ture of financial time series. The mixture of distributions approach naturally leads

itself to the idea that asset volatility returns follow their own stochastic process with
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unobservable innovations. This is in stark contrast to (G)ARCH models, where the

conditional variance given the available information is a deterministic function of

past observations and innovations. It is due to this flexibility and realistic view, that

SV models demand their popularity (Carnero, Pena, and Ruiz, 2003; Ghysels and

Perron, 1996).

The main properties of the SV model have also been recorded in Taylor (1994), Shep-

hard (1996), Ghysels and Jasiak (1994), Capobianco (1996), and Barndorff-Nielsen

and others (2001). The conditional variance of yt in (1.2) is given by

Var[yt|θ] = eα+ 1
2
σ2
h ,

where θ = (α, β, σ2) and σ2
h = σ2/(1− β2). The kurtosis of yt is denoted as

κy = κεe
σ2
h ,

where κε is the kurtosis of εt.

In recent years, there has been further developments on the time-dependent return

and volatility processes for the SV model. One prominent extension is the incorpora-

tion of long memory process in the return equation of (1.2).

1.2.2 Long memory

Long range dependence modelling, also known as long memory (LM), has become

a fundamental aspect of time series modelling in a host of applications and plays a

significant role in many fields such as hydrology, econometrics, DNA sequencing and

traffic engineering amongst others. In a general sense, a stationary time series dis-

plays long memory if there is a divergence of the absolute sum of the autocorrelation

function (ACF). Essentially, a stationary long memory time series displays a slowly de-

caying autocorrelation function towards zero. The most common class of such time

series is the ARFIMA models which were popularized by Granger and Joyeux (1980).

The general expression for ARFIMA processes may be defined by the equation

φ(B)yt = ψ(B)(1−B)−dεt, εt ∼ N(0, σ2), (1.4)
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where the autoregressive (AR) and moving average (MA) polynomials are φ(B) =

1 − φ1B − . . . − φpBp, ψ(B) = 1 + ψ1B + . . . + ψqB
q respectively, B is the backshift

operator and d is the long memory parameter. The term (1 − B)−d therefore can be

considered a fractional differencing operator and is given by

(1−B)−d =

∞∑
j=0

Γ(j + d)

Γ(j + 1)Γ(d)
Bj .

If the polynomials φ(·) and ψ(·) in (1.4) have no common zeros, and d ∈ (−1, 1/2),

then:

1. If the zeros of φ(·) lie outside the unit circle z : |z|= 1 then there is a unique

stationary solution of (1.4) given by yt =
∑∞

j=−∞ ϕjεt−j where ϕj are the

coefficients of the following polynomial ϕ(z) = (1− z)−dψ(z)/φ(z);

2. If the zeros of φ(·) lie outside the closed unit disk z : |z|≤ 1, then the solution

{yt} is causal; and

3. If the zeros of ψ(·) lie outside the closed unit disk z : |z|≤ 1, then the solution

{yt} is invertible.

One typical treatment to deal with a non-stationary time series is to keep differencing

until stationarity has been achieved. If the original time series is not differenced, then

it has an infinite variance (strictly speaking) and is cumbersome to work with. Some

statisticians argue that taking the difference may lead to data loss at lower spectral

densities (power spectrums), which express the strength of variations (energy) as

functions of frequencies instead of time. A mathematical definition is given by

fs(ω) =

∞∑
t=−∞

γ(t)e−2πiωt where γ(t) =

∫ 1/2

−1/2
e2πiωtfs(ω)dω,

and γ(t) is the autocovariance function. A solution to data loss at lower spectral

densities is to take fractional differences.

A typical stationary time series has a spectral density function bounded at the fre-

quency 0, and the ACF displays exponential decay. This may be the case for the

standard autoregressive time series. Yet, this may not be the case for other time se-

ries and fitting these time series to models which assume that the spectral density is

peaked at 0 may result in failure. The most common example is the time series with

the standard long memory filter of Granger and Joyeux (1980), which assumes the
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spectral density does not necessarily peak at 0, and is indeed unbounded. It is due

to these unique properties that long memory as a concept is an exciting and practical

topic that is of great interest to econometricians.

A further generalization of (1.4) is the Gegenbauer autoregressive moving average

(GARMA) class which is defined as

φ(B)(1− 2uB +B2)dyt = ψ(B)εt, εt ∼ N(0, σ2), (1.5)

where |u|≤ 1, |d|≤ 1 are real parameters. A few important properties about the

GARMA model are that:

1. The power spectrum is given by

fs(ω) = C(ω)× [4(cosω − u)2]−d, −π < ω < π, (1.6)

where C(ω) = σ2
ε

2π

(
ψ(e−iω)
φ(e−iω)

)2
and i =

√
−1; and

2. The process in (1.5) is deemed to be long memory when ({|u|< 1, 0 < d < 0.5}∪

{|u|= 1, 0 < d < 0.25}). These features are characterized by the hyperbolic de-

cay of the autocorrelation function (ACF) and the unbounded spectrum at the

Gegenbauer frequency, ω = ωg = cos−1(u).

1.2.3 Other stylized facts

The SV and LM models are powerful, yet do not fully explain all the dynamics of

modern financial time series. There has been an explosion into the research of the

unique stylized facts of financial time series over the last 10 years for two main rea-

sons. Firstly, volatility spikes are more prevalent in financial markets post the GFC,

and secondly, technology growth has had a stronger impact on the financial world

(chiefly, AI and digital currencies) than before. It is due to these two reasons that

interest has been growing in volatility measurement. This section explores a whole

host of these and other stylized facts which are discussed at length throughout this

thesis.

The unique and unconventional financial time series that exist today are different

to what were considered the norm ten years ago. This is due to the increase in

computational efficiency, and the interconnectedness of the modern world. By stark
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contrast, financial news in the 1800’s would travel between market participants via

pigeons and as such, the price of financial assets took weeks or months to be fully

reflective of that news. In the 1930s, the first teleprinter was used to distribute news

to London newspapers, and in turn, the market took days to reflect incoming news.

Nowadays, news is reflected almost instantly, and can experience multiple shocks in

very short time intervals. Given this extreme change in how market news is received

and disseminated, it is a natural assertion that the way these returns are measured

must now become more vigilant. Hence, the traditional SV and LM effects must be

combined with newer, and more resilient effects to fully measure these new stylized

facts.

One stylized fact commonly observed in financial returns is a negative correlation

between returns and volatilities (Asai, 2008). This phenomena is known as the lever-

age effect and was first discussed by Black (1976), who observed the volatility of

stocks tend to increase when the price drops. The typical assertion made is that in

response to bad financial news, the price of a stock decreases thereby increasing the

debt-to-equity ratio of a firm. This in turn makes it a riskier investment and therefore

increases future expected volatility. Hence, in empirical applications where volatility

responds negatively to returns, SV models with leverage (SV-LVG) are utilized. The

method of estimating this leverage effect has been dealt with in several ways.

One well established method to model the leverage effect in the SV model is via the

negative correlation in a bivariate distribution between (εt, ηt+1) - the error terms

for returns and latent future volatility respectively. This is a marginal approach

and was investigated by Meyer and Yu (2000), Omori et al. (2007), and Choy and

Chan (2000). Essentially they propose to factorize the bivariate distribution into a

marginal distribution for volatility and a conditional distribution for returns. With

t-innovations, the model is firstly expressed as a scale mixture of bivariate normals

and then each bivariate normal distribution is factorized into a marginal and a condi-

tional normal distribution. Alternatively, Wang, Chan, and Choy (2011) reversed the

order to factorize the bivariate t into a marginal and a conditional t-distribution first

and then expressed each t component as a scale mixture of normals. The advantage

of this particular approach is a separate scale mixture of normals representation for

each component and so it enables the distinction between outliers generated by the

return or volatility processes. The disadvantage, however, is that it is algebraically
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tedious to derive.

The second approach (a conditional approach) involves incorporating exogenous

variables conditionally into the latent volatility equation. There is no universally

agreed approach on how to perform this, however a few popular examples are dis-

cussed in Asai and McAleer (2005) and include:

1. ht = α+ β(ht−1 − α) + γ|yt|+ηt ; and

2. ht = α+ β(ht−1 − α) + γ {I(εt)− E[I(εt)]}+ ηt,

where γ is a proxy for leverage and I(·) is an indicator function such that I(x) = 1 if

x < 0 and I(x) = 0 otherwise.

The current SV and LM models mostly assume their error processes to be normally

distributed. This is in line with the findings of Andersen et al. (2001), who demon-

strated the assumption of Gaussian returns is indeed fair and adequate. Notwith-

standing this, critics have argued the Gaussian assumption for error processes seems

rather presumptuous and is highly non-reflective of the real world. Presumably, this

assumption has been adopted mainly to simplify parameter inference (Taylor, 1986;

Mahieu and Schotman, 1994; Kim, Shephard, and Chib, 1998). This conditional nor-

mality assumption is arguably too restrictive and suffers from non-robustness in the

presence of outliers (Jacquier, Polson, and Rossi, 1994). A much better assumption

is the use of heavy tailed distributions (Ruiz, 1994). The initial proponents in favor

of including such an assumption into the SV model incorporated a scaled Student’s

t-distribution (Harvey, Ruiz, and Shephard, 1994). Their findings were later exon-

erated to confirm that heavy tails are more deeply connected and are a stylized fact

of financial time series due to their leptokurtic distributions, and their slowly decay-

ing autoregressive volatility behavior (Liesenfeld and Jung, 2000). Further notable

extensions of SV models include:

1. The use of the generalised Student’s t-distribution in a scale mixture of uniforms

(SMU) (Wang, Choy, and Chan, 2013b);

2. The normal inverse Gaussian distribution as a scale mixture of normals (SMN)

with an IG mixing distribution (Barndorff-Nielsen, 1997); and

3. The generalised hyperbolic skew t-distribution as a SMN with a generalised

Inverse-Gamma (IG) mixing distribution (Nakajima and Omori, 2012). Note
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that scale mixture distributions are discussed in further details Chapter 4.

It should also be noted these models focus mainly on distributional choices and lever-

age effects but do not consider other flexible modelling alternatives.

Another important modelling alternative is the inclusion of non-linear effects to uniquely

measure the mean structure. Non-linear time series have gained traction within aca-

demic circles since the 1970s when non-linearity in many time series were observed

and further investigated. One popular type of model to explain non-linear time se-

ries are threshold models. The first proposition of such a type of model was the

Threshold Autoregregressive (TAR) model of Tong (1990). In comparison to their

linear counterparts, a threshold model provides a much wider set of possible dynam-

ics for financial and economic time series. It measures a set of regimes and switches

between these regimes based on the levels of threshold variables. Such effects are

important to measure the asymmetry of stock returns, which was studied in Li and

Lam (1995). These non-linear stock returns occur during bull and bear markets and

hence can be measured by threshold models. The results in Li and Lam (1995) re-

veal this conditional mean structure could depend significantly on the rise and fall of

the market from previous time periods. Some alternative threshold extensions which

combine the SV model include So, Lam, and Li (2002) who proposed a threshold

SV in response to good or bad news and Chen, Liu, and So (2008b) who imposed a

threshold model for both returns and the SV component.

The final effect to discuss are jump diffusions which capture discontinuous behavior

in returns. In the classical literature, this jump behavior was introduced in order

to measure some rare outlying event (Merton, 1976). However, with the growing

interest of digital assets, these jump effects are now more relevant than before. The

inclusion of jump effects are popular extensions to financial asset pricing models

(Bates, 1996; Ball and Torous, 1985) and have also been applied in conjunction with

the SV model (Barndorff-Nielsen and others, 2001; Chernov et al., 2003).



12 Chapter 1. Introduction

1.2.4 Bayesian MCMC method

Although intuitively appealing, the SV model was not often used due to its intractable

likelihood which involves T dimensional integral with respect to the unknown volatil-

ity parameter ht, t = 1, . . . , T

p(yt|θ) =

∫
p(yt|ht,θ)p(ht|θ)dht, (1.7)

where θ = (α, β, σ2). Clearly, this observed data likelihood in its analytical form is

near impossible to analytically evaluate. This has resulted in a number of techniques

to estimate it. The earliest of such techniques used simulated maximum likelihood

and was introduced by Geyer (1991). This method is less efficient, but is relatively

easier to compute. Other approaches include quasi maximum likelihood (QMLE)

(Bollerslev and Wooldridge, 1992; Harvey, Ruiz, and Shephard, 1994) and the effi-

cient method of moments (Andersen, Chung, and Sørensen, 1999).

In a Bayesian setting, the evaluation of such a likelihood is a routine process. MCMC

techniques were popularized into the SV literature by Kim, Shephard, and Chib

(1998) and Jacquier, Polson, and Rossi (2004). In fact, Andersen, Chung, and

Sørensen (1999) showed that MCMC is the most efficient method for estimating the

SV model. Undoubtedly, MCMC techniques have operationalized the common use of

the SV model. Other advantages of using the Bayesian method include the incorpo-

ration of prior information to supplement the data and the straightforward approach

of using the posterior predictive distribution for inference. Moreover, Strasser (1975)

showed the asymptotic equivalence of Bayes and maximum likelihood estimation.

The Bayes rule is the cornerstone of Bayesian analysis, and factorizes the posterior

distribution into its constituents

p(θ, ht|yt) =
p(yt|θ, ht)p(θ, ht)

p(yt)
∝ p(yt|θ, ht)p(ht|θ)p(θ),

where p(yt|θ, ht) is the observed data likelihood, p(ht|θ) is the conditional density

and p(θ) is the joint prior density of the model parameters, also known as the prior.

The predictive density p(yt) equals to

∫
p(yt|θ, ht)p(θ, ht)dθdht,
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and is independent of θ or ht. Hence it can be considered as an integrating constant.

In essence, the Bayesian method of estimation is instigated with a joint conditional

density, p(θ, ht|yt), which is referred to as the posterior distribution. The posterior

distribution is a summary of all the information that is known about the model and

this information includes the information from the observed data as well as priors.

The posterior distribution forms the basis for Bayesian inference, whereas the prior

distribution allows the inclusion of prior beliefs on the parameters and provides any

economic or practical interpretation of the parameters to be implemented. Through-

out this thesis, we consider mostly non-informative or diffuse priors. For instance,

the persistence parameter β of the latent volatility equation in (1.3) needs to be trun-

cated between [−1, 1] to ensure stationarity and is therefore assigned a uniform prior

on [−1, 1]. Other parameters with real support include the mean parameters µ and

α which are assigned a normal prior, whereas parameters with positive support such

as the volatility of volatility σ2 are assigned an IG prior in order to achieve mostly

standard (conjugate) distributions.

Gibbs sampling

With the advent of cheap computing power in recent years, there has been an up-

take in the use of MCMC methods to estimate high dimensional integrals. The Gibbs

sampler is one of the most popular sampling methods to estimate a high dimensional

parameter vector in these integrals, and is commonly used in Bayesian statistics (Tan-

ner and Wong, 1987; Gelfand and Smith, 1990; Smith and Roberts, 1993).

The Gibbs sampler was first used in the image analysis literature by Geman and Ge-

man (1984) and was later uprooted into the statistical literature by Besag and York

(1989). It is an extremely powerful tool to sample from multidimensional poste-

rior distributions. To see how it works, we consider the joint posterior distribution

p(θ,h|y) of the SV model as a T+3-dimensional distribution where sampling directly

from it is close to impossible. Specifically, the Gibbs sampler deals with the curse of

dimensionality problem by approximating the joint posterior distribution p(θ,h|y) by

blocks of conditional distribution, in which samples are more readily available.
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The Gibbs sampler iterates through the complete set of conditional distributions as

below

1. p(h|y, α, β, σ2);

2. p(α|y,h, β, σ2);

3. p(β|y,h, α, σ2); and

4. p(σ2|y,h, α, β).

These individual posterior distributions uniquely determine the complete joint poste-

rior distribution p(θ,h|y). Hence, sampling from these distributions is equivalent to

sampling from the joint posterior distribution, up to some proportionality constant.

In essence, the Gibbs sampler constructs the Markov Chain by iterating through the

parameter space of the posterior distributions. Classical examples of estimating the

SV model using the Gibbs sampler include Jacquier, Polson, and Rossi (1994), Kim,

Shephard, and Chib (1998), and Chib and Greenberg (1994).

Metropolis-Hastings algorithm

Even though the dimensions for parameter sampling can be greatly reduced using

the Gibbs sampler, the complexity of sampling still remains if the conditional distri-

butions are not available. To deal with nonstandard distributions, a well suited and

more generalised alternative to construct MCMC samplers is to use rejection sam-

pling. Under this method, proposed values are drawn from a proposal/candidate

generating distribution where it approximates the target (posterior conditional) den-

sity. These samples are corrected via an acceptance and rejection mechanism, so

that asymptotically their behaviour resembles random observations from the target

density. This is the mechanism for methods such as the Metropolis Hastings (MH)

algorithm. A considerable amount of attention within the Bayesian sphere is devoted

to the MH algorithm of Metropolis et al. (1953), and was later generalised by Hast-

ings (1970). The Gibbs sampler is in fact a special case of the MH algorithm. The

motivation for such a process is to draw candidate observations from a distribution,

conditional upon the last observation and therefore invoking a Markov chain. The

most definitive aspect of the MH algorithm is the approximating candidate density is

improved at each step in the chain. This is in contrast to rejection sampling where
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the candidate density remains the same. Assuming that the parameter of interest is

θ, the MH algorithm can be summarized as follows:

Step 1: Set m = 1 while m ≤M .

Step 2: Generate θ from q(θ|θ(m)) and u from a Uniform(0, 1).

Step 3: Assign θ(m+1) = θ∗ if u ≤ Pa(θ∗, θ(m)), otherwise, let θ(m+1) = θ(m), m = m+ 1,

where q(·|·) is the candidate generating function, p(θ) = p(θ|y,θ−) where θ− = θ {θ}

is the target density and Pa(·, ·) is the acceptance probability. If the candidate θ∗ is

accepted, then the process will move to θ∗, otherwise it will stay at θ(m). When the

MCMC is currently at stage θ(m), the value θ∗ is generated from q(θ|θ(m)), and is

accepted for θ(m+1) with the acceptance probability

%(θ∗, θ(m)) = min

(
1,

p(θ∗)q(θ(m)|θ∗)
p(θ(m))q(θ∗|θ(m))

)
,

where p(θ) is the target conditional posterior distribution. In Section 4.2.5, we utilize

the method of Chib and Greenberg (1994) to construct the standard proposal density

from a conjugate distribution. There are two special cases of the MH which are used

throughout this thesis and deserve some attention.

Case 1: Independent Metropolis-Hastings algorithm

This algorithm allows a proposal distribution q(θ) to be independent of the current

state θ(m) of the chain (Tierney, 1994). This sampler is useful when the proposal

value is independent of previous states and its efficiency depends on the proposal

distribution q(θ) being close to p(θ). If this is not practically possible, Case two may

be better. This case implies an acceptance probability of

%(θ∗, θ(m)) = min

(
1,
p(θ∗)q(θ(m))

p(θ(m))q(θ∗)

)
.

Case 2: Random-walk Metropolis-Hastings algorithm

The candidate state is obtained by adding noise to the current state θ∗ = θ(m) +e, e ∼

N(0, σ2). Specifically, the candidate density q(θ∗|θ(m)) = f(θ(m) − θ∗), for some

density f(·) which is symmetric about zero and is generated from a symmetric dis-

tribution centred at the current state. A common choice of f(·) is Gaussian with

mean zero and variance σ2. The symmetry property of the proposal transition,
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q(θ∗|θ(m)) = q(θ(m)|θ∗), leads to a simple form for the acceptance probability given

by

%(θ∗, θ(m)) = min

(
1,

p(θ∗)

p(θ(m))

)
. (1.8)

By using such an algorithm, the posterior sampler accepts new proposals according to

the ratio of posterior distributions. This is commonly used when the data likelihood is

difficult to work with. A relevant example is the sampling of the volatility persistence

parameter β as given in Section 4.2.5.

Adaptive MCMC algorithms

The choice of an effective proposal distribution for the random walk Metropolis al-

gorithm, for example, is essential in order to obtain reasonable results by simulation

in a limited amount of time. A possible remedy is provided by adaptive algorithms,

which use the history of the process in order to ‘tune’ the proposal distribution suit-

ably. This tuning parameter is then modified by monitoring the acceptance rate. A

high acceptance rate means that most proposed draws are being sampled around the

current point, whereas a low acceptance rate means the chain is moving too slowly

and not exploring the parameter space enough. Adaptive MCMC algorithms are de-

signed with the intention of achieving an optimal acceptance rate, which is typically

in the vicinity of 20 percent through to 30 percent (Roberts and Rosenthal, 2001);

see Rue, Steinsland, and Erland (2004) for an overview of adaptive algorithms. By

using an adaptive MCMC algorithm, the transition kernel is sequentially modified at a

pre-specified number of steps throughout the simulation to obtain optimal efficiency

(Roberts, Gelman, and Gilks, 1997; Haario, Saksman, and Tamminen, 2001).

In general, adaptive MCMC procedures can be summarized as follows:

1. Define a measurable function qm × θm 7→ θ such that qm(θ|θ(m), γm), m =

1, 2, . . . ,M is a transition kernel with γm = gm(θ(1), . . . , θ(m)|γ0, θ
0) and func-

tion gm : Θm 7→ R.

2. Initialize the adaption chain with some arbitrary but fixed values (θ0, γ0) ∈

Θ× Γ.
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3. Sample θ∗ from qm(θ|θ(m), γm) at iteration m ≥ 1 given (γ0, θ
0, . . . , θ(m)) and

γm = gm(θ(1) . . . , θ(m)|θ0, γ0).

4. Return the value of θ(m+1) according to the transition probability Pa(θ∗, θ(m), γm).

In practice, tuning is carried out with a multiplicative constant to the scale of the pro-

posal distribution. If the acceptance rate deviates out of some predefined bounds, the

constant is scaled accordingly to ensure an adequate acceptance rate will be achieved.

For example, the transition kernel can be a Gaussian proposal centred on the current

state with variance calculated using all of the previous states and recursive updating.

In this case, qm(θ|θ(m), γm) = N(θ(m), γm) where γm = s2
m(θ(1), . . . , θ(m)|γ0, θ

0) is the

sample variance of (θ(m), . . . , θ(1)), q0 = N(θ(0), γ0) and (θ(0), γ0) are some initial val-

ues. This transition kernel also determines the probability of moving to the next step.

Alternatively, we may set γm = c2
mV where V is a certain variance level and c2

m is a

certain scale parameter of V to be tuned. A tuning example can be found in Appendix

A.

Modal and distributional approximations

The previous sections describe Gibbs and MH algorithms which work well in low-

dimensional problems. However, with more complicated models, it is sometimes

difficult to even sample the posterior distribution directly. One approach to overcome

this is the maximum a posteriori (MAP) estimation technique, which utilizes the mode

of the posterior as a point estimate for the parameter of interest. The posterior mode

is often under the guise of a penalized likelihood estimate, where the logarithm of

the prior density is considered a penalty function.

The method first initiates by finding the mode of the posterior distribution. The mode

is sought as a way to begin mapping the posterior density. If the posterior is multi-

modal, the global maximum should be found. In the event where multiple modes are

found, then a mode-finding algorithm should be run from multiple starting points to

ensure that a global maximum has been found. A wide variety of techniques exist

for solving optimisation problems, and any of these, in principle, can be applied to

find the mode of a posterior density. Examples of these techniques include step-

wise ascent, Newton’s method, quasi-Newton-gradient methods and the numerical

computation of derivatives.
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Once the mode is found, it can be used as a point estimate of the parameter of inter-

est, and then used to sample the parameters accordingly. The maximum likelihood

estimate for θ based on the data likelihood function is

arg max
θ
f(y|θ).

Under this framework, the posterior distribution is

f(θ|y) =
f(y|θ)p(θ)∫
f(y|ϑ)p(ϑ)dϑ

,

where p(θ) is the prior density of θ. The method of MAP estimation then estimates

the mode of the posterior distribution as

θ̂MAP = arg max
θ

p(θ|y) = arg max
θ

f(y|θ) p(θ)∫
Θ
f(y|ϑ) p(ϑ) dϑ

= arg max
θ

f(y|θ) p(θ).

1.3 Thesis outline

This introductory section motivates our research by starting with some real financial

problems that demand technological and statistical advancements. This is carried out

by defining the fundamental concepts related to these problems, reviewing model

development in the literature and providing technical details for the Bayesian MCMC

sampling scheme which are applied in later chapters. These serve as building blocks

towards further exploration. The remaining chapters are structured as below:

Chapter 2 explores the basic SV model, derives the normal conjugates and supple-

ments the sampling techniques for the parameters in the volatility model that are

applied in Chapter 3.

Chapter 3 is the first publication on Gegenbauer long memory SV models which ex-

tends the basic SV model. This chapter provides concepts of long memory and details

of sampling schemes for long memory parameters. It further discusses some compu-

tational issues of importance and tests the accuracy of parameter estimates through

extensive simulation studies. The tuning of the long memory parameters and the

sampling of latent volatilities through mixtures of normals are given in Appendices A

and B. Thereafter, several empirical applications, including forecasting the US equity
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risk premium are performed and details of these posterior simulation and perfor-

mance evaluations are also provided. The estimation of the marginal likelihood for

performance evaluation is given in Appendix C.

Although this model has pleasing results, Chapter 4 further expands upon it in an

iterative manner by incorporating popular financial stylized features such as leverage

and heavy tailed distributions. Similar to Chapter 2, this chapter aims to provide

background information for Chapters 5 and 6 which respectively report our second

paper currently under review and our third published paper. Chapter 4 provides

fundamental concepts for the factorization of a bivariate leverage effect model and for

the scale mixture representation of the Student’s t-distribution - both with an aim to

facilitate sampling from posterior conditional distribution. Furthermore, this chapter

also provides sampling of the volatility parameters, the leverage effect parameter,

mixing variables and degrees of freedom, and simulation studies are conducted to

test the performance of these parameters. Lastly, we provide a brief overview on

Cryptocurrencies and detail how they are relevant to the future of statisticians. The

findings from this chapter are then culminated in the form of a complete model and

analyzed through the lens of Cryptocurrency data in Chapter 5.

Chapter 5 introduces this bivariate Student’s t-long memory SV model with leverage

effect and compares this extended model to two similar models. A list of the sub-

models are contained in Appendix E. The sampling for the long memory parameters

and latent volatilities which adopts a new scheme is detailed in Appendix F. Sim-

ulation studies are again performed to assess the efficiency of estimators and some

results are given in Appendix D. The effectiveness of this model is demonstrated

via analyzing 114 Cryptocurrencies. Thereafter, special focus is drawn to the top

five Cryptocurrencies by market capitalization and finally, a forecasting exercise is

conducted using Bitcoin. The superiority of these forecasts is shown using several

forecasting measures.

Chapter 6 considers this bivariate Student’s t-leverage effect long memory SV model

again, however the focus is on the practical issues of the application to Cryptocur-

rency. This Chapter also discusses in greater details the special properties of Cryp-

tocurrencies such as their wild volatilities and their technological set-up in greater

detail and relates these properties with the model-fitting findings.
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Chapter 7 discusses alternative model structures that prove to be useful when mod-

elling Cryptocurrencies, namely: realised volatility, buffered threshold and jumps.

Again, this chapter supplements Chapter 8 by reviewing model developments of these

three model structures and providing sampling schemes for their parameters.

Chapter 8 reports our fourth published paper which further explores the application

of Cryptocurrencies in conjunction with the extended model developed in Chapter

7. The unique variance properties of Cryptocurrencies prompt a generalised model

which is able to encapsulate their nature.

Finally, this thesis concludes with Chapter 9 which reviews all contributions and pro-

vides future research avenues.



21

Chapter 2

The stochastic volatility model

“All models are wrong, but some are useful."

George E.P. Box

This Chapter introduces the basic SV model and presents some Bayesian MCMC sam-

pling techniques for estimating its parameters. These techniques are similarly applied

and further extended to the Gegenbaur long memory SV model in Chapter 3.

2.1 Background

The SV model defined in (1.2) and (1.3) is central to this thesis. This model and

various extensions in later chapters are listed in Appendix E. In the most typical

Bayesian applications of the SV model, the routine software OpenBUGS/WinBUGS

(Yu, 2005) or Rstan are used. As briefly mentioned in Section 1.2.4, the conditional

posterior distributions discussed throughout this thesis are highly non-standard. As

such, these off-the-shelf Bayesian programming tools may be inadequate or inefficient

for the extensions we consider. Therefore, the relevant posterior of each parameter

should be derived from first principles, and subsequently manually programmed. We

choose the programing language MATLAB for all of our model implementations in

this thesis.
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2.1.1 Review of normal conjugates

Recall the standard result that if we are given the observations X = [x1, . . . , xT ]

where xi ∼ N(µ, σ2) and p(µ) ∼ N(m, τ2), then the likelihood of X is

1

(
√

2πσ)T
exp

{
−1

2

n∑
i=1

(xi − µ)2

σ2

}
,

and the posterior distribution of µ is

p(µ|X, σ2) ∝ exp

{
−
∑n

i=1(xi − µ)2

2σ2
− (µ−m)2

2τ2

}
= exp

{
−1

2

(
(
∑n

i=1 x
2
i − 2nx̄µ+ nµ2)

σ2
+

(µ2 − 2µm+m2)

τ2

)}
∝ exp

{
−1

2

(
−2nx̄µ+ nµ2

σ2
+
µ2 − 2µm

τ2

)}
(dropping constant independent to µ)

= exp

{
−1

2

(
µ2(nτ2 + σ2)− 2µ(mσ2 + nx̄τ2)

σ2τ2

)}

= exp

−1

2

µ2 − 2µ (mσ2+nx̄τ2)
(nτ2+σ2)

σ2τ2

(nτ2+σ2)


= exp

−1

2


[
µ− 2µ (mσ2+nx̄τ2)

(nτ2+σ2)

]2
−
(

(mσ2+nx̄τ2)
(nτ2+σ2)

)2

σ2τ2

(nτ2+σ2)




∝ exp

−1

2


[
µ− 2µ (mσ2+nx̄τ2)

(nτ2+σ2)

]2

σ2τ2

(nτ2+σ2)


 .

Therefore

p(µ|X, σ2) ∼ N
(
mσ2 + nx̄τ2

nτ2 + σ2
,

σ2τ2

nτ2 + σ2

)
.

Now, the mean can be written as

mσ2 + nx̄τ2

nτ2 + σ2

÷σ2τ2

÷σ2τ2
=

m
τ2

+ nx̄
σ2

n
σ2 + 1

τ2

=
1
τ2

n
σ2 + 1

τ2

m+
n
σ2

n
σ2 + 1

τ2

x̄,
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and the variance as

σ2τ2

nτ2 + σ2

÷σ2τ2

÷σ2τ2
=

1
n
σ2 + 1

τ2

,

so that

p(µ|X, σ2) ∼ N

(
1
τ2

n
σ2 + 1

τ2

m+
n
σ2

n
σ2 + 1

τ2

x̄,
1

n
σ2 + 1

τ2

)

∼ N
(
Vµ

(m
τ2

+
nx̄

σ2

)
, Vµ

)
, where Vµ =

(
n

σ2
+

1

τ2

)−1

. (2.1)

2.2 Bayesian inference for the SV model

2.2.1 Sampling the volatility level parameter α in the SV model

We denote the vector of volatilities ht, t = 1, . . . , T as h, the vector of ht, t = 2, . . . , T

as h−1 and the vector of ht, t = 1, . . . , T − 1 as h−T . Let the prior distribution of α be

N(µα, σ
2
α). The posterior distribution of α is expressed as
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p(α|h, β, σ2) ∝ f(h1|α, β, σ2)f(h−1|h−T , α, β, σ2)× p(α)

=
(1− β2)−

1
2

√
2πσ

exp

{
−(h1 − α)2(1− β2)

2σ2

}
×

1

(
√

2πσ)T−1
exp

{
−
∑T

t=2[ht − α− β(ht−1 − α)]2

2σ2

}
× 1√

2πσα
exp

{
−(α− µα)2

2σ2
α

}

∝ exp

{
−1

2

[
1

σ2

(
(h1 − α)2(1− β)2 +

T∑
t=2

[ht − α− β(ht−1 − α)]2

)
+

(α− µα)2

σ2
α

]}

= exp

{
−1

2

[
1

σ2

(
(h2

1 − 2h1α+ α2)(1− β2) +

T∑
t=2

{h2
t − 2ht[α(1− β) + βht−1]

+ [α(1− β) + βht−1]2}
)

+
α2 − 2αµα + µ2

α

σ2
α

]}
∝ exp

{
−1

2

[
1

σ2

(
(−2h1α+ α2)(1− β2) +

T∑
t=2

[−2htα(1− β) + α2(1− β)2 + 2α(1− β)βht−1]

)

+
α2 − 2αµα

σ2
α

]}
= exp

{
−1

2

[
1

σ2

(
−2h1α(1− β2) + α2(1− β2)− 2α(1− β)

T∑
t=2

ht + α2(1− β)2(T − 1)

+2α(1− β)β
T∑
t=2

ht−1

)
+
α2

σ2
α

− 2αµα
σ2
α

]}

= exp

{
−1

2

[
α2

(
(1− β2) + (1− β)2(T − 1)

σ2
+

1

σ2
α

)
−2α

(
h1(1− β2) + (1− β)

∑T
t=2 ht − (1− β)β

∑T
t=2 ht−1

σ2
+
µα
σ2
α

)]}

= exp


α2 − 2α

 h1(1−β
2)+(1−β)

∑T
t=2 ht−(1−β)β

∑T
t=2 ht−1

σ2
+µα
σ2α

(1−β2)+(1−β)2(T−1)

σ2
+ 1

σ2α


−2
(

(1−β2)+(1−β)2(T−1)
σ2 + 1

σ2
α

)−1



∝ exp



α−
 h1(1−β

2)+(1−β)
∑T
t=2 ht−(1−β)β

∑T
t=2 ht−1

σ2
+µα
σ2α

(1−β2)+(1−β)2(T−1)

σ2
+ 1

σ2α

2

−2
(

(1−β2)+(1−β)2(T−1)
σ2 + 1

σ2
α

)−1



= exp



α−
 h1(1−β

2)+(1−β)
∑T
t=2[ht−βht−1]

σ2
+µα
σ2α

(1−β2)+(1−β)2(T−1)

σ2
+ 1

σ2α

2

−2
(

(1−β2)+(1−β)2(T−1)
σ2 + 1

σ2
α

)−1
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Therefore,

p(α|h, β, σ2) ∼ N (VαMα, Vα) (2.2)

where

Mα =
(1− β2)h1 + (1− β)

∑T
t=2[ht − βht−1]

σ2
+
µα
σ2
α

, and

Vα =

(
(1− β2) + (1− β)2(T − 1)

σ2
+

1

σ2
α

)−1

.

2.2.2 Sampling the volatility persistence parameter β in the SV model

A similar principle can be applied to estimate β, whereby the posterior distribution of

β is

p(β|h, α, σ2) ∝ f(h1|α, β, σ2)f(h−1|h−T , α, β, σ2)× p(β)

=

√
1− β2

√
2πσ

exp

{
−(h1 − α)2 (1− β2)

2σ2

}
× 1

(
√

2πσ)T−1
exp

{
−
T−1∑
t=1

(ht+1 − α− β(ht − α))2

2σ2

}

× 1√
2πσβ

exp

{
−

(β − µβ)2

2σ2
β

}
.

Unlike parameter α, the posterior distribution of β cannot be represented in a Gaus-

sian form due to the existence of the prior p(β) and the marginal distribution f(h1|α, β, σ2)

and is therefore non-standard. Hence, another approach is needed to estimate β with

a non-standard posterior distribution.

The work of Chib and Greenberg (1994) was directed to estimate variants of the

ARMA(p, q) model. They also face the problem of non-standard posteriors. The

essence of their idea is to implement the MH algorithm to sample β from the proposal

(or candidate) density which equals to the conditional likelihood,
∏T
t=2 f(ht|ht−1, α, β, σ

2),

and set the target density to be the marginal likelihood f(h1|α, β, σ2).
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In order to implement this scheme, we first consider the conditional likelihood of h−1

as

f(h−1|h−T , α, β, σ2) =
1

(
√

2πσ)T−1
exp

{
−
∑T

t=2[ht − α− β(ht−1 − α)]2

2σ2

}

∝ exp

{
−
∑T

t=2[ht − [α(1− β) + βht−1]]2

2σ2

}

∝ exp

{
− 1

2σ2

[
T∑
t=2

{h2
t − 2ht[α(1− β) + βht−1] + [α(1− β) + βht−1]2}

]}

∝ exp

{
− 1

2σ2

[
T∑
t=2

{−2ht(−αβ + βht−1) + [α2(1− β)2 + 2αβht−1(1− β) + β2h2
t−1]}

]}

= exp

{
− 1

2σ2

[
T∑
t=2

{2ht(α− ht−1)β + [α2(1− 2β + β2) + 2αht−1β − 2αht−1β
2 + h2

t−1β
2]}

]}

∝ exp

{
− 1

2σ2

[
T∑
t=2

{(α2 − 2αht−1 + h2
t−1)β2 + [2ht(α− ht−1)− 2α2 + 2αht−1]β}

]}
.

We note that (α2 − 2αht−1 + h2
t−1) is equal to (ht−1 − α)2 and

[2ht(α− ht−1)− 2α2 + 2αht−1] = 2[htα− ht−1ht − α2 + αht−1]

= −2[(ht − α)(ht−1 − α)].

Therefore we have,

f(h−1|h−T , α, β, σ2) ∝ exp

{
− 1

2σ2

[
T∑
t=2

(ht−1 − α)2β2 − 2

T∑
t=2

[(ht − α)(ht−1 − α)]β

]}

∝ exp

−1

2

β2 − 2β
∑T
t=2[(ht−α)(ht−1−α)]∑T

t=2(ht−1−α)2

σ2(
∑T

t=2(ht−1 − α)2)−1


∝ exp

−1

2

(
β −

∑T
t=2[(ht−α)(ht−1−α)]∑T

t=2(ht−1−α)2

)2

σ2(
∑T

t=2(ht−1 − α)2)−1

 .

Hence neglecting the prior p(β) and f(h1|α, β, σ2), we have,

β|h, α, σ2 ∼ N(VβMβ, Vβ), (2.3)
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where

Mβ =
1

σ2

T−1∑
t=1

[(ht+1 − α)(ht − α)] and Vβ =

(
1

σ2

T−1∑
t=1

(ht − α)2

)−1

.

In order to implement the MH step, we first sample β∗ from (2.3). Given the current

value β(m−1) at the (m−1)th MCMC loop, we accept β∗ with probability min
{

q(β∗)
q(β(m−1))

, 1
}

,

where q(β) is

q(β) = p(β)

√
1− β2

√
2πσ

exp

{
−(h1 − α)2 (1− β2)

2σ2

}
.

We work with log q(x) so that

log q(β) = log p(β) +
1

2
log(1− β2)− 1

2
log(2πσ2)− (h1 − α)2(1− β2)

2σ2
,

and β∗ is accepted with probability min
{

exp[q(β∗)− q(β(m−1))], 1
}

.

2.2.3 Sampling the volatility of volatility parameter σ2 in the SV model

Assuming a prior of p(σ2) ∼ IG(a2 ,
b
2), we have

p(σ2|h, α, β) = f(h1|α, β, σ2)f(h−1|h−T , α, β, σ2)× p(σ2)

=

√
1− β2

√
2πσ

exp

{
−(h1 − α)2(1− β2)

2σ2

}
×

1

(
√

2πσ)T−1
exp

{
−
∑T

t=2[ht − α− β(ht−1 − α)]2

2σ2

}
×

( b2)
a
2

Γ(a2 )
σ−2(a

2
+1) exp

(
−

( b2)

σ2

)

∝ σ−2(T
2

+a
2

+1) exp

{
−(h1 − α)2(1− β2)

2σ2
−
∑T

t=2[ht − α− β(ht−1 − α)]2

2σ2
− b

2σ2

}
.

Hence, we have

σ2|h, α, β ∼ IG

(
T + a

2
,
b+ (h1 − α)2(1− β2) +

∑T
t=2[ht − α− β(ht−1 − α)]2

2

)
. (2.4)
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2.2.4 Sampling the latent volatility vector h of the SV model

Given the normal conjugate result, we now apply it to the SV model in (1.2) and

(1.3). It is assumed that ht is stationary, so the mean and variance of the uncondi-

tional marginal distribution of h1 is found by

E[h1] = α+ β(E[h1]− α)

= α,

and

Var[h1] = β2Var[h1] + σ2

=
σ2

1− β2
.

Hence,

h1|α, β, σ2 ∼ N
(
α,

σ2

1− β2

)
.

Now, the full conditional distribution of ht is given as

ht|ht−1, α, β, σ
2 ∼


N
(
α, σ2

1−β2

)
, t = 1,

N(α+ β(ht−1 − α), σ2), t > 1.

The complete estimation method of ht is described in detail in Appendix B.

2.3 Conclusion

After considering the basic SV model, we discuss in the upcoming Chapter the Gegen-

bauer long memory SV model. This model motivates the model progression of this

thesis which aims to combine the Gegenbauer long memory time series model within

the SV modelling framework to overcome the shortcomings of each one alone. This

model and its applications are reported in the next Chapter as our first publication in

Studies in Nonlinear Dynamics and Econometrics.
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Chapter 3

Gegenbauer long memory

processes with stochastic volatility

“If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a

duck..."

Unknown

This paper discusses a time series model which has generalised long memory in the

mean process with stochastic volatility errors and develops a new Bayesian posterior

simulator that couples advanced posterior maximisation techniques, as well as tradi-

tional latent stochastic volatility estimation procedures. Details are provided on the

estimation process, data simulation, and out of sample performance measures. We

conduct several rigorous simulation studies and verify our results for in and out of

sample behaviour. We further compare the goodness of fit of the generalised process

to the standard long memory model by considering two empirical studies on the US

Consumer Price Index (CPI) and the US Equity Risk Premium (ERP).

3.1 Introduction

Applications in econometrics, hydrology and other scientific disciplines have moti-

vated time-series developments in fractionally differenced, or long range models

over the past two decades. The seminal work of Granger and Joyeux (1980) and

Hosking (1981) introduced the autoregressive fractionally integrated moving average

(ARFIMA) model. A stationary time series yt is said to be long memory if
∑∞

k=0|δ(k)|
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diverges, where δ(k) is the kth-lag autocovariance. This class of time series general-

izes the usual Box-Jenkins ARIMA model by modelling long term correlation struc-

tures as suggested by Mandelbrot and Ness (1968).

The prominence of the ARFIMA model can be seen through various extensions such

as the long memory in stochastic volatility process (Baillie, 1996), ARFIMA model

with ARCH errors (Hauser and Kunst, 1998) and the fractionally integrated GARCH

model with leverage (Baillie, Bollerslev, and Mikkelsen, 1996). Although theoret-

ically pleasing, the implementation of the ARFIMA model was a major deterrent.

Chan and Palma (1998) operationalized the ARFIMA model by considering a state

space representation and an approximate maximum likelihood estimator by means

of the Kalman filter. Since then, the ARFIMA model has been applied extensively

to a myriad of contexts with various extensions. Goldman et al. (2013) estimate a

threshold fractionally integrated model with efficient jumps to better model intra-

day Exchange Traded Funds data. Iglesias, Jorquera, and Palma (2006) proposed a

new methodology to better handle residuals which exhibit long-memory. Reisen, Ro-

drigues, and Palma (2006) discuss the estimation of seasonal fractional long memory

models. More recent advances include the development of a heterogeneous infinite

order autoregressive long memory estimate by ordinary least squares (Hwang and

Shin, 2014). Conrad and Karanasos (2005) develop a dual long memory process by

first estimating the conditional variance from the ARFIMA-FIGARCH model and then

use Grander methods to test for bidirectional effects. Carlos and Gil-Alana (2016) use

Chebyshev polynomials to examine the interaction between non-linear deterministic

trends and long memory with one or more non-zero power spectrum frequencies.

Most notably, one recent suggestion is the ARFIMA stochastic volatility (ARFIMA-

SV) model of Bos, Koopman, and Ooms (2014a), which models long memory in

the time series itself, and measures the variance as a latent stochastic volatility (SV)

process of Taylor (1986). The authors find good results measuring the Consumer

Price Index of the United States (US CPI). We see this as an exciting path as the

amalgamation of long memory and SV are representative of two important stylized

facts of financial time series. The process is able to capture long memory effects, and

the variance is able to develop more freely over time compared to the usual white

noise case. The seminal work of Jacquier, Polson, and Rossi (1994) sheds light on

a Bayesian approach on the estimation of SV models. Most notably, the estimation



3.1. Introduction 31

of the latent variable ht was later refined by Kim, Shephard, and Chib (1998) as a

multi-move sampler which is briefly discussed later. Notable extensions of SV models

include the Threshold Stochastic Volatility Model (So, Lam, and Li, 2002), SV models

with fat-tails and correlated errors (Jacquier, Polson, and Rossi, 2004), SV models

with Markov Switching (So, Lam, and Li, 1998) and the generalization of the return

distribution using the generalised-t distribution (Wang, Choy, and Chan, 2013a).

An appealing generalization of traditional long memory models are generalised au-

toregressive fractional integrated moving average models (GARFIMA); whereby Gegen-

bauer polynomials replace the plain long memory fractional differencing operator.

Gegenbauer polynomials were first introduced to the time-series community by Gray,

Zhang, and Woodward (1989a). The novelty in such polynomials lie in their orthog-

onality and recursion properties. Bordignon, Caporin, and Lisi (2007) considered

Gegenbauer fractionally integrated GARCH (FIGARCH) processes to measure intra-

day volatility. Lopes and Prass (2013) further extended this by including seasonality.

Evidently, we see a worthwhile pursuit in the coupling of the GARFIMA model as well

as the SV model: the GARFIMA-SV model. We note the GARFIMA-SV (and therefore

the ARFIMA-SV) is a special case of the so called doubly fractional model of Arti-

ach and Arteche (2012). The authors use a sequential estimation strategy based on

the Whittle appoximation to maximum likelihood in order to estimate the model in

sample only, by first estimating a GARFIMA mean model, then using the residuals to

estimate a GARFIMA-SV model. We purposely note here that our first contribution is

to detail a new Bayesian estimation procedure, and discuss in detail forecasting tech-

niques. The Bayesian approach includes many added benefits. Instinctively, Bayesian

schemes are advantageous over frequentist approaches as complex hierarchical model

structures can be specified and estimated with MCMC. Further, the inferences made

are conditional on the observed data without relying on asymptotic approximations

and the output provides credibility intervals which are easy to interpret. Our esti-

mation method is also straight forward such that alternative mean structures (e.g.,

AR(p), exogenous variables, trends, jump points, outliers to name a few) can be

easily implemented via the design matrix . We rely on the exploitation of matrix

structures and efficient Kalman filtering techniques as employed by Chan (2013) to

greatly reduce the computational burden.

Pursuing the GARFIMA-SV model has several motivations stemming from applied and
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theoretical reasons. Bhardwaj and Swanson (2006) showed that long memory mod-

els can provide better out-of-sample results than ARMA and GARCH models for the

prediction of macroeconomic and financial time series. Gray, Zhang, and Woodward

(1989a) also notes that some time series processes do not necessarily display slowly

dampening autocorrelations, yet are still valid candidates for generalised fractional

differencing. In practice, the time series analyst can be conflicted with persistent

residual autocorrelations at high lags which are not accounted for with parsimonious

model choices. A potential candidate model would therefore be a long-memory fil-

ter, or more generally, a Gegenbauer filter with time dependent stochastic residuals.

Long memory models in the past have been criticized for mistaking trend as long

memory. Sowell (1992) outlined a hypothesis for testing trend stationarity versus

difference stationarity. Crato and Rothman (1994) further supported these claims

and found strong evidence of difference stationarity in popular macroeconomic time

series. Supplementary evidence has found the existence of long memory in exchange

rates (Cheung, 1993; Gil-Alana and Toro, 2002; Fei-xue, Yan, and Tie-shan, 2009);

unemployment (Mikhail, Eberwein, and Handa, 2006; Lahiani and Scaillet, 2009;

Gil-Alana, 2002); and equity returns

(Lillo and Farmer, 2004; Aye et al., 2014; Turkyilmaz and Balibey, 2014).

Our second contribution is the detailing and implementation of a Bayesian forecasting

scheme and directly applying our findings to the US equity risk premium (US ERP),

which is found to be non-stationary under the ordinary ARFIMA-SV specification. A

prominent point of interest for practitioners globally has been extremely high bouts of

volatility, looming deflationary talks and sub-par equity returns. The ERP intuitively

delivers an extremely strong case to exhibit long memory as well as time dependent

residuals as it moves with economic cycles, and exhibits long-term autocorrelations.

Indeed, there are deeply rooted practical reasons to better understanding the ERP

also, as macroeconomic based asset managers view the ERP as a gauge of investor

sentiment. We are currently not aware of any papers which consider the long mem-

ory properties of the ERP. Considering the ERP is one way to better understand the

relationship between stocks and bonds, and therefore there is merit in understanding

its structural process.

The remainder of the article is organised as follows. The GARFIMA-SV model is

introduced in Section 3.2, and we describe its relationship to the ARFIMA-SV model.
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In Section 3.3, we outline the complete MCMC sampling scheme and some important

computational issues. Section 3.4.2 describes our in and out of sample simulation

studies and some further computational issues. Our empirical applications to the US

CPI and US ERP are detailed in Section 3.5, and we finally conclude with Section 3.6.

3.2 The Gegenbauer long memory in mean with stochastic

volatility model

Let yt, t = 1, 2, ..., T be a stochastic process satisfying the equations

φ(B)(1− 2uB +B2)d(yt − µ) = ψ(B)εt, εt|Ft−1 ∼ N(0, eht) (3.1)

ht = α+ β(ht−1 − α) + ηt, ηt ∼ N(0, σ2) (3.2)

where the autoregressive (AR) and moving average (MA) polynomials are φ(B) =

1−φ1B− . . .−φpBp, ψ(B) = 1+ψ1B+ . . .+ψqB
q respectively and B is the backshift

operator.

We assume that yt is stationary and invertible such that the zeros of φ(z) and ψ(z)

lie outside the unit circle with no common zeros, µ is a constant and Ft−1 is the

natural filtration of {yt}t≥0. It is known that yt is causal when ({|u|< 1, d < 0.5} ∪

{|u|= 1, d < 0.25}), and invertible when ({|u|< 1, d > −0.5} ∪ {|u|= 1, d > −0.25}).

The class of time series generated by (3.1) and (3.2) is called a GARFIMA(p, q)-SV

time series process and long memory when ({|u|< 1, 0 < d < 0.5}∪{|u|= 1, 0 < d < 0.25}).

Clearly, ht is the log-volatility, which evolves according to the state equation (3.2)

for t = 1, . . . , T , α is the constant level of the volatility, β is the persistence of the

volatility process and σ2 is the volatility of volatility such that E[εtηt] = 0 ∀ t and

E[εtηs] = 0 ∀ t, s. We assume |β|< 1 so ht is stationary and initialized with h0 ∼

N(α, σ2/(1− β2)).

For simplicity, we discuss the generalised fractional stochastic volatility noise process

when φ(B) = ψ(B) = 1 such that (1−2uB+B2)d(yt−µt) = εt. Under the assumption

that yt is causal, we have the following MA(∞) representation

yt − µ = (1− 2uB +B2)−dεt =
∞∑
j=0

λjεt−j , (3.3)
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where λj are the Gegenbauer coefficients, initialized with λ0 = 1, λ1 = 2ud and

follow the recursion

λj = 2u

(
d− 1

j
+ 1

)
λj−1 −

(
2(d− 1)

j
+ 1

)
λj−2, j ≥ 2. (3.4)

Further details on the Gegenbauer polynomial and its properties can be found in

Rainville (1960). A truncated moving average representation of the Wold represen-

tation in (3.3) arises from truncating at lag J so that

yt − µ = (1− 2uB +B2)−dεt ≈
J∑
j=0

λjεt−j . (3.5)

The choice of J is discussed further in Section 3.2. The power spectrum of (3.3),

conditional of ht, is given by

fyt|ht(ω) = C[4(cos ω − u)2]−d − π < ω < π,

where C is a suitable constant, and the Gegenbauer frequency is ω = cos−1(u).

It is duly important to note the special case when u = 1, (3.3) collapses to the

ARFIMA-SV model of Bos, Koopman, and Ooms (2014a). In this special case, (1 −

B)2d(yt − µ) = εt, where (1 − B)2d is said to be an integrating filter of order 2d and

typically defined in terms of its Taylor series expansion.

3.3 Estimation

3.3.1 Sampling scheme of the (G)ARFIMA-SV

This section explains an efficient sampling scheme of the long-memory GARFIMA(1,0)-

SV model. It should be noted that other mean structures can also be easily imple-

mented. The observation equation in (3.1) now becomes

yt = µ+ φyt−1 +

J∗t∑
j=0

λjεt−j , (3.6)
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where E[yt] = µ/(1 − φ), |φ|< 1 and Jt∗ = min(t, J). For a given set of observations

(y1, . . . , yT ), consider the following matrix representation

Y = XΞ +GJε, (3.7)

where

Y =


y1

y2

...

yT

 , X =


1 y0

1 y1

...

1 yT−1

 ;

Ξ′ = (µ, φ)′, ε = (ε1, . . . , εT )′ is a T × 1 vector of stochastic innovations which have

the joint multivariate Gaussian distribution N(0,V) with V = diag(eh1 , . . . , ehT ). GJ

is a T × T lower triangular banded matrix with J Gegenbauer truncated moving

average parameters in each column, and ones on the diagonal as given below

GJ =



1 0 . . . . . . . . . . . .
. . . . . . 0

λ1 1 . . . . . . . . . . . .
. . . . . . 0

λ2 λ1 . . . . . . . . . . . .
. . . . . . 0

... λ2 . . . . . . . . . . . .
. . . . . .

...

λJ
... . . . . . . . . . . . .

. . . . . .
...

0 λJ . . . . . . . . . . . . 0 0 0
... 0 . . . . . . . . . . . . 1 0 0
...

... . . . . . . . . . . . . λ1 1 0

0 0 . . . . . . . . . . . . λ2 λ1 1



.

It is elementary to see that the conditional distribution Y |Ξ,h,GJ ∼ N(XΞ′,Γ)

where Γ = GJV G
′
J , and |GJ |= 1 such that |Γ|= exp(

∑T
t=1 ht). Therefore, the log-

likelihood of the Gaussian GARFIMA(1,0)-SV model is

log f(Y |Ξ,h,GJ) = −T
2

log(2π)− 1

2

T∑
t=1

ht −
1

2
(Y −XΞ)′Γ−1(Y −XΞ) (3.8)

where h = (h1, . . . , hT )′.

The posterior sampler of the GARFIMA-SV model is globally a Gibbs sampler with 6
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blocks. Essentially, we use a combination of Gibbs sampling and Metropolis-within-

Gibbs to sample the full conditional posterior distributions.

In order to estimate u and d, we consider two independent truncated normal priors

with support in the region where generalised long-memory holds

u ∼ N(µu, σ
2
u)1ud

d ∼ N(µd, σ
2
d)1ud

where 1ud = 1({−1 < u < 1, 0 < d < 0.5} ∪ {|u|= 1, 0 < d < 0.25}) and 1 is an indi-

cator function. Note that we impose Gegenbauer long-memory stationarity through

the prior distributions of u and d.

As for other parameters, we assume the following independent priors

Ξ ∼ N2(µΞ,ΣΞ)1(|Ξ|< 1), α ∼ N(µα, σ
2
α), β ∼ N(µβ, σ

2
β)1(|β|< 1), σ2 ∼ IG(

a

2
,
b

2
)

where N2(·,·) is the bivariate normal distribution, ΣΞ is a diagonal variance-covariance

matrix and IG(·,·) is the Inverse-Gamma distribution. We assume that all the priors

are independent such that

p(Ξ, u, d, α, β, σ2) = p(Ξ)p(u)p(d)p(α)p(β)p(σ2).

Let Y ∗ = X∗Ξ + ε, where Y ∗ and X∗ are the vector and matrix G−1
J Y and G−1

J X

respectively, such that Y ∗ ∼ N(X∗Ξ,V ). Hence, it is standard to see the posterior

distribution of Ξ is

Ξ|u, d,h ∼ N2((X∗
′
V −1X∗+Σ−1

Ξ
)−1X∗

′
V −1Y ∗, (X∗

′
V −1X∗+Σ−1

Ξ
)−1)1(|Ξ|< 1).

(3.9)

Note that sampling from (3.9) is a draw from a truncated bivariate normal distribu-

tion; see Robert (1995) for details.

Once the mean structure has been sampled, we then concentrate out the volatility

process given by ε = G−1
J (Y −XΞ). One of the earliest samplers to estimate the

SV model is that of Kim, Shephard, and Chib (1998) which measures the stochastic

volatility model using a mixture of linear Gaussian models. We do not describe the

details due to space constraints, but direct readers to the original article. We first
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sample from

α|h, β, σ2 ∼ N

(
Vα

(
(1− β2)h1 + (1− β)

∑T−1
t=1 (ht+1 − βht)

σ2
+
µα
σ2
α

)
, Vα

)

where

Vα =

(
1− β2 + (T − 1)(1− β)2

σ2
+

1

σ2
α

)−1

.

In order to sample β, we use a specialized version of a Metropolis-Hastings algorithm

first suggested by Chib and Greenberg (1994). Given the current value β(m−1) at the

(m−1)th iteration, sample a proposal value β∗ from N(β̂, Vβ) where β̂ =
∑T−1

t=1 (ht+1−

α)(ht − α)/
∑T−1

t=1 (ht − α)2 and Vβ = σ2/
∑T−1

t=1 (ht − α)2. If |β∗|< 1, then accept with

probability min {1, %} where % = exp
{
g(β∗)− g(βm−1)

}
and

g(x) = log p(x) +
1

2
log(1− x2)− (h1 − α)2(1− x2)

2σ2

and p(·) is the prior distribution of β. Under the assumption of a conjugate prior

σ2 ∼ IG(a2 ,
b
2), the posterior distribution of σ2 is a standard conjugate result given by

σ2|h, α, β ∼ IG

(
T + a

2
,
b+ (h1 − α)2(1− β2) +

∑T−1
t=1 [ht+1 − α− β(ht − α)]2)

2

)
.

The posterior of both u and d are complicated and do not have a tractable conjugate

form, and subsequently samples from these distributions cannot be obtained directly.

In order to sample from u and d, we use an approximation based on posterior modes

from Gelman et al. (2013), coupled with a proposal distribution precision tuning al-

gorithm which we conduct only within the burn-in period. Details of this are provided

in Appendix A. We briefly note that attempts to estimate [u, d] using the Metropolis al-

gorithm proved futile due to extremely slow convergence, and "boundary trap" issues.

Consider the following independence chain Metropolis-Hastings algorithm

1. Maximimize the log posterior of u and d to find the modes ũ and d̃ respectively.

The log posterior modes are found by maximising

log pu(u|d,Ξ,h) = log f(Y |d,Ξ,h) + log N(µu, σ
2
u)1ud

log pd(d|u,Ξ,h) = log f(Y |u,Ξ,h) + log N(µd, σ
2
d)1ud
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maximising (minimizing) a univariate function on a fixed interval is easily and

quickly performed on most routine statistical packages (fminbnd in MATLAB,

optimx in R, etc).

2. Sample u∗ from the proposal distribution N(ũ, c2
uVu) denoted by qu, where cu is

the scaling parameter. See Appendix A for details.

3. Reject u∗ unless ({−1 < u∗ < 1, 0 < d < 0.5} ∪ {|u∗|= 1, 0 < d < 0.25}).1 Oth-

erwise, accept u∗ with probability ζ, where

ζ = min

{
1,
pu(u∗|d,Ξ,h)qu(u(m))

pu(u(m)|d,Ξ,h)qu(u∗)

}
.

4. Repeat steps 2-3 by replacing d with d∗ and u∗ with u.

If we accept u∗ and d∗, then we update u(m+1) = u∗ and d(m+1) = d∗ respectively,

and generate the updated GJ using the new Gegenbauer parameters. We use the

multi-move algorithm to sample h due to its superiority over the single-move sampler

as documented in Kim, Shephard, and Chib, 1998, and full details are provided in

Appendix B. The global sampling procedure is then repeated many times until we are

sampling from the true parameter posterior distributions.

Further, under the advice of a referee, we include the derivation of the marginal

likelihood in Appendix C so the GARFIMA-SV model can be easily compared to other

processes.

3.3.2 Computational issues

The computational burden of evaluating the log-likelihood and the choice of J are

contemporaneous to one another and deserve some commentary. Evaluating the log

likelihood function can be a time consuming process during each MCMC sweep. In

order to speed this procedure up, we make a few changes to exploit the nature of the

problem.

Firstly, computing Γ−1 can happen hundreds if not thousands of times during the

sampling of u∗ and d∗ due to the optimisation process. We take advantage of the

1Practically, when u∗ ≥ 0.99, then we set u∗ = 1 in order to give the event |u|= 1
non-zero probabilities. This adjustment is also applied to the Metropolis-Hastings
ratio of Step 3.
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banded structure of Γ in order to do this. A much quicker alternative is to evalu-

ate (γ−1)T (γ−1) = Γ−1 where γ is the Cholesky decomposition of Γ. This reduces

the computational time of evaluating Γ−1 by a factor of O(T 3)
2×O(T ) . Second, since GJ

is sparse, we work with sparse matrix packages which are readily available on most

statistical software. This speeds up the computation of the quadratic term in (3.8)

by storing only non-zero elements of GJ together with their indices. Ultimately, this

means the computational time is reduced by eliminating operations on zero elements.

Finally, we adopt an improved MCMC algorithm for estimating the latent variable h

using the so-called precision sampler of Chan, 2013. The novelty in the approach

is using recent advances in state space simulation techniques to exploit the banded

structure of Γ. We avoid details not to detract from our argument and direct enthusi-

astic readers to the original article.

In actual fact, after these changes are made we still find the estimation of u and

d can consume upwards of 50% of the overall computational time depending on T

and J . We find that in practice, increasing the value of J is more computationally

expensive than T . Evidently, the less sparse GJ becomes, the slower the evaluation

of the quadratic term in (3.8) becomes.

Dissanayake, Peiris, and Proietti, 2016 discusses an optimal truncation point of the

moving average Gegenbauer white noise innovation process from an expected mean

square argument via simulation studies. It is found that an optimal lag order using

the Kalman filter is between [29, 35]. Although our main focus is not to determine

what the optimal lag order is, sensitivity analysis reveals that J > 35 does not greatly

increase accuracy, however J < 29 does have some material impact on the results.

We therefore find that using J = 35 is a good trade-off between accuracy and com-

putational time.

3.4 Simulation studies

Our proposed model leaves some open-ended questions such as what sample size is

required in order to achieve reliable results, and if the values of (u, d) have an impact

on the estimation of the global model. Given these challenges, we see a compre-

hensive simulation study as a sensible choice to answer these questions. Clearly, the
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limitation in what follows is the limited scope of parameter choices and priors. A

more in depth analysis is mandatory before this model is applied in practice.

3.4.1 Parallelization issues of MCMC

We now discuss some computational issues with our simulation study, which are also

applicable to our empirical applications in latter sections. MCMC is a notoriously

computationally intensive exercise since chains are dependent on previous values

and it proves difficult to invoke multiple computer cores to evaluate one single chain.

However, the nature of our simulation study is embarrassingly parallel, and can be

scaled across multiple computer cores relatively easily. Each MCMC chain is indepen-

dent so our work is scaled up by creating multiple execution threads across multiple

cores, across multiple machines. This can be concurrently executed on a multicore

machine. Without parallel computing, each chain must be run sequentially which is

an extremely time consuming task.

Randomness is what drives the parameter estimation procedure, and it is critical

to generate uncorrelated randomness across multiprocessor cores. There are some

issues pertaining to the simulation of random quantities which need to be addressed.

By default, we assume that all simulated realizations of θ are independent. This

requires that not only randomness be achieved within cores, but also between cores.

Standard pseudo-random number generators (PRNGs) are unsatisfactory in a parallel

context, as executing the same command in parallel will result in the same stream.

A widely used solution to this is to use a different seed on each processor. The most

commonly used method in practice is to use a seed value equal to the current system

time, or the system time multiplied by an number unique to the parallel loop (e.g.,

loop number). This is still however unsatisfactory.

By default, each stream is generated with the same deterministic function ω(·) and

has a finite periodicity. Clearly, there is a chance of overlap between streams as they

are generated using the same function ω(·) thereby inducing dependance. Correlation

in pseudo-random number sequences can lead to serious and undetectable errors.

This can be resolved with the use of initial value parametrized PRNGs. In essence,

each deterministic function ω(.) is parameterized according to the seed which is used.

In our case, each function which generates the stream will be dependent on the seed
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value of computer system time multiplied by loop number. This avoids any poten-

tial overlap between random streams, and therefore ensures each MCMC chain is

independent and does not overlap. A popular choice is the so called multiplicative

lagged-Fibonacci generator. The details of this algorithm are out of the scope of this

paper, however interested readers are encouraged to see Mascagni and Srinivasan,

2004 for details.

All of our experiments are coded in MATLAB and run on a Dell PowerEdge R630

server with a Intel Xenon E5-2680V3 CPU and DDR3 128GB of resident RAM. Each

node consists of 24 cores, and we are able to execute up to 256 threads at once. The

SV sampling engine is implemented using a MATLAB script provided by Joshua Chan,

which can be downloaded from his website2.

3.4.2 In sample

For completeness, we first discuss how to simulate a GARFIMA(1,0)-SV process. We

are compelled by the work of Bardet et al. (2003) to use a MA expansion over other

means to simulate the process, as the authors show this to be more robust than the

Durbin-Levinson algorithm, and the AR aggregation process of Granger (1980). Our

method is general enough such that other mean processes can alternatively be con-

sidered (unobserved components, ARMA etc). It is important to note that simulating

a long memory stochastic volatility model is the same, except we replace Step 3 of the

following algorithm with ARFIMA moving average truncated coefficients; see Hosk-

ing (1981).

Algorithm 1

1. Initialize h0 as h0 ∼ N
(
α, σ2

1−β2

)
, and iterate ht for t = 1, . . . , J, . . . , T + R

forward in time with transition equation (3.2) as ht = α + β(ht−1 − α) + ηt

where ηt is a draw from N(0, σ2), and R is the burn-in period.3

2. Simulate the SV errors εt as exp(ht/2)zt ∀ t, where zt ∼ N(0, 1).

3. Generate the vector of Gegenbauer coefficients using (3.4).

4. Initialize y0 = µ
1−φ , and iterate yt forward in time as yt = µ+φyt−1+

∑J∗t
j=0 λjzt−j

for t = 1, . . . , J, . . . , T +R, where Jt∗ = min(t, J).
2http://people.anu.edu.au/joshua.chan/
3We use R = 1, 000, 000 always.
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5. Discard the first R values.
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FIGURE 3.1: Sample autocorrelation functions (SACFs) for the 40 lag
truncation point GARFIMA-SV process with µ = 0, α = 0, β =
0.9, σ2 = 0.2. Clearly, the larger the value of d, the further away
the process is from being purely randomness and invokes cycli-
cality into the autocorrelation structure. Interestingly, positive
values of u introduce smoother autocorrelation cycles, whilst
negative values of u cause jaggered autocorrelation patterns.
These two properties are useful when identifying evidence of
generalised long memory during the initial exploratory data

analysis process undertaken by the time series analyst.

We now outline a comprehensive simulation study in order to assess the performance

of our proposed sampling scheme. First, data is generated from a GARFIMA-SV model

according to Equations (3.5) and (3.2) (using Algorithm 1) and the parameters are

estimated subsequently. We consider u = [−0.5, 0.5, 0.9, 1] and d = [0.05, 0.25, 0.45]

on the Gegenbauer parameter plane. The AR structure is set as µ = 0 and φ = 0.90,

and the stochastic residuals are simulated according to the parameters α = 0, β =

0.95 and σ2 = 0.2. Our simulated process has the expression

(1− 0.9B)(1− 2uB +B2)dyt = εt, εt|Ft−1 ∼ N(0, eht)

ht = 0.95ht−1 + ηt, ηt ∼ N(0, 0.2).

Three different time lengths T are considered: 500, 1000, 1500. The hyperparameter

µΞ is set to
[

0 0.8
]′

, and we find that ΣΞ =

 √10 0

0 5

 is a sensible choice.

µu is set to half the search region to 0, and similarly, µd is taken as the mid-point

of the support region to be 0.25 for the Gegenbauer filter, and 0.125 for the long
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memory filter. The variance is set as half the range so that σ2
u = 1 and σ2

d = 0.25 for

the Gegenbauer case, and σ2
d = 0.125 for the plain long memory case. We find that

setting Vu and Vd to be relatively larger works best with tuning. As such, Vu = 2 and

Vd = 0.50 for the Gegenbauer case, and Vd = 0.25 for the plain long memory case.

For the SV parameters, the choice of prior is typically not very influential as the

likelihood carries most of the information. We however briefly discuss the motivation

behind our prior choices for completeness. A vague prior is typically used for α, but

we however favour a slightly more informative prior depending on the nature of the

time series. For most financial series, daily log returns data have a variance of less

than 0.0001 which implies an α of log(0.0001) ≈ −9. On the other hand, percentage

log returns exhibit a variance of 1, hence a log volatility of 0 is suitable. We will

assume that our synthetic time series’ are percentage log returns, so that µα = 0.

As for σ2
α, some popular choices in the literature are 5 (Jacquier, Polson, and Rossi,

1994), 1 (Omori et al., 2007) and
√

10 (Kim, Shephard, and Chib, 1998). We find

good results with σ2
α =
√

10. Kim, Shephard, and Chib (1998) notes that β̂ is typically

estimated≈ 1 for most financial time series, and accepted with a high acceptance rate

(> 99%). Therefore, we set µβ = 0.95 and σ2
β = 5 so that it is non-informative. The

choice of hyperparameters for σ2 is not very influential in most settings as long as it

is kept away from 0. Hence, we use the prior choice of Kim of a = 5 and b = 0.05.

The process in equations (3.5) and (3.2) are simulated Ω = 1, 000 times, and esti-

mated each time using the GARFIMA-SV model. We report the estimated mean of

each parameter, the root mean squared error (RMSE) and the mean of the standard

errors in parentheses . We use M = 10, 000 iterates after a burn-in period of 10, 000.

We purposely choose a burn-in period of half the total number of iterations under the

advice of Gelman et al. (2013).

Table 1 reports our findings when the length of the time series is T = 500. We first

note that when d is low, and u is close to 0, then û has a positive bias and d̂ has

a negative bias. Moreover, µ and φ are estimated quite accurately as the likelihood

carries enough information about the observation equation. However, α has a slight

upward bias, and σ2 has a negative bias. Clearly, volatility is a latent process and

a sample size of 500 is inadequate to provide enough information to estimate the

parameters of the latent process. We see slightly more improved parameter estimates

when T is set to 1, 000, in Table 2 but are still not adequate for inferential purposes.
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A sample size giving more reliable results seems to be T = 1, 500 as evidenced by

Table 3. We see lower standard errors, as well as lower RMSEs, but however σ2 is

still underestimated. We particularly note the same effect is seen with lower values

of σ2, and is therefore not an artifact of the choices of hyperparameters. Clearly, σ2

requires even larger sample sizes in order to attain greater accuracy. Indeed, the same

phenomena is found using a plain SV model. Gelman (2006) notes that the inverse-

gamma is a poor choice as when σ2 is near 0, the resulting inferences are sensitive to

a and b, and advises to use a non-informative prior instead. We however favour this

specification due to the clean conjugacy properties and most importantly because as

our purpose is focus on the relative merits of the generalised long-memory process

and its long memory counterpart.

We include some diagnostics in Appendix D which deserve some commentary. Table

D.1 are the Gelman-Rubin statistics for each parameter in the case of T = 1, 500. We

see that all parameters have converged as they are lower than 1.2 and close to 1. The

only notable remark is we see that u tends to have a slightly higher statistic in the

case when d = 0.05. This is expected as the process becomes "less long memory" as

d→ 0. This is further reaffirmed with the SACF charts in Figures D.1 and D.2.

3.4.3 Out of sample

Time series forecasting in a Bayesian setting is an intuitive process. We provide details

on how this is performed in our setting, and once again, the method is general enough

to be applied to more complicated models. In essence, parameter vector draws from

the posterior distribution are used to generate a new data set under the model. This

new data set is used to make inferences after averaging out. This contrasts sharply

to the frequentist who bases forecasting on one particular set of estimated parameter

values.

The predictive density is particularly important to the Bayesian as it is not only used

to forecast, but also to measure out-of-sample fitness via the so called Bayes Factor

(BF). A distinct advantage here is that we are able to measure the uncertainty of our

forecasted value via the posterior predictive variance, which is not readily available to

the frequentist. In order to assess the goodness of fit between two competing models,
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we rely on the log Bayes factor which can be thought of as the Bayesian equivalent of

the frequentists likelihood ratio test; see Geweke and Amisano (2011) for details.

First recall the one-step ahead predictive likelihood at time T + 1 is defined as

PLT+1 = p(yT+1|yoT ) =

∫
θ

p(yT+1|yoT ,θ)× p(θ|yoT )dθ.

where yoT = [yT , . . . , y1]. In practice, we can compute this by "averaging out" the

parameter vector θ over iterates in the posterior sample as

P̂LT+1 ≈
M∑
m=1

p(yT+1|yoT ,θ(m))/M. (3.10)

If we are considering two competing models, A and B, for some given data Y the

one-step ahead log Bayes factor KT+1 is given by

KT+1 = log

(
pA(yT+1|yoT )

pB(yT+1|yoT )

)
= log

( ∫
θ pA(yT+1|yoT ,θA)× pA(θA|yoT )dθA∫
θ pB(yT+1|yoT ,θB)× pB(θB|yoT )dθB

)
≈ log

[
P̂LA,T+1

P̂LB,T+1

]
= log P̂LA,T+1 − log P̂LB,T+1. (3.11)

The higher the log Bayes factor (3.11), the stronger the evidence is for model A over

B. An advantage of the log Bayes factor is that it includes a model structure penalty

and therefore protects against over fitting (Kass and Raftery, 1995). The log Bayes

factor is cumulative over forecast horizons such that if we wish to evaluate the out-

of-sample performance across several forecast periods (T + 1, . . . , T + s), with each

based on a data window of T observations, then the one-step ahead cumulative log

Bayes factor (CBFT+s) is

CBFT+s =

T+s∑
t=T+1

Kt =

T+s∑
t=T+1

(
log P̂LA,t − log P̂LB,t

)
. (3.12)

The information available to time T is the observed data, while out of sample predic-

tion will begin at time T + 1 and end at T + s. We now provide practical details on

how one can generate the predictive density, and evaluate the predictive likelihood

at time T + 1 given the observer is currently at time T .
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Algorithm 2

1. Iterate through the posterior sampling scheme M times so that we obtain θ(m)

for m = 1, . . . ,M .

2. Denote the mth Gegenbauer error at time t as e(m)
t = eht/2εt. For each m

(a) Obtain a draw from the conditional density

h
(m)
T+1|θ(m) ∼ N

(
α(m) + β(m)(h

(m)
T − α(m)), σ2(m)

)
.

(b) Obtain the Gegenbauer errors recursively as ê(m)
t = yt−µ(m)−

∑J∗t
j=1 λ

(m)
j ê

(m)
t−j

for t = 1, . . . , J, . . . , T , where Jt∗ = min(t, J).

(c) Evaluate the predictive likelihood at time T + 1 as per (3.10)

by evaluating N
(
µ(m) +

∑J
j=1 λ

(m)
j ê

(m)
T+1−j , exp

{
h

(m)
T+1

})
at yT+1 denoted

as PL(m)
T+1.

(d) Draw one sample from the predictive density at time T + 1 from

N
(
µ(m) +

∑J
j=1 λ

(m)
j ê

(m)
T+1−j , exp

{
h

(m)
T+1

})
denoted as ŷ(m)

T+1.

3. Evaluate P̂LT+1 =
∑M

m=1 PL(m)
T+1/M .

4. Evaluate ŷT+1 =
∑M

m=1 ŷ
(m)
T+1/M .

In order to further reaffirm the reliability of our model, we perform a out-of-sample

simulation study. A GARFIMA(1,0)-SV model is simulated with parameters u =

0.5, d = 0.2, µ = 0, φ = 0.90, α = 0, β = 0.95 and σ2 = 0.2 of length 1, 501. The

observation window is set to 1, 500, and we forecast one-step ahead using both the

GARFIMA-SV and ARFIMA-SV models. This procedure is repeated Ω = 1, 000 times,

with different simulated data sets. Our study can be summarized as follows

1. For i = 1, . . . ,Ω

(a) Simulate a GARFIMA(1,0)-SV model with parameters u = 0.5, d = 0.2, µ =

0, φ = 0.90, α = 0, β = 0.95 and σ2 = 0.2 of length 1, 501.

(b) Forecast ŷ1,501|y1,500 and calculate the one-step ahead log Bayes factor de-

noted as K(i)
T+1 for the ith simulated data set, according to (3.11).

2. Evaluate the one-step ahead cumulative log Bayes factor as CBF(i) =
∑i

τ=1K
(τ)
T+1.

where K(τ)
T+1 represents the log Bayes factor of the τ th simulated data set. Figure 3.2

(a) is the evolution of CBF(i) for i = 100, . . . ,Ω of the GARFIMA-SV model over the
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FIGURE 3.2: (a): Simulated GARFIMA-SV data one-step ahead cu-
mulative log Bayes factor: GARFIMA-SV Vs. ARFIMA-SV. (b): Sim-
ulated GARFIMA-SV data cumulative relative RMSFE: GARFIMA-SV
Vs. ARFIMA-SV. The GARFIMA-SV model is clearly the superior model
choice under both sets of criteria. Note that both graphs start from
100 simulations to avoid distorting the vertical axis of Figure

(b).

ARFIMA-SV model across the Ω = 1, 000 replicates (we ignore the first 99 values for

aesthetic reasons). Clearly, the more positive this value is, the more we favour the

GARFIMA filter over the ARFIMA filter. There is clear evidence the GARFIMA model

is by far the favored model.

In Figure 3.2 (b), we again show the evolution of the relative cumulative root mean

squared forecast error of both models, which is calculated as

Relative cumulative RMSFE(i) =

∑i
τ=1(ŷ

(τ)
A,T+1 − y

(τ)
T+1)2∑i

τ=1(ŷ
(τ)
B,T+1 − y

(τ)
T+1)2

0.5

(3.13)

where, for example, ŷ(τ)
A,T+1 represents the one-step ahead forecast of the τ th simu-

lated data set under model A. The most interesting feature is that once again the

GARFIMA model is superior. Clearly, the limitations of this study are the parameter

choices.
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3.5 Empirical Evidence

We now focus our attention to empirical data applications to further investigate the

performance of the GARFIMA-SV model.

3.5.1 Sample fit: U.S. Consumer Price Index (CPI)

We now compare the ARFIMA-SV model and the GARFIMA-SV model using empirical

data. A popular time series that is commonly used throughout the long-memory lit-

erature is CPI (such as (Mandelbrot, 1969; Baillie, 1996; Geweke and Porter-Hudak,

1983) to name a few). Sustained periods of deflation are ultimately bad for growth

assets. Interestingly, there has been a growing social interest in deflation as there

has been a rising trend in Google searches for deflation relative to inflation since the

start of 2014. CPI exhibits long memory properties presumably from the argument

proposed by Granger and Joyeux (1980) that the aggregation of first order Markov

processes leads to a long memory process. CPI is therefore a natural candidate since

it is an aggregation of several separate time series.

Bos, Koopman, and Ooms (2014a) successfully used a Monte Carlo maximum likeli-

hood procedure to fit a LM-SV model to US CPI. The data set is composed of monthly

CPI observations from January 1965 to May 2011. Although more data is available

now, we deliberately use the same observation window as the original authors. The

model structure which we will use is exactly the same one as proposed by the origi-

nal authors, which includes an AR(1) parameter with constant, seasonal AR factors

at lags 11, 12, 13, and a outlier variable for the month of July, 1980 and we denote

this vector of coefficients as β∗ = [φ, φ11, φ12, φ13, b] respectively.

We construct the same series by considering the log percentage change πt = 100 log(Pt/Pt−1)

where Pt is the CPI index at time t. We then de-seasonalize the data by regressing πt

onto fixed seasonal dummies without a constant as πt = Dβ + rt where D are sea-

sonal dummies. Instead of using the inflation dataset πt, the authors use ŷt = r̂t + π̄t

where r̂t are the residuals after regressing out statistically significant seasonal factors,

and π̄t is the average level of inflation equal to 0.34. As shown in Figure 3.3, the sam-

ple autocorrelation plot exhibits a very slow rate of hyperbolic decay. This is highly

typical of ARFIMA models.
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FIGURE 3.3: (a): 100 × log difference of deseasonalized U.S. CPI plot
from January 1965 to May 2011. (b): Sample autocorrelation plot.

Our main focus here is not to model the complexities of U.S. CPI, so we refer the

reader to the original paper for an excellent and detailed analysis. The main aim of

this paper is to assess the effects of including generalised long memory. We use the

same priors as before, and the priors of [φ11, φ12,φ13] are each respectively U[−1, 1],

and the prior of b is N(0, 10). We also increase the number of loops to 100, 000 and

follow the advice of Gelman et al. (2013) once again and use a burn-in period of

50, 000. It is duly important to note here after taking into consideration the main

findings of our simulation study, a sample size of 567 will have a material impact

on the parameter estimates. We however continue with the analysis being mindful

that sample sizes greater than 1, 500 are ideal. There are no parallelization issues

here as there is only one data set that is run on a single core. Our main findings are

summarized in Table 3.4.



The first striking and arguably most interesting parameter in the table is û which is

estimated as 1, so that the GARFIMA filter has collapsed to the regular ARFIMA model

specification. As the theory would dictate, the Gegenbauer d̂GARFIMA should be half

of the long memory parameter d̂ARFIMA, which is indeed the case here. Our Bayesian

sampler estimated a long memory parameter of 0.274, which is similar to the value

of 0.287 found using Monte Carlo maximum likelihood in Bos, Koopman, and Ooms

(2014a). All remaining parameters are also very close, except for σ2 which differs

from 0.0172.

The highest posterior density (HPD) for each parameter does not arouse suspicion,

apart from φ1 which includes 0. This also is in tune with the work of the original

authors as φ1 was found to be statistically insignificant at a conventional level of sig-

nificance. The Gelman-Rubin (GR) convergence statistics are all close to 1, which

indicates all parameters have converged successfully. The MATLAB script which com-

putes the GR statistic calculation is provided by Simo Sarkka and can be downloaded

from the Aalto University School of Science website.4

More importantly, we note the log-likelihood for both models are equivalent (as ex-

pected), and our method reports a slightly higher log-likelihood of 278 compared to

that found by the original authors of 252. The errors are not normally distributed,

and serially correlated up to 24 lags as was found to be the case in Bos, Koopman,

and Ooms (2014a) also.

3.5.2 Out-of-sample fit: U.S. Equity Risk Premium (ERP)

The U.S. equity risk premium is the excess return that equities provide over and

above risk-free assets. It is the premium that investors are earning in compensation

for holding onto riskier assets. Invariably, this translates into riskier stocks earning a

higher risk premium. Understanding the ERP is important for several reasons. From

a practical point of view, practitioners consider the ERP as a forward looking metric

of the future state of the economy. Quarterly ERP figures turned negative 3 months

before The Great Depression and right before the Global Financial Crisis (GFC). It is

therefore a relevant metric to provide further scope to justify any claims of a looming

global recession. Practically, the ERP is important as it can be viewed as a receptacle
4http://becs.aalto.fi/en/research/bayes/mcmcdiag/
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of investor sentiment.

Unfortunately, there is no consensus on what constituents should be used to construct

the ERP. We instead favour popular measures of "risky" and "risk-free" assets. For risky

assets, we use the percentage daily returns of the SP500. For "risk free" assets, we use

the daily percentage change of US 1 year constant treasuries with a constant maturity

rate. We first calculate the return series for each series and then map both onto a date

vector. The ERP is then calculated as the difference between two observations for all

relevant dates.

We further postulate that including the GFC is not a true representation of the data

generating process, and begin our observation period from the 2nd of March, 2009

when the market reached its low. We use data available up to the 31st of October,

2016, which gives a total of 1, 836 data points. For our forecasting exercise, we fix an

observation window of 1, 500 and slide forward in time. We therefore have a forecast

horizon of 62 days, which corresponds from the 9th of March to the 31st of May.
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FIGURE 3.4: (a): U.S. equity risk premium from 02/03/2009 to
31/10/2016. (b): Sample autocorrelation plot.

Figure 3.4(a) depicts clear bursts of volatility which seem highly persistent and are

strongly reminiscent of time varying volatility. There is also evidence of persistent

autocorrelations which exist at higher order lags in Figure 3.4(b). Clearly, if we

compare Figure 3.4(b) with Figure 3.1, we see the SACF of the ERP data is suggestive

of a GARFIMA-SV model with a large and negative value of u, and a small value of

d. The clear defining attributes which set this a part from a MA(1) model are the
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FIGURE 3.5: Rolling window long memory parameter estimates
across forecast horizon. (a): ARFIMA-SV estimate of d̂ (black) and
GARFIMA-SV estimate of d̂ (blue). (b): GARFIMA-SV estimate of û.

persistent and statistically significant autocorrelations at higher lags. We assume the

same priors for all remaining hyperparameters as before, 10, 000 iterates after a burn-

in period of 10, 000 and forecast one-step ahead. As shown in Figure 3.5 (a), the long-

memory parameter d̂ of the ARFIMA-SV model is estimated as -0.11, which suggests

that it is not long-memory. The acceptance rate of the long memory parameter is 16%

on average across all time periods.

The Gegenbauer parameter estimates however read a different story and clearly sug-

gest long-memory stationarity. The value of d̂ is estimated as 0.08 on average, û is also

estimated as −0.73, and the acceptance rate is 32%. Evidently, the ARFIMA-SV model

could not detect a presence of long memory, where as the GARFIMA-SV model did

so. The long-memory parameter estimates of the GARFIMA-SV model are consistent

with the suggestions of the SACF.

We compare our model with the MA(1)-SV for two reasons. First, the SACF of the ERP

data may be suggestive of a moving-average lagged-1 model. The second motivation

stems from the work of Stock and Watson (2007) who found the MA(1) model to be

superior to the model of Atkeson and Ohanian (2001), AR(p) where p is estimated

according to the AIC, AR(4), the Nelson-Schwert model, an unobserved components

stochastic volatility model, and two fixed MA coefficient models when forecasting

US GDP inflation one-step ahead from 1970-1983 and 1984-2004. The estimation
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FIGURE 3.6: (a): U.S. equity risk premium (2005-2014) one-step
ahead cumulative log Bayes factor: GARFIMA-SV Vs. ARFIMA-SV. (b):
U.S. equity risk premium (2005-2014) one-step ahead cumula-

tive log Bayes factor: GARFIMA-SV Vs. MA(1)-SV.

procedure is cited in Chan (2013).

As shown in Figure 3.6 the relative one-step ahead cumulative log Bayes factor

CBFT+s, given in (3.11) across forecast periods, further reaffirms our rolling parame-

ter estimates and reveal the preferred model the GARFIMA-SV. As per Figure 3.6 (b)

the GARFIMA-SV model is also superior compared to the MA(1)-SV model In both

cases, we see a sharp increase in the CBF around August of 2015, and a gradual in-

crease soon afterward. The reason for this is due to the data window moving further

away from the GFC, and more towards a consistent regime. This intriguing behavior

is highly suggestive of threshold effects.

3.6 Conclusion and future research

High profile economists have notably pointed out that due to a downward trend in

global commodity prices, together with looming talks of deflation and subdued com-

pany profits, the potential of a global recession is indeed a reality. This is coupled with

unusually high bouts of persistent volatility in global equity markets. We provide a

statistical handle which measures this by discussing the estimation of the GARFIMA-

SV model. We take several approaches to speed up our work. First, by exploiting
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the banded structure of the covariance matrix we greatly speed up the evaluation of

the likelihood function. Second, due to the nature of MCMC we use parallel com-

puting which needs some detail to ensure is being conducted correctly. To validate

our method, a comprehensive in and out of sample simulation study was performed,

and good results are found. Finally, we apply our model to the US CPI and the US

ERP which have attracted attention as of late. The GARFIMA-SV model is found to

be equivalent to the plain long memory stochastic volatility model when forecasting

inflation, but found to be superior when considering the equity risk premium. Poten-

tial avenues for future research include incorporating generalised error distributions,

leverage effects and in particular switching regimes.
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Chapter 4

Extensions to leverage and heavy

tails for Cryptocurrency modelling

“An approximate answer to the right problem is worth a good deal more than an exact

answer to an approximate problem"

John Tukey

Chapter 3 proposed the GMA-SV model by combining generalised long memory with

stochastic error processes as

yt|ht = µ+

J∗t∑
j=0

λj exp(ht−j/2)ε∗t−j , ε∗t ∼ N(0, 1),

ht+1|ht = α+ β(ht − α) + ση∗t , η∗t ∼ N(0, 1),

h1 = α+ σ/
√

1− β2η∗1, η∗1 ∼ N(0, 1),

where J∗t = min(t, J). A natural contender to extend this model is to include other

commonly discussed financial effects such as leverage (Bensoussan, Crouhy, and

Galai, 1994; Bouchaud, Matacz, and Potters, 2001; Yu, 2005) and heavy tailed dis-

tributions (Liesenfeld and Jung, 2000; Asai, 2008; Chan and Hsiao, 2014). However,

before discussing these extended models (see Appendix E for a list of these mod-

els) and their application to Cryptocurrency modelling in Chapter 5, this chapter first

presents some model structures and Bayesian MCMC sampling techniques for esti-

mating the parameters of these extended models. These techniques are applied and

tested vigorously through several simulation studies to provide evidence for the ex-

tended models in Chapter 5 based on our second paper, which has been invited for

review in Econometrics and Statistics.
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Cryptocurrencies are a very popular topic that stem from the computer science litera-

ture and we believe they will shape the world moving forward. As such, we conclude

this chapter by formally providing a small and intuitive introduction on Cryptocur-

rencies for the purpose of understanding the remainder of this thesis. We begin with

the modelling structure of the preliminary SV model with leverage (SV-LVG) in the

next section.

4.1 Stochastic volatility model with leverage

The first important SV model to extend is the SV-LVG model without long memory. It

would be intuitive to assume that Cryptocurrencies are heavily dependent on news,

since they are financial time series at their core. There are a few approaches to model

the asymmetric dependency between the return of yesterday and the volatility of to-

day. They are approximately divided into a conditional and a marginal approach and

each approach has its advantages and disadvantages. We provide a review of the

conditional approach in Chapter 7.1 and in Chapters 4 and 5, we adopt the marginal

approach. In essence, the marginal approach models the asymmetric dependency

through a correlation parameter which links the distributions of returns and volatili-

ties together. This approach has been widely celebrated in the past decade and was

popularized by Yu (2005). The model of Yu (2005) is given by

yt|ht = exp (ht/2) εt, (4.1)

ht+1|ht, α, β, σ2, ρ = α+ β(ht − α) + σηt, (4.2)

Corr(εt, ηt) = ρ. (4.3)

This basic SV-LVG is presented in Appendix E as Model 2.

4.1.1 Factorization of the bivariate model

The following lemma shows how a bivariate distribution can be expressed as a marginal

and a conditional distribution. This factorization facilitates model implementation in

Bayesian MCMC samplers.
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Lemma 1

We first recall the result that in general, the multivariate vectorX ∼ N(µ,Σ) can be

partitioned as

X =

 X(1)

X(2)

 , µ =

 µ(1)

µ(2)

 , Σ =

 Σ11 Σ12

Σ21 Σ22

 ,
such that:

1. X(1) and X(2) are independent if and only if Σ12 = 0; and

2. The conditional distribution of X(1) given X(2) = x(2) is a multivariate normal

with conditional mean vector

E(X(1)|X(2) = x(2)) = µ(1) + Σ12Σ−1
22 (x(2) − µ(2)), (4.4)

and covariance matrix

Σ11 − Σ12Σ−1
22 Σ21. (4.5)

Using the results in (4.4) and (4.5) with

X(1) = yt|ht, X(2) = ht+1,

µ(1) = 0, µ(2) = α+ β(ht − α),

Σ11 = exp(ht); Σ12 = Σ21 = ρσ exp(ht/2); Σ22 = σ2,

we have

E(X(1)|X(2)) = E(yt|ht+1, ht)

= 0 + ρσ exp(ht/2)σ−2[ht+1 − α− β(ht − α)]

= ρ/σ exp(ht/2)[ht+1 − α− β(ht − α)],

Var(yt|ht+1, ht) = exp(ht)− [ρσ exp(ht/2)]2/σ2

= exp(ht)(1− ρ2),
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which is the same result as proposed in Yu (2005). This result can also be obtained

from Lemma two.

Lemma 2

We note here the continuous time process briefly. It is more convenient to convert

correlated Wiener processes in the observation and latent equation to uncorrelated

Wiener processes so they are easier to sample. A transformation is sought such that

 z1(t)

z2(t)

 =

 a11 a12

a21 a22

 w1(t)

w2(t)

 ,
where zi(t) are correlated Wiener processes with correlation ρij , the wi(t) are un-

correlated Wiener processes and the (aij) are to be chosen such that the correlation

structures of zi(t) are preserved. Since E[zi(t)] = 0 and E[(zi)
2] = 1 then it is easy

to see that
∑2

j=1 a
2
ij = 1 for i = 1, 2 so that their modulus’ are preserved. Also, the

condition E[zi(t)zj(t)] = ρij for i 6= j imposes the condition aikajk = ρij for i = 1, 2

and j = 1, 2. This reduces to the conditions

a2
11 + a2

12 = 1,

a2
21 + a2

22 = 1,

a11a21 + a12a22 = ρ.

One possible set of solutions are a11 = 1, a12 = 0, a21 = ρ, a22 =
√

1− ρ2. Thus

z1(t) = w1(t),

z2(t) = ρw1(t) +
√

1− ρ2dw2(t). (4.6)
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4.1.2 Model specification

If equation (4.6) is applied to the standard SV model in (4.1) and (4.2), then

yt|ht+1, ht = exp(ht/2)(ρηt +
√

1− ρ2εt)

= ρ exp(ht/2)ηt + exp(ht/2)
√

1− ρ2εt

=
ρ

σ
exp(ht/2)[ht+1 − α− β(ht − α)] + exp(ht/2)

√
1− ρ2εt

∼ N
[ρ
σ

exp(ht/2)[ht+1 − α− β(ht − α)], exp(ht)(1− ρ2)
]
. (4.7)

Upon inspection of (4.7), it is clear the marginal distribution yt|ht, after taking ex-

pectation of yt|ht+1, ht over ht+1, has E[yt|ht] = 0 and V ar[yt|ht] = ρ2 exp(ht) +

exp(ht)(1− ρ2) = exp(ht) so that yt|ht ∼ N(0, exp(ht)).

The two main differences between this model and the standard SV model are:

1. The observations yt are now conditional on ht+1. This means the posterior

distribution of each parameter will also need to condition this.

2. Under the standard SV model, the two vectors h = (h1, . . . , hT ) and y =

(y1, . . . , yT ) are modeled independently. Now, the SV-LVG model considers the

joint distribution for the order pair (yt, ht+1) based on h = (h2, . . . , hT+1) and

y = (y1, . . . , yT ) where h1 follows a marginal distribution.

We denote further h1:T = (h1, . . . , hT ).

The next section provides some estimation methodologies for the central Gegenbauer

long memory stochastic volatility model with leverage (GMA-SV-LVG), where the long

memory component is added back to SV-LVG model.

4.2 Bayesian inference for the GMA-SV-LVG model

4.2.1 Extension of the SV-LVG model to the GMA-SV-LVG model

As will be discussed later, Cryptocurrencies show evidence of long memory effects,

therefore, coupling this with leverage and SV is a sensible choice to fully capture their
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dynamics. The GMA-SV-LVG model is given by

yt|ht =

J∗t∑
j=0

λj exp(ht−j/2)ε∗t−j , (4.8)

ht+1|ht = α+ β(ht − α) + ση∗t , (4.9)

h1 = α+
σ√

1− β2
η∗1, ε∗t

η∗t

 ∼ N

 0

0

 ,

 1 ρ

ρ 1

 . (4.10)

This model is described in detail in Chapters 5.2 and 5.3 and is referred to as Model

4 in Appendix E.

As it is less efficient to work with a bivariate distribution, the factorization in Section

4.1.1 is again considered here. Therefore, the bivariate distribution in (4.10) can

be factorized into the marginal component ht+1|ht and the conditional component

yt|ht+1, ht. We consider the conditional distribution of εt = ρη∗t +
√

1− ρ2ε∗t . Hence,

the new expression for the conditional observation equation is

yt|ht+1, ht=

J∗t∑
j=0

λj exp(ht−j/2)εt−j

=

J∗t∑
j=0

λj exp(ht−j/2)(ρη∗t−j +
√

1− ρ2ε∗t−j)

=

J∗t∑
j=0

λj exp(ht−j/2)ρη∗t−j +

J∗t∑
j=0

λj exp(ht−j/2)
√

1− ρ2ε∗t−j

=

J∗t∑
j=0

λj exp(ht−j/2)
ρ

σ
[ht+1−j − α− β(ht−j − α)] +

J∗t∑
j=0

λj exp(ht−j/2)
√

1− ρ2ε∗t−j ,

(4.11)

such that

yt|ht+1, ht∼N

 J∗t∑
j=0

λje
ht−j/2

ρ

σ
[ht+1−j − α− β(ht−j − α)], (1− ρ2)

J∗t∑
j=0

λ2
je
ht−j

 .

(4.12)

The paper of Yu (2005) uses OpenBUGS to estimate the model parameters. As such,

there was no need to derive the posterior distributions of each parameter. However,
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in various extensions of the GMA-SV-LVG model that are considered in this thesis, we

encounter many non-standard posterior distributions in which OpenBUGS may not

be very efficient. In light of this, the full conditional distributions for each parameter

of the GMA-SV-LVG model are derived to facilitate our programming of the MCMC

sampler using MATLAB.

4.2.2 Observational likelihood function of the GMA-SV-LVG model

The log-likelihood of a T -dimensional multivariate normal random variable x with

mean vector µ and covariance matrix Σ is

` = logL = −1

2

(
log(|Σ|) + (x− µ)

′
Σ−1(x− µ) + T log(2π)

)
.

The density of yt can be written in matrix notation as

Y |h,GJ∗ ∼ N(µ,Γ ), (4.13)

where Γ = (1 − ρ2)GJ∗V G
′
J∗ , and |GJ∗ |= 1 such that |Γ |= (1 − ρ2) exp(

∑T
t=1 ht).

Chapter 3.3.1 defines µ and gives a detailed description of this matrix representation.

Therefore, the log-likelihood function is

log f(Y |h,GJ∗) = −T
2

log(2π(1− ρ2))− 1

2

T∑
t=1

ht −
1

2
(Y − µ)′Γ−1(Y − µ), (4.14)

which will be used to derive the full posterior distribution for the purposes of infer-

ence in the next section.

4.2.3 Sampling the return level parameter µ in the GMA-SV-LVG model

We begin with deriving the posterior distribution for the non-zero mean µ of the ob-

servation equation. We assume models 4.8 and 4.9 are modified to include a constant

term µ. Although this constant term is not considered in the return equation in the

following chapters, it is still nonetheless a common addition to most SV models with

leverage. As such, the complete posterior derivation including the non-zero mean µ

is presented for completeness. After adding µ to (4.12), we have
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yt|ht+1, ht ∼ N

µ+

J∗t∑
j=0

λje
ht−j/2

ρ

σ
(ht+1−j − α− β(ht−j − α)), (1− ρ2)

J∗t∑
j=0

λ2
je
ht−j

 .

Then we have

p(µ|Y ,h, α, β, σ2, ρ, u, d) ∝ f(Y |h, µ, u, d, α, β, σ2, ρ)f(h1|α, β, σ2)f(h|h1:T , α, β, σ
2)× p(µ)

∝ f(Y |h, µ, u, d, α, β, σ2, ρ)× p(µ),

where the prior p(µ) ∼ N(µs, σ
2
s). Defining Vt =

∑J∗t
j=0 λje

ht−j/2 and Zt =
∑J∗t

j=0 λ
2
je
ht−j ,

the posterior distribution of µ is

∝ exp

{
−1

2(1− ρ2)

T∑
t=1

[
yt − µ− ρ

σVt[ht+1 − α− β(ht − α)]
]2

Zt

}
× exp

{
−(µ− µs)2

2σ2
s

}

∝ exp

{
−1

2(1− ρ2)

[
T∑
t=1

(yt − µ)2

Zt
− 2

T∑
t=1

(
yt − µ
Zt

)
ρ

σ
Vt[ht+1 − α− β(ht − α)]

]}

× exp

{
−µ

2 − 2µµs
2σ2

s

}
∝ exp

{
−1

2(1− ρ2)

[
T∑
t=1

−2ytµ+ µ2

Zt
+ µ

T∑
t=1

(
1

Zt

)
2ρ

σ
Vt[ht+1 − α− β(ht − α)]

]}

× exp

{
−µ

2 − 2µµs
2σ2

s

}
= exp

{
−1

2

[
µ2

(
T∑
t=1

1

Zt(1− ρ2)
+

1

σ2
s

)

− 2µ

(
T∑
t=1

yt − ρ
σVt[ht+1 − α− β(ht − α)]

Zt(1− ρ2)
+
µs
σ2
s

)]}
.

Note that it can easily be shown that

exp
{
Ax2 − 2Bx

}
∼ N(VM,V ) where M = B and V = A−1.

Therefore, we have

µ|Y ,h, α, β, σ2, ρ, u, d ∼ N (VµMµ, Vµ) ,
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where

Mµ =

(
T∑
t=1

yt − ρ
σVt(ht+1 − α− β(ht − α))

Zt(1− ρ2)
+
µs
σ2
s

)
and Vµ =

(
T∑
t=1

1

Zt(1− ρ2)
+

1

σ2
s

)−1

.

Since the constant term µ is not considered in the remaining chapters, it is a straight-

forward exercise to replace it with zero in the remaining sections to derive the poste-

rior conditional distribution for other parameters.

4.2.4 Sampling the volatility level parameter α in the GMA-SV-LVG model

Without the constant µ, the matrix in (4.13) becomes

Y |h,GJ∗ ∼ N(0,Γ ), (4.15)

where the covariance matrix can be expressed as Γ = (1 − ρ2)GJ∗V G
′
J∗ where

V = diag(W ◦W ),W = (eh1/2, . . . , ehT /2) and A◦B refers to the Hadamard product

of vectors A and B. To simplify the model structure, we consider the transformation

Y ∗ = G−1
J∗Y , (4.16)

where Y ∗ = (y∗1, . . . , y
∗
T ) is now independent of the Gegenbauer long memory pa-

rameters u and d. From (4.7), the density of y∗t is

f(y∗t ) =
1√

2πξt(1− ρ2) exp(ht2 )
exp

−
{
y∗t − ρ

exp(
ht
2

)

σ [ht+1 − α− β(ht − α)]

}2

2(1− ρ2)ξt exp(ht)


=

1√
2πξt(1− ρ2) exp(ht2 )

exp

−
{

y∗t
exp(ht/2) −

ρ
σ [ht+1 − α− β(ht − α)]

}2

2(1− ρ2)ξt


ln f(Y ∗) = −1

2

T∑
t=1

ln[2πξt(1− ρ2)]−
T∑
t=1

ht
2
−

T∑
t=1

{
y∗t

exp(ht/2) −
ρ
σ [ht+1 − α− β(ht − α)]

}2

2(1− ρ2)ξt
.
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The conditional posterior distribution for α is given by

p(α|Y ∗,h, β, σ2, ρ)

∝ f(Y ∗|h, α, β, σ2, ρ)f(h1|α, β, σ2)f(h|h1:T , α, β, σ
2)× p(α)

=
1

(
√

2π)T (
√

1− ρ2)T
∏T
t=1 exp(ht2 )

exp

{
−

T∑
t=1

(
y∗t
eht/2

− ρ
σ (ht+1 − α− β(ht − α)))2

2(1− ρ2)

}
×√

1− β2

√
2πσ

exp

{
−(h1 − α)2(1− β2)

2σ2

}
×

1

(
√

2πσ)T
exp

{
−
∑T

t=1(ht+1 − α− β(ht − α))2

2σ2

}
× 1√

2πσα
exp

{
−(α− µα)2

2σ2
α

}
(4.17)

where the prior α ∼ N(µα, σ
2
α). We first consider the first product term in the poste-

rior distribution (compared to the standard SV model), which is the contribution of

y∗t |ht+1, ht due to the leverage effect

1

(
√

2π)T (
√

1− ρ2)T
∏T
t=1 exp(ht2 )

exp

{
−

T∑
t=1

(
y∗t
eht/2

− ρ
σ (ht+1 − α− β(ht − α)))2

2(1− ρ2)

}

∝ exp

{
− 1

2(1− ρ2)

T∑
t=1

[
−2

y∗t
eht/2

ρ

σ
(ht+1 − α− β(ht − α)) +

ρ2

σ2
(ht+1 − α− β(ht − α))2

]}

∝ exp

{
− 1

2(1− ρ2)

T∑
t=1

[
2
y∗t
eht/2

ρ(1− β)

σ
α+

ρ2

σ2
(ht+1 − α− β(ht − α))2

]}

∝ exp

{
− ρ

2σ(1− ρ2)

T∑
t=1

[
2
y∗t
eht/2

(1− β)α+
ρ

σ
[α2(1− β)2 − 2α(ht+1 − βht)(1− β)]

]}

= exp

{
−1

2

(
α2T (1− β)2ρ2

(1− ρ2)σ2
− 2α

T∑
t=1

(1− β)ρ

(1− ρ2)σ

[
(ht+1 − βht)

ρ

σ
− y∗t
eht/2

])}
,

since

(ht+1 − α− β(ht − α))2) = (ht+1 − βht − α(1− β))2

= (ht+1 − βht)2 − 2(ht+1 − βht)α(1− β) + α2(1− β)2

= α2(1− β)2 − 2α(ht+1 − βht)(1− β) + terms independent of α.

Next, we consider the initial volatility h1 which is the second term inside the exponent

in (4.17).
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Term 2:

−2T2 =
(h1 − α)2 (1− β2)

σ2

=
(h2

1 − 2h1α+ α2)(1− β2)

σ2

=
(−2h1α+ α2)(1− β2)

σ2
+ terms independent of α

=
1− β2

σ2
α2 − 2(1− β2)h1

σ2
α+ terms independent of α. (4.18)

Next, we consider the volatilities h which are the third term in (4.17).

Term 3:

−2T3 =

T∑
t=1

(ht+1 − α(1− β)− βht)2

σ2

=

T∑
t=1

−α(1− β)ht+1 − α(1− β)(ht+1 − α(1− β) + βht) + α(1− β)βht
σ2

= −
T∑
t=1

αht+1 + αht+1 − α2(1− β)− αβht − αβht
σ2(1− β)−1

+ terms independent of α

= −
T∑
t=1

2αht+1 − α2(1− β)− 2αβht
σ2(1− β)−1

+ terms independent of α

=

T∑
t=1

(1− β)

σ2(1− β)−1
α2 −

T−1∑
t=1

2(ht+1 − βht)
σ2(1− β)−1

α+ terms independent of α. (4.19)

Finally, we consider the prior density p(α).

Term 4:

−2T4 =
(α− µα)2

σ2
α

=
α2 − 2αµα

σ2
α

+ terms independent of α

=
1

σ2
α

α2 − 2µα
σ2
α

α+ terms independent of α, (4.20)

summing over these terms, we have

T2 + T3 + T4 = −1

2

[(
1− β2

σ2
+

T∑
t=1

(1− β)2

σ2
+

1

σ2
α

)
α2

−2

(
(1− β2)h1

σ2
+

(1− β)

σ2

T∑
t=1

(ht+1 − βht) +
µα
σ2
α

)
α

]
.(4.21)
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Thus, we have

α|Y ∗, h1,h, β, σ
2, ρ ∼ N(VαMα, Vα), (4.22)

where

Mα=
(1− β)ρ

(1− ρ2)σ

T∑
t=1

[
(ht+1 − βht)

ρ

σ
− y∗t
eht/2

]
+

(1− β2)h1

σ2
+

(1− β)

σ2

T∑
t=1

[ht+1 − βht] +
µα
σ2
α

,

(4.23)

Vα=

(
T (1− β)2ρ2 + T (1− β)2 + (1− β2)

σ2
+

1

σ2
α

)−1

. (4.24)

It is clear when ρ = 0, the posterior distribution collapses to the standard SV model

in (2.2).

4.2.5 Sampling the volatility persistence parameter β in the GMA-SV-

LVG model

As previously mentioned, the method of Chib and Greenberg (1994) is used to facili-

tate the sampling of β in Chapter 2.2.2. Recall this method relied upon the distribu-

tion of h1 being used as the target density. Therefore, the proposal density of interest

for β in this scenario is given by

p(β|Y ∗, h1,h, α, σ
2, ρ) ∝ f(Y ∗|h1,h, α, β, σ

2, ρ) f(h|h1:T , α, β, σ
2)× p(β)

=
1

(
√

2π)T (
√

1− ρ2)T
∏T
t=1 exp(ht2 )

exp

{
−

T∑
t=1

(
y∗t
eht/2

− ρ
σ (ht+1 − α− β(ht − α)))2

2(1− ρ2)

}
×

1

(
√

2πσ)T
exp

{
−
∑T

t=1(ht+1 − α− β(ht − α))2

2σ2

}
× 1√

2πσβ
exp

{
−

(β − µβ)2

2σ2
β

}

∝ exp

{
−1

2

[
T∑
t=1

(y∗t −
ρ
σ (ht+1 − α− β(ht − α)))2

eht(1− ρ2)
+

∑T
t=1(ht+1 − α− β(ht − α))2

σ2
+

(β − µβ)2

σ2
β

]}
,

where the prior for β is N(µβ, σ
2
β). Note that

[ht+1 − α− β(ht − α)]2

= (ht+1 − α)2 − 2β(ht − α)(ht+1 − α) + β2(ht − α)2 + terms independent of β

= β2(ht − α)2 − 2β(ht − α)(ht+1 − α) + terms independent of β.
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Now, we consider each term in the exponent:

Term 1:

T∑
t=1

(
y∗t
eht/2

− ρ
σ (ht+1 − α− β(ht − α)))2

(1− ρ2)

=
T∑
t=1

y∗2t
eht
− 2

y∗t
eht/2

ρ
σ (ht+1 − α− β(ht − α)) + ρ2

σ2 (ht+1 − α− β(ht − α))2

(1− ρ2)

=

T∑
t=1

2
y∗t
eht/2

ρ
σβ(ht − α) + ρ2

σ2 (β2(ht − α)2 − 2β(ht − α)(ht+1 − α))

(1− ρ2)
+ terms independent of β

=
ρ2

σ2(1− ρ2)

T∑
t=1

(ht − α)2β2 +
2ρ

σ(1− ρ2)

T∑
t=1

(ht − α)

[
y∗2t
eht/2

− ρ

σ
(ht+1 − α)

]
β

+ terms independent of β.

Term 2:

T∑
t=1

(ht+1 − α− β(ht − α))2

σ2

=
T∑
t=1

1

σ2
(ht − α)2β2 −

T∑
t=1

2

σ2
(ht − α)(ht+1 − α)β + terms independent of β. (4.25)

Term 3:

(β − µβ)2

σ2
β

=
β2

σ2
β

− 2
βµβ
σ2
β

+
µ2
β

σ2
β

=
1

σ2
β

β2 − 2
µβ
σ2
β

β + terms independent of β. (4.26)

Hence, the terms in the exponent can be expressed as

(
ρ2

σ2(1− ρ2)

T∑
t=1

(ht − α)2 +
T∑
t=1

1

σ2
(ht − α)2 +

1

σ2
β

)
β2

−2

(
ρ
∑T

t=1(ht − α)

σ(1− ρ2)

[
ρ

σ
(ht+1 − α)− y∗t

eht/2

]
+

T∑
t=1

(ht − α)(ht+1 − α)

σ2
+
µβ
σ2
β

)
β. (4.27)

Therefore, we have

β|Y ∗, h1,h, α, σ
2, ρ ∼ N(VβMβ, Vβ), (4.28)
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where

Mβ =
ρ
∑T

t=1(ht − α)

σ(1− ρ2)

[
ρ

σ
(ht+1 − α)− y∗t

eht/2

]
+

T∑
t=1

(ht − α)(ht+1 − α)

σ2
+
µβ
σ2
β

,(4.29)

Vβ =

(
1

σ2(1− ρ2)

T∑
t=1

(ht − α)2 +
1

σ2
β

)−1

. (4.30)

Again, in order to implement the MH step, we first sample β∗ from the proposal

density in (4.28), and use the marginal density of h1 as the target density

q(β) =

√
1− β2

√
2πσ

exp

{
−(h1 − α)2 (1− β2)

2σ2

}
. (4.31)

We work with log q(β) so that

log q(β) =
1

2
log(1− β2)− 1

2
log(2πσ2)− (h1 − α)2(1− β2)

2σ2
.

Given the current value β(m−1) at the (m− 1)th MCMC loop, β∗ is accepted for β(m)

with probability min
{

exp[q(β∗)− q(β(m−1))], 1
}

.

4.2.6 Sampling the volatility of volatility parameter σ2 in the GMA-SV-

LVG model

The conditional posterior distribution of σ2 is

p(σ2|Y ∗, h1,h, α, β, ρ) ∝ f(Y ∗|h1,h, α, β, σ
2, ρ) f(h1|α, β, σ2) f(h|h1:T , α, β, σ

2)× p(σ2)

=
1

(
√

2π)T (
√

1− ρ2)T
∏T
t=1 exp(ht2 )

exp

{
−

T∑
t=1

[
y∗t
eht/2

− ρ
σ (ht+1 − α− β(ht − α))]2

2(1− ρ2)

}
×√

1− β2

√
2πσ

exp

{
−(h1 − α)2(1− β2)

2σ2

}
×

1

(
√

2πσ)T
exp

{
−
∑T

t=1(ht+1 − α− β(ht − α))2

2σ2

}
×

( b2)
a
2

Γ(a2 )
σ−2(a

2
+1) exp

(
−

( b2)

σ2

)
,

where the prior σ2 ∼ Γ(a2 ,
b
2). It is clear that we cannot continue as usual to find the

posterior of σ2, because we require the exponent term to be in terms of σ2 only, and

not σ. This problem stems from including the conditional distribution of y∗t |ht+1, ht,

which did not exist when considering the plain SV model. Therefore, the procedure

set out in Chib and Greenberg (1994) is used once more, and the conditional density
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of y∗t |ht+1, ht is set as the target density for the MH scheme. Thus, the proposal

density of σ2 of interest is

p(σ2|h1,h, α, β, ρ) ∝ f(h1|α, β, σ2) f(h|α, β, σ2)× p(σ2)

=
(1− β2)

1
2

√
2πσ

exp

{
−(h1 − α)2(1− β2)

2σ2

}
×

1

(
√

2πσ)T
exp

{
−
∑T

t=1(ht+1 − α− β(ht − α))2

2σ2

}
×

( b2)
a
2

Γ(a2 )
σ−2(a

2
+1) exp

(
−

( b2)

σ2

)
,

which is the conditional density of the standard SV model in (2.4) of Section 2.2.3.

Hence a proposed value (σ2)∗ can be sampled from

σ2|h, α, β, ρ ∼ IG

(
T + a

2
,
b+ (h1 − α)2(1− β2) +

∑T
t=1[ht+1 − α− β(ht − α)]2

2

)
, (4.32)

and the target density is

p(Y ∗|h1,h, α, β, σ
2, ρ)

=
1

[2π(1− ρ2)]
T
2

T∏
t=1

exp(ht2 )

exp

{
−

T∑
t=1

[
y∗t
eht/2

− ρ
σ (ht+1 − α− β(ht − α))]2

2(1− ρ2)

}
. (4.33)

We work on the log density

log q(σ2) = log f(Y ∗|h1,h, α, β, σ
2, ρ)

= −
T∑
t=1

[
y∗t
eht/2

− ρ
σ (ht+1 − α− β(ht − α))]2

2(1− ρ2)
+ terms independent of σ2,

=
ρ

1− ρ2

T∑
t=1

y∗t [ht+1 − α− β(ht − α)]e−ht/2

σ

− ρ2

2(1− ρ2)

T∑
t=1

[ht+1 − α− β(ht − α)]2

σ2
+ terms independent of σ2. (4.34)

Once again, given the current value (σ2)(m−1) at the (m − 1)th MCMC loop, (σ2)∗ is

accepted for (σ2)(m) with probability min
{

exp[q((σ2)∗)− q((σ2)(m−1))], 1
}

.
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4.2.7 Sampling the leverage parameter ρ in the GMA-SV-LVG model

Assuming a Gaussian prior for ρ such that ρ ∼ N(µρ, σ
2
ρ), the posterior distribution

for ρ is

f(ρ|Y ∗, h1,h, α, β, σ
2) ∝f(Y ∗|h1,h, α, β, σ

2, ρ)f(h1|α, β, σ2)f(h|h1:T , α, β, σ
2)× p(ρ)

=
1

(
√

2π)T (
√

1− ρ2)T
∏T
t=1 exp(ht2 )

exp

{
−

T∑
t=1

[
y∗t
eht/2

− ρ
σ (ht+1 − α− β(ht − α))]2

2(1− ρ2)

}
×

(1− β2)
1
2

√
2πσ

exp

{
−(h1 − α)2(1− β2)

2σ2

}
×

1

(
√

2πσ)T
exp

{
−
∑T

t=1(ht+1 − α− β(ht − α))2

2σ2

}
× 1√

2πσ2
ρ

exp

{
−(ρ− µρ)2

2σ2
ρ

}

∝ 1

(1− ρ2)T/2
exp

{
−

T∑
t=1

[
y∗t
eht/2

− ρ
σ (ht+1 − α− β(ht − α))]2

2(1− ρ2)
− (ρ− µρ)2

2σ2
ρ

}

∝ 1

(1− ρ2)T/2
exp

{
−

T∑
t=1

[
y∗t
eht/2

− ρ
σ (ht+1 − α− β(ht − α))]2

2(1− ρ2)
− ρ2

2σ2
ρ

+
2µρρ

2σ2
ρ

}
. (4.35)

Since ρ is bounded, a grid-based method to sample from the conditional posterior

distribution is used. A Griddy-Gibbs approach (Ritter and Tanner, 1992) is used

for the sampling. The algorithm essentially uses the inverse-CDF method on the

empirical CDF. Formally:

1. Form a grid {ρ1, . . . , ρn} where ρi ∈ [−1 + c + uρ, 1 − c − uρ] where c is a

small constant chosen to avoid boundary problems, and uρ ∼ U [0, 0.01] is a

small random number. The purpose of uρ is to “shuffle” the random grid for

each loop such that estimates of ρ can be explored between decimal places. We

consider a large enough grid length of n = 500 points.

2. Evaluate p(ρi|Y ∗, h1,h, α, β, σ
2) in (4.35) at ρi ∈ {ρ1, . . . , ρn} and the current

set of parameter estimates at iteration m to obtain Wm = {w1, . . . , wn}.

3. Use Wm to obtain the empirical CDF of ρ which is found by a cumulative sum.

4. Sample u ∼ U [0, 1] to make a draw ρ∗ from the empirical inverse CDF.
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4.2.8 Sampling the latent volatilities h and the long memory parameters

u and d of the GMA-SV-LVG model

The sampling of the latent volatilities h as well as the long memory parameters d

and u can be found in Appendix F. It is important to note the method to sample h is

different from the method proposed in Appendix B for the GMA-SV model. The first

method derives the posterior distribution of h via the likelihood of Y ∗ = logG−2
J Y

2

which follows a log chi-square distribution expressed as ten component mixture of

normals and utilizes Gibbs sampling. This new method however considers the like-

lihood of Y ∗ = G−1
J Y , the idea of MAP and utilizes an acceptance/rejection MH

scheme. Our experience dictates that acceptance/rejection MH schemes avoid the

problems of samplers not being able to explore the parameter space fully and can

subsequently become “stuck".

4.2.9 Simulation studies of the SV-LVG model

Although theoretically pleasing, MCMC techniques are notorious for being practically

burdensome. The SV-LVG model is especially important, because this basic model

serves as a cornerstone for the following chapters. Since MCMC sampling can be a

cumbersome task, it is advantageous to ensure the SV-LVG model alone (with no long

memory effects) is being estimated correctly. This ensures that any future potential

issues that arise from other parameters of some extended models can be easily de-

tected. To achieve this, we conduct several simulation studies. Synthetic SV-LVG data

is generated from the model and is simulated with T = 2, 000 and the true parame-

ters equal to µ = 0, α = 0, β = 0.975, σ2 = 0.01. The SV-LVG model is then estimated

using this data, and this process is repeated 1, 000 times with the averages of param-

eter estimates reported in Table 4.1; where ÂRθ% represents the percentage points

of the acceptance rates for parameter θ. The total number of loops is 20, 000, and we

discard the first 10, 000 as the burn-in. The same priors are used as in Chapter 3, with

the addition of ρ ∼ N(−0.5, 0.05).
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ρ ρ̂ RMSE(ρ̂) µ̂ RMSE(µ̂) α̂ RMSE(α̂) β̂ RMSE(β̂) σ̂2 RMSE(σ̂2) ÂRρ% ÂRh% ÂRβ% ÂRσ2%

0.0 0.001 0.001 0.001 0.016 0.020 0.020 0.975 0.010 0.031 0.011 3.225 61.572 93.128 95.965

(0.105) (0.024) (0.243) (0.008) (0.007)

-0.1 -0.094 0.006 -0.002 0.031 -0.004 0.004 0.976 0.009 0.031 0.011 3.138 61.873 93.101 95.161

(0.103) (0.024) (0.250) (0.008) (0.007)

-0.5 -0.466 0.034 -0.003 0.000 -0.005 0.005 0.977 0.008 0.030 0.010 2.296 67.922 93.850 83.153

(0.086) (0.024) (0.244) (0.007) (0.007)

-0.9 -0.874 0.026 -0.005 0.017 -0.003 0.003 0.982 0.003 0.026 0.006 0.585 85.452 96.316 52.252

(0.020) (0.022) (0.234) (0.004) (0.004)

TABLE 4.1: Parameter estimates for SV-LVG model in an initial simu-
lation study.

From this initial simulation study in Table 4.1, it is clear that ρ is estimated reasonably

well using the MH sampler, however the acceptance rate of h is too high, and the

acceptance rate of ρ is too low.

ρ ρ̂ RMSE(ρ̂) µ̂ RMSE(µ̂) α̂ RMSE(α̂) β̂ RMSE(β̂) σ̂2 RMSE(σ̂2) ÂRρ% ÂRh% ÂRβ% ÂRσ2%

0.0 -0.009 0.009 -0.000 0.019 -0.008 0.008 0.975 0.010 0.031 0.011 80.618 61.422 93.145 96.944

(0.096) (0.024) (0.243) (0.008) (0.007)

-0.1 -0.090 0.010 -0.001 0.006 -0.020 0.020 0.975 0.010 0.031 0.011 80.622 61.902 93.206 96.318

(0.096) (0.024) (0.247) (0.008) (0.007)

-0.5 -0.465 0.035 -0.004 0.001 0.004 0.004 0.977 0.008 0.030 0.010 80.905 68.289 93.741 84.027

(0.085) (0.024) (0.243) (0.007) (0.006)

-0.9 -0.874 0.026 -0.005 0.001 -0.006 0.006 0.981 0.004 0.026 0.006 81.311 85.938 96.474 51.594

(0.041) (0.022) (0.232) (0.004) (0.004)

TABLE 4.2: Parameter estimates for SV-LVG model after tuning the
posterior precision of ρ using Griddy Gibbs

Following the results of Table 4.1, the next step is to improve the acceptance rates of

ρ and h. Therefore, we follow the tuning procedure in the exact fashion as discussed

in Section 4.2.7. However, Table 4.2 shows the acceptance rate of ρ is now too high.

As such, it seems the next natural step is to use an alternative method to sample the

posterior of ρ.

ρ ρ̂ RMSE(ρ̂) µ̂ RMSE(µ̂) α̂ RMSE(α̂) β̂ RMSE(β̂) σ̂2 RMSE(σ̂2) ÂRρ% ÂRh% ÂRβ% ÂRσ2%

0.0 0.005 0.005 -0.002 0.067 -0.018 0.018 0.976 0.009 0.031 0.011 30.126 61.502 92.899 95.916

(0.110) (0.024) (0.249) (0.008) (0.007)

-0.1 -0.093 0.007 0.000 0.024 0.002 0.002 0.975 0.010 0.031 0.011 30.475 61.700 93.139 95.215

(0.109) (0.024) (0.244) (0.008) (0.007)

-0.5 -0.461 0.039 -0.001 0.024 -0.014 0.014 0.978 0.007 0.030 0.010 32.358 67.947 93.801 83.330

(0.096) (0.024) (0.246) (0.007) (0.006)

-0.9 -0.868 0.032 -0.005 0.032 -0.004 0.004 0.981 0.004 0.026 0.006 31.331 85.483 96.455 52.408

(0.046) (0.022) (0.231) (0.004) (0.004)

TABLE 4.3: Parameter estimates for SV-LVG model after changing the
sampler of ρ from Griddy Gibbs to the MAP sampler.

In Table 4.3, the method of estimating ρ is changed from the Griddy Gibbs sampler to

the MAP sampler in Section 1.2.4. As evidenced, the acceptance rate of ρ is now at an
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appropriate level. Therefore, we instead adopt the MAP sampler with tuning in order

to sample ρ instead of using the Griddy Gibbs sampler. The main issue with Table

4.3 however is the uncomfortably large acceptance rate of σ2. This is a particularly

worrisome result since σ2 is close to a boundary.

ρ ρ̂ RMSE(ρ̂) µ̂ RMSE(µ̂) α̂ RMSE(α̂) β̂ RMSE(β̂) σ̂2 RMSE(σ̂2) ÂRρ% ÂRh% ÂRβ% ÂRσ2%

0.0 0.003 0.003 0.001 0.012 -0.011 0.011 0.976 0.009 0.031 0.011 29.585 62.167 93.119 30.717

(0.110) (0.024) (0.249) (0.008) (0.007)

-0.1 -0.092 0.008 -0.002 0.027 -0.018 0.018 0.976 0.009 0.031 0.011 30.410 62.057 92.901 30.504

(0.109) (0.024) (0.253) (0.008) (0.007)

-0.5 -0.472 0.028 -0.004 0.011 -0.003 0.003 0.978 0.007 0.029 0.009 32.469 68.940 93.774 31.655

(0.096) (0.024) (0.244) (0.007) (0.006)

-0.9 -0.870 0.030 -0.004 0.010 -0.009 0.009 0.982 0.003 0.026 0.006 31.368 85.696 96.463 31.745

(0.046) (0.022) (0.233) (0.004) (0.004)

TABLE 4.4: Parameter estimates for SV-LVG model using MAP for ρ
and independent Gaussian proposal for σ2.

The next iteration to optimise the MCMC algorithm is to change the sampler of σ2

from a Random Walk Metropolis Hastings algorithm in Section 1.2.4 (Case 2) to

an adaptive independent Metropolis Hastings algorithm (Case 1) with a Gaussian

proposal. The results of this change are depicted in Table 4.4, and the acceptance

rate of σ2 is now satisfactory.

ρ ρ̂ RMSE(ρ̂) µ̂ RMSE(µ̂) α̂ RMSE(α̂) β̂ RMSE(β̂) σ̂2 RMSE(σ̂2) ÂRρ% ÂRh% ÂRβ% ÂRσ2%

0.0 0.000 0.000 0.013 0.013 -0.144 0.144 0.969 0.016 0.038 0.018 30.380 73.900 95.030 32.610

(0.010) (0.023) (0.185) (0.009) (0.008)

-0.1 -0.101 0.001 -0.029 0.029 -0.236 0.236 0.967 0.018 0.028 0.008 28.460 84.680 95.370 39.890

(0.010) (0.022) (0.150) (0.010) (0.006)

-0.5 -0.500 0.000 -0.004 0.004 0.151 0.151 0.985 0.000 0.025 0.005 26.420 88.180 94.010 38.040

(0.010) (0.025) (0.309) (0.005) (0.005)

-0.9 -0.886 0.014 -0.007 0.007 -0.139 0.139 0.978 0.007 0.033 0.013 29.310 82.540 97.410 34.530

(0.039) (0.021) (0.203) (0.005) (0.005)

TABLE 4.5: Parameter estimates for SV-LVG model by reducing error
tolerance in the MATLAB objective function.

The next step is to obtain even more accurate results for ρ in order to obtain the

best model. Although the error is small, it should be noted that using a synthetic

time series of T = 2, 000 with 1, 000 repeats should yield very accurate results. In

a real data setting, especially with very volatile data, this error can be significantly

inflated. As such, in order to obtain more accurate results for ρ, we modify the

optimisation objective function (i.e. the log likelihood) constraints in MATLAB. By

default, MATLAB will stop iterating when there is less than a 10−4 difference around

the solution. It is possible however to modify this to be even stricter to 10−6, and the

results of this are outputted in Table 4.5. Clearly, the results of ρ are now superior
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and close to the theoretical values. However, the acceptance rates of h are now too

high. The potential reason for this could be due to the fact the conditional variance

of h has reduced, and therefore proposed values of h are being sampled too close to

the currently proposed value. As such, this experiment is repeated again but with a

slightly less conservative tolerance.

ρ ρ̂ RMSE(ρ̂) û RMSE(û) d̂ RMSE(d̂) µ̂ RMSE(µ̂) α̂ RMSE(α̂) β̂ RMSE(β̂) σ̂2 RMSE(σ̂2) ÂRρ% ÂRu% ÂRd% ÂRh% ÂRβ% ÂRσ2%

0.0 0.000 0.000 0.500 0.020 0.300 0.015 -0.000 0.000 -0.004 0.004 0.976 0.009 0.031 0.011 24.694 44.767 28.206 28.856 92.691 30.659

(0.045) (0.008) (0.017) (0.027) (0.252) (0.008) (0.007)

-0.1 -0.099 0.001 0.500 0.010 0.299 0.001 -0.002 0.040 -0.014 0.014 0.976 0.009 0.031 0.011 24.779 45.124 29.037 29.499 93.042 30.909

(0.045) (0.008) (0.017) (0.027) (0.247) (0.008) (0.007)

-0.5 -0.496 0.004 0.500 0.000 0.300 0.012 -0.007 0.021 0.014 0.014 0.978 0.007 0.029 0.009 29.026 50.730 29.505 30.337 93.683 31.721

(0.043) (0.008) (0.018) (0.026) (0.249) (0.007) (0.006)

-0.9 -0.892 0.008 0.500 0.004 0.301 0.013 -0.026 0.002 0.165 0.165 0.981 0.004 0.025 0.005 32.660 66.635 33.757 31.562 96.722 31.136

(0.030) (0.007) (0.017) (0.026) (0.233) (0.004) (0.004)

TABLE 4.6: Parameter estimates for SV-LVG model by setting tolerance
to 10−5.

Finally, the tolerance is increased slightly to 10−5 and the Gegenbauer long memory

parameters are also included. It is clear from Table 4.6 the results are satisfactory. As

such, we accept this framework and utilize this as the procedure for all future models

involving leverage.

Next we consider extending the GMA-SV-LVG model to incorporate heavy tails (GMA-

SV-LVG-HC). Again, we first consider the simpler GMA-SV-HC model, which excludes

the leverage component.

4.3 Bayesian inference for GMA-SV-HC model

Many SV models are assumed to follow a normal distribution. However, increasing

evidence in real applications has shown the normal distribution is not an appropriate

choice, as many returns or volatilities show leptokurtic shapes. The ability of the

Student’s t-distribution to provide flexible tails is an alternative choice to the normal

distribution. Cryptocurrencies have wild volatility characteristics, and the consid-

eration of heavy tailed distributions is a progressive step to measure their unique

dynamics. Although a theoretically pleasing idea, the practicalities of implementing

the Student’s t-distribution is not a straight forward exercise; as such, we rely upon

scale mixtures.

The scale mixture representation has received substantial attention in Bayesian ro-

bustness (Box and Tiao, 2011). In this section, the scale mixtures representation
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of the Student’s t-distribution is discussed in detail. The two most common choices

to express the Student’s t-distribution is either through a scale mixture of normals

(SMN) or a scale mixture of uniforms (SMU); see Choy and Chan (2008) for exam-

ples.

4.3.1 SMU representation

Walker and Gutiérrez-Pena (1999) proposed a new class of scale mixtures, known

as the SMU distribution. We choose the SMN representation for the Student’s t-

distribution but we also provide a brief overview on how the SMU works. Let X be a

continuous random variable with location µ and scale σ. The pdf of X is said to have

a SMU representation if it can be expressed as

fX(x|µ, σ) =

∫ ∞
0

U(x|µ− κ(w)σ, µ+ κ(u)σ)π(w)dw,

where U(x|a, b) is the uniform density function with support [a, b], κ(·) is a positive

function, and π(·) is a density function on the positive real domain.

The EP distribution with mean µ and variance σ2 has the density function

fX(x|µ, σ2, β) =
c1

σ
exp

− ∣∣∣∣∣c1/2
0 (x− µ)

σ

∣∣∣∣∣
2/β
 ,

where

β ∈ (0, 2], c0 =
Γ(3β/2)

Γ(β/2)
, c1 =

c
1/2
0

βΓ(β/2)
.

Two special cases here are the normal distribution (β = 1) and the double-exponential

distribution (β = 2). The EP density has the SMU representation

fX(x|µ, σ2, β) =

∫ ∞
0

U
(
x|µ− σ√

2c0
wβ/2, µ+

σ√
2c0

wβ/2
)
×Ga

(
w|1 +

β

2
, 2−1/β

)
dw,

where Ga(·, ·) represent the Gamma density function. This can be expressed in hier-

archical form as

X|µ, σ2, β, w ∼ U
(
µ− σ√

2c0
wβ/2, µ+

σ√
2c0

wβ/2
)
,

w|β ∼ Ga
(

1 +
β

2
, 2−1/β

)
.
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Therefore, we can rewrite the Normal distribution in terms of a SMU distribution as:

X|µ, σ2, w ∼ U
(
µ− σ

√
w, µ+ σ

√
w
)
,

w ∼ Ga
(

3

2
,
1

2

)
.

And also the Student’s t-distribution with ν degrees of freedom as

X|µ, σ2, ν, w ∼ U
(
µ− σ

√
ξw, µ+ σ

√
ξw
)
,

w ∼ Ga
(

3

2
,
1

2

)
,

ξ|ν ∼ IG(ν/2, ν/2).

As the density of a uniform is constant, the use of the SMU can facilitate standard

truncated posterior distributions if the data distribution is non-standard with respect

to certain parameters of interest. Examples of popular SMU distribution applications

include:

1. The Exponential Power distribution

If X ∼ U
(
µ− σ√

2c0
wβ/2, µ+ σ√

2c0
wβ/2

)
where w|β ∼ Ga(1 + β

2 , 2
−1/β), then

X comes from the Exponential Power distribution with parameters µ, σ2, β.

2. The uniform power distribution

If X ∼ U
(
µ− σwβ/2, µ+ σwβ/2

)
where w ∼ Ga(3

2 ,
1
2), then X comes from the

uniform power distribution with parameters µ, σ2, β.

3. The generalised t-distribution

If X ∼ U
(
µ− q

1
p s−

1
2w

1
pσ, µ+ q

1
p s−

1
2w

1
pσ
)

where w ∼ Ga(1 + 1
p , 1), and

s ∼ GG(q, 1, p2), then X comes from the GT distribution with parameters µ, σ2

and two shape parameters p and q.

4.3.2 SMN representation

We consider the SMN for the Student’s t-distribution in our proposed GMA-SV-LVG-

HC model as it can make use of some normal conjugates (Sections 2.2 and 4.2).

Examples of popular SMN distribution applications include:
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1. The Student’s t-distribution

If X ∼ N(µ, ξσ2) where ξ ∼ IG(ν2 ,
ν
2 ) and IG(·, ·) represents the Inverse Gamma

distribution, then X ∼ tν(µ, σ).

2. The Pearson Type VII family

If X ∼ N(µ, ξσ2) where ξ ∼ IG(ν2 ,
δ
2), then X follows the Pearson Type VII

distribution with parameters µ, σ2, δ and ν.

3. The Variance Gamma distribution

If X ∼ N(µ, ξσ2) where ξ ∼ Ga(ν2 ,
ν
2 ), then X follows the Variance Gamma

distribution with parameters µ, σ2 and ν.

4.3.3 Gegenbauer long memory SV model with Student’s t-distribution

for returns (GMA-SV-HC)

This model drops the leverage effect but considers heavy tailed Student’s t-innovations

in the observation equation. We introduce a mixing variable ξt to exp(ht) as

yt|ht =

J∗t∑
j=0

λjξ
1
2
t−j exp(ht−j/2)ε∗t−j , ε∗t−j ∼ N(0, 1), (4.36)

ht+1|ht = α+ β(ht − α) + ση∗t , ηt ∼ N(0, 1),

h1 = α+ σ/
√

1− β2η∗1, η1 ∼ N(0, 1), (4.37)

where the mixing variable ξt|ν ∼ IG(ν2 ,
ν
2 ). Note that this is model 3 in Appendix E.

The model can be written in matrix form as in (4.15) where the covariance matrix can

be expressed as Γ = GJ∗V G
′
J∗ where V = diag(W ◦W ◦ ξ), W = (eh1/2, . . . , ehT /2)

and ξ = (ξ2, . . . , ξT+1). Again, we consider the transformation Y ∗ = G−1
J Y as in

(4.16) where Y ∗ = (y∗1, . . . , y
∗
T ) is independent of the Gegenbauer long memory

parameters u and d. Note that (4.36) corresponds to

y∗t |ht = ξ
1
2
t exp(ht/2)εt, εt ∼ N(0, 1).

The next two subsections discuss the sampling of the shape parameter ν and mixing

variable ξt for the Student’s t-innovations of returns.
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4.3.4 Sampling the mixing variable ξt in the GMA-SV-HC model

Each ξt is independent, and can be sampled separately. The posterior distribution of

ξt is

p(ξt|y∗t , ht, ν) ∝ f(y∗t |ht, ξt)× p(ξt|ν)

=
1√

2πξteht
exp

(
− y∗2t

2ξteht

)
×

(ν2 )
ν
2

Γ(ν2 )
ξ
−( ν

2
+1)

t exp

(
−

ν
2

ξt

)
∝ ξ−

1
2

t exp

(
− y∗2t

2ξteht

)
× ξ−( ν

2
+1)

t exp

(
−

ν
2

ξt

)
= ξ
−( 1

2
+ ν

2
+1)

t exp

[
−
(

y∗2t
2ξteht

+
ν
2

ξt

)]
= ξ
−( 1

2
+ ν

2
+1)

t exp

[
−

(
1
2y
∗2
t e
−ht + ν

2

ξt

)]

∼ IG
(
ν + 1

2
,
ν + y∗2t e

−ht

2

)
.

4.3.5 Sampling the shape parameter ν in the GMA-SV-HC model

In order to sample ν, an independence-chain MH algorithm is implemented. Assum-

ing the prior ν ∼ U[0, ν̃], the posterior distribution of ν is

p(ν|ξ) ∝ p(ν)× p(ξ|ν)

=
T∏
t=1

(ν2 )
ν
2

Γ(ν2 )
ξ
− ν

2
−1

t exp

(
−ν/2
ξt

)
I0,ν̃

=
(ν2 )

Tν
2

Γ(ν2 )T

(
T∏
t=1

ξ
− ν

2
−1

t

)
exp

(
T∑
t=1

−ν/2
ξt

)
I0,ν̃ ,

where I0,ν̄ is an indicator function such that it is equal to one if 0 < ν < ν̃ and zero

otherwise and ξ = (ξ1, . . . , ξT ). Then we have

log p(ν|ξt) =
Tν

2
log
(ν

2

)
+ T log Γ

(
2

ν

)
+
(ν

2
+ 1
) T∑
t=1

log ξ−1
t − ν/2

T∑
t=1

ξ−1
t ,

where

d log p(ν|ξ)

dν
=
T

2
log
(ν

2

)
+
T

2
− T

2
ψ
(ν

2

)
− 1

2

T∑
t=1

log ξt −
1

2

T∑
t=1

ξ−1
t ,

d2 log p(ν|ξ)

dν2
=

T

2ν
− T

4
ψ1

(ν
2

)
,
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where ψ and ψ1 are the digamma and trigamma functions respectively. We maximise

the density in order to find the mode ν̄ using the Newton-Raphson method and also

evaluate the inverse of the Fishers information evaluated at the mode denoted as Vν̄ .

We then sample from ν∗ ∼ N(ν̄, Vν̄), and accept or reject ν∗ using the MH algorithm

with a normal proposal.

The sampling procedures of α, β and σ2 are given in Section 2.2, however instead use

y∗t . Also, the sampling of the latent volatilities h1 and h as well as the long memory

parameters d and u can be found in Appendix F.

4.3.6 Simulation study of the SV-HC model

Once again, we conclude this section by testing our proposed estimators at various

values of ν utilizing all of the MCMC samplers from previous sections. The length

of observations is T = 2, 000. As before, the experiment is repeated 1, 000 times and

the average values are recorded in Table 4.7. Evidently, as ν becomes larger, the es-

timation error increases. This is an anticipated result due to the fact that differences

in percentiles between Student’s t-distributions becomes smaller as ν increases. After

testing the accuracy of estimating the heavy tail component in the SV-MC model, we

consider in the next section the GMA-SV-LVG-HC model. This model has both lever-

age and heavy observational tails by combining the GMA-SV-LVG model in Section

4.2 and the GMA-SV-HC model in Section 4.3.
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ν ν̂ RMSE(ν̂1) µ̂ RMSE(µ̂) α̂ RMSE(α̂) β̂ RMSE(β̂) σ̂2 RMSE(σ̂2) ÂRh% ÂRβ% ÂRν% Time (min.)

3.0 3.092 0.092 0.000 0.000 0.057 0.057 0.973 0.012 0.026 0.006 40.566 46.653 25.165 243

(0.286) (0.000) (0.263) (0.024) (0.007)

4.0 4.235 0.235 0.000 0.000 0.026 0.026 0.978 0.007 0.027 0.007 40.309 46.801 31.057 147

(0.401) (0.000) (0.225) (0.007) (0.007)

5.0 5.229 0.229 0.000 0.000 -0.001 0.001 0.978 0.007 0.027 0.007 40.620 46.881 31.974 109

(0.579) (0.000) (0.216) (0.007) (0.007)

6.0 6.859 0.859 0.000 0.000 0.036 0.036 0.976 0.009 0.027 0.007 40.752 46.607 30.126 73

(0.993) (0.000) (0.225) (0.012) (0.007)

7.0 7.961 0.961 0.000 0.000 0.041 0.041 0.976 0.009 0.026 0.006 41.129 46.722 29.546 51

(1.276) (0.000) (0.235) (0.014) (0.007)

8.0 10.374 2.374 0.000 0.000 0.044 0.044 0.978 0.007 0.027 0.007 40.361 47.133 33.092 40

(2.138) (0.000) (0.219) (0.007) (0.007)

9.0 12.465 3.465 0.000 0.000 0.046 0.046 0.978 0.007 0.028 0.008 39.795 46.931 32.802 33

(2.751) (0.000) (0.225) (0.007) (0.007)

10.0 14.580 4.580 0.000 0.000 0.066 0.066 0.979 0.006 0.027 0.007 40.380 46.620 34.625 30

(3.432) (0.000) (0.234) (0.007) (0.007)

15.0 20.147 5.147 0.000 0.000 0.017 0.017 0.980 0.005 0.026 0.006 41.236 46.896 34.958 22

(4.169) (0.000) (0.228) (0.006) (0.006)

20.0 22.416 2.416 0.000 0.000 0.024 0.024 0.978 0.007 0.025 0.005 42.553 46.827 34.948 18

(4.195) (0.000) (0.212) (0.007) (0.006)

TABLE 4.7: Parameter estimates of the SV-HC model for various levels
of ν
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4.4 Bayesian inference for GMA-SV-LVG-HC model

4.4.1 Model specification

Finally, the GMA-SV-LVG-HC model is a culmination of the previously discussed ef-

fects which have been iteratively built up. This model contains features that are

powerful to deal with extremely volatile time series’, such as those of Cryptocurren-

cies. The GMA-SV-LVG-HC model is derived by first conditioning ε∗t , then introducing

the mixing variable ξt which is combined with exp(ht) and σ2. To begin with, the

GMA-SV-LVG-HC model is given by

yt =

J∗t∑
j=0

λjε
∗
t−j

ht+1 = α+ β(ht − α) + η∗t

h1 = α+
σ√

1− β2
η1 ε∗t

η∗t

 ∼ tν

 0

0

 ,

 exp(ht) ρσ exp(ht/2)

ρσ exp(ht/2) σ2

 . (4.38)

The equivalent SMN representation of (4.38) is

 ε∗t

η∗t

 ∼ N

 0

0

 , ξt

 exp(ht) ρσ exp(ht/2)

ρσ exp(ht/2) σ2

 , where ξt ∼ IG
(ν

2
,
ν

2

)
.

Therefore, this model can be written as

 yt

ht+1

 ∼ N

 ∑J∗t
j=0 λjε

∗
t−j

α+ β(ht − α)

 , ξt

 exp(ht) ρσ exp(ht/2)

ρσ exp(ht/2) σ2

 ,

h1 ∼ N
(
α,

σ2

1− β2

)
,

ξt ∼ IG
(ν

2
,
ν

2

)
.

Again, by expressing the bivariate model as a product of a marginal volatility and

conditional observation component, and using the conditional normal distribution

formula

X1|x2 = x2 ∼ N
(
µ1 + ρ

σ1

σ2
(x2 − µ2), (1− ρ2)σ2

1

)
,
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we have

ε∗t |η∗t = N
(
ρ

exp(ht/2)

σ
(η∗t − 0), (1− ρ2)ξt exp(ht)

)
= N

(
ρ

exp(ht/2)

σ
[ht+1 − α− β(ht − α)], (1− ρ2)ξt exp(ht)

)
. (4.39)

Hence

yt|ht+1, ht =

J∗t∑
j=0

λjε
∗
t−j |η∗t+1−j

=
∞∑
j=0

λj

[
ρ

exp(ht/2)

σ
[ht+1 − α− β(ht − α)] +

√
(1− ρ2)ξ

1
2
t exp(ht/2)εt

]
,

where εt ∼ N(0, 1) and ξt ∼ IG
(
ν
2 ,

ν
2

)
. The model can also be written as

yt|ht+1, ht ∼ N

 J∗t∑
j=0

λj exp(ht−j/2)
ρ

σ
[ht+1−j − α− β(ht−j − α)], (1− ρ2)

J∗t∑
j=0

λ2
jξt−j exp(ht−j)

 ,

ht+1|ht ∼ N(α+ β(ht − α), ξtσ
2) = N(α(1− β) + βht, ξtσ

2),

h1 ∼ N
(
α, ξ1

σ2

1− β2

)
,

ξt+1 ∼ IG
(ν

2
,
ν

2

)
,

in which the first line of the model agrees with (4.11) and (4.12) when the mixing

variable ξt is attached to exp(ht) and σ2. Using the transformation in (4.16), we have

y∗t |ht+1, ht ∼ N
(

exp(ht/2)
ρ

σ
[ht+1 − α− β(ht − α)], (1− ρ2)ξt exp(ht)

)
,

ht+1|ht = α+ β(ht − α) + ξtσηt, ηt ∼ N(0, 1),

where ξt|ν ∼ IG(ν2 ,
ν
2 ).

4.4.2 Comparison with Choy and Chan (2000) and Wang et al. (2012)

It is worthwhile to discuss the applications for two pre-existing models without long

memory, that is, the SV-LVG-HC model. Choy and Chan (2000) used the same ap-

proach to first represent the bivariate Student’s t-distribution in the standard SV

model in (4.1) to (4.3) as a scale mixtures of bivariate normals and factorized the
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model using (4.7) with a common mixing variable as

yt|ht ∼ N
(ρ
τ

exp(ht/2)(ht+1 − µ− φ(ht − µ)), ξt exp(ht)(1− ρ2)
)
,

ht+1|ht ∼ N
(
α+ β(ht − α), ξtσ

2
)
,

ξt|ν ∼ IG(ν/2, ν/2).

This can be hierarchically expressed as

 yt

ht+1

 ∼ N

 0

α+ β(ht − α)

 , ξt

 eht ρσeht/2

ρσeht/2 σ2

 ,

 εt

ηt

 ∼ N

 0

0

 , ξt

 1 ρ

ρ 1

 ,

h1 ∼ N
(
α,

1− β2

ξ1σ2

)
,

ξt ∼ IG
(ν

2
,
ν

2

)
.

Wang, Chan, and Choy (2011) considered an alternative approach and stated, “the

main difference between our [Wang’s] approach and Choy’s approach lies in the order

of conditioning on the mixing parameter and the conditional density of yt|ht+1”. They

begin with the bivariate t-distribution and factorize it into a conditional t-distribution

by dividing the joint density with a marginal density

f(yt|ht+1) =
f(yt, ht+1)

f(ht+1)
,

where

f(yt|ht+1, ht) =
Γ(ν2 + 1)

Γ(ν2 )νπσ exp(ht2 )
√

1− ρ2

[
1 +

1

ν

M2
t − 2ρMtNt +N2

t

Dt

]( ν
2

+1)

,

Dt = σ2(1− ρ2) exp(ht),

Mt = ytσ,

Nt = exp

(
ht
2

)
{ht+1 − [α+ β(ht − µ)]} ,

and the density of the marginal t-distribution for ht+1|ht is

f(ht+1|ht) =
Γ(ν2 + 1)

Γ(ν2 )
√
νπσ

[
1 +

1

νσ2
{ht+1 − [α+ β(ht − µ)]}2

]−( ν+1
2

)

.
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Then using (4.7), it can be shown that

yt|ht+1, ht ∼ tν+1

(
ρ

σ
exp

(
ht
2

)
{ht+1 − [α+ β(ht − α)]} ,(

ν

ν + 1

)
(1− ρ2) exp(ht)

[
1 +

1

νσ2
{ht+1 − [α+ β(ht − α)]}2

])
,

ht+1|ht ∼ tν(µ+ φ(ht − µ), σ2).

Thereafter they consider a SMN representation for each component of the conditional

and marginal t-distributions given by

p(yt|ht+1, ht) ∼ N
(
ρ

σ
exp

(
ht
2

)
{ht+1 − [α+ β(ht − α)]} ,

1

λyt

(
ν

ν + 1

)
(1− ρ2) exp(ht)

[
1 +

1

νσ2
{ht+1 − [α+ β(ht − α)]}2

])
,

ht+1|ht ∼ N(α+ β(ht − α),
σ2

λht+1

),

λyt ∼ Ga
(
ν + 1

2
,
ν + 1

2

)
,

λht ∼ Ga
(ν

2
,
ν

2

)
.

However, it is important to note this model is different from that of Choy and Chan

(2000) because of a difference in the order of factorization and conditioning of the

mixing variable. This model offers extra flexibility as it contains two mixing variables

for each component allowing the level of dispersion to vary across components at

each time point. This is the clear benefit of using this model. However, both models

still rely on the same shape parameter ν. Since our aim is to extend the standard

SV-LVG model to adopt long memory effect, we consider the approach of Choy and

Chan (2000) for simplicity.
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4.4.3 Sampling the volatility level parameter α in the GMA-SV-LVG-HC

model

The posterior distribution of α is given by

p(α|Y ∗, h1,h, β, σ
2, ρ, ξ0, ξ) ∝ f(Y ∗|h1,h, α, β, σ

2, ρ, ξ)f(h1|α, β, σ2, ξ0)f(h|h1:T , α, β, σ
2, ξ)p(α)

=
1

(
√

2π)T (
√

1− ρ2)T
∏T
t=1 ξ

1
2
t exp(ht/2)

exp

{
−

T∑
t=1

[
y∗t
eht/2

− ρ
σ (ht+1 − α− β(ht − α))]2

2(1− ρ2)ξt

}
×

(1− β2)
1
2

√
2πσξ

1
2
0

exp

{
−(h1 − α)2(1− β2)

2σ2

}
×

1

(
√

2πσ)T
∏T
t=1 ξ

1
2
t

exp

{
−
∑T

t=1(ht+1 − α− β(ht − α))2

2σ2

}
× 1√

2πσα
exp

{
−(α− µα)2

2σ2
α

}
.

We consider the first term:

1

(
√

2π)T (
√

1− ρ2)T
∏T
t=1 ξ

1
2
t exp(ht/2)

exp

{
−

T∑
t=1

[
y∗t
eht/2

− ρ
σ (ht+1 − α− β(ht − α))]2

2(1− ρ2)ξt

}

∝ exp

{
−

T∑
t=1

[
y∗t
eht/2

− ρ
σ (ht+1 − α− β(ht − α))]2

2(1− ρ2)ξt

}

= exp

{
− 1

2(1− ρ2)

T∑
t=1

ξ−1
t

[
y∗t
eht/2

− ρ

σ
[ht+1 − α− β(ht − α)]

]2
}

∝ exp

{
− 1

2(1− ρ2)

T∑
t=1

ξ−1
t

[
−2

y∗t
eht/2

ρ

σ
[ht+1 − α− β(ht − α)] +

ρ2

σ2
[ht+1 − α− β(ht − α)]2

]}

∝ exp

{
− 1

2(1− ρ2)

T∑
t=1

ξ−1
t

[
2
y∗t
eht/2

ρ(1− β)

σ
α+

ρ2

σ2
[ht+1 − α− β(ht − α)]2

]}

∝ exp

{
− ρ

2σ(1− ρ2)

T∑
t=1

ξ−1
t

[
2
y∗t
eht/2

(1− β)α+
ρ

σ
[α2(1− β)2 − 2α(ht+1 − βht)(1− β)]

]}

= exp

{
−1

2

(
α2 (1− β)2ρ2

(1− ρ2)σ2

T∑
t=1

ξ−1
t − 2α

(1− β)ρ

(1− ρ2)σ

T∑
t=1

ξ−1
t

[
(ht+1 − βht)

ρ

σ
− y∗t
eht/2

])}
.

The derivation of the remaining terms can be found in (4.18) to (4.21) for the GMA-

SV-LVG model, by replacing σ2 with ξtσ2. We then have the result

α|Y ∗, h1,h, β, σ
2, ρ, ξ0, ξ ∼ N (VαMα, Vα) ,
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where

Vα =

(
(1− β)2ρ2

(1− ρ2)σ2

T∑
t=1

ξ−1
t +

(1− β2)

σ2

T∑
t=1

ξ−1
t +

(1− β2)ξ−1
0

σ2
+

1

σ2
α

)−1

,

Mα =
(1− β)ρ

(1− ρ2)σ

T∑
t=1

ξ−1
t

[
(ht+1 − βht)

ρ

σ
− y∗t
eht/2

]
+

(1− β2)

σ2
ξ−1

0 h1

+
(1− β)

σ2

T∑
t=1

ξ−1
t [ht+1 − βht] +

µα
σ2
α

.

4.4.4 Sampling the volatility persistence parameter β in the GMA-SV-

LVG-HC model

We follow the method of Chib and Greenberg (1994) to use the density of h1 as the

proposal density. Therefore, we do not consider the density of h1 when deriving the

proposal density of interest for β as

p(β|Y ∗, h1,h, α, σ
2, ρ, ξ) ∝ f(Y ∗|h1,h, α, β, σ

2, ρ, ξ)f(h|h1:T , α, β, σ
2, ξ)× p(β)

=
1

(
√

2π)T (
√

1− ρ2)T
∏T
t=1 ξ

1
2
t exp(ht/2)

exp

{
−

T∑
t=1

[
y∗t
eht/2

− ρ
σ (ht+1 − α− β(ht − α))]2

2(1− ρ2)ξt

}
×

1

(
√

2πσ)T
∏T
t=1 ξ

1
2
t

exp

{
− 1

2σ2

T∑
t=1

ξ−1
t [ht+1 − α− β(ht − α)]2

}
×

1√
2πσα

exp

{
−

(β − µβ)2

2σ2
β

}

∝ exp

{
−1

2

[
T∑
t=1

[
y∗t
eht/2

− ρ
σ (ht+1 − α− β(ht − α))]2

(1− ρ2)ξt

+

T∑
t=1

[ht+1 − α− β(ht − α)]2

σ2ξt
+

(β − µβ)2

σ2
β

]}
.
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Now, we consider the first term in the exponent as

T∑
t=1

[
y∗t
eht/2

− ρ
σ [ht+1 − α− β(ht − α)]2

(1− ρ2)ξt

=
T∑
t=1

y∗2t
eht
− 2

y∗t
eht/2

ρ
σ [ht+1 − α− β(ht − α)] + ρ2

σ2 [ht+1 − α− β(ht − α)]2

(1− ρ2)ξt

=

T∑
t=1

2
y∗t
eht/2

ρ
σβ(ht − α) + ρ2

σ2 [β2(ht − α)2 − 2β(ht − α)(ht+1 − α)]

(1− ρ2)ξt
+ terms independent of β

=
ρ2

σ2(1− ρ2)

T∑
t=1

ξ−1
t (ht − α)2β2 +

2ρ

σ(1− ρ2)

T∑
t=1

ξ−1
t

[
y∗t
eht/2

(ht − α)− ρ

σ
(ht − α)(ht+1 − α)

]
β

+ terms independent of β.

The derivation of the remaining terms can be found in (4.25) and (4.26), by replacing

σ2 with ξtσ2. Hence, the terms in the exponent can be expressed as

(
ρ2

σ2(1− ρ2)

T∑
t=1

ξ−1
t (ht − α)2 +

1

σ2

T∑
t=1

ξ−1
t (ht − α)2 +

1

σ2
β

)
β2

−2

(
ρ

σ(1− ρ2)

T∑
t=1

ξ−1
t (ht − α)

[
ρ

σ
(ht+1 − α)− y∗t

eht/2

]
+

1

σ2

T∑
t=1

ξ−1
t (ht − α)(ht+1 − α) +

µβ
σ2
β

)
β,

compared to (4.27) for the GMA-SV-LVG model. Therefore,

β|Y ∗, h1,h, α, σ
2, ρ, ξ ∼ N(VβMβ, Vβ), (4.40)

where

Mβ =
ρ

σ(1− ρ2)

T∑
t=1

ξ−1
t (ht − α)

[
ρ

σ
(ht+1 − α)− y∗t

eht/2

]
+

1

σ2

T∑
t=1

ξ−1
t (ht − α)(ht+1 − α) +

µβ
σ2
β

,

Vβ =

(
1

σ2(1− ρ2)

T∑
t=1

ξ−1
t (ht − α)2 +

1

σ2
β

)−1

,

Again, in order to implement the MH step, we first sample β∗ from the proposal

density in (4.40) and use the density of h1

q(β) =

√
1− β2√
2πσ2ξ0

exp

{
−(h1 − α)2 (1− β2)

2σ2ξ0

}
,
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as the target density. We work with log q(β) so that

log q(β) =
1

2
log(1− β2)− 1

2
log(2πσ2ξ0)− (h1 − α)2(1− β2)

2σ2ξ0
,

and β∗ is accepted for β(m) with probability min
{

exp[q(β∗)− q(β(m−1))], 1
}

.

4.4.5 Sampling the volatility of volatility parameter σ2 in the GMA-SV-

LVG-HC model

The conditional posterior distribution of σ2 is

p(σ2|Y ∗, h1,h, α, β, ρ, ξ0, ξ)

∝ f(Y ∗|h1,h, α, β, σ
2, ρ, ξ)f(h1|α, β, σ2, ξ0)f(h|h1:T , α, β, σ

2, ξ)p(σ2)

=
1

[
√

2π(1− ρ2)]T
T∏
t=1

ξ
1
2
t exp(ht2 )

exp

{
−

T∑
t=1

(
y∗t
eht/2

− ρ
σ [ht+1 − α− β(ht − α)])2

2(1− ρ2)ξt

}
×

√
1− β2√
2πσ2ξ0

exp

{
− 1

2σ2
ξ−1

0 (h1 − α)2(1− β2)

}
×

1

(
√

2πσ)T
∏T
t=1 ξ

1
2
t

exp

{
− 1

2σ2

T∑
t=1

ξ−1
t [ht+1 − α− β(ht − α)]2

}
( b2)

a
2

Γ(a2 )
σ−2(a

2
+1) exp

(
−

( b2)

σ2

)
.

It is clear that we cannot continue as usual to find the posterior distribution of σ2,

because we require the exponent term to be in terms of σ2 only, and not σ. This

problem originates from including the conditional of y∗t |ht+1, ht. Therefore, we once

again follow the procedure set out in Chib and Greenberg (1994), and use the con-

ditional density of y∗t |ht+1, ht as the proposal density for the MH sampling scheme.

Therefore, the proposal density of interest for σ2 is

p(σ2|h1,h, α, β, ξ0, ξ) ∝ f(h1|α, β, σ2, ξ0)f(h|h1:T , α, β, σ
2, ξ)× p(σ2)

=

√
1− β2

√
2πσ

exp

{
− 1

2σ2
ξ−1

0 (h1 − α)2(1− β2)

}
×

1

(
√

2πσ)T
exp

{
− 1

2σ2

T∑
t=1

ξ−1
t [ht+1 − α− β(ht − α)]2

}
×

( b2)
a
2

Γ(a2 )
σ−2(a

2
+1) exp

(
−

( b2)

σ2

)
,
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which is the conditional density of the standard SV model when σ2 is replaced by

σ2ξt for the first two product terms. We use this proposal density

σ2|h1,h, α, β, ρ, ξ0, ξ ∼ IG

(
T + a

2
,
b+ ξ−1

0 (h1 − α)2(1− β2) +
∑T

t=1 ξ
−1
t [ht+1 − α− β(ht − α)]2

2

)
,

(4.41)

to draw (σ2)∗ and use

f(Y ∗|h1,h, α, β, σ2, ρ, ξ) =
1

[
√

2π(1− ρ2)]T
T∏
t=1

ξ
1
2
t exp(ht

2 )

exp

{
−

T∑
t=1

[
y∗t
eht/2

− ρ
σ (ht+1 − α− β(ht − α))]2

2(1− ρ2)ξt

}
,

as the target density. We work on the log density

log q(σ2) = log f(Y ∗|h1,h, α, β, σ
2, ρ, ξ)

= −
T∑
t=1

[
y∗t
eht/2

− ρ
σ (ht+1 − α− β(ht − α))]2

2(1− ρ2)ξt
+ terms independent of σ2

=
ρ

1− ρ2

T∑
t=1

y∗t e
−ht/2[ht+1 − α− β(ht − α)]

σξt

− ρ2

2(1− ρ2)

T∑
t=1

[ht+1 − α− β(ht − α)]2

σ2ξt
+ terms independent of σ2.Wenotethismethodprovestobeinefficientforthisparticularmodel, andassuch, adoptthemethodexplaininAppendixF .

Once again, (σ2)∗ is accepted for (σ2)(m) with probability min
{

exp[q((σ2)∗)− q((σ2)(m−1))], 1
}

.

4.4.6 Sampling the leverage parameter ρ in the GMA-SV-LVG-HC model

Since ρ is bounded, a grid-based method is used to sample from the posterior distri-

bution

p(ρ|Y ∗, h1,h, α, β, σ
2, ξ) ∝ f(Y ∗|h1,h, α, β, σ

2, ρ, ξ)× p(ρ)

=
1

(
√

2π)T (
√

1− ρ2)T
∏T
t=1 ξt exp(ht2 )

exp

{
−

T∑
t=1

(
y∗t
eht/2

− ρ
σ (ht+1 − α− β(ht − α)))2

2(1− ρ2)ξt

}
1√

2πσρ
exp

{
−(ρ− µρ)2

2σ2
ρ

}

∝ 1

(1− ρ2)T/2
exp

{
−

T∑
t=1

[
y∗t
eht/2

− ρ
σ (ht+1 − α− β(ht − α))]2

2(1− ρ2)ξt
− (ρ− µρ)2

2σ2
ρ

}

∝ 1

(1− ρ2)T/2
exp

{
−

T∑
t=1

[
y∗t
eht/2

− ρ
σ (ht+1 − α− β(ht − α))]2

2(1− ρ2)ξt
− ρ2

2σ2
ρ

+
2µρρ

2σ2
ρ

}
.
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Hence we have

log p(ρ|Y ,h, α, β, σ2, ξ) =− T

2
log(1− ρ2)−

T∑
t=1

[
y∗t
eht/2

− ρ
σ (ht+1 − α− β(ht − α))]2

2(1− ρ2)ξt

− ρ2

2σ2
ρ

+
2µρρ

2σ2
ρ

+ terms independent of ρ.

As discussed in Section 4.2.9, ρ can be efficiently estimated using MAP sampler with

tolerance level 10−5.

4.4.7 Sampling the mixing variable ξt in the GMA-SV-LVG-HC model

To sample (ξ1, ξ) first note that each element is independent and ξt ∼ IG(ν2 ,
ν
2 ). When

t = 0,

p(ξ1|h1, α, β, σ
2, ν) ∝ f(h1|ξ1, α, β, σ

2) f(ξ1)

so that:

ξ1|h1, α, β, σ
2, ν ∼ IG

(
ν + 1

2
,
(h1 − α)2(1− β2)

2σ2
+
ν

2

)
.

Similarly, when t > 0, we have

p(ξt+1|ht+1, ht, α, β, σ
2, ρ, ν, y∗t ) ∝ f(ht+1|ht, ξt+1, α, β, σ

2)f(y∗t |ht+1, ht, ξt+1, α, β, σ, ρ) f(ξt+1)

ξt+1|ht+1, ht, α, β, σ
2, ρ, ν, y∗t ∼ IG

(ν
2

+ 1, Sξ

)

where Sξ =
[ht+1 − α− β(ht − α)]2

2σ2
+
{ y∗t
eht/2

− ρ
σ [ht+1 − α− β(ht − α)]}2

2(1− ρ2)
+
ν

2
.

4.4.8 Sampling the latent volatilities h and long memory parameters u

and d in the GMA-SV-LVG-HC model

The sampling of the latent volatilities h1 and h as well as the long memory parameters

d and u can be found in Appendix F. Next, we look at aspects of Cryptocurrencies.
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4.5 Background for Cryptocurrencies

4.5.1 Initial important concepts

Before discussing Cryptocurrencies, we introduce some initial important concepts.

• Mining: To mine is to discover and solve blocks which are along the blockchain.

A financial reward, in the form of a Cryptocurrency, can be obtained for solving

the algorithm, called a mining reward.

• Hashrate: This refers to the speed at which a block is discovered and the rate

at which the associated mathematical problem is solved.

• Blockchain: A system which allows the creation of a digital ledger of transac-

tions. This digital ledger is decentralized since all users of the blockchain carry

the same information. It can be envisaged as a large set of computers working

together to create a network, instead of one computer (e.g. a bank’s server)

to store a ledger. The blockchain records every single transaction that has ever

happened on it.

• Block: Many blocks make a blockchain. It can be interpreted as pages in the

ledger.

• Smart contract: An unalterable agreement stored on the blockchain that has a

specific logic operation. Once signed, it can never be altered.

4.5.2 History of cryptocurrencies

Cryptocurrencies have a rich history and date back to the early 1980s which was a

few years after the first commercial uses of the internet began. The initial proponents

of Cryptocurrencies began within the cryptographic community and was spearheaded

by Chaum (1981). Chaum (1981) explains the use of a so-called “binding” algorithm,

which enables decentralized web-based encryption for money transfer. This algorithm

facilitated secure exchange between parties, and therefore laid the foundation of

electronic currency transfers. This process is known as “blinded money”. Thereafter,

the idea of Cryptocurrencies reached an inner circle of enthusiasts who began to

commercialize the ideas of anonymous money. The first Cryptocurrency created as

a result of this was DigiCash, which shared similar traits to Cryptocurrencies today,
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except DigiCash itself had a monopoly on supply - similar to central banks today.

The company responsible for creating DigiCash was based in the Netherlands, and

initially dealt with individuals. However, the Netherlands central bank soon objected

to this and subsequently DigiCash was only allowed to be used by licensed financial

institutions.

During the same period, a host of other payment systems also emerged which later

failed, including DigiCash. In fact, PayPal is the only payment system which emanated

from the history of Cryptocurrencies that is still being used today.

The deep underlying philosophies of DigiCash were later resurrected by Nakamoto

(2008) via Bitcoin. Nakamoto (2008) outlined the foundation of how Bitcoin would

operate and solve the so called “double-spending problem”. Once again, a small

group of enthusiasts began to exchange Bitcoin with one another and also mine

the currency. Slowly thereafter, large online merchants began to accept Bitcoin as

a medium of exchange such as Newegg and Microsoft.

Bitcoin is the most widely used Cryptocurrency with the largest market capitalization.

It is a fully digital currency that can be exchanged in a worldwide peer-to-peer (P2P)

network, which is intended to share data amongst its users. Traditional applications

of P2P networking traditionally involved music and video sharing platforms. How-

ever, Bitcoin is not a string of data that can be duplicated outside of the network and

therefore be synthetically created outside of the Blockchain. A Bitcoin is an entry on

a huge global ledger (called the Blockchain). As of July 2018, the size of the Bitcoin

blockchain is 164.4 Gigabytes.

To date, there are 17.2 million Bitcoin in circulation, and it is estimated that one third

have been lost due to people losing their password and login information. It has a

programmed supply limit of 21 million Bitcoin, and is forecasted to reach its supply

limit by the year 2140. Approximately every 4 years, the reward for mining Bitcoin is

halved, until it will reach 0. Interestingly, Bitcoin will never theoretically reach the 21

million supply limit, since the exact value is in fact 20, 999, 999.9769. When there is

no longer any reward for miners, the transaction fees will be the reason why mining

will continue.

In general, when Cryptocurrencies are transacted, there is no packet of data which is

being sent from the seller to the receiver, rather, there is a re-entry on the blockchain.
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There are advantages and disadvantages for transacting with Cryptocurrencies and

Table 4.8 provides a comparison.

Advantages of Cryptocurrencies Disadvantages of Cryptocurrencies

Most Cryptocurrencies have limited sup-

ply and may therefore uphold their value

such as precious metals do.

It facilitates black market activity.

Its control is decentralized. It leads to tax evasion.

Miners are financially rewarded. This is

important since miners upkeep the ledger,

and therefore the authenticity of all trans-

actions. This is in contrast to financial in-

stitutions who are not directly paid for au-

thenticating their ledger.

Data loss will lead to financial loss.

It ensures privacy when transacting

through complete anonymity.

It has potential for price manipulation.

Near impossible for governments to freeze

assets. This is particularly relevant for cit-

izens of repressive states.

It is not readily available to be transacted

into fiat currency.

It has very low transaction fees. Money can be virtually “lost” without

passwords, with no way to recover them.

It has low barriers to international trans-

actions

It has no refunds, or oversight for dis-

putes.

TABLE 4.8: Advantages and disadvantages of transacting with Cryp-
tocurrencies.

4.5.3 Comparison with fiat currencies

In essence, Cryptocurrencies use cryptographic encryption techniques to regulate the

generation of units and verify transfers whilst operating independent of a central

bank. This is in stark contrast to traditional fiat currencies whereby their value is

derived from macroeconomic elements such as terms of trade, interest rates and in-

flation. These aspects are further summarized in Table 4.9 as below.



98 Chapter 4. Extensions to leverage and heavy tails for Cryptocurrency modelling

Aspect Fiat Currency Cryptocurrency

Generation of units Monetary policy Awarded to users for mining

Controlled by Central bank Decentralized

Settlement time Three days Varied however typically between

one second to 48 hours.

Ledger authentication Financial institutions Many computers

TABLE 4.9: Comparison of fiat and Cryptocurrencies.

4.6 Conclusion

This chapter derives the estimation methodologies for the GMA-SV-LVG-HC model

and its sub-models and reviews some background of Cryptocurrencies. The next two

chapters are two papers which analyze Cryptocurrency returns using the GMA-SV-

LVG-HC model and investigate the properties of Cryptocurrencies. Chapter 5 is our

second publication (which is currently under review after a revision was invited) in

Econometrics and Statistics, and Chapter 6 is our third publication accepted in Finance

Research Letters.
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Chapter 5

Bivariate Student-t long memory

stochastic volatility models with

leverage

“The combination of some data and an aching desire for an answer does not ensure that

a reasonable answer can be extracted from a given body of data"

John Tukey

This paper proposes a Gegenbauer long memory stochastic volatility model with

leverage and a bivariate Student’s t-error distribution to model the innovations of

the observation and latent volatility jointly for cryptocurrency time series. This paper

is inspired by the deep rooted characteristics found in cryptocurrencies. To date, lit-

tle to no work has been done within the econometrics literature to understand their

properties. To do this, a rigorous in-sample simulation is conducted to assess the per-

formance of the model with its nested alternatives and study the behavior of many

cryptocurrencies - in particular Bitcoin. The data analysis is initiated with a broad

scope of 114 cryptocurrencies, then a more detailed understanding of five of the most

popular cryptocurrencies and followed up with a specific focus on Bitcoin. The model

parameters are estimated with Bayesian approach using Markov Chain Monte Carlo

sampling. In order to implement model selection, the Deviance Information Criterion

(DIC) is used. The models are compared with many popular models including those

commonly used in industry. Proposed models are applied in a Value-at-Risk (VaR)

context and several measures are used to assess model performance.
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5.1 Introduction

Academic interests in anonymous communications research date back to the early

1980s (Chaum, 1981), and the first digital currency, DigiCash was launched in 1990,

which offered anonymity through cryptographic protocols. This was later resurrected

by Nakamoto (2008) who adopted the philosophies of (Chaum, 1981) with the addi-

tion of crowd sourcing and peer-to-peer networking which avoided centralized con-

trol. In essence, all cryptocurrencies are digital ledgers which contain names and

balances. The philosophy of cryptocurrencies is that there is no central bank where

the currency derives its value from, and each person transacting has faith in the sys-

tem. One of the underlying goals is to avoid central control so each person owns their

copy of the ledger. To date, this has manifested itself into a growing cryptocurrency

community who are accepting cryptocurrencies as a means of exchange. Banks such

as UBS and Credit Suisse have now developed a streamline payment mechanism for

institutional investors. It is estimated that more than $2.3 billion USD is invested in

Cryptocurrency hedge funds globally. Governments around in the world have also

started legislative proceedings for regulation and consumer safety.

Our work is deeply motivated by the unique characteristics found in cryptocurrency

data, which have gained large media attention as of late. Interestingly, the term

’cryptocurrency’ has been trending upwards as a Google.com search word since 2015.

Although still in its infancy, there has been a lot of attention surrounding this topic

with regulators, investors and governments weighing in on the discussion. Unfortu-

nately, little work to date has been done in the statistical literature on understanding

the properties of cryptocurrencies in general, and we endeavor for our work to be

pioneering in this respect.

The most popular and largest cryptocurrency by market capitalization undoubtedly

is Bitcoin. A $1,000 USD investment in Bitcoin in July of 2010 would have returned

$81,000,000 just 7 years later. Due to these extremely strong returns, coupled with

their nature, Bitcoin or cryptocurrencies in general face scrutiny as being speculative

(Cheah and Fry, 2015). Skeptics argue this is reminiscent of a tech-bubble of the

early 2000s or even the Tulip mania of the seventeenth century. Conversely, there is

evidence to suggest the cryptocurrency market is still in its infancy and is inefficient

(Urquhart, 2016), with properties such as price clustering (Urquhart, 2017). There is,
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however, a strong growing network of Bitcoin users and academics who are shedding

light on this new technology. In this work, we discuss a large investable sample of

cryptocurrencies, and conditionally measure some important stylized facts. It is due

to these unique stylized facts that we contribute a model which is designed to capture

these effects.

To date, there are more than 2, 000 investable cryptocurrencies. Unlike their fiat

counterparts, the differences are not due to sovereign macroeconomic factors. Their

nuances are due to more technical factors such as transaction times, and the support-

ing infrastructure that facilitate their trade. These unique factors can have statistical

interpretations as is discussed later in Chapter 5.5.

A commonly observed property found in financial time series is the long memory ef-

fect, see, for example, Granger and Joyeux (1980) and Hosking (1981). A stationary

time series yt is said to be long memory if
∑∞

k=0|δ(k)| diverges, where δ(k) is the kth-

lag autocovariance. This class of time series generalizes the usual Box-Jenkins ARIMA

model by modelling long term correlation structures as suggested by Mandelbrot and

Ness (1968). An appealing generalization of traditional long memory models are

generalised autoregressive fractional integrated moving average (GARFIMA) models;

whereby Gegenbauer polynomials replace the plain long memory fractional differ-

encing operator. Gegenbauer polynomials were first introduced to the time-series

community by Gray, Zhang, and Woodward (1989b). The novelty in such polynomi-

als lie in their orthogonality and recursion properties.

Cryptocurrencies face different issues compared to their fiat counterparts which can

be better understood with familiar statistical tools. One of these issues is a delay in

their transaction times whereby future volatility can have an affect on the currently

observed price. This phenomena is closely related to the familiar leverage effect. The

leverage effect has its roots in the asymmetric return-volatility relationship attributed

to financial leverage or debt-to-equity ratios (Christie, 1982). Put simply, it is the

claim that one day ahead volatility is negatively correlated to currently observed

returns (Nelson, 1991). This is purported to occur due to traditional stock prices

negatively reacting to bad news thereby causing an increase in the debt-to-equity

ratio of the firm leading to higher expected future volatility (Engle and Ng, 1993).

The most heated debate about cryptocurrencies are their extreme variability char-

acteristics. The statistical literature is full of meaningful ways to explain this. A
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common procedure found in the literature is to modify the observation and/or the

latent equation to include a non-Gaussian heavy-tailed distributions (Chib, Nardari,

and Shephard, 2002; Berg, Meyer, and Yu, 2004; Yu, 2005; Omori et al., 2007; Omori

and Watanabe, 2008), and this would be a natural step to model cryptocurrencies.

An alternative way to measure such variability is modelling the errors stochastically.

The Stochastic Volatility model (SV) was first introduced by Taylor (1986) to de-

scribe the time varying nature of volatility typically found in financial returns. It

is widely viewed as a competitor to the generalised autoregressive conditional het-

eroscedastic (GARCH) model of Bollerslev (1986) because it adequately displays the

main so called stylized-facts found in the daily returns of financial returns (Carnero,

Peña, and Ruiz, 2004). See Engle (1995) and Shephard (2005) for a detailed ac-

count and comparison of the two approaches. To the best of our knowledge, our

proposed Gegenbauer long memory stochastic volatility model with leverage and bi-

variate Student’s t error distribution is the first in the literature that generalise many

other popular models such as the standard SV model of Taylor (1986), the ARFIMA

model of Granger and Joyeux (1980), the SV-L model of Meyer and Yu (2000) and

the ARFIMA-SV model of Bos, Koopman, and Ooms (2014b).

Inference using the SV model using the classical approach proved difficult due to

intractable likelihood functions which involve high dimensional integrations. Exam-

ples of estimation attempts using the classical approach include Melino and Turnbull

(1990) using a generalised method of moments to price currency options, Harvey,

Ruiz, and Shephard (1994) who applied a quasi maximum likelihood approach in

a multivariate context, and also Ait-Sahalia and Kimmel (2007) who used Monte

Carlo simulations to estimate short-dated at-the-money options. Over the last twenty

years, the Bayesian approach has also become popular due to cheap computing power

with many variations. For example, the Metropolis algorithm (Jacquier, Polson, and

Rossi, 1994), importance sampling (Shephard and Pitt, 1997), normal mixtures (Kim,

Shephard, and Chib, 1998) and more recently Chan and Grant (2016a) who used the

Metropolis-Hastings algorithm and the Acceptance-Rejection Metropolis Algorithm

instead of Kalman filter-based algorithms.

There are a host of applications which are traditionally used to deduce inference from

such models, and the most relevant within recent history is risk control through the

use of Value-at-Risk (VaR). For more than twenty years, VaR has been a widely used
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technique to measure portfolio tail-risk by financial controllers. The importance of

VaR has became more relied upon in the last ten years due to the Global Financial

Crisis. In this paper, we also conduct a VaR forecasting exercise to compare the rela-

tive performance of our model to alternative popular VaR models including the Risk-

Metrics approach. Cryptocurrency risk modelling in general is an important aspect

not only for modelling cryptocurrencies, but also for practical reasons due to financial

institutions increased risk exposure to these new financial assets (Hotz-Behofsits, Hu-

ber, and Zörner, 2018; Catania, Grassi, and Ravazzolo, 2018; Hencic and Gouriéroux,

2015).

This chapter proposes for the first time an efficient Bayesian estimation procedure

that models Gegenbauer long memory, stochastic volatility, leverage and a bivariate

Student’s t-distribution. Further, our work sheds light on a large investable sample

of cryptocurrencies which have been otherwise neglected. These inferences are ex-

tended to real world applications and shed light on the relative merits of particular

cryptocurrencies over one another that have otherwise been deemed controversial

whether or not they are true.

The remainder of this chapter is organised as follows: the model is introduced in

Section 2, and its estimation procedure is detailed in Section 3. Our results are

discussed in Sections 4 and 5, and we conclude with Section 6.

5.2 The model

Let yt, t = 1, 2, ..., T be a stochastic process satisfying the equations

φ(B)(1− 2uB +B2)dyt = ψ(B)ε∗t , (5.1)

ht+1 = α+ β(ht − α) + η∗t+1, (5.2) ε∗t

η∗t+1

 ∼ tν
 0

0

 ,

 eht σρeht/2

σρeht/2 σ2

 , (5.3)

where the autoregressive (AR) and moving average (MA) polynomials are φ(B) =

1−φ1B− . . .−φpBp, ψ(B) = 1+ψ1B+ . . .+ψqB
q respectively and B is the backshift

operator.
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We assume that yt is stationary and invertible such that the zeros of φ(z) and ψ(z)

lie outside the unit circle with no common zeros. It is known that yt is causal

when ({|u|< 1, d < 0.5} ∪ {|u|= 1, d < 0.25}), invertible when ({|u|< 1, d > −0.5} ∪

{|u|= 1, d > −0.25}) and long memory when ({|u|< 1, 0 < d < 0.5}∪{|u|= 1, 0 < d < 0.25}).

See Dissanayake, Peiris, and Proietti (2016) for details. The class of time series gen-

erated by (5.1-5.3) is similar to the GARFIMA(p, q)-SV time series process of Phillip,

Chan, and Peiris (2017) but includes additional important features.

We also assume a leverage effect between the errors of the observation equation (5.1)

and the latent equation (5.2) such that E[ε∗t η
∗
t+1] = ρ. Further, they are assumed

to follow a bivariate t-distribution. Clearly, ht is the log-volatility, which evolves

according to the state equation (5.2) for t = 1, . . . , T , α is the constant level of the

volatility, β is the persistence of the volatility process and η∗t+1 is the volatility of

volatility. We assume |β|< 1 so ht is stationary.

For simplicity, we discuss the generalised fractional stochastic volatility noise process

when φ(B) = ψ(B) = 1 such that (1 − 2uB + B2)dyt = ε∗t . Under the assumption

that yt is causal, we have the following MA(∞) representation

yt = (1− 2uB +B2)−dε∗t =

∞∑
j=0

λjε
∗
t−j , (5.4)

where λj are the Gegenbauer coefficients, initialized with λ0 = 1, λ1 = 2ud and

follow the recursion

λj = 2u

(
d− 1

j
+ 1

)
λj−1 −

(
2(d− 1)

j
+ 1

)
λj−2, j ≥ 2. (5.5)

Further details on the Gegenbauer polynomial and its properties can be found in

Rainville (1960). A truncated moving average representation of the Wold represen-

tation in (5.4) arises from truncating at lag J so that

yt = (1− 2uB +B2)−dε∗t ≈
J∗t∑
j=0

λjε
∗
t−j , (5.6)

where J∗t = min(t, J). For further discussion on the choice of J, see Phillip, Chan,

and Peiris (2017). The power spectrum of (5.4), conditional of ht+1, is given by

fyt|ht+1
(ω) = C[4(cos ω − u)2]−d − π < ω < π,
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where C is a suitable constant, and the Gegenbauer frequency is ω = cos−1(u). This

proposed (0, 0) order model is called the GARFIMA-SV leverage heavy common tail

(GMA-SV-LVG-HC) model.

5.3 Bayesian inference

In order to estimate models in 5.1-6.3, we consider the fractional noise case in order

not to detract from the main features of our model, noting that alternative mean

structures such as ARMA(p,q) can easily be implemented. We present two important

modifications in order to operationalize the model, and importantly note they are

order invariant.

Firstly, Andrews and Mallows (1974) introduced Scale Mixtures of Normal (SMN)

distributions, and the Student-t distribution as a SMN. Let X be a vector of contin-

uous random variables with location µ and scale matrix Σ. If X can be represented

as

f(x|µ,Σ) =

∫ ∞
0

N(x|µ, κ(ξ)Σ)π(ξ)dξ,

where N(x|µ,Σ) is a multivariate normal pdf, κ(ξ) is a positive function of ξ and

π(·) is a pdf defined on <+, then we say the pdf of X has a SMN representation.

The quantity ξ is known as the mixing parameter, and π(·) is the mixing density. For

a multivariate Student-t distribution with location µ, scale matrix Σ and degrees of

freedom ν, κ(ξ) = ξ and π(ξ) is the pdf of the inverse gamma IG(ν2 ,
ν
2 ) distribution

where

IG(ξ|a, b) =
ba

Γ(a)
ξ−(a+1)e−b/ξ, ξ, a, b > 0.

Then the PDF of the Student-t distribution can be expressed as

t(x|µ,Σ, ν) =

∫ ∞
0

N(x|µ, ξΣ)IG (ξ|ν/2, ν/2) dξ

or hierarchically

X|µ,Σ, ξ ∼ N(µ, ξΣ),

ξ|ν ∼ IG
(ν

2
,
ν

2

)
.
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We use such a SMN to redefine the bivariate t-error distribution, so that 6.3 can be

rewritten as  ε∗t

η∗t+1

 ∼ N

 0

0

 , ξt+1

 eht σρeht/2

σρeht/2 σ2

 , (5.7)

where ξt+1 ∼ IG
(
ν
2 ,

ν
2

)
.

Secondly, we derive the uncorrelated marginal distributions. This latter technique is

commonly used in the financial mathematics literature, and was popularized into the

econometrics literature by Meyer and Yu (2000). To see this, first recall that leverage

is the negative relationship between yt and ht+1.Therefore by conditioning ε∗t the

bivariate normal distribution in Equation (5.7) can be expressed as a marginal and

conditional

ε∗t |η∗t+1 ∼ N
(ρ
σ
eht/2(ht+1 − α− β(ht − α)), ξt+1e

ht(1− ρ2)
)
, η∗t+1 ∼ N(0, ξt+1σ

2).

Hence, yt in Equation (5.6) can be expressed as

yt|ht+1, ht =

J∗t∑
j=0

λje
ht−j/2

ρ

σ
(ht+1−j − α− β(ht−j − α)) +

J∗t∑
j=0

λje
ht−j/2ξ

1
2
t+1−j

√
1− ρ2εt−j ,

(5.8)

ht+1 = α+ β(ht − α) + ξ
1
2
t+1σηt+1, (5.9)

where εt and ηt+1 are the uncorrelated N(0, 1) errors.

Let Y = [y1, . . . , yT ],h = [h1, . . . , hT+1] such that Y |h,GJ ∼ N(µ,Γ ) where µ =

ρ
σGJ(W ◦E),W = (eh1/2, . . . , ehT /2),E = [h2−α−β(h1−α), . . . , hT+1−α−β(hT−α)]

and A ◦ B refers to the Hadamard product of vectors A and B. The covariance

matrix can be expressed as Γ = (1 − ρ2)GJV G
′
J where V = diag(W ◦W ◦ ξ), ξ =

(ξ2, . . . , ξT+1) and GJ is a T × T lower triangular banded matrix with J Gegenbauer

truncated moving average parameters in each column, and ones on the diagonal as
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given below

GJ =



1 0 . . . . . . . . . . . .
. . . . . . 0

λ1 1 . . . . . . . . . . . .
. . . . . . 0

λ2 λ1 . . . . . . . . . . . .
. . . . . . 0

... λ2 . . . . . . . . . . . .
. . . . . .

...

λJ
... . . . . . . . . . . . .

. . . . . .
...

0 λJ . . . . . . . . . . . . 0 0 0
... 0 . . . . . . . . . . . . 1 0 0
...

... . . . . . . . . . . . . λ1 1 0

0 0 . . . . . . . . . . . . λ2 λ1 1



.

Note |GJ |= 1 such that |Γ |= (1− ρ2)T exp(
∑T

t=1 ht)
∏T
t=1 ξt+1. Therefore, the obser-

vational log-likelihood is

log f(Y |h,GJ) = −T
2

log(2π(1− ρ2))− 1

2

T∑
t=1

(ht + log ξt+1)− 1

2
(Y − µ)′Γ−1(Y − µ)

(5.10)

where the vector of all model parameters are θ = (u, d,h, α, β, σ2, ξ1, ξ). The Bayesian

analysis of each individual parameter can be found in Appendix F.

5.4 Simulation studies

We now outline a comprehensive simulation study in order to assess the performance

of our proposed sampling scheme. The purpose of this section is to illustrate the

proposed methodology outlined in Section 3, and explore the model performance for

unknown θ.

5.4.1 Parameter estimation

Data is generated according to Equations (5.1-6.3) and the parameters are estimated

subsequently. We use a value of J = 1, 000 in order to simulate a time series as

close as possible to an infinite moving average representation. We consider ν =

[5, 6, 7, . . . , 15, 20] and ρ = [−0.6,−0.3]. The Gegenbauer parameters are set to u =
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0.8 and d = 0.4 and the stochastic residuals are simulated according to the parameters

α = 0, β = 0.97 and σ = 0.025. Our simulated process has the expression

(1− 1.6B +B2)0.4yt = ε∗t , (5.11)

ht+1 = 0.97ht + η∗t+1, (5.12) ε∗t

η∗t+1

 ∼ tν
 0

0

 ,

 eht 0.025ρeht/2

0.025ρeht/2 0.0252

 . (5.13)

We simulate the process to be T = 1, 500 to ensure the Gegenbauer parameters are

estimated accurately (see Phillip, Chan, and Peiris (2017) for details).

The prior choices for the SV parameters are generally not influential since the like-

lihood holds most of the information, which is especially relevant since we assume

T = 1, 500. Our initial starting values are chosen arbitrarily and are purposely chosen

to be far away from the true values. We also test with several fixed starting values to

ensure that different MCMC chains converge within similar value ranges.

The hyperparameters are set as follows

u ∼ N(0, 0.1)[−1, 1], d ∼ N(0.125, 0.05)[0, 0.25]1ud +N(0.25, 0.0.05)[0, 0.5](1− 1ud)

ν ∼ U [3, 23], ρ ∼ N(−0.1, 0.05), α ∼ N(0, 0.05), β ∼ N(0.99, 0.2).

The process in equations 5.11-5.13 is simulated Ω = 1, 000 times, and the parameters

are estimated each time using the model. We report the estimated mean of each

parameter, the root mean squared error (RMSE) and the mean of the standard errors

in parentheses. We use M = 10, 000 iterates after a burn-in period of 10, 000. We

purposely choose a burn-in period of half the total number of iterations under the

advice of Gelman et al. (2013).

As shown below in Tables 5.1 and 5.2, the estimates of ν̂ are more accurate with lower

RMSE when the true value of ν is low. Conversley, as the true value of ν increases

such that the error distribution approaches a Gaussian distribution, the error becomes

larger. This is of course an anticipated result since the percentile difference between

these different Student-t distributions becomes smaller as ν increases. Hence, the

upward bias of ν̂ also increases with the true value ν. The leverage and long memory
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parameters are also estimated with high accuracy. The constant term α of the SV

model is estimated accurately, while the persistence parameter β and the volatility

of volatility term σ2 are both estimated well. The acceptance rate of h increases as

the value of ν increases. This is due to the fact that draws of h from its proposal

density are more likely to be accepted for a Gaussian distribution as opposed to a

Student-t distribution. The acceptance rates of û and d̂ are both close to the optimal

acceptance rate which are set during tuning, and do not vary for different values of

ν. The acceptance rate of β̂ is high, which is the typical case since it is close to the

boundary.

The average running time of the proposed MCMC scheme is also reported; in general

it takes more time to estimate data with lower values of ν. This is because the sampler

spends more time sampling h∗ in the acceptance-rejection step due to outlier values

associated with lower ν values. In rare circumstances, these outlier values are so

extreme the sampler becomes “stuck” during this step, and as such the sampler will

take an extremely long time to sample h∗ (sometimes more than 30 hours). These

rare outlier runs are purposely included in order to make the estimation as fair as

possible, and not to bias the data by only including MCMC runs which were executed

below a certain time.

ν1 ν̂1 RMSE(ν̂1) ρ̂ RMSE(ρ̂) û RMSE(û) d̂ RMSE(d̂) α̂ RMSE(α̂) β̂ RMSE(β̂) σ̂2 RMSE(σ̂2) ÂRh% ÂRu% ÂRd% ÂRβ% ÂRν% Time

5.0 5.203 0.269 -0.299 0.001 0.800 0.000 0.401 0.001 0.001 0.001 0.966 0.019 0.026 0.006 40.066 29.742 25.008 95.404 29.856 7h 18m

(0.942) (0.020) (0.003) (0.012) (0.047) (0.011) (0.010)

6.0 6.278 0.573 -0.300 0.000 0.800 0.000 0.400 0.000 0.002 0.002 0.965 0.020 0.027 0.007 42.599 29.454 24.968 95.159 29.211 6h 11m

(1.620) (0.021) (0.003) (0.013) (0.046) (0.011) (0.010)

7.0 7.413 0.857 -0.300 0.000 0.800 0.000 0.400 0.000 0.003 0.003 0.966 0.019 0.028 0.008 44.196 29.241 24.951 95.119 30.363 5h 37m

(2.221) (0.021) (0.003) (0.013) (0.046) (0.011) (0.010)

8.0 8.624 1.447 -0.300 0.000 0.800 0.000 0.400 0.000 0.003 0.003 0.966 0.019 0.026 0.006 45.593 29.210 25.644 94.867 31.605 7h 23m

(2.846) (0.022) (0.003) (0.013) (0.046) (0.011) (0.010)

9.0 9.518 1.412 -0.300 0.000 0.800 0.000 0.400 0.000 0.001 0.001 0.965 0.020 0.026 0.006 46.621 29.090 25.502 94.890 32.383 6h 12m

(3.138) (0.021) (0.003) (0.013) (0.046) (0.011) (0.010)

10.0 10.647 1.663 -0.300 0.000 0.800 0.000 0.400 0.000 0.002 0.002 0.966 0.019 0.026 0.006 47.380 29.135 25.535 94.790 33.043 5h 28m

(3.378) (0.022) (0.004) (0.013) (0.046) (0.012) (0.010)

11.0 11.783 1.947 -0.300 0.000 0.800 0.000 0.400 0.000 0.002 0.002 0.967 0.018 0.024 0.004 48.997 29.158 26.074 94.620 33.914 8h 18m

(3.477) (0.022) (0.004) (0.013) (0.046) (0.011) (0.009)

12.0 12.946 2.074 -0.300 0.000 0.800 0.000 0.401 0.001 0.000 0.000 0.966 0.019 0.025 0.005 48.637 29.404 25.690 94.688 34.650 6h 16m

(3.517) (0.023) (0.004) (0.013) (0.046) (0.011) (0.009)

13.0 14.288 2.172 -0.301 0.001 0.800 0.000 0.400 0.000 0.001 0.001 0.967 0.018 0.023 0.003 49.539 29.255 25.776 94.715 35.239 6h 24m

(3.548) (0.024) (0.004) (0.013) (0.046) (0.011) (0.009)

14.0 15.343 1.762 -0.300 0.000 0.800 0.000 0.400 0.000 -0.001 0.001 0.967 0.018 0.024 0.004 49.794 28.969 26.004 94.866 35.640 5h 38m

(3.506) (0.022) (0.004) (0.014) (0.046) (0.011) (0.009)

15.0 16.916 1.742 -0.300 0.000 0.800 0.000 0.400 0.000 0.000 0.000 0.967 0.018 0.023 0.003 50.930 29.442 25.764 94.588 35.992 4h 42m

(3.486) (0.022) (0.004) (0.014) (0.046) (0.011) (0.009)

20.0 20.694 1.128 -0.300 0.000 0.800 0.000 0.402 0.002 -0.003 0.003 0.968 0.017 0.021 0.001 53.112 29.624 26.204 94.622 36.197 6h 16m

(3.314) (0.024) (0.004) (0.014) (0.046) (0.011) (0.008)

TABLE 5.1: Simulation study results when true value of ρ = −0.3.
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ν1 ν̂1 RMSE(ν̂1) ρ̂ RMSE(ρ̂) û RMSE(û) d̂ RMSE(d̂) α̂ RMSE(α̂) β̂ RMSE(β̂) σ̂2 RMSE(σ̂2) ÂRh% ÂRu% ÂRd% ÂRβ% ÂRν% Time

5.0 5.042 0.184 -0.599 0.001 0.800 0.000 0.400 0.000 0.001 0.001 0.970 0.015 0.023 0.003 48.256 31.437 26.513 95.745 29.149 6h 31m

(0.845) (0.020) (0.003) (0.012) (0.046) (0.008) (0.007)

6.0 6.237 0.423 -0.599 0.001 0.800 0.000 0.401 0.001 0.001 0.001 0.970 0.015 0.023 0.003 50.343 30.673 25.975 95.505 29.061 5h 44m

(1.417) (0.021) (0.003) (0.012) (0.046) (0.008) (0.007)

7.0 7.251 0.601 -0.599 0.001 0.800 0.000 0.401 0.001 0.002 0.002 0.971 0.014 0.023 0.003 52.451 30.617 25.393 95.555 30.680 5h 27m

(1.977) (0.022) (0.003) (0.013) (0.046) (0.008) (0.007)

8.0 8.208 0.814 -0.600 0.000 0.800 0.000 0.400 0.000 0.002 0.002 0.970 0.015 0.023 0.003 53.614 29.853 25.137 95.363 31.765 5h 33m

(2.556) (0.021) (0.003) (0.013) (0.046) (0.009) (0.008)

9.0 9.254 1.045 -0.600 0.000 0.800 0.000 0.400 0.000 0.002 0.002 0.970 0.015 0.022 0.002 54.242 30.048 25.120 95.310 32.330 5h 43m

(2.974) (0.022) (0.003) (0.013) (0.046) (0.008) (0.008)

10.0 10.450 1.408 -0.600 0.000 0.800 0.000 0.400 0.000 0.003 0.003 0.970 0.015 0.022 0.002 55.289 29.861 25.004 95.471 33.096 5h 35m

(3.246) (0.024) (0.003) (0.013) (0.046) (0.009) (0.008)

11.0 10.945 1.070 -0.600 0.000 0.800 0.000 0.400 0.000 0.002 0.002 0.970 0.015 0.023 0.003 55.665 30.201 25.167 95.169 33.496 6h 25m

(3.337) (0.023) (0.004) (0.013) (0.046) (0.009) (0.008)

12.0 12.483 1.489 -0.602 0.002 0.800 0.000 0.400 0.000 0.000 0.000 0.969 0.016 0.025 0.005 55.832 29.499 25.325 95.551 34.271 4h 38m

(3.460) (0.025) (0.004) (0.013) (0.046) (0.009) (0.008)

13.0 13.608 1.618 -0.602 0.002 0.800 0.000 0.401 0.001 0.001 0.001 0.970 0.015 0.022 0.002 56.878 29.448 25.306 95.125 35.034 6h 35m

(3.499) (0.026) (0.004) (0.013) (0.046) (0.009) (0.008)

14.0 14.586 1.579 -0.601 0.001 0.800 0.000 0.401 0.001 -0.000 0.000 0.970 0.015 0.024 0.004 56.914 29.655 24.818 95.245 35.377 5h 48m

(3.495) (0.025) (0.004) (0.013) (0.045) (0.009) (0.008)

15.0 15.955 1.300 -0.602 0.002 0.800 0.000 0.400 0.000 -0.001 0.001 0.969 0.016 0.023 0.003 57.204 29.860 25.012 95.308 35.676 5h 34m

(3.456) (0.025) (0.004) (0.014) (0.045) (0.009) (0.008)

20.0 20.466 1.239 -0.602 0.002 0.800 0.000 0.401 0.001 -0.003 0.003 0.970 0.015 0.023 0.003 58.826 29.579 25.650 95.428 35.969 2h 7m

(3.320) (0.025) (0.004) (0.014) (0.045) (0.009) (0.008)

TABLE 5.2: Simulation study results when true value of ρ = −0.6.

5.4.2 Methodology comparison

In Table 5.3, we compare our procedure with the methodologies of Wang, Chan, and

Choy (2011) and Choy and Chan (2000). The authors propose model (5.1-5.3) with-

out long memory effects, which is of course a special case of our model when d = 0.

The authors in Wang, Chan, and Choy (2011) derived an alternative representation

of the model by first deriving the conditional Student-t distribution for the observa-

tion equation and a marginal Student-t distribution for the latent process and then

expressed these two distributions as a SMN. They also compared their methodology

with that of Choy and Chan (2000) who modeled the bivariate Student-t distribution

as a scale mixture of bivariate normal distributions in which we also adopt in this

paper. We try to replicate their priors and parameters as much as possible so that all

three methodologies are directly comparable. First, Wang, Chan, and Choy (2011)

assigned a vague prior to α, so we assign our Normal prior to be N(0, 10). The prior

of β∗ = β+1
2 is assumed to be Beta(20, 1.5) so we assign our prior to be N(0.95, 0.05)

whereby the mean and variances are both close to the mean and variance of 0.86

and 0.012 approximately in Beta(20, 1.5). A non-informative prior is used for σ2, and

this prior is also assumed in our proposed methodology. A uniform prior U(−1, 1) is

assigned to ρ, so we set the truncated Normal prior of ρ to N(0, 10)I(−1, 1). In both

cases, ν is set to have a non-informative prior restricted within the domain [1, 40].

The authors considered synthetic time series of length T = 500 and replication of 100

times. We also follow these choices. The authors use a burn-in period of 50, 000 loops
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and follow up with an additional 250, 000 MCMC loops. We however use a much

smaller number of 10, 000 loops, follow up with an additional 10, 000 loops and find

that in fact all parameters have converged. We use the same true parameter values

as both papers: α = −10, β = 0.8, σ2 = 0.2, ρ = 0.8 and ν = 5 and report the results

below in Table 5.3.

In essence, it is clear from Table 5.3 that our method dominates for all parameters.

In all cases, the standard deviation of our parameter estimate, the Percentage Error

(PE) and Mean Squared Error (MSE) are consistently smaller. The 95% Confidence

Interval bands are also tighter in all cases. The authors were able to estimate α, β, σ2

accurately, and so is our model. The estimation of the shape parameter ν is noticeably

different and our estimate is closer to the true value. Most notably, the authors were

unable to correctly estimate ρ, but our model is able to estimate ρ to be very close to

the true parameter value.

5.5 Empirical Data Analysis

In this section a set of empirical data is considered to illustrate the proposed models.

We first provide a general broad scope on an investable basket of 114 cryptocurrencies

by discussing model parameter estimates. Then we focus on five of the most popular

cryptocurrencies, namely Bitcoin (BTC), Ethereum (ETH), Ripple (XRP), NEM, and

Dash, with model comparison, and follow up with a specific analysis on Bitcoin itself.

The data is sourced from the Brave New Coin (BNC) Digital Currency index which

represents the cleanest and most comprehensive cryptocurrency database in the world.

BNC surveys hundreds of trading platforms for crypto/fiat trading pairs and currently

records 2, 796 cryptocurrency time-series. To date, there are many more, with thou-

sands of cryptocurrencies being traded. However, some of these have market capital-

izations which are small (< $1, 000, 000) and traded very infrequently. Of the 2,796

data sets available on the BNC database, only 114 of these have been exchanged at

least once per day since inception. Although cryptocurrencies were first introduced

in 2008, BNC only reports price points when more formalized exchanges for each

respective currency could be measured with reliability. As such, the number of obser-

vations recorded for each time series vary, but all end on or before the 30th of April,
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2018. The time series yt is defined as the global weighted daily price percentage

change yt = (Pt − Pt−1)/Pt−1, where Pt is the index price at time t.

5.5.1 In-sample fitting

All 114 Cryptocurrencies

We first fit our proposed model in (5.1-6.3) to the 114 cryptocurrencies discussed

above. This extensive preliminary study aims to extract the basic properties of cryp-

tocurrencies in general. In order to do so, each return series is estimated using the

GMA-SV-LVG-HC model and parameter estimates are presented in Figure 5.1.
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FIGURE 5.1: Scatter plots of parameter estimates: (a) [û, d̂]; (b) [ρ̂, β̂];
(c) [ν̂, σ̂2], of 114 different cryptocurrency data sets under the GLM-
SV-LVG-HC model. B: Bitcoin, E: Ethereum, R: Ripple, N: NEM, D:

Dash.

It is clear from Figure 5.1 (a) that cryptocurrencies in general show signs of gener-

alised long memory, and not the plain long memory case of Hosking (1981). The

price persistence estimates d̂ are generally spread across from 0.02 to 0.15 with the

five popular cryptocurrencies exhibiting a low levels of long memory. This indicates

these five cryptocurrencies have higher market efficiency in general. The periodicity

estimates û are generally negative, which means their autocorrelation functions are

typically instantaneously oscillating.
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Conventionally, the leverage effect, if in existence, is known to be negative for most

financial time series; which indicates that one day ahead volatility and returns are

typically negatively correlated. The leverage effects ρ̂ of our cryptocurrency universe

are also negative and tend to cluster around −0.35. Also, when stochastic volatility

does exist, the volatility persistence parameter estimate β̂ for most financial time

series is close to one (Kim, Shephard, and Chib, 1998). As evidenced, this too is the

case with cryptocurrencies with most estimates of β̂ clustered closely around one,

including the popular five. Therefore, cryptocurrencies also commonly share these

familiar and widely accepted behaviors.

Of most interest to those vested in cryptocurrencies are their variability characteristics

which are summarized in Figure 5.1 (c). Interestingly, we see two main regimes

which depict the variability characteristics of cryptocurrencies. We see that typically,

cryptocurrencies have heavy tails as evidenced by the clustering of ν̂ < 3.5. Doubly

so, they also display unconventionally large estimates of σ̂2. As widely speculated in

the media, cryptocurrencies in fact show evidence of heavier tails, and larger volatility

of volatility estimates than fiat assets. This is a testimony to the ability of the GMA-

SV-LVG-HC model to conditionally measure volatility of volatility compared to the

degrees of freedom parameter and is able to separate the two effects.

Five of the most popular Cryptocurrencies

In this subsection, the focus is on five of the most popular cryptocurrencies as per

Table 5.4, which are plotted in Figure 5.2.
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FIGURE 5.2: Plots of daily returns for the top five cryptocurrencies by
market capitalization.
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The descriptive statistics of each time-series transformed by taking the daily price per-

centage change are shown in Table 5.4. Similar to their fiat counterparts, we see that

currencies with lower market capitalizations exhibit larger volatility characteristics.

Remarkably, the volatility of these currencies are as large as 8.8% which is extremely

different to fiat currencies. The Ljung-Box tests on |yt| and y2
t show strong evidence

of long memory and error dependence respectively. The Kolomogorov-Smirnoff test

for normality is also rejected.

Rank Market Cap. ($B) No. of obs Mean Std. Skewness Kurtosis Min. Max. L-B(|yt|) L-B(y2t ) Normality test

Bitcoin 1 137.0078 1489 0.0012 0.0414 -0.8543 10.2330 -0.2709 0.2250 762.3674 255.8224 3426.8910

(< .0001) (< .0001) (< .0001)

Ethereum 2 67.0341 995 0.0043 0.0715 -0.2145 7.3622 -0.3959 0.3293 281.7172 141.7939 796.5499

(< .0001) (< .0001) (< .0001)

Ripple 3 26.0533 1489 0.0000 0.0781 -1.3992 31.8162 -0.8844 0.6393 559.8652 103.5672 52003.6272

(< .0001) (< .0001) (< .0001)

NEM 12 3.0601 1117 0.0026 0.0877 0.4502 9.3332 -0.4656 0.6443 291.9821 136.7968 1904.4886

(< .0001) (< .0001) (< .0001)

Dash 14 2.6920 1483 0.0018 0.0727 0.0821 10.6803 -0.4881 0.5232 851.7943 591.9198 3646.5302

(< .0001) (< .0001) (< .0001)

TABLE 5.4: Summary statistics of the global weighted average indices
for each relevant Cryptocurrency. P-values of the relevant columns are
reported in parantheses. L-B: Ljung-Box Q-test for residual autocorre-
lation. We note they all end on the 30th of April, 2018 but the start

date varies, as per the number of observations listed.

These five cryptocurrencies are also good examples to illustrate the properties of cryp-

tocurrencies from a technological aspect. One of the most debated topics circulating

the Cryptocurrency community is whether or not there are added benefits of one cryp-

tocurrency over the other. One of these particular controversies is the so called longer

confirmation time problem. Briefly, the biggest criticism of Bitcoin is that transaction

can be an extremely slow process, sometimes taking up to 48 hours to be sent from

one user to another. Two particular cryptocurrencies which attempt to overcome this

issue are ETH and Dash. There is a larger community based approach with computer

programmers actively making both cryptocurrencies quicker to transact. ETH uses

so called smart contract to use blockchains and Dash uses instant transactions via

the technology InstantSend. InstantSend is a feature of Dash which allows for almost

near-instant transactions, and hence solves the longer confirmation time problem of

other cryptocurrencies such as Bitcoin. The smart contract technology is widely con-

tested as being the best solution, and the fastest way to transact. As a result of these

quicker transaction times, it can be interpreted that ETH and Dash should have lower

liquidity risk than Bitcoin. These differences have interesting statistical implication
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as will be discussed.
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FIGURE 5.3: ACFs of absolute returns of the top five cryptocurrencies
by market capitalization as of the 31st of July, 2017.

Figure 5.3 shows the sample autocorrelation plots of the absolute returns for each

respective cryptocurrency. It is clear that evidence of long memory behavior exists

due to the persistent autocorrelations. Interestingly, we see that Bitcoin displays the

most recurrent behavior as evidenced by its strong cyclicality.
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FIGURE 5.4: ACFs of squared returns of the top five cryptocurrencies
by market capitalization as of the 31st of July, 2017.

The autocorrelations of the squared returns as depicted in Figure 5.4 also displays

interesting behaviors of cryptocurrencies. We see that BTC, ETH and NEM display
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properties of dependent errors as typically seen in the literature. Notably, we see

that Ripple has the shortest dependence relative to the other four cryptocurrencies,

whereas Dash has the most persistence. Interestingly, Ripple is not dependent on any

third party for redemption, and as such, it is the only currency with no counter-party

credit risk. In other words, there is virtually no risk between transactions performed

today and that of any risks (volatility) observed the next day. This is indeed the

case as per Figure 5.1 which shows the estimate of ρ of Ripple to be around zero. It

has the advantage of users being able to store any fiat/cryptocurrency asset on the

network, and as such is insulated from future exchange rate volatility. Due to this

safety feature, Ripple has been increasingly used by banks and large corporations as

their preferred settlement infrastructure technology. This is in contrast to Dash which

is the only currency that uses instant transactions (InstantSend). As it seems apparent

due to this ability to transact faster, we see higher dependence amongst its squared

returns.

In order to further inspect the properties of the cryptocurrencies listed in Table 5.4,

each of the five most popular cryptocurrency data sets are fitted according to model

(5.1-5.3) called the GMA-SV-LVG-HC, and five further nested sub-models including

the Stochastic Voltility (SV) model of Taylor (1986) and the leverage (LVG) model.

Details of these nested sub-models are outlined in the appendix as model 1-6. We

particularly note the sub-models GMA-SV-LVG and GMA-SV-HC models are nested

variations of our model which have not been studied in the literature previously.

The deviance information criterion (DIC) of Spiegelhalter et al. (2002) is used as

the Bayesian model selection criterion, which is defined as: DIC = −2 log p(y|θ̂) +

2pE , where pE = 2[log p(y|θ̂) − E[log p(y|θ)]] is the effective number of parameters

estimated as the difference between the posterior mean of deviance and the deviance

evaluated at the posterior means of each parameter. Alternative model criterion such

as the predictive log score of Catania and Grassi, 2017 may also be considered.
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Currency SV SV-LVG GMA-SV GMA-SV-LVG GMA-SV-HC GMA-SV-LVG-HC

Bitcoin 0.9432 0.8244 0.9251 0.8497 0.9277 1.0000

Ethereum 0.9496 0.6829 0.9527 0.7947 0.9710 1.0000

Ripples 0.5826 0.6681 0.5835 0.7670 0.8249 1.0000

NEM 0.5497 0.5801 0.5350 0.5106 0.8414 1.0000

Dash 0.8657 0.7894 0.8592 0.8237 0.9837 1.0000

TABLE 5.5: Ratio of DICs. Since they are all negative values, larger is
better.

For each model, the DIC is calculated and reported relative to the full GMA-SV-LVG-

HC model in Table 5.5. Since all of the DICs are negative, the model with larger

ratio is better. This table can be interpreted in conjunction with Figure 5.1 to provide

a richer understanding on the behavior of cryptocurrencies. These results show the

GMA-SV-LVG-HC is the superior choice for all five cryptocurrencies.

Looking specifically at each cryptocurrency, Bitcoin was the first to be circulated and

although the most popular, it suffers the most criticism for its design. One of these

issues that is the most contended is the slow confirmation time problem as discussed

above. Figure 5.1(c) shows Bitcoin has one of the lowest values of ν̂ out of all cryp-

tocurrencies, and as such, one of the highest levels of liquidity risk. This is highly

contrastive to their fiat counterparts, given that even though Bitcoin is the most

transacted cryptocurrency, it still has one of the largest liquidity risks due to its older

embedded technology. Although NEM is considered extremely safe relative to other

cryptocurrencies and security is at the forefront of its design, it is only marginally

faster than Bitcoin to transact, and suffers from the slow confirmation time issue. As

a result, it behaves similar to Bitcoin as seen from Figure 5.1(c) and there is not much

added benefit in terms of risk-reduction relative to ETH and Dash.

On the other hand, Ripple has been increasingly used by banks and large corpora-

tions as their preferred settlement infrastructure technology due to its safety feature

that minimizes future exchange rate volatility risk. Ripple is not dependent on any

third party for redemption, and as such, it is the only currency with no counter-party

credit risk. In other words, there is virtually no risk between transactions performed

today and that of any risks (volatility) observed the next day. This characteristic is

again consistent with the results that Ripple has the lowest near zero |ρ| indicating

its weakest leverage effect amongst all cryptocurrencies. Although banks prefer to
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use Ripple as it has the lowest overnight (leverage) risk, it still shows extremely high

non-Gaussian errors (ν ≈ 3) and relatively large volatility of volatility σ̂2 estimates.

To the best of our knowledge, we confirm for the first time in the literature, that

these assertions are indeed consistent demonstrating the capability of our models to

explain many subtle facts of cryptocurrencies. In summary, cryptocurrencies which

mainly focus on security are still considered just as risky without fixing the slow con-

firmation time issue. Therefore, currencies which focus more on reducing transaction

time issues have less risk than those which do not, even with more robust security

measures.

Bitcoin

We conclude this section by reporting in details parameter estimates of the models

for Bitcoin in Table 5.6 and providing an in-depth discussion of the results.
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Model h u d α β σ2 ν ρ DIC

SV

θ̂ -7.2522 0.9313 0.2851 -9128

Std. 0.2368 0.0160 0.0593

AR(%) 1.0000 0.9691

GR 0.9999 1.0001 1.0005

SV-LVG

θ̂ -7.0132 0.9011 0.4628 -0.2913 -7978

Std. 0.2051 0.0144 0.0489 0.0333

AR(%) 0.1055 0.9745 0.4115

GR 1.0069 1.0777 1.7547 1.0035

GMA-SV

θ̂ -0.1783 0.0333 -7.2675 0.9274 0.3058 -8953

Std. 0.4275 0.0205 0.2343 0.0178 0.0706

AR(%) 1.0000 0.2801 0.2575 0.9686 0.0000

GR 1.0003 1.0004 1.0001 1.0033 1.0047

GMA-SV-LVG

θ̂ 0.9289 0.0137 -6.9794 0.9110 0.3961 -0.2615 -8224

Std. 0.3010 0.0085 0.2040 0.0122 0.0234 0.0299

AR(%) 0.1545 0.4819 0.2633 0.9759 0.3702 0.2079

GR 1.0092 1.0190 1.0026 1.0211 1.3545 1.0212

GMA-SV-HC

θ̂ -0.2842 0.0724 -0.0028 0.9929 0.4448 3.0654 -8978

Std. 0.0191 0.0153 0.0472 0.0031 0.0325 0.0660

AR(%) 0.2915 0.2800 0.2980 0.9063 0.0660

GR 1.0034 1.5224 1.0004 1.0025 1.0718 1.0228

GMA-SV-LVG-HC

θ̂ -0.3130 0.0671 -0.0051 0.9906 0.3737 3.0882 -0.2908 -9678

Std. 0.0526 0.0137 0.0469 0.0032 0.0353 0.0914 0.0366

AR(%) 0.0927 0.3251 0.3529 0.9290 0.0914 0.0366

GR 1.0718 1.0010 1.0001 1.0000 1.2281 1.0018 1.1640

TABLE 5.6: Analysis of BTC data.

In looking at the model results, firstly, the Gelman-Rubin convergence test statistic

(GR) shows that all parameters have converged. The plain SV model with or with-

out long memory effect shows an acceptance rate of h equal to 100%. This shows

the target density proposal variance is too low and unable to search the entire space

properly. Evidently, it is clear that leverage effects and/or heavy tailed error distribu-

tions are important model features to sample the latent volatility vector properly for

Bitcoin. The estimates û are generally negative indicating instantaneously oscillating

ACF for most models, but is not statistically significant for the GMA-SV model. Also,
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d̂ is low and significant. The introduction of heavy tailed effects reduces the level of

α̂ to a value close to zero, and can be ignored in the future as it is not statistically

significant. The value of β̂ is close to one in the heavy tailed cases, which is com-

monly observed in most financial time series. Contrastingly, without including heavy

tails, the value of β̂ tends to be lower, and is an atypical observation. Possibly, this

lowering of volatility persistence is due to the distorting effect of outliers which can

be allowed for in a heavy tailed error distribution.

The volatility of volatility estimate σ̂2 is unconventionally large for all models. The

degrees of freedom estimate ν̂ is approximately 3 for both models with and without

leverage effect, and are both statistically significant. This result also confirms the

necessity of adopting a heavy tailed error distribution to downweigh the effect of

outliers and hence protect inference. Indeed, the level of kurtosis is significant in this

data. The leverage parameter ρ̂ indicates a consistent level of negative relationship

between volatility and the previous day return rate, remains fairly consistent and is

statistically significant in the three models where it is included.

5.5.2 Out-of-sample forecast with Bitcoin

In this section, we conduct a forecasting exercise using Bitcoin for demonstrative

purposes. We only report on Bitcoin due to its popularity and space constraints.

Out of sample forecasts are measured using Value at Risk (VaR). In essence, VaR is

the worst expected loss forecast under certain model assumptions at a given level of

confidence χ. Denote the VaR forecast at time t, conditional on the natural filtration

Ft−1 as VaRt|t−1(χ). The VaR is defined as

χ = Pr(yt ≤ VaRt|t−1(χ))

where χ ∈ (0, 1) is the probability level. Forecasting VaR is a straightforward and

intuitive exercise in a Bayesian setting. Parameter vectors drawn from the posterior

distributions are used to generate a new data set under the model. This new data set

is then used to make inferences after averaging out. Define the predictive density to

be the forecasted density at some future time point t as p(yt|Ft−1,θ). Thus, for each

MCMC iterate of θi, we are able to easily generate one forecast estimate, ŷt, from

the predictive density p(yt|Ft−1,θ
i). The violation rate (VR), which is the average
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number of violations across all forecasted time periods is the most widely accepted

measure for comparing model performance based on VaR and is defined as

VR =
1

m

T∑
t=T−m

I(yt < V̂aRt|t−1(χ))

where m is the forecast window and V̂aRt|t−1(χ) is the sample estimate. Under the

Basel Accord it is preferable to have models which are too conservative (VR < α) as

opposed to models which are too risky (VR > α). We use the most popular regulator’s

loss functions which are surveyed in Abad, Muela, and Martin (2015), and defined as

1. Lopez’s quadratic Loss (D1) =


1 + (VaRt|t−1 − yt)2 if yt < VaRt|t−1,

0 if yt ≥ VaRt|t−1,

2. Lineal Loss (D2)=


(VaRt|t−1 − yt) if yt < VaRt|t−1,

0 if yt ≥ VaRt|t−1,

3. Quadratic Loss (D3) =


(VaRt|t−1 − yt)2 if yt < VaRt|t−1,

0 if yt ≥ VaRt|t−1,

4. Caporin’s Loss 1 (D4) =


|1− | yt

VaRt|t−1
|| if yt < VaRt|t−1,

0 if rt ≥ VaRt|t−1,

5. Caporin’s Loss 2 (D5) =


(|VaRt|t−1|−|yt|)2

|VaRt|t−1|
if yt < VaRt|t−1,

0 if yt ≥ VaRt|t−1,

6. Caporin’s Loss 3 (D6) =


|VaRt|t−1 − yt| if yt < VaRt|t−1,

0 if yt ≥ VaRt|t−1.

The Bitcoin data consists of 1, 489 data points and our training dataset is 95% of the

available data which contains 1, 415 data points and these are used to slide one day

ahead to forecast VaR for the remaining 74 days.
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FIGURE 5.5: Plot of Bitcoin price data from the 1st of January, 2015
to the 30th of April, 2018

Historical R-Metrics SV SV-LVG SV-GMA SV-GMA-LVG SV-GMA-HC SV-GMA-LVG-HC

DIC 1.07 1.15 1.07 1.16 1.00 1.00

LL 0.95 0.85 0.95 0.84 1.01 1.00

1%
Va

R

VR 0.0% 3.4% 1.7% 5.1% 1.7% 0.0% 1.7% 0.0%

D1 0.000 0.034 0.017 0.051 0.017 0.000 0.017 0.000

D2 0.000 -0.000 -0.000 -0.001 -0.000 0.000 -0.000 0.000

D3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

D4 0.000 0.003 0.001 0.015 0.001 0.000 0.005 0.000

D5 0.000 0.013 0.007 0.015 0.006 0.000 0.003 0.000

D6 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000

5%
Va

R

VR 10.2% 10.2% 8.5% 11.9% 8.5% 11.9% 10.2% 6.8%

D1 0.102 0.102 0.085 0.119 0.085 0.119 0.102 0.068

D2 -0.002 -0.002 -0.002 -0.003 -0.002 -0.002 -0.003 -0.001

D3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

D4 0.026 0.027 0.020 0.040 0.022 0.019 0.046 0.017

D5 0.027 0.026 0.024 0.022 0.023 0.033 0.016 0.017

D6 0.002 0.002 0.002 0.003 0.002 0.002 0.003 0.001

10
%

Va
R

VR 22.0% 15.3% 15.3% 16.9% 15.3% 13.6% 18.6% 15.3%

D1 0.221 0.153 0.153 0.170 0.153 0.136 0.187 0.153

D2 -0.006 -0.004 -0.004 -0.005 -0.004 -0.004 -0.006 -0.004

D3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

D4 0.079 0.048 0.045 0.069 0.048 0.047 0.081 0.050

D5 0.035 0.031 0.031 0.027 0.030 0.029 0.029 0.031

D6 0.006 0.004 0.004 0.005 0.004 0.004 0.006 0.004

TABLE 5.7: Each parameter is the average across the forecast hori-
zon period: LL: Log-likelihood. DIC: Deviance Information Criterion.
VR: Violation rate. D1: Lopez distance. D2: Lineal distance. D3:
Quadratic distance. D4: Caporin1 distance. D5: Caporin2 distance.

D6: Caporin3 distance.
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The first two rows of Table 5.7 report the average DIC and LL across the forecast

horizon. It is clear from these two measures, the inclusion of Gegenbauer long mem-

ory, stochastic volatility and heavy common tail are favoured. All violation rates and

all deviations are the smallest in general for the two smallest percentiles under the

SV-GMA-LVG-HC specification.

01-Jan-2018 01-Feb-2018 01-Mar-2018 01-Apr-2018 01-May-2018
0

0.5

1

1.5

2

2.5
104

FIGURE 5.6: Black line: Bitcoin price. Blue dotted lines: 1% and 99%
one-step ahead VaR forecasts using the GMA-SV-LVG-HC model.

Figure 5.6 shows the Bitcoin price across the forecast horizon, alongside the 1% and

99% one-step ahead forecast using the GMA-SV-LVG-HC model, which had a violation

rate of 0%. Interestingly, it should be noted the large spike of the VaR bounds in early

March of 2018 correspond to the beginning of the $10 billion USD lawsuit against the

apparent Bitcoin founder, Satoshi Nakamoto.

5.6 Conclusion and future research

The statistical field has yet to pay attention to the highly debated digital currency

world. There is currently a global heated debate on the extreme volatility character-

istics of Cryptocurrencies, and we aim to start this discussion within the financial time

series community by shedding light on their unique statistical properties. As stylized

facts were postulated on fiat currencies, these digital counterparts also require the

same treatment. The standard models which are readily available to most statistics
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seem to be inadequate to properly capture the variability of these extremely wild be-

having currencies. There seem to be a myriad of statistical properties which together,

in unison, are able to properly explain such wild behaviours.

In our work, we explain and detail a realistic investable basket of cryptocurrencies

and explain their main properties. The work is carried out through the GMA-SV-LVG-

HC model, which attempts to capture the main stylized facts of cryptocurrencies.

Arguably, some of the highly debated topics surrounding cryptocurrencies manifest

themselves in our results, and we are able to provide a statistical handle on this

matter. The most cited and known Cryptocurrency, Bitcoin, is a prime example of

this. We show its behaviours are best suited to be estimated by the GMA-SV-LVG-HC

model via a VaR analysis.

To date, and for the foreseeable future, there is heated debate on whether or not the

associated infrastructure and hardware differences between Cryptocurrencies lead to

a reduction in risk. Much of this debate is carried out on internet forums in a spec-

ulative nature within programming circles. We prove, to the best of our knoweldge,

for the first time, the differences in risks amongst the most popular and debated

Cryptocurrencies. We measure, and scientifically prove one such important example

of this, especially important to global banks, is that Ripple indeed does provide the

lowest over-night risk compared to all other Cryptocurrencies. This is an important

finding for financial institutions, such as American Express who convert overnight

debt into Ripple for liquidity purposes now.

Interestingly, the entire Bitcoin ledger since its inception is available online. This data

is extremely difficult to obtain for fiat currencies, and is an extremely exciting venture

for future research.
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Chapter 6

A new look at Cryptocurrencies

“The future of money is digital currency."

Bill Gates

6.1 Introduction

Academic interests in anonymous communications research date back to the early

1980s (Chaum, 1981), and the first digital currency, DigiCash, was launched in 1990

which offered anonymity through cryptographic protocols. Nakamoto (2008) res-

urrected philosophies of (Chaum, 1981) with the addition of crowd sourcing and

peer-to-peer networking which both avoid centralized control. Today, this has man-

ifested itself into a growing Cryptocurrency community which now includes banks,

hedgefunds and even Government. The most popular Cryptocurrency and largest by

market capitalization is Bitcoin. A $1,000 USD investment in Bitcoin in July of 2010

would have returned $81,000,000 just 7 years later. Bitcoin, or Cryptocurrencies in

general face scrutiny as being speculative (Cheah and Fry, 2015). Conversely, there is

evidence to suggest the Cryptocurrency market is still in its infancy and is inefficient

(Urquhart, 2016), with properties such as price clustering (Urquhart, 2017). There is

however a strong growing network of Bitcoin users and academics who are shedding

light on this new technology. In this work, we discuss a large investable sample of

Cryptocurrencies, and conditionally measure some important stylized facts.

The remainder of this note is organised as follows: in Section 2, we discuss our data

source and the model; in Section 3 we discuss our empirical findings and conclude

with Section 4.
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6.2 Data and methodology

The long memory effect of Hosking (1981) was identified in Bitcoin by Bariviera

(2017). We extend these findings to model and conditionally measure the gener-

alised long memory effect of Gray, Zhang, and Woodward (1989b). Another impor-

tant feature found in financial time series is the leverage effect which has its roots in

the asymmetric return-volatility relationship attributed to financial leverage or debt-

to-equity ratios. The leverage effect is the notion of a negative correlation between

one-day ahead volatility and returns. Generalised autoregressive conditional hetere-

oscedastic (GARCH) models have been successfully used to measure time-varying

volatility in Bitcoin data (Katsiampa, 2017). We however plan to do this using the

stochastic volatility model of Taylor (1986) to describe the time varying nature of

volatility typically found in financial returns. See Shephard (2005) for a detailed

comparison of the two approaches.

An additional stylized fact of financial returns of assets such as stocks and currencies

is they are not normally distributed. The usual treatment to measure this feature is to

modify the observation and/or the latent equation to include a heavy-tailed distribu-

tion (Chib, Nardari, and Shephard, 2002; Omori and Watanabe, 2008). Incorporating

all of these features commonly found in financial time series, we construct a model

which describes all of these properties.

The data for this analysis is sourced from the Brave New Coin (BNC) Digital Currency

indices (BNC). BNC surveys hundreds of trading platforms and currently records

2, 796 Cryptocurrency time-series indices. However, some of these have market capi-

talizations which are small (< $1, 000, 000 USD) and traded very little. Of the 2, 796

data sets available on the BNC database, only 224 of these have been exchanged at

least once per day since inception. The time series yt is defined as the daily index

price percentage change yt = (Pt − Pt−1)/Pt−1, where Pt is the daily index value

at time t. It should be noted that alternative transformations to de-trend the data

can be used, such as yt = log(Pt/Pt−1). Although Cryptocurrencies were first intro-

duced in 2008, BNC only reports price points when more formalized exchanges for

each respective currency could be measured with reliability. As such, the number of

observations recorded for each Cryptocurrency vary, but all end on the 31st of July,

2017.
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The time series model fitted in this note measures generalised long memory (GLM),

stochastic volatility (SV), leverage (LVG) and heavy tails (HT). Let yt, t = 1, 2, ..., T

be a stochastic process satisfying the equations

GLM : (1− 2uB +B2)dyt = εt, (6.1)

SV : ht+1 = α+ β(ht − α) + ηt+1, (6.2)

LVG-HT :

 εt

ηt+1

 ∼ tν
 0

0

 ,

 eht σρeht/2

σρeht/2 σ2

 . (6.3)

It is known that yt has long memory effects when ({|u|< 1, 0 < d < 0.5}∪{|u|= 1, 0 < d < 0.25}).

There is assumed to be a leverage effect between the errors of the observation equa-

tion (6.1) and the latent equation (6.2) such that E[εtηt+1] = ρ. Further, these com-

ponents are assumed to follow a bivariate Student-t distribution. Clearly, ht is the

log-volatility, which evolves according to the state equation (6.2) for t = 1, . . . , T , α

is the constant level of the volatility, β is the persistence of the volatility process and

σ2 is the volatility of volatility. We assume |β|< 1 so ht+1 is stationary.

6.3 Empirical results

Firstly, we focus on the 5 largest Cryptocurrencies measured by market capitalization

on the 31st of July, 2017 (BNC) (see Table 6.1). As expected, we see that currencies

with lower market capitalizations exhibit larger variability. The Ljung-Box (L-B) tests

of |yt| and y2
t show strong evidence of long memory and time-dependant volatility

respectively. The Kolomogorov-Smirnov test for normality is also rejected. The L-B

test, the normality test, the high level of kurtosis and the volatility clustering in Figure

1 all confirm the need for model 6.1-6.3.
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Rank Market Cap. ($B) No. of obs Mean Std. Skewness Kurtosis Min. Max. L-B(|yt|) L-B(y2t ) Normality test

Bitcoin 1 137.0078 1489 0.0012 0.0414 -0.8543 10.2330 -0.2709 0.2250 762.3674 255.8224 3426.8910

(< .0001) (< .0001) (< .0001)

Ethereum 2 67.0341 995 0.0043 0.0715 -0.2145 7.3622 -0.3959 0.3293 281.7172 141.7939 796.5499

(< .0001) (< .0001) (< .0001)

Ripple 3 26.0533 1489 0.0000 0.0781 -1.3992 31.8162 -0.8844 0.6393 559.8652 103.5672 52003.6272

(< .0001) (< .0001) (< .0001)

NEM 12 3.0601 1117 0.0026 0.0877 0.4502 9.3332 -0.4656 0.6443 291.9821 136.7968 1904.4886

(< .0001) (< .0001) (< .0001)

Dash 14 2.6920 1483 0.0018 0.0727 0.0821 10.6803 -0.4881 0.5232 851.7943 591.9198 3646.5302

(< .0001) (< .0001) (< .0001)

TABLE 6.1: Summary statistics of the global weighted average indices
for each relevant Cryptocurrency. P-values of the relevant columns are
reported in parantheses. L-B: Ljung-Box Q-test for residual autocorre-
lation. We note they all end on the 30th of April, 2018 but the start

date varies, as per the number of observations listed.

0 200 400 600 800 1000 1200 1400
-0.4

-0.2

0

0.2

0.4
Bitcoin

0 100 200 300 400 500 600 700 800 900
-0.4

-0.2

0

0.2

0.4
Ethereum

0 200 400 600 800 1000 1200 1400
-1

-0.5

0

0.5

1
Ripples

0 200 400 600 800 1000
-0.5

0

0.5

1
NEM

0 200 400 600 800 1000 1200 1400
-0.5

0

0.5

1
Dash

FIGURE 6.1: Time series plots of the price percentage change for the
five largest Cryptocurrencies measured by market capitalization.

Model 6.1-6.3 is estimated using the filtered investable universe of 224 different Cryp-

tocurrency indices1. We also plot the names of the top 5 Cryptocurrencies to show

where they stand relative to their counterparts.
1The list of names is in the appendix attached to this letter.
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FIGURE 6.2: Notched boxplots of parameter estimates of 224 different
cryptocurrency data sets under the GLM-SV-LVG-HT model. B: Bitcoin,
E: Ethereum, R: Ripples, N: NEM, D: Dash. (a) [û, d̂]. (b) [ρ̂, ν̂]. (c)

[β̂, σ̂2].

As evidenced in Figure 6.2(a), most estimates of û are negative. As û approaches

−1 from the right, the sample autocorrelation function becomes instantaneously os-

cillating. Twenty five percent of our investable universe have a positive û, among

which the largest is 0.6 corresponding to a period of around 7 days. Remarkably, the

top 5 Cryptocurrencies by market capitalization have a value of d̂ which is clustered

around 0.18. This is suggestive that as Cryptocurrency markets mature, they tend

to have similar long memory persistence characteristics. All estimates of ρ̂ are neg-

ative and tend to cluster between −0.4 and −0.5, which implies that one day ahead

volatility and returns are negativley correlated. This too is the assumed case in most

financial time series to have a negative ρ, and therefore shows that Cryptocurrencies

also share this behaviour. The volatility of volatility estimate σ̂2 shows the existence

of a stochastic volatility process. Some commonly traded Cryptocurrencies, such as

Ripples, show extreme volatility characterstics. The estimated parameter β̂ reflects

volatility persistence over time and is highly suggestive that all Cryptocurrencies in

our investable universe show evidence of volatility clustering. This further validates

the volatility clustering shown in Figure 6.1. After allowing for these various effects,

the errors show a diverse level of kurtosis with ν̂ ranging from 3 for Bitcoin showing

extreme kurtosis to 16 showing moderate level of kurtosis.

Interestingly, Ripples is not dependant on any third party for redemption, and as such,

it is the only currency with no counter-party credit risk. Due to this safety feature,

Ripples has been increasingly used by banks and large corporations as their preferred

settlement infrastructure technology due to minimized future exchange rate volatility
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risk - this is indeed in line with our findings as it has the lowest |ρ| indicating it has

the weakest leverage effect amongst all Cryptocurrencies.

The main features of Ethereum (ETH) and Dash compared to all other Cryptocur-

rencies is they are more user-friendly. There is a larger community based approach

with computer programmers actively making both Cryptocurrencies easier, safer and

quicker to use. The biggest criticism of BTC is that transacting money can be an ex-

tremely slow process, sometimes taking up to 48 hours for Bitcoins to be sent from

one user to another. ETH uses smart contracts to use blockchains in comparison to

BTC which does not. Also, Dash is the only currency that uses instant transactions

("InstantSend"). InstantSend is a feature of Dash which allows for almost near-instant

transactions, which solves the longer confirmation time problem of Bitcoin. This can

be perceived that ETH and Dash have lower liquidity risk than BTC. This is indeed

consistent with our findings since both ETH and Dash have a higher value of ν, which

implies their error distributions behave closer to a Gaussian distribution with smaller

kurtosis than BTC which nearly has the lowest value of ν. While BTC has a relatively

low value of σ2 which is similar to other financial returns, it is clear that most of the

variability of BTC can be attributed to a heavy tailed distribution.

6.4 Conclusion

This work is deeply motivated by the unique characteristics found in Cryptocurrency

data, which are drawing media and academic attention. The empirical data analysis

shows Cryptocurrencies exhibit long memory, leverage, stochastic volatility and heavy

tailedness. We further shed light on a larger scope of the Cryptocurrency universe by

expanding our analysis to cover 224 Cryptocurrency indices. Although still in its

infancy, we contribute a deeper understanding surrounding Cryptocurrencies for the

upcoming regulators, investors and governments to explore further on the topic.
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Chapter 7

Further extensions to realised

volatility, buffer threshold and

jumps for Cryptocurrency

modelling

“A statistician confidently tried to cross a river that was 1 metre deep on average. He

drowned."

Unknown

Chapters 5 and 6 show that Cryptocurrencies are inherently different to traditional

fiat currencies. The upcoming chapter extends the model discussed in the previous

two chapters in order to further address the characteristics of Cryptocurrencies. As

such, we now review some time series models for such extensions and discuss in more

detail the methodologies of estimating these extensions.

As previously discussed, Cryptocurrencies are well known for their wild volatility.

One approach that we consider in these two chapters is to allow for the negative

association between returns and future volatilities via a correlation coefficient. How-

ever, volatilities in the SV model are estimated as a latent process in the return series

which are constructed using closing prices, neglecting all intra-day price movements.

To supplement this, one alternative approach is to measure volatility directly through

realised volatility measures. realised measures are an important metric since they
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provide a real-world handle on statistical models. The incorporation of realised mea-

sures has proven to greatly increase model accuracy, and there is no exception in the

Cryptocurrency case.

Apart from the leverage effect on volatility, long memory effects should also be con-

sidered. Previous chapters have focused on modelling the long memory feature of re-

turns. However, due to the presence of occasional jumps contributing to wild volatil-

ity in the return series, the long memory feature in the return series may not be

detected as efficiently as in the volatility process. Upon further inspection of the ACF

of the squared returns for a basket of Cryptocurrencies, we also find the presence of

oscillatory long memory. Hence, the incorporation of long memory into the realised

volatility measure is another direction we pursue.

We lastly address the particularly versatile features of Cryptocurrency returns by in-

troducing non-linear attributes. We consider two main types of non-linear models,

the threshold model and the jump model. Adopting the idea of Chan, Choy, and

Lam (2014), we also consider threshold jump models and therefore combine both

concepts. These models are reviewed in the next section.

7.1 A review of time series models for extensions

Although theoretically and practically pleasing, the model in (6.1) to (6.3) can still be

improved upon in different directions. The non-linearity of Cryptocurrencies deserves

further specialized attention in order to fully measure all of their unique features.

Before further addressing these, we first briefly review the realised volatility model.

7.1.1 realised volatility models

SV Model with realised Volatility

The standard SV model with realised volatilities corrected for bias due to market

microstructure noise and non-trading hours was first proposed by Takahashi, Omori,
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and Watanabe (2009) and is denoted as

yt = exp(ht/2)εt, εt ∼ N(0, 1) (7.1)

ht+1 = µ+ φ(ht − µ) + ηt, ηt ∼ N(0, σ2) (7.2)

vt = γ + ht + εt, εt ∼ N(0, σ2
v) (7.3)

where vt are the log realised volatilities at time t. realised volatility is typically an

exogenous measure which is able to better filter h in order to improve estimation

of the entire model. Further, γ has the conventional interpretation of being driven

by market microstructure noise and non-trading hour effects. When γ is positive,

realised volatility has an upward bias and when γ is negative, it has a downward

bias. Therefore, we may observe the strength of the effect of the microstructure

noise and non-trading hours from the sign of γ. Note that all currencies, including

Cryptocurrencies, are trader driven markets, therefore the effects of γ are mainly due

to market microstructure noise.

Heterogeneous Autoregressive model for the realised Volatility

One notable extension of the realised volatility model is the Heterogeneous Autore-

gressive with realised Volatility (HAR-RV) model of of Corsi (2004), which is

RV
(d)
t+1,d = α+ β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t + ηt+1,d

where RV (x), x = d,w,m are the realised volatilities of daily, weekly and monthly

observations respectively. The purpose of this model is to capture more features of

the data including long memory. McAleer and Medeiros (2008) further extended this

model to include multiple smooth regime transitions.

The realised volatility model is an insightful extension to the previous modelling ef-

forts which we have considered given the volatility characteristics of Cryptocurren-

cies.
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7.1.2 Threshold model

In addition, the inclusion of threshold effects is also paramount to estimating some

complicated time series such as Cryptocurrency returns, which may contain regime

switching. We now survey some of the most popular threshold models.

Threshold AR model

One of the most notable examples of a threshold time series model is the Threshold

Autoregressive (TAR) model of Tong (1990). Although simple, it provides an intuitive

handle on the versatility of some return series, and is especially relevant to the context

of Cryptocurrencies. The standard TAR model is given by

yt =


φ1yt−1 + εt, if Rt−1 = 1,

φ2yt−1 + εt, if Rt−1 = 0,

where the regime indicator is

Rt =


1, if yt > r,

0, if yt ≤ r.
(7.4)

The TAR model allows separate regimes to co-exist according to the level of the re-

turns.

Threshold stochastic volatility

The Threshold SV (TSV) model was proposed by So, Lam, and Li (2002) and is given

by

yt = a+ byt−1 + εt, εt ∼ N(0, eht),

ht+1 = (α+ βht)Rt+1 + ηt, ηt ∼ N(0, σ2)

where Rt is defined in (7.4). The purpose of this specification is to capture the

variance asymmetry as an extension to the TAR model. Essentially, it is an alternative
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method to measure the leverage effect. So and Choi (2009) extended this to the

multivariate case.

Heavy Tailed TSV model

Chen, Liu, and So (2008a) generalised the TSV model to include exogenous effects,

threshold effects and heavy tails given by

yt = a+ byt−1 + φX + εt, εt ∼ tν(0, eht),

ht+1 = (α+ βht)Rt+1 + ηt, ηt ∼ N(0, σ2)

where Rt is again defined in (7.4), φ is a vector of coefficients (φ1, . . .) and X is a

matrix of exogenous variables in the typical set up. They noted the threshold variable

could be based on local market information, such as lagged values of yt or other

exogenous variables.

Threshold of Error term

Wirjanto, Kolkiewicz, and Men (2016) proposed another variant of the TSV model

yt = εt, εt ∼ N(0, ehtλ2
t ),

ht+1 = α+ β(ht − α) + ηt, ηt ∼ N(0, σ2)

where the error εt has a scaled variance which follows a threshold scheme with

regime indicator

λ2
t =


λ2

1, if yt−1 > r,

λ2
2, if yt−1 ≤ r.

Standard Buffered AR model

Another extension is the generalization of the regime switching scheme. This gives

rise to a more sophisticated version of the TAR model of Tong (1990) called the

Buffered Autoregressive (BAR) model, which was initially proposed by Zhu, Yu, and



138
Chapter 7. Further extensions to realised volatility, buffer threshold and jumps for

Cryptocurrency modelling

Li (2014). The first order BAR model is given by

yt+1 =


φ1yt + εt+1, if Rt = 1,

φ2yt + εt+1, if Rt = 0,

(7.5)

with the regime indicator

Rt =


1, if yt−1 ≤ rL,

Rt−1, if rL < Yt−1 ≤ rU ,

0, if yt−1 > rL.

(7.6)

This results in two threshold points, rL and rU , to ensure the regime switching in

both directions will only occur after passing a buffer.

Double Hysteric Heteroskedastic model

As the BAR model is relatively new, little extensions have been considered. The most

notable one is that of Chen and Truong (2016) who proposed a double buffer AR

model with Student’s t-errors called the double AR(p)-GARCH(q,m) model

yt =


φ1 +

∑p1
i=1 φ

(1)
i yt−i + at, if Rt = 1,

φ2 +
∑p2

i=1 φ
(2)
i yt−i + at, if Rt = 0

where at =
√
htεt, εt ∼ t(0, 1) and

ht =


α1 +

∑q1
i=1 α

(1)
i a2

t−i +
∑m1

i=1 β
(1)
i ht−i, if Rt = 1,

α2 +
∑q2

i=1 α
(2)
i a2

t−i +
∑m2

i=1 β
(2)
i ht−i, if Rt = 0

with the regime indicator (7.6) in which the threshold variable yt−1 is replaced by

any exogenous variable zt, such as the d-lagged variable yt−d.
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7.1.3 Jump model

A simple jump SV model is defined as

yt = ktqt + εt, εt ∼ N(0, exp(ht)), (7.7)

ht = α+ β(ht−1 − α) + ηt, ηt ∼ N(0, σ2) (7.8)

where qt ∈ {0, 1} is the jump indicator variable (1 = there is a jump at time t, 0 =

no jump at time t), P(qt = 1) = κ, kt is the jump size such that kt ∼ N(µk, σ
2
k) and µk

and σ2
k are the mean and variance of kt respectively. We denote q = (q1, . . . , qT ) and

k = (k1, . . . , kT ).

7.2 Potential model features

As discussed in the previous section, there are an abundance of potential model fea-

tures to explore. Each feature provides its usefulness in particular situations, and so

the choice of which feature to consider must be reflective of the features of the data

under question. The most notable feature of Cryptocurrencies is undoubtedly their

unconventionally large volatility. This volatility is often sensationalized in the media,

with claims that Cryptocurrency prices “jump overnight” and “crash”. The reason for

these claims is because it is not uncommon for a well-established Cryptocurrency,

such as Bitcoin, to experience moves of ±10% within the space of one day. Through

a statistical lens, this would suggest the inclusion of jump type behavior in order to

measure this effect. The presence of jumps is empirically evidenced in Figure 6.1

where it is clear that the return series’ exhibit jumps.

Further, to address the volatility characteristics, we see the importance of including

realised measures as they have been shown to greatly improve volatility measurement

(Andersen et al., 2003; McAleer and Medeiros, 2008; Goldman et al., 2013; Shirota,

Hizu, and Omori, 2014). To be specific, we model the log daily range, which is

discussed in detail in Chapter 8.
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FIGURE 7.1: Sample ACF plots of the log daily return range of
the 6 largest Cryptocurrencies measured by market capitalization on
31/12/2017. BTC: Bitcoin. ETH: Ethereum. XRP: Ripple. LTC: Lite-

coin. DASH: Dash. XMR: Monero.

There is clear evidence in Figure 7.1 of long memory, specifically, Gegenbauer long

memory in the log realised volatility measure. As such, we see the need to include

the log daily return range to hold important information about the volatility of Cryp-

tocurrencies.

Finally, as will be discussed later, critics have argued that long memory effects may

be confused with non-linear regime changes in the observations. As such, we include

BAR effects into the return series yt in order to allow for such effects.

Given all of these attributes, we aim to pursue a model which includes all of these

features. This model is given in Section 7.3.3. However, before exploring such model,

we first iteratively build up some Bayesian sampling schemes by first deriving sam-

plers for each constituent component.
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7.3 Bayesian inference

7.3.1 Bayesian inference for the jump model with SV errors

We begin with the jump model listed in (7.7) with SV errors

yt = ktqt + εt, εt ∼ N(0, eht),

ht = α+ β(ht−1 − α) + ηt, ηt ∼ N(0, σ2)

where P(qt = 1) = κ and kt ∼ N(µk, σ
2
k).

Sampling the jump indicator qt

Since each jump indicator qt is independently distributed as Bernoulli(κ), it can be

sampled separately. The posterior distribution of qt is

p(qt|yt, ht, kt, τ2, κ) ∝ f(yt|ht, kt, qt, κ)× p(qt)

= [fN (yt|kt, exp(ht))]
qt [fN (yt|0, exp(ht))]

1−qtκqt(1− κ)1−qt

= [κfN (yt|kt, exp(ht))]
qt [(1− κ)fN (yt|0, exp(ht))]

1−qt

∝
[

κfN (yt|kt, exp(ht))

κfN (yt|kt, exp(ht)) + (1− κ)fN (yt|0, exp(ht))

]qt
[
1− κfN (yt|kt, exp(ht))

κfN (yt|kt, exp(ht)) + (1− κ)fN (yt|0, exp(ht))

]1−qt
,

where fN (yt|µ, τ2) is the normal density evaluated at yt with mean µ and variance

τ2. Hence, we have

qt|yt, ht, τ2, κ ∼ Bernoulli(pq) where pq =
κfN (yt|kt, exp(ht))

κfN (yt|kt, exp(ht)) + (1− κ)fN (yt|0, exp(ht))
.

Sampling the jump probability κ

Assuming a prior of κ ∼ U(0, 0.1), the posterior distribution of κ is

p(κ|Y ,h,k, q) ∝ f(Y |h,k, q, κ)× p(κ)

=

T∏
t=1

[κfN (yt|kt, exp(ht))]
qt [(1− κ)fN (yt|0, exp(ht))]

1−qt1(0,0.1)

∝ κnq(1− κ)T−nq1(0,0.1)
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where nq =
∑T

t=1 qt and 1(0,0.1) indicates the sampled κ∗ to be within the range

(0,0.1). Hence

κ|q ∼ Beta

(
1 +

T∑
t=1

qt, 1 + T −
T∑
t=1

qt

)
I(0,0.1),

where Beta(a, b) represents a beta distribution with parameters a and b, whereby κ

is sampled directly from this Beta distribution, and rejected if it falls outside of the

prior domain (0,0.1).

Sampling the average jump size µk

As mentioned previously, it is assumed that kt ∼ N(µk, σ
2
k), and we therefore derive

the posterior distributions of µk and σ2
k respectively. First, the posterior distribution

of µk can be expressed as

p(µk|Y ,h, q, σ2
k) ∝ p(µk)× f(Y |h, µ, q, κ, σ2

k).

Assuming a Gaussian prior N(0, 10) for µk, the log posterior density is

log p(µk|Y ,h, σ2
k, q) = log p(µk) + log f(Y |h, µk, σ2

k, q) + terms independent of µk

= −
µ2
k

2
√

10
− 1

2

T∑
t=1

log
(
σ2
kqt + eht

)
− 1

2

T∑
t=1

(yt − µkqt)2

σ2
kqt + eht

+ terms independent of µk. (7.9)

We note that parameter kt in (7.9) is replaced by its expected value δµ. The MAP

sampler can then be used to sample µ∗k and accepted/rejected with the MH algorithm.

Sampling the jump size variance σ2
k

In the typical set up, the jump size variance is assumed to be log-normal, and jointly

sampled with µk (Chan and Grant, 2016a). Although this may be a suitable assump-

tion under regular stock returns, we find this to be an inadequate assumption in the

case of extremely volatile returns, such as that of Cryptocurrencies. The variance pa-

rameter is typically unstable as it is often sampled with extremely large values, and

it fails to explore the parameter space fully. Alternatively, we find an efficient esti-

mator by dropping any prior distribution, and using only the likelihood function as
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the posterior distribution. In addition, we use a Griddy Gibbs sampler as described in

Section 4.2.9 on the data likelihood only, and accept/reject σ2∗
k using a random walk

MH algorithm. The log posterior density therefore is

log p(σ2
k|Y ,h, q, µk) = log f(Y |h, µk, σ2

k, q) + terms independent of σ2
k,

= −1

2

T∑
t=1

log
(
σ2
kqt + eht

)
− 1

2

T∑
t=1

(yt − µkqt)2

σ2
kqt + eht

+ terms independent of σ2
k.

Sampling the jump size kt

The posterior of the jump size kt is

p(kt|yt, ht, qt, κ) ∝ f(yt|ht, kt, qt, κ)× p(kt)

∝ [fN (yt|kt, exp(ht))]
qt [fN (yt|0, exp(ht))]

1−qt × fN (kt|µk, σ2
k), (7.10)

since kt ∼ N(µk, σ
2
k). We consider the following two cases for qt:

Case 1: When qt = 0, the posterior distribution in (7.10) becomes

p(kt|yt, ht, qt) ∝ fN (yt|0, exp(ht))× fN (kt|µk, σ2
k) ∝ fN (kt|µk, σ2

k)

such that given qt = 0,

kt|yt, ht = µk +
√
δσ2 et, et ∼ N(0, 1).

Case 2: When qt = 1, the posterior distribution in (7.10) becomes

p(kt|yt, ht, qt) ∝ fN (yt|kt, exp(ht))× fN (kt|µk, σ2
k) ∝ N(Vk,tMk,t, Vk,t),

where

Vk,t =

(
1

σ2
k

+
1

eht

)−1

and Mk,t =

(
µk
δσ2

+
yt
eht

)
,

since the posterior of µ in a normal conjugate is

p(x|µ, σ2) ∝
n∏
t=1

fN (xt|µ, σ2)× fN (µ|m, τ2) ∝ fN (VµMµ, Vµ),
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where

Vµ =

(
1

τ2
+

n

σ2

)−1

and Mµ =

(
m

τ2
+

∑n
i=1 xi
σ2

)
,

as given in (2.1). In summary, the posterior distribution of kt given qt = 1 is

kt|yt, ht = Mk,t +
√
Vk,tet, et ∼ N(0, 1).

Sampling the latent volatility vector h and the other volatility parameters

The sampling of the latent volatilities h is carried out as usual and can be found in

Appendix F. The sampling of the volatility parameters α, β and σ2 can be found in

Section 2.2.

7.3.2 Bayesian inference for the realised volatility model

We discuss here the estimation of the model listed in (7.1) to (7.3) which is expressed

as

yt = exp(ht/2)εt, εt ∼ N(0, 1),

vt = γ + ht + εt, εt ∼ N(0, σ2
v),

ht+1 = µ+ φ(ht − µ) + ηt, ηt ∼ N(0, σ2).

For ease of notation, let Y = (y1, . . . , yT ) and V = (v1, . . . , vT ).

Sampling the latent volatility vector h

The estimation process of h requires some slight modification since there is infor-

mation in the log realised volatility component in (7.2) which also involves ht. The

estimation is carried out in the same way as explained in Appendix F, except the log

density (and therefore its first two partial derivatives) are different. To show this, we

consider the conditional density of the realised volatility component which is

f(yt|vt, ht, γ, σ2
v) ∝

1√
2πeht/2

exp

{
− y2

t

2eht

}
× 1√

2πσv
exp

{
−(vt − γ − ht)2

2σ2
v

}
,
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with log density

log p(yt|vt, ht, γ, σ2
v) = −ht

2
− y2

t

2eht
+

2(vt − γ)ht − h2
t

2σ2
v

+ other terms independent of ht,

such that the first and second derivatives with respect to ht are

f ′(ht) = −1

2
+

y2
t

2eht
+
vt − γ − ht

σ2
v

, and f ′′(ht) = − y2
t

2eht
− 1

σ2
v

.

This log density and the partial derivatives can be easily substituted in the process

outlined in Appendix F and the estimation process is carried out as usual. Further,

once h has been estimated, the volatility parameters α, β and σ2 are also estimated

in exactly the same fashion as described in Appendix F.

Sampling the constant term of the realised volatility model

We assume a normal prior for γ such that γ ∼ N(µγ , σ
2
γ). Therefore, the posterior

distribution of γ is a standard normal conjugate given by

γ|V ,h, σ2
v ∼ N

(
σ2
γ

∑T
i=1(vt − ht)

Tσ2
γ + σ2

v

,
σ2
γσ

2
v

Tσ2
γ + σ2

v

)
,

where it is assumed that µγ = 0 and σ2
γ = 0.1 throughout this thesis.

Sampling the volatility of volatility parameter of the realised volatility model

Finally, we assume an Inverse-Gamma prior for σ2
v such that σ2

v ∼ IG
(
av
2 ,

bv
2

)
. There-

fore, the posterior distribution of σ2
v is the standard inverse gamma conjugate given

by

σ2
v |V ,h, γ ∼ IG

(
T + av

2
,
bv +

∑T
i=1(vt − γ − ht)2

2

)
.
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7.3.3 Bayesian inference for the BAR-SV model

In this section, we develop a new Bayesian simulator of the BAR model in order to

arrive at the model which will be proposed later. The model is

yt =


φUyt−1 + εt, if Rt = 1,

φLyt−1 + εt, if Rt = 0,

ht = α+ β(ht−1 − α) + ηt,

where εt ∼ N(0, eht), with the regime indicator

Rt =


1, if yt−1 ≤ rL,

Rt−1, if rL < yt−1 ≤ rU ,

0, if yt−1 > rL,

(7.11)

where φU and φL are the AR terms of the upper and lower regime respectively.

Sampling the regime indicator R0 of the BAR-SV model

In a typical time series model set-up with no threshold effects, the likelihood function

of yt is clearly defined. However, the introduction of AR terms and buffered threshold

adds extra difficulty to parameter estimation as the likelihood function depends on

the regime indicators Rt which are unobserved. It is clear from the traditional thresh-

old model of Tong (1990) that Rt is determined for t > 1 given the data yt−1 and

the threshold/regime switching variable r but not for R1 which depends on the initial

state variable y0. Although this y0 can be estimated from some proposed methodolo-

gies or found from records, this problem becomes more complicated in the buffered

threshold case when R1 depends also on R0 as shown in (7.11). This means that R1

depends also on whether y0 crosses a buffer defined by rU and rL.

To overcome this problem, we assume y0 = 0 for simplicity and sample R0 using

R0 ∼ Bernoulli(pR), where

pR =
p1

p0 + p1
with p1 = fN (y1|φU , eh1) and p0 = fN (y1|φL, eh1),
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is the density weighted probability of being in the upper regime.

Sampling the threshold levels, rU and rL, of the BAR-SV model

In the typical set-up of Tong (1990), there is only one threshold parameter which

is estimated using quasi-maximum likelihood via a search of the likelihood space.

In order to sample rU and rL for the BAR model, we use the MAP sampler on the

observational likelihood, which is

Y |Y−T ,h, φU , φL = −T
2

log 2π − 1

2
h1 +

1

2
log(1− φ∗21 )− 1

2

(y1 − φ∗1)2

eh1

−1

2

T∑
t=2

ht −
1

2

T∑
t=2

(yt − φ∗t yt−1)2

eht
, (7.12)

where Y = (y1, . . . , yT ),Y−T = (y1, . . . , yT−1), φ∗t = φURt + φL × (1 − Rt). The

sampling of rU and rL are both performed using the MAP sampler, with a normal

prior. Specifically, the posteriors of both parameters are

log p
rU

(rU |Y ,h, φU , φL, rL) = log f(Y |Y−T ,h, φ
U , φL, rU , rL) + logN(µ

rU
, σ2

rU
) + constants, (7.13)

log p
rL

(rL|Y ,h, φU , φL, rU ) = log f(Y |Y−T ,h, φ
U , φL, rU , rL) + logN(µ

rL
, σ2

rL
) + constants. (7.14)

The same MAP principle detailed in Section 3.3.1 applies here also such that:

1. Sample rU∗ from the proposal distribution N(r̃U , c2
rU
VrU ) denoted by qrU (·) in

which r̃U is the mode of (7.13), VrU = 2 (similar to Vu in Section 3.3.1) and crU

is the scaling parameter and Appendix A provides details for the tuning of crU .

2. Reject rU∗ unless (rL + ς < rU∗ < max {yt}).1 Otherwise, accept rU∗ with

acceptance probability %, where

% = min

{
1,
prU (rU(m)∗|Y ,h, φU , φL, rL)qrU (rU(m))

prU (rU(m)|Y ,h, φU , φL, rL)qrU (rU(m)∗)

}
.

We then apply a similar procedure to rL∗, except reject rL∗ unless (min {yt} < rL <

rU∗ − ς).
1ς is a small number that is chosen to avoid classification issues when |rU − rL|→ 0. We find

sd(Y )× 0.05 is a good choice, where sd(·) is the standard deviation operator.
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Sampling the autoregressive terms φU and φL of the BAR-SV model

The sampling of the autoregressive terms of the threshold component is standard.

We consider the prior φU ∼ N(µφU , σ
2
φU

) and define y∗t = ytI(Rt = 1) and x∗t =

yt−1I(Rt = 1) where I(E) is an indicator function for the event E and zero otherwise.

Hence, it can be shown the posterior distribution of φU is the normal conjugate

φU |Y ,h, φL, rU , rL ∼ N

 ∑T
t=1 x

∗
t y
∗
t e
−ht∑T

t=1 x
2∗
i e
−hi + σ2

φU
−1 ,

(
T∑
t=1

x2∗
t e
−ht + σ2

φU
−1

)−1
1(|φU |< 1),

(7.15)

which is also the result of (3.9) in Section 3.3.1 for a single mean function parameter.

The case of φL is also performed in the same way, except when considering the case

Rt = 0. In all applications throughout this thesis, we assume µφU = 0 and σ2
φU

= 0.2.

7.3.4 Bayesian inference for the JBAR-SV-GLR model

Finally, we now combine buffer effects, long memory, SV, jumps and realised volatility

into one single model called the jump buffered autoregressive stochastic volatility

with Gegenbauer log range (JBAR-SV-GLR) model, which forms the basis of Chapter

8.

Model specification

The JBAR-SV-GLR model is given by

yt =


φUyt−1 + ktqt + εt, if Rt = 1,

φLyt−1 + ktqt + εt, if Rt = 0,

(7.16)

ht = α+ β(ht−1 − α) + ηt, ηt ∼ N(0, σ2), (7.17)

vt = (1− 2uB +B2)−d(γ + ht + εt), εt ∼ N(0, σ2
v), (7.18)

where εt ∼ N(0, eht), and the regime indicator Rt is given in (7.11). This is an

important model which addresses the issues raised in Section 7.2. The general pro-

cedure of estimating this model is to first estimate a certain effect and then consider

a detrended series with this estimated effect removed. Subsequently, the remaining

parameters can be estimated based on this de-trended series, and so on.
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Sampling the regime indicator R0 of the JBAR-SV-GLR model

We apply the same procedure as Section 7.3.3 to sample the regime indicator R0 and

define the likelihood function.

Sampling the BAR parameters of the JBAR-SV-GLR model

We start off by first defining the jump de-trended returns as y?t = (yt − ktqt). We

then estimate the BAR parameters φU , φL, rU , rL using the same procedures from the

BAR-SV model as outlined in Sections 7.3.3 and 7.3.3 but instead replacing yt with

y?t .

Sampling the jump parameters of the JBAR-SV-GLR model

Once the parameters in the BAR terms have been estimated, we let

y
(1)
t = yt −

[
φUyt−1Rt + φLyt−1(1−Rt)

]
, which is the de-trended returns using pa-

rameters in the BAR model. The usual derivations from section 7.3.1 are now applied

to estimate the jump parameters kt, qt and κ.

Sampling the stochastic volatility parameters of the JBAR-SV-GLR model

In a similar fashion, let y(2)
t = y

(1)
t − ktqt = εt. The process is carried out exactly in

Section 7.3.2 with y(2)
t replacing yt.

Sampling the Gegenbauer long memory parameters

We reconsider the realised volatility component in (7.18). This can be written out in

matrix notation as

V = GJµv +GJε

where

ε ∼ N(0,Σv), Σv = diag
(
σ2
v , . . . , σ

2
v

)
, µv = γ1 + h,
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and 1 is a vector of 1s so that

V |GJ ,µv,Σv ∼ N(µ̃v,GJΣvG
′
J),

where µ̃v = GJµv. Hence

f(V |h, u, d, γ, σ2
v) = (2π)−

T
2 |GJΣvGJ |−1exp

{
−1

2
(V − µ̃v)′(GJΣvG

′
J)−1(V − µ̃v)

}
. (7.19)

The Gegenbauer parameters (u, d) are now estimated using the MAP sampler once

again, based on the realised volatility likelihood given in (7.19). The complete pos-

teriors for both u and d are

log pu(u|h, d, γ, σ2
v) = log f(V |h, u, d, γ, σ2

v) + log N(µu, σ
2
u)1ud,

log pd(d|h, u, γ, σ2
v) = log f(V |h, u, d, γ, σ2

v) + log N(µd, σ
2
d)1ud.

where 1ud is defined in Section 3.3.1. The same MAP principle detailed in Section

3.3.1 also applies here.

Sampling the realised volatility parameters

Again, we consider the transformation V∗ = G−1
J V = µv + ε. It then becomes

straightforward to estimate γ and σ2
v by using the same methodology of estimating

respectively α and σ2 as outlined in Section 7.3.2 with V∗ replacing Y ∗.

7.4 Conclusion

Following the model development explored in this chapter and subsequently deriving

the Bayesian MCMC sampler of the JBAR-SV-GLR model, the next chapter will see the

application of this model to Cryptocurrency returns. This is paramount to overcome

the shortcomings of the models proposed in Chapters 5 and 6. The whole chapter is

our third publication which is to appear in Finance Research Letters.
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Chapter 8

On long memory effects in the

volatility measure of

Cryptocurrencies

“If you torture the data enough, nature will always confess."

Ronald Coase

Cryptocurrencies as of late have commanded global attention on a number of fronts.

Most notably, their variance properties are known for being notoriously wild, unlike

their fiat counterparts. We highlight some stylized facts about the variance measures

of Cryptocurrencies using the logarithm of daily return range and relate these results

to their respective cryptographic designs such as intended transaction speed. The

results favor oscillatory long run autocorrelations over standard long run autocorre-

lation filters to model the log daily return range. The overarching implication of this

result is the volatility of Cryptocurrencies can be better understood and measured via

the use of fast moving autocorrelation functions, as opposed to smoothly decaying

functions for fiat currencies.

8.1 Introduction

Financial controllers globally are now at a cross road of accepting Cryptocurrencies

as a medium of exchange, or purely as a speculative alternative asset class. In this

note, a time series model is used to further address such issues, by providing a novel

approach to better understand their unique volatility properties.
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As of late, there has been an emergence of methods attempting to explain the long

run autocorrelation properties of Cryptocurrencies, particularly Bitcoin. For instance,

Jiang, Nie, and Ruan, 2017 finds evidence of a standard long run autocorrelation in

Bitcoin returns only, but does not consider coupling this finding with the possibility

of time-varying daily volatility. Time-varying daily volatility models are appealing

as they are intuitive and capture more empirical properties compared to non-time

varying volatility models, but are often avoided because they are difficult to estimate.

Lahmiri, Bekiros, and Salvi, 2018 models long run autocorrelations in the daily time

varying volatility component itself, but they do not consider the unique long run trend

behaviors of Cryptocurrencies such as jumps.

In this work a model is proposed extending the work of Phillip, Chan, and Peiris

(2018) by the inclusion of daily time varying volatility measures which have been

shown to greatly improve model performance (Koopman, Jungbacker, and Hol, 2005).

This is especially true when market nuances such as time-of-day effects are present.

Incorporating volatility measures into financial time series models, such as the CBOE

Volatility Index (VIX), have gained traction as of late since they are efficient measures

of the true volatility and reduce model error. Given the extreme volatility of Cryp-

tocurrencies, such measures are extremely valid and a worthwhile pursuit. Hence,

including such measures in the time series model is an important step in the volatil-

ity estimation process and by not doing so, a weaker signal about the current level

of volatility is obtained. This is the case for the Stochastic Volatility (SV) model of

Taylor (1986), one of the most commonly used models to measure daily time-varying

volatility, as the model assumes the volatility process is latent based on the infor-

mation of returns. Imposing the limitations of a weaker volatility signal within the

context of Cryptocurrencies is extremely debilitating since they are notorious for wild

volatility characteristics. Takahashi, Omori, and Watanabe (2009) first suggested in-

corporating additionally realised volatility into the SV model to supplement such a

limitation in estimating time varying volatility and the model is referred to as the

realised Stochastic Volatility (RSV) model.

Traditionally, realised volatility is defined as the sum of squared intraday returns

over a specific time interval (Andersen and Bollerslev, 1998; Barndorff-Nielsen and

others, 2001). The purpose of including such a volatility measure is to provide a

robust estimator to filter the volatility component of the time series. Although it
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is a popular choice, the use of realised volatility as an additional measure suffers a

significant drawback of being dependent on the intraday sampling interval which can

bias the results. Alizadeh, Brandt, and Diebold (2002) find that daily range based

volatility measures are highly efficient extracts of structural volatility components

and are robust to market microstructure noise.

The presence of long run autocorrelation in range based volatility measures has been

known to exist within some financial assets such as stocks and currencies. A rou-

tine solution to modelling this is to include a standard long run autocorrelation fil-

ter, which assumes exponential decay over time (Raggi and Bordignon, 2012; Corsi,

2009; Koopman, Jungbacker, and Hol, 2005). This is due to the fact that long run

autocorrelation persistence in fiat assets is slowly decaying, with no oscillatory be-

havior. We however find a completely different case for the range based volatility

measure of Cryptocurrencies which show oscillatory long run autocorrelation behav-

ior in general. These sporadic long run autocorrelations can be measured using suit-

able Gegenbauer long run autocorrelation filters, which are able to capture oscillatory

behaviors.

However, one of the main criticisms of long run autocorrelation estimation in general

is that such effects may indeed be confused for regime changes in the long run trend

component; see Guégan (2005) for a detailed review. We respond to such criticisms

by incorporating for the first time, the so-called Buffered Autoregressive (BAR) model

of Zhu, Yu, and Li, 2014 in conjunction with the time varying SV model of Taylor,

1986. By doing so, we justify the use of the long-run autocorrelations together with

structural changes. In addition to including BAR effects, we also simultaneously allow

for occasional jumps, as are often reported about Cryptocurrencies. These jumps are

assumed to occur in the long-run trend component.

The aim of this note is to advance Cryptocurrency models by addressing the above

mentioned issues with respect to their wild volatilities. Our proposed model is novel

in the Crypotocurrency literature in three aspects: an additional daily range volatility

model within the SV model structure, Gegenbauer long run autocorrelation filters

for the volatility measure and the BAR model with jumps in the trend model. We

assume persistence in the volatility measures rather than returns as the persistence

in returns can be distorted by jumps - especially Bitcoin. Our model can capture

any jump features in the returns so that the persistence in volatility can be more
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easily detected. This advanced model not only provides substantial improvement in

model performance but also offers new implications about the volatility features of

Cryptocurrencies.

The remainder of this note is organised as follows: in Section 2, we discuss the data

source and the model; Section 3 discusses empirical findings and concludes with

Section 4.

8.2 Data and Methodology

The Cryptocurrency data is sourced from the Brave New Coin (BNC) Digital Currency

indices database. Currently, there are more than 2, 800 Cryptocurrency index series

available on the BNC database. However, some of these have market capitalizations

which are small (< $1, 000, 000 USD) and traded very little. After filtering out for

a meaningful investable basket, this leaves a total of 149 Cryptocurrencies and the

inception date of these time series vary but all end on the 31st of December, 2017.

We assume in this note that Cryptocurrency behaviour can be decomposed into two

components. The first being a long run trend (or mean) of the time series yt defined

as the daily index price percentage change yt = (Pt−Pt−1)/Pt−1 (conceptually similar

to return) where Pt is the daily index value at time (day) t. The second component

is the volatility measure, the log daily return range, which is defined as

vt = log(Rh,t −Rl,t), (8.1)

where the high and low daily return on day t are Rk,t = (Pk,t−Pc,t−1)/Pc,t−1, k = h, l

respectively and Pk,t, k = h, l, c represents the high, low and closing price of day t.

We use this particular definition because it is guaranteed to have support that agrees

with the normal distribution. Our model attempts to explain the behavior of this daily

super imposed volatility component of Cryptocurrencies.

Cryptocurrencies are also plagued with a host of other competing issues due to their

infrastructure set-up. To address the issues, the long run trend component in yt is

assigned to a buffered threshold model with different jump features in each struc-

tural component. Moreover, the autocorrelation functions (ACFs) of the log daily
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return range volatility for the top six Cryptocurrencies displayed in Figure 8.1 con-

firm the presence of oscillating long run autocorrelations. This oscillatory behavior

strongly suggests the use of a Gegenbauer long run autocorrelation filter to properly

estimate such effects. This extended model makes it a natural contender by correctly

measuring these oscillatory effects in the presence of a large investable universe of

Cryptocurrencies.
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FIGURE 8.1: Sample ACF plots of the log daily return range of
the 6 largest Cryptocurrencies measured by market capitalization on
31/12/2017. BTC: Bitcoin. ETH: Ethereum. XRP: Ripple. LTC: Lite-

coin. DASH: Dash. XMR: Monero.

We describe our proposed Jump BAR SV Gegenbauer Log Range (JBAR-SV-GLR)

model below. Let the return yt, t = 1, 2, . . . , T and its volatility measure vt, t =

1, 2, . . . , T satisfy the equations

JBAR: yt =


φUyt−1 + ktqt + εt, if Rt = 1,

φLyt−1 + ktqt + εt, if Rt = 0,

(8.2)

SV: ht = α+ β(ht−1 − α) + ηt, ηt ∼ N(0, σ2), (8.3)

GLR: (1− 2uB +B2)dvt = γ + ht + εt, εt ∼ N(0, σ2
v), (8.4)

where εt ∼ N(0, eht), and the buffer regime indicator and initial model at t = 1 are

respectively
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Rt =


1, if yt−d ≤ rL,

Rt−1, if rL < yt−d ≤ rU ,

0, if yt−d > rL,

y1 ∼


N
(
k1q1
1−φ1 ,

eh1
1−φ21

)
if R1 = 0,

N
(
k1q1
1−φ2 ,

eh1
1−φ22

)
if R1 = 1.

The jump indicator qt ∈ {0, 1} has probability of jumping equal to P(qt = 1) = κ

and the jump size kt ∼ N(µk, σ
2
k). It is known the volatility measure vt has long run

autocorrelation effects when ({|u|< 1, 0 < d < 0.5} ∪ {|u|= 1, 0 < d < 0.25}). Addi-

tionally, γ is the level of the volatility measure, and σ2
v is the volatility of the volatility

measure. When u = 1, vt has standard long run autocorrelation effects such that

equation 8.4 becomes (1 − B)2dvt = γ + ht + εt. The volatility component ht in the

SV model evolves according to the state equation 8.3 for t = 1, . . . , T , α is the con-

stant level of the volatility, β is the persistence of the volatility process and σ2 is the

volatility of the volatility process. We assume |β|< 1 so ht+1 is not explosive.

This model allows the return yt to experience buffered regime changes (equation 8.2)

and the logarithm of the volatility component to have an autoregressive structure

(equation 8.3). It also relates the volatility measure vt via another linear model with

Gegenbauer long run autocorrelation filter (equation 8.4).

8.3 Empirical results

In order to contest the current literature of utilizing a standard long run autocorre-

lation specification to model volatility, we estimate model 8.2-8.4 and also its special

case, which is in fact the standard case by setting u = 1 in equation 8.4. Results are

reported in Table 1 for the six largest Cryptocurrencies measured by market capital-

ization.
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Data Model rU rL φU φL u d α β σ2 γ σ2
v κ µk σ2

k DIC

BTC Standard

θ̂ 0.0535 -0.2036 0.0222 -0.6498 0.0005 -7.5249 0.6539 0.4106 4.0328 0.0049 0.0010 0.0241 2.0379 -8810

Std. 0.0829 0.0059 0.0227 0.1706 0.0003 0.0640 0.0208 0.0163 0.0372 0.0019 0.0011 0.0917 1.5542

AR(%) 0.1435 0.0322 0.0068 0.3988 0.1270 0.3648

GR 1.0001 1.0319 1.0000 1.0011 1.1945 1.0005 1.0013 1.0004 1.0201 1.0120 1.0006 1.0000 1.0001

BTC Gegenbauer

θ̂ 0.0032 -0.1900 0.0209 -0.2077 -0.7717 0.2106 -7.5493 0.7933 0.4003 2.9470 0.0048 0.0009 0.0025 2.2259 -8874

Std. 0.0853 0.0767 0.0850 0.2319 0.0157 0.0080 0.0906 0.0171 0.0159 0.0630 0.0016 0.0010 0.0475 1.5020

AR(%) 0.1233 0.1498 0.1308 0.0759 0.3776 0.1239 0.3812

GR 1.0054 1.0009 1.0030 1.0002 2.0505 1.0054 1.0037 1.0011 1.0036 1.6666 1.0001 1.0008 1.0009 1.0000

ETH Standard

θ̂ 0.0121 -0.1252 0.0384 -0.3803 0.0004 -6.0038 0.6765 0.3707 3.2992 0.0070 0.0016 0.0232 2.1043 -4304

Std. 0.0447 0.0189 0.0310 0.1116 0.0004 0.0824 0.0259 0.0191 0.0484 0.0031 0.0019 0.1219 1.5275

AR(%) 0.1378 0.1237 0.0122 0.3982 0.1414 0.3729

GR 1.0005 0.9999 0.9999 1.0001 1.0140 1.0714 1.0005 1.0002 1.2345 1.0176 1.0002 0.9999 1.0001

ETH Gegenbauer

θ̂ -0.0012 -0.1198 0.0338 -0.3570 -0.7920 0.2397 -6.0833 0.8157 0.3707 2.3768 0.0057 0.0017 0.0204 2.0976 -4365

Std. 0.0468 0.0285 0.0347 0.1393 0.0453 0.0068 0.1265 0.0205 0.0188 0.0658 0.0021 0.0022 0.0752 1.5533

AR(%) 0.1192 0.0896 0.1135 0.1245 0.3760 0.1511 0.3733

GR 0.9999 0.9999 0.9999 0.9999 3.1808 1.0415 1.0029 0.9999 1.0198 1.0027 1.0413 1.0000 0.9999 1.0000

XRP Standard

θ̂ 0.0194 -0.1325 -0.0301 -0.1791 0.0008 -6.4377 0.5953 0.4701 3.6175 0.0066 0.0039 0.8756 0.9691 -6762

Std. 0.0571 0.0409 0.0264 0.0599 0.0005 0.0603 0.0223 0.0188 0.0329 0.0027 0.0032 0.5179 1.0500

AR(%) 0.1436 0.1049 0.0115 0.3915 0.1705 0.2863

GR 0.9999 1.0005 0.9999 1.0002 1.2884 1.0464 1.0030 0.9999 1.0371 1.0054 1.0106 1.0100 1.0037

XRP Gegenbauer

θ̂ -0.0408 -0.1028 0.0057 -0.1833 -0.7630 0.2267 -6.5116 0.7547 0.4773 2.6783 0.0051 0.0023 1.1437 1.2943 -7349

Std. 0.0482 0.0344 0.0280 0.0718 0.0096 0.0106 0.0834 0.0192 0.0189 0.0716 0.0016 0.0017 0.4868 1.1905

AR(%) 0.1417 0.1431 0.1313 0.0894 0.3655 0.1638 0.2941

GR 0.9999 1.0004 1.0026 0.9999 1.0000 1.8408 0.9999 1.0385 1.0074 1.4316 1.0036 1.0017 1.0019 1.0000

LTC Standard

θ̂ 0.0720 -0.2166 -0.0208 -0.0911 0.0011 -7.1119 0.6720 0.4882 3.8409 0.0055 0.0122 0.2981 0.0137 -7394

Std. 0.0957 0.1058 0.0327 0.1135 0.0006 0.0823 0.0204 0.0194 0.0609 0.0021 0.0047 0.0475 0.0230

AR(%) 0.1532 0.1474 0.0105 0.3402 0.1420 0.3431

GR 1.0003 1.0003 1.0000 0.9999 1.4556 1.0001 1.0035 1.0007 1.0368 1.0001 1.0008 1.0000 1.0000

LTC Gegenbauer

θ̂ 0.0008 -0.0767 -0.0102 -0.0886 -0.8512 0.2819 -7.2094 0.8395 0.5014 2.3199 0.0045 0.0102 0.2594 0.0216 -7961

Std. 0.0994 0.1077 0.0481 0.1338 0.0043 0.0067 0.1309 0.0154 0.0198 0.0423 0.0015 0.0041 0.0537 0.0163

AR(%) 0.1461 0.1673 0.0490 0.0577 0.2814 0.1274 0.3132

GR 0.9999 1.0000 0.9999 1.0011 2.2859 2.4969 1.0363 1.0096 1.0045 1.0004 1.0124 1.0304 1.0441 1.0025

DASH Standard

θ̂ 0.0164 -0.1961 0.0143 -0.3646 0.0008 -6.1169 0.6278 0.3195 3.4832 0.0056 0.0038 0.5961 0.4318 -6528

Std. 0.0833 0.0649 0.0236 0.2271 0.0005 0.0577 0.0216 0.0127 0.0425 0.0021 0.0029 0.2433 0.8365

AR(%) 0.1310 0.1468 0.0108 0.3948 0.1240 0.2558

GR 1.0004 1.0302 1.0002 1.0052 1.0356 1.0242 1.0015 1.0005 1.0686 1.0050 1.0030 1.0014 1.0003

DASH Gegenbauer

θ̂ -0.0045 -0.1960 0.0031 -0.2642 -0.7501 0.3284 -6.1748 0.8180 0.3397 2.0001 0.0042 0.0011 0.0839 2.0251 -6954

Std. 0.0880 0.0862 0.0310 0.2624 0.0049 0.0097 0.0936 0.0163 0.0137 0.0696 0.0012 0.0013 0.2088 1.5468

AR(%) 0.1587 0.1425 0.0866 0.0637 0.3910 0.1698 0.3642

GR 1.0000 1.0001 1.0000 1.0003 1.0199 2.4144 1.0120 1.0353 1.0256 1.7588 1.0010 1.0001 1.0003 0.9999

XMR Standard

θ̂ -0.0229 -0.1885 -0.0188 -0.4546 0.0012 -5.7350 0.6119 0.2543 3.3578 0.0052 0.0022 0.4239 0.9184 -6033

Std. 0.0816 0.0480 0.0250 0.1888 0.0008 0.0570 0.0229 0.0104 0.0443 0.0019 0.0018 0.2858 1.3065

AR(%) 0.1423 0.1632 0.0122 0.3656 0.1474 0.2673

GR 1.0002 1.0024 1.0001 1.0013 1.6475 1.0001 1.0058 0.9999 1.0546 1.0013 0.9999 1.0041 1.0001

XMR Gegenbauer

θ̂ 0.0033 -0.1873 -0.0171 -0.3320 -0.8601 0.1727 -5.7598 0.7453 0.2546 2.7331 0.0045 0.0012 0.0974 1.9898 -6192

Std. 0.0798 0.0680 0.0294 0.2009 0.0240 0.0168 0.0672 0.0204 0.0106 0.0750 0.0016 0.0014 0.2333 1.5438

AR(%) 0.1369 0.1438 0.1383 0.1133 0.3332 0.1401 0.3635

GR 1.0013 1.0000 1.0002 1.0003 1.1686 1.0039 1.0333 1.0003 0.9999 1.0754 1.0018 1.0005 1.0000 1.0000

TABLE 8.1: Parameter estimates for each dataset under both model
specifications.

The main points of interest from Table 8.1 are the long run autocorrelation param-

eters, u and d. Both models share a d parameter, which measures the strength of
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long run autocorrelations present in the volatility measures. As shown, the standard

model does not show any significance of long run autocorrelations, as most estimates

of d are close to 0. This is in stark contrast, however, with the Gegenbauer model,

as most estimates of d are around 0.25. Since d is limited to the range [0, 0.5], these

estimates of d are economically significant. The parameter u is limited between the

range [−1, 1] and measures the level of oscillation in the long run ACF of the volatility

measure. The closer u is to −1, the more oscillatory the ACF is, and u = 1 means

there is no long run autocorrelation oscillation. All values of u are statistically and

economically significant for the Gegenbauer filter, with most values being estimated

around −0.7. After allowing for the long run autocorrelation structure, most trend

components for yt do not possess jump behavior, even for BTC which displays spo-

radic yt. The only exceptions are LTC and XRP. This interesting finding also confirms

the necessity of modelling persistence in the volatility measures rather than returns

as in most Cryptocurrency models.

We next expand the analysis to a large and practically investable universe of 149

Cryptocurrencies, and provide an intuitive handle on the results. We note the DICs

reported in Table 8.1 measure the model misfit and hence a lower DIC (more neg-

ative) indicates better model fit. In order to gauge a broad overview of the data,

the DIC ratios of the standard model (u = 1) to the Gegenbauer model for all 149

Cryptcurrencies are measured. These DIC ratios which we call ‘volatility oscillation

memory ratios’ (VOMRs) are powerful metrics that provide a deeper understanding

on the properties of Cryptocurrencies: a VOMR greater than one indicates that higher

model misfit for the standard model relative to the Gegenbauer model and hence a

preference for the Gegenbauer model over the standard model. Figure 8.2 depicts

the density plot of the VOMRs for all 149 Cryptocurrencies. In total, 118 (79%) of the

Cryptocurrencies have a VOMR which is considered high (greater than one), com-

pared to only 31 (21%) which are low.
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FIGURE 8.2: Density plot of VOMRs of Gegenbauer to standard long
run autocorrelation filter for log daily return range. The top six Cryp-

tocurrencies by market capitalization are overlaid.

It is clear from Figure 8.2 that all of the top six Cryptocurrencies have a VOMR greater

than one. Upon closer inspection, it is evident the VOMR is closely related to com-

pletion time (transaction speed). This completion time issue presents new challenges

which are not present in fiat currencies. One of the pioneering aspects of Cryptocur-

rencies is the use of Blockchain technology; which can be intuitively interpreted as a

clearing house for transactions. Arguably, the most appealing aspect of such technol-

ogy is that transactions are intended to be almost instantaneous and have a negligible

bid-ask spread. This feature is very different from fiat currencies, which do have these

market frictions. The most commonly discussed example where this would benefit the

most is within the international money transfer services community (such as Western

Union) in which there is a clear need to send cash overseas very cheaply and instantly.

The intuitive relationship of VOMR with completion time seems to explain how the

day-to-day volatility correlation is dependent on completion times, and therefore liq-

uidity. To illustrate the transaction speed (and hence liquidity issue), we look at the

top six Cryptocurrencies. It is commonly known that BTC, ETH and XMR have long

completion times, compared to LTC, DASH and XRP which have shorter completion

times. For example, BTC, the largest and most widely traded Cryptocurrency today,

can take up to two days to transact, whereas XRP takes only seconds. This intuitive

understanding helps to settle important speculative debates over Cryptocurrencies as

it reveals their transaction speeds, an important factor to the role of currency, are re-

lated to the oscillatory long run autocorrelation structure of their volatility measures.
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Regarding transaction speed, BTC receives the biggest criticism as its infrastructure

set-up was not designed to handle such a large volume of trades that it currently

experiences. As such, critics argue that it is not a sustainable Cryptocurrency, since

it now has extremely slow transaction speeds and is therefore not a long-term viable

solution. This can shed light from its close-to-one VOMR showing weak preference

for Gegenbauer specification. Another interesting finding is the VOMR of ETH being

again close to one. ETH claims to have embedded “Smart Contracts” to circumvent

the slow transaction fallacy of BTC. However in reality, the transaction time of ETH

has also increased considerably due to a lack of infrastructure upgrades to deal with

growing pains. XMR is a coin which mainly focuses itself on security and privacy, but

not on speed. This finding too is evidenced on the chart, since it has a VOMR close to

one. These three cryptocurrencies as a group are in sharp contrast to LTC, DASH and

XRP who pride themselves on having faster transactions (almost instant), and this is

indeed the case depicted in Figure 8.2 as they are clustered on the right of the chart.

An extremely important example which further illustrates the relationship between

transaction speed and preference for Gegenbauer specification is XRP which is one

of the most popular Cryptocurrencies and has one of the highest VOMRs (1.09). XRP

is the most commonly used Cryptocurrency by financial institutions since there is

virtually no overnight risk. By design of the cryptographic integrity of XRP, there

is no positive dampening correlation across time for overnight risk, and is therefore

very liquid. XRP is now the preferred Cryptocurrency used by large banks and is the

main Cryptocurrency used by banks to connect with other banks, with an emphasis on

almost instantaneous transaction speeds of up to apparently 17 seconds, compared

to traditional transaction times. As such, financial institutions now routinely convert

fiat to XRP for liquidity.

8.4 Conclusions and future research

This note addresses several important issues. Digital assets present challenges which

are unlike their fiat counterparts, and require specific treatment. Previous debates

on the role of Cryptocurrencies mainly focus on measuring their volatility, but do not

provide a practical handle on the broader financial implications of this.
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We label a trend that stronger oscillating long run volatility autocorrelations are as-

sociated with shorter transaction times. Upon closer observation of the top six Cryp-

tocurrencies, it is found that slower transacted Cryptocurrencies, such as Bitcoin,

have less oscillatory features (VOMR≈1) whereas faster transacted coins, such as

Ripple (VOMR>1), display oscillatory features. As faster transacted Cryptocurren-

cies have lower liquidity risk during transactions, these are more preferable purely

as a medium of exchange. This trend of oscillatory long run autocorrelations and

transaction time is important and has broader practical implications to investors and

policy regulators as it provides an alternative tool to explain the speculative nature

of Cryptocurrencies based on their volatility measures. Finally, it is confirmed the

long run autocorrelation patterns found in Cryptocurrency time series are not regime

changes; and their investigation should be orientated through their realised volatility

measures instead of returns, contrary to current methodologies. Future avenues of

research include conditioning on further stylized facts, such as the leverage effect, or

fat-tails.
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Chapter 9

Conclusion

“All good things must come to an end, but all bad things can continue forever."

Thornton Wilder

9.1 Contributions: addressing the motivations

In this thesis, we have addressed our motivations detailed in Chapter 1 by providing

three key contributions.

Our first contribution is to extend the current literature by creating a new model class

which couples long memory and stochastic volatility. The literature that currently

exists is rich in long memory, or stochastic volatility errors but rarely both in one

model. Our modelling contributions are first corner-stoned with Chapter 3 in which

we describe the basic GMA-SV model. This chapter supplements the current literature

by providing robust parameter estimates of long memory in the observation equation

and also in the SV equation. This was evidenced by applying this model to the US CPI

and the US ERP and it was found to outperform relative to competing models. The

US CPI has always been synonymous within the long memory literature since it is a

summation of first order Markov processes, yet its residuals also display SV features.

The GMA-SV model combines the best of both of these worlds to arrive at an efficient

solution.

Additionally, with the advent of digital currencies, the econometric literature must

move quickly in order to adapt to this new phenomenon which has commanded

global attention. It is found that Cryptocurrencies show a whole host of effects which

require further advanced modelling techniques. Specifically, we consider two further
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extensions of the GMA-SV model in order to adequately measure some unique prop-

erties of Cryptocurrencies - most notably their wild volatilities. The first extension

proposes the GMA-SV model with leverage and heavy tails. The GMA-SV model is

further refined with the second extension, the JBAR-SV-GLR model, and it is found

that estimation improves with greater modelling efforts.

Our second contribution to the literature is the creation of Bayesian techniques in

order to estimate these new models. It should be duly noted there is a distinct dif-

ference from deriving a posterior distribution and generating posterior samples. In

the traditional sense, most Bayesian models are typically programmed, such that the

need to derive the complete posterior distribution and also to design a sampler is

made redundant. Although this has helped academics to sample complex hierar-

chical models quickly and efficiently, there are far more efficient sampling methods

available that require individual assessment. For example, the leverage model in Yu

(2005) is programmed using the OpenBUGS Bayesian package, so there is no need to

manually derive the posterior distribution or design a suitable sampler. However, the

estimation of the correlation coefficient, ρ, can be further improved, and estimated

with greater accuracy by tuning, and applying the MAP sampler. This particular ex-

ample is evidenced in section 5.4.2 where our estimator of ρ is much more accurate

in comparison to the OpenBUGS sampler used in Wang, Chan, and Choy (2011) and

Choy and Chan (2000). Also, by deriving the posterior distributions and discussing

how they are derived in a systematic manner, our approach opens a workable and

straightforward method as a gateway for future research.

Our estimation techniques are rigorously tested throughout this thesis via simula-

tion studies, and proven to be successful. By conducting these simulation studies we

are able to pin-point potential discrepancies within our simulator, then improve and

recheck the newly improved simulator. Specifically, we are able to reduce the MSE of

parameter estimates in a synthetic simulation study, improve acceptance rates, and

lower computational time. For example, to the best of our knowledge, the Bayesian

estimation literature of the BAR model is non-existent and the estimation is con-

ducted using classical approaches. By borrowing the ideas of the MAP estimator,

which was rigorously tested in Chapter 3 on the estimation of GMA-SV model, we are

able to quickly and efficiently apply this MAP estimator to estimate the parameters of

the BAR model. In general, the BAR model can now be conditionally implemented
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into a host of other models by using our framework.

Lastly, our third contribution is the facilitation of rich and interesting applications

which provide discussion points for a host of stakeholders. The US ERP is an impor-

tant time series, as it is considered a receptacle of investor risk appetite. Although

rarely discussed within the econometric literature, it is an important time series which

deserves further attention. It is shown in Figure 3.5 that by using a standard ARFIMA

model to detect the presence of long memory, the persistence parameter is estimated

to be close to 0. However, when applied using the GARFIMA filter, the persistence

parameter is found to be strong, persistent and almost constant over time. This obser-

vation alone is a powerful finding since it reveals the US ERP has long-run persistent

behavior and therefore strongly supports the idea of a mean reverting market struc-

ture. This shows the superiority of using the GARFIMA-SV model over the standard

ARFIMA-SV model, and when also applied to forecasting shows superior results as

measured by the log Bayes factor (Figure 3.6).

Finally, the most significant applications discussed throughout this thesis are on dig-

ital currencies. Digital currencies operate in a completely different fashion to what

is considered the norm, and demand further inspection. Their main unique features

are their unparalleled volatility characteristics, which are very different to traditional

financial currencies. The current attitude towards Cryptocurrencies is that they are

extremely speculative in nature. This is due to the fact that it is not unusual for them

to move, for example, ±10% in any given day. These unique and peculiar features de-

mand the use of more sophisticated econometric techniques which are seldom used

in unison. For example, the combined use of the bivariate Student’s t-distribution

in unison with leverage effects, long memory and SV rarely occurs in the literature,

since it is not common to find such data. However, these features are all too com-

mon within digital assets and are therefore suitable for their estimation. Further,

Cryptocurrencies also display clear oscillatory ACFs and jumps which make them

valuable archetypes for our second extended model. For example, we find that Rip-

ple which has no overnight risk has a near zero leverage effect. Moreover, although

Cryptocurrency returns seem to behave wildly without restraint, jumps are mostly

non-significant after allowing for other effects. In summary, these findings on jumps

and long memory, whether in returns or volatilities, indicate that Cryptocurrencies

are in fact more predictable than expected.
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9.2 Future potential research

The findings of this thesis can be extended in several ways; accordingly, we first dis-

cuss some limitations of our work that can be addressed, and conclude with potential

avenues for further research.

Undoubtedly, our work has close parallels with the high frequency data literature,

and a natural extension is the consideration of high frequency Cryptocurrency data.

In some situations however, the JBAR-SV-GLR model can take up to 12 hours to run

for one dataset at 20, 000 loops where the number of observations, T = 2, 000. In the

high frequency case, the number of observations could potentially be much larger.

The reason for this long computation time is due to the evaluation of the likelihood,

in particular, the size of the GJ matrix. Although this matrix is sparse, it forms a part

of the calculation of the quadratic term in the likelihood and is a very computationally

expensive exercise. As there are techniques to reduce the computation for sparse

matrices (Tropp and Wright, 2010), it would be a worthwhile pursuit to implement

these to significantly reduce computational time. Another potential avenue to address

some limitations in our research is the exploration of alternative sampling techniques.

The individual sampling procedures for each parameter can be compared to other

sampling methodologies in order to ascertain their relative efficiency.

9.2.1 Alternative mean structures

The findings in this thesis are rich and iteratively built up from basic concepts. Hence,

it is relatively straightforward for future researchers to supplement (or remove) any

model features whenever deemed suitable for a particular data set. The first way

is to potentially investigate alternative mean structures. There are an abundance of

mean structures that are outside the scope of this thesis and are applicable to the ob-

servation equation, latent volatility equation or even realised volatility equation. For

modelling trend movements, ARMA(p, q) models, mean smoothers (such as splines),

or even advanced AI techniques such as neural networks are potential choices. For

capturing long range persistence, the long memory component can be assigned to

the observation equation, latent equation and/or the realised volatility equation, de-

pending on their ACF structures. To allow for nonlinearity, the threshold or buffered

threshold effects can be adopted to either of these three equations. In fact, these
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non-linear effects can also occur in the long memory parameters (such as in (u, d)) if

the long memory feature itself displays regime switching. Another potential avenue is

the comparision of the Smooth Transition Autoregressive (STAR) model of Terasvirta

and Anderson (1992) to the BAR model. The STAR model can be thought of as an

extension to the classical autoregressive model by allowing for changes in the model

parameters to transition according to the value of exogenous variables. As such, the

STAR model can be represented in its most simplest form as:

yt = π + π′1wt + (π20 + π′2wt)F (yt−d) + εt

where εt ∼ N(0, σ2), πj = (πj1, ..., πjp)
′, j = 1, 2, wt = (yt−1, ..., yt−p)

′ and d is some

lag d = 1, 2, . . .. F is a transition function which is bounded by zero and one, and

serves the purpose of “smoothly transitioning" between one regime to the next. As

such, this differs from the BAR or TAR model since there is no “jump" type behaviour

between transitions.

The leverage effect can also be considered between the latent and realised volatility

equations; and leverage itself can be measured in alternative ways via ρ or asymmet-

ric terms. The exploration of covariates, such as the hash rate or completion times

for Cryptocurrencies in particular, in either of the three equations could also further

supplement the analysis. Lastly, it would also be interesting to investigate the signifi-

cance or insignificance of these equations in order to gain more insightful knowledge

on the data.

9.2.2 Distributional assumptions

The main two distributional assumptions which were used in this thesis are the Gaus-

sian and Student’s t-distribution. The Student’s t-distribution was found to be a

superior choice when compared to the Gaussian in most cases. Alternative heavy

tailed distributions can also be explored and one such notable example is the Variance

Gamma (VG) distribution, which is known to be particularly useful for high frequency

data. The VG model structure is nearly identical to the Student’s t-distribution, ex-

cept the mixing distribution is Gamma instead of Inverse-Gamma. Additionally, the
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Skew t-distribution can easily be adopted with minor modification. Another inter-

esting avenue to consider is the dependency structure between the three main equa-

tions jointly. More specifically, a trivariate distribution considering all three equations

jointly. The most notable application would be the modification of the degrees of

freedom parameter, ν, which is common in the observation and latent volatility equa-

tion. Choy, Chen, and Lin (2014) considered a similar model to our GMA-SV-LVG-HC

model (without GMA effects), but with different degrees of freedom for the observa-

tion and latent volatility equations as ν1 and ν2 respectively. A similar proposal can

also be trialed under our models. Further, the symmetric distribution assumptions

can be challenged throughout this thesis with an asymmetric proposal such as the

Skew-t distribution. For a given normally distributed random variable y ∼ N(µ, σ2),

the Skew t-distribution representation can be easily derived with the mean-scale mix-

ture representation y ∼ N(µ + γU,Uσ2), U ∼ IG(ν, ν), where γ is the skewness

parameter.

9.2.3 Multivariate extensions

Although we consider bivariate effects between yt and ht in this thesis, our proposed

models are all univariate in nature. A potential avenue for further research is a mul-

tivariate approach by considering I > 1 observation series for yi,t and hi,t, where

i = 1, . . . , I. This is especially relevant to Cryptocurrencies, since it has been em-

pirically shown that that Cryptocurrency returns are generally correlated to other

financial assets such as stock and bond prices (Bianchi, 2018). As such, the inclu-

sion of exogenous variables to model their returns is a sensible suggestion. Further,

it is noted that Cryptocurrencies are also generally correlated and move together in

response to bad news. As such, a sensible multivariate model to propose is the Multi-

variate SV model with RV and pairwise realised correlations of Yamauchi, Omori, and

Others (2016). This model can be extended to include exogenous variables (such as

stock and bond prices) and would prove useful given the observed empirical proper-

ties of Cryptocurrencies.

A notable application of multivariate modelling of Cryptocurrencies is that of Cata-

nia, Grassi, and Ravazzolo (2018) who use Vector Autoregressive models, Bayesian

VAR, time-varying parameters and stochastic volatility VAR models to jointly predict
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4 Cryptocurrency series. They find that density prediction is more accurate in the

multivariate case compared to the univariate case, but not point predicition.

9.2.4 Other minor extensions

Finally, there are potentially other minor aspects for future investigation. Firstly, the

complexity of the long memory features can be extended to include the so-called k-

factor Gegenbauer filter of Woodward, Cheng, and Gray (1998). In essence, this is a

product of K Gegenbauer filters so that there exists (u1, . . . , uK) and (d1, . . . , dK) to

describe theseK factors. This filter can be applied to either one of the three equations

and compared to our case of K = 1 using a penalty function.

Secondly, there are a host of more efficient realised volatility measures using intraday

price movement information (Parkinson, 1980; Garman and Klass, 1980; Rogers and

Satchell, 1991). Indeed, there exists the potential to further investigate the perfor-

mance of our choice of the log daily realised range, relative to these realised mea-

sures. Another starting point for such an investigation is to derive an equivalent of

the VIX for Cryptocurrencies using the Black-Scholes model, and use this as a realised

measure.

Also, the exploration of different prior assumptions can be made. In particular, the

truncated normal assumption of u, d, and ρ can be tested with other popular distri-

butions such as the Beta distribution. However, long memory models require a large

number of observations to correctly estimate the long memory parameters, and as

such, the choice of prior does not make a difference from our experience.

The loss functions explored in Section 5.5.2 can be extended to include the tick-

loss function of Giacomini and Komunjer (2005). The tick-loss at the qth quantile is

denoted as Tq and defined as

Tq = (q − 1(et+1 < 0))et+1,

where et is the forecast error and defined as et = yt − VaRt|t−1. We note the tick-

loss function, is the same as the loss function in quantile regression, except in a

different form. The tick-loss is advantageous over other methods because it is said to

be ‘encompassing’. An encompassing loss function is one that:
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1. Involves the computation of the expected loss; and

2. involves the weights of the forecast combinations.

9.3 Concluding remarks

In conclusion, it is found that superior model choices lead to superior outcomes. Pop-

ular financial time series such as U.S. CPI and the more modern, Cryptocurrencies,

are better estimated using the Gegenbauer long memory model with latent stochastic

volatility effects. This thesis deals with a myriad of issues, which at its core stem

from improving financial time series estimation. Although the SV model is robust, it

lacks a diligent framework to properly address the unique features which are com-

monly found in financial time series. The Gegenbauer long memory filter addresses

longreaching persistent autocorrelations commonly found in return series. A typical

issue often faced by the time series analyst is the problem of lingering residual au-

tocorrelations at higher lags once the analysis is complete. A common quick-fix is to

model the errors themselves with a large lagged moving average parameter.

However, we believe a more reliable solution is to consider the class of time series

models proposed in this thesis. The GMA-SV model and its extensions should also

be considered during the initial empirical data analysis stage. We conclude with a

relevant quote:

“To call in the statistician after the experiment is done may be no more than asking him

to perform a post-mortem examination: he may be able to say what the experiment died

of."

Ronald Fisher (1938)
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Appendix A

Tuning the Proposal Distribution

of [u, d]

In order to achieve high efficiency when sampling [u, d], we tune the precision pa-

rameter of the proposal distribution(s). An acceptance rate that is too high could

mean the proposal variance is too low and always accepting values around the cur-

rent value. An acceptance rate that is too low could mean the proposal variance is

too high and always rejecting, and therefore, the chain is not moving.

Gelman et al. (2013) notes that care must be taken when tuning to avoid convergence

to the wrong distribution. Since the updating rule is dependant on our previous

simulation steps the transition probabilities are now more complicated than before.

The chain may move more quickly through flat parts of the distribution and slower

through non-smooth parts of the distribution. This of course would result in the

incorrect sampling of the entire proposal distribution. The general advice here to

rectify such a situation is to tune in one phase of the sampling, and make the relevant

inferences from a second phase where no tuning is performed. We follow this advice

and tune only in the burn-in period.

We calculate the acceptance rate for every 250 MCMC iterates. If this acceptance rate

is below 15% or above 50%, then we update our tuning parameter cu and cd according

to

c = max

{
c×

Φ−1 (poptimal/2)

Φ−1 (pcurrent/2)
, 0.01

}

where Φ−1(·) is the inverse Normal CDF, poptimal is the optimal acceptance rate and

pcurrent is the current acceptance rate. Roberts and Rosenthal (2001) prove an ac-

ceptance rate between 15% and 50% is at least 80% efficient. We choose an optimal
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acceptance rate of 23.4% due to the seminal work of Roberts, Gelman, and Gilks

(1997).

This procedure is repeated for every 250 loops, and pcurrent resets after each 250

MCMC set (i.e. from 1 to 250, from 251 to 500,. . .). After the burn-in has completed,

we record only one acceptance rate, which is what is reported in all of our inferences.
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Estimating h

We discuss here the estimation of the latent variable h = [h1, . . . , hT ]. Clearly, mod-

ifying this to cater for alternative means in the observation equation is trivial, so we

discuss the estimation of the GARMA-SV model only to focus on the relevant deriva-

tions. In essence, we modify the precision sampler of Chan (2013) to to exploit the

banded structure of p(h|α, β, σ2). First, we seek a linear expression for h

Y = GJε

G−1
J Y = ε

(G−1
J Y ) ◦ (G−1

J Y ) = ε ◦ ε

log
[
(G−1

J Y ) ◦ (G−1
J Y )

]
= log [ε ◦ ε] .

where A◦B refers to the Hadamard product of A and B. Let Y ∗ = logG−2
J Y

2 =

[y∗1, . . . , y
∗
T ] and ε∗ = [log ε2

1, . . . , log ε2
T ]′ for notational convenience. The sampling of

ε∗ is highly non-standard as this is now a log-χ2
1 distribution. Kim, Shephard, and

Chib (1998) suggest to approximate this using an offset Gaussain mixture represen-

tation. Essentially, the probability density function is approximated as

p(ε∗t ) ≈
K∑
i=1

piN(ε∗t ;µi, σ
2
i ).

Each pi is the probability of the ith mixture component. The authors estimateK, pi, µi, σ2
i

by matching the first four moments of the true theoretical distributions. This is per-

formed using non-linear least squares optimisation techniques until the approximat-

ing densities are within a small distance to the true density.
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i pi µi σ2
i

1 0.00609 1.92677 0.11265
2 0.04775 1.34744 0.17788
3 0.13057 0.73504 0.26768
4 0.20674 0.02266 0.40611
5 0.22715 -0.85173 0.62699
6 0.18842 -1.97278 0.98583
7 0.12047 -3.46788 1.57469
8 0.05591 -5.55246 2.54498
9 0.01575 -8.68384 4.16591
10 0.00115 -14.65000 7.33342

TABLE B.1: K = 10 mixture components as found in Omori et al.
(2007)

Kim, Shephard, and Chib (1998) find satisfactory results with K = 7 mixture compo-

nents, however, Omori et al. (2007) remark that K = 10 is a more reliable fit when

leverage effects are considered. Although we do not consider leverage effects in our

work, we favour this more conservative approach and use the following parameters as

shown in Table B.1. Evidently, these parameters do not need to be estimated during

each MCMC sweep since they are independant of all other parameters in the sampler.

It should be noted that the mixture density can be written in terms of a component

indicator variable st such that P (st = i) = pi. Therefore, it is computationally cheap

to sample the mixture components, which are denoted as s.

It is worthwhile to reinforce here that s is a T × 1 vector, and we sample st for each

time point. Each st is independant so that p(s|Y ∗,h) =
∏T
t=1 p(st|y∗t , ht). Since st is

discrete, it is easy to sample using the slice sampler.

Once st has been sampled, we are able to sample ε∗ as

ε∗|s ∼ N(µε∗ ,Σε∗)

where µε∗ = (µs1 , . . . , µsT ), Σε∗ = diag(σ2
s1 , . . . , σ

2
sT

). Hence, it is clear to see that

p(Y ∗|s,h, ) ∼ N(h+ µε∗ ,Σε∗)

So the likelihood of Y ∗ is

p(Y ∗|s,h) = (2π)−
T
2 |Σε∗ |exp

{
−1

2
(Y ∗ − h− µε∗)′Σ−1

ε∗ (Y ∗ − h− µε∗)′
}

log p(Y ∗|s,h) ∝ −1

2
(Y ∗ − h− µε∗)′Σ−1

ε∗ (Y ∗ − h− µε∗)′.
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Recall that

ht+1|ht ∼


N
(
α, σ2

1−β2

)
, t = 0

N(α+ β(ht − α), σ2), t 6= 0

which can be written out in matrix notation as

Hφh = α̃+ ω

where

ω ∼ N(0,Σh)

Σh = diag
(

σ2

1− β2
, σ2, . . . , σ2, σ2

)
α̃ = (α, α(1− β), . . . , α(1− β))′

Hφ =



1 0 . . . . . . . . .

−β 1 . . . . . . . . .

0 −β 1 . . . . . .
... 0 −β . . . . . .

0
...

... . . . . . .


.

Now,

Hφh = α̃+ ω

h = H−1

φ
α̃+H−1

φ
ω.

So that

h|α, β σ2 ∼ N(H−1

φ
α̃, (H ′

φΣ−1
h
Hφ)−1)

hence

h|α, β, σ2 = (2π)−
T
2 |(H ′

φΣ
−1
h Hφ)−1|−

1
2 exp

{
−1

2
(h− µh)′(H ′φΣ

−1
h Hφ)(h− µh)

}
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where µh = H−1
φ α̃. However, it is clear to see that |(H ′φΣ

−1
h Hφ)−1|= σ2T /(1− β2).

So the log-density of h can be expressed as

log p(h|α, β, σ2) ∝ −1

2
log

σ2T

(1− β2)
− 1

2
(h− µh)′(H ′φΣ

−1
h Hφ)(h− µh).

Therefore, the full conditional distribution of log(h) is

log p(h|Y ∗, α, β σ2) (B.1)

∝ log p(Y ∗|s,h, α, β σ2) + log p(h|α, β σ2)

= −1

2
(Y ∗ − h− µε∗)′Σ−1

ε∗ (Y ∗ − h− µε∗)′ −
1

2
log

σ2T

(1− β2)

− 1

2
(h− µh)′(H ′

φΣ
−1
h Hφ)(h− µh)

∝ (Y ∗ − h− µε∗)′Σ−1
ε∗ (Y ∗ − h− µε∗)′ + (h− µh)′(H ′φΣ

−1
h Hφ)(h− µh)

= (Y ∗ − µε∗)′Σ−1
ε∗ (Y ∗ − µε∗)− (Y ∗ − µε∗)′Σ−1

ε∗ h− h
′Σ−1

ε∗ (Y ∗ − µε∗) + h′Σ−1
ε∗ h

+ h′H ′φΣ
−1
h Hφh− h′H ′φΣ−1

h Hφµh − µ′hH ′φΣ−1
h Hφh+ µ′hH

′
φΣ
−1
h Hφµh

∝ −(Y ∗ − µε∗)′Σ−1
ε∗ h− h

′Σ−1
ε∗ (Y ∗ − µε∗) + h′Σ−1

ε∗ h+ h′H ′φΣ
−1
h Hφh

− h′H ′φΣ−1
h α̃− α̃

′Σ−1
h Hφh

= h′
(
Σ−1
ε∗ +H ′φΣ

−1
h Hφ

)
h− 2h′[Σ−1

ε∗ (Y ∗ − µε∗) +H ′φΣ
−1
h α̃]. (B.2)

Now, consider some multivariate Gaussian distribution θ ∼ N(µθ,Σθ) with log PDF

log p(θ) ∝ θ′Σ−1
θ θ − 2θ′Σ−1

θ µθ. (B.3)

If we compare B.2 with B.3, then it is clear to see that

µθ = Σθ(Σ
−1
ε∗ (Y ∗ − µε∗) +H ′φΣ

−1
h α̃)

Σθ =
(
Σ−1
ε∗ +H ′φΣ

−1
h Hφ

)−1
.

Finally, the posterior distribution of h can be sampled as a block from

p(h|Y ∗, α, β, σ2) ∼ N
(
Σθ[Σ

−1
ε∗ (Y ∗ − µε∗) +H ′φΣ

−1
h α̃], (Σ−1

ε∗ +H ′φΣ
−1
h Hφ)−1

)
.

(B.4)
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Appendix C

Estimating the Marginal

Likelihood

Suppose we want to compare a set of models {M1, . . . ,MK} in a Bayesian setting.

The frequentist is able to use the classical log likelihood ratio test, which if of course

distributed as a χ2 with degrees of freedom equal to the difference in parameters

between the two models. In Bayesian analysis, we use the Bayes Factor, which is

given by

BFij =
p(y|Mi)

p(y|Mj)

where

p(y|Mk) =

∫
p(y|θ,Mk)p(θ|Mk)dθ. (C.1)

The quantity C.1 is called the marginal likelihood (ML). It can be shown to be asymp-

totically equivalent to the SIC. The estimation of the ML is typically nontrivial.

p(y|Mk) =

∫
p(y|θ,Mk)p(θ|Mk)dθ

=

∫
p(y|θ,Mk)p(θ|Mk)

g(θ)
g(θ)dθ.

The ML is estimated as

p̂(y) =
1

R

R∑
i=1

p(y|θ(i))p(θ(i))

g(θ(i))
(C.2)
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where each θ(i) is a draw from the importance density, g(θ(i)), and R is the total

number of draws. The choice of g is important. Ideally, we would use the posterior

as it carries all the information that we need, but the normalizing constant is not

known. We instead use something as close as possible - p(θ̂). It can be shown that

this density minimizes the Kullback-Leibler distance to the posterior.

In the case of the GARFIMA-SV model, it is easy to see that p(θ(i)) is

p(u)p(d)p(α)p(β)p(σ2) = NT (µu, σ
2
u)NT (µd, σ

2
d)N (µα, σ

2
α)NT (µβ, σ

2
β)IG(

a

2
,
b

2
)

=
1√

2πσ2
u

exp

{
−1

2

(u− µu)2

σ2
u

}
×∆u ×

1√
2πσ2

d

exp

{
−1

2

(d− µd)2

σ2
d

}

×∆d ×
1√

2πσ2
α

exp

{
−1

2

(α− µα)2

σ2
α

}
× 1√

2πσ2
β

exp

{
−1

2

(β − µβ)2

σ2
β

}

×∆c

(
b
2

)a
2

Γ(a2 )

(
σ2
)−a

2
−1

exp

{
−

b
2

σ2

}

where

∆u = (Φ(1;µu, σ
2
u)− Φ(−1;µu, σ

2
u))−1

∆d = [(Φ(0.5;µd, σ
2
d)− Φ(0;µd, σ

2
d))
−1]1 + [(Φ(0.25;µd, σ

2
d)− Φ(0;µd, σ

2
d))
−1](1− 1)

∆β = (Φ(1;µβ, σ
2
β)− Φ(−1;µβ, σ

2
β))−1

where Φ(x;m, s2) is the normal CDF with mean m and variance s2 evaluated at x,

and 1 is an indicator variable that is equal to 1 when |u|≤ 1, and 0 otherwise.

We work with logarithms for ease of computation. Thus,

log p(u)p(d)p(α)p(β)p(σ2) =

− 1

2
log(2πσ2

u)− 1

2

(u− µu)2

σ2
u

+ log ∆u −
1

2
log(2πσ2

d)−
1

2

(d− µd)2

σ2
d

+ log ∆d

− 1

2
log(2πσ2

α)− 1

2

(α− µα)2

σ2
α

− 1

2
log(2πσ2

β)− 1

2

(β − µβ)

σ2
β

+ log ∆β +
a

2
log

b

2

− log Γ
(a

2

)
−
(a

2
+ 1
)

log σ2 −
b
2

σ2
.
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Now, the observed-likelihood p(y|θ) is calculated as

p(y|θ) =

∫
p(y|θ,h)p(h|θ)dh.

This again, is a nontrivial quantity to estimate. We once again use an importance

sampling scheme to estimate the term p(y|θ,Mk) in (C.2)

p̂(y|θ) =
1

R

R∑
i=1

p(y|θ,h(i))p(h(i)|θ)

p(h(i))
.

It can be shown that a good approximating density for p(h(i)) is p(h|y,θ). Hence,

log p(h|θ) = −T
2

log(2π)− 1

2
(T log σ2 − log(1− β2))− 1

2
(h− µh)′HφΣ

−1
h H

′
φ(h− µh)

log p(y|θ,h) = −T
2

log(2π)− 1

2

T∑
t=1

ht −
1

2
Y ′Γ−1Y

− log p(h) =
T

2
log(2π) +

1

2
log(|Σθ|) +

1

2
(h− h̃)′Σ−1

θ (h− h̃)

where h̃ is the mode of h, and Γ = GJV G
′
J . The mode can be found using a search

method, such as a Newton-Raphson scheme.
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Appendix D

Simulation Study Diagnostics
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FIGURE D.1: Each graph depicts the mean Sample Autocorrelation of
1, 000 MCMC runs of û for various values of [u, d]. The most notable
observation is that when d is low, and as u→ 0.9̇ the convergence of u
to its true value gets slower. This is an expected result, since as d→ 0,
the process has less information, and becomes “less long-memory".
Furthermore, this slow decay is not a result of boundary issues, since
we do not see the same slow decay with d = 0.45, which too is 0.05

units away from the boundary.



Appendix D. Simulation Study Diagnostics 183

20 40
0

0.5

1

d
=

0
.0
5

u = −0.5

20 40
0

0.5

1
u = 0.5

20 40
0

0.5

1
u = 0.9

20 40
0

0.5

1
u = 1

20 40
0

0.5

1

d
=

0
.2
5

20 40
0

0.5

1

20 40
0

0.5

1

20 40
0

0.5

1

d
=

0
.4
5

20 40
0

0.5

1

20 40
0

0.5

1

FIGURE D.2: Each graph depicts the mean Sample Autocorrelation of
1, 000 MCMC runs of d̂ for various values of [u, d]. Similarly to u, d

exhibits slow decay for low values of d.
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u d GRu GRd GRµ GRφ GRα GRβ GRσ2

-0.50 0.05 1.038 1.092 1.025 1.099 1.052 1.078 1.070
-0.50 0.25 1.052 1.102 1.015 1.092 1.046 1.097 1.077
-0.50 0.45 1.015 1.106 1.008 1.106 1.051 1.090 1.072
0.50 0.05 1.138 1.058 1.027 1.127 1.049 1.084 1.072
0.50 0.25 1.049 1.101 1.026 1.098 1.048 1.089 1.081
0.50 0.45 1.016 1.100 1.023 1.101 1.047 1.092 1.066
0.90 0.05 1.199 1.053 1.031 1.085 1.047 1.096 1.072
0.90 0.25 1.020 1.103 1.057 1.106 1.045 1.092 1.076
0.90 0.45 1.004 1.105 1.107 1.096 1.048 1.084 1.075
1.00 0.05 1.144 1.071 1.057 1.085 1.053 1.094 1.077

TABLE D.1: Gelman-Rubin statistics for the in-sample simulation study
using T = 1,500. All parameters have a statistic close to 1, which is

suggestive of convergence.
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Appendix E

Model definitions

Let yt, t = 1, 2, ..., T be a stochastic process satisfying the equations

1. Stochastic volatility (SV):

yt = εt,

ht = α+ β(ht−1 − α) + ηt,

where εt ∼ N(0, eht), ηt ∼ N(0, σ2) and E[εtηt] = 0.

2. Stochastic volatility model with leverage (SV-LVG):

yt = εt,

ht+1 = α+ β(ht − α) + ηt+1, εt

ηt+1

 ∼ N

 0

0

 ,

 eht σρeht/2

σρeht/2 σ2

 .

3. Gegenbauer long memory model with stochastic volatility (GMA-SV)

(1− 2uB +B2)dyt = εt,

ht = α+ β(ht−1 − α) + ηt,

where εt ∼ N(0, eht), ηt ∼ N(0, σ2) and E[εtηt] = 0.
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4. Gegenbauer long memory model with stochastic volatility and leverage (GMA-

SV-LVG):

(1− 2uB +B2)dyt = εt,

ht+1 = α+ β(ht − α) + ηt+1, ε∗t

η∗t+1

 ∼N
 0

0

 ,

 eht σρeht/2

σρeht/2 σ2

 .

5. Gegenbauer long memory model with stochastic volatility and heavy common

tails (GMA-SV-HC)

(1− 2uB +B2)dyt = εt,

ht+1 = α+ β(ht − α) + ηt+1,

where εt ∼ tν(0, eht), ηt ∼ tν(0, σ2) and E[εtηt] = 0.

6. Gegenbauer long memory model with stochastic volatility, leverage and heavy

common tails (GMA-SV-LVG-HC)

(1− 2uB +B2)dyt = ε∗t ,

ht+1 = α+ β(ht − α) + η∗t+1, ε∗t

η∗t+1

 ∼ tν
 0

0

 ,

 eht σρeht/2

σρeht/2 σ2

 .
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Appendix F

Bayesian analysis of the

GARMA-SV model with bivariate

Student’s-t errors and leverage

Sampling for u and d

In order to estimate u and d, we consider two independent truncated normal priors

with support in the region where generalised long-memory holds such that p(u) ∼

N(µu, σ
2
u)1ud and p(d) ∼ N(µd, σ

2
d)1ud where

1ud = 1({−1 < u < 1, 0 < d < 0.5} ∪ {|u|= 1, 0 < d < 0.25}) and 1 is an indicator

function. Note that we impose Gegenbauer long-memory stationarity through the

prior distributions of u and d.

The posterior of both u and d are complicated and do not have a tractable conjugate

form. Subsequently samples from these distributions cannot be obtained directly. In

order to sample u and d, we use an approximation based on posterior modes from

Gelman et al. (2013), coupled with a proposal distribution precision tuning algorithm

which we conduct only within the burn-in period. We briefly note that attempts to

estimate [u, d] using the Metropolis algorithm proved futile due to extremely slow

convergence, and “boundary trap” issues. Consider the following independence chain

Metropolis-Hastings algorithm:
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errors and leverage

1. Maximimize the log posterior of u and d to find the modes ũ and d̃ respectively.

The log posterior modes are found by maximising

log pu(u|d,h) = log f(Y |d,h) + log N(µu, σ
2
u)1ud,

log pd(d|u,h) = log f(Y |u,h) + log N(µd1 , σ
2
d)1ud + log N(µd2 , σ

2
d)(1− 1ud).

where the prior choices for d are designed to consider the event when u = 1,

such that µd1 = 0.125, µdd = 0.25, σ2
d = 0.05. Also, µu = 0 and σ2

u = 0.1.

2. Sample u∗ from the proposal distribution N(ũ, c2
u) denoted by qu, where cu is

the scaling parameter.

3. Reject u∗ unless ({−1 < u∗ < 1, 0 < d < 0.5} ∪ {|u∗|= 1, 0 < d < 0.25}).1 Oth-

erwise, accept u∗ with probability ζ, where

ζ = min

{
1,
pu(u∗|d,h)qu(u(m))

pu(u(m)|d,h)qu(u∗)

}
.

4. Repeat steps 2-3 by replacing d with d∗, u∗ with u and cu with cd.

If we accept u∗ and d∗, then we update u(m+1) = u∗ and d(m+1) = d∗ respectively,

and generate the updated GJ using the new Gegenbauer parameters.

Sampling for h

We discuss here the estimation procedure of the latent variable h = [h1, . . . , hT ]

which has its roots in Chan and Grant (2016b) and Chan and Strachan (2012). Let

Y ∗ = G−1
J Y where Y ∗ = [y∗1, . . . , y

∗
T ] . First, consider the density of ht+1|ht

ht+1|ht ∼


N
(
α, σ

2ξ1
1−β2

)
, t = 0

N(α+ β(ht − α), σ2ξt+1), t 6= 0

which can be written in matrix notation as Hφh = α̃+ ω where

ω ∼ N(0,Σh), Σh = diag
(
σ2ξ1

1− β2
, σ2ξ2, . . . , σ

2ξT+1

)
, α̃ = (α, α(1− β), . . . , α(1− β))′ ,

1Practically, when u∗ ≥ 0.99, then we set u∗ = 1 in order to give the event |u|= 1 non-zero proba-
bilities
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Hφ =



1 0 . . . . . . . . .

−β 1 . . . . . . . . .

0 −β 1 . . . . . .
... 0 −β . . . . . .

0
...

... . . . . . .


.

Therefore, the density of h is h|ξ1, ξ, α, β, σ
2 ∼ N(H−1

φ
α̃, (H ′

φΣ−1
h
Hφ)−1). How-

ever, it is clear to see that |(H ′φΣ
−1
h Hφ)−1|= σ2T /(1 − β2), hence the log-density

is

log f(h|ξ1, ξ, α, β, σ
2) ≈ −1

2
(h− µh)′(H ′φΣ

−1
h Hφ)(h− µh)

where µh = H−1
φ α̃.

In order to estimate log f(Y ∗|h, ξ, α, β, σ2, ρ), consider its Taylor series expansion

around the neighborhood h̃ of h ∈ <T , such that

log f(Y ∗|h, ξ, α, β, σ2, ρ) ≈ log f(Y ∗|h̃, ξ, α, β, σ2, ρ) + (h− h̃)′f − 1

2
(h− h̃)′G(h− h̃)

≈ h′f − 1

2

[
h′Gh− h′Gh̃− h̃Gh

]
≈ −1

2

[
h′Gh− 2h′(f +Gh̃)

]
where f and G are the gradient and Hessian respectively denoted as:

f =


f1

...

fT+1

 , G =



G11 G12 0 . . . 0

G12 G22 G23 . . . 0
...

. . . . . . . . .
...

0 . . . GT−1,T GTT GT,T+1

0 . . . 0 GT,T+1 GT+1,T+1
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such that for t = 2, . . . , T + 1,

f(y∗t |ht+1, ht, ξt+1, α, β, σ
2, ρ) =

f(y∗t ) =
1√

2πξt+1(1− ρ2)eht/2
exp

{
−
{
y∗t −

ρ
σe

ht/2[ht+1 − α− β(ht − α)]
}2

2(1− ρ2)ξt+1eht

}
,

f1 =
∂ log f(y∗1)

∂h1
, ft =

∂

∂ht
(log f(y∗t ) + log f(y∗t−1)),

G11 = −∂
2 log f(y∗1)

∂h2
1

, Gtt = − ∂2

∂h2
t

(log f(y∗t ) + log f(y∗t−1)), Gt−1,t = −∂
2 log f(y∗t )

∂ht∂ht+1

where

∂ log f(y∗t )

∂ht
= −1

2
− 1

2(1− ρ2)ξt+1

(
−e−hty2∗

t −
2βρ2

σ2
[ht+1 − βht − α(1− β)]

+y∗t
ρ

σ
e−ht/2[ht+1 − βht − α(1− β) + 2β]

)
∂2 log f(y∗t )

∂h2
t

= − 1

2(1− ρ2)ξt+1

(
e−hty∗2t +

2β2ρ2

σ2
− y∗t

ρ

2σ
e−ht/2[ht+1 − βht − α(1− β) + 4β]

)
∂ log f(y∗t )

∂ht+1
=

ρ

σ(1− ρ2)ξt+1

(
y∗t e
−ht/2 − ρ

σ
[ht+1 − βht − α(1− β)]

)
∂2 log f(y∗t )

∂h2
t+1

= − ρ2

σ2(1− ρ2)ξt+1

∂2 log f(y∗t )

∂ht∂ht+1
=

ρ

σ(1− ρ2)ξt+1

(
βρ

σ
− y∗t

2
e−ht/2

)

So the log-likelihood for the latent volatilities is

log p(h|Y ∗, ξ, α, β, σ2) ≈ log f(Y ∗|h, ξ, α, β, σ2, ρ) + log f(h|ξ, α, β σ2)

≈ −1

2

[
h′Gh− 2h′(f +Gh̃)

]
− 1

2
(h− µh)′(H ′φΣ

−1
h Hφ)(h− µh)

≈ −1

2
(h′Khh− 2h′kh).

Thus h ∼ N(h̃,K−1
h ) where h̃ is the mode of h, Kh = H ′φΣ

−1
h Hφ + G and kh =

H ′φΣ
−1
h Hµh + f + Gh̃. The sampling of h can be summarized with the following

three steps:

1. Search for h̃:

We first find the mode h̃ with a Newton-Raphson scheme. Noting that in higher

dimensions, the Newton-Raphson method can be generalised to the iterative
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scheme xn+1 = xn − [Hf(xn)]−1∇f(xn) where Hf(xn) is the Hessian evalu-

ated at xn and ∇f(xn) is the gradient evaluated at xn, then

−1

2

d

dh
(h′Khh− 2h′kh) = −h′Kh + kh

−1

2

d2

dh2
(h′Khh− 2h′kh) = −Kh

Therefore:

hn+1 = hn +K−1
h (−Khhn + kh) = K−1

h kh

is repeated until some condition is satisfied. 2,

2. Sample h∗ using a modified Acceptance-Rejection method:

A modified version of the Acceptance-Rejection Metropolis-Hastings (ARMH) of

Chib and Greenberg (1995) is used. Denote the density of h as p(h|Y ∗,θ) ∝

f(Y ∗|h,θ)f(h|θ). We first make a draw h∗ and accept with probability αAR as

αAR = min

[
p(h∗|Y ∗,θ)

pN (h∗|h̃,K−1
h )

, 1

]

where pN (·|m,C) is a Gaussian proposal with mean m and covariance matrix

C. We keep repeating Step 2 until a suitable h∗ is accepted.

3. Acceptance/Rejection using a modified Metropolis-Hastings step:

Define the set S as:

S =
{
h : p(h|Y ∗,θ)− pN (h|h̃,K−1

h ) ≤ 0
}

(a) if h ∈ S, set αMH = 1

(b) if h ∈ Sc and h∗ ∈ S, set

αMH =
pN (h|h̃,K−1

h )

p(h|Y ∗,θ)

2We find good trade-off between computational time and accuracy with max
{
|h̃n+1 − h̃n|

}
< 10−4.
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(c) If h ∈ Sc and h∗ ∈ Sc, set

αMH = min

{
p(h∗|Y ∗,θ)

pN (h∗|h̃,K−1
h )

pN (h|h̃,K−1
h )

p(h|Y ∗,θ)
, 1

}

Finally, accept h∗ with probability αMH .

Sampling of α

We use α ∼ N (µα, σ
2
α). Note that a vague prior is most commonly used in the

literature. We assume the time series are percentage log returns so that it is assumed

µα = 0, and use σ2
α =
√

10 similar to Kim, Shephard, and Chib (1998). The posterior

distribution of α is easily derived as

p(α|h1,h, ξ, β, σ
2, ρ,Y ∗) ∝ f(h1|ξ1, α, β, σ

2)

T∏
t=1

f(ht+1|ht, ξt+1, α, β, σ
2)

×
T∏
t=1

f(y∗t |ht+1, ht, ξt+1, α, β, σ, ρ)× f(α).

Thus p(α|h1,h, ξ, β, σ
2, ρ,Y ∗) ∼ N (VαMα, Vα) where

Mα =
(1− β2)h1

σ2ξ1
+

1− β
σ2

T∑
t=1

ht+1 − βht
ξt+1

+
(1− β)ρ

(1− ρ2)σ

T∑
t=1

1

ξt+1

[
ρ

σ
(ht+1 − βht)−

y∗t
eht/2

]
+
µα
σ2
α

Vα =

(
1− β2

σ2ξ1
+

(1− β)2

σ2

T∑
t=1

1

ξt+1
+

(1− β)2ρ2

(1− ρ2)σ2

T∑
t=1

1

ξt+1
+

1

σ2
α

)−1

.

We find the Gibbs sampling of α is inefficient as the sampler is unable to sample the

posterior correctly typically in the case of low values of ν. We instead favor an adap-

tive Random-Walk Metropolis algorithm, which has efficient results.

Sampling of β

The unconditional likelihood of β is intractable due to the inclusion of the marginal

likelihood of f(h1|β, σ2, ξ1). To resolve this issue, the candidate density is set to the

conditional likelihood, and the target density equal to f(h1); see Chib and Greenberg

(1994) for further details. Thus

p(β|h1,h, ξ, α, σ
2, ρ,Y ∗) ∝

T∏
t=1

f(ht+1|ht, ξt+1, α, β, σ
2)

T∏
t=1

f(y∗t |ht+1, ht, ξt+1, α, β, σ, ρ) f(β).
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Hence, p(β|h1,h, ξ, α, σ
2, ρ,Y ∗) ∼ N(VβMβ, Vβ) where:

Mβ =
1

σ2

T∑
t=1

(ht+1 − α)(ht − α)

ξt+1
+

ρ

σ(1− ρ2)

T∑
t=1

ht − α
ξt+1

[
ρ

σ
(ht+1 − α)− y∗t

eht/2

]
+
µβ
σ2
β

,

Vβ =

(
1

σ2

T∑
t=2

(ht − α)2

ξt+1
+

ρ2

σ2(1− ρ2)

T∑
t=1

(ht − α)2

ξt+1
+

1

σ2
β

)−1

.

We accept β′ with probability min
{

q(β′)
q(β(i−1))

, 1
}

, where q(·) is

q(x) = p(h1|ξ1, α, x, σ
2) =

(1− x2)
1
2

√
2π
√
ξ1σ

exp

{
−(h1 − α)(1− x2)

2ξ1σ2

}
∝ (1− x2)

1
2 exp

{
−(h1 − α)(1− x2)

2ξ1σ2

}

The most typical scenario found in financial time series is β to be close to 1, so we set

β ∼ N(0.99, 0.2).
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Sampling of σ2

To sample σ2, a modified version of the maximisation at posterior (MAP) sampler is

used, which is outlined below:

1. Derive the posterior log-density of σ2 as

log p(σ2|h1,h, ξ, α, β, ρ,Y
∗)

≈ log f(h1|ξ1, α, β, σ
2) +

T∑
t=1

log f(ht+1|ht, ξt+1, α, β, σ
2) +

T∑
t=1

log f(y∗t |ht+1, ht, ξt+1, α, β, σ, ρ) + c2

≈ −(h1 − α)2(1− β2)

2σ2
− 1

2σ2

T∑
t=1

[ht+1 − α− β(ht − α)]2 − (T + 1) log σ

−
T∑
t=1

{ y∗t
eht/2

− ρ
σ [ht+1 − α− β(ht − α)]}2

2(1− ρ2)ξt+1
.

Then, perform non-linear least squares optimisation to find the mode of the

log-density, denoted as σ̃2.

2. Find parameters a∗ and b∗ of the inverse gamma distribution IG(a∗, b∗) by

matching the mode σ̃2 and an assumed variance of 0.01 to that of the IG distri-

bution and solving this system of linear equations.

3. Sample σ2∗ ∼ IG(a∗, b∗) and accept/reject using the Random walk Metropolis

algorithm.
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Sampling of ρ

To sample ρ, we use a Gaussian prior such that ρ ∼ N(µρ, σ
2
ρ). It is simple to see that

p(ρ|h1,h, ξ, α, β, σ
2,Y ∗)

∝f(h1|ξ1, α, β, σ
2)

T∏
t=1

f(ht+1|ht, ξt+1, α, β, σ
2)

T∏
t=1

f(y∗t |ht+1, ht, ξt+1, α, β, σ, ρ) f(ρ)

=
(1− β2)−

1
2 ξ
− 1

2
1√

2πσ
exp

{
−(h1 − α)2(1− β2)

2σ2ξ1

}
× 1

(
√

2πσ)T
exp

{
−

T∑
t=1

[ht+1 − α− β(ht − α)]2

2σ2

}
×

1

[2π(1− ρ2)]T/2
T∏
t=1

ξt+1

exp

{
−

T∑
t=1

{ y∗t
eht/2

− ρ
σ [ht+1 − α− β(ht − α)]}2

2(1− ρ2)ξt+1

}
×

1√
2πσρ

exp

{
−(ρ− µρ)2

2σ2
ρ

}

∝ 1

(1− ρ2)T/2
exp

{
−

T∑
t=1

{ y∗t
eht/2

− ρ
σ [ht+1 − α− β(ht − α)]}2

2(1− ρ2)
− ρ2

2σ2
ρ

+
2µρρ

2σ2
ρ

}
.

Then ρ is estimated using the MAP sampler, and accepted/rejected using the Metropo-

lis Hastings sampling scheme. We assume ρ ∼ N(−0.1, 0.05).
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Sampling of ξ

To sample (ξ1, ξ) first note that each element is independent and ξt ∼ IG(ν2 ,
ν
2 ). When

t = 0,

p(ξ1|h1, α, β, σ
2, ν) ∝ f(h1|ξ1, α, β, σ

2) f(ξ1)

so that:

ξ1|h1, α, β, σ
2, ν ∼ IG

(
ν + 1

2
,
(h1 − α)2(1− β2)

2σ2
+
ν

2

)
.

Similarly, when t > 0, we have

p(ξt+1|ht+1, ht, α, β, σ
2, ρ, ν, y∗t ) ∝ f(ht+1|ht, ξt+1, α, β, σ

2)f(y∗t |ht+1, ht, ξt+1, α, β, σ, ρ) f(ξt+1)

ξt+1|ht+1, ht, α, β, σ
2, ρ, ν, y∗t ∼ IG

(ν
2

+ 1, Sξ

)

where Sξ = [ht+1−α−β(ht−α)]2

2σ2 +
{ y∗t
eht/2

− ρ
σ

[ht+1−α−β(ht−α)]}2

2(1−ρ2)
+ ν

2 .

Sampling of ν

In order to sample ν, we implement an adaptive independence-chain Metropolis-

Hastings algorithm. Assuming the prior ν ∼ U[ν−, ν+], the density of the posterior

distribution of ν is

p(ν|ξ) ∝ f(ξ|ν) f(ν)

∝
T∏
t=1

[
(ν2 )

ν
2

Γ(ν2 )
ξ
− ν

2
−1

t exp

(
− ν

2ξt

)]
=

(ν2 )
Tν
2

[Γ(ν2 )]T

(
T∏
t=1

ξ
− ν

2
−1

t

)
exp

(
−

T∑
t=1

ν

2ξt

)
I(0 < ν < bν)

so that the log posterior density of ν is

log p(ν|ξ) ≈ Tν

2
log
(ν

2

)
− T log Γ

(ν
2

)
−
(ν

2
+ 1
) T∑
t=1

log ξt −
ν

2

T∑
t=1

ξ−1
t
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where

d log p(ν|ξ)

dν
=
T

2
log
(ν

2

)
+
T

2
− T

2
ψ
(ν

2

)
− 1

2

T∑
t=1

log ξt −
1

2

T∑
t=1

ξ−1
t

d2 log p(ν|ξ)

dν2
=

T

2ν
− T

4
ψ1

(ν
2

)
where ψ and ψ1 are the digamma and trigamma functions respectively. We maximise

the density in order to find the mode ν̃ using routine optimisation methods. Although

an Inverse Gamma proposal is typically used, we find this leads to boundary trap is-

sues. We instead find superior results using a Gaussian proposal ν ∼ N(ν̃, Vνcν),

where Vν = 1 and cν is a tuning parameter initialized as 1. The choice of hyper-

parmeters are ν− = 3 to avoid infinite ‘explosive’ variance issues, and ν+ = 23.
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