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Abstract 
 
 
Caloric restriction (CR) without malnutrition is a robust dietary intervention that extends lifespan and 

improves health in virtually every species studied. Recently, some of the mechanisms for the effects of 

CR on ageing have been elucidated, including several cellular master switches collectively called 

“nutrient sensing pathways”. CR is not sustainable in humans, therefore research has begun to focus 

on developing ad libitum-fed diets that maximise lifespan and healthspan. Recently, it has been shown 

that ad libitum-fed mice on low protein, high carbohydrate diets have a longer lifespan compared to 

diets with other macronutrient ratios. These low protein, high carbohydrate diets therefore seem to 

recapitulate some of the benefits of CR.  

 

This thesis presents research on the effects of diets with differing ratios of macronutrients on nutrient 

sensing pathways, and their impact on ageing and age-related end points. This is achieved using the 

paradigm of the Geometric Framework (GF), an analytical tool used to disentangle the effects of 

various nutritional components such as macronutrient ratios and energy intakes on outcomes. Using 

the GF, the relationship between measured outcomes and experimental conditions is mapped on an 

n-dimensional nutritional space, where each dimension represents an intake axis; in this thesis, 

protein, carbohydrates and fat. The power of the GF is in its ability to both visually represent the 

data, as well as perform statistical analyses to uncouple the complexities of nutrition, through the 

creation of these response topologies. Using the GF, a large-scale nutritional study is used to examine 

the aging process through genotypic and phenotypic changes in nutrient sensing pathways, and their 

relationship with parameters of health and lifespan. 

 

This thesis contains three research chapters, each corresponding to a major set of work, with the 

overarching aim of better understanding the mechanisms involved in the relationship between 

nutrition and the ageing process: 
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Chapter 3 – Methods: The Geometric Framework 

There have been challenges with the statistical tools used to analyse experimental data 

according to the GF model. These include visualisation of the data in multiple dimensions, 

and the use of GF to interpret very large datasets. The R statistical language was used to 

develop algorithmic bioinformatic techniques to automate data handling, processing, analysis 

and visualisation, including three-dimensional models. Improvements in algorithmic 

efficiency were also studied to allow the automation of the GF across very large datasets, 

supporting, for example, the analysis of an entire transcriptome. These statistical advances 

underpinned the analysis of experimental data presented in Chapters 4 and 5.  

 
Chapter 4 – Nutrient Sensing Pathways 

This chapter involved investigation into the impact of macronutrient intake on nutrient 

sensing pathways and correlation with health and lifespan. The majority of experimental 

work was carried out on mouse tissue from a large-scale dietary intervention and longevity 

study in which 858 mice were fed one of 25 diets varying in protein, carbohydrate, fat or 

total energy content. Several experimental approaches were undertaken including primary 

analysis of gene expression and quantitative PCR in liver and hypothalamus. Analysis of gene 

expression was performed using both a univariate analysis and the GF multivariate approach 

developed in Chapter 3. By studying gene expression in the liver and hypothalamus, this 

section shows that low protein, high carbohydrate diets, which were associated with the best 

health outcomes and lifespan in the cohort, also significantly influenced nutrient sensing 

pathways, thereby providing a mechanism linking dietary macronutrients and ageing. In the 

liver, gene expression was mostly influenced by dietary protein intake. Biological pathways 

linked with protein intake included mitochondrial function, metabolic signaling (PI3K-Akt, 

AMPK, mTOR) and metabolism of protein and amino acids. Among the genes of interest 

with expression linked with dietary protein were Cth, Gls2, Igf1 and Nnmt, which were 
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increased with high protein intake, and Igf2bp2, Fgf21, Prkab2 and Mtor, linked with low 

protein intake. In the hypothalamus, gene expression was most influenced by fat and total 

energy intake. Using the GF analytical approach, there were a number of genes of interest: 

carbohydrate intake influenced expression of Igfbp2, Igf1 and Sirt2; protein intake significantly 

influenced Npy, Akt3, Sirt1; and the interaction between protein and carbohydrates Sirt5, 

Rps6a4/5, Igf2r, Igf1r and Sirt3. 

 
Chapter 5 – Phenotypic End Points Associated with Ageing 

This set of work focused on three phenotypic endpoints associated with ageing, namely 

hepatic telomere length (measured using a PCR method), mitochondrial function (measured 

using Seahorse technology and gene expression), and inflammation (determined by 

microscopy). Here, it is shown that low protein, high carbohydrate diets are associated with 

longer telomere lengths, improved mitochondrial function, and lower levels of organ level 

inflammation, even in short-term dietary studies. For each outcome, diets that were low in 

protein and high in carbohydrates were associated with results that are consistent with 

biological changes supportive of a longer lifespan. 

 
Taken together, the results presented here form a case that manipulation of the nutrient sensing 

pathways are a mechanism for the beneficial effects of dietary interventions on ageing and health. 

Further investigation of these growth pathways could help to develop guidelines for optimal 

nutritional intake, or form the basis for pharmacological interventions targeted at prolonging lifespan, 

healthspan, and promoting health in old age, without the use of long-term dietary manipulation. The 

algorithmic tools developed here, also have the potential to be applied to a wider array of 

experimental fields, supporting the overarching experimental model of comparing multi-dimensional 

inputs on responses, as opposed to the more commonly used control versus treatment model that is 

largely seen in scientific research.  
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Chapter 1: General Introduction 
 

 
Background 

In the ancient Indian epic, the Mahabharata, both heaven and earth combined forces to churn the 

ocean in order to find the Amrut, an elixir preventing ageing and granting immortality. Similar myths 

such as the Holy Grail, the philosopher’s stone, and many others, are found across virtually all 

cultures around the world. While ageing and immortality have fascinated humans since the beginning 

through the ages, there is no doubt that the ‘churning of the scientific ocean’ in the last few decades 

has produced a plethora of advances in the fields of biogerontology and geroscience.  

 

Despite ageing being one of the most fundamentally defining features of life, a universally accepted 

definition of ageing has been elusive (Medvedev 2008). Most definitions of ageing describe specific 

aspects such as phenotypic and physiological ageing, chronological ageing, or the change in likelihood 

of mortality over time [Figure 1.1, Table 1.1] (Le Couteur et al. 2014). 

 

In recent times, major advances have been made in terms of understanding the biological processes 

involved in ageing, largely through the use of model organisms such as yeast, worms, flies and mice, 

with many of these advances stemming from the discovery of the beneficial effects of caloric 

restriction on longevity (Heilbronn & Ravussin 2003). While the effects of caloric restriction on 

ageing have been described anecdotally for centuries, it was not until 1935 that the first formal 

publication in the scientific literature was reported (McCay et al. 1935). Since then, dietary 

interventions such as caloric restriction have been shown to be the most robust methods of 

prolonging lifespan across virtually all species, and have become one of the most important paradigms 

in biogerontological research (Solon-Biet et al. 2015b). 
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Figure 1.1 Various definitions of ageing.  

 

In humans however, the use of life-long, or long-term CR interventions to delay ageing have not been 

performed. This is partly because of the difficulty that humans have in adhering to low calorie diets, 

and partly because it is not feasible to continue human clinical trials over a lifetime. Additionally, long-

term studies on the scale of human lifespan are more likely to be influenced by confounding factors 

and thus are prone to develop experimental artifacts, making results difficult to interpret or reproduce 

(de Cabo et al. 2014). Instead trials have been undertaken with surrogate outcomes such as 

cardiometabolic parameters or biomarkers of ageing over shorter periods (Heilbronn et al. 2006). For 

example, intermediate length trials, such as the 2-year CALERIE (Comprehensive Assessment of 

Long-Term Effects of Reducing Intake of Energy) study have been performed to assess the impact of 

caloric restriction on age-related biomarkers (Ravussin et al. 2015). Trials such as these have provided 

support for the beneficial effects of dietary restriction in humans, despite not directly assessing their 

effects on lifespan. However, a widely used therapeutic approach to directly combat ageing in human 

populations has not been developed or implemented (Redman et al. 2018).  
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This is not to say that no change has been made to improve human lifespan over the course of 

history. In fact, over the last two centuries alone, global median life expectancy has increased from 30 

years to nearly 71 years [Figure 1.2], and in the case of Okinawan women, the group with the highest 

life expectancy at birth, this value has exceeded 89 years (Riley 2005; Vijg & Campisi 2008; D. C. 

Willcox et al. 2006). These results however, have stemmed through medical and technological 

improvements, especially over the late 19th and 20th centuries, with antibiotics, access to food and 

clean water, healthcare and infrastructure (Vaiserman et al. 2016). Such interventions have impacted 

primarily on infant mortality and the management of disease in adults, rather than influencing the 

ageing process directly per se. Even so, it should be pointed out that the increase in human lifespan in 

the last century equals or exceeds the increases in lifespan that have been achieved in the laboratory 

by manipulating the ageing process in animal models (Le Couteur et al. 2014). 

 

Figure 1.2. Life expectancy at birth over the ages. Adapted from (Riley 2005), and World  

Bank & Max Planck Research Institute websites.
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Table 1.1. Phenotypic changes associated with ageing, classified by physical, metabolic, and cellular levels. Table adapted from (Margolick & Ferrucci 

2015; Vijg & Campisi 2008). 

Phenotype Change with age H. sapiens M. musculus D. melanogaster C. elegans 

Physical/cognitive  Bone Density Decline Yes Yes NA NA 
 Changes in fat Varied Yes Yes Yes Yes 
 Muscle mass Decline Yes Yes Yes Yes 
 Dermatological changes Varied Yes Yes Yes Yes 
 Cognitive function Decline Yes Yes Yes Yes 
 Fitness Decline Yes Yes Yes Yes 
 Balance Decline Yes Yes Yes N/A 

Metabolic changes Insulin resistance Increase Yes Yes Yes Yes 
 Cardiac function Decline Yes Yes Yes N/A 
 Basal metabolic rate Decline Yes Yes Yes Yes 
 Mitochondrial function Decline Yes Yes Yes Yes 
 Cancer, hyperplasia Increase Yes Yes No No 
 Apoptosis, senescence Increase Yes Yes Yes Yes 
 Genome instability Increase Yes Yes Yes Yes 
 Protein aggregation Increase Yes Yes Yes Yes 

Cellular changes Immune system function Decline Yes Yes Yes Yes 

 Inflammation Increase Yes Yes No No 

 Neurodegenerative 
changes/atrophy Increase Yes Yes Yes Yes 
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The relationship between ageing and disease 

While there is semantic debate whether ageing is a disease, or simply a consequence of cellular 

degeneration over time, there is no doubt that disease and ageing are inextricably linked; old age being 

one of the most significant risk factors for most chronic diseases in the Western world (Le Couteur et 

al. 2011). Some diseases, such as diabetes mellitus and infection with the Human Immunodeficiency 

Virus are also claimed to accelerate the ageing process, however most only mimic some of the 

phenotypic changes seen in ageing, rather than accelerating the ageing process as a whole (Margolick 

& Ferrucci 2015). Despite the controversy over this classification, the consensus certainly exists that it 

is possible to distinguish between individuals and organisms of different age on the basis of biological 

changes; which are remarkably similar across taxa (Rattan 2006; Vijg & Campisi 2008).  

 

Old age is the most powerful risk factor for disease, especially chronic diseases, and increases the risk 

of mortality and morbidity associated with most diseases (Tacutu et al. 2011). While mortality is 

known to increase exponentially with age (until ~95 years), a function known as the Gompertz-

Makeham law (Missov & Lenart 2013), death itself is generally considered to be caused by diseases 

such as infections, diabetes, dementia, cancer, cerebrovascular stroke and heart disease [Figure 1.3]. A 

complementary pattern is also seen in late life, where the longest-lived groups display delayed 

manifestations of age-related diseases (Willcox et al. 2008). Targeting the ageing process therefore has 

the potential to reduce the incidence of all these diseases through one intervention, rather than 

targeting each pathological process directly; a strategy known as the compression of morbidity [Figure 

1.4] (Fries 1980; Guarente 2014; Seals & Melov 2014). Thus, understanding the ageing process is one 

of the most important challenges faced by the scientific community, and will be critical in alleviating 

the burden on healthcare systems predicted to occur in the coming century given the rapidly growing 

ageing population around the world (Tarry-Adkins & Ozanne 2016). 
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Figure 1.3. Age related morality. A) Chronological age group vs. death rate in the United States 

(2010). B) Age vs. rates of common chronic disease related mortality in the United States (2010-2012) 

Figures adapted from Harrison’s Principles of Internal Medicine (Le Couteur et al. 2012a). 

 

 
 

Figure 1.4 Compression of morbidity to decrease mortality. Slowing the processes of aging might 

prove to be the most effective method of reducing morbidly and mortality compared to disease 

prevention or treatment. Figure adapted from (Seals & Melov 2014). 
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It can be argued that ageing is an inevitable process, as the second law of thermodynamics 

necessitates increases in entropy over time. This definition however, does not directly correlate with 

biological ageing, where in many cases the entropy may remain unchanged or even decrease with age 

(Takahashi et al. 2012; Humeau et al. 2008). Furthermore, the timeframe in which the second law of 

thermodynamics applies is not limited by the lifespan of organisms, making it a weak argument for 

the basis of biological ageing (Le Couteur et al. 2012a). 

 

There is no reason why biological ageing must occur; and indeed, there are some species, which are 

biologically immortal such certain types of jellyfish and plants, and Hydra, which display negligible 

senescence perhaps related to their high numbers of stem cells. There are also species that die without 

typical features of ageing such as annual plants and semelparous animals (Le Couteur et al. 2011). 

Despite this, the evolutionarily dominant strategy for survival of a species is achieved through 

reproduction rather than immortality (Seals & Melov 2014). Thus there appears to be a trade-off 

between longevity and reproduction that might be the evolutionary foundation of ageing and 

mortality. 

 

In 1990, Zhores Medvedev published a widely cited paper attempting to classify the theories of 

ageing. In this paper, he cited over 300 theories, however concluded that it was unrealistic to expect 

any single theory to encompass all aspects of ageing (Medvedev 2008). This is primarily due to the 

fact that biological ageing is highly variable, not only between species, but even within a single species, 

organ, cell or organic molecule (Rattan 2006). Interestingly, most of the evolutionary theories of 

ageing seem to be connected by their attempts to explain trade-offs between reproduction versus 

longevity. Some of the main theories are briefly reviewed below. 
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Programmed death theory 

One of the first evolutionary theories of ageing was the programmed death theory, stating that natural 

selection, which was known to occur at multiple levels, favoured the removal of older individuals so 

resources could be allocated to younger individuals in order to optimise reproductive capacity 

(Weismann 1882; Longo et al. 2005). Therefore, death was hypothesised to be a programmed event 

that had evolved to benefit the species. Several lines of evidence have made this theory fall out of 

favour, especially given the fact that selection pressure at the group level is far less dominant than at 

the individual level (Shanahan 1998), however given the fact that no single theory can explain ageing, 

there is still debate about the merit of a programmed theory of age (Longo et al. 2005; Kirkwood & 

Melov 2011; Kowald & Kirkwood 2016).  

 

Some have suggested that the immune system, endocrine system, senescence pathways, and the 

Hayflick limit on cell divisions may provide potential mechanisms mediating programmed death of 

cells (apoptosis), or the entire organism (phenoptosis) (Jin 2010). Studies in the yeast, S. cerevisiae 

showed that the proteins BCL2 (B-cell leukaemia/lymphoma 2 protein) and BAX (BCL2-associated 

X protein) stimulated anti- and pro-apoptotic pathways respectively, rescuing the organism from 

death, or causing it (Longo et al. 1997).  

 

While this may be considered support for the programmed death theory, no correlate of this has been 

found to program phenoptosis in higher eukaryotes. Furthermore, given that ageing is seen to be 

more dominant in iterparous species, it was proposed that rather than being programmed per se, 

ageing was a response to an accumulation of damage over time that eventually overcomes an 

organism (Medawar 1952).  

  

 



 

 32 

Mutation accumulation theory 

This theory focuses on the idea that natural selection is most powerful for traits favouring 

reproduction in early life (Darwin 1859). Therefore, the inability of natural selection to weed out 

mutations that are deleterious in later life would result in accumulation of these mutations in a species 

over time, leading to age-related decline (Medawar 1952; Kowald & Kirkwood 2016). This theory 

however would imply an increase in genetic variance in mortality rate in later life, and while some 

evidence has be circumstantially used to support this theory, most findings are better explain by the 

more contemporary theories discussed below (Kirkwood & Melov 2011).  

 
 
 
Table 1.2. Trade-offs between longevity, early fecundity, and resistance to stressors. Populations 

selected for increased longevity show increased resistance to stressors in later life, however most 

studies show a decrease in early fecundity as a result. Table adapted from (Kirkwood & Austad 2000). 

 

Organism Population selected 

Traits affected Resistance to stressors 

Longevity Early fecundity Early viability ROS Heat UV 

C. elegans  Dauer larvae ↑ ↓ ↑ ↑ ↑ ↑ 

C. elegans  Various mutants ↑ ↓ ↓ ↑ ↑ ↑ 

D. melanogaster  Artificial selection ↑ ↓ ↓ ↑ ↑ ↑ 

D. melanogaster  Methuselah mutant ↑   ↑ ↑  

M. musculus  Caloric restriction ↑ ↓  ↑ ↑  

M. musculus  p66shc mutant ↑   ↑  ↑ 
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Antagonistic pleiotropy 

An extension of the mutation accumulation, this theory goes one step further to propose that genes 

selected through natural selection which may be beneficial in early life may have negative effects in 

late life ( Williams 1957). Some lines of evidence for this theory include the fact that sex hormone 

genes, which are important for fertility in early life can contribute to the risk of cancer in old age 

(Gann et al. 1996), the findings that mutations promoting lifespan have been shown to exhibit a 

fitness cost in C. elegans (Jenkins et al. 2004; Walker et al. 2000), and the increase in longevity of fruit 

flies selected for late-life reproductive success (Sgro & Partridge 1999) [Table 1.2]. Once again 

however, given the scarcity of data in individual alleles supporting this theory, most of the evidence 

initially brought forward for antagonistic pleiotropy is now thought to be better explained by the 

disposable soma theory, which is a special case of the antagonistic pleiotropy theory which is 

conceptually similar to a redundancy model (Boonekamp et al. 2015; Kirkwood & Austad 2000). 

 
 
Disposable soma theory 

One of the most influential recent theories of ageing is the disposable soma theory of ageing, which 

hypothesises that ageing results from a trade-off in distribution of limited resources towards either 

reproduction (germ cells) or survival of the organism (somatic cells) (Kirkwood & Holliday 1979). 

Compared to the complexities involved in the creation of life, the ongoing maintenance of somatic 

cells is relatively straightforward (Gladyshev 2016; Kirkwood 2010). Freshwater hydra have the ability, 

not only to be immortal, but also to sustain regenerative abilities. This is due to the fact that the 

structure of the hydra is almost entirely comprised of germ cells and shows no signs of senescence 

(Martinez 1998). Germ cells are able to largely avoid the ageing process but they are unable to form 

significantly complex organisms, as this requires differentiation into neural, muscular, and other types 

of cells (de Cabo et al. 2014).  
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This provides a potential evolutionary basis for why caloric restriction (CR) can enhance lifespan, 

since limiting nutrient availability would cause the balance to shift towards survival over growth and 

reproduction [Figure 1.5].  This is thought to be an evolutionary response to periods of famine, where 

switching from reproduction to survival would increase the chance of an organism surviving until 

food is available, and reproduction can occur in an environment where the offspring is most likely to 

survive given the availability of nutrients after birth. An adjunct to the disposable soma theory 

suggests that this trade off influences the cellular growth pathways which mediate survival and 

longevity (Le Couteur et al. 2011). This theory is also congruous to data seen in CR animal models, 

since CR seems to alter the activation of cellular growth pathways (Longo et al. 2015). As discussed, 

many evolutionary theories of aging surmise that there is a trade-off between reproduction and 

survival, and the diminishing ability of natural selection to apply selection pressure post-reproduction 

that causes ageing.  

 
 
 
 

 

 

Figure 1.5. The disposable soma theory. Figure adapted from (Vijg & Campisi 2008). 
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Nutrition and ageing 

While the concept of caloric restriction has been around for centuries [Philipus Paracelcus (1493-

1541), Luigi Conaro (1466-1566)], it was McCay and colleagues from Cornell University, whose 

seminal work in 1935 provided scientific proof of the beneficial effects of CR on ageing and lifespan 

(McCay et al. 1935). Since then, dietary interventions such caloric restriction and intermittent fasting 

have been shown to be some of the most robust non-genetic interventions to delay the onset of age-

related disease and improve lifespan (Solon-Biet et al. 2015b). 

 
 
Table 1.3. The effects of caloric restriction and mutations/drugs influencing nutrient sensing 

pathways on lifespan and health in a variety of species. Table adapted from (Fontana et al. 2010).  

 Lifespan increase Beneficial health effects 

 CR Mutations/drugs CR Mutations/drugs 

Yeast 3-fold 10-fold Extended reproductive 
period 

Extended reproductive 
period, decreased DNA 
damage/mutations  

Worms 2- to 3-fold 10-fold 
Resistance to 
misexpressed toxic 
proteins  

Extended motility, resistance 
to misexpressed toxic 
proteins and germ-line 
cancer  

Flies 2-fold 60-70% Increased activity 
Resistance to bacterial 
infection, extended ability to 
fly  

Mice 30-50% 
30-50% (100% 
in combination 

with CR) 

Protection against 
cancer, diabetes, 
atherosclerosis, 
cardiomyopathy, 
autoimmune, kidney, 
and respiratory 
diseases; reduced 
neurodegeneration  

Reduced tumour incidence; 
protection against age-
dependent cognitive decline, 
cardiomyopathy, fatty liver 
and renal lesions. Extended 
insulin sensitivity  

Humans Not 
determined Not determined 

Prevention of obesity, 
diabetes, hypertension; 
reduced risk factors 
for cancer and 
cardiovascular disease  

Possible reduction in cancer, 
metabolic and 
neurodegenerative diseases 
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Caloric restriction has yielded beneficial effects on metabolic, cardiovascular, and neurological 

outcomes in virtually all species studied, and is typically accompanied by an extension of lifespan of 

up to 30-50% [Table 1.3] (Fontana et al. 2010). Growing evidence indicates beneficial effects in 

humans, on outcomes such as inflammation, hypertension, and cardiovascular and metabolic diseases 

(Cava & Fontana 2013). Compared to other interventions, by extrapolation of results from animal 

models to humans, CR, or interventions targeting the underlying mechanisms of CR could be 

estimated to produce one of the, if not the, most impact on longevity [Figure 1.6] (Baur et al. 2012). 

 
 
 
 

 
 

 

Figure 1.6. Estimated effects of a variety of interventions on human life expectancy. Figure adapted 

from (Baur et al. 2012).   
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One of the best pieces of evidence for this is from Okinawan population in south Japan, which boasts 

the highest rates of centenarians in the world (D. C. Willcox et al. 2006). This may be partly due to 

genetics, but seems to be primarily due to the higher than average levels of daily exercise, lower than 

average food intake, and the composition of dietary macro- and micronutrients (Le Couteur et al. 

2016). In order to disentangle the effects of genetics, a sub-population of Okinawans who had moved 

to Brazil was compared to the native population. On adopting a Western diet, this sub-population 

experienced a significant drop in life expectancy, by approximately 17 years compared to their 

counterparts who remained in Japan, providing evidence that the basis for their longevity is driven 

more by environment than by genetics (Mizushima et al. 1997). That being said, there is debate as to 

which dietary regimens are optimal, and the impracticality of human trials means that long-term 

dietary interventions are not likely to ever be a therapeutic methodology applied to humans (de Cabo 

et al. 2014). Therefore, it is critically important to understand the mechanisms by which diet mediates 

its beneficial effects on health and ageing, in order to directly target pathways through optimal short-

term interventions, or pharmaceutical agents such as CR mimetics [Table 1.4]. Although lifespan is an 

important outcome of interest, criticism towards ageing research has been generated by the notion 

that increasing lifespan may be accompanied by an increase in burden of disease carried by the elderly 

population (Seals & Melov 2014). While this is a valid concern related to the ageing population that is 

accruing throughout the modern world, this brings up the concept of optimal longevity, where 

lifespan increases are complemented by increased healthspan, or portion of life which is morbidity-

free (Longo et al. 2015). Research has also consistently shown that the increase in lifespan that occurs 

due to dietary interventions is accompanied by an increase in health outcomes through life, a term 

which is known as healthspan (Fontana et al. 2010), although there is some evidence that lifespan and 

healthspan can be dissociated depending on the intervention used (Hansen & Kennedy 2016). In 

humans, while median lifespan has increased drastically over the last century, this has not been 

matched by a proportional increase in healthspan (Mercken et al. 2012). However, as discussed earlier, 
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this is likely due to the fact that the changes in human longevity are primarily due to advances in 

medicine and development of treatments to diseases rather than interventions targeting the ageing 

process such as caloric restriction (de Cabo et al. 2014).  

 
Table 1.4. Effects of various interventions on lifespan and health in humans, or in mice where data in 

humans was not available. Table adapted from (de Cabo et al. 2014).  

Treatment Positive effects Negative effects 

Caloric 
restriction 

Decreased body fat, blood pressure, resting 
heart rate and improved lipid profile 

Danger of malnutrition (e.g. neurologic 
deficits, lowered fertility and libido, wound 
healing problems, amenorrhea, osteoporosis, 
decreased potential to combat infections) 

Fasting 
strategies 

Longer lifespan; decreased hypertension and 
of other features of metabolic syndrome; 
improved verbal memory loss in the aged and 
overweight; weight loss in the obese 

Limited if not integrated with health-
associated diets; might be harmful in 
children, underweight people and during 
pregnancy as well as in some disease states 

Exercise Prevents cardiovascular diseases, diabetes, 
osteoporosis, sarcopenia and depression; 
prolongs independent living by the elderly 

Excessive exercise in the elderly is correlated 
to mortality 

Resveratrol (in mice) prevents oxidative stress in the aging 
heart, neurodegeneration, vascular disease and 
diabetes; increases lifespan under metabolic 
stress conditions (high-fat diet or every other 
day feeding) 

(in humans) at high doses, nausea, 
gastrointestinal discomfort;  

(in mice) at high doses, nephrotoxicity 

Rapamycin (in mice) extends lifespan; exerts 
antiproliferative effects  

Potent immunosuppressive properties; long-
term administration has adverse effects (e.g. 
impaired wound healing, proteinuria, or 
pneumonitis)  

Spermidine (in mice) extends lifespan; inhibits 
neurodegeneration, induces cardiac autophagy 

(in mice) high doses can cause emaciation, 
aggressiveness, convulsions and paralysis 

Metformin (in humans) decreases hepatic 
gluconeogenesis; 

(in mice) increases insulin sensitivity; lifespan 
extension 

Gastrointestinal disturbances; at high doses, 
can cause tachycardia, hypoglycaemia; very 
small chance of lactic acidosis 
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Nutrient sensing pathways 

Recently, research has been undertaken to elucidate which components of dietary interventions are 

most beneficial and to determine the cellular pathways that mediate the response of ageing to changes 

in dietary composition. It has generally been concluded that it is simply the reduction of energy intake 

that increases lifespan, although recent research has focused on each of the macronutrients (protein, 

carbohydrates, fat) or the ratio of macronutrients, or even the effects of short periods of fasting and 

hunger (Mair et al. 2005; Solon-Biet et al. 2014; Solon-Biet et al. 2015c; Le Couteur et al. 2015).  

 

A recent meta-analysis of nearly 150 animal studies of CR concluded that protein restriction was more 

important for life extension than the degree of caloric restriction (Nakagawa et al. 2012). The benefits 

of dietary interventions seem to therefore be derived from some combination of CR and reduced 

macronutrient intake, and more recently the ratio of dietary protein-to-carbohydrates (P:C) (Le 

Couteur et al. 2015; Fontana et al. 2016). Interestingly, with the long-lived Okinawan population, the 

average ratio of P:C in the traditional diet was about 1:10, similar to that found to optimise lifespan in 

animal models (Le Couteur et al. 2015).  

 

While low-protein to high-carbohydrate (LPHC) diets are associated with longevity, high-protein to 

low-carbohydrate (HPLC) diets have been seen to be associated with higher rates of reproduction, in 

line with the evolutionary theories indicating there is a trade-off between reproduction and longevity 

(Le Couteur et al. 2015). Comparing LPHC diets to caloric restriction, studies have showed that many 

common pathways are involved, including downregulation of mechanistic target of rapamycin 

(MTOR), alteration to mitochondrial function and changes in metabolic regulation [Table 1.5] (Solon-

Biet et al. 2015a). 
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Table 1.5. Outcomes of studies in animals on LPHC ad libitum diets versus CR diets. Table from 

(Solon-Biet et al. 2015a; Solon-Biet et al. 2015b). 

 

Outcome  LPHC ad libitum diets CR diets 

Food intake  ↑ ↓ 

Body weight ↑ ↓ 

Body fat ↑ ↓ 

Temperature  ↑ ↓ 

Insulin ↓ ↓ 

LDLc ↓ ↓ 

HDLc ↑ ↑ 

Mitochondrial number ↓ ↑ 

Mitochondrial free radicals ↑ ↓ 

PGC-1α ↓ ↓ 

Uncoupling protein ↓ - 

mTOR phosphorylation ↓ ↓ 

AMPK phosphorylation ?↓ ↑ 

Reproductive fitness ↓ ↓ 

Lifespan ↓ ↑ 

 



 

 41 

 

Figure 1.7. Proposed mechanisms mediating the beneficial effects of dietary restriction on ageing. 

Figure adapted from (Bonkowski & Sinclair 2016). 

 

Dietary studies over the years have also looked at mechanistic factors such as endocrine function, 

oxidative stress, inflammation, genetic and epigenetic changes. Despite this, no single mechanism has 

been found to be solely, or even mostly responsible for the lifespan extension seen in dietary studies 
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(de Cabo et al. 2014). Given however, a great deal of work has focused on studying nutrient sensing 

pathways, as these provide a potential mechanism linking diet with ageing (Finkel 2015). As these 

nutrient sensing pathways share common downstream targets influencing cellular processes such as 

mitochondrial function, metabolism, anabolic/catabolic balance and protein synthesis, they are able to 

control the balance between growth and reproduction versus survival and ageing [Figure 1.7] (Solon-

Biet et al. 2015b).  

 

In 2013, a workshop was held in Erice, Italy to bring together ageing research experts from a variety 

of disciplines in order to discuss potential interventions to delay ageing and improve healthspan in 

humans. While many pharmacological and gene targets were discussed, consensus was reached that 

the most promising interventions were primarily focused on modifying nutrient sensing pathways 

(Longo et al. 2015): 

 
1. Interventions mimicking dietary restriction (caloric, macronutrient, intermittent fasting, etc.) 

2. Inhibition of the Target Of Rapamycin - S6-Kinase (TOR-S6K) pathway 

3. Activation of the Sirtuin histone deacetylase pathways 

4. Inhibition of the Insulin-like Growth Factor 1 (IGF-1)/Growth Hormone (GH) axis 

5. Activation of the AMP-activated protein kinase (AMPK) pathway 

 

Given that long-term studies of caloric restriction are not feasible in humans, interest has shifted 

towards the drug and nutritional interventions that act on these nutrition sensing pathways but don’t 

involve reduced food intake (de Cabo et al. 2014). These signaling pathways are largely evolutionarily 

conserved, facilitating the study of diets, genes and pharmaceutical agents in simpler laboratory 

models such as yeast, worms and mice (Vaiserman et al. 2016). 
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MTOR-S6K pathway 

Formerly known as mammalian target of rapamycin, mTOR has been renamed as mechanistic target 

of rapamycin, after the discovery that it is highly conserved amongst eukaryotic cells (Wei et al. 2015). 

Related to the phosphoinositide 3-kinase (PI3K)-related protein kinases (PIKK) family, mTOR is the 

catalytic subunit of two individual complexes, mTOR complex 1 (mTORC1) and mTORC2. These 

form unique complexes; mTORC1 with Regulatory-associated protein of mTOR (RAPTOR), and 

mTORC2 with Rapamycin-insensitive companion of mTOR (RICTOR) (Zoncu et al. 2010). The 

mTOR pathway is activated by circulating amino acids through Rag-GTPase complexes, in addition 

to being responsive to insulin/IGF-1 signaling, circulating glucose, Wnt ligands, oxygen, and cAMP 

(Laplante & Sabatini 2009; Efeyan et al. 2015). Activation of mTOR is linked with anabolic cell 

growth through protein and lipid synthesis, while inhibition of mTOR is linked with cellular stress 

responses such as autophagy (Jewell et al. 2013). The mTOR pathway is one of the leading candidates 

thought to mechanistically link diet and ageing, as it is sensitive to circulating amino acids, and 

modification of this pathway has been shown to produce lifespan extension in many species [Table 

1.6] (Lamming et al. 2013; Johnson et al. 2013; Jia 2004; Kapahi et al. 2004). Caloric and protein 

restriction has also been shown to be associated with a decrease in mTOR activity in mice (Solon-Biet 

et al. 2014; Xiao et al. 2011). The mTORC1 complex has two major substrates, S6 kinase (S6K) and 

4E-BP1, both of which have been shown to be related to protein and lipid synthesis, and 

mitochondrial metabolism (Longo et al. 2015). The mTORC2 complex on the other hand is involved 

in the phosphorylation and activation of Akt and protein kinase C (PKC), which is involved in 

anabolism, cell survival and cell cycle progression, and inhibition of forkhead box protein O1 

(FOXO1), a transcription factor that regulates many cellular processes including apoptosis, 

metabolism and proliferation [Figure 1.8] (Zoncu et al. 2010).  
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Figure 1.8. The role of mTOR in metabolism. Figure adapted from (Zoncu et al. 2010). 
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Together, these mTOR complexes are a key target in ageing research, especially given the availability 

of the pharmacological agent rapamycin, which inhibits the complexes, and has been shown to 

produce a lifespan extension of up to 26% in mice (Harrison et al. 2009; Vaiserman et al. 2016). 

Rapamycin, despite being shown to increase longevity in a subset of animals [Table 1.6], has 

significant adverse effects, particularly through metabolic dysregulation (Lamming et al. 2012; Deblon 

et al. 2012), immunosuppression (Blagosklonny 2013) and haematopoetic proliferative disorders 

(Soefje et al. 2011). While rapamycin has been given FDA-approved status for immunosuppression 

following organ transplantation in humans, these side effects have precluded its use as an anti-ageing 

drug (Arriola Apelo & Lamming 2016). For this reason, despite the immense appeal of mTOR as a 

target for improving human longevity, robust safety studies must be performed to further understand 

the role and function of mTOR and its substrates in the ageing process (Longo et al. 2015).  

 

In animal studies, inhibition of mTORC1, mTORC2 and S6K and activation of 4E-BP1 and FOXO 

has displayed longevity benefits (Seo et al. 2013; Johnson et al. 2013; Kennedy & Pennypacker 2014; 

Kenyon et al. 1993; Melendez 2003). In fact, 4EBP deletion has been shown to block lifespan 

extension mediated by caloric restriction in D. melanogaster (Kapahi et al. 2004; Zid et al. 2009). Gene 

mutations of the mTOR signaling pathway in many model organisms have consistently shown 

increases in mean lifespan, thereby demonstrating the importance of understanding the interaction 

between diet, mTOR and ageing [Table 1.6] (Lamming et al. 2013; Evans et al. 2011). Reduced 

mTORC1 signaling has also been shown to be linked with upregulated autophagy (Laplante & 

Sabatini 2009; Salminen & Kaarniranta 2009), mitochondrial oxidative phosphorylation (Guarente 

2008; Bonawitz et al. 2007; Zid et al. 2009), and resistance to stress due to reactive oxidative species 

(Wei et al. 2009), all of which are potential mechanisms linking mTOR with ageing (Evans et al. 

2011). The role of mTOR, particularly due to its function as a dietary protein sensor is of significant 

interest, and is investigated throughout this thesis. 
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Table 1.6. The impact of mTOR-related genes and rapamycin on longevity in model organisms. 

Compiled from (Evans et al. 2011; Lamming et al. 2013; Vaiserman et al. 2016). 

 
Species Gene or drug Change in lifespan 

S. cerevisiae SCH9 (Akt/S6K homolog) 
mutant 

Increase in mean chronological lifespan (30%) 

 SCH9 (Akt/S6K homolog) 
deletion 

Increase in mean chronological lifespan (three-fold) 

 SCH9 (Akt/S6K homolog) 
mutant  

Increase in mean replicative lifespan (18%) 

 SCH9 (Akt/S6K homolog) 
deletion  

Non-significant increase in mean replicative lifespan 

 TOR1 deletion  Increase in mean and maximum replicative lifespan (20%)  

Increase in median chronological lifespan (2.7-fold) 

 Rapamycin Increase in chronological lifespan (54%)  

Increase in replicative lifespan (15-19%) 

C. elegans TOR (let-363) RNAi Increase in mean lifespan (2.5-fold) 

 Raptor (daf-15) heterozygous Increase in mean lifespan (30%) and maximum lifespan 
(19%) 

 S6K (rsks-1) RNAi Increase in mean lifespan (12%–47%) 

 S6K (rsks-1) deletion mutant Increase in mean lifespan (15%) 

 TOR (let-363) RNAi Increase in mean lifespan (15%–44%) 

 S6K (rsks-1) RNAi Increase in mean lifespan (22%) 

 S6K (rsks-1) deletion mutant Increase in mean lifespan (9%) 

 TOR (let-363) RNAi Increase in mean lifespan (10%) 

 Rictor (rict-1) deletion mutant  Decrease in median lifespan (24%–43%) and maximum 
lifespan (21%–32%; normal diet, 25°C) 

Increase in mean lifespan (4%–34%) and maximum 
lifespan (7%–39%; nutrient-rich diet, 25°C) 

 Rictor (rict-1) RNAi Increase in mean lifespan (12%–33%; normal diet, 20°C) 

 Raptor (daf-15) RNAi Increase in mean lifespan (7%–21%) 

 Rag-GTPase (raga-1) RNAi Increase in mean lifespan (9%–35%) 
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 Rag-GTPase (ragc-1) RNAi Increase in mean lifespan (13%–33%) 

 Rheb (rheb-1) RNAi Increase in mean lifespan (18%–25%) 

 Rapamycin Increase in mean lifespan (19%) 

D. melanogaster dTSC1 overexpression Increase in mean lifespan (14%; males) 

 dTSC2 overexpression Increase in mean lifespan (12% at 29°C, 20% at 25°C; 
males) 

 dTOR overexpression Prevention of eclosion 

 dTOR FRB domain (dominant 
negative) 

Increase in mean lifespan (24% at 29°C, 26% at 25°C; 
males) 

 dS6K dominant negative Increase in mean lifespan (22%; males) 

 dS6K constitutive active Decrease in mean lifespan (34%; males) 

 dTOR mutant (hypomorph) Increase in median lifespan (20%) 

 d4E-BP null Decrease in mean lifespan (males, 30%; females, 17%; 
yeast extract, 5%)  

 d4E-BP overexpression No effect on lifespan (males or females) 

 d4E-BP weak activated No effect (males) and increase in mean lifespan (females, 
14%) 

 d4E-BP strong activated Increase in mean lifespan (males, 11%; females, 22%) 

 dS6K constitutive active Slight, significant decrease in mean lifespan (females)  

 d4E-BP null Decrease in mean lifespan (39%; females) 

 Rapamycin Increases in mean and median lifespans (17%, 23%; rich 
media diet; females only), (54%, 36%; starvation diet; 
females only) 

M. musculus  Loss of S6K1  Increases in mean, median, and maximum lifespans (20%, 
18%, and 10%, respectively; females only) 

 Mtor+/–Mlst8+/– genotype  Increases in mean, median, and maximum lifespans (14%, 
13%, and 18%, respectively; females only) 

 Rapamycin Increase in mean lifespan (8%–26%) 
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Sirtuin pathway 

Since the discovery of the Silent information regulator 2 (Sir2) (Kennedy et al. 1995), genome-wide 

association studies (GWAS) have shown that the SIR2 locus one of the most important regulators of 

replicative lifespan in yeast (Stumpferl et al. 2012). Sir2 homologues in other taxa are collectively 

known as sirtuins, and are a family of NAD+-dependent histone deacetylases (HDAC) and ADP-

ribosyltransferases, which have since been shown to modulate stress responses, disease susceptibility 

and longevity in a variety of species (Giblin & Lombard 2016). In mammals, the sirtuin family 

comprises of seven proteins (SIRT1-7), has become one of the most widely studied nutrient sensing 

pathways (Houtkooper et al. 2012). The various sirtuin proteins localise to different parts of the cell 

and have functions including nutrient sensing, regulation of glucose and lipid metabolism, 

mitochondrial biogenesis and transcription regulation (Michán & Sinclair 2007).  SIRT1 and 6 are 

primarily found in the nucleus, SIRT2 is mainly cytosolic, SIRT3-5 localise to the mitochondria, and 

SIRT7 is found in the nucleolus (Houtkooper et al. 2012). The activity of each sirtuin protein is 

dependent on specific substrates based on its cellular localisation, but in general, regulation is 

controlled by gene expression in response to energy status; caloric restriction upregulates SIRT1 

expression (Nemoto 2004), while high dietary fat downregulates expression (Coste et al. 2008). SIRT1 

is also known to act through its multiple downstream targets, notably FOXO1 and p53, which are 

involved in metabolism and apoptosis respectively (Bonkowski & Sinclair 2016). In mice, SIRT1 

overexpression has also been shown to display a caloric restriction phenotype (Bordone et al. 2007), 

while downregulation has been shown to display an accelerated ageing phenotype (Sommer et al. 

2014). While SIRT1 rose to fame due to its relationship with longevity, studies in other species have 

showed mixed results, with many pro-longevity results being derived in metabolically stressed 

conditions with exposure to high fat diets [Table 1.7] (Bass et al. 2007; Scheibye-Knudsen et al. 2014; 

Kaeberlein & Powers 2007). In humans, gene association studies have found no polymorphisms in 

Sirt1 to be associated with longevity (Razi et al. 2017; Flachsbart et al. 2006). Therefore, while sirtuins, 
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have been shown impact the ageing process, the focus is now on their role in ameliorating metabolic 

disease processes and affecting lifespan through their impact on health (Baur 2010). 

 
 

Table 1.7. The impact of Sirtuins and Sirtuin Activating Compounds (STACs) on longevity and 

caloric restriction. Table compiled from (Bonkowski & Sinclair 2016; Bhullar & Hubbard 2015). 

 

Species  

Sirtuin 
knockout 
shortens 
longevity 

Sirtuin 
overexpression 

extends longevity 

STACs extend 
longevity (% change 

in lifespan) 

Sirtuins 
mediate 

the effects 
of CR on 
longevity 

Sirtuin 
expression 
altered by 

CR 

S. cerevisiae Yes  
(20–50%) Yes (30–50%) Resveratrol (30–70%; 

failed in other studies) 
Mixed 

(Sir2, Hst2) 

Yes; however 
other studies 

showed 
NAD+ levels 

unchanged 

C. elegans Yes  
(~5–10%) 

High expression (2.1 
line 50%); low gene 
copy number (10-

25%), eleven 
independent low 

copy overexpressing 
lines (~5-15%) 

Resveratrol (9–65%; 
failed in other 

studies); SRT1720 
failed 

Mixed Not tested 

D. melanogaster 

Yes 
(~50%); 

No change 
in other 
studies 

Yes (~18–29%; dose 
dependant; fat-body 
type specific); No 

effect in other 
studies 

Resveratrol (8–29%; 
failed in other studies) 

Yes; Fat-
body type 
specific 

Yes 

A. mellifera  Not tested Not tested Resveratrol (33-38%) Not tested Not tested 

N. fuzeri Not tested Not tested Resveratrol (27-59%) Not tested Not tested 

N. guentheri  Not tested Not tested Resveratrol (19%) Not tested Not tested 

M. musculus 

Yes  
(~20– 
50%) 

Elevated 
embryonic/

postnatal 
mortality 

Brain specific Sirt1 
(9–16%); Sirt6 (9-

17%; males) 

Resveratrol (31%; 
high fat diets; failed in 

other studies); 
SRT1720 (~8–22%); 
SIRT2104 (~10%; 

males) 

Yes Yes 
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With regards to lifespan, SIRT1 in particular has been well studied, after its activator resveratrol was 

identified (Baur & Sinclair 2006). Resveratrol, a polyphenol found in red wine, has also been shown to 

improve insulin sensitivity, decrease inflammation, protect against neurodegenerative disorders and 

carcinogenesis, and promote cardiovascular health in both animal models and humans (Cottart et al. 

2013; Smoliga et al. 2013; Liu et al. 2014; Hausenblas et al. 2014). While the effects of resveratrol have 

been shown to mimic the effects of caloric restriction in mammals, the benefits to lifespan have only 

been seen in yeast, worms and flies, and in mice on high fat diets [Table 1.7] (Lagouge et al. 2006; 

Baur et al. 2006). Other sirtuin family members such as SIRT3 and SIRT6 have also been implicated 

in promoting longevity, however the bulk of evidence suggests that sirtuins act mainly to improve 

health outcomes rather than directly on lifespan (Guarente 2011). Furthermore, many Sirtuin 

Activating Compounds (STACs), including resveratrol, have been found to have multiple effects not 

directly related to SIRT1, raising the question whether the effects of these molecules on lifespan is 

dependent on SIRT1 (Pacholec et al. 2010).  

 

In humans, resveratrol is known to be safe in doses of 1-2mg/day, as these doses can be found in 

dietary sources consumed by the general population (Smoliga et al. 2012). On the other hand, while 

studies some have concluded that doses up to 450mg/day may be safe in 60kg individuals (Williams et 

al. 2009), the optimal dose remains unclear for healthy individuals (Brown et al. 2010). This is because, 

while resveratrol has been shown to ameliorate metabolic (Bhatt et al. 2012; Magyar et al. 2012; 

Crandall et al. 2012) and neurodegenerative disease processes ( Sun et al. 2010), human clinical trials 

have not shown the same degree of positive outcomes (Yoshino et al. 2012; Bo et al. 2013). These 

clinical trials have been thoroughly reviewed by (Novelle et al. 2015). Further studies are needed to 

evaluate optimal dosage, safety and efficacy of STACs prior to their use as a pro-longevity agent. The 

role of the sirtuin pathway in ageing, and its relationship with diet is therefore a key area of interest of 

this thesis.  
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Insulin, IGF-1 and growth hormone axis 

One of the first pro-longevity gene mutations discovered was a PI3K (age-1) mutation in C. elegans 

(Friedman & Johnson 1988), and subsequently the knockout of insulin receptor (daf-2), which is 

upstream of PI3K, was also shown double lifespan in the nematode (Kenyon et al. 1993). Similar 

results have been demonstrated in a variety of species, through various alterations to the insulin, 

insulin-like growth factor-1 (IGF-1) and growth hormone (GH) pathway; collectively known as the 

Insulin and IGF-1 Signaling (IIS)/GH axis (Tatar 2001; Svensson et al. 2011; Holzenberger et al. 

2003; Fontana et al. 2010). GH is secreted by the anterior pituitary gland in response to hypothalamic 

release of Growth Hormone Releasing Hormone (GHRH), and in turn induces production of IGF-1, 

primarily in the liver (Milman et al. 2016). Both GH and IGF-1 have pleiotropic effects on cells via 

GH receptors (GHR), and IGF-1R and insulin receptor (IR) respectively (Junnila et al. 2013). In 

humans, IGF-1 receptor gene polymorphisms have been shown to be correlated with longevity in 

studies of centenarians and octogenarians (Van Heemst et al. 2005; Suh et al. 2008), and life 

expectancy has been shown to be predicted by low circulating IGF-1 levels in long-lived individuals 

(Milman et al. 2014). Currently, the only pharmacological agents that target the IIS/GH axis are 

monoclonal antibodies (mABs) against IGF-1 receptor (IGF-1R), somatostatin analogues, and the 

GH receptor (GHR) antagonist pegvisomant used in the treatment of acromegaly (Longo et al. 2015). 

While multiple oncological clinical trials using IGF1R mABs have been performed (Warshamana-

Greene et al. 2005; Carboni et al. 2009), these agents have not received FDA approval for cancer 

treatment or ageing (Chen & Sharon 2013). Somatostatin analogues are known to have a significant 

side effect profile due to their activity on multiple endocrine pathways (Freda 2002). Pegvisomant has 

been demonstrated to have a much better tolerability (Burt & Ho 2003), and was shown to decrease 

circulating IGF-1 levels in a dose-dependent manner (Kopchick et al. 2002). Caloric restriction, has 

also been shown to reduce the activity of the IIS pathway (Bonkowski et al. 2006; Katic & Kahn 

2005), and transgenic mouse strains with alterations to the IIS/GH axis have been consistently 



 

 52 

documented to modify lifespan [Table 1.8] (Junnila et al. 2013).  

 
Table 1.8. The impact of alterations to IIS/GH axis related genes on longevity in mice. Table 

compiled from (Junnila et al. 2013; Bartke 2005). 

 

Mouse model  
Sample size 

(% of 
control) 

Lifespan change (%)  
Lifespan (days) 

Mutant  Control  

Snell dwarf 25–33 F +42 M +42  F and M 1,178 ± 235  F and M 832 ± 158  

Ames dwarf 33 F +68 M +49  F 1,206±32 M 1,076±56  F 718±45 M 723±54  

lit/lit 50–67 F +25 M +23  F 1,070±127 M 
1,093±186  

F 857±169 M 
886±148  

Ghr –/– <50 F +21 M +40  F 921±41 M 917±55  F 759±41 M 656±67  

Bovine GH 
transgenic 200 M –45 M 425±22  M 773  

GHR 
antagonist 
transgenic 

70 p<0.05 F 839±25 M 790±41  F 771±26 M 758±40  

LI-Igf1–/– 75–100 F +16  F 812±33 (800 ± 33)  F 700±21 (23.0 ± 0.7 
months)  

Pappa–/– 40 F +38 M +38  F and M 960±28  F and M 698±23  

Igf1r+/– 90 F +33 M p<0.05  F 756±46 M 679±80  F 568±49 M 585±69  

Igf1r+/– 90 p<0.05 F 923±21 M 983±21  F 967±29 M 939±24  

Klotho 
transgenic  
(2 strains) 

100 F1 +19 F2 +19 
M1 +20 M2 +31 

F1 829±32 F2 830±29  
M1 858±40 M2 936±47  F 697±45 M 715±44  

Irs1–/– 70 F +17 M p<0.05 F 891±39 M 897±41  F 763±21 M 786±21  

Irs2+/– 100 F +17 M +17  F and M 905±22  F and M 775±10  

Irs2+/– 100 p<0.05 F and M 788±17  F and M 755±22  

Irs2–/– 90 F –26 M –84  F 560±63 M 123±20  F 755±23 M 767±40  

Brain-specific 
Irs2+/– and  
Irs2–/–  

100 (+/–) F +18 M +18 
 (–/–) F +14 M +14 Raw data not presented Raw data not 

presented 

p66shc+/– and 
p66shc–/– 100 

(+/–) F +7 M +7 (+/–) F and M 815±37 
F and M 761±19  

(+/–) F +28 M +28 (–/–) F and M 973±37  
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AMP-activated protein kinase pathway 

Given that the IIS/GH axis acts upstream of mTOR, an integrated starvation response to CR may be 

the mechanism linking these pathways with ageing (de Cabo et al. 2014). Another nutrient-responsive 

sensor is the AMP-activated protein kinase (AMPK) pathway, which has been shown to inhibit 

mTOR through phosphorylation of the RAPTOR subunit of mTORC1 (Potter et al. 2010; Hardie 

2014).  AMPK is a serine/threonine kinase that is activated by increases in cellular AMP:ATP ratio 

(representing low energy states), and acts to increase ATP production  to maintain energy homeostasis 

by activating alternate catabolic pathways, while downregulating biosynthetic pathways such as mTOR 

dependent protein translation (Gowans et al. 2013). This results in increased glucose uptake into 

skeletal muscle via GLUT4 (Kurth-Kraczek et al. 1999; Holmes et al. 1999), increased fatty acid 

oxidation (Merrill et al. 1997), and decreased hepatic gluconeogenesis (Ruderman et al. 2013). In 

addition, AMPK is also known to be involved in metabolic regulation on a larger scale by acting both 

on the hypothalamus to control appetite (Kola 2008; Minokoshi et al. 2004), as well through its role in 

mitochondrial biogenesis and mitophagy via PGC1-α phosphorylation and SIRT1 activation (Cantó et 

al. 2010; Jager et al. 2007). Therefore, given its fundamental role as a sensor of cellular energy and 

nutrient status, AMPK has been implicated in mediating the beneficial effects of CR on ageing (Cantó 

& Auwerx 2011; Stenesen et al. 2013). A decline in AMPK signaling has also been demonstrated to 

occur during the ageing process (Reznick et al. 2007; Hardman et al. 2014; Salminen et al. 2016). 

Pharmacological activators of AMPK such as biguanides, have been shown to delay disease onset and 

ageing in nematodes and mice, but had mixed results in flies and rats [Table 1.9] (De Haes et al. 2014; 

Cabreiro et al. 2013). Metformin is a FDA-approved anti-diabetic biguanide currently being 

prescribed to more than 100 million people worldwide for type II diabetes mellitus (Hardie et al. 

2012), but has been shown to be possibly effective for other human age-related disease processes such 

as  cardiovascular and metabolic disease (Group 1998), cancer (Wu et al. 2014; Coperchini et al. 2015), 

cognitive decline (Ng et al. 2014; Foretz et al. 2014) and frailty (Wang et al. 2017; Valencia et al. 2017). 
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Due its widespread use, and favorable safety profile, a multi-center placebo controlled clinical trial has 

been proposed to study the effects of metformin on ageing (Barzilai et al. 2016; Barzilai et al. 2018). 

Given that microarray studies have shown strong similarities between gene expression patterns seen 

in metformin and CR interventions in mice (Dhahbi et al. 2005), it will be interesting whether similar 

findings occur in humans.  

 

Table 1.9. The impact of biguanides on longevity in model organisms. Table compiled from 

(Vaiserman et al. 2016; Burkewitz et al. 2014). 

 

Model Biguanide Impact on 
longevity 

AMPK 
involved Physiological effects 

C. elegans 

Metformin 36%-40% Yes 
Slowed lipofuscin accumulation; 
increased autophagy, respiration and 
metabolic heat production 

Metformin/
Phenformin 

Up to 36%; 
dose 

dependent 
Yes Altered microbial folate and 

methionine metabolism 

D. melanogaster Metformin No effect Yes Reduced lipid stores, increased 
autophagy 

M. musculus 

Metformin 

4%-38%; 
strain and 

dose 
dependent 

Yes 

Decreased appetite, blood glucose, 
body temperature; increased 
mitochondrial biogenesis, fatty acid 
oxidation, glycolysis and autophagy 

Phenformin 21% Yes No data 

R norvegicus 

Metformin 
No effect 
in Fischer-

344 rats 
No data Reduced body weight 

Buformin 9% No data 1.6 fold reduction in incidence of 
spontaneous tumours 
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Mechanisms of ageing 

Given that multiple dietary, pharmacological and genetic interventions have been shown to delay the 

ageing process in model organisms, the next important step in geroscience is to translate these 

discoveries into humans. Due to the difficulties involved with conducting life-long, or long-term 

studies measuring lifespan and ageing in humans, an approach to this problem is to interrogate the 

mechanistic physiological components involved with ageing as representative outcomes to parallel 

findings in animal models, i.e. surrogate outcomes for ageing. While improvement of lifespan and 

healthspan are the longer-term goals of biogerontology research, these processes can be 

independently studied in shorter time frames to find endpoints that can be therapeutically targeted to 

promote healthy ageing. In 2013, Lopez-Otin and colleagues suggested categorisation of the 

molecular processes underlying ageing into nine hallmarks based on three criteria [Figure 1.9, Table 

1.10] (López-Otín et al. 2013):  

1. Manifestation of the process during chronological ageing,  

2. Aggravation of the process should cause accelerated ageing,  

3. Interventions targeting the process should be seen to impede ageing.  

 

These hallmarks form potential endpoints for clinical trials, and have been found to be useful in 

assessing the impact of interventions on the ageing process (López-Otín et al. 2016). Similarly, the 

trans-NIH Geroscience Interest Group also classified physiological processes into seven ‘pillars of 

ageing’ based on conservation of mechanistic pathways through various species and 

interconnectedness in their impact on the ageing process (Kennedy et al. 2014). Notably, the common 

themes of metabolic and proteostatic imbalance, genetic and epigenetic changes, senescence, and 

intracellular communication have all been demonstrated to be altered through dietary interventions 

such as caloric restrictions in both animal models and humans (Civitarese et al. 2007; Astrup et al. 
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1999; Heilbronn et al. 2006; Lecoultre et al. 2011; Ravussin et al. 2015; Most et al. 2017; Fontana & 

Partridge 2015), thereby advancing the case to interrogate these mechanisms in the context of diet and 

nutrient sensing pathways. Together, Figures 1.8 and 1.10 outline the proposed mechanistic picture of 

how ageing occurs, and the physiological processes underlying it. 

 
 
 
 

 

 

Figure 1.9. The hallmarks of ageing. Primary hallmarks (negative correlation with ageing; source of 

damage) are shown grouped in the bottom right hand corner, antagonistic hallmarks (hormetic; 

responses to damage) are shown grouped in the top left hand corner, and integrative hallmarks 

(aggregated; resulting from changes in the other hallmarks) shown grouped in the top right hand 

corner. Figure adapted from (López-Otín et al. 2016; López-Otín et al. 2013). 
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Table 1.10. Evidence for hallmarks of ageing in S. cerevisiae. Compiled from (Hu et al. 2014; Austriaco 

& Guarente 1997; Kim et al. 1996; Dang et al. 2009; Feser et al. 2010; Reverter-Branchat et al. 2004; 

Erjavec et al. 2007; Unal et al. 2011; Lord et al. 2015; Aguilaniu 2003; Lin et al. 2001; Janssens et al. 

2015; Janssens & Veenhoff 2016; Hughes & Gottschling 2012; McFaline-Figueroa et al. 2011; Xie et 

al. 2012; Laun et al. 2005; Laun et al. 2001; Fehrmann et al. 2013; Kennedy et al. 1994; Smeal et al. 

1996; Mei & Brenner 2015; Dillin et al. 2014)  

Hallmark Observations 

Genomic 
instability 

Accumulation of extra-chromosomal rDNA circles (Sinclair & Guarente 1997) 
Amplification of chromosomal segments (Hu et al. 2014) 
Increase in DNA breaks and genomic translocations (Hu et al. 2014) 
Increase of retrotransposon DNA content (Hu et al. 2014) 

Telomere 
attrition 

Changes in telomere length alters lifespan (Austriaco & Guarente 1997)  
Sub-telomeric genes are subject to transcriptional silencing with age (Kim et al. 1996) 

Epigenetic 
alterations 

Modification to histone acetylation (Dang et al. 2009) 
Loss of silencing at chromosome ends (Kim et al. 1996) 
Histone mRNA and protein level changes (Feser et al. 2010) 
Histone occupancy reduction (Hu et al. 2014) 
Changes to nucleosome positioning (Hu et al. 2014) 

Loss of 
proteostasis 

Increased oxidative stress response proteins (Reverter-Branchat et al. 2004) 
Aggregation of carbonyl-damaged proteins (Erjavec et al. 2007; Unal et al. 2011)  
Altered nuclear pore complexes (Lord et al. 2015) 
Oxidative protein damage (Aguilaniu 2003) 

Deregulated 
nutrient sensing 

Increased gluconeogenesis, decreased glycolysis (Lin et al. 2001) 
Changes in energy metabolism pathways (Reverter-Branchat et al. 2004) 
Altered expression of genes related to metabolism (Janssens & Veenhoff 2016) 

Mitochondrial 
dysfunction 

Altered expression of genes related to mitochondrial function (Janssens et al. 2015) 
Decrease in vacuolar pH and mitochondrial membrane potential, and increased 
mitochondrial fragmentation (Hughes & Gottschling 2012) 
Mitochondrial redox potential decline (McFaline-Figueroa et al. 2011) 
Increased ROS (Z. Xie et al. 2012; Laun et al. 2001) 
Genomic translocations in mtDNA, increase in mtDNA content (Hu et al. 2014) 

Cellular 
senescence 

Induction of apoptotic phenotype and terminal senescence due to oxidative stress and 
ageing (Laun et al. 2005; Laun et al. 2001) 
Increased senescence with age (Fehrmann et al. 2013) 

Stem cell 
exhaustion 

Increased chance of symmetric divisions (Kennedy et al. 1994) 
Reduction in replicative lifespan of daughters (Kennedy et al. 1994) 

Altered 
intercellular 
communication 

Decreased pheromone response (Smeal et al. 1996) 
Altered metabolite levels seen in CR-mediated life extension (Mei & Brenner 2015) 
Benefits of CR seen on neighbouring cells (Mei & Brenner 2015) 
Altered cellular communication with age (Dillin et al. 2014) 
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These hallmarks are classified into primary hallmarks (those with a negative correlation with ageing), 

antagonistic hallmarks (those which are responses to damage, and show a hormetic response; i.e. 

beneficial in low doses, but detrimental in high doses), and integrative hallmarks (aggregated 

responses which resulting from changes in the other processes) (López-Otín et al. 2013). Given the 

focus of this thesis was to investigate the role of nutrient sensing pathways, and its relationship with 

ageing in the context of a large scale dietary study, four main end points; a combination of primary 

and antagonistic hallmarks; are investigated in an attempt to cover as many of the age-related 

physiological changes as possible within the scope of the study [Figure 1.10]. Due to the central role 

of the liver in metabolism and its effects in caloric restriction (Schmucker 1998; Le Couteur et al. 

2010), these four pathways were chosen as major research outcomes for this thesis, as they are known 

to demonstrate well-established age-related phenotypes in the liver (Cogger et al. 2014; McLean & Le 

Couteur 2004). These are discussed in detail in the following research chapters of this thesis: 

1. Gene expression – Chapter 4 

2. Telomere length – Chapter 5.1 

3. Mitochondrial function – Chapter 5.2 

4. Inflammation – Chapter 5.3 

 
Figure 1.10. Proposed end points to be studied to elucidate the mechanisms of for the effects of 

nutrition on ageing within this Thesis.  
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Genomic, epigenetic and proteostatic changes 

A plethora of evidence has shown changes in gene and protein expression during ageing, with over 

10,000 publications on PubMed, and over 2,000 reviews discussing these changes (Moskalev et al. 

2013). These include changes in both nuclear DNA (Gorbunova et al. 2007; Atamna et al. 2000; 

Trzeciak et al. 2012) and mitochondrial DNA (Gredilla et al. 2010; Yang et al. 2008), proteostasis 

(Sands et al. 2017; Rizzi et al. 2016; Labbadia & Morimoto 2015), and epigenetics (Fischer & Riddle 

2018; Schwörer et al. 2016). Many of these effects involve the cellular growth pathways, and are in line 

with changes seen in caloric restriction studies (Carrano et al. 2009; Bishop & Guarente 2007; Vilchez 

et al. 2014).  

 

With nuclear DNA, ageing is associated with accumulation of damage and mutations (Ou & 

Schumacher 2017; Fischer & Riddle 2018), loss of DNA repair mechanisms (Vermeij et al. 2016; Lord 

& Ashworth 2012), increased clonal mosaicism (Jones 2012; Laurie et al. 2012), and changes in gene 

expression patterns (Bahar et al. 2006; Melouane et al. 2018; Kyng & Bohr 2005). Epigenetic changes 

to post-translational histone modifications (Ashapkin et al. 2017; C. Jin et al. 2011), DNA methylation 

pattern shifts (Maegawa et al. 2010; Gopalan et al. 2017), chromatin remodeling (Oberdoerffer & 

Sinclair 2007; Schotta 2004), and transcriptional alterations (Bahar et al. 2006; Smith-Vikos & Slack 

2012), enzymatic modulation of sirtuins (Someya et al. 2010; Zhong et al. 2010) have all been shown 

to be related to ageing, and at the same time, are thought to link with the beneficial effects of CR on 

lifespan (Le Couteur et al. 2011; López-Otín et al. 2013).  

 

Homeostatic mechanisms to maintain the quality of the intracellular proteome including pathways 

related to protein folding, chaperoning, and degradation have also been shown to be altered by the 

aging process and can influence lifespan in animal models (Labbadia & Morimoto 2015; 

Chondrogianni et al. 2015; Yao et al. 2015). Activating enzyme mutations and supplementation of the 
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hexosamine pathway, which produces metabolites used in glycosylation in the endoplasmic reticulum 

and cytosol have demonstrated life extension benefits in C. elegans, (Denzel et al. 2014); 

supplementation of the metabolite glucosamine has been shown to extend lifespan in mice (Weimer 

et al. 2014), and glycoconjugates have even been hypothesised to act as predictive biomarkers for 

human ageing (Dall’Olio et al. 2013; Longo et al. 2015). In addition, genetic manipulation of 

autophagy; which is known to be altered in CR (Mariño et al. 2014; de Cabo et al. 2014);  for instance 

through the Atg5 or Lamp2a genes, have been shown to increase the lifespan of mice (Pyo et al. 2013; 

Zhang & Cuervo 2008). Given the role of AMPK and mTOR on autophagy, and sirtuins on 

epigenetic changes, the interplay between diet, the nutrient sensing pathways and the genome and 

proteasome, are key areas of investigation to improve the understanding of the molecular mechanisms 

underlying ageing (de Cabo et al. 2014; López-Otín et al. 2016).  

 

Telomere length 

Culturing most somatic cell lines have shown a limit to the number of mitotic replications possible 

before entering senescence due to the shortening of telomeres – a concept known as the Hayflick 

limit (Hayflick & Moorhead 1961). Loss of telomere length, is a major cause of replicative senescence 

in non-immortalised cell lines (Nehlin 2016), and telomere related pathologies are associated with 

early onset of diseases such as idiopathic pulmonary fibrosis, aplastic anemia, malignancies and liver 

fibrosis (Blasco 2005). Genetically modified mice with increased or decreased telomere lengths have 

also been shown to have extended or reduced lifespans respectively (Tomás-Loba et al. 2008; 

Armanios et al. 2009). Telomere shortening was therefore proposed as a possible mechanism 

contributing to ageing ( Johnson et al. 1999; Aubert & Lansdorp 2008), although the use of telomere 

length as a biomarker for ageing has shown mixed results in humans (Vidaček et al. 2017; Mons et al. 

2017). Telomere length is also known to vary amongst tissue types proportional to replicative activity, 

with longer telomere lengths in less proliferative somatic tissues such as liver and muscle, and shorter 
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lengths in haematopoeitic cells such as leukocytes (Yui et al. 1998; Gardner et al. 2007). However, 

while absolute telomere length is known to vary, growing evidence suggests that the rate at which 

telomere attrition occurs with age seems to be similar across tissue types (Daniali et al. 2013). The 

process of telomere attrition in ageing is faster in rodents than in humans, and CR and protein 

restriction have both been shown to be associated with longer telomere lengths in mice (Vera et al. 

2013; Tanrikulu-Kucuk & Ademoglu 2012). Taken together, studies in humans and mice have 

consistently shown that nutrition is correlated with changes in telomere length, therefore providing a 

plausible mechanistic link for the effects of nutrition on ageing and health. 

 
 
Mitochondria 

Mitochondria are intracellular organelles that generate chemical energy in the form of ATP. During 

this process, a proton gradient is formed that drives mitochondrial respiration through an electron 

transport chain (ETC), allowing ATP synthesis, while also creating reactive oxygen species (ROS) 

(Harbauer et al. 2014). While it is unclear if progressive mitochondrial dysfunction is a cause of ageing 

or a byproduct, old age is associated with alterations in mitochondrial phenotype, function and 

number, including impairments in ATP production and increased ROS production (Johnson et al. 

1999; Guarente 2008; Sahin & DePinho 2012). Mitochondrial respiratory thresholds are important 

regulators of CR mediated lifespan extension in yeast, while Complex I and IV of the ETC are 

required for the CR mediated lifespan extension in flies (de Cabo et al. 2014; Sahin & DePinho 2010).  

 

Interestingly, paradoxical findings in model species have shown that phenotypes considered to 

correlate with mild mitochondrial dysfunction can, in many cases produce longevity benefits in a 

hormetic fashion (Palikaras et al. 2015; Munkácsy & Rea 2014), through the promotion of longevity 

promoting pathways (Yee et al. 2014). The IIS pathway, mTOR, AMPK and sirtuins are all known to 

have downstream effects on mitochondrial autophagy, biogenesis and activity (Haigis & Yankner 
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2010). Given the complexity in regulation of these processes and their importance in diet and ageing, 

study of the nutrient sensing pathways in the context of mitochondrial biology is also an area of 

interest in this Thesis. 

 

 
Inflammation 

Inflamm-aging, the so-called chronic low-grade inflammation that is associated with ageing tissue is a 

well characterised process, and is associated with upregulation of a multitude of genes, cytokines and 

inflammatory pathways (Cevenini et al. 2013; Franceschi & Campisi 2014). This process is thought to 

be associated with many age-related disorders such as cardiac dysfunction, neurodegeneration, 

myelodysplastic pathologies, metabolic dysfunction, and various hepatic changes (Le Couteur et al. 

2010; Franceschi et al. 2007).  Given its relationship to a multitude of systemic processes, 

inflammation is closely intertwined with mitochondrial function, cellular senescence, gene expression, 

and has many common pathways of action with the aforementioned nutrient-sensing pathways that 

are implicated in ageing (Fulop et al. 2015). Cellular senescence is associated with a pro-inflammatory 

senescence-associated secretory phenotype (SASP), involving the release of cytokines such as 

interleukin 6 (IL6) and tumour necrosis factor-alpha (TNF-α) (Coppé et al. 2010). In humans, pro-

inflammatory glycosylated proteins, associated with changes in proteostasis, have been shown to be 

one of the most well correlated biomarkers of age (Dall’Olio et al. 2013), and inflammation has been 

linked with impairments in nutrient metabolism and metabolic function (Brestoff & Artis 2015; 

Umemura et al. 2014). Over-nutrition has also been seen to be linked with systemic inflammation 

(Franceschi et al. 2007), while CR seems to reduce inflammatory markers (Fontana et al. 2015). Given 

the strong relationship between inflammation, diet and ageing, and the availability of phenotypic 

changes to be studied, inflammation is another key area investigated in this Thesis. 
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The Geometric Framework for Nutrition 

The traditional view of CR has undergone significant change over recent decades, with the role of 

specific macronutrient ratios and dietary regimens appearing to be as important in determining 

lifespan and health as total energy intake per se (Piper et al. 2011; Solon-Biet et al. 2015b). Given the 

complexity of the nutritional system, it has been difficult for reductionist models to analyse the effects 

of diet on ageing using simple control-versus-intervention dietary trials. Disentangling this complexity 

requires a systematic, integrated solution that goes beyond the simple control versus treatment group 

models used in most dietary studies, and a shift towards comparisons of the effects of a very wide 

range of environmental factors such as diet. The Geometric Framework (GF) is a method developed 

by Simpson and Raubenheimer, which was created to solve this problem (Simpson & Raubenheimer 

1993). This framework models the nutritional environment in a n-dimensional Cartesian space, whose 

dimensions correspond to intake variables such as protein, carbohydrates and fat (Raubenheimer et al. 

2016). An animal’s interaction with its nutritional environment can be then be analysed, with outcome 

measures represented as a topographical heatmap. The colour of the heatmap shows the strength of 

the response, for instance median lifespan in Figure 1.11, where red correlates to the highest lifespan, 

and blue represents the lowest lifespan, and the axes represent macronutrients eaten. Similarly, Figure 

1.12 shows the corresponding 3-dimensional representation across the three macronutrients: protein, 

carbohydrates and fat. The peaks and valleys in Figure 1.12 are indicative of the diets studied; since 

not all diets are possible due to certain nutritional balance causing morbidity, only a subset of the total 

space has data points, thereby creating a non-uniform intake space. The power of the GF lies not only 

in visualising the response surfaces, but also in its ability to apply statistical tests to determine 

significance of outcomes relative to the nutritional environment, and analyse optimal conditions to 

maximise these outcomes. This is done by fitting non-parametric thin-plate regression splines using 

generalised additive model (GAMs). A thorough description of the methods used by the GF, its 

development history and progress made in modeling and visualisation tools are discussed in detail in 
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Chapter 3. 

 

 

Figure 1.11. 2D GF response surfaces correlating median lifespan to macronutrient intake. Each 

graph shows the effects of two of macronutrients at the median point of the third macronutrient 

(shown in parenthesis below the X axis label). The response surfaces vary from red which is the most 

negative value to blue which is the most positive value. 

 

 
Figure 1.12. 3D GF response surfaces correlating median lifespan to macronutrient intake. Data 

previously published in (Solon-Biet et al. 2014). 
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Research Aims 

Nutrition has often been the subject of conjectures and ingenious hypotheses—but our actual 

knowledge is so insufficient that their only use is to try to satisfy our imagination. If we could 

arrive at some more exact facts they could well have applications in medicine.  

—François Magendie (1783–1855)  

 

Given the ability of diet to influence lifespan, the aims of this thesis are two-fold. First, to examine 

and build upon the analytical tools required to disentangle the effects of nutrition on health and 

ageing. In order to address this aim, this thesis will discuss the history, development and progress 

made in methods of applying the Geometric Framework to large and diverse data sets in Chapter 3. 

Second, the thesis aims to investigate the mechanisms that drive ageing, by looking at the roles of 

nutrient sensing pathways, their regulation as a result of diet, and their impact on longevity and age-

related outcomes. This aim was addressed primarily by studying tissue samples from a large dietary 

study of 858 mice, which has generated multiple publications previously (Solon-Biet et al. 2016; Le 

Couteur et al. 2014b; Solon-Biet et al. 2015c; Holmes et al. 2016; Gokarn et al. 2017; Gokarn et al. 

2018). This set of work consists of transcriptome analysis of hepatic and hypothalamic tissue to 

investigate the impact of diet on gene regulation (Chapter 4), and its impact on telomere length, 

mitochondrial function, and inflammation (Chapter 5).  

 

This thesis comprises of a novel set of work studying the regulation of nutrient sensing pathways and 

their impact on longevity and age-related end points through the paradigm of a dietary intervention. 

This study therefore represents a key step in understanding the mechanisms by which macronutrient 

intake influences the ageing process, and provides a basis for translational trials and guidelines to 

promote healthy ageing in humans. 
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Chapter 2: General Methods 
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Gokarn et al. 2018). The gene and protein expression studies performed on the tissue samples 

described in Chapters 4 and 5 were undertaken as part of this thesis. As the purpose of this thesis was 
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thesis. Analytical methods related to the Geometric Framework are presented in detail in Chapter 3, 

as development of these methods was a major component of this thesis.  
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Animals and husbandry 

858 three week old C57BL/6 male and female mice (Animal Resources Centre, WA, Australia) were 

housed three per cage in standard approved cages (Tecniplast, Varese, Italy) in the Molecular 

Physiology Unit of the ANZAC Medical Research Institute which is an SPF facility designed for 

housing transgenic mouse. A custom-designed 2-chamber Perspex insert, designed to collect food-

spillage, was placed beneath the food hopper of each cage to collect food waste for quantification. 

Mice were maintained at 24-26°C and 44-46% humidity under a 12h:12h light-dark photoperiod, with 

lights on at 0600. All protocols were approved by the Sydney Local Health District Animal Welfare 

Committee (Protocol No. 2009/003). 

 

30 experimental diet treatments were custom-designed and manufactured in dry, pelleted form by 

Specialty Feeds [Table 2.1]. The diet treatments addressed both nutritional quantity as well as quality. 

To manipulate diet quantity, indigestible cellulose was added to diet treatments, yielding 3 total energy 

(caloric) density regimes fixed at 8, 13 and 17 kJ g-1 (referred to as low, medium and high energy).  

 

Food intake was measured weekly for 6 months followed by monthly thereafter and corrected for 

spillage and water content. Mice were checked daily and body weight measurements were recorded to 

correspond with food intake measurements. Animals losing more than 20% body weight were culled 

and the corresponding diets discontinued.  
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Experimental diets 

30 experimental diet treatments were custom-designed and manufactured in dry, pelleted form by 

Gordon’s Specialty Feeds, Sydney, Australia. The diet treatments addressed both nutritional quantity 

as well as quality and represented a wide range of macronutrient ratios that systematically sampled a 

protein, carbohydrate and fat simplex. To manipulate diet quantity, indigestible cellulose was added to 

diet treatments, yielding 3 total energy (caloric) density regimes fixed at 8, 13 and 17 kJ g-1 (referred to 

as low, medium and high energy). After approximately 13 weeks of experimental feeding, an increased 

incidence of rectal prolapse was observed on some of the lowest protein diets, which has previously 

been attributed to dietary methionine deficiency (< 0.15% of diet) (Sun et al. 2009; Miller et al. 2005). 

Animals with severe rectal prolapse were culled and these diets also discontinued due to ethical 

concerns. In total, five diets were discontinued, leaving a total of 25 experimental diets for the 

remainder of the study.  

 
Table 2.1. Experimental diets. aDiets 2 (low energy) and 6 (medium energy) were discontinued within 

23 weeks. bDiets 3 (low energy), 3 (medium energy) and 6 (low energy) were discontinued within 10 

weeks of treatment. These diets were discontinued due to weight loss (≥ 20%), rectal prolapse or 

failure to thrive.  

Diet 1 2
a
 3

b
 4 5 6

a
 7 8 9 10 

%P 60 5 5 33 33 5 14 14 42 23 
%C 20 75 20 47 20 48 29 57 29 38 
%F 20 20 75 20 47 48 57 29 29 38 

Low energy 
(8 kJ g-1) 

P 5.03 0.42 0.42 2.77 2.77 0.42 1.17 1.17 3.52 1.93 
C 1.67 6.28 1.67 4.02 1.67 4.02 2.43 4.77 2.43 3.18 
F 1.67 1.67 6.28 1.67 4.02 4.02 4.77 2.43 2.43 3.18 

Medium 
energy  

(13 kJ g-1) 

P 7.54 0.63 0.63 4.15 4.15 0.63 1.76 1.76 5.28 2.89 
C 2.51 9.41 2.51 6.02 2.51 6.02 3.64 7.15 3.64 4.77 
F 2.51 2.51 9.41 2.51 6.02 6.02 7.15 3.64 3.64 4.77 

High 
energy  

(17 kJ g-1) 

P 10.06 0.84 0.84 5.53 5.53 0.84 2.35 2.35 7.04 3.86 
C 3.35 12.55 3.35 8.03 3.35 8.03 4.85 9.54 4.85 6.36 
F 3.35 3.35 12.55 3.35 8.03 8.03 9.54 4.85 4.85 6.36 
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Over their lifetime, mice were ad libitum-fed one of 25 diets varying in content of protein, 

carbohydrate and fat. Food intake was measured once per week for 6 months followed by once per 

month measurements thereafter and corrected for spillage and water content. Mice were checked daily 

and body weight measurements were recorded to correspond with food intake measurements.  

 

The % of protein (P), carbohydrate (C) and fat (F) (as a % of total energy) is shown in Table 2.1. 

Each diet was replicated at 8 kJ g-1 (low energy), 13 kJ g-1 (medium energy) and 17kJ g-1 (high energy). 

Diets varied in content of P (casein and methionine), C (sucrose, wheat-starch and dextrinised 

cornstarch) and F (soya bean oil). All other ingredients were kept similar. Other ingredients include 

cellulose, a mineral mix (Ca, P, Mg, Na, C, K, S, Fe, Cu, I, Mn, Co, Zn, Mo, Se, Cd, Cr, Li, B, Ni and 

V) and a vitamin mix (vitamin A, D3, E, K, C, B1, B2, Niacin, B6, pantothenic acid, biotin, folic acid, 

inositol, B12 and choline).  

 

Body Composition 

Body composition was assessed in 180 mice across all diets by dual-energy x-ray absorptiometry 

(DEXA) using the GE PIXImus2 Series Densitometer (GE Medical Systems Ultrasound and BMD, 

Bedford, United Kingdom) under general anaesthesia (intraperitoneal ketamine:xylazine) immediately 

prior to culling. 

 

Plasma insulin and leptin  

Plasma insulin levels were measured using the Ultrasensitive Mouse Insulin ELISA Kit (Alpco 

Diagnostics, Salem, NH). Plasma leptin levels were quantified using the Mouse Leptin ELISA Kit 

(Millipore, St. Charles, MO).  
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Plasma amino acids and fatty acids 

Amino acids were analysed at the Australian Proteome Analysis Facility, Macquarie University, using 

the Waters AccQTag Ultra chemistry (Waters Corp, Milford, MA). Plasma fatty acids were measured 

by gas chromatography-mass spectrometry (GCMS) at the Bio21 Institute, University of Melbourne. 

 

Blood lipids and biochemistry  

Blood cholesterol, triglycerides, HDLc, LDLc, liver function tests (alanine transaminase, aspartate 

aminotransferase, gamma-glutamyl transpeptidase) and creatinine were performed at the Concord 

Hospital Pathology Department.  

 

Extraction of Liver DNA, RNA, and protein 

Frozen liver tissue samples were sectioned into 10mg blocks 

and homogenised using a TissueLyser LT (Qiagen, Hilden, 

Germany). DNA, RNA, and protein were extracted as per the 

protocol listed in the Qiagen AllPrep DNA/RNA/Protein 

Mini Handbook. RNA was eluted into RNase-free water, 

quantified by spectrophotometry using a NanoDrop (Thermo 

Scientific, Waltham MA) at 230/260/280nm and stored at -

70°C. DNA concentration was also measured 

spectrophotometrically and stored at -20°C. Protein was 

pelleted and stored at -20°C.  

Figure 2.1. Procedure flowchart. Figure from Qiagen AllPrep 

DNA/RNA/Protein Mini Handbook. 
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Western blots for mTOR and phosphorylated-mTOR  

Protein pellets were resolubilised in SDS-PAGE buffer with protease inhibitor tablets (cOmplete, 

EDTA-free Protease Inhibitor Cocktail; Roche, Basel, Switzerland). Concentration of protein was 

quantified using bicinchoninic acid (BCA) assay (Thermo Scientific BCA Protein Assay Kit) and 

standard curves were developed with bovine serum albumin (BSA) controls. Samples were then 

diluted to a 2mg/mL concentration in 100uL volume of Laemmli buffer and 50 mM TCEP 

BondBreaker (Thermo Scientific). 20µg of protein was separated on 4-15% gradient mini-protean 

TGX gels (Bio-Rad). Gels were transferred onto nitrocellulose membranes at 25 V, 2.5 A for 10 min 

on a Trans-Blot Turbo transfer system (BioRad, Hercules, CA). Membranes were blocked for 1 h in a 

5% skim milk solution of Tris-buffered saline (TBS). Membranes were washed three times for ten min 

each, in wash buffer (TBS containing 0.1% Tween-20), and incubated overnight in primary antibody 

solution (5% BSA, TBS 0.1% Tween 20). Membranes were washed three times as before, and 

incubated for one hour in secondary antibody solution (5% skim milk solution of TBS 0.1% Tween, 

0.01% SDS). Membranes were washed three times as before, rinsed in water and analysed on a licor 

odyssey system. Densitometry was performed using licor software and results were exported using 

Prism (GraphPad) to excel sheets for further analysis. Antibodies used were total mTOR (Cell 

Signaling 4517 L27D4), phospho-Ser2448 mTOR (Cell Signaling 5536 D9C2) and α-tubulin (Sigma 

T6199, clone DM1A). 

 

Gene expression and microarray 

Frozen hypothalamus blocks from 24 mice (one male per group) and liver samples from 48 mice (one 

male and female per group, with low energy groups having less representation due to their 

proportional discontinuation as experimental diets as outlined above) were sectioned into 10mg 

segments. Total RNA was extracted using the Trizol method (Sigma) and quantified 
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spectrophotometrically using a NanoDrop (Thermo Scientific) at 230/260/280nm. RNA integrity 

from both hypothalamic and liver samples was verified using a Bioanalyzer (Agilent). 48 male liver 

samples (two per diet group) and 24 male hypothalamic samples (one per diet group) with an RIN>7 

were analyzed by Affymetrix Mouse Gene ST array. Liver microarray was performed at the Ramaciotti 

Centre for Genomics, University of New South Wales; GEO: GSE85998 – for publication in (Solon-

Biet et al. 2016).  Gene expression data was corrected by Bonferroni adjustment and normalised to 

actin. Liver samples that had undergone microarray assays were run on qPCR plates using the RT2 

profiler array using the Mouse Insulin Signaling Pathway kit (Qiagen – catalogue no.  PAMM-030Z). 

A pooled sample was serially diluted, and as a standard curve in the Fluidigm Biomark software for 

PCR analysis. 

 
Telomere length  

Average telomere length was measured from total genomic mouse DNA by using a real-time 

quantitative PCR method as described (Cawthon 2002). The results were normalised using the acidic 

ribosomal phosphoprotein PO (36B4) gene, which is well conserved and has been used for gene-

dosage studies. Primer sequences for 36B4 and telomeric repeats were as previously outlined (Callicott 

& Womack 2006). Forward and reverse telomeric primers were 5′ CGG TTT GTT TGG GTT TGG 

GTT TGG GTT TGG GTT TGG GTT 3′ and 5′ GGC TTG CCT TAC CCT TAC CCT TAC CCT 

TAC CCT TAC CCT 3′ respectively. Forward and reverse primers for the 36B4 gene were 5′ ACT 

GGT CTA GGA CCC GAG AAG 3′ and 5′ TCA ATG GTG CCT CTG GAG ATT 3′, respectively. 

Each reaction for the telomere portion of the assay included 12.5 µl Sybr Green PCR Master Mix 

(Sigma), 300 nM each of the forward and reverse primers and 20 ng genomic DNA. All PCRs were 

performed in duplicate. Master mix concentrations for the 36B4 portion contained 12.5 µl Sybr Green 

PCR Master Mix (Applied Bio- systems), 300 nM forward and reverse primers. A real time 

thermocycler (Roche LightCycler 480) was used with conditions as: 95 °C for 5 minutes followed by 
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45 cycles of 95°C for 10 s, with 60°C annealing for 15 seconds, followed by extension at 72 °C for 20 

seconds for the 36B4 gene, and 95°C for 5 minutes followed by 45 cycles of 95°C for 10 seconds, 

with 68°C annealing for 15 seconds, followed by extension at 72°C for 15 seconds for the telomere 

PCR. To serve as a reference for standard curve calculation, a pooled sample of mouse DNA from all 

183 samples was serially diluted over a 10-fold range, from 1 to 100 ng per well. Standard curves for 

36B4 and telomeric repeats were used for absolute quantification of samples using LightCycler 

software.  

 
 
Mitochondrial function 

Mitochondrial functions were assessed in liver tissue (n=170) using the Seahorse XF Extracellular 

Flux Analyzer which generates the key parameters of mitochondrial function using fresh isolated 

mitochondria from homogenised liver tissue: basal respiration, ATP production, proton leak, maximal 

respiration, glycolysis and spare respiratory capacity. Different conditions were used to measure the 

mitochondrial oxygen consumption e.g. by providing different combinations of substrates (pyruvate-

malate, glutamate-malate, succinate-rotenone, palmitoyl carnitine-malate) to the electron transport 

system. State III was monitored after injection of ADP and State IVo after injection of oligomycin. 

Respiratory Control Ratios (RCR) were calculated as State III/State IVo. Mitochondrial amount as 

well as substrate, ADP, and inhibitor concentrations were optimised prior to experiments. Hydrogen 

peroxide production was measured with an Amplex Red kit (Eugene, OR) using the same substrates 

as for mitochondrial respiration. Hydrogen peroxide production and enzymatic activities (3-

Hydroxyacyl Coenzyme A dehydrogenase, aspartate aminotransferase and citrate synthase) were 

measured spectrophotometrically on the same mitochondrial isolations. Citrate synthase activity was 

used to normalise the results, which are therefore expressed as mitochondrial function per 

mitochondrion. 
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Mitochondrial PCR 

Mitochondrial copy number was estimated from genomic mouse mtDNA by using a real-time 

quantitative PCR method previously described (Uddin et al. 2016). The results were normalised using 

the acidic ribosomal phosphoprotein PO (36B4) gene, which is well conserved and has been used for 

gene-dosage studies. Forward and reverse cytochrome b primers were 5′ 

CCCACCCCATATTAAACCCG 3′ and 5′ GAGGTATGAA GGAAAGGTATTAGGG 3’ 

respectively. Forward and reverse primers for the 36B4 gene were 5′ ACT GGT CTA GGA CCC 

GAG AAG 3′ and 5′ TCA ATG GTG CCT CTG GAG ATT 3′, respectively. All PCRs were done in 

triplicate. To serve as a reference for standard curve calculation, a pooled sample of mouse mtDNA 

from all 183 samples was serially diluted over a 10-fold range, from 1 to 100 ng per well. Standard 

curves for 36B4 and cytochrome b were used for absolute quantitation of samples using LightCycler 

software.  

 

Data analysis, visualisation and statistics 

All data analysis was based on macronutrient intake, primarily kilojoules per mouse per day 

(kJ/mouse/day), unless otherwise stated. Data was processed by fitting of GAMs with thin-plate 

splines to model responses relative to macronutrient intake in protein, carbohydrates, and fat. Full 

data analytic methods for evaluation of statistical significance and visualisation are described in 

Chapter 3.  
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Chapter 3: Methods – Developing analytical tools 
for the Geometric Framework 

 

For the better part of the last three decades, the Geometric Framework (GF) has been used to 

untangle the complex interactions between an animal and its nutritional environment (Raubenheimer 

& Simpson, 1993; Simpson & Raubenheimer, 1993). Since its conception, the application of the GF 

has evolved considerably, from a theoretical paradigm, to become an invaluable functional tool for the 

analysis and visualisation of data. This has allowed the GF to be used in a variety of experimental 

models, from being applied to behavioural dynamics in animal-environment interactions, to 

mechanistic studies in biological research. Given the complexity of the nutritional system, it has been 

difficult for reductionist models to analyse the effects of diet on ageing. The GF models a nutritional 

environment in a n-dimensional Cartesian space, whose dimensions correspond to variables such as 

macronutrient uptake (Raubenheimer et al. 2016). In this space, an animal’s interaction with its 

nutritional environment can be analysed, with outcome measures represented as a topographical 

response surface overlaying the n-dimensional nutrient space. 

 

Here, the evolution of the GF is reviewed, and the expansion of this model through this thesis is 

discussed, with specific reference to data handling techniques and integration of algorithms to 

improve visualisation and analysis of experimental data. Overall, a new iteration of the GF script is 

created in R, which can automate analytical methods for large data sets through an easily accessible 

interface that can be used for a wide array of scientific purposes, and lead to potential future 

applications such as its use in personalised nutrition in humans. While this application is not explored 

here, the methodological approach can be conceptualised through the use of personalised goal-

seeking optimisation tools that find local maxima and minima specific to the individual response 

surfaces of a subject.  
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This chapter will review concepts from nutritional ecology theory and R script coding functions, to 

explain the logic and workflow used by the Geometric Framework in its application to nutritional and 

ageing research. The algorithms and data handling methods discussed here were developed through 

multiple iterations. Novel analytical tools developed for the GF as part of this thesis include:  

1. Automation of the GF for large data sets 

2. 3-dimensional visualisation of response surfaces 

3. Correlation of data analysed through the GF, particularly for gene expression analysis 

 

Background 

In complex systems, the interplay between multiple elements makes reductionist or segmented studies 

difficult to interpret. For instance, manipulation of diet may lead to changes in the lifespan of an 

animal, but there may be a number of mechanisms underlying this change, each of which, if 

manipulated individually, may not produce the desired outcome [Figure 3.1]. While the GF was 

initially intended to study the role of nutrition, or other variable factors on sets of outcomes, major 

developments have taken place since its inception, which have bridged systemic and mechanistic 

approaches to analyse data. 

 

Figure 3.1. Mechanisms are often considered a black-box in ageing research due to the complexity in 

the interactions between the experimental inputs and response outcomes. 
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The most important of these was the fundamental paradigm shift away from the control versus 

treatment experimental model traditionally used in biological research, to analysis of systems as a 

whole. This is done by creating an n-dimensional Cartesian space, whose axes are represented by 

multiple variables of interest, where rather than comparing individual groups, a response surface is 

fitted by non-parametric regression modeling, effectively allowing comparison of all groups at once, 

thus substantially improving the predictive and explanatory power (Raubenheimer et al. 2016). This 

allows the effect of each variable axis on an outcome to be studied, both in isolation, as well as in 

combination with other axes. An example is illustrated in Figures 3.2 & 3.3, and Table 3.1 [data 

presented and discussed in Chapters 4 & 5]. Here, the 3-spatial axes represent macronutrient intake 

(Protein – P, Carbohydrates – C, Fat – F), and the topographical heatmap represents outcome.  

 

Figure 3.2. 2D GF plots for average liver telomere length ratio (ATLR).  

 

 

Figure 3.3. 2D GF plot for hepatic gene expression of Neuropeptide Y (NPY).  
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The GF plots above show two examples of how response surface fitting is beneficial to interpretation 

of the data. In Figure 3.2, there is a clear relationship to carbohydrates, as seen by the gradient lines 

being perpendicular to the carbohydrate axis, with response signal maximal at high C intake, and 

minimal with low C intake. Analysis of the Generalised Additive Models (GAMs) shows this to be a 

statistically significant result [Table 3.1].   

 

On the other hand, with Figure 3.3, there is a mixed response to the macronutrient axes, and it is 

difficult to know which dimensions are relevant to the response signal. While it may seem like protein 

and fat are the drivers of NPY gene expression here, given the perpendicular gradient lines to each, 

neither of these are statistically significant, and in fact it is the ratio of P:C eaten that is the significant 

factor for NPY expression [Table 3.1]. This example is used only to demonstrate the power of the 

GF, and further analysis of gene expression data is discussed in Chapter 4. 

 

Table 3.1. Statistical significance table, with p-values calculated from GAM surface fits for ATLR and 

NPY relative to the macronutrient axes, and macronutrient ratios. 

p-value P C F P:C P:F C:F 

ATLR 0.20 0.04 0.45 0.24 0.59 0.58 

NPY 0.36 0.59 0.39 0.41 0.01 0.44 

 
 

Taken together, this shows two things: 

1. The GF is able to be used on experiments with multiple continuous or disjointed data 

variables such as diet, exercise, temperature in the same analysis, through the creation of an 

n-dimensional variable environment that corresponds to the response being studied 

2. The GF is therefore able to examine the effect of input variables both in isolation, as well as 

in combinations with other variables, greatly increasing its power to analyse results 
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Evolution of the Geometric Framework 

The GF was initially designed to study local optima within a nutritional space, to examine appetite 

interactions on feeding behaviors and their correlation to physiology and health in various species. 

This was used to derive evidence for aspects such as the functional, ontogenic and evolutionary basis 

of innate homeostatic mechanisms that existed within species (Simpson & Raubenheimer 1993). An 

early example of this concept is Figure 3.4, where an early GF model was used to predict the 

phagostimulatory surface of locusts, which were fed diets varying in P:C content (Raubenheimer & 

Simpson 1997). Early models such as these were primarily based on behaviour, as the predicted 

response surfaces were based on intake targets and protein leverage, concepts which were relatively 

well established at the time (Simpson & Raubenheimer 1995). 

 
Figure 3.4. Predicted phagostimulatory surface for locusts fed diets varying in P:C ratio. Figure from 

(Raubenheimer & Simpson 1997). 
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As the model evolved, target points in the nutrient space encompassed both static points integrated 

over a period of time for cohort analysis, or dynamic paths over time for individual analysis (Simpson 

& Raubenheimer 1999). This helped expand the GF from solely analysing nutritional requirements, to 

also being able to compare amongst organisms, multivariate metrics such as metabolism, growth and 

lifespan, and their relationships to nutrition (Simpson et al. 2003). 

 

At this point, the GF was powerful enough to be able to revisit the question of which components of 

dietary restriction were most important, and answer the fundamental question ‘caloric restriction 

relative to what?’. Until this stage, the major barrier impeding the unraveling of the effects of CR was 

the lack of a conceptual framework from which to analyse experimental results. Since restriction 

implied a relative decrease, traditional approaches of control versus treatment models were inherently 

flawed, as they had to assume a control diet, and an arbitrary restriction relative to this. An example of 

this limitation is represented in Figure 3.5. Here, a study had seemingly showed that caloric restriction 

rather than protein restriction prolonged lifespan in rats (Davis et al. 1983). However, further analysis 

reveals another interpretation, that the relationship is not linear, but part of a more complex surface 

with a peak of 75kJ protein and 150kJ non-protein energy intake (Simpson & Raubenheimer 2007). 
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Figure 3.5. Analysing the findings of Davis et al 1983.  Figure from (Simpson & Raubenheimer 

2007). 

 

Figure 3.6. Parametric non-linear surface fitting of lifespan and lifetime egg product responses to 

diets varying in P:C ratio. Figure from (Lee et al. 2008). 

 

Convincingly separating CR versus nutrient specific effects was demonstrated for one of the first 

times in 2008, from data collected in Drosophila, through Lande-Arnold regression estimation of a 

parametric non-linear response surface (Lee et al. 2008). Responses were compared by using partial F 

tests based on pair fitness components. In the same paper however, non-parametric thin-plate splines 

were fitted for data visualization, as seen in Figure 3.6.  

 

Non-parametric regression allowed the shape and form of the predictor used to create the surface to 

not be confined, but rather derived from the data itself. At this stage however, the non-parametric R 

script techniques (‘fields’ package in R) used were not appropriate to run statistical analysis with, and 

so they were simply used for visualisation. Both methods used multiple regression analysis, which 
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allows computation of selection coefficients that have clear biological interpretations about forces of 

selection (Palacio et al. 2014). Generalised additive models (GAMs) with thin-plate splines using the 

‘mgcv’ package in R was the next major step in the evolution of the GF, because this was able to 

perform log-likelihood testing to compare nested models, allowing the response surface to be 

analysed for direct effects, two-way interactions and three-way interactions, as needed (Wood 2003; 

Wood 2006; Wood 2011). GAMs are statistical models where the relationship between predictors and 

response variables are not constrained by the assumption of a normal distribution, and are instead 

generalised to encompass linear, non-linear, and even additive models. The only drawback of this 

approach was that it required larger sample sizes compared to standard parametric regression models, 

because the data not only was used for analysis, but to identify the appropriate parameter, or predictor 

model itself. This development in statistical protocol, while not necessarily a pre-requisite for working 

on herbivorous insects; for which protein and carbohydrate are generally considered the two main 

energy-yielding axes; allowed much greater analytic power when using the third nutritional dimension 

of fat in the cases of omnivorous mammals. This propelled the GF from being applied primarily on 

insect models, to a wider range of organisms including humans (Raubenheimer et al. 2016). 

 

Finally, we arrive at the latest iteration of the GF, which has been used to publish multiple papers in 

recent years, including the breakthrough mammalian results from a large scale dietary study in mice, 

which showed that macronutrient ratios were more important than caloric intake in mediating the 

lifespan and health benefits of CR (Solon-Biet et al. 2014). An example is reproduced here in Figure 

3.7, with table of statistical significance attached. While it is possible to analyse this response surfaces 

relative to statistical analysis alone, the directionality of a correlation can be better understood through 

visualisation of colour (i.e. upregulation in red vs. downregulation in blue in the example below). 

Interpretation of these response surfaces depends largely on the relationship between the 

topographical gradient lines, or isoclines, and the macronutrient axes. 
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p-value P C F P:C P:F C:F 

mTOR 0.03 0.48 0.53 0.08 0.70 0.54 

Figure 3.7. 2D GF response surfaces correlating mTOR activation to macronutrient intake. Figure 

generated using custom GF script in R. Data previously published in (Solon-Biet et al. 2014). Full 

analysis of this result is presented and discussed in Chapter 4. 

 

One of the few drawbacks of this method was that each of the three slices that are used to visually 

represent the information are cut through the median of the third axis. For instance, in the left-most 

slice of Figure 3.7, the Protein vs. Carbohydrate plot, the slice is taken through the median of the Fat 

axis, indicated by the subtitle (Fat: 11). This means that while the statistical analysis may have been 

relatively sound, the visual representation may not present the full picture, since the visualisation is 

performed through slices at median points, which may have missed the key findings. In this chapter, 

the application of the GF is taken one step further, to a 3-dimensional visualisation (technically 4-

dimensional, as the overlaid topographical heatmap represents the response axis). This too is 

imperfect as the topographical map is highly dependent on the number of data points in the 3-

dimensional nutritional space, making the surface ‘bumpy’, and raising questions about what degree of 

mathematical smoothing is required to fit the data. An example of this visualisation is shown in Figure 

3.8, and is the 3-dimensional correlate of the 2-dimensional mTOR surfaces presented in Figure 3.7. 
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Figure 3.8. 3D GF response surfaces correlating mTOR activation to macronutrient intake. Figure 

generated using custom GF script in R. Here, peaks and valleys in the nutritional space represent 

dietary compositions, with colours at each point representing response output; in this case mTOR 

activation. The red areas represent highest mTOR activation, while the blue areas represent lowest 

mTOR activation. The 2D correlate of this plot is shown in Figure 3.7, as slices cut orthogonally to 

one dimension through its median point (Fat: 11, Carbohydrate: 13, Protein: 10). 
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New developments in statistical analysis of data through the GF 

The ‘mgcv’ package implementation of the GAM function fits thin-plate penalised regression splines 

to the data, using smooth functions designed to be optimal, in this case through a Laplace 

approximation to the Restricted Maximum Likelihood (REML) statistic (Wood 2011). This package is 

unique to other GAM packages in R, as it uses: 

1. Estimation of degree of smoothness is part of model fitting 

2. A Bayesian approach to variance estimation is used, improving confidence interval 

calculation 

3. Penalisation on the calculated parameters to prevent over fitting, and improve efficiency 

4. A highly customisable framework to allow different methods and models of fitting 

 
Here, an example set of data is used to demonstrate the full use of the current iteration of the GF, 

with detailed explanations of data handling methods, and use of R packages. All code, data 

visualization, and statistical modeling is handled through the R language, using R Studio as the 

graphical user interface (GUI).  

 

Numerous packages were used in this application of the GF, whose names, versions and associated 

packages are listed here using the ‘sessionInfo()’ function: 

> sessionInfo() 

R version 3.3.1 (2016-06-21) 

Platform: x86_64-apple-darwin13.4.0 (64-bit) 

Running under: OS X 10.11.6 (El Capitan) 

locale: 

[1] en_AU.UTF-8/en_AU.UTF-8/en_AU.UTF-8/C/en_AU.UTF-8/en_AU.UTF-8 

attached base packages: 

[1] grid      stats     graphics  grDevices utils     datasets  methods   base      
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other attached packages: 

[1] Hmisc_4.0-2     ggplot2_2.2.1   Formula_1.2-1   corrplot_0.77  fields_8.4-1    

maps_3.1.1      spam_1.4-0      akima_0.5-12    rgl_0.96.0      

[10] plot3D_1.1      survival_2.40-1 ellipse_0.3-8   lattice_0.20-34 sp_1.2-3        

mgcv_1.8-15     nlme_3.1-128    xtable_1.8-2    

loaded via a namespace (and not attached): 

[1] Rcpp_0.12.7         RColorBrewer_1.1-2  plyr_1.8.4          base64enc_0.1-3     

tools_3.3.1         rpart_4.1-10        digest_0.6.10       

[8] checkmate_1.8.2     htmlTable_1.9       jsonlite_1.1        tibble_1.2          

gtable_0.2.0        Matrix_1.2-7.1      shiny_0.14.1        

[15] gridExtra_2.2.1     stringr_1.1.0       cluster_2.0.5       knitr_1.14          

htmlwidgets_0.7     nnet_7.3-12         data.table_1.10.4   

[22] R6_2.2.0            foreign_0.8-67      latticeExtra_0.6-28 magrittr_1.5        

backports_1.0.5     scales_0.4.1        htmltools_0.3.5     

[29] splines_3.3.1       assertthat_0.1      misc3d_0.8-4        mime_0.5            

colorspace_1.2-7    httpuv_1.3.3        stringi_1.1.2      

 
 
In this R environment, after the appropriate packages have been loaded, data sets such as those 

collected during experimentation are loaded into data frames in R. In this example, the data collected 

is from the large-scale dietary study, and in particular contains values of circulating amino acids 

(AA’s), as well as the sum of the total branch chain amino acids (BCAA Sum) (Solon-Biet et al. 2014). 

Results of analysis are not discussed, as this chapter is focused on the coding methods used in the 

development of this thesis. This data set is set out as follows, with examples used in each line: 

eaten.P eaten.C eaten.F Sample ID Sex X1 X2 … Xn 

17.98 5.99 5.99 101 M 1 0.42 … 205.12 

14.75 4.91 4.91 142 F 2 0.81 … 586.34 

4.72 9.77 19.20 402 F 3 3.12 … 1094.91 

… … … … … … … … … 

Table 3.2. Example of a generic data set with outcome measures X1-n and input macronutrient 

intakes.   
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Data is first stored in comma separated value (.csv) format, and loaded into data frames as follows: 

> aveintake <-read.csv(paste(directory,filename,".csv",sep=""),1) 

 

Here, the directory and filename variables are assigned prior to loading of the data, in order to 

improve ease of access to files, and making bulk script uses (for multiple files/folders) much easier: 

> directory <- "/Users/Master/Dropbox/PhD Work/GF R SCRIPTS/Data/" 

> filename <- "aas"  # Name of the file - In this case aas.csv 

 

Automation of the script can be performed by the following function: 

> filelist <- list.files(directory,pattern=".csv") 

> for(y in 1:length(filelist)) 

> filename <- filelist[y] 

 

At the same time, the column in which the outcomes start is defined by the ‘starts’ variable: 

> starts <- 6 # Column at which the data starts at 

 

Additionally, analysis outputs can be saved automatically to a specified location, and the choice of 2D 

sliced GF plots, 3D GF plots and heatmap correlations between data columns can be saved as pdfs. 

The save location directory is also created at this point, and choice is carried out by an ‘if’ logical: 

> saveloc <- paste("/Users/Master/Dropbox/PhD Work/GF SCRIPTS/GF/",filename,"/",sep="")  

> dir.create(saveloc) 

> pdfs <- "on" # pdfs of GF plots ("on" or "off") 

> pdf3d <- "on"   # pdf of 3D GF plot ("on" or "off") 

> heatmap <- "on"  # pdf of heatmap correlations ("on" or "off") 

> if(pdfs=="on"){ 

> if(pdfs=="on"){ 

> if(heatmap=="on"){  
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Once the data is loaded, it will appear as follows: only columns 1-7 displayed here): 

> head(aveintake[,1:7]) 

    eaten.P   eaten.C   eaten.F Sample.ID Sex Body.weight..g. Alanine..A. 

1 17.983838  5.985079  5.985079       101   M           24.22      12.394 

2 14.745112  4.907220  4.907220       102   F           22.02      20.813 

3  4.724988  9.767927 19.197779       103   M           23.67      53.983 

4  7.776437 12.826281 12.826281       104   M           23.97      35.197 

5  9.526251 13.834762  5.765345       105   F           23.15      34.806 

6 11.030679  6.675834 16.019608       106   F           24.06      41.357 

 
 
Next, the topographical colour map used in the response surface is formatted with variables that will 

be passed onto the plotting algorithms later on in the code: 

> rgb.palette<-colorRampPalette(c("blue","cyan","yellow","red"), 

+ space="Lab",interpolate="linear") 

> no.cols<-256 

> no.cols3d<-15889 

> gr<-101 

> rg<-15889 

 

 
Two custom functions are now created, one to handle the response surface data frame to match the 

required topographical colour map, and one to correlate the correlation matrix:  

#+++++++++++++++++++++++++ 

# Computing the topographical response surface 

#+++++++++++++++++++++++++ 

# x : input variable of x-axis as data array 

# y: input variable of y-axis data array 

# rgnames: regulated names as data array 

 

> findConvex<-function(x,y,rgnames){ 
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+   hull<-cbind(x,y)[chull(cbind(x,y)),] 

+   px<-pretty(x) 

+   py<-pretty(y) 

+   x.new<-seq(min(px),max(px),len=gr) 

+   y.new<-seq(min(py),max(py),len=gr) 

+   ingrid<-as.data.frame(expand.grid(x.new,y.new))                                                               

+   Fgrid<-ingrid 

+   Fgrid[(point.in.polygon(ingrid[,1], ingrid[,2], hull[,1],hull[,2])==0),]<-NA 

+   names(Fgrid)<-rgnames 

+   return(Fgrid) 

+ } 

 
 
This first function takes the x-axis and y-axis input variables and sequences the topographical map in 

a segmented fashion, creating a data matrix that can be passed to the graphical algorithms used later. 

Next, the correlation matrix function is called. The code is a customised adaptation of:  

> source("http://www.sthda.com/upload/rquery_cormat.r") 

 

After these pre-processes are complete, the data are able to start being processed. The first step to do 

this, is to call the custom ‘findConvex’ function, to compute the required data frames (df2) from the 

three macronutrient axes in the data set; “eaten.P”, “eaten.C”, and “eaten.F”: 

> df2<-list() 

> df2[[1]]<-findConvex(aveintake$eaten.P, aveintake$eaten.C,c("eaten.P","eaten.C")) 

> df2[[1]]$eaten.F<-median(aveintake$eaten.F) 

> df2[[2]]<-findConvex(aveintake$eaten.P, aveintake$eaten.F,c("eaten.P","eaten.F")) 

> df2[[2]]$eaten.C<-median(aveintake$eaten.C) 

> df2[[3]]<-findConvex(aveintake$eaten.C, aveintake$eaten.F,c("eaten.C","eaten.F")) 

> df2[[3]]$eaten.P<-median(aveintake$eaten.P) 
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Computation of the GAMs can now begin, by creation of a 4-dimensional matrix, where the first 

three columns as the macronutrient inputs, and the fourth dimension is the response variable, which 

in this data frame is selected as a variable column ‘h’:  

> for(h in starts:ncol(aveintake)){ # Run the process for all data columns 

> aveintake2 <- aveintake[,c(1,2,3,h)] # Macronutrients + response variable columns 

> aveintake2 <- na.omit(aveintake2) #Omit missing values from the data matrix 

 
 
Here, the variable column h will travel between the values of ‘starts’, which is the first column we 

assigned earlier, and the total number of columns in the data set, calculated by the ‘ncol’ function. 

This was a significant development in the automation of the data processing capability of the GF 

script, as iterative loops allow processing of extremely large sets of data such as microarrays, as done 

in Chapter 4. 

 

Next, the actual GAM is calculated using the ‘gam’ function in the mgcv package: 

# rowN : the name of the response variable to be passed to the gam function 

# bs: basis of smooth, in this case we use “tp”, or thin-plate spline regression 

# rgnames: regulated names as data array 

# method: REML used here 

> rowN <- colnames(aveintake2)[4] 

> colnames(aveintake2)[4] <- "col1" 

> gam1<-gam(col1~s(eaten.P,bs="tp")+s(eaten.C,bs="tp")+s(eaten.F,bs="tp") 

+s(eaten.P,eaten.C,bs="tp") +s(eaten.P,eaten.F,bs="tp") 

+s(eaten.C,eaten.F,bs="tp"),method="REML",data=aveintake2,select=TRUE) 

 
The GAM data are now stored in the variable ‘gam1’, whose summary looks like: 

 
> summary(gam1) # Function used to give GAM output 

Family: gaussian  

Link function: identity  
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Formula: 

col1 ~ s(eaten.P, bs = "tp") + s(eaten.C, bs = "tp") + s(eaten.F, bs = "tp") + 

s(eaten.P, eaten.C, bs = "tp") + s(eaten.P, eaten.F, bs = "tp") + s(eaten.C, eaten.F, 

bs = "tp") 

 

Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  42.5719     0.9561   44.52   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Approximate significance of smooth terms: 

                         edf Ref.df     F  p-value     

s(eaten.P)         2.101e+00      8 1.762 0.000282 *** 

s(eaten.C)         1.255e-03      8 0.000 0.382803     

s(eaten.F)         6.702e-01      8 0.254 0.079892 .   

s(eaten.P,eaten.C) 1.418e-01      3 0.051 0.288857     

s(eaten.P,eaten.F) 6.501e-05      3 0.000 0.850069     

s(eaten.C,eaten.F) 1.438e-04      3 0.000 0.781072     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

R-sq.(adj) =  0.136   Deviance explained = 15.4% 

-REML = 548.62  Scale est. = 129.81    n = 142 

 

In this example, the GAM was calculated on one the last column of the data, which was the BCAA 

sum data. The output of the GAM is used to determine the statistical significance of the response 

surface to each of the variable axes, in isolation, and in combination, as represented by the 

significance of the smooth terms above. Next, a function is used to capture these outputs in a stored 

data frame, which will be collated across all the response variables and saved as a text file. Here, the p-

values from the current response are stored in ‘pvalH’, and the entire table is stored in ‘pval’:  
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> pvalH <- as.numeric(summary(gam1)$s.pv) # Store the p-values as numerics 

> pvalH[7] <- rowN # The column name is the name of the response variable 

> pval <- rbind(pval,pvalH) # Add the new p-values to the existing data frame 

 

Smooth terms are created through the use of penalised regression splines whose parameters are 

selected by a Laplace approximation to REML, and an important aspect to discuss here is the way in 

which the p-values for smooth terms are derived. This is done based on an extension of Nychka’s 

analysis of the frequentist properties of Bayesian confidence intervals for smoothing parameters 

(Marra & Wood 2012). What is therefore computed is a variant of the Bayesian, where the 

components of the test statistic are weighted by the iterative fitting weights, based on a likelihood 

ratio statistic (Wood 2011; Wood 2013). These p-values identify statistical significance to each 

macronutrient in isolation, and in combination.  

 

The resulting table can be extracted from the gam data frame using the summary function, and can be 

tabulated as follows: 

 
> summary(gam1)$s.pv 

[1] 0.0002823811 0.3828032777 0.0798922369 0.2888569293 0.8500685076 0.7810717985 

 
 

Table 3.3. GAM p-value outputs to macronutrient axes and ratios. 

p-value P C F P:C P:F C:F 

BCAA.Sum 0.000282381 0.382803278 0.079892237 0.288856929 0.850068508 0.781071798 
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2D visualisation of data through the Geometric Framework 

Next, the data is passed from ‘gam1’ to the topographical map, by linking it to the ‘df2’ data frames 

that had been computed earlier, and now that the 2D graphs/slices are ready to be plotted, variables 

such as font sizes are allocated: 

> fit1<-list() # Set up the data frame as a list 

> for(j in 1:3){ 

+ fit1[[j]]<-predict(gam1,newdata=df2[[j]])} # Link the data to the GAM 

> fit2 <- predict(gam1,newdata=aveintake2) 

> contourFontSize <- 0.4 # Contour label font size 

> par(cex=1.0, cex.axis=1.5,cex.lab=1.2, cex.main=1.5, cex.sub=1) # Plot label sizes 

> mains1<-c(rowN,rowN,rowN) # Labels for each slice are the response column label 

> opr<-par(mfrow=c(1,3)) # All 3 slices are plotted on the same frame 

> map<-rgb.palette(no.cols) # The colour gradient is set 

 

Next, the medians of each axis are calculated and rounded to the nearest integer for display purposes. 

The max and min values are also calculated to create evenly distributed notches in the axes: 

> sub1<-c(paste("(Fat: ",round(unique(df2[[1]]$eaten.F),0),")",sep=""), 

+         paste("(Carbohydrate: ",round(unique(df2[[2]]$eaten.C),0),")",sep=""),  

+         paste("(Protein: ",round(unique(df2[[3]]$eaten.P),0),")",sep="")) 

> mn<-min(c(unlist(fit1[[1]]),unlist(fit1[[2]]),unlist(fit1[[3]])),na.rm=TRUE) 

> mx<-max(c(unlist(fit1[[1]]),unlist(fit1[[2]]),unlist(fit1[[3]])),na.rm=TRUE) 

 

The plots are finally created. This section of code is slightly inelegant, and could be improved through 

recursive loops, however the code runs relatively efficiently, so loops would only make the code look 

more presentable rather than necessarily functionally improving it: 

> # 1st slice 

> locs<-(range(unlist(fit1[[1]]),na.rm=TRUE)-mn)/(mx-mn)*no.cols 

> surf<-matrix(fit1[[1]],nrow=sqrt(dim(df2[[1]])[1])) 
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> px<-pretty(aveintake$eaten.P) 

> py<-pretty(aveintake$eaten.C) 

> x.new<-seq(min(px),max(px),len=gr) 

> y.new<-seq(min(py),max(py),len=gr) 

> image(x.new,y.new,surf,col=map[locs[1]:locs[2]],xlab=labs1[1],ylab=labs1[2],  

+ main=mains1[1],sub=sub1[1],axes=FALSE) 

> axis(1) 

> axis(2) 

> contour(x.new,y.new,surf,add=TRUE,levels=pretty(range(mn,mx),nlev), 

+ labcex=contourFontSize) 

 

This is repeated three times, with changes to the appropriate variables where required for each slice. 

Thus the topographical response map is overlaid onto the nutritional surface, to create a 4-

dimensional output, which is captured by slicing through the medians to produce 2-dimensional plots 

with the response variable represented by colour. 

The resulting output is the response surface plot: 

 

Figure 3.9. 2D GF response surfaces correlating total circulating BCAA’s to macronutrient intake. 

The GAM output can also be automatically captured in full as in a text file: 

> txt1 <- file(paste(saveloc,q,s1[q],"/",rowN,".txt", sep="")) 

> writeLines(capture.output(summary(gam1)),txt1) 

> close(txt1) 
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Once the script has run through each response column, the total output of the p-value table is saved 

in two methods. The first is the table in full, with all p-values; and the second is the table with only 

statistically significant values (p-value < 0.05) displayed: 

> write.table(pval, paste(saveloc,filename,"-pval.csv", sep=""), row.names = FALSE,  

+ col.names = FALSE, sep=",") # Full p-value table 

> pvalsig <- pval # Passes the table to a new data frame 

> pvalsig[pvalsig>0.05] <- "" # Removes all non-significant values 

> pvalsig[1,] <- head(pval,1) # Ensures the row titles are the same 

> pvalsig[,1] <- pval[,1] # Ensures the column titles are the same 

> write.table(pvalsig, paste(saveloc,filename,"-pvalsig.csv", sep=""), row.names = F,  

+ col.names = F, sep=",") # Writes the statistically significant p-value table 

 

3D visualisation of data through the Geometric Framework 

Next, the 4-dimensional output data is used to create a 3-dimensional plot with the response variable 

represented by colour. While 2D slices through medians of the 3rd axis, by being incomplete, have the 

potential to be visually misleading, the 3D plot produced in this section was developed to show the 

complete picture, which could be manipulated and moved around as an interactive plot. This section 

primarily uses the ‘rgl’ package, which is a 3D real-time rendering system for R, and the ‘akima’ 

package, which contains methods for interpolation of gridded splines to form the topographical map 

that is overlaid onto the 3D nutrient surface.  

  

First, the data is passed to individual data matrices, which correspond to the macronutrient axes: 

> aveintake2<- data.matrix(aveintake2) # Data has to be in matrix format 

> x1<- data.matrix(aveintake2[,1])  

> y1<- data.matrix(aveintake2[,2]) 

> z1<- data.matrix(aveintake2[,3]) 

> s<- interp(x1,y1,z1) # Implements bivariate interpolation onto a grid 
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The ‘interp’ algorithm from the ‘akima’ package, implements bivariate interpolation of the irregularly 

spaced response surface data onto a grid, which can then be used as a topographical map for the 

nutritional surface (Akima 1978; Renka 1996). The data matrix ‘s’ therefore contains the information 

needed for correlation with the pre-specified colour matrix. The colour matrix is now calculated, as 

before, however it now uses the ‘interp’ function rather than the ‘findConvex’ function: 

> px<-pretty(x1) 

> py<-pretty(y1) 

> x.new<-data.matrix(seq(min(px),max(px),len=gr)) 

> y.new<-data.matrix(seq(min(py),max(py),len=gr)) 

> z.new<-data.matrix(seq(min(fit2),max(fit2),len=gr)) 

> surf<-data.matrix(fit2) # Data has to be in matrix format 

> c1 <- interp(x1,y1,surf) # interpolation data to match to the colour palette 

 

> map<-rgb.palette(no.cols3d) # The 3D colour palette used 

> cols <- heat.colors(no.cols3d) 

> cuts <- with(c1, cut(z, breaks=no.cols3d)) # Creates the 3D contour matrix 

 
 
The ‘persp3d’ function in the ‘rgl’ package is now used to plot the surface in a 3-dimensional space. 

This line of code integrates all aspects of the data collected so far, including the: 

- Nutrient space 

- Topographical 3-dimensional response surface 

- Colour map with gradient matched to the responses 

> with(s,persp3d(x,y,z,color=map[cuts],xlab="",ylab="",zlab="", main=NULL, box=F, 

axes=T)) 
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Figure 3.10. 3D response surface produced using the GF. Here, peaks and valleys in the nutritional 

space represent dietary compositions, with colours at each point representing response output. The 

red areas represent high response output, while the blue areas represent low response output. This has 

overlaid with the corresponding 2D slice through the median fat axis for illustration of how to read 

the 3D plot. In this case, the 2D plot shows that the isoclines are perpendicular to the carbohydrate 

axis, indicating that this response is driven primarily by carbohydrate intake. 
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Since the plot is angled arbitrarily, the viewpoint must be shifted by rotation. This can either be done 

manually, or by a preset value. Here, the optimal viewpoint was found by manual rotation, and the 

output was saved for future reference using the ‘par3d’ function: 

> par3d()$userMatrix 

           [,1]       [,2]        [,3] [,4] 

[1,] -0.7052403  0.7044325 -0.08006757    0 

[2,] -0.4247192 -0.3293558  0.84328991    0 

[3,]  0.5676702  0.6287286  0.53146100    0 

[4,]  0.0000000  0.0000000  0.00000000    1 

 
This viewpoint however is only optimal for the current nutritional surface, and almost certainly 

require adjustment for optimization in other data sets. This is recalled using the ‘view3d’ function 

whose inputs ‘pp’ are the viewpoint matrix listed above: 

> view3d(userMatrix=pp,zoom=zoom) 

 

This raises two important considerations: 

 
1. Determining the optimal viewpoint for any given surface:  

The inherent draw back of a 3-dimensional visualisation is that it is not possible to view the entirety 

of the surface at one time. This is because optimizing one view is not possible without impacting the 

view of another part of the surface. Additionally, this method does not show the slice, or volume of 

the nutrient space, as it only provides a topographical view. For this reason, there isn’t necessarily an 

optimal viewpoint from which to view the plot, thus reducing its publication value as a static image. 

On the other hand, through the method listed above, the plot generated by the rgl package in R is an 

interactive tool, allowing rotation and manipulation of the plot as required. Therefore, while the 3D 

plot may not be ideal for publication for all experimental frameworks, it is an extremely useful tool for 

interrogation of complex nutritional spaces in conjunction with statistics and 2D plots. 
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2. The degree of smoothing of the 3D surface required to appropriately interpret results: 

Given that the plot is a topographical response surface overlaid onto the nutrient surface, the more 

complex the nutrient space, the more difficult it is to interpret the 3D plot. While the benefit of this 

visualisation is that it is able to show local maxima and minima to a much greater extent than 2D 

plots, the drawback is, as mentioned in consideration 1, that it does not display the interior volume of 

the nutritional space. This is akin to being able to visualise the surface of a pyramid, but not its 

interior. Therefore, as the number of non-surface data points in the experimental framework increase, 

the more difficult this visualisation becomes to interpret. While this problem is partially solved by 

analysing data in conjunction with statistics and 2D plots, it is certainly a critical limiting factor to 3D 

visualisation.  

 

In addition, since the mgcv package in R predicts optimal degree of smoothing as part of the fitting, 

choosing appropriate smoothing parameters of the surface can also become an issue in some cases, 

and can lead to problems in calculation of p-values. Smoothing optimisation here is based on a trade-

off between over- and under-fitting of the data set, which is computed through the estimation of 

smoothing parameters. Given that the p-values are calculated without considering uncertainty in the 

smoothing parameter estimates, high uncertainty in these estimates can cause artificially low p-values 

(Wood 2013). This especially occurs with nested smooths or with high concurvity in the model, where 

model parameter estimates and smoothing parameter estimates do not converge (Wood 2011). For 

this reason, the p-value calculations that are produced through the 3D interpolation are considered 

less accurate than those calculated through the 2D GAM, and the surfaces therefore must be 

considered in conjunction, making the 3D model unable to act as a stand alone analytical tool in most 

cases. 
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Specific add-ons to the GF script for analysis of data during this thesis 

Gene expression analysis  

Microarray data was processed using the ‘affy’, ‘oligo’, and ‘limma’ R packages from Bioconductor, 

and annotation, matching, clustering, and correction was performed using the ‘pd.mogene.2.0.st’, 

‘annotate’, and ‘mogene21sttranscriptcluster.db’ database R packages from Bioconductor. Data was 

parsed into csv files, and processed through the GF script as described earlier. Once significance of 

smooth terms was calculated for each gene to macronutrient intakes and ratios, the data were analysed 

using a custom volcano plot script developed using the ‘calibrate’ package in R to find unbiased genes 

of interest. Unbiased genes of interest, and selected genes known to be involved in nutrient sensing 

pathways are identified and analysed in detail in Chapter 4. Since there are multiple variable-responses 

present for each macronutrient axis, a unidirectional volcano plot is formed for p-value versus fold 

change plots. For Pearson’s correlations, a bivariate volcano plot is formed. Full volcano plot script 

details are provided below. 

 
The ‘calibrate’ package was used for this script, as shown by the ‘sessionInfo()’ function: 

> sessionInfo() 

R version 3.3.1 (2016-06-21) 

Platform: x86_64-apple-darwin13.4.0 (64-bit) 

Running under: OS X 10.11.6 (El Capitan) 

locale: 

[1] en_AU.UTF-8/en_AU.UTF-8/en_AU.UTF-8/C/en_AU.UTF-8/en_AU.UTF-8 

 

attached base packages: 

[1] stats     graphics  grDevices utils     datasets  methods   base      

 

other attached packages: 

[1] calibrate_1.7.2 MASS_7.3-45     
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loaded via a namespace (and not attached): 

[1] tools_3.3.1 

 

Data is called from the comma separated value file, and loaded into data frames as follows: 

> aveintake <-read.csv(paste(directory,filename,".csv",sep=""),1) 

 

In this R environment, the data set used was the microarray data parsed into a comma separated value 

file as described above. Table 3.4 shows this with the first 4 genes. FC – fold change; log2fc – log 

base 2 of fold change; pval(x) – p-value calculated using the GF for each macronutrient, and ratio. 

 

Table 3.4. Gene expression and statistical significance data set from microarray analysis. 

Gene FC log2fc pvalp pvalc pvalf pvalpc pvalpf pvalcf 

Serpinb3c 391.92 8.61 0.97 0.27 0.27 0.69 0.39 0.04 

Gm8693 55.01 5.78 0.01 0.09 1.00 0.33 0.82 0.39 

Zfp874b 51.25 5.68 0.68 0.56 0.06 0.66 0.38 0.68 

Scgb2b12 37.67 5.24 0.01 0.36 0.39 0.75 0.42 0.21 

 
 
 
The percentile cut off for fold change is set to find unbiased genes of interest (GOI). This value can 

be varied depending on the list of genes that are captured by the volcano plot.  

> fcstat <- 0.99 # Fold change cut-off value for volcano plot 

 

 
Data can now be plotted using the standard ‘plot’ function in R, and labeling of genes is performed 

using the ‘textxy’ function in the ‘calibrate’ package. The statistical threshold for p-values was chosen 

at p<0.05. Log2(fold change) was chosen for the x-axis as per volcano plot convention, while log10(p-

value) was chosen for the y-axis to limit axis size. 
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The resulting output is a unidirectional volcano plot, with genes of interest labeled by colour, as 

shown in Figure 3.10 below. 

 

Figure 3.10. Example unidirectional volcano plot for unbiased genes of interest from a microarray. 

Outputs can be seen in Table 3.5 

 

 
The output of this volcano plot can be tabulated to contain the fold change and p-values for genes of 

interest sorted by macronutrient to which they are significantly correlated [Table 3.5]. 
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Table 3.5. Example output table for unbiased genes of interest, sorted by macronutrient correlation. 

Gene Fold Change log2fc pval BY 

Gm8693 55.00524782 5.781497362 0.007088124 P 

Scgb2b12 37.66513381 5.23515775 0.008008181 P 

Olfr1195 31.26318164 4.966392703 0.002319759 P 

Olfr315 21.82934031 4.448196627 0.016244258 P 

Ugt2b37 20.17806289 4.334715776 0.021455283 P 

Slc22a27 8.764625436 3.131692438 0.003507577 C 

Bcl2a1a 9.134831758 3.191378158 0.030501294 P:F 

Apol7c 12.6910257 3.665736768 0.039717287 C:F 

 
 

Correlation of data  

Another additional tool developed to complement the GF script is a correlation matrix, used to 

compare various data sets. Here, the method of correlation can be varied depending on the data set 

used. For many data sets, the Pearson product-moment correlation coefficient can be used, when the 

responses are predicted to be linearly correlated with macronutrient intake. Additional correlations 

such as Spearman and Kendall rank correlations can be substituted if the correlations are not 

predicted to be linear, or there is significant skew in the data set. First, we can check the distribution 

of the example data sets, and their approximate correlation plots as follows: 

> testset <- aveintake[,31:34] # Example test set containing last 4 columns 

> hist(testset) # Creates histogram of the set 

> plot(testset) # Creates x-y plot of set 

> bagplot(testset) # Creates bagplot of set (only bagplot of BCAA shown below) 
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Figure 3.11. Data plots of an example data set as (a) histograms, (b) dotplots, (c) bagplots. 

 

As we can see, the distributions are relatively normal, and the correlations can in some case be linear, 

as seen in Figure 3.11. The bagplot is a bivariate generalization of a boxplot, and is used to 

demonstrate the distribution of the data points. Here we see that Pearson’s correlations would work 

best for the data set, as they are predicted to be linearly correlated.  

 

The application of this method to data sets that are significantly correlated to a specific nutrient or 

ratio allows directionality to be quickly identified. The custom ‘rquery.cormat’ function (as described 

earlier in this chapter) can now be called to create a clustered correlation matrix – in this case, with 

non-significant correlations left blank. This can only be done with the subset of responses that we 

already know are correlated with a particular macronutrient intake or ratio, as a correlation between 

two unrelated response surfaces would not provide any data that can be appropriately interpreted: 
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> a2 <- aveintake[,starts:ncol(aveintake)] # ‘a2’ contains all the response data  

> ps <- pvalsig[c(1,ux),] # ‘ps’ contains significant p-vals to a chosen axis ‘ux’ 

> a3 <- data.frame(a2[,is.na(match(colnames(a2),ps[1,]))==0]) # Significant subset  

> rquery.cormat(a2, labcex=0.5) # Creates the correlation matrix 

 

 

 
 

Figure 3.12. Correlation matrix of response variables that were significantly correlated to P:F ratio. 

Here we can see that almost all the responses are in the same direction with P:F ratio, with only body 

weight being correlated in the opposite direction to any amino acid result. 
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This matrix can now be used to check the correlations and directionality of the response variables. 

For instance, in this case, we can see that Ornithine is positively correlated with Lysine, but negatively 

correlated with body weight. Inspection of the 2D GF plots confirm this relationship, as shown in 

Figure 3.13, where the maxima and minima in Lysine and Ornithine localise to the same space, while 

the relationship is opposite between Ornithine and body weight. 

 

Figure 3.13. 2D GF surfaces correlating Lysine, Ornithine, and body weight to macronutrient intake. 
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General comments 

The evolution of the geometric framework since the early 90’s has allowed integration of evolutionary 

and mechanistic approaches to ageing research, by creating a unifying framework in which to analyse 

the seemingly disparate data (Raubenheimer et al. 2016). Despite this, wider application of the GF 

across other scientific fields has been limited, due to a lack in accessibility, particularly of a user-

friendly functional interface, until the last decade with the use of R scripts. This has allowed complex 

response surface fitting and data visualisation methods to be applied on a large scale, allowing the GF 

to be propelled into the public sphere through its application in a variety of publications (Hew et al. 

2016; Speakman et al. 2016; Wahl et al. 2016; Solon-Biet et al. 2016; Simpson et al. 2017a).  

 

Here, we reviewed the progressive iterations of the GF since its inception, and have outlined 

developments made to the GF script as part of this thesis through example data sets. The problem in 

application of the GF to large data sets is addressed through automation using iterative loop scripts, 

and the discord between analysis and visualisation in 2D planes is aided by the creation of a 3D 

visualisation tool. Finally, additional tools used to analyse data such as gene regulation are outlined, 

and methods of data correlation are discussed.  

 

Future work on this area should include methods to optimise the coding structures used to improve 

efficiency and computation. Additionally, a new algorithm could be developed which is able to analyse 

the local maxima and minima of multiple response surfaces to create a goal-seeking optimisation tool 

that could be used to answer questions such as “What is the optimal diet to maximise cardiovascular 

health, while minimizing liver fibrosis?” This would no doubt be an invaluable research tool, and 

could help broaden the horizons of the GF beyond nutritional and ageing research, to a much more 

widely encompassing experimental paradigm.  
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Chapter 4: The Impact of Diet on Nutrient 
Sensing Pathways 

 

Excerpts from this chapter related to the liver have been published in (Gokarn et al. 2018); 

excerpts related to the hypothalamus are in review for submission; data related to mTOR 

activation have been published in (Solon-Biet et al. 2014). 

 

Background 

While caloric restriction (CR) has been shown to have the potential to extend lifespan, there is still 

uncertainty about the mechanisms for its effects. Debate also exists as to whether it is reduction of 

calories, or macronutrients that primarily mediates the effects of CR on ageing (Levine et al. 2014; 

Brown-Borg & Buffenstein 2016; Speakman et al. 2016; Le Couteur et al. 2015). Regardless of which 

of these is true, a common mechanism by which nutritional interventions influence ageing is related 

to the modulation of several nutrient sensing cellular growth pathways (Vijg & Campisi 2008; Le 

Couteur, McLachlan, et al. 2012b; López-Otín et al. 2016). Experimental modulation of these 

pathways; mTOR, AMPK, IIS and sirtuins; have been shown to influence lifespan and health in a 

variety of taxa, through their effects on cellular processes such as metabolism, mitochondrial 

biogenesis, autophagy, gene expression, growth, replication, and other pleiotropic signaling effects 

[Figure 4.1] (Houtkooper et al. 2012; Hofmann et al. 2015; Baur et al. 2006; Longo et al. 2015; Junnila 

et al. 2013; Zoncu et al. 2010; Finkel 2015; Pazoki-Toroudi et al. 2016).  

 

In humans however, the evidence for CR is not as robust as in other model organisms, partly due to 

the difficulty in implementing long-standing dietary regimens and subsequently measuring their 

impact on lifespan. To circumvent these issues of 1) CR vs. macronutrients, and 2) the difficulty of 

implementing long-term nutritional strategies in humans, modulation of these nutrient sensing 
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pathways, which are largely evolutionarily conserved, seem to be a robust method to investigate 

translatable therapeutics (Longo et al. 2015; da Costa et al. 2016; Partridge 2012). This can be 

achieved through either ad libitum diets varying in macronutrient and caloric ratio, or with 

pharmaceutical agents and gene mutations directly targeting the nutrient sensing pathways. 

 
Figure 4.1. The four major nutrient sensing pathways (Sirtuins, AMPK, mTOR, and IIS) and their 

relationship with age-related end points. Figure adapted from (Bonkowski & Sinclair 2016). 

 

As yet, there have not been any reports of the effects of low protein, high carbohydrate diets on gene 

expression, nor the long-term effects of dietary macronutrients on gene expression. The liver is the 

primary organ that responds to nutrition, and regulates systemic metabolic responses to diet. 

Therefore hepatic gene expression is a strong candidate to be responsive to dietary perturbations, and 

it is hypothesised that protein will be the key driver of gene expression. There have been many, 

mostly short-term studies of the effects of diet on the hepatic transcriptome that have identified a 

wide range of genes and pathways that are influenced by nutrition and these are mostly involved with 

the regulation of the metabolism of nutrients and energy (Osada 2013; Schmucker 1998; Dhahbi et al. 
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2005; Schwarz et al. 2012). There has also been increasing interest in discovering which genes and 

pathways mediate this response, partly because this can provide a platform for the discovery of 

pharmacological agents for delaying aging (Benayoun et al. 2015; Le Couteur et al. 2012b). Key 

nutrient sensing pathways that are thought to influence aging include mTOR, SIRT1, insulin/IGF-1 

and AMPK, and more recently FGF21 (Bishop & Guarente 2007; Solon-Biet et al. 2015b; Solon-Biet 

et al. 2016). The effects of caloric restriction on mammalian gene expression has also been undertaken 

to provide data-driven insights into pathways and genes that influence healthy aging (Swindell 2009; 

Plank et al. 2012). In one meta-analysis of over 50 animal studies, it was found that caloric restriction 

is associated with overexpression of 101 genes and underexpression of another 73 genes in the liver. 

Pathways affected by caloric restriction included growth hormone signaling, lipid metabolism and 

immune responses (Plank et al. 2012). Another similar meta-analysis identified genes associated with 

oxidative stress, inflammation and tumorigenesis in 22 different tissue types in mice (Swindell 2009).  

 

The hypothalamus also plays a key role in mediating the effects of diet on the body, since it is not 

only involved in food intake, but also in the neuroendocrine interactions that mediate functions such 

as growth, reproduction and metabolism (Waterson & Horvath 2015). By virtue of its location, the 

hypothalamic arcuate nucleus is able to use fenestrated capillaries that make up the blood brain barrier 

to sense nutrient and hormonal signals, and coordinate responses through orexigenic neuropeptide Y 

(NPY) and agouti-related peptide (AgRP) and anorexigenic pro-opiomelanocortin (POMC) neuronal 

feedback loops (Timper & Brüning 2017). In addition, mutations in the POMC, brain-derived 

neurotrophic factor (BDNF) and melanocortin-4-receptor (MC4R) genes have been shown to result 

in increased appetite and obesity in both humans and rodents (Krude et al. 1998; Yeo & Heisler 

2012). Both CR and intermittent fasting, have also been shown to cause behavioural fluctuations in 

mice, with significant changes to gene expression in the central nervous system (CNS), varying across 

the prefrontal cortex, amygdala and hypothalamus (Yamamoto et al. 2009). It is therefore 
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hypothesised that energy intake will be a key driver of gene expression in the hypothalamus. Several 

meta-analyses on genome-wide association studies (GWAS) have also shown multiple single 

nucleotide polymorphisms (SNPs) in hypothalamic genes which are associated with high BMI and 

obesity (Speliotes et al. 2010; Xu & Xie 2016). While GWAS and quantitative trail loci (QTL) 

mapping are the most common methods used to investigate the genetic basis for energy and 

macronutrient intake, so far almost no genetic associations have been found that correspond to 

longevity (Broer & van Duijn 2015; Yashin et al. 2015; Collaku et al. 2004). This limits the translation 

of findings from animal model GWAS, since even though dietary studies can be performed in a much 

more accurate manner in animal laboratory conditions, results do not necessarily have an immediate 

correlate to humans. On the other hand, more targeted molecular techniques such as microarray, 

polymerase chain reactions (PCR) and western blotting have been used to good effect in determining 

common genes and pathways that are relevant to humans (Bonkowski & Sinclair 2016; Han & Hickey 

2005; Razi et al. 2017; Dhahbi et al. 2005). Given the multitude of roles of the liver and hypothalamus 

on ageing, food intake, metabolism and health, investigations were undertaken here to examine the 

effects of protein, carbohydrate and fat on hepatic and hypothalamic gene expression in ageing mice 

maintained on lifelong ad libitum diets varying in the ratios of these macronutrients. To analyse the 

impact of both individual macronutrients and ratios, the Geometric Framework (GF) was applied to 

this experimental design, as previously described (Simpson et al. 2015; Simpson & Raubenheimer 

2007). Here, the GF was used to study the effects of varying dietary composition on these nutrient 

sensing pathways using tissue collected from a large-scale dietary study in mice. This was primarily 

performed through interrogation of genetic expression of the pathways and their downstream targets, 

through the use of microarray and PCR assays on hepatic and hypothalamic tissue. In addition, direct 

measures were performed to validate the gene expression data through measures of circulating protein 

and western blot analyses. These sets of data were then correlated with each other, and lifespan data 

collected from the same cohort, to determine their correlation with the ageing process.  
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Methods 

Chapters 2 and 3 describe the details of the methods used in this chapter. The work done in this 

thesis primarily focused on extraction of DNA, RNA and protein from tissue samples, performing 

assays (microarray, PCR, western blots), development of data analysis tools (R scripts and 

frameworks) and data analysis. Briefly, three-week-old male and female mice (C57Bl6/J, n=858) were 

ad libitum-fed one of 25 experimental diets varying in protein, carbohydrate, fat and energy content. 

Energy manipulations were achieved by addition of cellulose generating low, medium and high energy 

density diets (8, 13, and 17 kJ/g) [Table 4.1]. At 15 months of age, one cohort of mice (n=183) 

spanning the diets was euthanised and tissues collected, while the remaining mice were maintained for 

lifespan analysis.  

 

Frozen liver (n=183) and hypothalamic (n=24) tissue samples from mice at 15 months of age were 

sectioned into 10mg blocks, and DNA, RNA, and protein were extracted using the Qiagen AllPrep 

Mini Kit. Isolated RNA (n=24 male/n=22 female from the liver, n=24 male from the hypothalamus 

[See Table 4.1]) was analysed using Affymetrix Mouse Gene ST arrays at the Ramaciotti Centre for 

Genomics, University of New South Wales; GEO: GSE85998 (Solon-Biet et al. 2016). Gene 

expression data were normalised to actin expression. Liver samples that had undergone microarray 

assays were run on qPCR plates using the RT2 profiler array using the Mouse Insulin Signaling 

Pathway kit (Qiagen). A pooled sample was serially diluted, and as a standard curve in the Fluidigm 

Biomark software for PCR analysis. Protein pellets were resolubilised and used to run western blots 

for mTOR and phosphorylated-mTOR.  
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A flowchart of the methods performed in this chapter are outlined below: 

 

 
 
Data analyses were based on macronutrient intake (kJ/mouse/day). The relationship between 

macronutrients and gene expression was determined using two methods. First, the correlation 

between the intake of each macronutrient and the expression of each gene was calculated using a 

Pearson’s correlation coefficient. Second, the Geometric Framework approach was used where the 

statistical significance of the relationships between each gene and macronutrients and the interactions 

between macronutrients was calculated with Generalised Additive Models (GAMs). In addition to the 

GAM statistics (GAMS), graphical representation of the relationship between macronutrients and 

gene expression was assessed for some genes of interest using the GF as described in Chapter 3.  
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Genes of interest were determined from the P values returned by each of these methods and 

application of Benjamini Hochberg correction with a FDR of 0.05. Heatmaps were performed in R 

using gplots package. Gene enrichment analysis was performed in Enrichr to determine gene 

pathways based on the KEGG database and biological pathways based on the GO Biological 

Processes 2017 (Kuleshov et al. 2016). Only pathways and processes with more than two genes 

represented and an adjusted P value <0.05 were considered to be potentially significant. Once 

significance of smooth terms was calculated for each gene to macronutrient intakes and ratios, the 

data was analysed using a custom volcano plot script developed using the ‘calibrate’ package in R to 

find unbiased genes of interest (GOI). Unbiased genes of interest, and selected genes known to be 

involved in nutrient sensing pathways were identified and analysed in more detail using the GF script.  

 

Table 4.1. Sex, diets and dietary intakes of mice included in transcriptome analysis of liver. 

Sex Protein  
eaten 

Carbohydrates 
eaten 

Fat  
eaten 

Energy 
density 

Protein/Carbohydrate 
/Fat ratio 

M 25.82 8.59 8.59 High 60/20/20 

F 22.04 7.33 7.33 High 60/20/20 

M 2.44 36.49 9.73 High 5/75/20 

F 2.02 30.19 8.05 High 5/75/20 

M 2.13 8.5 31.89 High 5/20/75 

F 2.75 10.98 41.18 High 5/20/75 

M 16.19 23.51 9.79 High 33/48/20 

F 2.45 23.49 23.49 High 5/48/48 

F 6.72 13.9 27.32 High 14/29/57 

F 5.51 22.39 11.39 High 14/57/29 

M 12.48 20.59 20.59 High 23/38/38 

M 2.21 33.06 8.82 High 5/75/20 

F 13.01 7.87 18.89 High 33/20/48 

F 6.11 12.64 24.84 High 14/29/57 

M 25.77 8.58 8.58 High 60/20/20 
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M 15.67 22.76 9.48 High 33/48/20 

F 11.8 7.14 17.14 High 33/20/48 

M 2.05 19.61 19.61 High 5/48/48 

M 8.19 16.94 33.3 High 14/29/57 

M 6.53 13.51 26.56 High 14/29/57 

M 9.58 15.81 15.81 High 23/38/38 

F 7.46 12.31 12.31 High 23/38/38 

M 1.92 28.8 7.68 High 5/75/20 

M 2.3 22.03 22.03 High 5/48/48 

F 2.34 22.44 22.44 High 5/48/48 

M 5.95 24.17 12.3 High 14/57/29 

M 14.85 10.23 10.23 High 42/29/29 

M 7.78 12.83 12.83 Low 23/38/38 

M 16.61 5.53 5.53 Low 60/20/20 

F 15.15 5.04 5.04 Low 60/20/20 

F 7.24 11.95 11.95 Low 23/38/38 

F 13.8 9.51 9.51 Low 42/29/29 

M 6.48 13.41 26.35 Medium 14/29/57 

F 4.7 19.13 9.73 Medium 14/57/29 

F 14.14 9.74 9.74 Medium 42/29/29 

F 7.11 11.73 11.73 Medium 23/38/38 

M 13.81 8.35 20.05 Medium 33/20/48 

F 13.5 9.3 9.3 Medium 42/29/29 

F 8.04 13.26 13.26 Medium 23/38/38 

F 13.48 9.29 9.29 Medium 42/29/29 

M 11.29 16.4 6.83 Medium 33/48/20 

M 5.39 21.93 11.16 Medium 14/57/29 

F 10.33 15 6.25 Medium 33/48/20 

M 12.01 7.27 17.45 Medium 33/20/48 

F 11.35 6.87 16.48 Medium 33/20/48 

M 8.13 13.42 13.42 Medium 23/38/38 
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Results 

The effects of macronutrients on overall liver gene expression 

Global transcriptome analysis of the liver was performed using Affymetrix Mouse Gene ST arrays 

representing 21,798 hepatic genes. To form an unbiased assessment of these genes, fold change and 

p-values, calculated through the Geometric Framework, were passed to a volcano plot script in R, to 

identify the genes with maximum fold change that were significantly correlated with diet [Figure 4.2]. 

The most highly expressed gene was Alb (albumin) and there was about a 100-fold difference in the 

expression of the highest versus the lowest expressed genes within each liver. Of the three 

macronutrients, dietary protein was associated with changes in the expression of the highest number 

of genes using either correlation analysis (n=1279 genes, 648 positive correlation, 631 negative 

correlation) or GAMS (n=2933 genes). This compared to only 8 genes by correlation analysis and 72 

genes by GAMS for dietary carbohydrates; and only 3 genes by correlation analysis and 19 genes by 

GAMS for dietary fat (Figure 4.3 A-B). For dietary protein, there were 980 genes (77% of genes from 

correlation analysis) in common using either GAMS or correlation analysis, while for dietary 

carbohydrates there were 4 genes (50% of genes from correlation analysis) in common using both 

types of analysis, indicating that both types of analysis are identifying similar overall trends. 

 

Heatmap analysis [See Figure 4.4] revealed a very strong inverse relationship between gene expression 

that correlated with protein intake compared with intake of fat or carbohydrates, such that genes that 

were positively correlated with the intake of dietary protein were negatively correlated with the intake 

of either fat or carbohydrates, and vice versa. Although the inverse relationships between the 

macronutrients on the heatmaps are very distinct, it should be noted that only a few genes were 

statistically significantly associated with the intakes of carbohydrates or fats. 
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Figure 4.2. Volcano plot showing genes of interest identified through an unbiased analysis of the 

hepatic microarray. Genes are colour coded based on correlation to macronutrient axis or ratio. 

Genes of interest (GOI’s) were selected based on both fold change, as well as having a p-value greater 

than p=0.05.  
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Figure 4.3. Venn diagrams showing the effects of macronutrient intake on gene expression in the 

liver. 4.3A shows the results determined using Pearson’s correlation coefficient (black positive 

correlation, red negative correlation). 4.3B shows the results determined using GAMS (PxC 

interactive term between carbohydrates and protein). 

 

 

Figure 4.4 Heatmaps comparing the overall pattern of expression of genes in the liver. The values are 

Pearson’s correlation coefficients ranked from most positive correlation in red to the most negative 

correlation in blue. The most positive 1000 genes and the most negative 1000 genes are included. The 

genes have been ranked according to significance of the correlation with protein (A), carbohydrates 

(B) and fat (C). 
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The genes with the most statistically significant association with macronutrient intake are shown in 

Table 4.2. Four representative surfaces using the Geometric Framework approach are shown in 

Figure 4.5. These genes are shown because they were highly significantly associated with 

macronutrient intake and demonstrate characteristic responses to macronutrients that can be easily 

visualised by the Geometric Framework method [Table 4.3]. Nicotinamide N-methyltransferase 

(Nnmt) was positively associated with protein intake (Figure 4.5A), while Insulin-like growth factor 2 

mRNA-binding protein 2 (Igf2bp2) was negatively associated with protein intake (Figure 4.5B). 

Glucosylceramidase beta 2 (Gba2) was positively associated with carbohydrate intake (Figure 4.5C), 

while Solute carrier family 15 member 5 (Slc15a5) was positively associated with both protein and 

carbohydrate intake (Figure 4.5D). 

 

Table 4.2. Gene expression with the highest statistical association with macronutrient intake in the 

liver determined using either GAMS or correlation analysis. For correlation analysis, genes are divided 

into those with positive and negative correlation. Benjamini Hochberg correction with a FDR of 0.05 

has been performed for the P values. Genes in the top twenty for both GAMS and correlation 

analysis are bolded. 

 
Protein  p  Carbohydrates p Fat p 

Top genes by GAMS analysis 

Igf2bp2 7.34E-21 Slc15a5 5.83E-07 Sag 2.9E-11 

Adgrg2 6.31E-12 Reg1 3.11E-06 Gm5424 9.18E-09 

Orm1 1.71E-10 Sox13 0.00072 Hsd3b1 2.58E-07 

Nnmt 1.57E-10 Alb 0.00073 Cps1 1.99E-05 

Igsf23 6.3E-10 Lrrc16a 0.00108 Cfap54 0.00054 

Spink5 6.72E-10 Fam131c 0.00168 Mir192 0.00150 

Gm5424 6.24E-09 Cyp4a12a 0.00220 Gpc1 0.00288 

Corin 1.63E-08 Hsd17b6 0.00358 X1700012C14Rik 0.00759 

Itga6 9.14E-08 Rnf128 0.00610 Zfp449 0.01249 
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Impa2 1.83E-07 Gba2 0.00927 Fam19a5 0.01529 

Gpi1 2.41E-07 Rtn4 0.01255 Pcdh18 0.02078 

Slc15a5 2.57E-07 Elovl3 0.01706 Gfod2 0.02631 

Fgf21 3.06E-07 X1700012C14Rik 0.01613 Sema5b 0.02444 

Vtcn1 2.95E-07 Wasf3 0.01623 Sult1e1 0.02970 

Psat1 3.09E-07 Pdilt 0.01556 Rnf133 0.03283 

Arhgef2 9.22E-07 Adgrg7 0.01509 Trpc3 0.03193 

Hsd17b6 1.05E-06 Derl3 0.01469 Slc39a12 0.03276 

Slc13a2 1.09E-06 Pard3b 0.01428 Sel1l3 0.03158 

Cps1 1.16E-06 Cyp2u1 0.01425 Cidec 0.03688 

Soat2 5.73E-06 Hsd3b5 0.01567   

Top genes by correlation analysis, positive correlation with intake 

Cth 1.92E-05 Slc17a8 0.00711 Gpc1 0.038492 

Lrtm1 2.64E-05 Pard3b 0.01925   

Slc13a2 2.36E-05 Gba2 0.02124   

Gpx6 6.05E-05 Tubg1 0.02399   

Acmsd 9.08E-05 A230050P20Rik 0.02411   

Sdhb 0.00022 Fam131c 0.02692   

Nnmt 0.00021 Unc13b 0.02818   

Acadsb 0.00022 Ergic1 0.03640   

Gm5424 0.00025     

Slc43a1 0.00037     

Top genes by correlation analysis, negative correlation with intake 

Adgrg2 4.78E-06   Cps1 0.00722 

Impa2 2.72E-05   Gm5424 0.01158 

Igf2bp2 4.72E-05     

Slc9a7 4.76E-05     

Unc13b 5.69E-05     

Lhx6 6.77E-05     

Slc17a8 0.00025     

App 0.00028     

Slc7a7 0.00030     

Gpi1 0.00032     
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Figure 4.5. Two dimensional response surfaces created using the GF. The relationships between the 

macronutrients and four hepatic genes (A Nnmt, B Igf2bp2, C Gba2, D Slc15a5) are demonstrated. 

Each graph shows the effects of two of macronutrients at the median point of the third 

macronutrient (shown in parenthesis below the X axis label). The response surfaces vary from red 

which is the most negative value to blue which is the most positive value. The GAM statistics are 

shown in Table 4.3. 

 

A 

B 

C 

D 
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Table 4.3. Statistics for the Geometric Framework figures in Figure 4.5. GAMS data for hepatic 

expression of Slc15a5, Nnmt, Igf2bp2 and Gba2. 

 edf df F P 

Nnmt 

Protein 3.602e+00 8 11.861 3.08e-14 

Fat 9.190e-01 8 1.417 0.000488 

Carbohydrates 1.266e-05 8 0.000 0.603552 

P x F 7.364e-06 3 0.000 1.000000 

P x C 1.879e-05 3 0.000 0.334256 

F x C 1.291e+00 3 1.346 0.048472 

Slc15a5 

Protein 9.824e-01 8 6.962 1.48e-10 

Fat 8.469e-01 8 0.691 0.0138 

Carbohydrates 9.842e-01 8 7.781 2.79e-11 

P x F 3.323e-06 3 0.000 0.7224 

P x C 5.495e-05 3 0.000 0.4078 

F x C 1.487e-06 3 0.000 0.9572 

Igf2bp2 

Protein 4.066e+00 8 22.398 <2e-16 

Fat 9.167e-02 8 0.013 0.299 

Carbohydrates 1.573e-05 8 0.000 0.481 

P x F 4.107e-06 3 0.000 0.503 

P x C 4.094e-06 3 0.000 0.678 

F x C 1.762e-06 3 0.000 0.985 

Gba2 

Protein 8.442e-01 8 0.168 0.1930 

Fat 8.244e-01 8 0.587 0.0108 

Carbohydrates 9.536e-01 8 2.568 4.4e-06 

P x F 2.580e-06 3 0.000 0.5303 

P x C 4.501e-06 3 0.000 0.3722 

F x C 4.107e-01 3 0.168 0.2799 
 

 
 



 

 123 

The effects of macronutrients on hepatic gene pathways 

Gene pathway analysis based on correlation coefficients was able to be analysed according to whether 

the genes had a positive or a negative correlation with macronutrient intake [See Table 4.4, Figure 

4.6A]. Pathways enriched by genes whose expression was positively correlated with protein intake 

included oxidative phosphorylation and multiple pathways associated with amino acid metabolism, as 

well as a pathways associated with neurodegenerative diseases. Pathways enriched by genes whose 

expression was negatively correlated with protein intake include several key metabolic signaling 

pathways, PI3k-Akt, mTOR, AMPK and insulin signaling as well as pathways associated with various 

cancers. Gene pathway analysis based on GAMS only found five pathways associated with protein 

intake all of which were also present in the pathways found using correlation analysis. There were few 

if any significant or relevant pathways linked to carbohydrate or fat intake with either analytical 

approach. 

 

The effects of macronutrients on biological processes in the liver 

Biological processes associated with genes whose expression was positively correlated with protein 

intake included a very large number of processes associated with mitochondria as well as amino acid 

metabolism [See Table 4.5, Figure 4.6B]. Biological processes associated with genes whose expression 

was negatively correlated with protein intake included transcription, protein metabolism and cell 

differentiation and maturation. There were no pathways associated with fat intake and only two with 

carbohydrate intake, and none identified using GAMS analysis. 
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Figure 4.6. (A) Gene pathways and (B) Biological processes associated with protein intake, where the 

association between protein intake and hepatic gene expression has been determined using Pearson’s 

correlation coefficient. Pathways analysis was performed using Enrichr. Full datasets are in Tables 4.4 

and 4.5. 

 
 
  

A 

B 
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Table 4.4. Gene pathway analysis based on KEGG database in Enrichr. The genes of interest in the 

liver were determined using either Pearson’s correlation coefficient or GAMS to evaluate the 

relationship between each macronutrient and gene expression, and a FDR of 0.05. There were no 

pathways that were significant for carbohydrates, fat or the interactions between macronutrients. 

Gene pathway analysis using Enrichr and KEGG database 
 overlap -log(p) p adj p 
Pathways associated with genes posi t ive ly  correlated with protein intake using Pearson’s 
coefficient 
Oxidative phosphorylation  46/133 34.7474 0.0000 0.0000 
Parkinson's disease  47/142 34.4844 0.0000 0.0000 
Metabolic pathways  127/1239 32.5861 0.0000 0.0000 
Alzheimer's disease  44/168 27.4649 0.0000 0.0000 
Huntington's disease  46/193 26.7592 0.0000 0.0000 
Non-alcoholic fatty liver disease  38/151 23.0914 0.0000 0.0000 
Valine, leucine and isoleucine degradation  18/48 14.6411 0.0000 0.0000 
Arginine biosynthesis  8/20 7.0726 0.0000 0.0000 
Cardiac muscle contraction  14/78 6.8751 0.0000 0.0000 
Propanoate metabolism  9/32 6.3681 0.0000 0.0000 
Biosynthesis of amino acids  13/74 6.3146 0.0000 0.0000 
Alanine, aspartate and glutamate metabolism  9/35 6.0039 0.0000 0.0000 
Tryptophan metabolism  9/40 5.4771 0.0000 0.0000 
Glycine, serine and threonine metabolism  9/40 5.4771 0.0000 0.0000 
Carbon metabolism  14/113 4.8876 0.0000 0.0002 
Cysteine and methionine metabolism  8/45 4.1418 0.0001 0.0008 
Glyoxylate and dicarboxylate metabolism  6/28 3.6980 0.0002 0.0022 
Peroxisome  10/83 3.5550 0.0003 0.0028 
beta-Alanine metabolism  6/31 3.4419 0.0004 0.0035 
Histidine metabolism  5/24 3.0999 0.0008 0.0073 
Arginine and proline metabolism  7/50 3.0339 0.0009 0.0081 
Pentose and glucuronate interconversions  5/36 2.2871 0.0052 0.0394 
Lysine degradation  6/52 2.2427 0.0057 0.0419 
Pathways associated with genes negat ive ly  correlated with protein intake using Pearson’s 
coefficient 
PI3K-Akt signaling pathway  38/341 10.4612 0.0000 0.0000 
Focal adhesion  25/202 8.0027 0.0000 0.0000 
AGE-RAGE signaling pathway  16/101 6.8180 0.0000 0.0000 
Pathways in cancer  34/397 6.5509 0.0000 0.0000 
ECM-receptor interaction  14/82 6.4542 0.0000 0.0000 
Small cell lung cancer  12/86 4.6848 0.0000 0.0007 
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mTOR signaling pathway  10/60 4.6824 0.0000 0.0007 
Amoebiasis  12/100 4.0266 0.0001 0.0026 
Choline metabolism in cancer  12/101 3.9844 0.0001 0.0026 
Proteoglycans in cancer  18/203 3.9423 0.0001 0.0026 
Toxoplasmosis  13/118 3.9275 0.0001 0.0026 
Colorectal cancer  9/62 3.7883 0.0002 0.0033 
Pancreatic cancer  9/66 3.5770 0.0003 0.0049 
Progesterone-mediated oocyte maturation  11/98 3.4813 0.0003 0.0057 
Thyroid hormone signaling pathway  12/118 3.3460 0.0005 0.0071 
Acute myeloid leukemia  8/57 3.3248 0.0005 0.0071 
Rap1 signaling pathway  17/211 3.2686 0.0005 0.0076 
Protein digestion and absorption  10/90 3.1798 0.0007 0.0088 
AMPK signaling pathway  12/124 3.1512 0.0007 0.0089 
Insulin resistance  11/109 3.0855 0.0008 0.0092 
Phospholipase D signaling pathway  13/144 3.0799 0.0008 0.0092 
Fc gamma R-mediated phagocytosis  10/93 3.0674 0.0009 0.0092 
TNF signaling pathway  11/110 3.0524 0.0009 0.0092 
Hepatitis B  13/146 3.0240 0.0009 0.0092 
N-Glycan biosynthesis  7/49 3.0201 0.0010 0.0092 
Renal cell carcinoma  8/66 2.8944 0.0013 0.0118 
Central carbon metabolism in cancer  8/67 2.8514 0.0014 0.0125 
Dorso-ventral axis formation  5/27 2.8041 0.0016 0.0135 
MAPK signaling pathway  18/255 2.7630 0.0017 0.0143 
HTLV-I infection  18/258 2.7072 0.0020 0.0157 
Thyroid cancer  5/29 2.6597 0.0022 0.0169 
Arrhythmogenic right ventricular cardiomyopathy  8/74 2.5733 0.0027 0.0200 
Ras signaling pathway  16/227 2.5114 0.0031 0.0224 
Osteoclast differentiation  11/132 2.4192 0.0038 0.0269 
Jak-STAT signaling pathway  12/158 2.2649 0.0054 0.0373 
Endometrial cancer   6/52 2.1877 0.0065 0.0433 
Cell cycle  10/124 2.1481 0.0071 0.0450 
Viral carcinogenesis  14/205 2.1471 0.0071 0.0450 
Pathways associated with genes linked to protein intake by GAMS 
Non-alcoholic fatty liver disease (NAFLD)  45/151 5.8505 0.0000 0.0004 
Oxidative phosphorylation  35/133 3.5035 0.0003 0.0320 
Focal adhesion  48/202 3.4093 0.0004 0.0320 
Huntington's disease  46/193 3.3239 0.0005 0.0320 
Parkinson's disease  36/142 3.2516 0.0006 0.0320 
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Table 4.5. Biological pathways analysis based on Gene Ontology Biological Process 2017 database in 

Enrichr. The genes of interest in the liver were determined using either GAMS or Pearson’s 

correlation coefficient to evaluate the relationship between each macronutrient and gene expression, 

and a FDR of 0.05. There were no processes detected using GAMS or for fat. 

 
Biological processes using Enrichr and GO Biological processes 2017 database 

 overlap -log(p) p adj p 

Biological processes associated with genes posi t ive ly  correlated with protein intake using 
Pearson's coefficient 

mitochondrial electron transport, NADH to 
ubiquinone  

22/46 20.5891 0.0000 0.0000 

mitochondrial respiratory chain complex I assembly  22/62 17.1563 0.0000 0.0000 

mitochondrial electron transport, ubiquinol to 
cytochrome c 

7/14 10.2933 0.0000 0.0000 

branched-chain amino acid catabolic process 9/16 10.1865 0.0000 0.0000 

cristae formation 9/27 7.0838 0.0000 0.0000 

mitochondrial electron transport, cytochrome c to 
oxygen 

7/20 5.7876 0.0000 0.0002 

mitochondrial ATP synthesis coupled proton 
transport 

7/21 5.6234 0.0000 0.0002 

tryptophan catabolic process 5/9 5.4572 0.0000 0.0003 

urea cycle 5/10 5.1676 0.0000 0.0005 

mitochondrial ATP synthesis coupled electron 
transport 

4/6 4.8540 0.0000 0.0010 

lysine catabolic process 5/12 4.6931 0.0000 0.0013 

cellular nitrogen compound metabolic process 6/23 4.2116 0.0001 0.0037 

mitochondrial translational termination 11/87 4.0461 0.0001 0.0046 

mitochondrial translational elongation 11/87 4.0461 0.0001 0.0046 

ATP biosynthetic process 6/25 3.9908 0.0001 0.0049 

oxidative phosphorylation 4/10 3.7518 0.0002 0.0079 
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L-phenylalanine catabolic process 4/11 3.5665 0.0003 0.0114 

cellular amino acid biosynthetic process 5/25 3.0143 0.0010 0.0346 

aerobic respiration 5/25 3.0143 0.0010 0.0346 

mitochondrial respiratory chain complex III 
assembly 

3/8 2.8084 0.0016 0.0484 

Biological processes associated with genes negat ive ly  correlated with protein intake using 
Pearson's coefficient 

extracellular matrix organisation 18/142 6.0919 0.0000 0.0011 

platelet activation 12/94 4.2924 0.0001 0.0244 

positive regulation of transcription of nuclear large 
rRNA transcript from RNA polymerase I promoter 

4/8 4.1619 0.0001 0.0244 

positive regulation of protein phosphorylation 13/113 4.1215 0.0001 0.0244 

phosphate-containing compound metabolic process 5/16 3.9428 0.0001 0.0244 

cell maturation 4/9 3.9179 0.0001 0.0244 

cellular protein metabolic process 17/186 3.9158 0.0001 0.0244 

endodermal cell differentiation 6/26 3.8254 0.0001 0.0263 

positive regulation of gene expression 18/214 3.6549 0.0002 0.0346 

regulation of small GTPase mediated signal 
transduction 

13/129 3.5387 0.0003 0.0407 

receptor-mediated virion attachment to host cell 3/5 3.4916 0.0003 0.0412 

cellular response to hypoxia 8/55 3.4328 0.0004 0.0432 

Ras protein signal transduction 8/56 3.3782 0.0004 0.0453 

cell migration 13/136 3.3153 0.0005 0.0486 

Biological processes associated with genes correlated with carbohydrate intake using 
Pearson's coefficient 

synaptic vesicle priming 6/17 2.6202 0.0024 0.0102 

bile acid metabolic process 6/17 2.6202 0.0024 0.0102 

 
 
 



 

 129 

The effect of macronutrients on longevity regulating pathways in the liver  

The KEGG ‘longevity regulating pathways, multiple species’ gene set (ko0413, 

http://www.genome.jp/dbget-bin/www_bget?pathway+ko04213) includes 59 genes of which 50 

were present in this microarray data set, some with two variants. Using GAMS analysis there were 

only seven genes in common with these longevity regulating genes (Atg5, Mtor, Pik3r2, Igf1r, Prkab2, 

Hsap1b, Adcy3) and three using correlation analysis (Atg4, Mtor, Pik3r2). The correlation coefficients 

between each of these genes and macronutrients were plotted on a heatmap [Figure 4.7] to determine 

the overall pattern of the relationship between macronutrient intake and expression of genes 

associated with the regulation of aging. There were many more genes whose expression were 

negatively correlated with protein intake than positively correlated with protein intake. Genes 

associated with carbohydrate intake had the opposite pattern. Consequently, there was a clear inverse 

pattern between genes associated with protein intake versus those associated with carbohydrate intake 

(and a similar, but less marked pattern when comparing protein intake and fat intake).  

 

The Geometric Framework was used to evaluate five nutrient sensing genes that are considered to 

link nutrition with aging: Mtor, Igf1, Sirt1, Prkab2 (a subunit of AMPK) and Ffg21 [See Figure 4.8, 

Table 4.6]. Surprisingly the expression of Mtor, which is one of the key signaling pathways stimulated 

by protein, was upregulated with lower protein intake. The effects of macronutrients on mTOR 

protein phosphorylation in these mice has been previously published (Solon-Biet et al. 2014), and 

comparison of these data with Mtor gene expression showed that there was no correlation (r=-0.052, 

p=0.7). Low protein intake was associated with reduced expression of Igf1 and increased expression of 

Prkab2 and Fgf21. The expression of Sirt1 was not significantly influenced by diet by dietary 

macronutrients. The genes influenced by protein intake were compared to those reported to be 

influenced by caloric restriction. A meta-analysis identified 174 genes where expression is influenced 

by caloric restriction (Plank et al. 2012) of which only 30 were in common with those genes 
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influenced by protein intake determined by GAMS, and only 11 in common with those genes 

influenced by protein intake determined by correlation [Table 4.7]. 

 

Figure 4.7. Heatmap showing the relationship between longevity regulating genes in the liver 

according to KEGG, and the correlation coefficients that link each of these genes with protein, 

carbohydrates, fat and total energy intake. Positive correlation coefficients are shown in red and 

negative coefficients in blue. 
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Figure 4.8. Three dimensional response surfaces created using the GF. The relationships between the 

macronutrients and four nutrient sensing hepatic genes (A Mtor, B Igf1, C Pkrab2, D Fgf21) are 

demonstrated. Each graph shows the effects of two of macronutrients at the median point of the 

third macronutrient (shown in parenthesis below the X axis label). The response surfaces vary from 

red, which is the most negative value to blue which is the most positive value. The GAM statistics are 

shown in Table 4.6. 

 

A 

B 

C 

D 
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Table 4.6. Statistics for the Geometric Framework figures in Figure 4.8. GAMS data for hepatic 

expression of Mtor, Igf1, Prkab2 and Ffg21. 

 edf df F P 

Mtor 

Protein 2.170e+00 8 3.016 1.45e-05 

Fat 2.873e-05 8 0.000 0.507 

Carbohydrates 1.795e-05 8 0.000 0.765 

P x F 2.350e-01 3 0.085 0.286 

P x C 1.122e-05 3 0.000 0.364 

F x C 2.588e-01 3 0.099 0.291 

Igf1 

Protein 8.092e-01 8 0.53 0.0193 

Fat 9.036e-06 8 0.00 0.3452 

Carbohydrates 5.297e-07 8 0.00 0.5722 

P x F 7.436e-01 3 0.47 0.1522 

P x C 2.033e-07 3 0.00 1.0000 

F x C 2.067e-07 3 0.00 0.6170 

Prkab2 

Protein 1.276e+00 8 1.082 0.0031 

Fat 1.790e-05 8 0.000 0.7183 

Carbohydrates 1.067e-05 8 0.000 0.8009 

P x F 1.653e+00 3 2.840 0.0076 

P x C 8.471e-07 3 0.000 0.6440 

F x C 6.838e-06 3 0.000 0.6708 

Fgf21 

Protein 4.313e+00 8 8.913 1.91e-10 

Fat 8.544e-05 8 0.000 0.361 

Carbohydrates 6.244e-06 8 0.000 1.000 

P x F 5.098e-06 3 0.000 0.648 

P x C 1.639e-05 3 0.000 1.000 

F x C 5.026e-06 3 0.000 0.670 
  



 

 133 

Table 4.7. Genes in common between those influenced by protein intake from this study and 

compared with those influenced by caloric restriction as published by (Plank et al. 2012) where there 

were 101 genes upregulated by caloric restriction and 73 downregulated. Genes of interest were 

determined using either a correlation analysis or GAMS with a FDR of 0.05 for their association with 

protein intake. 

 
Upregulated in caloric restriction Downregulated in caloric restriction 

Altered expression with protein intake determined by GAMS 

Klf10 C9 
Rgs16 Col15a1 
Cyp2j6 Hsd3b2 
Zbtb16 Slc10a2 
Cyp2b13 Extl1 
BC089597 Cyp2f2 
Sds Hipk2 
Mt2 R3hdm2 
Lpin1 Col3a1 
Per1 Stac3 
Angptl4  
Plin4  
St3gal5  
Fmo3  
Rhobtb1  
Cbr1  
Nat8  
Cpt1a  
Arrdc2  
Por  

Altered expression with protein intake determined by correlation analysis 

Cyp2j6 C9 
Sds Cyp2f2 
Sult1d1 Col15a1 
Fam195a  
Plin4  
Zbtb16  
Klf10  
Rgs16  
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PCR confirmation of hepatic microarray analysis 

In order to validate the results of the transcriptome analysis, quantitative RT-PCR was performed on 

a set of 84 genes associated with nutrient sensing pathways. Gene expression values from the 

microarray and PCR were correlated using a Q-Q plot to determine distribution of gene expression 

(Warnat et al. 2005). The expression of the majority of genes from the microarray were closely 

correlated with their PCR counterparts [Figure 4.9, Table 4.8].  

 
 

 
Figure 4.9. Correlation between Affymetrix microarray gene expression data and PCR data for 84 

genes listed in Table 4.8. 
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Table 4.8. List of genes on Qiagen Insulin Signalling Pathway RT2 Profiler PCR Array  

Insulin Receptor-Associated Proteins 

Insulin & Receptors: Ins1, Insl3, Irs1, Irs2, Sorbs1. 

Insulin-Like Growth Factors & Receptors: Grb10, Igf1r, Igfbp1. 

SH3 / SH2 Adaptor Proteins: Cbl, Grb10, Grb2. 

Other Insulin Receptor-Associated Proteins: Dok1, Dok2, Dok3, Eif4ebp1, Frs2, Frs3, Gab1, 
Nck1, Ppp1ca, Ptpn1 (PTP1B), Ptprf, Shc1. 

PI3 Kinase Signaling 

Genes: Akt1, Akt2, Akt3, Eif2b1, Mtor, Pdpk1, Pik3ca (p110alpha), Pik3cb, Pik3r1 (p85alpha), 
Pik3r2 (p85beta), Prkcg, Prkci, Prkcz. 

PI3 Kinase Signaling Target Genes: Adra1d, Bcl2l1 (Bcl-XL), Dusp14, G6pc, G6pc2, Hk2, Igfbp1, 
Pck2, Serpine1 (PAI-1), Srebf1, Ucp1, Vegfa. 

MAP Kinase Signaling 

Genes: Araf, Braf, Dok2, Dok3, Gab1, Grb2, Hras, Kras, Map2k1 (Mek1), Mapk1 (Erk2), Raf1, 
Rps6ka1, Rras, Rras2, Shc1, Sos1. 

MAP Kinase Signaling Target Genes: Bcl2l1 (Bcl-XL), Ercc1, Fos, Nos2 (iNOS), Klf10 (Tieg1), 
Ucp1. 

Primary Insulin Signaling Target Genes: Cebpb, Fos, Jun, Lep (Leptin), Prl. 

Secondary Insulin Signaling Effector Target Genes: Npy, Pck2, Tg. 

PPAR Targets 

Acox1, Cfd (Adn), Cap1, Cebpb, Gpd1, Pck2, Pparg, Retn, Slc27a4. 

SREBP1 Targets 

Acaca, Fbp1, G6pc, Gck, Pck2, Pklr. 

Carbohydrate Metabolism 

Glucose Metabolism: Fbp1, G6pc, Gck, Gpd1, Hk2, Ins1, Lep (Leptin), Pck2, Pklr. 

Glycogen Metabolism: G6pc, Ppp1ca. 

Carbohydrate Transport: Ins1, Slc2a1, Sorbs1. 
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Lipid Metabolism 

Cholesterol Metabolism: Ldlr, Lep (Leptin), Srebf1. 

Fatty Acid Metabolism: Acox1, Slc27a4. 

Lipid Transport: Ldlr, Slc27a4, Sorbs1. 

Other Lipid Metabolism Genes: Araf, Prkcg, Prkci, Prkcz, Raf1, Shc1. 

Protein Metabolism 

Protein Phosphatases: Dusp14, Ppp1ca, Ptpn1 (PTP1B), Ptprf. 

Protein Kinases: Akt1, Akt2, Akt3, Araf, Gsk3b, Igf1r, Map2k1 (Mek1), Mapk1 (Erk2), Pdpk1, 
Pik3ca (p110alpha), Pik3r1(p85alpha), Prkcg, Prkci, Prkcz, Raf1,Rps6ka1. 

Protein Biosynthesis: Eif2b1, Eif4ebp1, Ppp1ca. 

Protein Transport: Gsk3b, Hras, Prkci, Rras2. 

Other Protein Metabolism Genes: Bcl2l1 (Bcl-XL), Cebpa, Cebpb, Dok3, Frs2, Gab1, Gck, Grb10, 
Grb2, Jun, Ldlr, Lep(Leptin), Nck1, Nos2 (iNOS), Pik3r2 (p85beta), Serpine1 (PAI-1), Shc1, 
Sorbs1, Sos1, Ucp1. 

Transcription Factors & Regulators: Aebp1, Cebpa, Cebpb, Fos, Jun, Pparg, Srebf1, Klf10 (Tieg1). 

Cell Growth & Differentiation 

Cell Cycle: Gsk3b, Hras, Igf2, Jun, Kras, Mapk1 (Erk2), Vegfa. 

Cell Proliferation: Gsk3b, Igf2, Irs2, Lep (Leptin), Nos2 (iNOS), Shc1, Vegfa. 

Growth Factors & Receptors: Frs2, Igf1r, Igf2, Igfbp1, Lep (Leptin), Shc1, Vegfa. 

Cell Differentiation: Cebpa, Cebpb, Gsk3b, Jun, Map2k1 (Mek1), Pik3r1 (p85alpha), Pparg. 
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The effects of macronutrients on overall hypothalamic gene expression 

Across the 10,908 genes probed by the hypothalamic microarray [Figure 4.10], diet caused changes in 

the expression of 157 genes when analysed using correlation statistics (123 up-regulated, 34 down-

regulated). The majority of these genes were influenced fat intake (52 up-regulated, 3 down-regulated) 

and total energy intake (44 up-regulated, 6 down-regulated) [Figure 4.11A]. 140 genes had over 5-fold 

differences in expression between the highest and lowest groups, while 25 genes had greater than 10-

fold changes in expression.  

 

GF analysis allowed ratios to be examined in addition to individual macronutrients, with a total of 934 

genes having changes in their regulation as a result of varying macronutrient composition [See Figure 

4.11B]. Interestingly, the GF analysis showed similar results to the correlation method, with fat once 

again playing the most significant role in regulating hypothalamic gene expression (n=205 genes), 

although the protein-to-carbohydrate (P:C) ratio, or the non-fat (fat intake vs non-fat intake) ratio was 

also picked up as a key regulator of gene expression (n=469 genes). Volcano plot analysis was used to 

identify genes of interest [Figure 4.10], with the top ten genes by macronutrient intake outlined in 

Table 4.9, both by GF and correlation analysis. 

 

Representative surfaces for each macronutrient (protein, carbohydrates, fat) are shown in Figure 4.12 

with their corresponding GAM statistics shown in Table 4.10. These genes were chosen because they 

are each in the top 10 most significantly altered expression levels based on GF analysis [Table 4.9], as 

well as demonstrate characteristic responses that are easily identified visually. Spindle assembly 

abnormal protein 6 (Sass6) is negatively correlated with protein intake, as seen in Figure 4.12A, where 

lower expression (blue colour) is associated with high protein, while high expression (red colour) is 

associated with low protein in the diet. Ubiquinol-cytochrome c reductase (Uqcr) is positively 

associated with carbohydrate intake [See Figure 4.12B], and B cell leukemia/lymphoma 2 related 
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protein A1b (Bcl2a1b) was positively associated with fat intake [See Figure 4.12C]. Of the genes 

significantly influenced by each macronutrient and ratio, several were involved in cellular growth and 

metabolism. As shown in Figure 4.11, the protein-to-carbohydrate ratio was the key driver of changes 

in gene expression. Key genes of interest here were: carbohydrate intake significantly influenced 

expression of Slc6a3, Igf1 and Sirt2; protein intake significantly influenced Npy, Akt3, Sirt1; and P:C 

ratio significantly influenced Sirt5, Rps6a4/5, Igf2r, Igf1r and Sirt3.  

 
 
 

 

 

Figure 4.10. Unidirectional volcano plot of the 10908 genes in the hypothalamic microarray based on 

fold change versus p-value as derived from the GF. Genes are colour coded based on correlation to 

macronutrient intake (P, C, F) or ratio (PxC, PxF, CxF) as outlined in the legend.  
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Figure 4.11. Venn diagrams showing the effects of macronutrient intake on hypothalamic gene 

expression. In addition to macronutrients, total energy is also shown in Figure 4.11A, with results 

determined using Pearson’s correlation coefficient (black positive correlation, red negative 

correlation).  Figure 4.11B uses GF analysis, with macronutrient ratio results also shown (PxC, PxF, 

CxF interactive terms between protein, carbohydrates and fat). 
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Table 4.9. Gene expression with the highest statistical association with macronutrient intake 

determined using either GF or correlation analysis in the hypothalamus. Benjamini Hochberg 

correction with a FDR of 0.05 has been performed for the p-values. Expression is broken down into 

up- or down-regulation.  

Protein 
GF Correlation 

Gene p-value Gene Expression p-value 
Hgs 9.25E-07 Spg21 Up 2.51E-04 
Sass6 1.02E-06 D630014A15Rik Down 2.95E-04 
Tmem87a 8.56E-06 BC031181 Up 7.23E-04 
LOC100046457 8.90E-06 Arl3 Down 9.52E-04 
Psat1 9.00E-06 Asah3l Down 1.24E-03 
Ivns1abp.2 1.37E-05 Trpm6 Up 1.38E-03 
Atp1b1 1.78E-05 LOC100045680 Down 1.48E-03 
Psma7.1 2.66E-05 LOC381420 Down 2.01E-03 
X4933426M11Rik 3.76E-05 Gtpbp6 Up 2.45E-03 
LOC329416 4.12E-05 Sec22c Down 2.50E-03 

 
Carbohydrates 

GF Correlation 
Gene p-value Gene Expression p-value 
A730094H17Rik 1.31E-11 4930538K18Rik Down 2.79E-05 
LOC386330 8.12E-11 Pik3ip1 Down 1.41E-04 
X2810403A07Rik 1.81E-10 Txnrd3 Down 1.96E-04 
Ptprs 2.43E-10 Odf2 Down 2.03E-04 
X9530053J19Rik 7.60E-10 Aloxe3 Down 2.26E-04 
X4933439J20Rik 9.58E-10 6330444G18Rik Up 2.65E-04 
Kcnq2.1 1.30E-09 Setd1a Down 2.70E-04 
Adrbk2 1.84E-09 Man1b1 Down 2.94E-04 
Uqcr 1.90E-09 Eng Up 2.95E-04 
X9430091F09Rik 3.07E-09 Zfp704 Down 3.13E-04 

 
Fat 

GAMS Correlation 
Gene p-value Gene Expression p-value 
X4933421H10Rik 2.77E-09 Tmed9 Up 3.73E-05 
E030007H10Rik 1.36E-08 Zfr Up 5.16E-05 
Csnk1g2 3.15E-08 BC005537 Up 1.16E-04 
Loxl1 2.23E-07 LOC100039786 Up 1.59E-04 
Pgcp 2.95E-07 Pbrm1 Up 1.71E-04 
Vamp8 3.44E-07 Sui1-rs1 Up 1.74E-04 
Bcl2a1b 4.30E-07 2400001E08Rik Up 1.77E-04 
Supt16h.1 6.00E-07 Tmem176b Up 1.92E-04 
Unk 1.14E-06 LOC268700 Up 2.18E-04 
Hspg2 1.26E-06 Tmed2 Up 2.60E-04 
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Figure 4.12. Representative three dimensional response surfaces created using the GF. The 

relationships between the macronutrients and the hypothalamic genes are demonstrated using the 

colour maps, with red being the most positive response, and blue being the most negative response. 

Slices are taken through the median of each of the axes (shown in parenthesis below the x-axis label). 

Figure 4.12A is a representative surface for correlation with protein intake on the Sass6 gene. Figure 

4.12B is a representative surface for correlation with carbohydrate intake on the Uqcr gene, and Figure 

4.12C is a representative surface for correlation with fat intake on the Bcl2a1b gene. GAM statistics are 

provided in Table 4.10. 

 
 
 
 
  

A 

B 

C 



 

 142 

Table 4.10. Statistics for the Geometric Framework figures in Figure 4.12. GAMS data for 

hypothalamic expression of Sass6, Uqcr, and Bcl2a1b. 

 
 edf df F p-value 

Sass6 

Protein 9.73E-01 8 12.497 1.02E-06 

Carbohydrates 7.46E-01 8 2.781 2.89E-02 

Fat 4.69E-01 8 0.641 1.17E-01 

P x C 1.42E+00 3 0.000 1.22E-02 

P x F 7.74E-01 3 0.000 1.18E-01 

C x F 1.22E+00 3 0.000 2.66E-02 

Uqcr 

Protein 9.02E-01 8 0.646 3.18E-03 

Carbohydrates 1.93E+00 8 4.567 1.90E-09 

Fat 1.40E-05 8 1.150 6.62E-01 

P x C 1.78E+00 3 0.000 2.09E-07 

P x F 1.78E+00 3 0.000 1.09E-06 

C x F 1.28E+00 3 0.000 2.43E-03 

Bcl2a1b 

Protein 3.32E-05 8 0.000 9.38E-01 

Carbohydrates 5.89E-01 8 4.089 9.69E-02 

Fat 9.75E-01 8 15.509 4.30E-07 

P x C 5.75E-01 3 0.000 2.15E-01 

P x F 1.63E-05 3 0.000 7.77E-01 

C x F 1.60E+00 3 0.000 1.05E-02 
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Similar to the results from hepatic gene expression in the same cohort of animals, heatmap analysis 

[See Figure 4.13] showed a strong inverse relationship between gene expressions correlating to protein 

intake compared with fat intake.  

 
 
 
 

 
 
 

Figure 4.13. Heatmaps comparing the effects of protein, carbohydrates and fat on overall gene 

expression patterns in the hypothalamus. Here, the values are Pearson’s correlation coefficients 

ranked from most positive correlation in red to the most negative correlation in blue. The most 

positive 1000 genes and the most negative 1000 genes are included. The genes have been ranked 

according to significance of the correlation with protein (Figure 4A), carbohydrates (Figure 4B) and 

fat (Figure 4C). 
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The effects of macronutrients on hypothalamic genes related to biological processes 

Enrichr gene pathway analysis performed using the KEGG and GO biological process databases is 

outlined in Tables 4.11 and 4.12. Gene pathway analysis here is based on significant correlation alone, 

and does not differentiate between positive and negative correlations. Protein was found to be 

involved with several pathways associated with metabolism and biosynthesis of macronutrients, as 

well as inflammation, in particular the regulation of NF-kB. Carbohydrate intake was associated with 

pathways involved in mineralocorticoid and fluid homeostasis, as well as activity of ion transport 

channels. Fat on the other hand, which affected the most number of genes, was associated primarily 

with protein transport and formation pathways, including multiple processes related to the 

endoplasmic reticulum, and Golgi apparatus. The protein-to-carbohydrate ratio had multiple 

correlations to disease pathways, particularly neurodegenerative diseases, as well as protein translation, 

transportation and localisation through SRP-mediated protein targeting [See Table 4.13]. 

 

The effect of macronutrients on longevity regulating pathways in the hypothalamus 

43 of the 59 genes that are described in the KEGG ‘longevity regulating pathways, multiple species’ 

gene set (ko0413, http://www.genome.jp/dbget-bin/www_bget?pathway+ko04213) were present in 

this microarray data set, some with two variants. GF analysis revealed that 28 of these genes had their 

expression significantly influenced by macronutrient intake [Table 4.14]. Of these, 13 were correlated 

with P:C ratio, and 12 to carbohydrate intake, with protein and fat influencing 6 genes each. 

Correlation coefficients of these genes have been plotted on a heatmap to each of the macronutrients, 

as well as total energy [See Figure 4.14]. Once again, protein and fat seemed to have inverse effects on 

gene regulation.  
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Table 4.11. Gene pathway analysis based on the KEGG database in Enrichr. The hypothalamic 

genes of interest were determined using either Pearson’s correlation coefficient or GAMS to 

evaluate the relationship between each macronutrient and gene expression, and a FDR of 0.05.  

 
Protein 

Pathway p-value 
Carbon metabolism 8.83E-03 
Aldosterone-regulated sodium reabsorption 9.40E-03 
Carbohydrate digestion and absorption 1.24E-02 
Biosynthesis of amino acids 3.15E-02 
Proximal tubule bicarbonate reclamation 8.28E-02 
Biosynthesis of unsaturated fatty acids 8.28E-02 
Circadian rhythm 1.07E-01 
Herpes simplex infection 1.53E-01 
cAMP signaling pathway 1.71E-01 
Viral carcinogenesis 1.79E-01 
  

Carbohydrates 
Pathway p-value 
Chemokine signaling pathway 7.54E-03 
Proximal tubule bicarbonate reclamation 4.83E-02 
Aldosterone-regulated sodium reabsorption 8.06E-02 
Vasopressin-regulated water reabsorption 9.04E-02 
Carbohydrate digestion and absorption 9.24E-02 
Endocrine and other factor-regulated calcium reabsorption 9.63E-02 
N-Glycan biosynthesis 1.00E-01 
Mineral absorption 1.04E-01 
Endocytosis 1.07E-01 
Arachidonic acid metabolism 1.25E-01 
  

Fat 
Pathway p-value 
Protein export 2.30E-02 
Systemic lupus erythematosus 5.04E-02 
Ubiquitin mediated proteolysis 5.27E-02 
Viral carcinogenesis 6.03E-02 
Glycine, serine and threonine metabolism 6.33E-02 
Endocrine and other factor-regulated calcium reabsorption 8.37E-02 
Hedgehog signaling pathway 9.30E-02 
Alzheimer's disease 9.47E-02 
Protein processing in endoplasmic reticulum 9.62E-02 
Alcoholism 1.12E-01 
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Table 4.12. Gene pathway analysis based on the GO Biological process database in Enrichr. The 

hypothalamic genes of interest were determined using either Pearson’s correlation coefficient or 

GAMS to evaluate the relationship between each macronutrient and gene expression, and a FDR of 

0.05.  

Protein 
GO Biological Process p-value 
Central nervous system myelination 4.92E-03 
Negative regulation of co-receptor activity involved in epidermal growth factor 
receptor signaling pathway 6.01E-03 
Extra-ocular skeletal muscle development 7.20E-03 
Cardiac muscle cell contraction 8.05E-03 
Negative regulation of NF-kappaB import into nucleus 1.19E-02 
Positive regulation of receptor internalisation 1.24E-02 
Negative regulation of epidermal growth factor-activated receptor activity 1.46E-02 
Cytoplasmic sequestering of NF-kappaB 1.69E-02 
Regulation of neuron migration 1.81E-02 
Positive regulation of cytokine production involved in inflammatory response 2.41E-02 

Carbohydrates 
GO Biological Process p-value 
positive regulation of voltage-gated potassium channel activity 1.25E-04 
positive regulation of calcium:sodium antiporter activity 1.25E-04 
positive regulation of large conductance calcium-activated potassium channel activity 2.01E-04 
atrial cardiac muscle cell to AV node cell communication by electrical coupling 4.04E-04 
membrane repolarisation during SA node cell action potential 4.66E-04 
SA node cell to atrial cardiac muscle cell communication by electrical coupling 4.66E-04 
membrane repolarisation during atrial cardiac muscle cell action potential 7.54E-04 
regulation of cardiac muscle contraction by regulation of the release of sequestered 
calcium ion 9.24E-04 
positive regulation of potassium ion transmembrane transporter activity 1.11E-03 
membrane repolarisation during ventricular cardiac muscle cell action potential 1.11E-03 

Fat 
GO Biological Process p-value 
Endoplasmic reticulum tubular network formation 3.59E-03 
Endoplasmic reticulum tubular network maintenance 2.12E-03 
Positive regulation of PERK-mediated unfolded protein response 3.59E-03 
Endoplasmic reticulum tubular network membrane organisation 4.46E-03 
PERK-mediated unfolded protein response 6.45E-03 
Negative regulation of protein localisation to plasma membrane 6.45E-03 
Negative regulation of Golgi to plasma membrane protein transport 7.57E-03 
Positive regulation of actin filament bundle assembly 8.77E-03 
Negative regulation of cytoplasmic translational initiation 1.29E-02 
Protein autoubiquitination 1.57E-02 
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Table 4.13. Gene pathway analysis based on the KEGG and GO biological process databases in 

Enrichr for the protein-to-carbohydrate ratio. The hypothalamic genes of interest were determined 

using either Pearson’s correlation coefficient or GAMS to evaluate the relationship between each 

macronutrient and gene expression, and a FDR of 0.05.  

 
Protein-to-Carbohydrate ratio (P x C) 

KEGG Pathway p-value 

SRP-dependent co-translational protein targeting to membrane, translocation 1.02E-05 

Cytoplasmic translation 8.71E-05 

SRP-dependent cotranslational protein targeting to membrane, docking 4.02E-05 

Maintenance of translational fidelity 2.52E-04 

Plastid translation 2.52E-04 

N-terminal peptidyl-proline demethylation involved in translation 2.68E-04 

SRP-dependent cotranslational protein targeting to membrane, signal sequence 
recognition 1.42E-04 

Nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 1.76E-04 

Translational termination 3.82E-04 

Translational elongation 4.52E-04 

 

GO Biological Process p-value 

SRP-dependent cotranslational protein targeting to membrane, translocation 1.02E-05 

Cytoplasmic translation 8.71E-05 

SRP-dependent cotranslational protein targeting to membrane, docking 4.02E-05 

Maintenance of translational fidelity 2.52E-04 

Plastid translation 2.52E-04 

N-terminal peptidyl-proline dimethylation involved in translation 2.68E-04 

SRP-dependent cotranslational protein targeting to membrane, signal sequence 
recognition 1.42E-04 

Nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 1.76E-04 

Translational termination 3.82E-04 

Translational elongation 4.52E-04 
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Figure 4.14. Heatmap showing the relationship between longevity regulating genes in the 

hypothalamus according to KEGG, and the correlation coefficients that link each of these genes with 

protein, carbohydrates, fat and total energy intake. Positive correlation coefficients are shown in red 

and negative coefficients in blue. Full results are provided in Table 4.14. 
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Table 4.14. Pearson correlations and GF analysis for hypothalamic genes identified in KEGG 

‘longevity regulating pathways, multiple species’ gene set (ko0413, http://www.genome.jp/dbget-

bin/www_bget?pathway+ko04213).  Pearson correlations are denoted as cor(X), where X refers to 

either protein (P), carbohydrate (C), fat (F), or energy (E). GF p-values are denoted as pval(X), with X 

referring to the same nomenclature as above. Non-significant values are left blank. 

 

Gene cor(P) cor(C) cor(F) cor(E) pval(P) pval(C) pval(F) pval(PxC) pval(PxF) pval(CxF) 

Hspe1 -0.257 0.191 0.481 0.452   1.02E-04   1.02E-02 

Rps6kb1 -0.519 0.309 0.404 0.301 3.43E-02   9.57E-04 2.34E-03 1.10E-03 

Sirt1 -0.461 -0.019 0.328 -0.078 2.42E-02   2.80E-02   

Raptor -0.292 0.131 0.322 0.212   3.46E-02 3.30E-02   

Sod2 -0.231 0.314 0.313 0.449    6.23E-04   

Atg5 -0.461 0.174 0.308 0.111 4.09E-02   6.56E-03   

Adcy2 -0.104 -0.072 0.297 0.117    5.05E-03   

Akt3 -0.407 0.058 0.270 -0.007       

Pik3ca -0.192 0.295 0.248 0.398       

Adcy9 -0.214 0.243 0.232 0.310       

Adcy4 0.124 0.321 0.162 0.594  1.44E-03     

Igf1r -0.373 0.252 0.137 0.106 1.34E-02      

Foxo1 -0.289 -0.018 0.125 -0.130 5.35E-03  9.09E-03    

Pnck 0.065 -0.216 0.114 -0.077       

Adcy1 -0.094 0.177 0.109 0.219       

Nras 0.267 -0.055 0.099 0.242    5.99E-03   

Prkab1 0.222 -0.146 0.067 0.080   1.82E-02    

Hspa1a -0.050 0.232 0.066 0.273      4.36E-02 

Adcy8 0.037 0.338 0.048 0.438  2.04E-03     
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Prkaa1 -0.003 -0.087 0.034 -0.065       

Adcy6 0.064 -0.225 -0.002 -0.194   1.37E-02    

Adcy7 -0.126 0.307 -0.010 0.223   4.62E-02 2.86E-03   

Kat2b 0.127 -0.074 -0.032 -0.010       

Akt1s1 0.148 -0.111 -0.044 -0.044    4.02E-02  9.90E-03 

Pik3r1 -0.157 0.271 -0.095 0.081  5.07E-03  1.06E-02   

Sirt2 0.196 0.191 -0.098 0.270  4.25E-02     

Kras 0.135 -0.222 -0.111 -0.236       

Eif4ebp2 0.021 0.091 -0.119 0.003       

Irs2 -0.159 0.057 -0.127 -0.181  7.34E-03     

Irs2 -0.159 0.057 -0.127 -0.181  7.34E-03     

Gpr1 0.229 -0.353 -0.163 -0.352       

Igf1 -0.069 0.407 -0.175 0.223  2.87E-02     

Cryab 0.076 0.507 -0.191 0.430  3.67E-06  3.16E-02   

Prkag1 -0.028 0.450 -0.199 0.278  9.55E-03     

Hdac11 0.256 -0.087 -0.220 -0.097       

Adcy3 -0.081 0.075 -0.226 -0.193       

Itpka 0.210 0.062 -0.248 0.001       

Clpb 0.123 -0.050 -0.248 -0.189       

Insig2 0.323 0.128 -0.250 0.160  4.07E-03     

E4f1 0.284 -0.110 -0.312 -0.185       

Frap1 0.432 0.058 -0.357 0.071  5.59E-03   4.58E-02  

Sod1 0.101 0.033 -0.388 -0.246    8.66E-03   

Hras1 0.228 0.232 -0.449 0.012 1.90E-02 1.15E-03  2.54E-02 4.48E-03 7.85E-04 
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mTOR activation in the liver 

Given that the majority of the genes in the liver that were significantly altered by diet were primarily 

influenced by protein intake, mTOR was further analysed, as its activation is known to be regulated by 

circulating amino acids, through its role as a dietary protein sensor. As mTOR gene expression was 

assayed through both microarray and PCR, a western blot was performed to look at the ratio of 

phosphorylated mTOR to total mTOR, to study the dynamics of mTOR activation.  Here, it was 

shown that protein intake had a significant effect (p=0.0281) on mTOR activation, with mTOR 

positively correlated to protein intake [See Figure 4.15].  

 
While protein is shown to be the key driver of mTOR, high protein diets were the ones with the 

highest P:C ratio. Similarly with the lifespan data shown in Figure 4.16, the statistically significant 

driver is carbohydrate intake (p=0.0132), however the diets highest in carbohydrate are those low in 

P:C ratio [Table 4.15]. Therefore, while there isn’t direct alignment of mTOR activation and lifespan 

along a single macronutrient axis, the ratio of protein to carbohydrates plays an important role in both 

these responses in opposite directions. The diet group with the highest lifespan was aligned with a 

local minimum in the mTOR activation response surface. The highest median lifespan was actually 

seen in a relatively high P:C ratio group, however when looking at the trend across groups, increasing 

P:C ratio was negatively correlated with both median and maximum lifespan. Given that mTOR is 

generally considered as a pro-ageing growth pathway, these findings are in line with the literature. 

 
Interestingly, mTOR activation was not significantly correlated with mTOR gene expression (r=-

0.052, p=0.74 [Figure 4.17]. This raises the perennial question as to whether gene expression should 

be interpreted as a separate entity to protein activation. It should be noted that both mTOR activation 

and gene expression, are significantly correlated to protein intake, but in different directions, as shown 

in the GF plots in the next section.  
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p-value P C F P:C P:F C:F 

mTOR 2.8E-02 0.48 0.53 0.08 0.70 0.54 

 
Figure 4.15. GF response surfaces correlating hepatic mTOR activation to macronutrient intake.  

mTOR.activation

(Fat: 11)
Protein eaten (kJ/mouse/day)

C
ar

bo
hy

dr
at

e 
ea

te
n 

(k
J/

m
ou

se
/d

ay
)

0 5 10 15 20 25 30

0
10

20
30

40

 0
.3

5 

 0.4 

 0.4 

 0.45 

 0.45 

 0.5 

 0.55 

 0.6 

 0.65 

mTOR.activation

(Carbohydrate: 13)
Protein eaten (kJ/mouse/day)

Fa
t e

at
en

 (k
J/

m
ou

se
/d

ay
)

0 5 10 15 20 25 30

0
10

20
30

40
50

mTOR.activation

(Protein: 10)
Carbohydrate eaten (kJ/mouse/day)

Fa
t e

at
en

 (k
J/

m
ou

se
/d

ay
)

0 10 20 30 40

0
10

20
30

40
50



 

 153 

 

p-value P C F P:C P:F C:F 

Median Lifespan 0.50 1.3E-02 1 0.99 0.97 0.62 

Figure 4.16. GF response surfaces correlating median lifespan to macronutrient intake. Data 

presented in Table 4.15. 
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Table 4.15. Median and maximum lifespan in weeks. Maximum lifespan was determined as the 

average of the longest lived 10% (n=2-3) of each cohort. Table from (Solon-Biet et al. 2014). 

 
Energy 
Density  

Protein 
(%) 

Carb 
(%) 

Fat 
(%) 

Protein: Carb 
ratio 

Median 
lifespan 

Maximum 
lifespan 

Medium  5 75 20 0.07 121.86 157.43 

High  5 20 75 0.25 106.43 154.21 

High  5 75 20 0.07 119.43 151.79 

Medium  14 57 29 0.25 123 151.57 

High  42 29 29 1.45 138.86 151.14 

Medium  42 29 29 1.45 122.57 148 

Medium  14 29 57 0.48 113.86 147.36 

High  5 48 48 0.1 124.43 146.21 

Medium  33 48 20 0.69 122.57 145.71 

Medium  23 38 38 0.61 123.86 143.07 

High  33 48 20 0.69 98.29 141 

High  14 57 29 0.25 117.43 140.07 

High  33 20 48 1.65 107.14 136.86 

Low  33 48 20 0.69 126.57 134.14 

Medium  33 20 48 1.65 106.57 133.79 

High  14 29 57 0.48 108 133.71 

Medium  60 20 20 3 108 129.5 

High  60 20 20 3 99.57 127.57 

High  23 38 38 0.61 100 124.57 

Low  14 57 29 0.25 98.57 119.43 

Low  33 20 48 1.65 78.57 116.36 

Low  14 29 57 0.48 88.71 115.07 

Low  42 29 29 1.45 85.85 104 

Low  60 20 20 3 84.29 102.86 

Low  23 38 38 0.61 89.29 100.36 
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The relationships between nutrient sensing pathways and phenotype in the liver 

Based on published literature, there are several canonical pathways that link diet and ageing. These 

include the sirtuin pathways, mTOR, AMPK, IIS and FGF21 (Solon-Biet et al. 2015b). This study 

measured parameters related to several of these pathways at 15 months of age. It was not possible to 

correlate these pathways directly with life expectancy in the same animals, however, it was possible to 

perform indirect correlations via diet, i.e. the measures of the pathways measured at 15 months in 

mice on a particular diet was correlated with the lifespan of mice maintained on the same diet. 

Collating all the information collected on growth pathways in these animals, it is apparent that the 

majority of pathways which are significantly responsive to diet are affected by protein intake [See 

Table 4.16]. These results support the hypothesis that macronutrient intake, particularly protein, is 

responsible for modulating nutrient sensing intracellular growth pathways, whose downstream effects 

could impact ageing and health.  

 

Here, insulin, IGF-1 and FGF21 were measured in plasma from blood samples, and median lifespan 

was correlated from animals in the same dietary groups. The remainder of the assays; PCR, microarray 

and western blots; were performed from liver samples to ensure consistency of the sample tissue. 

These results were also compared to median lifespan in the same cohort of animals, however, since 

the lifespan data is from different animals, the results are only correlated via diet, limiting the 

conclusions that can be drawn. While mTOR and IIS pathways are inversely correlated with SIRT, 

FGF21 and AMPK pathways as expected, interestingly, only energy intake and FGF21 were 

significantly correlated with median lifespan [See Figure 4.17]. However it is important to note that 

this analysis was performed by simple Pearson correlations, and therefore less meaningful given the 

multidimensional nature of this nutritional study compared to the GF plots, shown in Figure 4.18. 
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Figure 4.17. Nutrient sensing  pathway correlations to each other and to median lifespan (liver gene 

expression and blood levels). Blank results indicate non-significant correlations (p>0.05). The 

correlations show that SIRT/FGF21/AMPK expression is opposite to mTOR/IIS, in line with the 

literature given that the latter set are considered pro-ageing, while the former set are considered pro-

longevity (Solon-Biet et al. 2015b).  
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Table 4.16. Nutrient sensing pathway in liver analysis associated with macronutrient intake using 

GAMs. The surfaces are shown in Figure 4.18. 

 

Pathway Assay P C F P:C P:F C:F 

FGF21 Plasma (protein) 1.41E-29 0.24 0.81 0.41 0.60 0.44 

FGF21 PCR (gene) 1.91E-10 0.36 1 1 0.648 0.67 

IGF1 Plasma (protein) 2.76E-04 3.91E-02 0.08 0.08 0.48 1.00 

IGF1 PCR (gene) 1.93E-02 0.35 0.57 1 0.15 0.62 

Insulin Plasma 7.74E-04 6.66E-05 0.06 0.16 0.17 0.28 

Median 
lifespan 

Correlated 
measure 0.50 1.30E-02 1 0.99 0.97 0.62 

mTOR 
Western blot 
(protein) 2.81E-02 0.48 0.53 0.08 0.70 0.54 

mTOR PCR (gene) 1.45E-05 0.51 0.77 0.36 0.29 0.29 

Prkaa1 
PCR (AMPK  
α-subunit 1) 0.82 0.50 1.00 0.73 0.71 0.68 

Prkaa2 
PCR (AMPK  
α-subunit 2) 0.55 0.61 0.54 1.05E-03 0.32 0.08 

SIRT1 PCR 0.66 0.68 0.69 0.77 0.79 0.71 

SIRT2 PCR 7.74E-03 0.59 0.66 0.34 0.40 0.40 

SIRT3 PCR 0.20 0.21 1.00 0.06 0.72 0.91 

SIRT4 PCR 0.53 0.98 0.46 0.91 0.97 0.22 

SIRT5 PCR 0.78 0.09 0.39 0.41 0.22 0.35 

SIRT6 PCR 0.10 0.97 0.68 1.28E-02 0.56 0.69 

SIRT7 PCR 2.19E-03 0.47 0.73 0.80 0.53 0.81 
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Figure 4.18. 2D GF plots for hepatic nutrient sensing pathway assays, including circulating and tissue 

protein levels, and gene expression in the liver (statistical analysis provided in Table 4.16).  
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Discussion 

Nutrient sensing pathways have been widely studied in ageing research studies, with a variety of 

results, largely depending on experimental paradigm (DR versus CR versus macronutrient restriction 

versus pharmacological intervention), species studied, tissue type used, and sex of the animal (Garratt 

et al. 2016). Research over the past few decades has shown that protein in particular is an important 

regulator of these effects on lifespan, however given the aforementioned variation, the debate remains 

ongoing (Nakagawa et al. 2012). 

 

Transcriptional modulation by diet and age have been studied through the use of microarrays in the 

past, however the majority of these have focused on single interventions, for example ad libitum 

versus CR (Wanders et al. 2014). Here, the GF was harnessed to disentangle the effects of diet on 

transcriptional responses by evaluating relationships with specific macronutrient intakes and ratios. 

Genome wide changes were assessed both by unbiased methods, as well as through specific 

interrogation of nutrient sensing pathways, and other intracellular pathways thought to be involved 

with ageing. These results were then validated using quantitative real-time PCR, and correlated various 

other assays performed on the same cohort of mice. Together, these form a set of pathways, which 

can be correlated to lifespan in the same cohort of animals, to provide insights into the mechanisms 

underlying ageing. 

 

Impacts of diet on the hepatic gene regulation and mTOR activation 

In a review of 172 publications on the effects of nutrients on the hepatic transcriptome, (Osada 2013) 

reported that (1) protein intake influenced genes involved with lipogenesis, fatty acid uptake, oxidative 

stress and DNA methylation; (2) carbohydrate intake influenced genes involved with oxidative stress, 

cell proliferation, ammonium and as well as Pparga and Fxr; and (3) fat intake influenced 
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inflammation, beta-oxidation and several genes including A2m, Slc13a5, Nrep, Cyp3a and Scd1. The 

studies in the review were mostly short-term over days and weeks and used heterogeneous dietary 

interventions. By contrast, the long-term study examining the effects of 25 different diets varying in 

macronutrients over 15 months showed that protein intake was the most powerful driver of gene 

expression, while the intake of carbohydrates and fat had very limited effects which were in the 

opposite direction to changes seen with protein intake. It appears that either aging and/or very long-

term dietary exposure, only protein intake remains a potent regulator of hepatic gene expression, 

which presumably reflects a greater biological imperative to regulate long-term protein metabolism. 

 

There have been a few other studies that have examined the effects of differing amounts of 

macronutrients on hepatic gene expression over longer-term periods, and these reported similar 

effects to those observed with dietary protein. Diaz-Rua and colleagues (Díaz-Rúa et al. 2017) fed rats 

two diets differing in protein content (protein:carbohydrate:fat 20:70:10 vs 45:45:10) and determined 

effects on hepatic transcriptome after four months. They identified 30 genes that were the most 

relevant genes affected by a high protein diet in the liver, of which 14 were also identified in this study 

(Slc7a2, Slc43a1, Agxt, Got1, Gpt, Hpd, Sds, Asl, Cps1, Nnmt, Slc4a2, Kcnma1, Pgam2, Dgat1). By 

comparison, Schwarz et al (Schwarz et al. 2012) fed mice one of three diets (protein:carbohydrate:fat 

15:75:10, 15:50:35 or 50:15:35) for 12 weeks and then measured hepatic gene expression. They 

identified 154 genes where expression was increased by dietary protein, and these were involved with 

amino acid and nitrogen metabolism or energy and oxidative metabolism and included 12 of these 

same genes listed above.  

 

Gene pathway analysis of these genes (using Enrichr and the KEGG database) shows that they are 

involved with the biosynthesis of amino acids and the metabolism of alanine, aspartate and glutamate, 

while a biological process analysis (using Enrichr and the GO Biological Process 2017) shows that 
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they are involved with the urea cycle and amino acid biosynthetic processes. These pathways and 

biological processes have obvious implications for the metabolism of dietary protein. It should be 

noted that the quality (i.e. source) of dietary protein has also been reported to influence hepatic 

transcriptome (Endo et al. 2002; Song et al. 2016). It was also shown that LPHC diets are associated 

with longer lifespan in ad libitum-fed mice, a finding which is supported by numerous insect studies 

(Solon-Biet et al. 2014, Le Couteur et al. 2016). Most previous studies on nutrition and aging have 

shown that caloric restriction reduces aging and increases lifespan (Mercken et al. 2012; Ingram & de 

Cabo 2017), and there have been many studies investigating the effects of caloric restriction on gene 

expression (Swindell 2008; Plank et al. 2012).  

 

Therefore gene expression results from this study were compared with published data on genes whose 

expression is influenced by aging or caloric restriction. When compared to the KEGG longevity 

regulating pathways only seven out of 59 genes were found to be common (Atg5, Mtor, Pik3r2, Igf1r, 

Prkab2, Hsap1b, Adcy3) which suggests that low protein, high carbohydrate diets might influence 

lifespan by alternative pathways. However, it should be noted that these seven genes include pathways 

that are critical to the response of aging to nutrients including autophagy, mTOR, IGF-1 and AMPK. 

Gene expression in this study was also compared with published data on caloric restriction from a 

meta-analysis (Plank et al. 2012)  and only found a few genes in common (6-17% depending upon 

analytic method). Again this lack of overlap suggests that low protein, high carbohydrate diets 

influence aging via different pathways.  

 

Therefore this study interrogated the data for pathways that are generally believed to be crucial for 

mediating the effects of nutrition on aging: mTOR, AMPK, SIRT1, IGF-1 and FGF21 [See Table 

4.16]. Low protein intake was associated with increased Ffg21 and Prkab2 expression and reduced Igf-1 

expression, which reflect the direction of change seen with caloric restriction. However, surprisingly 
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Mtor expression was increased with low protein intake, despite the observation that mTOR 

phosphorylation was decreased with low protein, high carbohydrate diets [See Figure 4.18].  

 

No significant correlation was found between mTOR phosphorylation and Mtor gene expression so 

this disparity probably reflects the differences between transcription, translation and activation [Figure 

4.17]. Overall, it appears that the effects of macronutrients on gene expression in the liver do not 

substantially overlap with effects that have previously been found to be associated with caloric 

restriction or regulation of longevity, however there are some key pathways that are concordant 

including IGF-1, AMPK and FGF21. It should be noted that a high protein ad libitum-fed diet will 

lead to reduced energy intake through protein leverage and vice versa (Simpson and Raubenheimer 

2005), therefore a high protein intake may induce changes in gene expression similar to those seen in 

caloric restriction because of concomitant reduction in calorie intake. 

 

Interestingly, Pearson correlation between these pathways and median lifespan only showed a 

significant result for circulating FGF21 and energy intake. There are two potential explanations for 

this; first, direct correlations are likely inadequate given the complex nature of intake-response 

dynamics in many of these pathways (as highlighted by the use of the GF above), and second, the 

median lifespan values used here were correlations within diet groups, not actual lifespan in the mice 

undergoing the phenotype/genotype assays. These results are well aligned with the literature, with 

protein restriction, particularly BCAA restriction, being implicated partly with the effects of DR on 

ageing (Wanders et al. 2014; Park & Prolla 2005; Solon-Biet et al. 2014; Solon-Biet et al. 2016). 

Further investigation of individual subcomplexes of mTOR (mTORC1, mTORC2) would be the next 

important step in understanding the modulation of mTOR through diet, and its effects on ageing. 

Many individual genes of interest were found due to their statistical association with macronutrients 

and their involvement metabolic responses and aging, and some of these are discussed below. For 
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example, Velazquez-Villegas et al found that high ratios of dietary protein to carbohydrates (P:C:F of 

50:33:17 vs 20:63:17 vs 5:77:18) fed to mice over 8 days increased the hepatic expression of 

glutaminase 2 (Gls2) (Velázquez-Villegas et al. 2016).  

 

 
 

Figure 4.19. Three dimensional response surfaces created using the GF. The relationship between the 

macronutrients and hepatic genes (A Gls2, B Acaca) are demonstrated. Each graph shows the effects 

of two of macronutrients at the median point of the third macronutrient (shown in parenthesis below 

the X axis label). The response surfaces vary from red, which is the most negative value to blue which 

is the most positive value. The GAM statistics are shown in Table 4.17. 

 
 

Likewise Schwarz et al found that high protein diets increased expression of Gls2 in mice after 1 and 

12 weeks (Schwarz et al. 2012). Gls2 is the main glutaminase expressed in the liver and increases 

protein catabolism via the urea cycle. Gls2 has been reported to be upregulated in response to high 

protein diets, inflammation and diabetes (Velázquez-Villegas et al. 2016). In this study, Gls2 was also 

positively correlated with protein intake according to both GAMS and correlation analysis, and was 

amongst the top twenty genes influenced by protein intake [Figure 4.19, Table 4.17]. Analysis by the 
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GF showed that Gls2 expression was mostly influenced by protein intake, with a small effect of fat 

intake, and no effect of carbohydrate intake. Of course it is not unexpected for a gene to be involved 

in protein catabolism to be upregulated in response to high dietary protein intake, and the data shows 

that this response is maintained long-term and into old age.  

 
 
 
Table 4.17. Statistics for the Geometric Framework figures in Figure 4.19. GAMS data for hepatic 

Gls2 and Acaca expression. 

 

  Edf  df  F  P  

Gls2  

Protein  2.88E+00 8 4.756 2.74E-07 

Fat  8.96E-01 8 1.074 0.003 

Carbohydrates  1.85E-01 8 0.028 0.26 

PxF  2.96E-06 3 0 0.71 

PxC  2.39E-06 3 0 0.957 

FxC  6.17E-06 3 0 0.998 

Acaca  

Protein  1.42E+00 8 1.379 0.001 

Fat  4.04E-05 8 0 0.469 

Carbohydrates  2.86E-05 8 0 0.462 

PxF  2.41E-05 3 0 0.345 

PxC  2.52E-01 3 0.098 0.25 

FxC  1.61E+00 3 3.913 0.001 
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Garcia-Caraballo et al. studied the effects of seven diets varying in macronutrients (protein 11-58%, 

carbohydrates 0-81%, fat 8-42%) over 3 weeks on hepatic gene expression (Garcia Caraballo et al. 

2017). They found that high-protein, low-carbohydrate diets reduced Fgf21 and Pparg expression 

whereas using the GF, it was shown that these were only reduced by protein intake and not 

influenced by the other macronutrients. They also found that Acaca (acetyl-CoA carboxylase 1) was 

influenced by the ratio of carbohydrates to fat. On GF analysis it was also found that the interactive 

term between carbohydrates and fat was associated with Acaca expression as well as protein (Figure 

4.19B, Table 4.17). The overlapping results between the two studies indicate that macronutrients 

individually and interactively can influence the expression of genes involved in fatty acid and glucose 

metabolism, as well as the key metabolic hormone, FGF21. Unlike Garcia-Carabello, this study did 

not find any changes in the expression of two other key metabolic regulators, Pck1 or Fasn. 

 

Pathways analysis revealed an association between protein intake and several neurodegenerative 

disorders including Alzheimer’s disease, while biological processes included some involved with 

neuronal projections, dendrite morphogenesis and axon guidance. Protein intake was shown to be 

negatively associated with the expression of App. Polymorphisms in App are associated with 

Alzheimer’s disease, while APP has crucial functions during the development of the brain, and in 

neuronal plasticity, memory and neuroprotection in the aging brain (Müller & Deller 2017). This 

might provide a mechanism linking diet to cognitive impairment, noting that many of the diets 

associated with better cognitive function are low in protein and animal-based protein (van de Rest et 

al. 2015). In this study, macronutrients did not influence the expression of the other important 

dementia gene, Apoe. High protein intake was associated with increased expression in Nnmt (Figure 

4.5A), which might be of interest with another neurodegenerative disease, Parkinson’s disease. 

Pathways analysis showed an association between protein intake and pathways linked to Parkinson’s 

disease. Higher levels of NNMT have been detected in the cerebrospinal fluid of patients of patients 
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with Parkinson’s disease (Aoyama et al. 2001), and low protein, high carbohydrate diets are associated 

with delayed onset of signs in a Drosophila model of Parkinson’s disease (Bajracharya & Ballard 

2016). 

 

There are limitations to this study. Only a subset of 46 mice of the total of 183 euthanised at 15 

months of age were used for gene expression studies, although they did span the full range of diets. 

Only a single tissue and single strain of mouse were analysed, and the data were not robust enough to 

study the effects of sex. There is not any established statistical method to evaluate gene expression 

across a large range of diets, so this study used two methods: correlation analysis with intake of each 

macronutrient, and a GAMS analysis where all the macronutrients and their interactions are assessed 

within a single statistical model. The advantage of correlation analysis is that the direction of change is 

immediately apparent. However the use of GAMS and GF is preferable because it allows interactive 

terms to be assessed. Encouragingly both methods generated similar conclusions in terms of the 

predominant effect of protein on gene expression, and the pathways, processes and genes that were 

identified. This adds additional robustness to the conclusions drawn here.  

 

In summary, protein was the strongest driver of gene expression in the livers of old mice. Protein 

intake was associated with pathways involved with energy and amino acid metabolism. Although there 

was only some overlap with genes known to be associated with regulation of longevity and caloric 

restriction, protein intake was associated with changes in several key nutrient sensing pathways that 

influence aging including AMPK, mTOR, IGF-1 and FGF21.  
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Impacts of diet on the hypothalamic gene regulation  

While multiple studies have looked at the effects of caloric restriction and intermittent fasting on the 

central nervous system, the impact of individual macronutrients, and intake ratios have not been 

thoroughly studied (Moretto et al. 2017). In this study, the GF was used to evaluate the effects of diet 

on hypothalamic gene expression. Similar to the results in the hepatic transcriptome in the same 

cohort of animals, as well as the overall hypothalamic gene expression changes, the longevity 

regulating pathways were affected in opposite directions by fat and protein. This may be due to the 

fact that since fat and P:C ratio had the greatest overall effects on overall gene expression, it may be 

the fat vs non-fat component that regulates gene expression in the hypothalamus, with protein being 

the main driver of the non-fat component, as shown above, and seen in previous studies (Solon-Biet 

et al. 2014; Solon-Biet et al. 2015b). 

 

In both correlation and GF analysis, fat was the macronutrient that was most influential on gene 

expression, consistent with previous studies on the hypothalamic transcriptome (Jang et al. 2017; 

Yamamoto et al. 2009). Expression of Npy, Pomc and Agrp have been demonstrated to respond to 

short-term dietary changes in mice, particularly with changes in composition of dietary fat and caloric 

intake (Jang et al. 2017). While fat and energy were the primary drivers of gene expression changes in 

this study, Npy was most strongly correlated with carbohydrate intake (7x fold change, -0.3248 

Pearson’s correlation coefficient, p=0.0068), while Pomc and Agrp expression was not captured in the 

microarray [Figure 4.20A, Table 4.18].  

 

On the other hand, NF-kB regulation, which has previously been described as being important in the 

control of systemic ageing (G. Zhang et al. 2013), was identified as one of the key pathways linked 

with protein intake through the gene ontology biological process. Given that protein intake was 

correlated with NF-kB import into the nucleus and sequestration of NF-kB, this points to a potential 
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mechanistic link between protein and ageing. Nfkbia gene expression was negatively correlated with 

protein (3.5x fold change, -0.366 Pearson’s correlation coefficient, p= 3.34E-04) [See Figure 4.20B, 

Table 4.18].  

 
 

 

Figure 4.20. Representative three dimensional response surfaces created using the GF. The 

relationships between the macronutrients and the hypothalamic genes are demonstrated using the 

colour maps, with red being the most positive response, and blue being the most negative response. 

Slices are taken through the median of each of the axes (shown in parenthesis below the x-axis label). 

Figure 4.20A is the surface for the Npy gene. Figure 4.20B is the surface for the Nkfbia gene, and 

Figure 4.20C is the surface for the Vip gene. GAM statistics are provided in Table 4.18. 
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Table 4.18. Statistics for the Geometric Framework figures in Figure 3. GAMS data for 

hypothatlamic expression of Npy, Nfkbia, and Vip. 

 edf df F p-value 

Npy 

Protein 8.03E-01 8 2.990 2.79E-02 

Carbohydrates 1.39E+00 8 3.789 1.68E-02 

Fat 9.93E-05 8 0.000 3.14E-01 

P x C 1.40E+00 3 0.000 4.52E-02 

P x F 7.54E-06 3 0.000 8.26E-01 

C x F 7.57E-06 3 0.000 1.00E+00 

Nfkbia 

Protein 9.35E-01 8 5.295 3.34E-04 

Carbohydrates 8.81E-01 8 5.063 4.23E-03 

Fat 5.69E-05 8 0.000 5.65E-01 

P x C 1.01E+00 3 0.000 1.02E-01 

P x F 1.09E+00 3 0.000 1.29E-01 

C x F 2.80E-05 3 0.000 3.64E-01 

Vip 

Protein 6.26E-01 8 0.380 1.98E-01 

Carbohydrates 6.65E-01 8 0.000 8.46E-01 

Fat 4.15E-01 8 1.982 3.62E-02 

P x C 1.44E+00 3 0.000 2.06E-02 

P x F 1.59E-05 3 0.000 4.89E-01 

C x F 4.82E-05 3 0.000 8.16E-01 
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A review by Satoh et al. identified multiple key genes involved with lifespan extension in C57BL/6 

mice, including Ucp2, Irs2, Igf1r, Ikbk, Sirt1, as well as Vip, which while not involved in lifespan 

extension, were shown to be altered in ageing (Satoh et al. 2017). In the present study, Vip was the 

19th most highly affected gene by fold change, and was most significantly influenced by fat (9.89x fold 

change, 0.375 Pearson’s correlation coefficient, p=0.0206) [See Figure 4.20C, Table 4.18]. The 

longevity data from the same cohort of mice showed that LPHC diets were the most effective in 

extending lifespan in mice, and interestingly, these same diets corresponded the most significantly to 

the KEGG longevity regulating pathways, with 13 of the 43 genes being influenced by the P:C ratio in 

the diet, 12 genes being influenced by carbohydrate intake, and 6 genes being influenced by protein 

intake [Figure 4.14, Table 4.14].  

 

Despite the interesting correlations found in this study that supports previous work in the field, it 

should be noted that only 1 animal per diet group was used for this microarray analysis so this is 

considered a pilot study. While this did cover all groups in the study, the use of only male mice limited 

the ability to correlate gene expression results to phenotypic results. In addition, sex is known to 

inherently alter gene regulation, and have variable effects in relation to metabolism, dietary 

macronutrients and longevity pathways (Satoh et al. 2017; Michán et al. 2010). Another limitation to 

the study was the use of analytical tools. As there is no established statistical methodology to correlate 

gene expression results over multiple diets, this study used a combination of correlation analysis and 

GF analysis, as previously described. The fact that both methods revealed similar patterns of change 

with relation to macronutrients provides some support for the validity of the results, however a larger 

trial with great numbers would increase the statistical power of such a study.  
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General remarks 

Overall, this set of work provides analysis of the effects of dietary macronutrients and their 

interactions on nutrient sensing pathways, and on gene expression globally. Nutrient sensing pathways 

in both the liver and the hypothalamus were heavily influenced by diet, albeit in different ways, with 

hepatic gene expression being most strongly modulated by protein intake, and hypothalamic gene 

expression being most strongly modulated by fat and total energy intake. While many studies have 

previously outlined similar findings, this is the first study of its kind to systematically analyse the 

impact of an array of macronutrient intake ratios on gene expression, and anlyse the results through a 

multidimensional geometric framework. In particular, the inverse relationship between macronutrients 

and gene expression (protein vs non-protein in the liver, and fat vs non-fat in the hypothalamus) are 

novel findings, and highlight critical differences between the roles of the same pathways in different 

tissues. Further research samples collected from various organ types could reveal more detailed 

insights as to modulation of tissue specific pathways. Broadly, this study has shown that dietary 

macronutrients play an important role in transcription in both the liver and hypothalamus, with many 

of the genetic pathways being significantly altered by macronutrient intake. Given the interplay 

between protein and carbohydrates, and their documented effects on lifespan, this study provides 

evidence that modulation of these nutrient-sensing pathways are a likely mechanism linking diet and 

ageing.  

 

Mechanistically, it can be argued that the impact of total energy intake on longevity-related gene 

expression in the hypothalamus supports previous work suggesting that caloric restriction itself, 

regardless of macronutrient balance, may be a key driver for longevity. However, while longevity-

related genes in the hypothalamus were largely driven by fat and total energy intake, these results did 

not correlate with an increase in lifespan in the same cohorts of mice. Given that the hypothamlus is 

known to be involved in multiple physiological feedback loops, the role of fat and energy intake on 
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hypothalamic gene expression must be interpreted in the context of the impact of these same diets on 

both other tissue types, as well as on wider outcomes such as health and lifespan. On the other hand, 

protein restriction, which was shown to increase lifespan in the cohort studied here, is mechanistically 

tied to modulation of gene expression in nutrient sensing pathways related with metabolism in the 

liver. Therefore, these results support the hypothesis that caloric restriction and protein restriction, 

while both important influencers of health and lifespan, may have distinct, albeit somewhat 

overlapping mechanisms of action. Tissue-specific activation of nutrient sensing pathways, 

complexities in measuring intake and energy derived from different macronutrient sources, and 

compensatory feeding responses such as protein leverage, may also contribute to the differences in 

pathway activation between the liver and hypothalamus; a topic which is discussed in greater detail in 

Chapter 6. While a comprehensive analysis from gene to protein was performed for mTOR, further 

work should be done in the other nutrient sensing pathways to determine the relationship between 

transcription and protein activation. Furthermore, the data shows differential activation of these 

pathways between the brain and liver, suggesting that there is likely tissue specific variation. Given 

that other tissue types such as brown adipose tissue (BAT), white adipose tissue (WAT), and skeletal 

muscle, also play important roles in metabolism and energy storage, further studies using similar 

experimental methods could be performed in these tissues to better understand their roles in the 

ageing process.  

 

Finally, it was also shown that the GF is a useful analytical paradigm for complex, multifactorial data, 

especially when used in combination with simple correlation methods, such as Pearson product-

moment coefficients. The generation of analytical tools through R scripts is therefore an important 

step in improving data processing, and providing outputs, which can be easily interpreted through 

visualisation. 
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Chapter 5: The Impact of Diet on Age-Related 
End Points 

 
 

To date, nutritional interventions such as caloric restriction (CR) and intermittent fasting have been 

the most robust non-genetic interventions to delay the onset of age-related disease and increase 

lifespan (Longo et al. 2015; Finkel 2015; Kowald & Kirkwood 2016). The benefits of CR and 

intermittent fasting have been demonstrated in a variety of species ranging from yeast to non-human 

primates thus indicating that diet is a critical and conserved intervention for increasing health span 

and lifespan (Heilbronn & Ravussin 2003; Fontana & Partridge 2015).  

 

Recently it was demonstrated in a large dietary study, that a low-protein, high-carbohydrate (LPHC) 

ad libitum-fed diet was also beneficial in extending healthspan and lifespan (Solon-Biet et al. 2014). 

This result has now been demonstrated in a variety of species, however the mechanisms which 

mediate the effects of a LPHC diet on longevity and health remain unclear (Mirzaei et al. 2014; 

Nakagawa et al. 2012; Grandison et al. 2009; Soultoukis & Partridge 2016; Le Couteur et al. 2015).  

 

In Chapter 4, the effects of macronutrients on the nutrient sensing pathways that underpin ageing are 

presented, and it was shown that macronutrients and macronutrient balance have significant impacts 

on gene regulation, and activity of these pathways, particularly in the liver. Given that augmentation 

of these pathways has been shown to link nutrition with ageing, the next step is to study the 

downstream effects on age-related phenotypic end points. These so called ‘Hallmarks of Ageing’ 

(Chapter 1), encapsulate many cellular processes influenced by ageing and most, if not all of these 

processes are influenced in some way by nutrient sensing pathways (López-Otín et al. 2016).  
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Therefore, in this Chapter, the effects of nutrition and nutrient sensing pathways are examined on 

three age-related endpoints:  

1) Telomere length – Chapter 5.1 

2) Mitochondrial number and function – Chapter 5.2 

3) Inflammation – Chapter 5.3 

 
 
Figure 5.0. Proposed end points to by studied in this chapter. 
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Chapter 5.1: The relationship between dietary macronutrients and hepatic 

telomere length 

 

A version of this chapter has been published in (Gokarn et al. 2017). 

 

Background 

Aging can be delayed by a variety of nutritional interventions, of which caloric restriction has been the 

most extensively studied (Mercken et al. 2012; Lee & Longo 2011). Studies utilising the principles of 

nutritional geometry have found that dietary macronutrients also influence lifespan, with most studies 

in insects and mice reporting that LPHC diets maximise lifespan in ad libitum feeding paradigms (Lee 

et al. 2008; Raubenheimer et al. 2016; Le Couteur et al. 2015; Solon-Biet et al. 2014). In a recent study, 

mice maintained on diets with a protein to carbohydrate ratio of nearly 1:10 had the longest lifespan 

and best late-life health despite increased fat mass (Solon-Biet et al. 2014). These diets were associated 

with optimisation of various nutrient sensing pathways that influence aging including mTOR, insulin, 

FGF21 and IGF-1 (Solon-Biet et al. 2014; Solon-Biet et al. 2016). 

 

A large number of biological processes underlie aging and some of these have been termed the 

‘hallmarks of aging’ (López-Otín et al. 2013): amongst these processes is telomere attrition. Telomeres 

form the ends of eukaryotic chromosomes and comprise repetitive stretches of DNA (TTAGGG) 

bound to specific proteins. Telomeres play a critical role in longevity due to their role in protecting 

the ends of chromosomes and prevention of chromosome fusion. A key enzyme, telomerase, is 

critical in the maintenance of telomere length, and this enzyme has been shown to be attenuated by 

the same nutrient sensing pathways affected by dietary intervention (Blasco 2005).  It has been 

suggested that the “molecular clock” – the shortening of telomeres throughout an organism’s life, 
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might eventually signal growth arrest, leading to replicative senescence (McLean & Le Couteur 2004).  

This phenomenon has been observed both in cultured non-immortalised cells (Endo et al. 2002; Song 

et al. 2016), as well as in live animal studies (Rudolph et al. 1999). Although the results are variable, a 

number of epidemiological studies have suggested that leukocyte telomere length (LTL) decreases 

with age in humans (Vidaček et al. 2017; Mons et al. 2017). Thus, telomere length has been proposed 

to be a biomarker of aging, with short telomeres contributing to aging by causing cellular senescence 

(Coppé et al. 2010; Blasco 2005; Vidaček et al. 2017). 

 

In addition, mouse models of certain age-related diseases such as Werner syndrome and ataxia 

telangiectasia have also been used to study telomere length. Interestingly, these models only 

phenotypically manifest common pathologies when there is premature telomere shortening, thus 

highlighting the critical role of telomere integrity in attenuation of disease manifestation (Sahin & 

DePinho 2012). Taken together, these results suggest that telomeres are a critical factor in the 

maintenance of healthspan and improved lifespan in both wild-type organisms and models of disease.  

Given that a LPHC diet was effective in promoting healthspan and extending lifespan in a large 

cohort of mice, even more so than 20% calorie restriction by dilution (Solon-Biet et al. 2014), this 

study aimed to investigate the effect of these dietary regimes on telomere length. The relationship 

between telomere length and various markers of nutrition (nutrient sensing pathways, circulating 

amino acids and fatty acids) and mitochondrial function were also explored as potential mechanistic 

links between nutrition, telomeres and aging.   



 

 180 

 
Methods 

Methods on animal husbandry and diet are outlined in full in Chapter 2. The lifespan, metabolomics 

and signaling pathway data from this mouse study have been published previously (Solon-Biet et al. 

2014; Solon-Biet et al. 2016).  

 

Briefly, liver tissue (n=183) was harvested for evaluation of telomere length. Blood levels of insulin, 

FGF21 and IGF-1 were measured by ELISA, hepatic mitochondrial function using Seahorse XF 

Extracellular Flux Analyzer, hepatic mTOR and p-mTOR by western blotting. In 22 of the samples, 

genomic DNA quality did not pass QC thresholds, and were excluded from the analysis. Average 

telomere length was measured from total genomic mouse liver DNA by using a real-time quantitative 

PCR method (Cawthon 2002). Normalisation was done using the acidic ribosomal phosphoprotein 

PO (36B4) gene. Standard curves for 36B4 and telomeric repeats were used for absolute quantitation. 

Telomere concentrations were normalised to the 36B4 control gene concentration of the same 

sample.  

 

Data obtained in this manner from replicates is considered to be the average telomere length ratio 

(ATLR), as previously described (Callicott & Womack 2006). Data were analysed using Pearson’s 

correlation coefficient. The Geometric Framework (GF) was used to visualise the relationship 

between macronutrients and ATLR as described in detail in Chapter 3. P-values less than 0.05 were 

considered statistically significant and a Bonferroni correction was applied for multiple comparisons. 
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Results 

Telomere length was able to be determined in DNA extracted from 161 livers collected from 183 

mice. The average ATLR was 6.8 ± 18.2, the median 2.0, and the majority of the values were between 

1-4 [Figure 5.1.1A]. There was no difference between females (n=85, 7.1 ± 16.6) and males (n=76, 6.4 

± 14.5) so they were pooled. The telomere length in kbp was estimated from the ATLR using an 

empiric formula derived in C57Bl/6 mice previously published (Callicott & Womack 2006). Using this 

estimation, the telomere length across all diets averaged 16.6 ± 23.3 kbp and the distribution of 

telomere length was skewed to the right [Figure 5.1.1A-B]. 

 
  

 

Figure 5.1.1. The distribution of telomere lengths in DNA extracted from mouse livers, determined 

by ATLR (A) and converted to kbp (B) according to the empiric equation of (Callicott & Womack 

2006). The Y-axis refers to the number of mice. 

 

 
There was a significant positive correlation between carbohydrate intake and ATLR (r=0.18, P=0.02) 

and a significant negative correlation with protein intake (r=-0.16, P=0.04). There were no 

correlations between ATLR and fat intake or total energy intake [Figure 5.1.2A-D].  
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Analysis of the full, 3-macronutrient response surface using GF and GAMS revealed that 

carbohydrate intake was the main driver of ATLR (P=0.04), with the longest telomeres occurring in 

mice on the low protein, high carbohydrate diets. The pattern of distribution of ATLR across the 

dietary surfaces matched the changes previously reported for lifespan, such that the longest telomeres 

and lifespan were seen in mice maintained on low protein high, carbohydrate ad libitum-fed diets 

[Figure 5.1.3A-B, Table 5.1.1]. Direct comparison between ATLR and lifespan was not possible in the 

same animals because ATLR was measured in animals sacrificed at 15 months of age. 

 

Figure 5.1.2. The relationship between the intake of dietary macronutrients and energy with ATLR 

(average telomere length ratio) in DNA from livers of mice aged 15 months. There were significant 

correlations with protein (5.1.2A, r=-0.16, P=0.04) and carbohydrates (5.1.2B, r-=0.18, P=0.02) but 

not fat (C) or total energy (D). 
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Figure 5.1.3. Representation of the relationship between macronutrients and ATLR (A) and median 

lifespan (B) using the Geometric Framework. Three 2D slices are given to show all three nutrient 

dimensions (protein, carbohydrate, fat). For each 2D slice, the third factor is at its median (shown 

below the x-axis in parentheses). In all surfaces, red indicates the highest value, while blue indicates 

the lowest value with the colors standardised across the three slices. The diet with the longest 

telomere length and lifespan is demonstrated with the red line, and this was a low protein, high 

carbohydrate diet in both cases. There is a very similar response of both ATLR and median lifespan 

to dietary macronutrients. For 3D representation, see Figure 5.1.5. 
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Table 5.1.1. GAM statistics related to Figure 5.1.3 and Figure 5.1.5. The results for median lifespan 

are from Solon-Biet et al (2014). 

 

 Edf df F P 

ATLR 

Protein (P) 0.30 8 0.05 0.20 

Carbohydrate (C) 0.69 8 0.28 0.04 

Fat (F) 0.00 8 0.00 0.45 

P × C 0.43 3 0.18 0.24 

P × F 0.00 3 0.00 0.59 

C × F 0.00 3 0.00 0.58 

P × C × F 0.00 7 0.00 0.48 

Median lifespan 

Protein (P) 0.00 4 0.00 0.50 

Carbohydrate (C) 1.12 4 1.68 0.01 

Fat (F) 0.00 4 0.00 1.00 

P × C 0.00 2 0.00 0.10 

P × F 0.00 2 0.00 0.10 

C × F 0.00 2 0.00 0.62 
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The correlations between ATLR, circulating amino acids (n=120) and fatty acids (n=128) were 

assessed. There were significant positive correlations between ATLR and asparagine (P=0.01), 

glutamate (P=0.0006) and taurine (P=0.008) [Figure 5.1.4A-D], but not with other amino acids or 

fatty acids. Only glutamate remained significant after Bonferroni correction for analysis of 26 amino 

acids [Table 5.1.2]. There was a weak association with one fatty acid C21.0 (P=0.04). 

 
 
 

  

Figure 5.1.4. The relationship between circulating amino acids and ATLR. There were significant 

correlations with asparagine (3A, r=0.23, P=0.01), glutamate (3B, r=0.31, P=0.0006), taurine (3C, 

r=0.24, P=0.008) and a weak correlation with total amino acids (3D, r=0.18, P=0.05) but not with the 

other amino acids. 
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There were no statistically significant correlations between ATLR and hepatic pmTOR/mTOR, 

measures of hepatic mitochondrial function determined by Seahorse, or circulating levels of FGF21, 

insulin or IGF-1 [Table 5.1.2]. 

 
 
 
Table 5.1.2. Pearson’s correlation coefficient and P value for the relationship between ATLR and 

amino acids, fatty acids, hepatic mitochondrial function and nutrient sensing pathways (*FGF21 was 

insignificant when 1 outlier was removed from analysis). The bold font identifies statistically 

significant values prior to Bonferroni correction.  

 

Parameter r P Parameter r P 

Amino acids 

Alanine 0.06 0.49 Isoleucine 0.00 0.97 

alpha Aminoadipic acid 0.01 0.95 Leucine -0.04 0.64 

alpha Aminobutyric acid 0.10 0.28 Lysine 0.07 0.43 

Arginine 0.18 0.05 Methionine 0.10 0.27 

Asparagine 0.23 0.01 Ornithine 0.07 0.43 

Aspartic acid 0.12 0.20 Phenylalanine 0.09 0.35 

Citrulline 0.17 0.07 Proline 0.13 0.16 

Cysteine 0.02 0.84 Serine 0.13 0.16 

Glutamate 0.31 0.0006 Taurine 0.24 0.008 

Glutamine 0.17 0.07 Threonine 0.12 0.21 

Glutathione 0.07 0.43 Tryptophan 0.09 0.31 

Glycine 0.02 0.80 Tyrosine 0.15 0.11 

Histidine 0.09 0.34 Valine -0.05 0.57 

Fatty acids 

C9.0 0.03 0.77 C18.2 0.08 0.40 
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C10.0 -0.15 0.09 C18.1.cis 0.07 0.41 

C11.0 -0.06 0.52 C18.3 0.03 0.74 

C12.0 -0.14 0.11 C18.1.trans 0.06 0.50 

C13.0 0.01 0.92 C18.0 0.04 0.66 

C14.0 0.01 0.95 C19.0 -0.10 0.26 

C15.0 -0.05 0.57 C20.4 0.06 0.51 

C16.1 0.10 0.26 C20.0 -0.03 0.72 

C16.0 0.03 0.74 C21.0 -0.18 0.04 

C17.0 0.04 0.67 C22.1 -0.17 0.06 

   C22.0 -0.07 0.42 

Hepatic mitochondrial function 

beta-hydroxyacyl-CoA 
dehydrogenase -0.02 0.74 H2O2 glutamate 0.03 0.70 

aspartate aminotransferase -0.01 0.87 State III palmitoyl  -0.01 0.92 

State III pyruvate -0.03 0.71 State IV palmitoyl  -0.01 0.87 

State IV pyruvate -0.02 0.77 H2O2 palmitoyl  -0.03 0.77 

H2O2 pyruvate -0.03 0.72 RCR pyruvate 0.09 0.26 

State III succinate -0.03 0.68 RCR succinate 0.00 0.96 

State IV succinate -0.03 0.74 RCR glutamate 0.04 0.61 

H2O2 succinate -0.03 0.69 RCR palmitoyl carnitine 0.02 0.82 

State III glutamate -0.03 0.70 Citrate synthase -0.08 0.33 

State IV glutamate -0.03 0.69    

Signaling and nutrient sensing pathways 

Insulin -0.07 0.43 IGF-1 -0.12 0.17 

FGF21* 0.12 0.22 pmTOR/mTOR 0.02 0.83 
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Figure 5.1.5 3D Representation of the relationship between macronutrients and ATLR and median 

lifespan using the Geometric Framework from Figure 5.1.3, Table 5.1.1. Differences in shape reflect 

differences in specific nutritional intake points between the two sets of mice. 
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Discussion 

Many observational studies in human populations have found an association between various diet 

constituents and leukocyte telomere length (LTL). Consumption of anti-oxidant rich, plant-derived 

foods and the Mediterranean diet are linked with longer LTL, while shorter LTL have been associated 

with dietary fats, refined cereals, meat products and sugar-sweetened beverages (Vidaček et al. 2017; 

Freitas-Simoes et al. 2016; Rafie et al. 2016). In a prospective study of young humans, change in 

telomere length over time was inversely associated with total energy intake as well as that of each 

macronutrient (Kark et al. 2012). A number of environmental and lifestyle factors including diet 

appear to influence telomere length, which may provide a mechanism for their effects on aging and 

age-related health (Vidaček et al. 2017; Freitas-Simoes et al. 2016). 

 

There have been fewer studies of nutrition and telomeres in mice and rats. Telomeres are longer and 

shorten more rapidly with ageing in rodents than in humans (Vera et al. 2012; Tanrikulu-Kucuk & 

Ademoglu 2012). Caloric restriction in mice was associated with longer LTL at 15 months (Vera et al. 

2013) while 40% protein restriction maintained telomere length in livers of rats aged 16 months, 

compared with a decrease in telomere length in those rats on standard chow (Tanrikulu-Kucuk & 

Ademoglu 2012). In this study, in which mice had ad libitum access to food, telomere length assessed 

by ATLR was positively correlated with carbohydrate intake, and negatively correlated with protein 

intake, while fat and total energy intake had no effect. Analysis using the Geometric Framework 

showed that ATLR positively correlated with carbohydrate intake, and highest ATLR was achieved in 

mice maintained on low protein, high carbohydrate, low fat diets that were ad libitum-fed over a 

lifetime. The surface generated by Geometric Framework analysis reveals that ATLR doubled from 

approximately 6 in mice on high protein, low carbohydrate diets to about 13 in those on low protein 

high, carbohydrate diets. These values are approximately equivalent to 16 and 27 kbp (using an 

empiric conversion equation (Callicott & Womack 2006)), which are similar to values of 19 and 23 
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kbp seen in the livers of 16 month old rats maintained on standard chow or protein restriction 

respectively (Tanrikulu-Kucuk & Ademoglu 2012). In the mouse caloric restriction study (Vera et al. 

2013), liver telomere length was not reported, however, caloric restriction was associated with longer 

telomeres in kidney (94 kbp vs 62 kbp), lung (55 vs 21 kbp) and muscle (14 vs 11 kbp) at 15 months 

of age. Together, the data in humans and rodents are consistent with a robust effect of nutrition on 

telomere length in older age, thereby providing a plausible mechanistic link for the effects of nutrition 

on ageing and age-related health. 

 

Telomere length provides a biomarker and a mechanism for aging. The ability of telomere length to 

predict aging and lifespan has been reported both in aged mice (Vera et al. 2012; Cherif et al. 2003; 

Ludlow et al. 2012) and humans (Mons et al. 2017; Cawthon et al. 2003). This relationship has mostly 

been studied using LTL (Blasco 2005). However one study in humans found that telomere length in 

the liver was 12.9 kbp in newborns compared to 8.3 kbp in a centenarian (Takubo et al. 2000), while 

there is a reduction in the percentage of longer telomeres in livers of rats by 15 months of age (Cherif 

et al. 2003).  

 

In the present study, it was not possible to directly compare telomere length and lifespan in the same 

mice, because the telomeres were evaluated in the livers of mice sacrificed at 15 months of age. 

However, responses of both ATLR and median lifespan to macronutrients in mice could be 

compared to corresponding data from the same experimental cohort. As shown in Figure 5.1.3 and 

Figure 5.1.5, the surfaces demonstrating the relationship between macronutrients and median lifespan 

versus ATLR are almost identical. Mice maintained on low protein, high carbohydrate diets had the 

longest median lifespan and the longest ATLR. The results provide indirect evidence that is consistent 

with the concept that long telomere length is associated with longer lifespan. In addition, the rankings 

by diet of the median lifespan were compared to the telomere length, and there was a significant 
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positive relationship, such that diets associated with longest median lifespan were also associated with 

longest telomeres [Figure 5.1.6]. 

 
 

 
 
Figure 5.1.6. The relationship between the telomere length at 15 months of age and median lifespan. 

The average median lifespan and telomere length were determined for each diet, then ranked by diet. 

There was a significant correlation between the rankings (Pearson’s coefficient = 0.42, P = 0.04). 
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Next, this study explored whether the association between telomeres, nutrition and lifespan is 

mediated by several mechanisms that are thought to link nutrition with aging (Solon-Biet et al. 2015b). 

There was no association with ATLR and circulating levels of insulin, FGF21 or IGF1, hepatic 

mTOR activation, nor hepatic mitochondrial activity, although this may reflect the power of the 

study. However, there was an association between ATLR and blood levels of amino acids including 

asparagine, glutamate and taurine. Previously it has been shown that the chronic circulating levels of 

most amino acids (except branched chain amino acids) are inversely correlated with protein intake 

(Solon-Biet et al. 2014). Therefore the positive association between some amino acids and ATLR in 

this study may simply reflect the effects of a low protein diet, although only glutamate remained 

significant after correction for multiple comparisons. On the other hand, taurine is an antioxidant 

which could influence telomere shortening (Ozsarlak-Sozer et al. 2010). There are few reports linking 

amino acids with telomere length. One report in humans studied the relationship between LTL and 

several circulating amino acids (alanine, glycine, histidine, phenylalanine, leucine, isoleucine, valine, 

and tyrosine) and found an inverse relationship with phenylalanine (Eriksson et al. 2017). 

 

In conclusion, mice maintained on low protein, high carbohydrate diets had longer hepatic telomeres, 

which correlated with a longer median lifespan. Nutrition has a powerful impact on aging and age-

related health, which might be mediated in part by its effects on telomere length. 
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Chapter 5.2: The relationship between dietary macronutrients and hepatic 

mitochondrial function 

 

Data from this chapter has been published in (Solon-Biet et al. 2014). 

 

Background 

Mitochondria are essential not only for providing energy in the form of ATP, but also for their 

involvement in multiple functions, many of which are associated with changes in nutrient sensing 

pathways (Sahin & DePinho 2012; M. B. Jensen & Jasper 2014). The primary function of 

mitochondria is to provide cellular energy through the process of oxidative phosphorylation via four 

respiratory chain complexes (complexes I-IV) and ATP synthase (complex V) (Bratic & Larsson 

2013). Changes in mitochondrial bioenergetics, reactive oxygen species (ROS) production, mutations 

in mitochondrial DNA and impaired respiratory chain function have been implicated in ageing, not 

only as a correlation, but these changes have even been suggested to be a potential a mechanism 

driving the ageing process (Sevini et al. 2014; Sahin & DePinho 2010; Scialò et al. 2016).  

 

Mitochondrial dysfunction is generally considered a hallmark of ageing, and has been well 

documented in mammals (López-Otín et al. 2013; Kujoth 2005; Trifunovic et al. 2004). These 

changes have been linked with altered regulation of SIRT1, mTOR and AMPK through a variety of 

mechanisms including pathways linked with altered regulation of mitophagy, mitochondrial 

biogenesis, NAD+ availability, PGC1α and p53 [Figure 5.2.1] (Kujoth 2005; Gomes et al. 2013; Green 

et al. 2011; Sahin & DePinho 2012). Increased ROS production as a result of mitochondrial 

dysfunction has been of particular interest, due to its association with oxidative stress and DNA 

damage (Hekimi et al. 2011; Fang et al. 2016). However, in many species, low levels of mitochondrial 
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dysfunction have actually been noted to extend lifespan (Ventura et al. 2009; Palikaras et al. 2015; 

Merkwirth et al. 2016; Munkácsy & Rea 2014), therefore suggesting that perturbations to 

mitochondrial function exert a hormetic effect on ageing (Hekimi et al. 2011; López-Otín et al. 2016). 

Mitochondrial dysfunction has also been shown influence ageing independently of ROS production 

through alteration of apoptotic pathways, as seen in animal studies with deficiencies caused by 

mitochondrial DNA mutations (Hiona et al. 2010; Edgar et al. 2009).  

 

Mitochondrial dynamics have also been studied with relation to nutrient exposure, and there is 

evidence that mitochondria in nutrient-rich states are more fragmented compared to the elongated 

mitochondria seen in nutrient starved tissues (Liesa & Shirihai 2013; Jacobi et al. 2015). Changes in 

hepatic mitochondrial number and function are therefore associated with an ageing phenotype, but it 

is unclear which of these, if any, is more important in healthy ageing (Prolla & Denu 2014; Aon et al. 

2016). In humans, CR has been shown to increase mitochondrial DNA content and mitochondrial 

biogenesis in skeletal muscle, and was associated with increased expression of genes associated with 

mitochondrial function including PGC1α, eNOS, SIRT1 and PARL (Civitarese et al. 2007). The 

benefits of intermittent fasting on health have also been linked to decreased mitochondrial 

degeneration (Castello et al. 2011; Raefsky & Mattson 2017). 

 

It has been recently reported that specific macronutrient intake rather than CR by dilution is linked 

with longevity and metabolic health in ad libitum-fed mice (Solon-Biet et al. 2014). Since diet also 

affects mitochondrial function, examination of this interaction could provide evidence for a 

mitochondrial mechanism underlying the beneficial effects of CR on longevity. Here, the effects of 

varying protein-to-carbohydrate-to-fat (P:C:F) ratios on mitochondria in mice were investigated, 

through assays of mitochondrial number and function. Mitochondrial number was assessed in two 

ways; PCR for expression of the mitochondrial gene cytochrome b for mitochondrial DNA copy 
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number, and an assay of citrate synthase activity as previously described (Larsen et al. 2012; Uddin et 

al. 2016). Mitochondrial function and bioenergetics were tested using the Seahorse XF24 Extracellular 

Flux analyser, which assesses oxygen phosphorylation through oxygen consumption rates after the 

addition of various substrates. Hydrogen peroxide, the beta-oxidative enzyme 3-hydroxyacyl-CoA 

dehydrogenase (HOAD), and citrate synthase were measured through spectrophotometry.  Since the 

same cohort of mice was used to collect longevity data, these findings were compared to lifespan to 

see if there was a correlation with diet and longevity.  

 
 

 
 

Figure 5.2.1. CR, CR mimetics and nutrient sensing pathways in mitochondrial dysfunction and 

ageing.   



 

 196 

Methods 

Methods on animal husbandry and diet are outlined in full in Chapter 2. Here, additional studies were 

conducted to investigate the effects of macronutrient balance on hepatic mitochondrial number and 

function, and its correlation with longevity, as previously described (Solon-Biet et al. 2014).  

 

Briefly, mitochondrial function was studied using mitochondria isolated from liver tissue (n=170) of 

mice aged 15 mths, examining ATP production, basal respiration, maximum respiration and spare 

capacity using oxygen consumption rates after the addition of various substrates (pyruvate-malate, 

glutamate-malate, succinate-rotenone, palmitoyl carnitine-malate). Respiratory Control Ratios (RCR’s) 

were defined as State III/State IVo. Hydrogen peroxide production and enzymatic activities (HOAD, 

aspartate aminotransferase (AST) and aconitase) were measured via spectrophotometry. Citrate 

synthase activity was used to normalise the results, which are therefore expressed as mitochondrial 

function per mitochondrion. Mitochondrial copy number was estimated from genomic mouse 

mtDNA using a real-time quantitative PCR method normalised to the acidic ribosomal 

phosphoprotein PO (36B4) gene as previously described (Uddin et al. 2016). All PCRs were done in 

triplicate. Standard curves for 36B4 and cytochrome b were used for absolute quantitation. 

 

The data is displayed as 2D and 3D response surfaces generated by the Geometric Framework as 

described in Chapter 3, which were analysed with GAM statistics. The values reported for 

macronutrient intake axes are kJ/mouse/day averaged over intake during 6-15 months of age. 

Overall, 37 mitochondrial assays are reported here, 32 of which are related to mitochondrial function 

directly through measures of oxidative phosphorylation and free radical production, 3 of which are 

related to enzyme activity (HOAD, AST, and aconitase), and 2 related to gene expression.  



 

 197 

Results 

To assess mitochondrial copy number (CN), cytochrome b expression was examined, normalised to 

the control gene 36B4 as previously described (Uddin et al. 2016). Mitochondrial copy number was 

found to be positively correlated with protein intake (p=0.0004) [Figure 5.2.2, Table 5.2.1]. Citrate 

synthase (CS) activity, which has been used as a surrogate marker to quantify mitochondrial number 

(Larsen et al. 2012), was also positively correlated with protein intake (p=0.00003.28), however, CS 

was also influenced by carbohydrate and fat intake [Figure 5.2.3, Table 5.2.1]. Encouragingly, both 

methods produced similar results, with Pearson’s correlation between these two markers was also 

significant (r=0.23, p=0.004) [Table 5.2.3]. However, correlation with median lifespan results in the 

same cohort did not produce any statistically significant findings, with correlation coefficients close to 

zero in both cases (CN: r=-0.058, p=0.47; CS: r=0.019, p=0.99). This indicates that while 

mitochondrial number is affected by diet, it may not be directly correlated with lifespan; however it is 

important to note that despite being in the same cohort, mitochondrial assays were performed on 

mice sacrificed at 15 months and are therefore the data sets are not from the same mice as the 

longevity data.  

 
 

Table 5.2.1. GAM statistics for mitochondrial copy number (normalised cytochrome b expression) 

and citrate synthase activity. Corresponding GF plots are shown in Figures 5.2.2 and 5.2.3. 

 

p-value P C F P:C P:F C:F 

Normalised Cytochrome b 
 Expression 3.98E-04 0.0831 0.3429 0.2901 0.2041 0.4106 

Citrate Synthase Activity 1.92E-05 1.93E-03 2.74E-02 0.4640 0.2415 0.3726 
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Figure 5.2.2. 2D and 3D GF plots for mitochondrial copy number (normalised cytochrome b gene 

expression). Corresponding GAM statistics are shown in Table 5.2.1. 
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Figure 5.2.3. 2D and 3D GF plots for citrate synthase activity correlated with macronutrient intake. 

Corresponding GAM statistics are shown in Table 5.2.1. 
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Of the 35 non-genetic assays performed on mitochondrial function and enzymatic activity, 21 assays 

(60%) were correlated with macronutrient intake or ratios in a statistically significant manner [Table 

5.2.2]. Of these, protein intake was by far the most significant factor influencing mitochondrial 

function (n=12). Interestingly, the general pattern of correlation with mitochondrial function was in a 

negative direction, with low dietary protein intake being associated with increased oxidative 

phosphorylation of substrates. While none of the mitochondrial functional assays were significantly 

correlated with directly lifespan, the diets that produced the longest lifespan were associated with 

increased hepatic mitochondrial activity and free radical production in the same cohort of mice.  

Table 5.2.2. GAM statistics from GF analysis on mitochondrial function assays correlated with 

macronutrient intake.  

Assay P C F P:C P:F C:F 

Aconitase 0.44 0.31 1 0.44 0.81 0.95 

AST 1.13E-02 0.34 0.57 0.46 0.70 0.31 

Glutamate Antimycin A 0.09 0.50 1 0.36 0.97 0.16 

Glutamate H2O2 4.44E-02 0.83 0.82 0.44 0.65 0.48 

Glutamate RCR III/IVo  0.09 1 0.56 0.52 0.64 1 

Glutamate Spare Capacity 1.10E-04 0.65 0.27 0.54 0.51 0.08 

Glutamate State II 0.4 1 2.62E-02 0.79 0.45 0.81 

Glutamate State III 0.81 0.87 0.49 0.90 0.54 0.18 

Glutamate State IIIu 1.14E-03 0.95 0.54 0.73 0.54 0.25 

Glutamate State IVo 0.52 0.78 0.76 3.22E-02 0.7 0.69 

HOAD 2.97E-02 0.73 0.50 0.71 0.32 0.19 

Palmitoyl carnitine Antimycin A 0.05 0.68 1 0.42 0.95 0.5 

Palmitoyl carnitine RCR III/IVo 1 1 0.92 1 1 1 
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Palmitoyl carnitine Spare Capacity 0.14 0.34 0.85 0.86 3.19E-02 0.53 

Palmitoyl carnitine State II 0.51 0.47 1 0.29 1 0.46 

Palmitoyl carnitine State III 0.38 0.79 1.77E-10 0.62 2.14E-02 0.40 

Palmitoyl carnitine State IIIu 0.65 0.2 0.25 0.62 0.1 0.83 

Palmitoyl carnitine State IVo 0.61 1 1.23E-03 0.74 0.38 1.74E-03 

Palmitoyl CoA H2O2 0.08 0.37 0.72 0.32 0.36 0.15 

Pyruvate Antimycin A 0.69 0.44 0.47 0.89 0.87 0.48 

Pyruvate H2O2 2.70E-02 0.90 0.78 0.50 0.60 0.48 

Pyruvate RCR III/IVo 0.78 0.49 1 0.71 0.91 0.96 

Pyruvate Spare Capacity 0.46 0.53 0.77 0.28 0.07 0.29 

Pyruvate State II 3.60E-02 0.57 0.29 0.44 4.70E-02 0.74 

Pyruvate State III 1.13E-02 0.14 0.59 0.43 0.66 0.27 

Pyruvate State IIIu 0.12 0.95 0.3 0.63 0.08 0.44 

Pyruvate State IVo 2.59E-02 0.99 0.7 0.59 0.56 0.38 

Succinate Antimycin A 0.15 0.8 0.51 0.85 0.42 0.52 

Succinate H2O2 3.72E-02 0.96 0.80 0.48 0.61 0.45 

Succinate RCR III/IVo  2.01E-02 0.17 0.60 1.48E-02 0.24 0.05 

Succinate Spare Capacity 4.52E-09 3.31E-02 1 0.34 0.90 0.09 

Succinate State II 0.27 1 0.33 1 1.22E-02 0.82 

Succinate State III 0.39 0.28 0.66 0.93 1.51E-02 0.66 

Succinate State IIIu 0.36 4.91E-02 0.69 0.8 0.32 0.14 

Succinate State IVo 1 0.49 0.73 1 4.79E-02 0.38 
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Discussion 

In order to control metabolism and energy homeostasis, mitochondria adjust substrate utilisation in 

relation to nutrient availability (Boutant et al. 2016; Barbato & Aquilano 2016; Minamino et al. 2009). 

The three main nutrient sources are amino acids, glucose, and fatty acids, and under physiological 

circumstances, mitochondria are able to switch their fuel source between substrates freely (Muoio 

2014; Pani 2010). Dysregulation of mitochondrial function on the other hand leads to metabolic 

inflexibility, decreased respiratory efficiency, and increased production of ROS (Payne & Chinnery 

2015). While ROS have historically been thought to have a deleterious effect on ageing (Harman 

1956), recent evidence has shown that these molecules may have key roles in cellular signaling 

pathways, and may in fact be beneficial to the ageing process in a hormetic fashion (López-Otín et al. 

2016; Sharma et al. 2010). Caloric restriction, which had been initially predicted to lower basal 

metabolic rate (BMR) and ROS production has actually been shown to increase mitochondrial 

biogenesis and increase BMR (Nisoli et al. 2005; Zarse et al. 2012). Mild increases in ROS production 

with caloric restriction have also been shown to exert longevity benefits in many studies (Sharma et al. 

2010; Rea et al. 2007; Munkácsy & Rea 2014), however these have also been shown to be 

accompanied by increased ROS scavenging mechanisms (Nisoli et al. 2005; Ristow et al. 2009). Here, 

it was shown that mitochondrial respiratory control ratios (RCR) and spare capacity, markers of 

mitochondrial function, were generally negatively correlated with protein intake. The notable 

exception was palmitoyl carnitine, where the spare capacity and RCR was driven more by the intake of 

fat and the P:F ratio, indicating that mitochondria adapted to increase capacity for fat utilisation as a 

substrate when dietary fat intake was high [Table 5.2.2]. As expected, these results are consistent with 

the literature where mitochondria optimise efficiency of substrate utilisation depending on nutrient 

availability in the cellular environment. Overall, the study shows that low protein intake was 

associated with increased mitochondrial activity and free radical production, while high protein intake 

was associated with increased citrate synthase, mitochondrial copy number. Therefore, animals on low 
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protein diets, which produced the greatest lifespan extension in the same cohort of mice, displayed 

increased mitochondrial activity, but a lower mitochondrial number. However, correlation of the 

results with lifespan data collected from the same cohort did not show any significant results. Given 

that mitochondrial number was associated with changes in pathways also influencing mitochondrial 

function, it can be hypothesised that the change in mitochondrial number may be a response to 

compensate for mitochondrial dysfunction, rather than a direct deleterious effect on longevity. 

Table 5.2.3. Pearson’s correlations between mitochondrial DNA copy number and nutrient sensing 

pathway data described in Chapter 4. *Longevity correlated via diet group in the same cohort. 

Correlation with: R p-value 

Circulating FGF21 -0.012 0.14 

Circulating IGF1 0.49 0.85 

Circulating Insulin 0.87 0.03 

Citrate Synthase (CS) 0.41 0.021 

FGF21 Gene expression 0.067 0.077 

IGF1 Gene expression 0.57 0.58 

Longevity* -0.48 0.45 

mTOR Activation -0.96 0.45 

mTOR Gene expression -0.18 0.21 

Prkaa1 Gene expression -0.67 0.027 

Prkaa2 Gene expression 0.59 0.2 

Sirt1 Gene expression -0.46 0.14 

Sirt2 Gene expression -0.95 0.018 

Sirt3 Gene expression 0.96 0.024 

Sirt4 Gene expression 0.83 0.63 

Sirt5 Gene expression 0.51 0.99 

Sirt6 Gene expression -0.92 0.065 

Sirt7 Gene expression 0.43 0.95 
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When compared with the growth pathway data from the same cohort of mice (described in detail in 

Chapter 4), mitochondrial DNA copy number, a marker for mitochondrial biogenesis was positively 

correlated with circulating insulin and gene expression SIRT3; and negatively correlated with AMPK 

and SIRT2 gene expression [Table 5.2.3]. Mitochondrial function on the other hand, was significantly 

correlated with multiple growth pathways; mTOR activation was positively correlated with RCR when 

pyruvate was used as a substrate, but negatively correlated with RCR when glutamate was used. 

Interestingly, while the geometric framework surface for mTOR activation showed a remarkably 

similar response pattern to that of mitochondrial copy number (i.e. positive correlations between 

protein intake and both mTOR activation and mitochondrial copy number), direct correlation 

between the two outcomes was not significant [Table 5.2.3]. While direct correlation was not 

statistically significant here, other studies have shown that inhibition of mTOR through gene 

mutations and rapamycin decrease mitochondrial copy number as well as expression of mitochondrial 

genes (Chen et al. 2008; Cunningham et al. 2007; Laplante & Sabatini 2009). Of the sirtuins localised 

to the mitochondria (SIRT3-5), the role of SIRT3, is the most well studied, and has been shown to 

play a role in mediating the effects of caloric restriction on lifespan (Someya et al. 2010; Houtkooper 

et al. 2012; Zhong & Mostoslavsky 2011). In the present study, SIRT3 gene expression was 

significantly correlated with 17 of the 32 mitochondrial activity assays (53%), while IGF-1 was 

correlated with 13 (41%), and AMPK with 10 (31%) [Figure 5.2.4, Table 5.2.4]. Interestingly, all three 

of these pathways were almost solely negatively correlated with mitochondrial function, except for 

SIRT3, which was positively correlated with mitochondrial spare capacity and H2O2 production when 

glutamate was used as a substrate. Taken together, these findings suggest that mitochondrial function 

is significantly influenced by diet, with alterations to IGF-1, AMPK and SIRT3 playing key roles in 

the regulatory process. This provides a plausible mechanism by which diet influences ageing, as diets 

associated with the highest longevity in the study, were also associated with changes to nutrient 

sensing pathways, mitochondrial function, and metabolic phenotype. 
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Figure 5.2.4. Pearson’s correlations between mitochondrial function assays and IGF-1, AMPK & 

SIRT3. Corresponding data is shown in Table 5.2.4. Blank results indicate non-significant correlations 

(p>0.05). 
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Table 5.2.4. Pearson’s correlations between mitochondrial function assays and IGF-1, AMPK & 

SIRT3. Values are expressed as Pearson’s correlation coefficient, with p-values shown in brackets. 

 
R (p-value) IGF1 AMPK SIRT3 

Glutamate Antimycin A 0.44 (0.83) -0.29 (0.21) -0.12 (0.67) 

Glutamate H2O2 0.38 (0.85) 0.24 (0.72) 0.76 (0.024) 

Glutamate RCR III/IVo -0.055 (0.78) 0.57 (0.59) -0.038 (0.48) 

Glutamate Spare Capacity 0.27 (0.89) -0.35 (0.082) 0.28 (0.0073) 

Glutamate State II -0.74 (0.014) -0.99 (0.00053) -0.76 (0.0001) 

Glutamate State III -0.68 (0.0081) -0.94 (0.0031) -0.9 (0.000023) 

Glutamate State IIIu -0.55 (0.071) -0.96 (0.000079) -0.77 (0.0011) 

Glutamate State IVo -0.6 (0.048) -0.97 (0.00047) -0.79 (0.00034) 

Palmitoyl carnitine Antimycin A -0.88 (0.033) -0.95 (0.1) -0.81 (0.12) 

Palmitoyl carnitine RCR III/IVo 0.79 (0.75) 0.32 (0.74) 0.1 (0.65) 

Palmitoyl carnitine Spare Capacity -0.3 (0.56) 0.0077 (0.37) 0.18 (0.45) 

Palmitoyl carnitine State II -0.82 (0.0033) -0.98 (0.0018) -0.82 (0.0024) 

Palmitoyl carnitine State III -0.43 (0.053) -0.87 (0.011) -0.79 (0.01) 

Palmitoyl carnitine State IIIu -0.55 (0.033) -0.94 (0.0087) -0.81 (0.0044) 

Palmitoyl carnitine State IVo -0.77 (0.016) -0.98 (0.0018) -0.84 (0.002) 

Palmitoyl CoA H2O2 -0.095 (0.27) -0.0082 (0.96) 0.54 (0.2) 

Pyruvate Antimycin A 0.57 (0.65) -0.047 (0.98) 0.47 (0.076) 

Pyruvate H2O2 0.7 (0.51) 0.018 (0.45) 0.2 (0.23) 

Pyruvate RCR III/IVo 0.42 (0.27) 0.47 (0.92) -0.21 (0.39) 

Pyruvate Spare Capacity 0.79 (0.81) 0.7 (0.28) 0.95 (0.00034) 

Pyruvate State II -0.8 (0.0027) -0.96 (0.0051) -0.87 (0.0021) 

Pyruvate State III -0.58 (0.038) -0.93 (0.017) -0.82 (0.011) 

Pyruvate State IIIu 0.031 (0.49) -0.63 (0.28) -0.33 (0.63) 

Pyruvate State IVo -0.71 (0.018) -1 (0.062) -0.66 (0.15) 

Succinate Antimycin A -0.48 (0.25) -0.89 (0.52) -0.35 (0.64) 

Succinate H2O2 0.078 (0.19) 0.69 (0.81) 0.59 (0.28) 

Succinate RCR III/IVo 0.44 (0.82) 0.49 (0.58) -0.17 (0.25) 

Succinate Spare Capacity 0.14 (0.22) 0.62 (0.97) 0.47 (0.023) 

Succinate State II -0.63 (0.019) -0.97 (0.091) -0.64 (0.032) 

Succinate State III -0.23 (0.047) -0.72 (0.093) -0.76 (0.014) 

Succinate State IIIu 0.037 (0.33) -0.44 (0.42) -0.57 (0.55) 

Succinate State IVo -0.5 (0.037) -0.91 (0.06) -0.8 (0.022) 
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Chapter 5.3: The relationship between dietary macronutrients and inflammation 

 

Data from this chapter has been published in (Solon-Biet et al. 2015a).  

 

Background 

The liver provides a plausible mechanistic link between diet and ageing, as it plays a crucial role in 

nutritional metabolism and displays age-related changes such as inflammation, which can be 

histologically assessed (Le Couteur et al. 2008; Schmucker 2005; Popper 1986). This relationship 

between ageing and systemic low-grade chronic inflammation, or inflamm-ageing, is a key area of 

research associated with nutritional intervention, and is crucial to understanding the process of 

healthy ageing (Franceschi & Campisi 2014). Inflammatory markers such as IL-6, TNF-α, IL-1β and 

N-glycans have been studied as biomarkers of ageing and disease with varying degrees of success 

(Dall’Olio et al. 2013; Maggio et al. 2006; Klein et al. 2014; Wei et al. 2016; Kiecolt-Glaser et al. 2003). 

Diet has also been seen to be a contributor to inflammatory changes, particularly in the liver (Kim et 

al. 2016; Baur et al. 2006; Le Couteur et al. 2010). Age-related pseudocapillairisation of the liver 

involves thickening and defenestration of the sinusoidal endothelium, collagen deposition, 

inflammatory changes, and fat accumulation in stellate cells (Le Couteur et al. 2010; Le Couteur et al. 

2008).  

 

While the liver is known to display these changes, the endocrine pancreas has been less well studied in 

terms of histological correlation with diet (Harvey et al. 2014). The pancreas is known have a role in 

metabolism through its secretion of insulin and glucagon, and has also been shown to be affected by 

ageing and caloric restriction (Reaven & Reaven 1981; Okauchi et al. 1995; He et al. 2012). In fact, 

well-regulated glucose metabolism, low levels of insulin resistance and pancreatic β-cell maintenance 
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have been shown to be conserved phenotypes in centenarians, suggesting that pancreatic function is a 

key component to healthy ageing (Paolisso 2001). Since both CR and LPHC diets have also been 

shown to improve measures related with metabolic and cardiovascular health (Solon-Biet et al. 

2015b), the impact of these diets on the liver and pancreas are assessed here. The effects of long-term 

CR or dietary macronutrient manipulation on the liver and pancreas have been established in many 

previous studies (Kim et al. 2016; Le Couteur et al. 2010; Valle et al. 2008; Jamieson et al. 2007; He et 

al. 2012; Okauchi et al. 1995), however whether these phenotypes can be induced by diet on a shorter 

time scale is unknown. In addition, while implementing long-term dietary regimes in humans is 

difficult, short-term diets are relatively common. Therefore, understanding the impact of short-term 

dietary manipulation and CR is useful not only to provide new insights into the mechanisms 

underlying the impact of nutrition on the body, but also add potential translational value to nutritional 

research. 

 

Therefore, this section investigated the short-term effects of varying dietary macronutrients on 

hepatic steatosis, fibrosis and inflammatory infiltration, and pancreatic islet function. Data from the 

liver is correlated with histological data collected previously in the long-term dietary study, as 

described in detail in Chapter 2. The short-term experiment is therefore based on the general 

phenotypic findings of the larger-scale study, with maximal dietary differences used to decide the ratio 

of P:C used. Here, two month old mice were assigned one of three diets varying in P:C ratio, and 

allocated to either ad libitum (AL) or 40% CR intake regimes. Thus, both CR and macronutrient ratio 

were assessed in the short-term study.  

 
 
Methods 

Animal and dietary interventions are discussed in detail in Chapter 2. Additional methods used in the 

short-term dietary study are discussed here, and are adapted from (Solon-Biet et al. 2015a) where the 
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data has been previously published. Data from the long-term study was analysed by the Geometric 

Framework as discussed in detail in Chapter 3. Short-term study data is presented as mean ± SEM, 

and differences are considered significant when p < 0.05. 

 

Male C57BL6/J mice (8 week old; n = 90; Jackson Laboratory) were grouped in cages containing five 

mice each at the National Institute of Aging, Baltimore, USA. All animal protocols were approved by 

the Gerontology Research Center Animal Care and Use Committee (352-LEG-2012) of the National 

Institute on Aging. Isocaloric (4kcal/g; Dyets) experimental diets were classified as low protein, high 

carbohydrate (5% protein; LPHC); medium protein, medium carbohydrate (33% protein; MPMC); 

and high protein, low carbohydrate (60% protein, HPLC). The ratio of fat was therefore fixed at 20% 

across the diets. Mice in each of these groups were assigned to an ad libitum (AL), or 40% calorically 

restricted (CR) group, where intake was limited to 60% of the caloric intake measured in the 

corresponding AL group. Mice were kept on these diets for 8 weeks, prior to being euthanised. Blood 

and tissue samples were collected for histological and biochemical analyses. On the day of the 

sacrifice, CR mice were not fed while AL mice were allowed to eat normally. A total of n=15 mice 

were in each dietary group. 

 

Paraffin-embedded liver tissue from both short and long-term dietary studies were sectioned and 

stained using Haematoxylin & Eosin (H&E), Periodic acid-Schiff (PAS), and Sirius Red. Embedded 

pancreatic tissue was sectioned and immunohistochemistry was performed using monoclonal anti-

glucagon antibody (Sigma G2654) and monoclonal anti-insulin antibody (Sigma I2018). The extent of 

change in the response variables (fatty infiltration, inflammation, glucagon and insulin intensity) was 

assessed and scored (0, 1+, 2+, 3+) by four independent observers, blinded to the tissue category, 

through light microscopy.  
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Results  

While histological changes were noted between groups in the short-term study, all diets displayed 

normal gross liver histology, as seen in Figure 5.3.1. H&E staining of these livers showed a positive 

correlation between P:C ratio and portal inflammation in AL animals, but not in CR animals [Figures 

5.3.2, 5.3.3, Table 5.3.1]. Sirius Red staining indicated no effect of P:C ratio on fibrosis, however there 

was a negative correlation between P:C ratio and steatosis in both the AL and CR animals. In the 

pancreas, the number of insulin-containing cells was not significantly different in CR animals 

compared to AL animals, however in the AL animals, there was an increase in intensity of staining for 

glucagon in the HPLC group compared to the other AL groups [Figure 5.3.4, Table 5.3.1]. This was 

accompanied by an increase in glucagon secretion, elevated blood glucose levels, and glucose 

intolerance, however those data sets were not analysed during the course of this thesis, and are 

described elsewhere (Solon-Biet et al. 2015a). 

 

 

Figure 5.3.1. Representative H&E stained livers from the short-term dietary study; (A) AL group, 

and (B) CR group. 
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Table 5.3.1. Histological scores in the liver and pancreas from the short-term dietary study. Data 

presented as mean+/- SEM. Grey boxes indicate statistical significance on t-test compared with the 

corresponding LPHC group; corresponding p-values shown in Table 5.3.2. 

 

Histology LPHC-AL MPMC-AL HPLC-AL LPHC-CR MPMC-CR HPLC-CR 

Sinusoidal 
inflammation 0.8+/-0.2 1.23+/-0.23 0.78+/-0.15 1.31+/-0.21 0.85+/-0.19 0.91+/-0.25 

Portal 
inflammation 1.1+/-0.18 1.23+/-0.17 2.11+/-0.11 1.62+/-0.18 1.38+/-0.18 1.91+/-0.16 

Central 
inflammation 0.1+/-0.1 0.15+/-0.1 0.22+/-0.15 0.23+/-0.17 0.23+/-0.17 0.55+/-0.21 

Steatosis 2.18+/-0.18 1.23+/-0.23 1+/-0.17 2.08+/-0.31 1+/-0.28 0.64+/-0.2 

Sinusoidal 
fibrosis 1.45+/-0.25 1.54+/-0.24 2.11+/-0.2 1.31+/-0.13 1.92+/-0.24 1.82+/-0.23 

Portal fibrosis 1.18+/-0.18 1.31+/-0.29 1.44+/-0.29 1.38+/-0.27 1.77+/-0.23 1.36+/-0.24 

Central 
fibrosis 1+/-0.27 0.69+/-0.24 0.89+/-0.31 0.54+/-0.18 0.92+/-0.21 0.82+/-0.23 

Insulin 2.1+/-0.28 1.96+/-0.24 1.56+/-0.18 1.46+/-0.23 2.54+/-0.14 1.36+/-0.23 

Glucagon 1.4+/-0.22 1.43+/-0.17 2.4+/-0.16 0.9+/-0.18 1.33+/-0.26 1.13+/-0.13 
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Figure 5.3.2. Histological scores for ad libitum-fed mice in the short-term dietary study. *indicates p<0.05 on t-test against LPHC group 

[Table 5.3.1]; **indicates p<0.05 on ANOVA [Table 5.3.2]. Corresponding data is shown in Table 5.3.1. Experimental diets were classified as 

low protein, high carbohydrate (5% protein; LPHC); medium protein, medium carbohydrate (33% protein; MPMC); and high protein, low 

carbohydrate (60% protein, HPLC).  
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Figure 5.3.3. Histological scores for 40% calorically restricted mice in the short-term dietary study. *indicates p<0.05 on t-test against LPHC 

group [Table 5.3.1]; **indicates p<0.05 on ANOVA [Table 5.3.2]. Corresponding data is shown in Table 5.3.1. Experimental diets were 

classified as low protein, high carbohydrate (5% protein; LPHC); medium protein, medium carbohydrate (33% protein; MPMC); and high 

protein, low carbohydrate (60% protein, HPLC).  
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Table 5.3.2. Statistics for histological scores in the liver and pancreas from the short-term dietary 

study. Data presented as p-values. Experimental diets were classified as low protein, high 

carbohydrate (5% protein; LPHC); medium protein, medium carbohydrate (33% protein; MPMC); 

and high protein, low carbohydrate (60% protein, HPLC). The ratio of fat was fixed at 20% across the 

diets, and mice were assigned to either an ad libitum (AL), or 40% calorically restricted (CR) group. 

 
 

Histology 

T-test compared to LPHC group ANOVA 

MPMC-AL HPLC-AL MPMC-CR HPLC-CR Combined AL CR 

Sinusoidal 
inflammation 0.73 1.00 0.24 0.40 0.31 0.17 0.33 

Portal 
inflammation 0.68 1.77E-02 0.49 0.20 9.36E-04 8.88E-04 0.26 

Central 
inflammation 1.00 1.00 1.00 0.10 0.45 0.17 0.67 

Steatosis 4.31E-02 6.60E-03 2.51E-02 3.53E-02 6.39E-05 2.25E-03 6.28E-03 

Sinusoidal 
fibrosis 0.22 0.06 4.55E-02 0.08 0.11 0.27 0.05 

Portal 
fibrosis 0.47 0.56 2.51E-02 0.80 0.67 0.78 0.21 

Central 
fibrosis 0.22 0.76 0.10 0.22 0.74 0.86 0.42 

Insulin 0.71 0.08 5.76E-03 0.63 1.93E-03 0.50 5.60E-04 

Glucagon 0.73 4.27E-05 0.36 0.61 1.23E-04 1.03E-03 3.99E-02 
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Figure 5.3.4. Representative glucagon stained pancreas samples from the short-term dietary study; 

(A) AL group, and (B) CR group.  

 

 
In the long-term studies, hepatic inflammation, both through fibrotic changes, as well as fatty 

infiltration was associated with the P:F ratio in the diet (p=0.00218 and p=0.006.86 respectively) 

[Figure 5.3.5, Table 5.3.3]. On the other hand, glycogen content, which is a marker for energy stores, 

was affected by C:F ratio, and was only mildly negatively correlated with steatosis, implying that this 

change was likely unrelated to inflammation. Histology in the long-term diets was influenced heavily 

by the ratio of fat in the diet, a factor which was not assessed in the short-term study. 

 

Table 5.3.3. GAM statistics for Geometric Framework analysis of the phenotypic results from the 

long-term mouse study. Corresponding surfaces are shown in Figure 5.3.5. 

Hepatic histology P C F P:C P:F C:F 

Steatosis (Sirius Red)  4.08E-02 8.67E-03 3.51E-03 0.17 2.18E-03 0.83 

Fibrosis (H&E) 0.14 0.33 0.18 0.10 6.86E-03 0.44 

Glycogen (PAS) 1.00 0.28 0.46 0.54 0.63 2.13E-02 
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Figure 5.3.5. 2D GF surfaces of hepatic histology from the long-term dietary study.  Corresponding 

statistics are shown in Table 5.3.3. 
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Discussion 

Chronic overnutrition is linked with increasing instances of obesity and metabolic disorders such as 

diabetes, cardiovascular disease and non-alcoholic fatty liver disease (Buettner et al. 2007). The 

amount of protein in the diet is one of the key drivers of food intake, as organisms are known to 

regulate their protein intake more heavily compared with other macronutrients; a concept known as 

protein leverage (Simpson & Raubenheimer 2005; Gosby et al. 2013; Lee et al. 2008), and this result is 

seen in both cohorts of mice used in this study (Solon-Biet et al. 2014; Solon-Biet et al. 2015a). While 

the results of the diets used here on metabolic outcomes have been discussed in the aforementioned 

publications, it is interesting to note that manipulation of macronutrient ratios did not provide 

additional benefits to 40% CR animals in the short-term, but did influence the outcomes in ad libitum 

fed animals (Solon-Biet et al. 2015a). This seems to indicate that food intake, particularly the ratio of 

P:C in the diet, is one of the key factors influencing metabolic outcomes; a result that has been shown 

throughout this thesis, and elsewhere (Fanson & Taylor 2012; Le Couteur et al. 2015; Jensen et al. 

2015; Simpson et al. 2003). 

 

In the long-term studies, hepatic steatosis was shown to be significantly correlated with protein and 

P:F ratio, while fibrosis was shown to be significantly correlated with the P:F ratio. These results are 

consistent with studies in both humans and mice, where fat plays a major role in hepatic histological 

changes (Benard et al. 2016; Buettner et al. 2007; Hill et al. 2000). In the short-term studies, protein 

and the P:C ratio were the key drivers of inflammation, with high P:C ratios being linked with 

increased portal inflammation, and low P:C ratios are linked with hepatic fat accumulation. However, 

it should be noted that the ratio of fat in the diet, which was a significant fact driver of histology in 

the long-term study, was not assessed in the short-term study, where the ratio of fat was fixed across 

all diets at 20%. This limitation makes it difficult to compare the results across the studies.  
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Intensity of insulin staining was not significantly different between CR and AL animals, nor linked 

directly to macronutrient intake. Glucagon on the other hand, was significantly influenced by protein 

in the diet, and when correlated with blood glucose levels and oral glucose tolerance tests in the same 

mice, suggest that high protein intake is associated with increased glucagon secretion, higher 

circulating glucose levels, and glucose intolerance, as previously reported (Solon-Biet et al. 2015a). 

 

Taken together, these findings imply that in the short-term, dietary protein is the key driver of 

inflammatory changes, however fat intake seems to drive hepatic inflammation in the long-term, 

consistent with findings in the literature. CR animals displayed less inflammation than AL animals in 

the short-term, suggesting that protein restriction may be beneficial for healthy liver function. It is 

important however to note that macronutrient effects may vary with age, due to adaptation, and 

changes in metabolic and cellular function (Brown-Borg & Buffenstein 2016; Simpson et al. 2015). 

Thus, the results are consistent with the idea that high protein and fat intake is associated with 

inflammatory liver changes, while low protein intake (either low P:C ratio or CR) is hepato-protective. 

When combined with the larger panel of metabolic findings in these animals, it was shown that 

macronutrient balance, particularly LPHC diets, can mimic the benefits of CR on phenotypic end 

points even in the short-term (Solon-Biet et al. 2015a). Interestingly, short-term CR and intermittent 

fasting have also been shown to be equivalent to, or in some cases better than chronic caloric 

restriction for weight loss and indicators of chronic disease (Chen et al. 2016; Harvie & Howell 2012; 

Heilbronn et al. 2012). This study therefore represents an important area of research, as 

understanding the relationship between diet, ageing and age-related end points may help form 

guidelines to promote healthy ageing without the issues associated with long-term caloric restriction. 
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Chapter 6: General Discussion 
 

 

Nutrition has profound influences on aging. The major nutritional intervention that has been studied 

is caloric restriction (CR), whereby lifelong reduction in energy intake by 10-50% has been reported to 

increase lifespan and delay biological changes associated with aging in many species (Mercken et al. 

2012; Ingram & de Cabo 2017). Although CR has been a foundation of aging research for nearly a 

century, more recent studies have questioned whether it is CR per se that is responsible for the effects 

on health and lifespan (Brown-Borg & Buffenstein 2016; Fanson & Taylor 2012; Solon-Biet et al. 

2015b; Solon-Biet et al. 2014; Le Couteur et al. 2015). The effects of CR on aging have been shown to 

vary by species, strain and sex (Mitchell et al. 2016; Baar et al. 2015)  and while reduced energy intake 

is a key contributor to its benefits (Speakman et al. 2016; Gibbs & Smith 2016), other factors such as 

intermittent fasting (Liao et al. 2010; Y. Chen et al. 2016; C. Lee & Longo 2011) and reduced intake of 

macronutrients, especially protein (Lee et al. 2008, Solon-Biet et al. 2015) may also be important. 

Recent studies in insects and mice have increasingly focused on the ratio of macronutrients in the diet 

using the Geometric Framework, with most studies reporting that diets composed of low protein 

combined with high carbohydrates increase lifespan even in ad libitum-fed organisms (Lee et al. 2008, 

Solon-Biet et al. 2014, Le Couteur et al. 2016). From a translational perspective, this is important 

because ad libitum feeding is unavoidable in most humans.  

 

While the role of diet on life extension has been relatively well established in simple model organisms, 

apparently contradictory evidence has been seen when long-term CR was applied to rhesus monkeys 

at the National Institutes of Aging (NIA) (Ingram et al. 1990; Lane et al. 1992), compared to the 

University of Wisconsin-Madison (UW) (Ramsey et al. 2000). At the NIA, long-term 30% CR was not 

shown to increase lifespan, however did demonstrate significant impacts on disease prevention, 
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particularly metabolic disease and cancer (Mattison et al. 2012). On the other hand, the 30% CR diet 

instituted at UW resulted in a reduction in age-related mortality, with a hazard ratio of 2.9 in the 

control group compared to CR, and a hazard ratio of 1.78 for all-cause mortality on Cox regression 

(Colman et al. 2014). A joint initiative from the institutions was recently published (Mattison et al. 

2017), presenting a comparison of longitudinal data from both studies. Taken together, the data 

confirmed that CR does indeed confer health and survival benefits in non-human primates, and that 

differences in intrinsic trial designs could account for the differences in lifespan outcomes between 

the studies (Mattison et al. 2017). In particular, differences in diet (UW: semi-purified diet more 

similar to Western diet; NIA: minimally processed plant based diet more similar to Mediterranean 

diet), and macronutrient composition (UW: 13.13% P : 58.31% C : 10.6% F ; NIA: 17.3% P : 56.9% 

C : 5.0% F) led to all animal cohorts at the NIA, both control and CR, to consume calories at a similar 

rate to the CR group at UW, thereby implying that both groups at the NIA animals were likely 

calorically restricted, which impaired the ability to observe differences between the groups (Mattison 

et al. 2017). Supporting this, is the fact that both control and CR cohorts at the NIA had an average 

lifespan 45% longer than Rhesus monkeys kept in captivity (Rizza et al. 2014), thus highlighting the 

importance of both dietary intake and macronutrient composition.  

 

While similar trials to assess the impact of diet on longevity are not feasible in humans, correlation 

between data in primates and mice, with short-term dietary interventions in humans, for example the 

CALERIE study (Ravussin et al. 2015; Heilbronn et al. 2006), shows good concordance in health-

related outcomes. This suggests strong evidence to support conserved mechanisms across species, and 

a potential for translatable therapies to impact at the very least, age-related health, if not lifespan 

(Most et al. 2017; de Cabo et al. 2014). Given the importance of macronutrient balance, and the 

difficulty in disentangling the impact of dietary composition in isolation, here the Geometric 

Framework (GF) was used to facilitate interpretation of the effects of macronutrients and their 
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interactions on ageing and age-related end points (Simpson and Raubenheimer 2007, Simpson et al. 

2015). This thesis therefore combined two bodies of work to investigate the mechanisms that underlie 

ageing, and the ability of nutrition to influence this process.  

 

The first was the development of analytical methods as discussed in Chapter 3. These build upon the 

Geometric Framework to allow efficient and automated data collection, analysis, and visualisation 

across a variety of experimental structures. Two major issues were addressed here: 1) the discord 

between GAMs analysis and 2D visualisation, which was addressed by the development of a 3D 

visualisation method, and; 2) automation of the GF to large data sets, allowing multiple data types to 

be simultaneously analysed. These developments allowed the GF to be used as the primary analytical 

method across this Thesis, and be applied to various novel data sets such as PCR and microarray 

analysis of the transcriptome. The GF is an invaluable research tool, and further work in this area 

could help broaden the horizons of the GF beyond nutritional and ageing research, to a much more 

widely encompassing experimental paradigm. 

 

The second component was primary experimental work performed on nutrient sensing pathways, and 

investigation into their roles in ageing, lifespan and phenotypic age-related end points using the 

paradigm of a dietary study in mice. In Chapter 4, macronutrient balance was shown to play a 

significant role in the regulation of nutrient sensing pathways in both the liver and the hypothalamus, 

and produced patterns of change in both gene regulation, as well as signaling pathway activation, that 

were associated with improvements in health and longevity, in concordance with the literature (Evans 

et al. 2011; Lamming et al. 2013; Vaiserman et al. 2016; Wanders et al. 2014). In the liver, all major 

nutrient sensing pathways (mTOR, IIS, AMPK, sirtuins) were altered by dietary macronutrient intake 

ratios, with dietary protein in particular shown to be the main driver of gene expression. LPHC diets 

were shown to decrease mTOR activity, reduce circulating FGF-21 levels, and increase circulating 
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IGF-1, as previously reported (Solon-Biet et al. 2014; Solon-Biet et al. 2016). By contrast, intake of 

carbohydrates and fat had limited effects on gene regulation, most of which were in the opposite 

direction to changes seen with protein intake. In the hypothalamus, overall gene expression changes 

was most influenced by fat intake, a result that is consistent with previous studies (Jang et al. 2017; 

Yamamoto et al. 2009). Once again, protein was demonstrated to influence the gene expression in 

opposite directions compared to carbohydrates and fat. 

 

This is interesting because altering the concentration of one macronutrient in the diet also influences 

the ratio of the other intakes, as well as total energy density (Le Couteur et al., 2016). Given this 

interaction, the use of the GF allows differentiation between the effects of macronutrient intake, 

ratios and total energy, which are difficult to using univariate analysis. Furthermore, the difference 

between ratios in diet versus ratios of actual macronutrient intake must also be pointed out, 

particularly given the fact that low protein diets are known to increase food consumption due to 

titration of intake to protein targets, a concept known as protein leverage (Simpson and 

Raubenheimer, 2005). Discrepancies in analytical methodology and experimental design in this regard 

have led to seemingly diametrically opposite results. In particular, debate exists as to whether the 

effects of CR on longevity are primarily a result of a reduction of calories (Speakman, Mitchell, & 

Mazidi, 2016; Hu et al. 2018), or protein (Nakagawa et al. 2012; Solon-Biet et al. 2014; Fontana et al. 

2016). 

 

This discussion has been extensively reviewed previously (Ingram & Cabo, 2017; Picca, Pesce, & 

Lezza, 2017; Simpson et al. 2017b), which collectively conclude that while both CR and protein 

restriction lead to health benefits, and perhaps even modulate overlapping pathways, they are 

mechanistically different. Indeed, Speakman et al. also acknowledge that protein restriction can 

produce longevity benefits relative to reference diets independent of CR (Speakman, Mitchell, & 
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Mazidi, 2016). In addition, taking a nutritional geometry approach to these same sets of data has been 

shown to reconcile the apparently disparate findings seen on conventional analysis (Simpson et al. 

2017b). Therefore, while debate still exists however around the degree of importance of CR versus 

protein restriction, the GF seems to be the most appropriate analytical tool available to evaluate study 

data given the complexity between macronutrient and interactions, compensatory feeding responses 

and interpretation of outcomes (Le Couteur et al., 2016; Simpson et al., 2017b). 

 

Given the differences in gene regulation between the liver and hypothalamus, further analysis using 

multiple tissue types could play an important role in consolidating the relationship between diet, gene 

regulation and ageing. Indeed, the variance in response between different tissue types raises the 

mechanistic questions of which pathways are responsible for driving outcome related changes, and 

how they are coordinated. While protein was seen to be the main driver for changes in gene 

expression in the liver, fat and total energy dominated the transcriptomic changes in the 

hypothalamus. Coordination of these pathways through feedback loops; both on the level of 

transcription vs. translation vs. post-translational modification, as well as the HPA and other 

endocrine axes; add another degree of complexity in interpreting results. One approach to disentangle 

these complexities is the use of a systems-level approach, which, when applied across a variety of 

species, has shown that age-related genes are highly expressed across most tissue types, and co-

expressed with essential tissue-specific functional genes, often acting as intermediaries for pathway 

cross-talk (Zhang et al. 2016). These findings imply that activation of the same gene pathways in 

different tissues can have very different effects, with higher degrees of complexity and 

interconnectedness amongst more complex organisms.  

 

A second approach is to look at functional enrichment analysis using platform databases such the 

KEGG longevity gene set and GO biological processes gene set, both of which were performed in 
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our studies. Here, it is shown that in both the liver and the hypothalamus, dietary manipulation 

influences gene expression in nutrient sensing pathways, however the complex and elaborate 

mechanisms of their regulation make it difficult to mechanistically describe the coordination between 

these two systems. Again, the literature suggests that while network characteristics are not typically 

tissue specific, their roles in each tissue may functionally differ (Jia et al. 2018). For example, 

longevity-related genes in the brain may be associated with neuronal functionality and neurogenesis 

(Zhang et al. 2016), associated with immunocompetency in haematopoetic cells (Passtoors et al., 

2015), and with metabolic processes in the liver (Newgard & Pessin, 2014).  

 

While both these approaches help expand our mechanistic understanding of the role of these 

pathways, it is important to frame these in the context of the larger question being studied here, 

namely the impact of these pathways on lifespan. Perhaps the most striking set of studies with regards 

to this are gene knockout/overexpression studies in model organisms, which have showed that 

alterations to nutrient sensing pathways can lead to dramatic changes in lifespan (Lamming et al. 2013; 

Johnson et al. 2013; Jia 2004; Kapahi et al. 2004; Junnila et al. 2013). Therefore, while a great deal of 

work is required to better understand the intricacies of mechanism, understanding variations in 

activation of nutrient pathways across a range of tissue sets under different nutritional conditions 

plays a crucial first step in better characterising the role of these pathways in the ageing process. 

 

The effects of diet on age-related end points were also studied. Here, hepatic telomere length was 

shown to be significantly influenced by dietary intake, with diets high in carbohydrates on a low P:C 

background being the most significant factor correlating with longer telomere lengths. The striking 

similarities between the response surfaces of telomere length and median lifespan is perhaps one of 

the finest results discovered in this thesis, with patterns of telomere length almost exactly mirroring 

median lifespan in the same cohort of mice. These results are consistent with the concept that long 
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telomere length is associated with longer lifespan, which has been reported both in aged mice (Vera et 

al. 2012; Cherif et al. 2003; Ludlow et al. 2012) and humans (Mons et al. 2017; Cawthon et al. 2003). 

Since telomere length was shown to be sensitive to nutrition, further investigation of telomere length 

across various tissue types could provide important evidence supporting its use as a biomarker of 

ageing. Mitochondrial number and function were also investigated, and it was found that LPHC diets, 

which produced the greatest lifespan extension in the same cohort of mice, were correlated with 

increased mitochondrial activity, but a lower mitochondrial number. Mitochondrial function was also 

correlated with changes to gene expression of IGF-1, AMPK and SIRT3. These findings suggest that 

mitochondrial function is significantly influenced by diet, with nutrient sensing pathways playing key 

roles in the regulatory process. Finally, inflammatory phenotypes that were seen in the long-term 

cohort were investigated in a second cohort of mice, to see if these changes could be replicated in 

short-term studies. Here, it was shown that HPLC diets in ad libitum-fed animals were correlated with 

hepatic inflammation, and LPHC diets correlated with hepatic fat deposition. Manipulation of 

macronutrient ratios did not provide additional benefit to 40% CR in the short-term, implying that a 

combination of caloric restriction, and specific macronutrient restriction are important in healthy 

ageing of the liver.  

 

This body of work therefore shows that nutrient sensing pathways, key modulators of cellular 

function, display differential activation patterns as a result of varying dietary macronutrient intake. In 

particular, protein intake was seen to be a key regulator of nutrient sensing pathway regulation and 

downstream effects on age-related end points. These results, when correlated with lifespan and health 

data in the same cohort of mice, show that modulation of nutrient sensing pathways is a key 

mechanism mediating the effects of dietary restriction on ageing. This study therefore represents an 

important step in understanding the mechanisms by which macronutrient intake influences the ageing 

process, and provides support for the role of nutrition in promoting healthy ageing in humans. 
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