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Abstract

Broccoli (Brassica olerecea L. ssp. italica cv. Marathon) seedlings are a rich source 

of secondary metabolites including glucosinolates such as 4-methylsulfinylbutyl 

glucosinolate (glucoraphanin), the precursor of the chemo-protective isothiocyanate, 

sulforaphane. The aim of this thesis is to investigate the levels of glucosinolate in root 

and aerial tissues of broccoli following Plasmodiophora brassicae infection and 

potassium phosphonate and Bion (acibenzolar) treatment under glasshouse condition.

Three inoculation techniques of P. brassicae in broccoli seedling were evaluated 

under glasshouse condition. Combination of spore extraction injected into the root 

zone and infected gall slurry amended in potting mix exhibited faster and effective 

disease development than any of the single inoculation method.

Field infections of clubroot changed glucosinolate profiles in Brassica rapa 

ssp.chinensis cv. pak choy. Aliphatic glucosinolate levels were significantly lower in 

leaf and stem tissues of diseased plants, while indole glucosinolate levels were nearly 

three times higher in infected root tissues.

In the glasshouse trial, the clubroot pathogen Plasmodiophora brassicae affected 

glucosinolate levels in both root and aerial tissues during primary, secondary and 

mature gall formation. Total aliphatic glucosinolate levels (glucoiberin, progoitrin, 

glucoraphanin, gluconapin) remained unchanged in aerial tissues but significantly 

increased (1.5 times) in root tissues during symptom development (28 days post 

inoculation). Among aliphatic glucosinolates, glucoraphanin significantly (P<0.05) 

increased after 28 days in root tissues and 14 days in aerial tissues. Progoitrin
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production also increased both in root and aerial tissues after 28 and 14 days 

respectively, compared to healthy plants.

Total indole glucosinolates (4-hydroxy glucobrassicin, glucobrassicin and 

neoglucobrassicin) in root tissues increased 2.5 fold during symptom development to 

mature gall formation stage (21 to 42 days) and also significantly increased (P<0.05) 

in aerial tissues (1.25 to 2 fold) between primary infection and gall formation. Among 

indole glucosinolates, glucobrassicin in root tissues increased 8 times during symptom 

development.

Glucosinolate levels and clubroot disease severity were affected by foliar application 

of potassium phosphonate or Bion. Aliphatic glucosinolate levels in root tissues 

remained unchanged until 42 days following chemical treatments in both inoculated 

and uninoculated plants. Combined chemical treatment with phosphonate plus Bion 

significantly suppressed (PcO.Ol) aliphatic glucosinolate levels in uninoculated 

plants, however it significantly increased levels in inoculated plants. Indole 

glucosinolate levels in inoculated root tissues were lower in phosphonate plus Bion 

treated plants. Bion, or combinations of phosphonate plus Bion, did not affect indole 

glucosinolate levels, but phosphonate alone significantly (PcO.OOl) increased indole 

glucosinolate levels in root tissues in uninoculated plants. Aliphatic and indole 

glucosinolate levels in aerial tissues was lower following chemical treatment in both 

inoculated or uninoculated plants. Only neoglucobrassicin significantly (PcO.OOl) 

increased in inoculated plants.
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The effects of clubroot on glucosinolate levels in both field and glasshouse grown brassica showed similar patterns.
Phosphonate significantly suppressed gall formation (46%) and fresh gall weight (70%) followed by Bion compared to inoculated control.
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Chapter 1

Review of Literature

1.1 Introduction

The Brassicaceae family includes vegetables such as broccoli, cabbage, cauliflower, 

collards, kale, turnip greens and leaf rape. They are commonly grown and consumed 

worldwide. Glucosinolates are the major class of secondary metabolites found in 

brassica crops.

The first observations on the unique properties of glucosinolates were recorded at the 

beginning of the 17th Century as a result of the study on the chemical origin of the 

sharp taste of mustard seeds (Fahey et al. 2001). Glucosinolates known as Sinigrin (2- 

propenyl) and Sinalbin (4-hydroxybenzyl) were isolated early in the 1830s from black 

(Brassica nigra) and white (Sinapis alba) mustard seeds, respectively. In 1956, 

Ettlinger and Lunden (1956) proposed the correct structure of glucosinolates and they 

described the first chemical glucosinolate synthesis (Fahey et al. 2001).

Different epidemiological studies have indicated that diet and cancers are closely 

interlinked and natural phytochemicals such as glucosinolates have anticarcinogenic 

properties (Talalay and Fahey 2001; Anilakumar et al. 2006). Results have 

consistently shown that the chemo-protective agents derived from brassicas have an 

influence on carcinogenesis during the initiation and promotion phases of cancer 

development. Reports from clinical trials support this notion (Smith et al. 2005; 

Famham et al. 2004; Rosa et al. 1997). Epidemiological data show that a diet rich in 

brassica vegetables can reduce the risk of a number of cancers and the risk can be 

significantly reduced by an intake of as little as 10 g per day (Kohlmeier and Su 1997;



Wattenberg 1993; Graham 1983). Isothiocyanates are able to inhibit the growth of 

cancer (Munday and Munday 2004).

Recent studies have shown broccoli sprouts to be the best source of glucosinolates, 

particularly glucoraphanin (4-methylsulfinylbutyl) the precursor of sulforaphane, and 

one of the most potent naturally occurring inducers of detoxification enzymes, Phase 

II enzymes (Zang and Talalay 1994; Hecht 2000; Fahey et al. 2002a; Anilakumar et 

al. 2006).

Glucosinolates are phytochemicals that break down upon tissue disruption and react 

with an enzyme called myrosinase to produce isothiocyanates. Tissue disruption can 

be caused by environmental factors, insect invasion or disease.

Glucosinolate levels in brassica are affected by many factors. Factors that may 

contribute to the quality and quantity of glucosinolates include soil type, fertilizer 

application, plant spacing, and date of harvest (Rosa et al. 1996; Griffiths et al 1991; 

Josefsson, 1970). The level of glucosinolates and their corresponding isothiocyanates 

vary within plants due to external environment, including light intensity, temperature, 

water stress and micro-organism interference such as disease (Bouchereau et al. 1996; 

Rosa and Rodrigues 1999a). Levels and types of glucosinolates also vary between 

species and cultivars and between plant tissues. Seeds have the highest levels of 

glucosinolates in nearly all plants observed, followed by leaves and shoots (Sexton et 

al. 1999). Glucosinolates and their breakdown products are thought to play a role in 

disease resistance against insect and fungal pathogens and in host pathogen 

recognition (Glen et al. 1990).
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The following review aims to introduce the important role of glucosinolates during 

disease development, focusing on clubroot of broccoli and Chinese cabbage. Different 

management options for clubroot disease are discussed. This review also includes the 

different HPLC methods of measuring and extraction procedure of glucosinolates. I 

also review the significance of glucosinolates as bioactive compounds for human 

nutrition and health and examine the influence of environmental conditions, including 

biotic stress imposed by the clubroot pathogen Plasmodiophora brassicae on 

glucosinolate levels in broccoli seedlings. This review also focuses on glucosinolate 

biosynthesis and highlights recent advances made in understanding glucosinolate 

pathways.

1.2 The Origin, Distribution and Classification of Cultivated Broccoli

Broccoli has gained increasing importance for its potential health benefits. Although it 

does not constitute a significant portion of most people's diets worldwide, broccoli 

consumption increased by nearly 34 percent between 1990 and 1998, and the 

production of crucifers is in the top three vegetables after potato and tomato (FAO 

2006).

The botanical family of broccoli is the Brassicaceae, also known as the Mustard 

family. The Brassicaceae is a large family comprised of approximately 3,000 

described species apportioned among 350-380 genera. The precise number of genera 

varies depending on the authority (Keil & Walters 1988; Heywood 1978). For 

example, the scientific name for broccoli, Brassica oleracea (L.), is also shared by 

cabbage, Chinese cabbage, cauliflower, collards, Brussels sprouts, kale, kohlrabi, and 

tronchuda kale. Despite the fact that all of the aforementioned varieties are similar to 

one another and to broccoli, and are therefore referred to as B. oleracea, they are
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nevertheless separate entities. Most authorities today consider there are two major 

varieties of broccoli, B. oleracea (L.) var. botrytis or cauliflower broccoli and B. 

oleracea (L) var. italica or sprouting broccoli (Keil & Walters 1988; Heywood 1978; 

Terrell 1977; Harlan 1975) (Figure 1.1).

Crucifer vegetables include broccoli, cabbage, Brussels sprouts, cauliflower and kale, 

which evolved from the wild ancestral cabbage nearly 3000 years ago (Phillips and 

Rix 1993). Broccoli was introduced into England in the early 16th Century where it 

was known as “Italian asparagus”. Members of this family are found in most parts of 

the world but are mainly concentrated in the north temperate region, in the countries 

surrounding the Mediterranean basin and in south-western and central Asia.

As far as the two broccoli varieties are concerned, the cauliflower broccoli (var. 

botrytis) is more widely grown in Europe than else where. It is a hardier variety than 

sprouting broccoli and is grown to be harvested in the winter and spring. In the U.S.A, 

and some of Asian countries sprouting broccoli (var. italica) is more common and is 

planted as a summer annual (Schery 1972). Siberian broccoli, a small, hardy, purple 

member of this family was first planted at Norfolk Island, Australia in 1788. 

Throughout the 19th century, purple and green varieties were available in Australia 

but broccoli was not as popular as ordinary cabbage but its demand is increasing day 

by day (Anonymous 2009b). Currently, brocolli is being cultivated all over Australian 

territories and major growing areas are shown in Figure 1.2. The primary use of 

broccoli, both modem and ancient, is as a source of food. The part of the broccoli 

plant consumed is the fleshy-stemmed flowering head (Schery 1972).
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Cultivation of a cabbage may have occurred as early as 8,000 years ago along the 

Northern European coast. The wild ancestral cabbage was later introduced into the 

Mediterranean, Eastern Europe and even into the Near East and Orient (Heywood 

1978; Schery 1972). Theophrastus (370-285 B.C.) indicated that several different 

coles were already used in Greece, (Snogerup 1980). The Romans Plinius (23-79 

A.D.) and Cato (234-149 B.C.) also mentioned the cultivation of a number of 

different forms of coles, primarily cabbages and kales (Snogerup 1980). Indeed, it is 

more than likely that "The first selection of sprouting broccoli was probably made in 

Greece and Italy in the pre-Christian era" (Heywood 1978).

The frequency of hybridization and outcrossing is greatly enhanced by a high degree 

of self-incompatibility among the brassicas. In light of these considerations, it is not 

surprising to find so many different varieties among the brassicas and the B. oleracea 

group in particular. In fact, the close proximity of various cultivars of B. oleracea 

with their wild relatives will more than likely result in further hybridization (Snogerup 

1980). The taxonomy of common cruciferous/brassica vegetables are shown in Table 

1 . 1 .

Figure 1.1: Two heads of common broccoli variety (Brassica oleracea var. italica
group CV Marathon)
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Figure 1.2 Major broccoli growing areas in Australia

Table 1.1: Worldwide cultivated Brassica varieties and cultivar groups

C om m on nam e G enus Specific E pithet C ultivar G roup
k a le Brassica olerácea A c e p h a la  G ro u p
co l la rd s Brassica olerácea A c e p h a la  G ro u p
C h in ese  b ro c c o l i  (g a i la a n ) Brassica olerácea A lb o g la b r a  G ro u p
c a b b a g e Brassica olerácea C a p ita ta  G ro u p
b ru s s e ts  s p ro u t Brassica olerácea G e m m ife r a  G ro u p
k o h lra b i Brassica olerácea G o n g y lo d e s  G ro u p
broccoli B r a s s ic a o le r á c e a Italica G roup
b ro c c o f lo w e r  nn Brassica olerácea I ta lic a  G ro u p  x  B o try t is  G ro u p

b ro c c o l i  ro m a n e s c o Brassica olerácea B o try t is  G ro u p  /  I ta lic a  G ro u p
c a u l i f lo w e r Brassica olerácea B o try t is  G ro u p
w ild  b ro c c o li Brassica olerácea O le ra c e a  G ro u p
B o k  c h o y Brassica rapa cinensis
m iz u n a Brassica rapa nipposinica
b ro c c o li  r a b e Brassica rapa parachinensis
f lo w e r in g  c a b b a g e Brassica rapa parachinensis
C h in ese  c a b b a g e , n a p a  c a b b a g e Brassica rapa pekinensis
tu r n ip  ro o t;  g re e n s Brassica rapa rapifera
ru ta b a g a Brassica napus napobrassica
S ib erian  k a le Brassica napus pabularia
c a n o la /r a p e  s e e d s ; g re e n s Brassica napus oleifera
w ra p p e d  h e a r t  m u s ta rd  c a b b a g e Brassica júncea rugosa
m u s ta rd  s e e d s , b ro w n ; g re e n s Brassica jú n cea
m u s ta rd  s e e d s , w h ite Brassica hirta
m u s ta rd  se e d s , b la c k Brassica nigra
ta tso i Brassica rosularis
e th io p ia n  m u s ta rd Brassica carinata
ra d ish Raphanus sativus
d a ik o n Raphanus sativus longipinnatus
h o rs e ra d is h A nnoracia rusticana
R e a l w a sa b i (n o t h o rs e ra d is h ) W asabia jap ó n ica
ro c k e t  (a ru g u la ) Eruca vesicaria
w a te rc re s s N asturtium officinale

Citation: Wood R, 1999; Zohary and Hopf, 2000; Dixon GR (2007) and web site visited on 12-12-08 
http://encyclopedia.thefreedictionary.com/Cruciferous-i-vegetables.
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1.3. Economie Importance of Broccoli in Australia

Horticulture in Australia is a $7 billion industry (Anonymous 2008a). It is extremely 

diverse and comprises fruit, vegetables, nuts, nursery, extractive crops, cut flowers 

and turf. Total horticultural exports in 2006/07 were $763 million. Total horticulture 

exports (fresh fruit, vegetable, nuts and plants including flowers) were $751 million 

(12 months to May 2008). It is the fastest growing industry in agriculture with 17,273 

individual enterprises. Horticulture employs over 100,000 people; this translates to 

about 20 per cent of total employment in agriculture (Anonymous 2008b).

In Australia, vegetable crops account for 36% of horticultural production of which 

13% are exported. Broccoli and cauliflower are among the 9 highest annual producing 

crops. Broccoli was the seventh most valuable crop in 2006-07, with 40,032 tonnes 

produced valued at $87.5 million. Victoria is the largest producer (42%) followed by 

Queensland (25%) and New South Wales accounts for only 9%. Severe competition 

from China is reducing Australia’s share of exports amongst Asian economies. 

Partially offsetting this development is the fact that new markets in the Middle East 

are being developed (Anonymous 2008c).

1.4 Glucosinolates

The glucosinolates are a group of over 130 nitrogen and sulphur-containing natural 

products derived from glucose and an amino acid. They are found almost exclusively 

in plants of the Brassicaceae and other related families of the order Capparales 

(Brown and Morra, 1997; Fahey et al. 2001). Every glucosinolate contains a central 

carbon atom which is bound via a sulphur atom to the thioglucose group (making a 

sulfated ketoxime) and via a nitrogen atom to a sulphate group (Figure 1.3). In 

addition, the central carbon is bound to a side group, different glucosinolates have
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different side groups, and it is variation in the side group that is responsible for the 

variation in the biological activities of these plant compounds (Fenwick et al. 1983a; 

Chew 1988a; Rask et al. 2000; Lambrix et al. 2001).

About 130 different glucosinolates are known to occur naturally in plants. 

Glucosinolates can be classified by their precursor amino acid and the types of 

modification to the R group. So called aliphatic glucosinolates derived from mainly 

methionine, but also alanine and leucine. Most glucosinolates are actually derived 

from chain elongated homologues of these amino acids, e.g. glucoraphanin is derived 

from dihomomethionine, which is methionine chain elongated twice (Brown et al. 

2003). Variations of glucosinolate levels among the Brassica plants observed in 

previous investigations (Kiddle et al. 2001; Moreno et al. 2006) are listed in Table 

1.2.

The Brassicas contain the enzyme myrosinase which, in the presence of water, cleaves 

off the glucose group from a glucosinolate molecule. The remaining molecule then 

quickly converts to an isothiocyanate, a nitrile, or a thiocyanate. These are the active 

substances that serve as defence for the plant (Glen et al. 1990; Doughty et al. 1991). 

The standard product of the reaction is the isothiocyanate (mustard oil), the other two 

products mainly occur in the presence of specialised plant proteins that alter the 

outcome of the reaction (Burow et al. 2007). To prevent damage to the plant itself, the 

myrosinase and glucosinolates are stored in separate compartments of the cell and 

come together following physical injury or cellular disruption.

Because the use of glucosinolate containing crops as a primary food source for 

animals was shown to have toxic effects, food crops have been developed that contain
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2very low amounts of glucosinolates (e.g. canola). On the other hand, plants 

producing large amounts of glucosinolates are also desirable, because substances 

derived from glucosinolates can serve as biological pesticides (Nicholls et al. 1999) 

(effective in soil fumigation) and are under investigation in the prevention of cancer 

with sulphoraphane in broccoli being the best known example (Hecht 2000).

Glucosinolates are well known for their toxic effects at high doses (mainly as 

goitrogens) in both humans and animals. Their hydrolytic and metabolic products act 

as chemo-protective agents against chemically-induced carcinogens and have been 

shown to block the initiation of tumors in a variety of rodent tissues eg. liver, colon, 

mammary gland, pancreas, etc (Verhoeven et al. 1997; Talaly and Fahey 2001; Fahey 

2002a; Conaway et al. 2002).

Figure 1.3: The common structure of glucosinolate and some specific glucosinolates 
showing typical variation in the structure of the side chain.
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Table 1.2. Some of the brassica plants and tissues source of specific glucosinolate 
group

Brassica species Plant Organ Major Glucosinolate Class

A ra b is  h irsu ta
Hairy rock cress, young 
leaves Aromatic

B arbarea  p ra eco x Land cress, young leaves Aromatic

B arbarea  vu lgaris
Bitter winter cress, young 
leaves Aromatic

B rassica  cam pestris Chinese cabbage, seeds Indolyl

B. ju n ce a
Brown mustard young 
leaves Alkenyl

B. napus Oilseed rape young leaves Mixed

B. nigra
Black mustard young 
leaves Alkenyl

B. o lerácea  var. botrytis  
subvar. C ym osa

Calabrese broccoli florets Mixed

B. o lerácea  var. Itá lica Broccoli head Mixed

C onringia  o rien ta lis
Hares ear cress young 
leaves Alkyl

Isa tis tinctoria Woad young leaves Indolyl

L ep id ium  sa tivum
Garden cress young leaves 
and roots Aromatic

N asturtium  o ffic ina lis Watercress young leaves Mixed
R eseda  lu teola Dyers rocket young leaves Mixed

R eseda  alba
White mignonette young 
leaves Alkyl

Sibara  virg in ica Young leaves Mixed
Tropaeo lum  m ajus Nasturtium young leaves Aromatic
Extracted and modified from Fahey et al. 2001; Kiddle et al. 2001; Fahey 2002b; and Moreno et al. 
2006.

1.4.1 Biosynthesis of Glucosinolate

The formation of glucosinolates can be divided into three separate phases. First, 

certain aliphatic and aromatic amino acids are elongated by inserting methylene 

groups into their side chains (Figure 1.4). The three principal steps are: (1) 

condensation with acetyl-CoA, (2) isomerisation, and (3) oxidation-decarboxylation 

(Halkier and Gershenzon 2006).

Second, the amino acid moiety itself, whether elongated or not, is metabolically 

reconfigured to give the core structure of glucosinolates (Figure 1.5). CYP79 enzymes

10



catalysing the conversion of amino acids to aldoximes are the only side-chain-specific 

step in the pathway (Halkier and Gershenzon 2006). The products from the CYP83s 

are too reactive to be isolated, but are proposed to be either aci-nitro compounds or 

their dehydrated analogs, nitrile oxides. The sulphur-donating enzyme is the only 

enzyme that remains to be identified, and is proposed to be a glutathione-S- 

transferase-like enzyme that uses cysteine as a substrate (Halkier and Gershenzon 

2006).

Third, the initially formed glucosinolates are modified by various secondary 

transformations (Figure 1.6). AOP2 and AOP3 indicate the 2-oxoacid-dependent 

dioxygenases catalysing these reaction types in Arabidopsis. For each category of 

glucosinolate, a different range of chain lengths is known to occur naturally (Halkier 

and Gershenzon 2006).

F o rm a tio n  of g lu c o s in o la te  
c o re  s tru c tu re

R
©

Amino acid Elongated amino acid

H 3C ------
o  CO

<

2-Malate derivative 3-Malate derivative

H alkier B A , G ersh en zon  J. 2 0 0 6 . 
A nnu. Rev. Plant B io l. 5 7 :3 0 3 —33

Figure 1.4: Glucosinolate biosynthesis and amino acid chain-elongation cycle. 
Abbreviations: R, variable side chain.
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Annu. Rev. Plant B iol. 57:303—33

Figure 1.5: Biosynthesis of the glucosinolate core structure. Abbreviations; R, variable side 
chain; GST, glutathione-S-transferase; S-GT, S-glucosyltransferase; ST, sulphotransferase and 
C-S lyase.

M ethytth ioalkyl N ©
glucosino late OSO^

M ethylsulfonylalkyl
glucosino late

Halkier BA, Gershenzon J. 2006. 
Annu. Rev. Plant Biol. 57:303—33

Figure 1.6: Some common oxidative secondary transformations of methionine-derived 
glucosinolates. For methylthioalkyl and methylsulphonylalkyl, n = 1-8; for
methylsulphinylalkyl, n = 1-9; for alkenyl, n = 1-5; for hydroxyalkyl, n = 0-2. 
Abbreviations-AOP2 and AOP3: 2 & 3-oxoacid-dependent dioxygenases catalyzing agent.
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1.4.2 Hydrolysis of Glucosinolate

Glucosinolates are degraded upon plant damage to a variety of hydrolysed products 

responsible for most of the biological activity. The process begins with myrosinase- 

catalysed hydrolysis of the thioglucoside linkage, leading to the formation of glucose 

and an unstable aglycone (Bones and Rossiter 1996; Rask et al. 2000). Depending on 

the structure of the side chain and the presence of additional proteins and co-factors, 

the aglycone then rearranges to form different products, including isothiocyanates, 

oxazolidine-2-thiones, nitriles, epithionitriles, and thiocyanates (Figure 1.7 ).

The most common glucosinolate hydrolysis products in many plant species are 

isothiocyanates, which are formed from the aglycone by a Lossen rearrangement 

involving the migration of the side chain from the oxime carbon to the adjacent 

nitrogen (Halkier and Gershenzon 2006). When the glucosinolate side chain bears a 

hydroxyl group at C-2, the isothiocyanates formed are unstable and cyclize to 

oxazolidine-2-thiones, a class of substances known to cause goitre.

In other plants, a major percentage of glucosinolate hydrolysis products are nitriles 

(Cole 1976; Lambrix et al. 2001). The formation of nitriles in vitro is favoured at a 

pH of less than 3 or in the presence of the Fe~+ ion (Gil and Macleod 1980; Galletti et 

al. 2001). However, protein factors may be involved in nitrile formation in vivo, such 

as the epithiospecifier protein (ESP) (Tookey 1973; MacLeod and Rossiter 1985; 

Bemardi et al. 2000; Foo et al. 2000). When the glucosinolate side chain has a 

terminal double bond, ESP promotes the reaction of the sulphur atom of the 

thioglucoside linkage with the double bond to form a thirane ring. The process occurs 

only in the presence of myrosinase. ESP is not known to have any catalytic abilities
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by itself. The recent isolation of an Arabidopsis gene encoding an ESP showed that 

this protein not only promotes the formation of epithionitriles, but also the formation 

of simple nitriles from a large variety of glucosinolates (Lambrix et al. 2001).

Other hydrolysis products include thiocyanates, which are formed from only three 

glucosinolates: benzyl-, allyl-, and 4-methylsulphinylbutyl-glucosinolate (Figure 1.3), 

all of which form stable side-chain cations. Like nitrile formation, thiocyanate 

production is also associated with specific protein factors (Hasapis & Macleod 1982), 

but these have not yet been identified. The hydrolysis of indole glucosinolates is 

somewhat different from that of the other glucosinolate types, because the initially 

formed isothiocyanates are unstable at neutral or slightly acidic pH, and are converted 

to further metabolites, including indole-methanols, ascorbic acid conjugates, and 

oligomeric mixtures (Latxague et a/. 1991; Agerbirk et al. 1998; Buskov et al. 2000).

hH a lk ic r  B A .  G c rs h c n z o n  J . 2 006. 
A n n o  R ev. P lant B io l .  5 7 :3 0 3 -3 3

Figure 1.7: Glucosinolate hydrolysed product and unstable intermediates (within brackets). 
Abbreviations: ESP, epithiospecifier protein; R, variable side chain.
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1.4.3 Glucosinolate Content Variations among Plant Tissues

Glucosinolate content in plants is about 1% of dry weight in some tissues of Brassica 

vegetables (Rosa et al. 1997), although the content is highly variable (Famham et al. 

2004), and can approach 10% in the seeds of some plants, where glucosinolates may 

represent one-half of the sulphur content of the seeds (Josefsson 1970).

Distribution of the glucosinolates that have been examined varies among plant organs, 

with both content and diversity differences between roots, leaves, stems and seeds. 

For example, seeds or young sprouts of broccoli (Brassica oleracea var. italica) can 

contain 70-100 Dmol total glucosinolates / g FW, with <1% contributed by indole 

glucosinolates and the balance consisting almost entirely of the aliphatic 

glucosinolates, glucoraphanin, glucoerucin and glucoiberin (Fahey et al. 1997). Late 

vegetative to reproductive stage plants of the same cultivar typically may contain only 

about 1^4 Dmol of total glucosinolates/g FW, with aliphatic and indole glucosinolates 

present at roughly equivalent levels (Fahey et al. 1997; Fahey and Stephenson 1999).

Plant age is a major determinant of the qualitative and quantitative glucosinolate 

composition of plants. Environmental factors such as soil fertility (Booth and Walker 

1992; Fahey and Stephenson 1999), pathogen challenge (Butcher et al. 1974), 

wounding (Bodnaryk 1992) or plant growth regulators ( Bodnaryk 1994; Bodnaryk 

and Yoshihara 1995) also have significant effects on levels of specific glucosinolates 

in the growing plants and may affect distribution among plant organs. Variation of 

glucosinolates in different plant tissues has been summarised below (Table 1.4 & 1.5).
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Table 1.3. Glucosinolate variation within different plant species and tissues

Species Glucosinolate concentration in pmol per gram dry weight
Organ Seed Sprout Stem Root leaves Leaves Infloresence Siliques References
Age of plant 
(days)

matured matured matured 10
days

50-70
days

70 days

Common
name

Brassica
olerácea
botrytis

Var.
Cauliflower

3.22* Tian et al. 
2005

Brassica
olerácea

Var, Brussel
sprouts,
Gemmifera

9.40* Tian et al. 
2005

Brassica
olerácea
itálica

Broccoli 2.08* Tian et al. 
2005

Brassica
olerácea
itálica

Broccoli 4.02* Tian et al. 
2005

Brassica
olerácea
acephala

Ornamental 
kale, chidori 
white

9.07 Kushad et al. 
1999

Brassica
olerácea
acephala

Ornamental 
kale, Nagoya 
white

10.6 Kushad et al. 
1999

Brassica
olerácea
acephala

Ornamental 
cabbage, 
Tokyo white

11.53 Kushad et al. 
1999

Brassica
olerácea
acephala

Ornamental
cabbage, 
Tokyo Red

14.18 Kushad et al. 
1999

Brassica
napus

Ssp. Rape, 
Pabularia

19.85 Font et al. 
2005

Brassica 
campestris 
pekinensis 
var. Granat

ssp. Chinese 
cabbage

14.72 10.0 L u d w i g -  

M ü l l e r  et al. 
1997

Brassica
campestris
pekinensis
var.

ssp. Chinese
cabbage,
Granat

8.28 5.0 L u d w i g -  

M ü l l e r  et al. 
1997

Wasabi
japónica

Wasabi >150 9.1 Sexton et al. 
1999

Brassica
juncea

Indian
mustard

85 1.61 Sexton et al. 
1999

Brassica
napus

Canola 22 0.56 Sexton et al. 
1999

Arabidopsis 
thaliana Heyn

Thale Cress 63.4 18.6 17.9 7.4 30.2 15.4 Brown et al. 
2003

Brassica
olerácea

Broccoli,
italica

12.8 (edible 
portion)

Kushad et al. 
1999

* pmol per g fresh weight
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Table 1.4. Mean individual glucosinolates (expressed in pmol per gram dry mass) 
among edible tissues of Brassica oleracea

Glucosinolates B. oleracea varieties
Group Form Broccoli

(Marathon)
Brussels
sprouts

Cabbage Cauliflo
wer

Kale

Aliphatic Sinigrin 0.1 8.9 7.8 9.3 10.4
Gluconapin 1.0 6.9 0.7 0.3 1.0
Progoitrin 1.0 2.4 0.2 0.3 0.6
Glucoiberin 0.1 0.0 0.0 0.0 0.0
Glucoraphanin 7.1 1.0 0.1 0.5 1.0

Indole Glucobrassicin 1.1 3.2 0.9 1.3 1.2
40H glucobrassicin 0.2 0.6 0.3 1.6 0.1
4 CĤ OH glucobrassicin 0.4 0.4 0.3 1.0 0.2
Neoglucobrassicin 0.2 0.2 0.2 0.2 0.1

Extracted from Faulkner et al. 1998; Kushad et al. 1999.

1.4.4 Factors Affecting the Level of Glucosinolates in Plants

Variation in the amount of glucosinolates has been attributed to genetic and 

environmental (biotic and abiotic) factors. Glucosinolates contain a significant 

proportion of sulphur and nitrogen. Therefore it might be expected that fertilisers will 

influence the concentrations of glucosinolates in Brassica crops. It has been suggested 

that under conditions of sulphur deficiency, sulphur bound in glucosinolates of 

Brassica species can be remobilised by enzymatic cleavage with myrosinase (Schnug 

et al. 1993). The mechanism for this is thought to involve the control of myrosinase 

activity by the ascorbate/glutathione cycle. Studies have shown a close relationship 

between sulphur status, glucosinolate concentrations and glutathione (Schnug et al. 

1995), although inter-dependencies with ascorbate are less apparent.

Glucosinolate profiles of four oilseed rape cultivars (Bienvenue, Ariana, Cobra and 

Capricorn) have been determined at vegetative growth stages and showed substantial 

differences in their profiles (Fieldsend and Milford 1994). Changes in the profiles of 

glucosinolates throughout the plant’s development are thought to have implications 

for pests and diseases. A decreasing sulphur supply to the plants results in a decrease
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in free sulphate and glucosinolate concentrations and an increase in myrosinase 

activity (Underhill, 1980; Schnug 1990). This implies that the increase in myrosinase 

activity during sulphur stress could have the function of a remobilisation of sulphate 

sulphur from glucosinolates, because sulphate and isothiocyanates can be utilised as 

sulphur sources in the primary metabolism of the plants (Machev and Schraudolf 

1978).

Aires et al. (2006) investigated the effect of fertilisation on glucosinolate levels in 

broccoli (Brassica oleracea L. var. italica cv. Marathon) roots and leaves. Nitrogen 

was tested at 0, 45.5, 91.0 mg L 1 and sulphur at 0, 14.6 and 29.2 mg L '. The results 

showed that total glucosinolates in the aerial part were significantly higher (P < 

0.001) than in the roots. The major glucosinolates in the aerial part were 4- 

methylsulfinylbutyl (glucoraphanin) and 3-methylsulphinylpropyl (Glucoiberin) 

whereas in the roots they were 2-phenylethyl (gluconasturtiin) and 4-methylthiobutyl 

(glucoerucin). Fertilisation of broccoli sprouts had a significant (P < 0.001) 

detrimental effect on the levels of aliphatic glucosinolates whereas the opposite was 

noted for indole and aromatic glucosinolates.

Jones et al. (2007) showed that nitrogen applications over 30 kg/ha caused a decrease 

in the content of glucoraphanin (18-34%), progoitrin content was not affected while 

glucobrassicin increased by up to 44% with nitrogen application >30 kg/ha. Sulphur 

applications of 50 or lOOkg/ha had no significant effect on any tested glucosinolates.

Numerous comparative studies of glucosinolate profiles indicate significant 

differences among cruciferous crops (VanEtten et al. 1976; Carlson et al. 1987a; 

Kushad et al. 1999 Ciska et al. 2000). Apart from glucosinolates profile, large
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differences in the levels of both aliphatic and indole glucosinolate have been 

observed in brassica plants, presumably due to the use of different varieties, analytical 

methods and growing conditions (Cartea et al. 2008).

It is clear that the glucosinolates/myrosinase system is dynamic, responding to

environmental changes and to plant damages. Pretreatment with elicitor compounds,

which stimulate glucosinolate accumulation (Kiddle et al. 1994, Doughty et al. 1995),

can enhance resistance of the plant to subsequent infection by pathogens (Doughty et

a l 1991). The few reports of glucosinolates accumulation patterns in Brassica crops

following Plasmodiophora brassicae infection are summarised below (Table 1.5).

Table 1.5: Glucosinolate content (pmol /g DW) in Brassicas following 
Plasmodiophora brassicae infection

P lant v a r ie tie s B e n z y l  g lu c o s in o la t e s

R o o t (c o n tro l) R o o t ( in fe c te d ) O ld
le a v e s

(c o n tro l)

O ld
le a v e s

(I n fe c te d )

Y o u n g
le a v e s

(C o n tro l)

Y o u n g
le a v e s

( in fe c te d )

R e fe r e n c e s

T r o p a e o lu m  m a ju s 6 .8 5 9 .7 6  n m o l 6 .3 3 0 .9 5 9 5 .3 6 13.41 L u d w ig -  
M ü lle r  e t  
a l. 1 9 9 9 b

C o r ic a  p a p a y a 7 .3 6 1 1 .8 4 1 .9 3 5 2 .0 7 4 5 .6 3 4 .0 0 L u d w ig -  
M ü ller  e t  
a l. 1 9 9 9 b

R e s e d a  a lb a 6 .5 9
(p ro g o itr in )

5 5 3
(g lu c o b r a s s ic in )

3 .1 9 9
(n e o g lu c o b r a s s ic in )

4 .0 1
(p ro g o itr in )

0 .3 9 8
(g lu c o b r a s s ic in )

3 .0 2
(n e o g lu c o b r a s s ic in )

L u d w ig -  
M ü ller  e t  

a l. 1 9 9 9 b

B r a s s ic a  c a m p e s tr is  
s sp  p e k in e n s is  (Y u k i,  
Parkin  -  r es ista n t &  

G ranat, O sir is  
s u sc e p tib le  var .)

T ota l
G lu c o s in o la te s -

9 .3 1
( V a r .Y u k i)

T o ta l
G lu c o s in o la te s -

1 4 .7 2
(V a r .G ranat)

L u d w ig -  
M ü ller  e t  
a l. 1 9 9 7

8 .2 8
(V a r .P a rk in )

3 0 .3 1
( V a r .O s ir is )

- - - -

1.4.5 Microbial Interaction and Glucosinolates and Isothiocyanates

The antibacterial activities of isothiocyanates (Kjaer and Conti 1954; Virtanen 1962; 

Wagner et al 1965; Johns et al 1982; Uda et al. 1993; Brabban and Edwards 1995; 

Detaquis and Mazza 1995; Hashem and Saleh 1999; Lin et al. 2000) and their
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antifungal activity ( Drobinca et al. 1967; Kojima and Ogawa 1971; Mari et al. 1993; 

Detaquis and Mazza 1995; Mayton et al. 1996; Manici et al. 1997; Hashem and Saleh 

1999) have been recognised for many decades. Activity against a range of soil-borne 

fungal and bacterial plant pathogens is profound, and has been extensively 

characterised (Brown and Morra 1997; Rosa and Rodrigues 1999b; Chen et al. 2000).

The activity of isothiocyanates such as sulphoraphane against numerous human 

pathogens (e.g. Escherichia coli, Salmonella typhimurium, Candida sp.) could even 

contribute to the medicinal properties ascribed to cruciferous vegetables, such as 

cabbage, and mustard, which have been used as wound poultices and antitumor agents 

for centuries (Hartwell 1982; Gordon and Newman 2005).

Glucosinolates are widely recognized as defensive compounds against generalist 

herbivores and are likely to be involved in host plant recognition by specialist 

predators, thus acting both as an insecticide and as an insect feeding attractant (Louda 

and Mole 1991; Rask et al. 2000).

1.4.6 Broccoli, Glucosinolate and Cancer Chemo-protection

Broccoli is considered a good source of nutrients because it is rich in vitamin C, 

carotenoids, fibre, calcium, and folate. It is also the source of many phyto-chemicals 

that may have anti-cancer properties (Verhoeven et al. 1997; Shapiro et al. 1998; 

Conaway et al. 2002). A glucosinolate derivative identified in broccoli appears to be 

more effective than modern antibiotics against the bacteria which cause peptic ulcers 

(Traka and Mithen 2009). Moreover, tests in mice show that the compound offers 

tremendous protection against stomach cancer - the second most common form of 

cancer in the world (Anonymous 2002). For example, broccoli contains several 

isothiocyanates, including sulphoraphane and indole-3-carbinol (I3C), which have
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been considered as possible anti-cancer agents in recent years (Basten et al. 2000). 

Early studies have shown these substances may act as antioxidants and may boost 

detoxifying enzymes in the body. Some studies have also suggested they may alter 

body oestrogen levels, which might affect breast cancer risk (Traka and Mithen 2009).

Studies demonstrating that broccoli consumption or supplementation reduces the risk 

of cancer are frequent in the scientific literature, with multiple references to different 

types of cancers, and the complexity affecting the study of gene-diet interactions and 

cancer risk in humans (Finley et al. 2000; Lampe and Peterson 2002; Ambrosone et 

al. 2004; Jansen, 2004; Walters 2004). Examples of the wide range of studied effects 

of dietary anticancer bioactives from broccoli include the antiproliferative effects of 

sulphoraphane in human breast cancer (Jackson and Singletary 2004; Brandt et al. 

2006; Rose et al. 2005) reduced risk of cancer via decreased damage to DNA (Gill et 

al. 2004; Wiseman et al. 2005), effects on the regulation of intestinal cell growth and 

death in colon cancer (Parnaud et al. 2004), the cancer-protective effect of high- 

selenium broccoli (Finley et al.2000) and the protective effect against prostatic 

tumours (Zhang et al. 1992; Giovannucci et al. 2003; Canene-Adams et al.2005a and 

2005b).

Bioactive isothiocyanates from broccoli suppress bladder carcinoma cells (Munday 

and Munday 2004 and Tang and Zang 2004), protect against cellular oxidative stress 

(Eberhardt et al. 2005) and lower serum cholesterol effects (Suido et al. 2003). 

Glucosinolates protect against cardiovascular disease (Sesso et al. 2003) and 

Helicobacter pylori infections (Galan et al. 2004). These studies demonstrate that 

incorporation of brassica glucosinolate through diet provides levels of glucosinolates

21



that the lower incidence of different types of cancer and diseases in individuals who 

regularly consume such vegetables.

Little is known about the direct effect of broccoli sprouts on human health, even 

though in vitro and in vivo data provide evidence that supports the belief that young 

cruciferous sprouts with their high concentrations of phytochemicals may be a potent 

source of protective chemicals against cancer (Gill et al. 2004). Broccoli sprouts are a 

rich source of glucosinolates and isothicyanate that induce Phase II detoxication 

enzymes, boost antioxidant status, and protect animals against chemically induced 

cancer (Munday and Munday 2004; Tang and Zang 2004).

There have been a large number of studies that have used animal models to show that 

glucosinolate breakdown products such as isothiocyanates inhibit chemically-induced 

carcinogenesis by up to 100%. The anticarcinogenic properties of broccoli depends 

both on the concentration of glucoraphanin and on the conversion of this compound 

into isothiocyanate on autolysis (Zang et al. 1992).

1.4.7 Toxic Effect of Glucosinolate

Glucosinolates have previously caused controversy because of their goitrogenic and 

growth retardation activities (Mawson et al. 2006). The glucosinolate breakdown 

product oxazolidine-2-thiones derived from progoitrin (Rosa et al. 1997) and 

generally found in several oil meals may induce morphological and histological 

abnormalities of internal organs in animals (Schöne et al. 1994). Increased thyroid 

weight in pigs and poultry, as well as depressed growth, goitres, poor egg production, 

and liver damage have also been identified (Tawfiq et al. 1994). Glucosinolates are
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well known for their toxic effects (mainly as goitrogens) in both humans and animals 

at high doses.

The potential negative effects of glucosinolates require a further examination, as this 

topic has been scarcely addressed in recent years. The anti nutritional nature of these 

compounds are reviewed by Fenwick et al. (1983a), Rosa et al. (1997), Griffiths et al. 

(1998) and Anilakumar et al. (2006).

1.5 Glucosinolate Extraction and Analytical Procedures

The abundance and structural variety of the glucosinolates and their breakdown 

products makes analysis very complicated (Mithen et al. 2000). Early identifications 

relied on paper or thin-layer chromatography of the glucosinolates or of their 

presumptive hydrolysis products (e.g. an investigation of the glucosinolates from the 

seeds of 151 different crucifers by Danielak and Borkowski 1969).

The analytical methods available have been extensively reviewed by McGregor et al. 

(1983) and Verkerk et al. (1998). The most extensively studied glucosinolates are the 

aliphatic, D-methylthioalkyl, aromatic and heterocyclic (e.g. indole) glucosinolates, 

found in the Brassica vegetables (Moreno et al. 2006). The largest single group (one- 

third of all glucosinolates) contain a sulphur atom in various states of oxidation. 

Another small group of benzyl glucosinolates have an additional sugar moiety, 

rhamnose or arabinose, in glycosidic linkage to the aromatic ring (Fahey et al. 2001; 

Fahey et al. 2002b and Rangkadilok et al. 2002).

Because glucosinolates coexist with myrosinase in the plant, fresh plant material 

processing in the presence of water (grinding, cutting) initiates a rapid hydrolysis of
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the parent compounds. Inhibition of myrosinase activity is essential for analysis of 

intact glucosinolates. Before disruption of the material, samples should be completely 

dried by freeze-drying or frozen in liquid nitrogen. The use of aqueous methanol for 

extraction in combination with high temperatures also inhibits myrosinase (Heaney 

and Fenwick 1993; Mithen et al. 2000).

West et al. (2002) reported a single column approach with reversed-phase liquid 

chromatograph separations using hydrophilic endcapped Ci8-bonded silica and a 

50 mM ammonium acetate-methanol gradient mobile phase to resolve both non-polar 

and polar glucosinolates present in isolates obtained, using boiling water extraction. 

This procedure is extremely useful and valuable to other researchers studying brassica 

glucosinolates as well.

To date, many plant glucosinolates have not been rigorously identified by modern 

analytical and spectroscopic methods such as HPLC, NMR, mass spectroscopy, near- 

infrared spectroscopy or supercritical fluid chromatography with light scattering 

detection (Fenwick et al. 1982; West et al. 2004; Font et al. 2005). There was, and 

still is, an extreme paucity of high purity chromatographic standard glucosinolates 

available to researchers.

One of the major problems in the analysis of glucosinolates has been the lack of 

suitable standards. The only commercially available pure (more than 99%) 

glucosinolates are benzylglucosinolate (glucotropaeolin) and 2-propenyl- 

glucosinolate (sinigrin). Sinigrin is not as ideal internal standard because of the 

presence of this compound in most Brassicaceae plants, but glucotropaeolin is not 

normally present in Brassica and has been used as internal standard (Brown et al. 

2003). Inconsistent measurement of glucosinolate among the investigations depends
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on numerous scientific analytical instruments used and different extraction 

procedures. The advantages and disadvantages of available methods were briefly 

summarised in Table 1.6.

Table 1.6: Advantages and disadvantages of some commonly used methods for the 
analysis of Glucosinolates and their breakdown products

Compound Method Advantage Disadvantage References

Total
glucosinol
ates

Palladium 
chloride and 
thymol assays

Provide only 
quantitative data 
for total 
glucosinolates

Characterization of 
glucosinolates is 
not possible

Heaney et al. 1988; 
Heaney and Fenwick 
1993; Kiddle et al. 2001; 
Gal an et al. 2004

Glucose- and 
sulphate- 
release enzyme 
assays

This is a rapid and 
simple method, 
efficient for 
measuring total 
glucosinolate 
contents. High 
skilled for 
operation is not 
required.

Method was not 
designed for 
measuring 
intact/individual 
glucosinolates, 
Myrosinase activity 
may interrupt the 
isolation of 
glucosinolates

Ettlinger and Lundeen 
1956b; Ettlinger and 
Lundeen 1957;Thies 
1976; Heaney et al.
1988; Daxenbichler et al. 
1991; Mithen et al. 2000; 
Kiddle et al. 2001

ETISA
Cost and time 
involvement are 
lower than HPLC 
system

The method tends 
to overestimate 
glucosinolates

van Doom et al. 1998; 
van Doom 1999; Mithen 
et al. 2000

Near infra-red
reflectance
(NIR)
spectroscopy; 
alkaline 
degradation 
and thioglucose 
detection

Cost and time are 
lower than HPLC 
and minimize 
repeated
measurement cost

Not designed for 
characterization of 
glucosinolates

Ettlinger and Lundeen 
1956b; Ettlinger and 
Lundeen 1957; Underhill 
and Kirkland 1971 ;
Thies 1976; Mithen et al. 
2000

High resolution
nuclear
magnetic
resonance
(NMR)
spectroscopy

Low time 
consuming and 
mostly accuracy in 
measurement

Costly and not 
possible to detect 
individual 
glucosinolates

Fenwick et al. 1982; 
Presterà et al. 1996; 
Zhang et al. 1996; Font et 
al. 2005; Kiddle et al. 
2001; West et al. 2004

Microchip 
Capillary 
Electrophorosis 
/CE (u-CE)

Single step 
procedures

Not widely used 
method, needs 
more
experimentation for 
more accuracy

Fouad et al. 2008.

Table Continued...
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Individual
intact
glucosinol
ates

Reverse phase 
HPLC

Potential for 
measuring intact 
glucosinolates; 
more accurate for 
determining 
individual 
glucosinolates, 
known as robust, 
powerful and 
selective method

Not cost effective, 
time consuming, 
needs comparing 
to standards of 
glucosinolates; 
results are variable 
within different 
HPLC set up

Underhill and Kirkland 
1971; Thies 1976; 
Heaney and Fenwick 
1993; Karcher and Rassi 
1999; Mithen et al. 2000

Thermospray 
LC with 
tandem MS; 
high
performance 
capillary 
electrophoresis; 
capillary G C - 
MS, GC-M S, 
G C -M S-M S

LC-MS, LC-MS- 
MS or capillary 
electrophoresis 
systems offer 
either intact or 
individual 
glucosinolates, the 
most accurate 
forms of
identification and
quantification
possible

This methods are 
high cost and 
multi-step 
procedures and 
high skill require

Karcher and Rassi 1999; 
Kiddle et al. 2001; Tian 
2005

Capillary zone 
electrophoresis 
(CZE) coupled 
to electrospray 
ionization-time 
of flight-mass 
spectrometry 
(ESI-TOF-MS)

Provide
identification of a 
broad series of 
glucosinolates, easy 
and rapid method 
for analysis of 
intact, non- 
desulfated 
glucosinolates

Very selective, 
time consuming 
and high cost 
involvement, not 
suitable for 
measuring total 
glucosinolates

Bringmann et al. 2005.

Desulpho-
glucosinol
ates

Reverse phase 
HPLC

Efficient for 
measuring 
individual 
glucosinolates

No suitable for 
measuring total 
glucosinolates, time 
consuming, multi- 
step procedures, 
subject to 
difficulties for 
effect of pH, and 
enzyme activity of 
desulphation 
products

Olsen and Sorensen 
1979; Helboe et a l  1980; 
Truscott et al. 1983; van 
Doom 1999 ; Mithen et 
al. 2000; Kiddle et al. 
2001; West étal. 2002; 
Vallejo et al. 2004

Degradatio 
n products

X-ray
fluorescence 
spectroscopy 
(XRF); GC or 
GC-M S; 
HPLC

Efficient for 
measuring 
hydrolysis product 
of Glucosinolates 
than intact 
glucosinolates, 
GC-MS may have 
more accurate 
identification & 
quantification of 
glucosinolates than 
GC alone.

GC based
technique generally 
unsuitable for 
accurate 
identification of 
any form of 
glucosinolates

Daxenbichler et al. 1991 ; 
Zhang 1996; Chiang 
1998; Mithen et al. 2000; 
Kiddle éta l. 2001; 
Jackson and Singletary 
2004

Extracted and modified from Moreno et al. 2006
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1.6 Life Cycle and Host Pathogen Interaction of Plasmodiophora brassicae 
Causing Clubroot Disease in Brassica Plants

Plasmodiophora brassicae is the casual agent of club root disease of crucifers. 

Records of club root back to the 13th Century in Europe. In the late 19th Century, a 

severe epidemic of club root destroyed large proportions of the cabbage crop in St. 

Petersburg, Russia. (Grabowski 2005). Woronin, a Russian scientist successfully 

identified the cause of club root as a "Plasmodiophorous organism" in 1875, and gave 

it the name Plasmodiophora brassicae (Karling 1968).

The life cycle of P. brassicae consists of two phases (Figure 1.7) the primary phase is 

restricted to root hairs and epidermal cells of the host, and the secondary phase which 

occurs in the cortex and stele of roots and hypocotyl and leads to abnormal 

development (Ingram and Tommerup 1972).

Not much is known about histological events during the primary infection phase, 

although the mechanism of penetration has been well described (Buczacki 1983). 

Resting spores germinate and release zoospores which penetrate the root hair by an 

apparatus consisting of a ‘Stachel’ and ‘Rohr’ (Braselton 1995), thereby releasing the 

complete protoplast of the pathogen into the root hair. Then, a multinucleate primary 

plasmodium grows until zoospores are formed which are again released into the soil 

(Ludwig-Muller and Schuller 2008). These can again infect root hairs or penetrate the 

root cortex by an unknown mechanism. Whether plasmodia have to fuse prior to 

penetration has not been clearly established, however, the observation of dikaryotic 

myxamoeba during this phase of infection would point to plasmogamy of two 

zoospores (Kobelt et al. 2000).
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Since it is also possible to generate root galls from a single zoospore, it is assumed 

that different mating types are not necessary (Klewer et al. 2001). After the secondary 

infection has occurred the dikaryotic amoeba migrate, through the root cortex in 

direction of the central stele (Kobelt et al. 2000; Muhlenberg et al. 2002) and in the 

early stages of the second infection cycle, young secondary plasmodia are formed 

(Figure 1.8). Finally, multinucleate secondary plasmodia are formed which is 

accompanied by strong hypertrophy of infected cells (Ludwig-Miiller et al. 1999a & 

1999b; Siemens et al. 2006). In this stage karyogamy has been observed followed by 

meiosis of the diploid nuclei (Ingram and Tommerup 1972). These processes lead to 

the cleavage of the plasmodium to yield numerous resting spores (Figure 1.8).

Resting spore 

Germination

P rim a ry  zo o spo re

Attachm ent
Encysting
Penetration

Prim ary
multinucleate
piasmoOium

S e co n d a ry
zoospores

Binucleate 
s e c o n d a ry  
plasm odium  / 
my x am oeba

M ultinucleate
s e co n d a ry
plasm odium

Sporulatm g
plasm odium

H o st cell Mied 
with resting 
spores

Figure 1.8: Microscopic pictures and characteristic developmental stages of Plasmodiophora brassicae 
were illustrated by Ludwig-Miiller (1990). Abbreviations as from the top of right side: ZS, zoospore 
(arrow);RH, root hair; PP, multinucleate primary plasmodium; BP binucleate secondary plasmodium 
(myxamoeba); N, host nucleus;, PL, multinucleate secondary plasmodium; SP, sporulating 
plasmodium; RS, resting spores.
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Obligate biotrophic plant pathogens have evolved together with their host and 

therefore exploit the host metabolism for their own needs. The symptoms caused by 

P. brassicae are root galls. The final stage of disease development leads to changes in 

water and nutrient supply due to destruction of vasculature and thus causing wilting in 

the green parts of the plant (Rausch et al. 1983). In earlier stages of the infection, the 

pathogen uses plant signalling molecules such as cytokinins to re-distribute 

assimilates from the shoot to the root to guarantee its own nutrition (Evans and 

Scholes 1995; Siemens et al. 2006). Mono, disaccharides and starch increase in roots 

colonised by P. brassicae (Evans and Scholes 1995; Brodmann et al. 2002). In 

addition, the production of auxin is stimulated which in turn causes the root cells to 

enlarge (Grsic-Rausch et al. 2000; Ludwig-Miiller and Schuller 2008). This intricate 

relationship is difficult to investigate because the pathogen can not be cultivated 

without its host.

1.6.1 Resistance Mechanism to Clubroot Disease

The understanding of the mechanisms of disease development is required because the 

disease is difficult to control under field conditions. Breeding programs have yielded 

resistant cultivars, but on the other hand the pathogen itself has evolved more virulent 

pathotypes on these plants (Voorrips 1995).

QTL analysis of brassicas has identified specific genes involved in resistance 

mechanisms (Rocherieux et al. 2004; Piao et al. 2004; Hirai 2006; Saito et al. 2006). 

Recent transcriptome and proteome analysis on the interaction of P. brassicae with A. 

thaliana (Devos et al. 2006; Siemens et al. 2006) and Brassica (Cao et al. 2007) could 

reveal novel targets for resistance breeding.
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1.6.2 Role of Aliphatic and Aromatic Glucosinolate during Clubroot

The role of glucosinolates in plant defence is proposed to involve the release of toxic 

thiocyanates and isothiocyanates (Fenwick et al. 1983b; Chew 1988a). The 

conversion of glucosinolate to nitriles would yield less toxic products (Bones and 

Rossiter 1996). Little information on the role of aliphatic and aromatic glucosinolates 

during the development of the clubroot disease is available, because most research has 

focussed on indole glucosinolates (Agerbirk et al. 2008).

Devos et al. (2006) showed myrosinase was upregulated at a very early time point of 

infection, whereas Siemens et al. (2006) found evidence of downregulation of 

myrosinase transcripts in A. thaliana clubroots at later time points of gall 

development. It has not yet been shown by functional analysis that myrosinase is a 

limiting factor in gall formation. Additional factors such as binding protein (MBP) 

myrosinase associated protein (MyAP), epithiospecific protein (ESP) and ESM1 

(Epithiospecifier modifier, a protein belonging to a known class of myrosinase- 

associated proteins, which inhibits ESP-mediated nitrile formation) would determine 

the outcome of metabolism and toxicity (Lambrix et al. 2001; Eriksson et al. 2002; 

Halkier and Gershenzon 2006; Burow et al. 2008).

In resistant and susceptible Chinese cabbage (Brassica rapa) cultivars, aliphatic and 

aromatic glucosinolates level was analysed (Ludwig-Müller et al. 1997). The total 

glucosinolate content in roots of the two susceptible varieties was higher throughout 

the experimental period than in roots of the two resistant cultivars (Ludwig-Müller et 

al. 1997). While the aliphatic glucosinolate were induced in the two susceptible 

cultivars compared to the resistant ones, the two resistant cultivars showed an increase
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in aromatic GSL, indicating there may be a dual role for these compounds (Ludwig- 

Müller et al. 1999b). In addition, in one of the resistant cultivars inductions of 

aliphatic and aromatic glucosinolates were observed after jasmonate treatment 

(Ludwig-Müller et al. 1997). Overall, the observations did not entirety fit with the 

hypothesis that the group of aliphatic glucosinolate are induced as defence response.

In an investigation on the host range of P. brassicae in various non-brassica species, a 

dual role of aromatic glucosinolates during club formation was presented (Ludwig- 

Müller et al. 1999b). Symptom development was correlated with specific 

glucosinolates in one species, while the increase in other glucosinolates might be 

regarded as a defence response. In glucosinolate containing non-brassicas,

Tropaeolum majus and Carica papaya, the concentrations of benzyl-glucosinolate 

were increased markedly in roots following P. brassicae infection compared with the 

controls (Ludwig-Müller et al. 1999b). Slight gall formation was observed in T. majus 

(Ludwig-Müller et al. 1999b) and it was hypothesised that benzyl-Glucosinolates 

could act as precursor for phenylacetic acid (PAA-Fig-1.8), which has auxin activity 

in T. majus (Ludwig-Müller and Cohen 2002).

Two alkenyl-glucosinolates were only detectable in P. brassicae infected roots of 

mutants of A. thaliana. Total aliphatic glucosinolates were slightly increased in 

clubroots (Haughn et al. 1991). Consequently, a mutant in a gene encoding an 

enzyme involved in the biosynthesis of aliphatic glucosinolates (Kroymann et al. 

2001) did not show any tolerance to clubroot (Ludwig-Müller et al. 1999a) (Figure 

1.8).
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Figure 1.9: Model proposed by Ludwig-Muller et al. (1999a; 1999b) suggesting the probable pathway of 
glucosinolates during clubroot formation. Alipathic glucosinolates derived from methionine might play a role as 
defence compounds leading to a level of tolerance. The aromatic glucosinolates could also play defensive role but 
they might serve as precursors for auxin like molecules such as phenylacetic acid (PAA). Indole glucosinolates 
derived from tryptophan likely serve as auxin precursors and are intermediate for Indole 3- acetic acid (IAA) 
increasing IAA production which pathway would lead to susceptibility. Inhibition of the enzymes (nitrilase) in this 
pathway would help the plant more immune in nature. Blocking early steps in the pathway of CYP79B2/B3 would 
not lead to tolerance because alternative pathways might operate. The role of Myrosinase binding protein (MBP), 
Myrosinase associated protein (MyAP) have not yet been demonstrated. Epithiospecific protein (ESP) and 
Epithiospecifier modifier 1 (EMS1) have involvement in regulating glucosinolates hydrolysis and influence the out 
come of the reaction leading to determine the synthesis of specific defense compounds.

1.6.3 Indole Glucosinolate and Clubroot Disease Development

Indole glucosinolates play a vital role as precursors for Indole Acetic Acid (IAA) 

production during clubroot formation (Butcher et al. 1974). It was emphasised that if 

plants have large amounts of indole glucosinolate, then after tissue disruption also 

large amounts of IAA would be produced, thereby increasing susceptibility. Another 

assumption is that plants with low indole glucosinolate levels and therefore a lower
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capacity for IAA synthesis by turnover of indole glucosinolates, should be more 

tolerant to clubroot formation (Figure 1.8).

However, conflicting results have been published on this topic. For example Butcher 

et al. (1974) and Ockendon and Buczacki (1979) found clear correlations between 

resistance and low indole glucosinolate content in Brassicaceae. Chong et al. (1981 & 

1984). Mullin et al. (1980) were not able to correlate indole glucosinolate content 

with resistance to clubroot. Two resistant and two susceptible B. rapa cultivars 

showed differences in the indole glucosinolate patterns (Ludwig-Müller et al. 1997). 

Two susceptible cultivars reacted with an increase in indole glucosinolates after 

infection with P. brassicae 14 and 20 day post inoculation in roots, whereas there was 

no difference between infected and control roots of the two resistant cultivars. All 

cultivars tested showed increased glucosinolate levels after treatment with salicylic 

acid (SA) and jasmonic acid. Jasmonic acid induced mainly indole glucosinolates in 

the leaves, whereas SA induced the indole glucosinolates both in leaves and roots of 

both cultivars.

In A. thaliana Columbia, indole glucosinolate levels were increased during clubroot 

development (Ludwig-Müller et al. 1999a). Two mutant lines (lines tu3 and tu8) with 

altered glucosinolate content (Haughn et al. 1991) showed reduced symptom 

development compared to the wild type. In tu8 indolic glucosinolates decreased while 

in tu3 were unchanged compared to the wild type (Ludwig-Müller et al. 1999a).

1.7 Chemical Management of Clubroot Disease

Although some soil fungicides are available for the control of clubroot, these have 

limited efficacy where there is a high density of resting spores and highly virulent 

populations of P. brassicae (Tanaka et al. 1999, Porter et al. 1998; Donald et al.
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2001). Fungicides such as cluazinam, flusulfamide, cyazofamid and mancozeb have 

also been found to be effective (Humpherson-Jones 1993; Dixon et al. 1994; Mitani et 

al. 2003) against clubroot of Brassicas.

Mitani et al. (2003) demonstrated that cyazofamid at 0.3 mg/L inhibited resting spore 

germination of P. brassicae by 80%, cyazofamid at 3-10 mg/L exhibited fungicidal 

activity to resting spores of P. brassicae 1-10 days after treatment. Cyazofamid was 

applied to infested soil, both root-hair infections and club formation caused by P. 

brassicae were strongly inhibited at 1-3 mg kg'1 dry soil, suggesting that cyazofamid 

directly inhibits resting spore germination, thereby leading to the inhibition of root- 

hair infection and club formation.

In 1996, fluazinam formulated as 50% suspension concentrate, was registered in 

Australia for use as a soil drench to control clubroot disease of brassica crops. 

Commercially suitable methods for application of fluazinam were evaluated in field 

trials conducted in Victoria and Western Australia by Donald et al. (2001) and they 

demonstrated that incorporation of fluazinam into the soil in bands 23 cm wide along 

the transplant row (to a depth of about 15-20 cm) immediately before transplanting 

was the most effective method of application. The banded soil incorporation treatment 

consistently increased the marketable yield of broccoli and cauliflower.

Knowledge of the mode of action allows more effective application of fungicides. 

However, the determination of the mode of action of fungicides against P. brassicae 

is made more difficult because it is an obligate pathogen and cannot be cultured 

axenically. Nevertheless, biological modes of action of some fungicides against P. 

brassicae have been postulated e.g. trichlamide and fluazinam may inhibit resting-
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spore germination, and primary or secondary infections (Naiki and Dixon 1987; 

Suzuki et al. 1995). In contrast, quintozene possesses relatively low suppressive 

activity against resting-spore germination (Naiki and Dixon, 1987; Suzuki et al. 1995) 

but does act against P. brassicae established within host cortical tissues in a manner 

similar to Benomyl (Dixon et al. 1972; Naiki 1985).

1.8 Alternate Management Strategies

P. brassicae survives in soil for a long time as resting spores (Wallenhammar 1996). 

Liming has been employed as a traditional and conventional technique and disease- 

suppressive effects of the neutralisation of soil acidity are well documented (Colhoun, 

1953; Dobson et al. 1983; Campbell et al. 1985; Murakami et al. 2002; Tremblay et 

al. 2005).

Webster & Dixon (1991) employed the sand-solution culture system to investigate the 

effects of pH on primary (root-hair) infection and clubroot development in the 

absence or presence of calcium. They observed independent and synergistic effects of 

pH and calcium on the suppression of zoospore invasion, zoosporangial maturation 

and clubroot development. It was demonstrated that an increase in soil pH as a result 

of the accumulation of calcium was the primary cause of the suppression of root-hair 

infection and that the degree of effectiveness was dependant upon the level of Ca 

applied.

Although the suppression mechanism of soil neutralisation and that of calcium 

enrichment need to be elucidated comparatively, all these observations confirm that 

the occurrence of clubroot disease is suppressed effectively under neutral soil pH in 

the presence of calcium. It is evident that either spore germination or root hair
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infection, each a part of the primary phase of the life cycle of the pathogen, is 

inhibited under such conditions (Niwa et al. 2008).

Niwa et al. (2008) provided the first direct evidence that the spore germination of P. 

brassicae in the rhizosphere is inhibited under neutral conditions created by the 

application of calcium-rich organic matter or CaCO^. Myers & Campbell (1985) 

demonstrated that neutralization by calcium application did not reduce the viability of 

the resting spores, suggesting that the effects were not fungicidal, but fungistatic to 

the pathogen. Webster & Dixon (1991) suggested that an increase in soil pH by 

calcium application might not eradicate the pathogen directly, but create unfavourable 

conditions affecting the infection processes, e.g. enhancing host resistance to 

infection. The result clarifies a part of the mechanism underlying the inhibition of the 

disease under neutral soil pH and raises new questions of how spore germination is 

inhibited under these conditions.

It has been suggested that root exudates stimulate spore germination (Macfarlane 

1970; Suzuki et al. 1992; Kowalski and Bochow 1996). It is hypothesised that soil pH 

may influence the response of P. brassicae spores to root exudates or that qualitative 

and/or quantitative changes in the exudates may occur under neutral conditions. 

Identification of the germination-stimulating factors in exudates would be an 

important step in understanding this mechanism (Macfarlane 1970)

The application of food factory sludge compost (FSC) to soil increases soil pH, 

calcium, carbon, nitrogen and phosphorus levels, which may lead to additional effects 

of these elements on disease suppression (Niwa et al. 2007). However, this is unlikely 

because the suppressive effect in FSC-treated soils was cancelled out by acidification 

with sulphuric acid (Niwa et al. 2007).
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In Australia, an integrated program to control and prevent the spread of clubroot has 

been developed, based on detection and quantification of P. brassicae, improved farm 

and nursery hygiene and strategic application of in-field controls including lime 

(calcium oxide), calcium, boron and the fungicide fluazinam (Donald et al. 2006).

1.9 Bion and Phosphonate Application against Plasmodiophora brassicae

The plant activator acibenzolar (Bion) is a non fungicidal compound used to combat 

plant pathogens by inducing the host plant’s natural defence mechanisms (Tally et al. 

1999). This is a functional analogue of salicylic acid shown to accumulate in plants 

challenged by a pathogen (Friedrich et al. 1996). Following accumulation of salicylic 

acid, plant defence gene(s) are induced (Lawton et al. 1996) triggering the production 

of defence compounds.

Phosphorous acid has been shown to have a number of modes of action including 

being directly fungisatic (Grant et al. 1990) as a plant activator (Afek and Sztejnberg 

1989), and as an inhibitor of pathogen defence suppressor (Grant et al. 1990). The 

simple anion of phosphonic acid, phosphonate has been demonstrated to be a 

remarkably cost effective agent for the control of a number of plant diseases (Pegg et 

al. 1985; Guest et al. 1988; de Boer et al. 1990). Phosphonate application leads to a 

more rapid accumulation of phytoalexin when compared to untreated control (Dereks 

and Creaser 1989; Guest 1984; Guest et al. 1988; Nemestothy and Guest 1990; 

Saindrenan et al. 1988). Cheah et al. (2000) demonstrated that phosphorous acid 

(Foli-R-FOS 400) as a plant drench (2 mL/L) significantly reduced clubroot formation 

in Chinese cabbage cv. Wong bok (Brassica chinensis L.) in glasshouse condition.
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A number of field trials were carried out by Abbasi and Lazarovits (2006) to test the 

effect of phosphonate fungicide on the severity of clubroot of bok choy/Pak choy (B. 

rapa var. chinensis) and cabbage (B. rapa var. perkinensis and B. oleracea var. 

capitata) in clubroot infested field. Phosphonate concentrations of 0.07 and 0.14% a.i. 

applied as soil drench before or after planting consistently reduced clubroot severity. 

Fresh weight of bok choy was increased or not affected by phosphonate treatments.

1.10 RATIONALE AND SIGNIFICANCE

There is evidence that glucosinolates reduce the risk of cancer in human and enhance 

the response to disease infection in some plant groups. It has been demonstrated that 

certain glucosinolate levels rise upon pathogen invasion as part of a resistance 

mechanism (Mithen 1992). However, the effects of glucosinolates accumulation in 

different plant tissues following infection is not well understood. There is minimal 

information available on the level of glucosinolates during different crop management 

practices such as fertilisation, irrigation, planting date, etc. There is also lack of 

information on the content of aerial and root glucosinolates during clubroot disease 

development at early stages of plant growth.

Changes of glucosinolates have long been associated with clubroot disease symptoms. 

Results show that several glucosinolates are induced in root galls, while aliphatic 

glucosinolates are regarded as defence compounds. Analysis of cabbage cultivars as 

well as A. thaliana mutants provided correlative evidence between disease severity 

and root indole glucosinolates content. The potential to use chemicals like potassium 

phosphonate and Bion to increase glucosinolate levels, and thus enhance the defence 

response has not been explored. The effect of clubroot disease on accumulation of
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particular group of glucosinolates in aerial parts of Brassica oleraecea italica is yet to 

be investigated.

The interaction between leaves-shoot and root induction of glucosinolates in Brassica 

oleracea and B. nigra were studied applying the signalling hormones jasmonic acid 

and salicylic acid (van Dam et al. 2003). Interestingly, there is no information on the 

changes of individual glucosinolates throughout the aerial and root parts of plants in 

response to interaction with clubroot disease and fungicide action over time.

Based on the previous findings, this investigation will measure the level of individual 

glucosinolates both in aerial and root tissues during the early stages of the 

development of P. brassicae. The findings of this work will aid in designing future 

experimentation to elucidate the role of individual glucosinolates in plant defence and 

the maintenance of higher levels of beneficial glucosinolates in Brassicas that 

potentially reduces the risk of human diseases.
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Chapter II. General Materials and Methods

2.1 Plant material

Hybrid Broccoli (Brassica oleracea L. var. Italica), cultivar Marathon FI (Fairbanks, 

Lot no. 156490, 542 Footscray Road, West Melbourne 3003, Australia) was used as a 

susceptible host of P. brassicae in this experiment.

2.2 Pathogen material

A field isolate of Plasmodiophora brassicae Woronin, was collected by Dr Caroline 

Donald (DPI Victoria) from a broccoli farm in Werribee, Victoria, Australia in 2006. 

Also fresh clubroot (galls) were collected at the beginning of this study from newly 

harvested bok choy (Brassia rapa L. var. chinensis cv. Hanelt) at a commercial 

vegetable farm in Camden, New South Wales, Australia in March, 2008. The galls 

were washed and stored in a freezer at -20°C until use.

2.3 Inoculation techniques

Three different methods of inoculation were tested to find out one suitable technique 

for effective and rapid disease development. The viability of Plasmodiophora 

brassicae spores in frozen clubroots was tested before inoculation into the seedlings 

by staining with 0.01% (w/v) hypertonic neutral red in 10 mM phosphate buffer (pH 

7.5) (O’Connell et al. 1985).

Inoculation method-1 (IM-1) consisted of injecting spore suspension into the root 

zones of 12 day old seedlings (Donald and Porter 2004). Root galls (clubroots) 

containing resting spores of P. brassicae were homogenised 1:3 with distilled water 

(w/v) in a mechanical blender. The extract was filtered through nylon stocking. The
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filtered spore suspensions were cleaned by repeated centrifugation in 20 mL Falcon 

tubes at 2000 g for five minutes and resuspended in sterilise distilled water (Donald 

and Porter 2004). The final concentration of resting spores in each suspension was 

estimated using a haemocytometer. The spore suspension was diluted to 10 

spores/mL. The 12 day old transplanted seedlings were inoculated by pipetting 200 

pL of resting spore suspension (10s spores/mL) at the base of each seedling.

The second inoculation technique (IM-2) was modified from the method of Toxopeus 

and Janssen (1975). Inoculum slurry was prepared by 3 min high speed blending of 

washed club roots with distilled water (1:5 w/v). About 50 mL of infected root slurry 

(10 resting spores per mL) per kilogram potting mix was thoroughly mixed up 3 days 

prior to 12 day old seedling transplantation.

The third inoculation technique (IM-3) was a combination of IM-1 and IM-2. Twelve
n

day old seedlings were transplanted in to the potting mix containing 10 spores/mL of 

slurry mixed 3 days prior to seedling transplantation (IM-2). After immediate 

transplanting seedlings, 200 pL of cleaned resting spore suspension containing 10 

resting spores per mL was injected around the rhizosphere of seedlings (12 day old).

In pilot tests the third inoculation method (IM3) showed the highest infection rate and 

was used in further experiments. Glucosinolates were measured following pathogen 

infection of 12 day old seedlings. Chemical treatments were applied to 10 day old 

seedlings (experiments described in Chapter 4).
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2.4 Plant culture

Plastic pots (15 cm diameter, 20 cm high) were filled with modified UC (University 

of California) potting mix consisting of coco peat and washed sand (l:l-w/v). 

Osmocote slow release fertilizer (Scotts Australia Pty. Ltd) was added at 10 g kg 1 

potting mix 3 days before transplanting or seed sowing. Seedlings were maintained 

for the duration of the experiment in Darlington Glasshouse, at The University of 

Sydney from November 2008 to July 2009. Glasshouse room temperature was 

maintained between 22 to 25°C during day and 18 to 20°C at night. Relative 

humidity was maintained at 80 to 90%. Seedlings were irrigated three times daily for 

3 minutes. Pots were thoroughly watered immediately prior to inoculation and seed 

sowing.

2.5 Microscopic observation of diseases development process

Stages of pathogen development within the root hair and cortical cell infection 

towards gall formation were observed using a light microscope. A solution of aniline- 

blue was used to stain primary and secondary infection structures of P. brassicae 

infecting root hairs and the cortical cell region. Four days after inoculation, potting 

mix was rinsed from seedling roots under water. One hundred root hairs on the tap 

root (0-7 cm from the basal part of the hairy root) were identified and the numbers of 

root hair infections were counted (Asano et al. 2000). Each seedling was placed with 

its roots in 125 ppm aniline-blue solution in 50% (v/v) acetic acid for 1 min at room 

temperature and then rinsed with tap water for 1 minute (Voorrips 1992).

The roots of 8 plants for each inoculation method (2 plants from one pot) were 

examined under the light microscope using Nomarski optics (Olympus-DP70-BX51,
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Olympus Australia, North Ryde, NSW, Australia). This process was repeated every 4 

days up to 36 days post inoculation (DPI). Root hair infection, including 

differentiated stages of primary phases of plasmodial developmental (primary 

plasmodia, mature zoosporangia, partially evacuated zoosporangia and fully 

evacuated zoosporangia), cortical cell infection by dikaryotic and multinucleate 

secondary plasmodium and specific time point of gall formation were recorded.

Invasion of secondary plasmodium in the cortex region was observed using aniline 

blue staining of 0.5 cm segments from the midsection of the root. The frequency (%) 

of infection was calculated from the ratio of the number of infected cells to the total 

number of cells observed in each area of the cortical cells (n=?).

Disease severity (fresh gall weight in g/plant) among the inoculation methods were 

assessed at 12, 16, 20 24, 28, 32 and 36 DPI.

2.6 Statistical Analysis

All the analysis (data from three inoculation methods) was performed with the 

statistical package GraphPad Prisam 5.2, 2009 (GraphPad Software Inc, Sandeigo 

California, USA). A two-way ANOVA (inoculation method x days post inoculation) 

was to determine the effect of each inoculation method on the frequency of root hair 

infection, cortical cell infection and fresh gall weight per plant.
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2.7 Sample collection for glucosinolate measurement

For glucosinolate analysis, inoculated and uninoculated roots and leaves-shoots were 

sampled every 7 days post inoculation to 42 days (total of 6 intervals). Eight plants 

were collected each time with roots and leaves-shoots washed and dried prior to snap 

freezing in liquid nitrogen. Samples were stored at -20°C in polyethylene Ziploc bags 

until freeze drying.

2.8 Freeze drying

Frozen samples were removed and immediately placed into the freeze drying chamber 

(DYNAVAC-FD300 freeze drier, Rowville, Victoria, Australia). Drying cycle 

continued until all water was removed from the plant tissue. Freeze dried samples 

were ground with a mechanical coffee blender to a fine powder. Powdered material 

was stored in air tight containers at room temperature until HPLC analysis. 

Glucosinolate content was assumed to remain constant in freeze- dried samples held 

at relative temperature (Jones et al. 2007).

2.9 Glucosinolate extraction

Powdered broccoli (0.4 g) was preheated for 10 minutes in near boiling water (90°C) 

in 10 mL Oakridge centrifuge tubes. Ten mL of boiling micro filtered deionised water 

was added and the tubes heated for a further 10 minutes. Samples were centrifuged at 

4,000 rpm for 10 minutes. The supernatant was collected and transferred to a 25 mL 

volumetric flask. The pellet was resuspended using a vortex mixer with 10 mL ultra 

pure boiling water and re-centrifuged at same speed. The supernatant was combined 

and the volume adjusted to 25 mL. The extracted supernatants were filtered 

(PHENEX NY, 0.45 pm regenerated cellulose) into auto-sampler vials (2 mL AMB
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RAM vials, 9 MM THD) for High Performance Liquid Chromatography (HPLC) 

analysis (Jones et al. 2007).

2.10 HPLC -  analyses and UV Detection

Glucosinolates were separated on a C-18 column as described by Jones et al. (2007), 

modified from West et al. (2002). A binary gradient of 50 mmol/L ammonium acetate 

in pure water at pH 6.74 (mobile phase A) and 20% methanol in 50 mmol/L 

ammonium acetate (v/v) (mobile phase B) at a flow rate of 1 mL/min. Gradient was 

maintained at 0% (mobile phase B), for 10 minutes, then increased to 40% (mobile 

phase B) over 5 min, maintained at 100% (mobile phase B) for 10 minutes before re

equilibrating the column with the 100% (mobile phase A) for 15 min. Column 

temperature was maintained to 30°C and column pressure maintained at 11.5 MPa. 

The column was protected with an appropriate guard column. The injection volume 

was 20 pL. Wavelength for detecting glucosinolates (UV detector) in all instances 

was 230 nm. Glucoiberin (3-methylsulphinyl-propyl), progoitrin (20H-3-butenyl) 

glucoraphanin (4-methylsulphinyl butyl), gluconapin (-3butenyl), 4- 

hydroxyglucobrassicin (40H-3-indolylmethyl) glucobrassicin (Indol 3 ylmethyl), 

neoglucobrassicin (l-methoxyindol-3-ylmethyl) were measured throughout the 

experiments. The standards were purchased from C2 Bioengineering 

(www.glucosinolates.com), Hovedgaden 12, 2690 Karlslunde, Denmark, verified 25 

September 2007. All other chemicals used were analytical grade and mostly 

purchased from Sigma-Aldrich.
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CHAPTER III

3.1 Introduction

Brassica rapa L. ssp. cinensis (L.) Hanelt cv. Pak Choi is now produced mainly by 

Chinese and Vietnamese Australians and partly by traditional brassica growers who 

wish to diversify. This vegetable is generally known as Chinese cabbage and also by 

local names bok choy, baak choi or tsing pak choi. This leafy vegetable is grown 

commercially in all states of Australia (Lee 1995; Moore et al. 1998). A number of 

diseases, including clubroot, cause at least 10% yield loss every year (Anonymous 

2009a). Clubroot occurs in most of the major vegetable brassica growing regions of 

Australia and is probably the most serious disease of these crops world-wide. Infected 

plants wilt, become stunted and, in severe cases, die. Infection occurs on roots at any 

stage of growth. Symptoms are not obvious until the final stages of disease 

development, when knotted swellings on the roots cause plants to be stunted and wilt, 

particularly in hot-dry weather.

In this later stage of gall development the pathogen causes abnormal tissue 

proliferation which is the result of an altered metabolism of auxins (Butcher et al. 

1974 &1976; Kavanagh & Williams 1981). The biosynthesis of auxin in Brassicaceae 

is believed to be produced via the indole glucosinolate pathway (Mahadevan & Stowe 

1972; Ludwig-Miiller et al. 1993). Glucosinolates are a group of secondary plant 

metabolites found in all species of Brassicaceae. It is a widely studied class of plant 

chemical compounds with a large structural diversity. Over 120 glucosinolates have 

been identified, mainly in species belonging to the Brassicaceae (Fahey et al. 2001). 

Glucosinolates influence important quality and flavour characteristics of the produce,

47



as well as resistance against non-adapted pathogen and insect pests (Chew, 1988b; 

Mithen 2001).

Glucosinolate levels in brassicas are also affected by the growing location and 

conditions (Shelp and Maclellan 1993). The clubroot causing pathogen may alter the 

levels of different glucosinolate among above ground and belowground organs of 

brassica crops (Rostas et al. 2003; Mithen 1992). Previous studies on glucosinolates 

in brassica vegetables have indicated environmental, including biotic and abiotic 

stresses, and cultural factors affecting glucosinolate levels. Therefore, the main 

objective of this study was to compare the levels of major glucosinolates in field and 

glasshouse grown brassica crop following symptom development.

The major glucosinolate profiles of root and shoot tissue of Brassica oleracea 

(broccoli) following P. brassicae infection in glasshouse condition (see Chapter 4) 

were monitored. Although the original aim was to compare similar cultivars of 

Broccoli grown under field and glasshouse conditions. Instead of broccoli a large field 

of severely clubroot infested Chinese cabbage (Brassica rapa ssp. chinensis cv. pak 

choi) was used. Both diseased and healthy plants were collected and root and aerial 

tissues analysed to establish a comparison between clubroot infested glasshouse and 

field grown brassica. It is hypothesised that there will be a similar pattern of 

glucosinolate concentration between brassica vegetables following infection by the 

clubroot causing obligate pathogen, Plasmodiophora brassicae under glasshouse and 

field conditions.
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3.2 Materials and Methods

3.2.1 Plant materials and sample collection:

Five week old B. rapa ssp. chinensis cv. Pak Choy, commonly named as Chinese 

cabbage (bok choy or pak choy) were collected from Camden, NSW, Australia in 

March of 2008. The field was known to be heavily infected with Plasmodiophora 

brassicae for several years. The following groups of plant specimens were collected 

for this experiment:

1. Diseased (clubroot) roots

2. Healthy roots

3. Leaves and shoot of diseased plant

4. Leaves and shoot of healthy plant

Whole plant samples (root + leaf + shoot) were kept in airtight polyethylene bags with 

moist field soil. After 3 hours plant samples were washed thoroughly dried between 

filter papers then immediately immersed into the liquid nitrogen and stored at -20°C 

until freeze drying.

3.2.2 HPLC condition and UV detection

All of the collected pak choy field samples were analysed at the Postharvest 

Laboratory, Department of Primary Industries, Knoxfield, Victoria. Sample storage, 

freeze drying and extraction were described in Chapter 2. Field sample analysis was 

performed on HPLC (GBC, Australia) equipped with an LC5100 UV-VIS diode array 

detector. Glucosinolates were separated on a C-18 column (250 x 4.6 mm, 5 um;
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Alltech Associates) as modified by Jones et al. (2007) from West et al. (2002). The 

standards of glucosinolates used were glucoiberin (3 methylsulphinyl- propyl), 

progoitrin (2 OH butenyl), glucoraphanin (4-methylsulphinyl butyl), gluconapin (3 

butenyl), 4 OH glucobrassicin (4 OH 3 indolylmethyl), glucobrassicin (Indol 3 

ylmethyl) and neoglucobrassicin (1 methoxyindol 3 ylmethyl). The standards were 

purchased from C2 Bioengineering (www.glucosinolates.com), Hovedgaden 12, 2690 

Karlslunde, Denmark, verified 25 September 2007. All other chemicals used were 

analytical grade and mostly purchased from Sigma-Aldrich.

3.2.3 Data analysis

Diseased and healthy plant samples were randomly collected (5 plants for each 

category of treatment). HPLC results of individual glucosinolates were subjected to an 

analysis of variance. The limit of significance between differences of treatments was 

set at P< 0.05 by a two sample t-test using GenStat v 11.2 edition developed by 

Lawes Agricultural Trust (Rothamsted Experimental Station), UK.
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Figure 3.1. Five week old field grown Chinese cabbage (B. rapa ssp. chinensis cv. 
Pak Choi) A. Clubroot B. Healthy roots.
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Results

3.3: Effect of clubroot on glucosinolate contents in field grown Chinese
cabbage(Pak-Choy)

3.3.1 Aliphatic glucosinolate levels in aerial tissues

Five week old cabbage plant exhibited young galls (Figure 3.1). The major aliphatic 

glucosinolates in the aerial parts of 5 week old field grown clubroot diseased and 

healthy Chinese cabbage were progoitrin, glucoraphanin and with minor amounts of 

gluconapin.

Progoitrin levels were 18% lower (P=0.013) in diseased plants compared to healthy 

plants (Figure 3.2). There were no significant differences in glucoraphanin content 

between aerial tissues of diseased and healthy. Gluconapin levels were significantly 

(P=0.03) higher in diseased aerial tissues compared with healthy aerial tissues.

The total concentrations of three aliphatic glucosinolates in cabbage leaves and shoot 

were significantly (P=0.03) lower in P. brassicae infected plants, and infection caused 

13% lower aliphatic glucosinolate accumulation compared with healthy plant leaves- 

shoot parts (Figure 3.2).

3.3.2. Indole glucosinolate levels in aerial tissues

Clubroot disease of field grown Chinese cabbage significantly affected indole 

glucosinolate contents during young gall forming stage of Plasmodiophora. brassicae 

infection.
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Glucobrassicin could not be detected in healthy plant leaves, whereas infected plant 

leaves produced 0.44 pmole/g DW. The changes in neoglucobrassicin in leaves were 

increased 5 fold following P. brassicae infections.

The total indole glucosinolate contents of clubroot infected aerial tissues were 

significantly higher (0.74 pmole/g DW). This was 11 times higher than in healthy 

plant tissues (Figure 3.3).

3.3.3. Aliphatic glucosinolate levels in roots

The levels of progoitrin in Chinese cabbage root significantly increased during young 

gall formation. The progoitrin level in diseased root was 6.37 pmole/g DW, almost 4 

times higher than healthy root (1.46 pmole/g DW).

Glucoraphanin production in roots was very low and infected plant roots contained 

significantly (PcO.OOl) higher amount of glucoraphanin (0.86 pmole/g DW) 

compared with healthy roots (0.26 pmole/g DW). Diseased roots contained half the 

level of gluconapin (P<0.001) of healthy roots.

The total aliphatic glucosinolate content of field grown Chinese cabbage was 

markedly increased in infected roots (P<0.001), 3 times higher than in healthy roots 

(Figure 3.4).
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3.3.4. Indole glucosinolate levels in root

A remarkable increase in indole glucosinolate content was observed following 

clubroot disease infestation in roots of field grown pak-choy. P. brassicae infection 

strongly enhanced glucobrassicin accumulation rate in diseased root compared with 

healthy roots. Approximately 8-fold higher levels of glucobrassicin were detected 

during young gall formation. Healthy roots accumulated only 0.15 pmole/g DW. 

Neoglucobrassicin levels were 0.67 pmole/g DW in healthy root while diseased root 

produced significantly (P<0.01) higher amounts of neoglucobrassicin (1.39 pmole/g 

DW) (Figure 3.5).

The resulting mean of individual indole, total indole glucosinolate showed 

significantly higher levels (PcO.OOl) in infested roots (2.81 pmole/g DW) than in 

healthy roots (0.83 pmole/g DW) (Figure 3.5).

3.3.5. Total aliphatic and indole glucosinolate levels distributed throughout the 

aerial tissues and root organs

Levels of total glucosinolate (aliphatic and indole) in aerial tissues of healthy plants 

were significantly (P=0.002) higher than those of diseased aerial tissues. Diseased 

roots accumulated significantly (P=0.002) higher total glucosinolate levels (aliphatic 

and indole) (Figure 3.6). This is a clear indication that P. brassicae infection at the 

time of young gall formation alters production of individual and total glucosinolates.
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Aliphatic Glucosinolate (leaf & Shoot)

9 Healthy 
□ Diseased

Progoitrin Glucoraphanin Gluconapin Aliphatic total

Figure 3.2. Progoitrin, glucoraphanin, gluconapin and total aliphatic glucosinolate in 
leaves and shoots of 5-week old field grown healthy and diseased (clubroot) Chinese 
cabbage (pak-choy). Data points represent the mean of four experimental replicates 
and error bars are the standard errors (±SE).

Figure 3.3. Glucobrassicin, neoglucobrassicin and total indole glucosinolate in leaves 
and shoots of 5-week old field grown healthy and diseased (clubroot) Chinese 
cabbage (pak-choy). Data points represent the mean of four experimental replicates 
and error bars are the standard errors (±SE).
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Aliphatic Glucosinolate (Root)

■ Healthy 

□ Diseased

Figure 3.4. Progoitrin, Glucoraphanin, Gluconapin and total aliphatic glucosinolate in 
root tissues of 5-week old field grown healthy and diseased (clubroot) Chinese 
cabbage (pak-choy). Data points represent the mean of four experimental replicates 
and error bars are the standard errors (+SE).

Figure 3.5. Glucobrassicin, neoglucobrassicin and total indole glucosinolate in root 
tissues of 5-week old field grown healthy and diseased (clubroot) Chinese cabbage 
(pak-choy). Data points represent the mean of four experimental replicates and error 
bars are the standard errors (±SE).
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Figure 3.6. Total glucosinolates (aliphatic & indole) in leaves and root of 5-week old 
field grown healthy and diseased (clubroot) Chinese cabbage (pak-choy). Data points 
represent the mean of four experimental replicates and error bars are the standard 
errors (±SE).
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Discussion

3.4: Effect of clubroot on glucosinolate contents in field grown Chinese
cabbage(Pak-Choy)

Individual and total aliphatic glucosinolate levels in aerial and root tissues of 35 day 

old field grown pak-choy were evaluated using HPLC. Aliphatic (progoitrin, 

glucoraphanin and gluconapin) and indole glucosinolates (glucobrassicin and 

neoglucobrassicin) were detected both in healthy and diseased aerial tissues. Total 

aliphatic glucosinolate level was significantly higher in healthy aerial tissues (28.33 

pmole/g DW) than in diseased aerial tissues. Glucobrassicin was not identified in 

healthy aerial tissues but was abundant in aerial tissues of diseased plants, 

contributing to total indole glucosinolate levels that were 12.5 times higher in aerial 

tissues from diseased compared to healthy plants. Total glucosinolate levels were 

however dominated by aliphatic glucosinolates, which were 3 - 3 0  times more 

abundant in leaf and shoot tissue.

These results indicate that during the characteristic gall formation caused by P. 

brassicae the synthesis of aliphatic glucosinolates, particularly progoitrin, is 

suppressed (Figure 3.2) in the edible parts of this pak-choy cultivar. However, 

infection caused enhanced glucobrassicin accumulation in aerial tissues. 

Glucosinolate accumulation can also be induced by insect herbivory (Birch et al. 

1990) and fungal infection (Doughty et al. 1991). This induction does not lead to 

similar increases in the content of all glucosinolates in the tissues, but rather to 

increase of certain compounds during the development of disease (Ludwig-Miiller et 

al 1997, 1999a & 1999b).
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There are no available published data on glucosinolate levels in aerial plant parts 

following P. brassicae infection. Previous investigations relating to clubroot and 

glucosinolate concentrated on indole glucosinolate and gall development factors. 

Information has been published on the occurrence of glucosinolates in nonbrassicas, 

including Tropaeolum majus and Carica papaya, Reseda alba and Beta vulgaris, 

following P. brassicae infection by Ludwig-Miiller et al. (1999b). However, they did 

not investigate the concentration of either aliphatic or indole glucosinolate levels, 

rather benzylglucosinolates such as glucotropaeolin, gluconasturtiin and 

glucomalcomiin. They reported that young leaves of P. brassicae infected plants of T. 

majus contained more than 150% benzylglucosinolate levels than leaves from 

uninoculated plants. Benzylglucosinolate levels of C. papaya young leaves following 

infection were decreased by 29% and old leaves increased by 7% than health leaves. 

This information demonstrates that P. brassicae infection can interfere directly or 

indirectly in the biosynthesis pathway of glucosinolate accumulation in aerial tissues.

Aliphatic (progoitrin, glucoraphanin and gluconapin) and indole glucosinolate were 

detected in the root tissues of field grown pak-choy. Diseased root showed 

significantly higher levels of aliphatic glucosinolate. Progoitrin production (6.37 

pmole/g DW) is nearly 4 times higher than in healthy root tissues (1.66 pmole/g 

DW). Total aliphatic glucosinolate accumulations in diseased root tissues were 3 

times higher than in healthy root tissue (Figure 3.4). A similar pattern w'as observed in 

indole glucosinolate production following infection. Glucobrassicin increased nearly 

8 times and neoglucobrassicin production was more than doubled following P. 

brassicae infection at the time of characteristic gall formation. This result suggests the 

biosynthetic pathway of both aliphatic and indole glucosinolates might be interrupted
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due to complicated interactions during clubroot development. Ludwig-Muller et al. 

(1997) demonstrated that roots of the Chinese cabbage variety, Osiris, total indole 

glucosinolate levels strongly increased during the symptom development stage (28 

DAI) compared with the resistant cultivar, Parkin. They also reported that the 

infected roots of the variety Osiris showed a higher peak of indole glucosinolate 

levels compared to Parkin due to increasing level of neoglucobrassicin which is 

similar to our results. Bennett et al. (1996) also showed that young leaves of 35 day 

old Chinese cabbage produced higher neoglucobrassicin (type of indole glucosinolate) 

following infection.

Ludwig-Muller et al. (1997) confirmed that P. brassicae infection in susceptible 

Chinese variety showed increased levels of aliphatic glucosinolate during root hair 

infection stage and higher indole glucosinolate at the symptom development stage. 

Aromatic glucosinolate remained unchanged in susceptible varieties (Granat and 

Osiris) of Chinese cabbage. Aromatic glucosinolate levels were not analysed in our 

study.

Total glucosinolates (aliphatic and indole) in aerial tissue were significantly higher in 

healthy plants (32.04 pmole/g DW) than in diseased plants (29.08 pmole/g DW). This 

happened due to production of a higher concentration of aliphatic glucosinolates 

(range 25.00 to 30.00 pmole/g DW) compared to indole glucosinolate (range 0.1 to 

0.7 pmole/g DW) in aerial tissues of pak-choy. This could indicate that P. brassicae 

infection is capable of suppressing aliphatic glucosinolate in aerial tissues, however 

further research should be conducted to confirm this indications. Total glucosinolates
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(aliphatic and aromatic) in root tissues were significantly higher in diseased plant 

(10.32 pmole/g DW) than in healthy plants (3.38 pmole/g DW).

The most likely explanation for the observed differences in root and shoot patterns is 

that both organs have a different regulation of glucosinolate biosynthesis and 

turnover. Transportation of glucosinolates via the phloem over long distance (Chen et 

al. 2001) is not likely to be the main cause. This is supported by the observation that 

induction of specific indole glucosinolates by aphid feeding occurs in detached leaves 

as well, precluding a role for transport from the roots (Kim and Jander 2007). 

Moreover glucosinolate metabolism is highly integrated with plant growth. For 

example, there is a direct link between indole glucosinolate biosynthesis and the 

auxin, indole 3 acetic acid (IAA) metabolism, as both derive from tryptophan and 

share the first dedicated step in their biosynthesis (Grubb and Abel 2006). IAA is a 

key regulator in plant development in tissue differentiation (De Smel and JUrgens 

2007). This also implies that environmental factors, both biotic and abiotic, affect 

IAA-regulated changes in growth rate or shoot/root ratios and may affect the levels of 

indole glucosinolates.

Additionally glucosinolate biosynthesis may also be interfering with defence 

signalling pathways. Hence, the question of what makes the glucosinolate profile 

different between roots and shoots may be intimately associated with the 

physiological differences between root and shoot metabolisms in general., Some 

general patterns have been identified with the current results of glucosinolate levels 

from field grown samples that may help us to better understand the role of these 

compounds in natural and controlled growth condition.
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CHAPTER IV

4.1: Introduction

The glucosinolate content of Brassica tissues is influenced by genetics and the 

environment. This can include the external and cell environment (Jones et al. 2006). 

Besides the glucosinolate type varying between Brassica varieties, tissue type and the 

age of the plant affect glucosinolate levels. The accumulation of glucosinolates can be 

induced after wounding and pathogen attack (Koritsas et al. 1991; Bodnaryk 1992). 

Glucosinolates and their breakdown products are thought to play a role in disease 

resistance against insects and fungal pathogens (Glen et al. 1990; Mithen 1992).

Plasmodiophora brassicae causes clubroot and is one of the most damaging 

pathogens of the Brassicaceae family worldwide (Woronin 1878; Ludwig-Müller 

1999a & 1999b). The effect of plant pathogens, particularly P. brassicae, on 

glucosinolate concentrations in broccoli is relatively unknown, as is information on 

the relationship of individual glucosinolates between aerial and root tissues of 

broccoli following P. brassicae infection process. There is some evidence that indole 

glucosinolate levels increase upon the development of clubroot in B. campestris 

(renamed: Brassica rapa L. subsp. campestris (L.) A. R. Clapham) and B. oleracea 

along with an increased synthesis of auxin precursors (Anonymous 2009c; Ludwig- 

Müller 1999b).

The plant defence activators phosphorous acid and acibenzolar (Bion) have been 

evaluated for the controlling numbers of plant pathogens. The plant activator 

acibenzolar (Bion) is a non fungicidal compound used to combat plant pathogens by 

inducing the host plant’s natural defence mechanisms (Tally et al. 1999). This
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chemical is a functional analogue of salicylic acid (SA), a plant signal shown to 

accumulate in plants challenged by a pathogen (Friedrich et al. 1996).

Phosphorous acid has been shown to have a number of modes of action including 

being directly fungistatic (Grant et al. 1990), and as a plant activator and enhance the 

of plant defence responses (Guest et al. 1988; Afek and Sztejnberg 1989; Grant et al. 

1990; de Boer et al. 1990).

There is no available published information on the effect of potassium phosphonate 

and Bion against P. brassicae invasion or the levels of individual glucosinolates of 

their distribution among the above and below ground organs either in broccoli or any 

of the Brassica crops.

In this study, susceptible Brassica oleracea ssp. italica cv. Marathon (broccoli) was 

studied in a glasshouse to evaluate the complex interactions between the pathogen 

attack,, application of defence activators and levels of aliphatic and indole 

glucosinolate compounds distributed in above and below ground tissues.

Based on previous studies in cultivated species, it is hypothesised that phosphonate 

and Bion application will elicit a glucosinolate response and that these responses are 

systemic (Guest et al. 1988; Ludwig-Müller et al. 1997; Barder et al. 1999). 

Individual classes of glucosinolates respond differently to chemical treatment and to 

the root damage following pathogen infection.

The aim of this chapter is to study whether phosphonate and Bion applications trigger 

differential induction of specific classes of glucosinolate and systemic responses 

throughout the plant. Changes in glucosinolate levels were also compared to the
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effects of activators on gall formation, which may indicate the future efficacy of these 

chemicals to manage clubroot.

4.2: Materials and Methods

4.2.1 Chemicals

Treatments with phosphonate (Agrifos Supa 600, Agrichem Manufacturing Industries, 

Loganholme, Queensland, Australia) 1 g a.i / L, Bion (500 g/kg a.i. acibenzolar-S- 

methyl;Syngenta) 25 mg a.i. /L of water and equal combination of phosphonate and 

Bion were sprayed once 10 days after seed germination. Sprays were applied until 

runoff (approx. 250 mL solution per tray containing 100 seedlings). Tap water was 

sprayed at the same time on untreated control plants. Potting mix and glasshouse 

condition were described in Chapter 2.

4.2.2 Seedling Inoculation Technique

Inoculation Method-3 (IM-3) is the combination of IM-1 (direct spore injection at the 

base of seedlings) and IM-2 (resting spores of Plasmodiophora hrassicae amended 

potting mix) was applied for rapid disease development in this experiment. According 

to the outcome from preliminary trial of three inoculation techniques, double 

inoculation method (IM-3) showed significantly faster symptom development 

(Figure- 4.1, 4.2 and 4.3). So inoculation Method-3 (IM3) was used for these 

experiments (Figure 4.9 to 4.35), where variation of glucosinolates accumulation 

following pathogen infection and chemicals treatments was determined. Twelve day 

old seedlings were transplanted into the potting mix containing 107 spores/mL of 

slurry mixed 3 days prior to seedling transplantation (IM-2). After transplanting
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seedlings, 200 pL of cleaned resting spore suspension containing 10 resting spores 

per mL was injected around the rhizosphere of seedlings (IMI).

4.2.3 Treatment Combination

The following eight (8) treatments were used to collect the samples for glucosinolate 

measurements:

1. Potassium Phosphonate (PP) treated seedlings + Plasmodiophora brassicae 

(Pb)

2. Bion (Bn) treated seedlings + Pb

3. PP + Bn treated seedlings + Pb

4. PP treated seedlings + no pathogen

5. Bn treated seedlings + no pathogen

6. Bn + PP treated seedlings + no pathogen

7. Pathogen inoculation (Pb only)

8. No chemical treatment and no pathogen inoculation/Healthy plant (HLY)

The design was Randomized Complete Block Design (RCBD) with four replications. 

Samples were collected at 0, 21 and 42 days after inoculation. To observe sequential 

disease development and determine glucosinolate variations, samples were also 

collected at 7, 14, 28 and 35 days intervals from both inoculated and uninoculated 

plants. Plants in treatment 7 (inoculated) and treatment 8 (uninoculated) are referred 

as diseased control and healthy control throughout the text.

Sample collection, storage, freeze drying, glucosinolate extraction procedures were 

described in Chapter 2.

66



4.2.4 HPLC and UV Detection

Samples were analysed in the Laboratory of Plant Pathology, Faculty of Agriculture, 

Food and Natural Resources at The University of Sydney during June 2008 to July 

2009. Glucosinolate extraction protocols, HPLC condition such as mobile phase, flow 

rate and temperature are described details in Chapter 2. For this experiment, the 

HPLC (Dionex Pty Lt, Australia) equipped with PDA 100 photo diode array detector. 

Glucosinolates were separated on a Agilent ZORBAX Eclipse plus C18 column 

(4.6x250mm; 5pm) Agilent technologies, USA. In the beginning, duplicate samples 

(those were used in Postharvest Lab, Knoxfield DPI, Victoria- see Chapter 2) ran with 

the standard- sinigrin purchased from Sigma Aldrich, Australia. The differences of 

retention time of sinigrin between the Knoxfield Lab and Sydney Uni (Plant 

Pathology Lab) HPLC set up was estimated. The retention times of glucoiberin, 

progoitrin, glucoraphanin, gluconapin, 4-hydroxy-glucobrassicin, glucobrassicin and 

neoglucobrassicin were matched with the relative retention time of sinigrin. Due to 

unavailability of pure standards, the amount of above individual glucosinolate was 

determined as pmoles/L sinigrin equivalents.

Sinigrin was used as an external standard to calibrate the concentration and peak area 

to measure the individual glucosinolate concentration equivalent to sinigrin 

concentration. Four different concentrations (□ mole) were used e.g. 12.5, 25, 50 and 

100 nmole. The relationship between concentration of standard (sinigrin) and the 

peak area was calculated based on the formula Y= ax + b where, ‘x’ is the 

concentration of glucosinolate (Dmole/g dry weight), ‘Y’ is the peak area and ‘r2, is 

the correlation of the equation and ‘a’ (slope) = 0.1821 and ‘b’ intercept = 0.087. The
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correlation coefficients confirm excellent linear relationships between the 

concentration of the glucosinolates and their response peak area (Figure 4.1 ).

Calibration Curve of Sinigrin

Concentration of sinigrin ( moIe/L)

♦ Area 

—— Linear (Area)

Figure 4.1 Calibration curve of sinigrin in chromatography used as external standard

4.2.5 The ejfect o f B ion and Phosphonate on club root severity

The following five (5) treatments were used to evaluate gall suppression in broccoli

1. Potassium Phosphonate (PP) treated plant + Plasmodiophora brassicae (Pb) 

inoculation

2. Bion (Bn) treated plant + Plasmodiophora brassicae (Pb) inoculation

3. Combination of PP and Bn treated plant + Pb inoculation

4. Fresh plant (no chemical treatment) + Pb inoculation

5. Fresh plant (no chemical and no pathogen)
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A total of 1 0 x 5 x 2 =  100 seedlings from 5 different treatments were assessed for 

disease severity as well as different growth parameters. Plants were harvested 42 days 

after inoculation. Pots were arranged in RCBD with 10 replications.

4.2.6 Disease assessment

The effect of chemical applications on disease severity was assessed at the end of the 

trial (42 days post inoculation). Plants at 42 days post inoculation were assessed 

visually by washing root galls using a scale of six disease classes (Friberg et al. 2006) 

modified from Buczacki et al. (1975) and Wallenhammar et al. (2000). The modified 

disease classes are:

0 no symptoms;

1 small club formations on lateral roots;

2 small club formations on the main root;

3 large club formations on the main roots, lateral roots with small or few clubs

only:

4 large club formations on the main roots and numerous clubs on lateral roots; 

and

5 severe club formations on the main roots leading to partial degradation, lateral 

roots completely destroyed, plant growth markedly affected.

4.2.7 Statistical Analysis

Data analysis of chemically treated, diseased and healthy control plants were 

performed with the statistical package GraphPad Prisam 5.2, 2009 (GraphPad 

Software Inc, San Deigo California, USA). Two way analysis of variance (ANOVA) 

was used to determine different treatment factors over time factor. Mean comparisons
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were also estimated at level 5% of confidence interval (P=0.05) and standard error of 

mean. Mean separation was also determined for the effect of chemical treatment and 

pathogen inoculation on specific individual glucosinolates in broccoli according to 

Bonferroni post test.

Ordinal regression analysis was performed for different chemical application data in 

suppressing club root disease severity (0 to 5 scales). Growth parameters such as fresh 

and dry weight of plant leaf-shoot, fresh gall weight were analysed by analysis of 

variance and using GenStat 11.2 Edition package program, 2009, VSN International 

Ltd.

4.3 Results: Optimisation of Inoculation Method

Three different inoculation techniques of Plasmodiophora. brassicae were tested 

against susceptible broccoli seedlings under glasshouse condition. Inoculation 

methods were evaluated to find a fast and effective technique based on the frequency 

of root hair infection, cortical cell infection and fresh gall weight at different time 

point after inoculation.

The percent root hair infection of three inoculation techniques was estimated at 4, 8, 

12 and 16 days after inoculation. There was no significant difference between 

inoculation method 1 (spore injection at the base of seedlings) and inoculation method 

2 (inoculum slurry amended with potting mix) on the number of root hair infections 

by primary zoospore of P. brassicae at any of the sampling times. Method 3 

(combination of IM-1 and IM-2) gave significantly higher (P<0.001) percent of root 

hair infection compared with method-1 and 2 at any time, post inoculation. Method-3 

exhibited 97% root hair infection compared to 77% and 75% of root hair infection by
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method-2 and method-1, respectively at 16 days after inoculation. Similar ratios of 

percent root hair infection were recorded at 4, 8 and 12 days post inoculation (Figure 

4.2).

Inoculation methods were evaluated by counting the percent of root cortical cells 

occupied by multinucleate secondary plasmodia from 12 to 36 days post inoculation. 

Methods-1 and 2 did not show any significant differences in cortical cell infection 

between 12 to 24 days post inoculation but Method 1 showed significantly lower 

(P<0.001) infected cortical cell at 24 and 28 days post inoculation compared to 

Method 2. Method-3 showed significantly higher (PcO.OOl) percent of cortical cell 

infection 12 to 24 days after inoculation compared with both Methods 1 and 2, 

however Method-3 was significantly different after 28 days compared with Method-2. 

Method-1 had significantly lower (PcO.OOl) percent of cortical cell infection at 24 

and 28 days compared with Method-3. Method 3 caused 80% cortical cell infection 

while Method-1 and 2 gave only 3.75% and 8.25% cortical cell infection respectively, 

however, nearly one hundred percent cortical cells were infected with the 

multinucleate plasmodia of P. brassicae by each inoculation method 36 days after 

inoculation (Figure 4.3).

Fresh galls were weighed every 4 days between 12 to 36 days following infection. 

Initially (12 dpi), Method-3 produced gall like symptoms (hypertrophy of hypocotyl 

root) that weighed only 0.75 g/plant. No galls developed using Methods 1 and 2 until 

20 days after inoculation. An average of 1.25 g/plant fresh gall was collected from 

Method -2 while Method-3 produced 9.00 g/plant fresh gall, which was significantly 

higher (P<0.001) than Method-2. Fresh gall weight from method 1 and 2 did not show
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any significant differences until 32 days post inoculation, but a significantly higher 

(PcO.Ol) weight of fresh galls was observed in Method 2 at 36 DPI compared to 

Method 1. Method 3 exhibited higher fresh gall weight at every time point of 

sampling. At 36 DPI, galls from method 3 were 1.8 and 3.2 times larger than those 

from Method 2 and Method 1, respectively (Figure 4.4).

Sequential development of primary and secondary infection stages were observed in 

the plant roots where inoculation method 3 (spore injection and inoculum slurry) was 

used. Primary plasmodia, differentiated plasmodia (early zoosporangia) and also fully 

differentiating plasmodia (early zoosporangia) in root hairs were seen under 

microscope 0 to 7 day after inoculation (Figure 4.5). Secondary plasmodia were first 

identified at 7 DPI in cortical cell region. A small and big cluster of secondary 

plasmodia with cell proliferation in cortical cells were observed 10 DPI. 

Multinucleate secondary plasmodia and destroyed cortical cell walls were also 

observed 10 DPI (Figure 4.6). At the same time, initial gall initiation was seen under 

microscope. Visible galls were harvested at 14 DPI. Resting spore formation inside 

young galls were identified during 21 to 28 dpi and matured resting spores were 

successfully extracted from 42 day old galls of broccoli, those were used further 

experiments (Figure 4.6).
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% Root Hair Infection with Plasmodiophora brassicae

Method

Method

Method

1

2

3

Figure 4.2. Effect of inoculation methods on root hair infection by Plasmodiophora 
brassicae of 4 to 16 days after inoculation. Data points represent the mean of four 
experimental replicates and error bars are the standard errors (±SE).

% Cortical cell infection with Plasmodiophora brassicae
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Method 3
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Figure 4.3. Effect of inoculation methods on cortical cell infection by 
Plasmodiophora brassicae of 4 to 16 days after inoculation. Data points represent the 
mean of four experimental replicates and error bars are the standard errors (+SE).
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Fresh Gall (clubroot) weight

Inoculation Method 1 Inoculation Method 2 - ± -  inoculation Method 3

Figure 4.4. Effect of inoculation methods on fresh gall weight by Plasmodiophora 
brassicae of 4 to 16 days after inoculation. Data points represent the mean of four 
experimental replicates and error bars are the standard errors (+SE).
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Figure 4.5. Sequential development of primary stage of infection in broccoli root hair occurred 0 to 7 
days after inoculation A. Primary plasmodium in root hairs B. Differentiating plasmodium (early 
zoosporangia) in root hairs C. Root hair with secondary plasmodia, fully differentiated zoosporangium 
D. Empty root hair - Secondary plasmodia (sp) released from the tip of hairs.
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Fig 4.6. Sequential development of secondary infection stage in root cortical cell region of 
broccoli A. Secondary plasmodia (observed at 7 dpi) B. Small cluster of secondary 
plasmodia C. large cluster of secondary plasmodia occupied cortical cells and cell 
proliferation starts D. Multinucleate secondary plasmodia and destroyed cortical cell walls.
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Figure 4.7 A. Gall initiation at 10 DP seen under light microscope B. Visible gall at 14 
DPI C. Resting spore formation from dissecting gall (21 DPI) D. Extracted resting 
spores from characteristic gall at 42 day after inoculation
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Figure 4.8 A. Root of uninoculated control plant at 14 day old plant B. Cortical cell of 
uninoculated seedling root
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4.4 Discussion

In this study, inoculation method 1 injected P. brassicae spore suspension into the 

root zone of 12 days old seedling of broccoli. Inoculation method 2 mixed inoculum 

slurry with potting mix. Method 1 and 2 did not show any differences in root hair 

infection. Microscopic observation of infected cortical cells showed method 2 

exhibited significantly higher number of cell infection at 24 and 28 days post 

inoculation than method 1. Method 2 (inoculum slurry) also caused a significant 

increase in fresh gall weight at 36 DPI. However, Methods 1 and 2 did not show 

consistent differences in relation to cortical cell infection and fresh gall weight.

Johnston (1968) regarded incorporating diseased tissue into the growth medium as an 

imprecise method for inoculating cabbage plants with Plasmodiophora brassicae. He 

reported that a spore suspension technique was more precise and for experiments 

where inoculum must be precisely quantified, similar procedures may be preferable to 

inoculum consisting of diseases root tissue. The most aggressive method of producing 

disease is not always preferred i.e. disease control studies, bio-control studies where 

subtle differences may be present. The presence of mixed pathogens in populations, 

the inoculum used, the more likely that mixed pathogens will be present. This is 

important in many studies eg. resistance. However, in this study the soil inoculation 

with infected root slurry resulted in a better infection rate in cortical tissue and 

produced clubs weighing significantly more than spore injecting inoculation method. 

For work intended to maintain or increase stocks of P. brassicae, there would seem to 

be no compelling reason to use a more complicated and more time consuming 

procedure. Considering, time and labour, infected root slurry is much easier, less time 

consuming preparing inoculum than extracted spore suspension injection technique.
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Inoculation method 3 (IM3) was the combination of Method 1 and 2 applied together 

into broccoli seedlings. This combined application (double inoculation) of spore 

suspension and inoculum slurry into the broccoli seedlings resulted strong infection at 

every sampling observation of root hair, cortical cell infection and fresh gall size. The 

likely reason for a rapid infection by IM-3 might be due to higher inoculum pressure 

causing gradual increase of primary and secondary infection rate during 0 to 36 days 

post inoculation compared with any of single inoculation technique (Method 1 and 2). 

Method 3 caused consistent infections to root hairs and cortical region and produced 

clubs weighing significantly more than other two inoculation methods.

The slurry mix ensured that large numbers of resting spores are in close proximity to 

plant roots. Possibly, combining Method 1 and 2 increased the inoculum pressure in 

the seedling roots and resulted in more than 80% root hair and 40% cortical cells 

infected 4 and 12 days post inoculation, respectively, while separately, spore

suspension and inoculum slurry gave 10% and 20% root hair and cortical cell

infection, respectively. The first young gall appeared following the combined 

inoculation method (IM3) at 12 dpi whereas first young galls were seen on spore 

suspension (IM1) and (inoculum slurry (IM2) inoculated plants at 24 and 28 dpi, 

respectively. Dekhuijzen (1979) reported visible galls of susceptible variety of B. 

campestris var. rapa infected with sterile resting spores of P. brassicae from

senescent callus 14 dpi. He also reported the presence of amoeboid structures within

cortical cells of the susceptible variety 10 days after inoculation. The double 

inoculation technique (IM 3) induced clubroot symptoms earlier than reported by 

Dehhuijzen (1979). The presence of decaying root tissue used as slurry may enhance
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the germination of resting spores (Williams and McNabola 1967; Macfarlane, 1970). 

Inoculating seedlings with infected root slurry prior to injection of extracted spore 

was rapid and effective method likely to be useful to researchers maintaining 

population of the organism in the glasshouse.

Previous studies (Samuel and Garrett 1945; Naiki et al. 1978) reported that the age of 

root hairs might affect root hair infection by P. brassicae. It is interesting to note 

roots hairs on 5 -  6 day old roots were more susceptible to infection by P. brassicae 

than younger or older root hairs ( Asano et al. 2000). In this study, inoculum slurry 

was added to potting mix 3 days prior to seedling transplantation thus the early stage 

of root hairs become exposed to germinated resting spores resulted rapid infection. In 

the case of spore suspension techniques, spores injected to root zone of 12 days old 

transplanted seedlings means root hairs were older than used in slurry inoculation 

method. This explanation is in good agreement with the findings of Samuel and 

Garrett (1945) and Naiki et al. (1978). So far, there is no published report of a double 

inoculation technique of P. brassicae. This technique gives rapid and consistent 

formation of galls 14 DPI.
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4.5: Results: Glasshouse trial on the effect of Plasmodiophora brassicae

inoculation on glucosinolate levels in aerial and root tissues of broccoli.

4.5.1 Aliphatic glucosinolate production in broccoli root

Inoculated and uninoculated plant roots were assayed using High Performance Liquid 

Chromatography (HPLC) with Photo Diode Array (PDA) to observe changes of 

different individual glucosinolate levels during primary (0-7 DPI), secondary (7-14 

DPI), symptom development (14-28 DPI) and characteristic gall formation phases 

(28-42 DPI) of clubroot disease. Aliphatic glucosinolate levels such as glucoiberin, 

progoitrin, glucoraphanin and gluconapin concentration were determined following 

infection from 0 to 42 days compared with uninoculated plants. Sequential 

developmental stages of infection are marked as

• primary stage of infection: 0 to 7 DPI,

• secondary stage of infection: 7 to 42 DPI, of which

o symptom development stage or initial gall formation stage: 7 to 21 DPI 

and

o characteristic gall formation stage: 21 to 42 DPI.

There were no significant differences in glucoiberin and gluconapin production 

between inoculated and uninoculated roots during 0 to 21 DPI. However, infected 

roots showed significantly (P<0.001) higher levels of glucoiberin and gluconapin 

accumulation during the symptom development stage (28 to 35) of clubroot (Fig. 4.9 

& 4.12). Glucoraphanin production was similar in infected and healthy roots at any 

stage of the P. brassicae life cycle (Fig.4.11). Progoitrin accumulation in inoculated
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root showed significantly higher at 14, 28 and 35 dpi compared with uninoculated, 

healthy plants (Fig. 4.10).

Glucoiberin, progoitrin and gluconapin production significantly increased in 

inoculated plant roots, which resulted in higher levels of total aliphatic accumulation 

at 21 to 42 DPI compared with uninoculated plant (Figure 4.13).

4.5.2 Indole glucosinolate production in broccoli root

Changes in individual indole glucosinolate accumulations were observed during 

symptom development stage of infection to characteristic gall formation (7 to 42 

DPI). 4-hydroxy glucobrassicin contents in inoculated plants increased at the 

secondary infection stage then decreased at symptom development stage and 

increased again to 42 days post inoculation (Fig. 4.14). Glucobrassicin accumulation 

rates were continuously higher (P<0.001), except during primary phases of infection 

(0 to 7 DPI) when it was higher in uninoculated plants (Fig.4.15). During primary 

infection, neoglucobrassicin in inoculated root significantly (PcO.OOl) dropped, and 

then increased significantly (P<0.01) until gall formation, compared with 

uninoculated roots (Fig. 4.16).

Significantly lower levels of total indoles accumulated following root hair infection, 

however, with the progression of infection indole accumulation in root organs 

significantly increased until characteristic gall producing stage (42 DPI). Infected 

roots showed 2.5 times higher levels of total indole accumulation than uninoculated 

roots 28 DPI (symptom development stage) of P. brassicae infection (Figure 4.17).
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4.5.3. Aliphatic gliicosinolate production in aerial tissues

P. brassicae inoculation did not cause significant differences in the accumulation of 

glucoiberin, progoitrin and gluconapin in aerial tissues except at the time of symptom 

development (21 DPI). During the symptom development phase of clubroot, infection 

caused a 50% decrease (P<0.05) in glucoiberin accumulation. A similar pattern was 

observed in progoitrin and gluconapin accumulation in aerial organs compared with 

healthy plants. Glucoraphanin accumulation was significantly enhanced (P<0.05) 

following infection and it was nearly 1.5 times higher than in uninoculated plants at 

the secondary infection time (14 DPI) (Figure 4.18, 4.19 and 4.20 and 4.21).

The resulting total aliphatic content of leaves and shoots of inoculated and 

uninoculated plants was not significantly different at any time point of clubroot 

infection (0 to 42 DPI) (Figure 4.22).

4.5.4 Indole glucosinolate levels in aerial tissues

There was a significantly (P<0.001) higher 4-OH glucobrassicin accumulation in 

shoots from inoculated compared to uninoculated plant, except at the secondary 

infection phase (14DPI). 4-OH glucobrassicin levels were nearly 80 times higher 

than in uninoculated tissues 35 DPI. Glucobrassicin production levels were 

significantly (PcO.OOl) higher in inoculated plants 7, 14 and 28 DPI. P. brassicae 

infection did not cause significant variations in neoglucobrassicin levels except at the 

time of symptom development when neoglucobrassicin was not detected in healthy
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aerial tissue and was 1.69 pmole/g DW in infected tissues (Figures 4.23, 4.24 and 

4.25).

A sharp increase in total indole glucosinolate levels was observed following infection 

and significantly higher (P>0.001) levels of total indole glucosinolate were recorded 

at primary and symptom development phase and gall forming stage (P<0.05) of 

clubroot (Figure 4.26).

Glucoiberin (root)

Time (days post inoculation)

Figure 4.9. Glucoiberin content in Brassica oleracea (broccoli) root tissues of P. 
brassicae inoculated (diseased) and uninoculated (healthy) plant (0 to 42 days post 
inoculation. Data points represent the mean of four experimental replicates and error 
bars are the standard errors (+SE).
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Progoitrin (root)
Healthy plant 

Disease plant

Figure 4.10. Progoitrin content in Brassica oleracea (broccoli) root tissues of P. 
brassicae inoculated (diseased) and uninoculated (healthy) plant (0 to 42 days post 
inoculation. Data points represent the mean of four experimental replicates and error 
bars are the standard errors (+SE).

Glucoraphanin (root)
Healthy plant

Time (days post inoculation)

Figure 4.11. Glucoraphanin content in Brassica oleracea (broccoli) root tissues of P. 
brassicae inoculated (diseased) and uninoculated (healthy) plant (0 to 42 days post 
inoculation. Data points represent the mean of four experimental replicates and error 
bars are the standard errors (±SE).
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(iluconapin (root)
Healthy plant 

D isease plant

Figure 4.12. Gluconapin content in Brassica oleracea (broccoli) root tissues of P. 
brassicae inoculated (diseased) and uninoculated (healthy) plant (0 to 42 days post 
inoculation. Data points represent the mean of four experimental replicates and error 
bars are the standard errors (±SE).

Aliphatic total 
(Root)

Healthy plant

plant

Figure 4.13. Total aliphatic glucosinolate content in Brassica oleracea (broccoli) root 
tissues of P. brassicae inoculated (diseased) and uninoculated (healthy) plant (0 to 42 
days post inoculation. Data points represent the mean of four experimental replicates 
and error bars are the standard errors (±SE).
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4 OH Glucobrassicin 
(Root)

Figure 4.14. 4 OH glucobrassicin content in Brassica oleracea(brocco\i) root tissues 
of P. brassicae inoculated (diseased) and uninoculated (healthy) plant (0 to 42 days 
post inoculation. Data points represent the mean of four experimental replicates and 
error bars are the standard errors (+SE).

Glucobrassicin (Root)
Healthy plant

Time (days post inoculation)

Figure 4.15. Glucobrassicin content in Brassica oleracea (broccoli) root tissues of P. 
brassicae inoculated (diseased) and uninoculated (healthy) plant (0 to 42 days post 
inoculatio Data points represent the mean of four experimental replicates and error 
bars are the standard errors (+SE).
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Neoglucobrassicin (Root)
Healthy plant

Figure 4.16. Neoglucobrassicin content in Brassica oleracea (broccoli) root tissues of 
P. brassicae inoculated (diseased) and uninoculated (healthy) plant (0 to 42 days post 
inoculation. Data points represent the mean of four experimental replicates and error 
bars are the standard errors (±SE).

Indole total
(root)

Healthy plant

Figure 4.17. Total indole glucosinolate content in Brassica oleracea (broccoli) root 
tissues of P. brassicae inoculated (diseased) and uninoculated (healthy) plant (0 to 42 
days post inoculation. Data points represent the mean of four experimental replicates 
and error bars are the standard errors (+SE).
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Ghicoiberin (leaf-shoot)

plant

plant

Figure 4.18. Glucoiberin content in Brassica oleracea (broccoli) aerial tissues (leaves 
& shoots) of P. brassicae inoculated (diseased) and uninoculated (healthy) plant (0 to 
42 days post inoculation). Data points represent the mean of four experimental 
replicates and error bars are the standard errors (+SE).

Progoitrin
(leaf-shoot) Healthy plant

Time (days post inoculation)

Figure 4.19. Progoitrin content in Brassica oleracea (broccoli) aerial tissues (leaves & 
shoots) of P. brassicae inoculated (diseased) and uninoculated (healthy) plant (0 to 42 
days post inoculation) Data points represent the mean of four experimental replicates 
and error bars are the standard errors (±SE).
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Glucoraphanin
(leaf-shoot) Healthy plant

Figure 4.20. Glucoraphanin content in Brassica oleracea (broccoli) aerial tissues 
(leaves & shoots) of P. brassicae inoculated (diseased) and uninoculated (healthy) 
plant (0 to 42 days post inoculation). Data points represent the mean of four 
experimental replicates and error bars are the standard errors (±SE).

Gluconapin
(leaf-shoot) Healthy plant

Time (days post inoculation)

Figure 4.21. Gluconapin content in Brassica oleracea (broccoli) aerial tissues (leaves 
& shoots) of P. brassicae inoculated (diseased) and uninoculated (healthy) plant (0 to 
42 days post inoculation) Data points represent the mean of four experimental 
replicates and error bars are the standard errors (±SE).

91



Aliphatic total
(leaf-shoot) Healthy plant

Figure 4.22. Total aliphatic glucosinolate content in Brassica oleracea (broccoli) 
aerial tissues (leaves & shoots) of P. brassicae inoculated (diseased) and uninoculated 
(healthy) plant (0 to 42 days post inoculation). Data points represent the mean of four 
experimental replicates and error bars are the standard errors (±SE).

4()Hglucobrassicin

Figure 4.23. 4-hydroxyGlucobrassicicn content in Brassica oleracea (broccoli) aerial 
tissues (leaves & shoots) of P. brassicae inoculated (diseased) and uninoculated 
(healthy) plant (0 to 42 days post inoculation) Data points represent the mean of four 
experimental replicates and error bars are the standard errors (±SE).

92



Glucobrassicin
(leaf-shoot) Healthy plant

Figure 4.24. Glucobrassicin content in Brassica oleracea (broccoli) aerial tissues 
(leaves & shoots) of P. brassicae inoculated (diseased) and uninoculated (healthy) 
plant (0 to 42 days post inoculation) Data points represent the mean of four 
experimental replicates and error bars are the standard errors (±SE).

Neoglucobrassicin
(leaf-shoot)

Time (days post inoculation)

Figure 4.25. Neoglucobrassicin content in Brassica oleracea (broccoli) aerial tissues 
(leaves & shoots) of P. brassicae inoculated (diseased) and uninoculated (healthy) 
plant (0 to 42 days post inoculation) Data points represent the mean of four 
experimental replicates and error bars are the standard errors (±SE).
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Indole total
(leaf-shoot) Healthy plant

Time (days post inoculation)

Figure 4.26. Total indole glucosinolate content in Brassica oleracea (broccoli) aerial 
tissues (leaves & shoots) of P. brassicae inoculated (diseased) and uninoculated 
(healthy) plant (0 to 42 days post inoculation Data points represent the mean of four 
experimental replicates and error bars are the standard errors (±SE).
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4.6 Discussion: Levels of individual and total glucosinolates in roots and 

aerial tissues of Plasmodioptiora brassicae inoculated and uninoculated plants

Glucosinolates are believed to play a role in the host pathogen interaction. There is 

evidence for the association of glucosinolates and their breakdown products in 

resistance to fungal pathogens and insects (Mithen 1992; Ludwig-MUller 1999a & 

1999b; Rangkaddilok et al. 2002). In this study, the main objective was to monitor 

changes in particular glucosinolates and their total levels in a susceptible variety of 

broccoli (B. oleracea ssp. italica cv. Marathon) following Plasmodiophora brassicae 

infection.

Glucosinolate levels in both the roots and aerial tissues were strongly influenced, 

although in different ways, by P. brassicae infection. Aliphatic glucosinolates 

including glucoiberin, progoitrin, glucoraphanin and gluconapin were present in both 

root and aerial tissues. Individual glucosinolate levels showed different responses to 

symptom development.

Results from root tissue analysis clearly indicate that during symptom development of 

clubroot disease, glucoiberin, gluconapin levels increase more than progoitrin. 

Glucoraphanin is the dominant aliphatic glucosinolate produced by broccoli seedlings. 

During any of the infection phases there is a limited association with infection and 

glucoraphanin accumulation. The highest level of glucoraphanin at 28 DPI was 8.95 

pmole/g DW in diseased plants, not significantly different to healthy plant roots. A 

similar concentration of glucoraphanin in healthy roots was reported in broccoli cv. 

Marathon by Kushad et al. (1999).
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Our results showed that Plasmodiophora brassicae infection induced nearly 4 times 

higher total indole glucosinolate (61.22 pmole/g DW at 28DPI) accumulation than 

total aliphatic glucosinolate (16.27 pmole/g DW at 28 DPI). This suggests that during 

gall formation, indole glucosinolate respond more dramatically than aliphatic 

glucosinolates.

This study monitored indole glucosinolates including 4-hydroxy glucobrassicin, 

glucobrassicin and neoglucobrassicin. Glucobrassicin levels have a strong correlation 

with following the early secondary infection (14 DPI) to characteristic gall forming 

phase (matured galls) (42 DPI). At every time point glucobrassicin levels were higher 

in inoculated plants, and the highest levels (41.22 pmole/g DW) were identified 

during symptom development phase of clubroot disease.

Butcher et al. (1974) proposed that indole glucosinolates are converted by the fungus 

to indole acidic acid (IAA) during clubroot formation. The outcome of this study is 

supported by those findings however, that during primary infection glucobrassicin 

accumulation significantly decreased compared with healthy root. There were also 

some conflicting results published in this aspect. Mullin et al. (1980) were not able to 

correlate changes in indole content with clubroot formation in susceptible cabbage 

seedlings.

Neoglucobrassicin levels increased during primary infection, however, diseased plants 

produced significantly lower concentrations during gall formation. 4-hydroxy
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glucosinolates also showed similar patterns during secondary infection. Initially (0- 7 

DPI), it increased and then decreased during symptom development.

Ultimately, total indole production was significantly higher in inoculated plants 

throughout the disease development process, except at the primary stage of infection 

when accumulation was lower in diseased root tissues. These findings are similar to 

the results shown by Ludwig-Müller (1999a). It has been shown that indole 

glucosinolate content of cabbage seedlings susceptible to P. brassicae increased 

compared to resistant varieties. The work by Ludwig-Müller (1999a) did not clarify 

the particular indole glucosinolate levels during the infection process, however the 

concentration of indole glucosinolates was estimated by analysing whole plants rather 

than root tissues only.

Infection caused a significant reduction of glucoiberin, gluconapin and progoitrin 

production during symptom development. However, glucoraphanin was significantly 

enhanced during the later stage of secondary infection compared with uninoculated 

plants. Interestingly, total aliphatic accumulation in aerial tissues did not differ 

significantly at any stage of the infection process. There is insufficient information on 

the role of aliphatic glucosinolates during development of clubroot, as previous 

studies focused on indole glucosinolates (Agerbirk et al. 2008). However, the 

aliphatic glucosinolates were enhanced in infected roots of Chinese cabbage (Granat), 

and Osiris showed a very high content of aliphatic glucosinolates in root tissue during 

the whole infection period of clubroot (Ludwig-Müller et al. 1997). Devos et al. 

(2006) showed myrosinase was upregulated at very early time point of infection
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whereas Siemens et al. (2006) found evidence of down regulation of myrosinase in 

Arabidopsis thaliana clubroot at later time point of gall formation.

This information indicates that the different types of glucosinolates were affected 

differently during infection. Our results also showed the unequal distribution of 

aliphatic and indole glucosinolates between aerial and root tissues following infection. 

Haughn et al. (1991) observed that total aliphatic glucosinolate accumulation in A. 

thaliana during gall formation increased slightly. This information is not directly 

comparable with current findings, because Haughn et al. (1991) used different plant 

species and analytical methods.

Diseased leaves showed significantly higher levels of particular individual indole 

glucosinolates, such as 4-hydroxy glucobrassicin, glucobrassicin and also 

neoglucobrassicin, during most of the infection process. As a result, total indole 

glucosinolates accumulation significantly increased throughout clubroot development. 

It is not yet known how leaf indole glucosinolates interact with root infection with P. 

brassicae. The only available information is from the investigation by Rostas et al. 

(2003) who monitored cabbage plants infected with Alternaria brassicae. A distinct 

rise of indole glucosinolates, glucobrassicin, neoglucobrassicin and 4-methoxy- 

glucobrassicin, was observed.

These results support our current understanding that fungal leaf infection may alter 

glucosinolate levels and more likely increased individual and total indole 

glucosinolate in aerial parts. However this investigation shows increased indole 

glucosinolate levels following infection of root tissues. More investigation is required 

to gain a better understanding the influence of infection of either leaf or root tissue on 

glucosinolate accumulation in infected or distant leaf and root tissues.
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4.7: Results: The effect of phosphonate and Bion on glucosinolate levels in P.

brassicae inoculated and uninoculated plants

4.7.1 Aliphatic Glucosinolate Production in Broccoli Root Tissue 

Glucoiberin production

Combined application of phosphonate and Bion in inoculated plants significantly (P< 

0.01) increased levels of glucoiberin in broccoli root organs during gall maturation 

stage (Figure 4.27).

There was no difference in glucoiberin production between P. brassicae infected and 

healthy control plants at transplantation and mature gall formation phase. During 

symptom development stage, P. brassicae infection caused significantly (P<0.05) 

higher levels of glucoiberin production than uninoculated plants. Concentrations were 

45% higher in uninoculated plants (1.17 Dmole/gDW) compared to inoculated plants 

(0 .65 Dmole/gDW) (Figure 4.27).

There was no significant difference in glucoiberin production among the chemical 

treatments at the time of transplanting. Glucoiberin production in chemically treated 

inoculated and uninoculated plant gradually decreased over time, varying from 3.5 to 

2.75, 2.0 to 2.5 and 0.6 to 1.8 pmole/gDW at 0, 21 and 42 dpi, respectively.

Progoitrin Production

Combined application of phosphonate and Bion to infected plants resulted in a 

significantly (P < 0.05) higher production of progoitrin at gall maturation stage, which 

was double that of phosphonate treated inoculated plant (Figure 4.28). There was no 

significant difference between the levels of progoitrin in P. brassicae inoculated and 

uninoculated plants any stage of the pathogen life cycle.
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At transplanting both inoculated and uninoculated plants had not produced progoitrin, 

whereas phosphonate and Bion treated plants produced progoitrin, and there were no 

significant differences among the treatments. No progoitrin could be detected in 

phosphonate treated and untreated plants during the symptom development phase. 

Phosphonate application to inoculated plants resulted in progoitrin production (0.26 

mole/g DW) however, no progoitrin could be detected in phosphonate treated 

uninoculated plant at the stage of gall maturation (Figure 4.28).

Glucoraphanin production

There was no significant difference in glucoraphanin production in root tissues 

among the chemical treatments in either inoculated or uninoculated plants at early, 

mid and later disease development phase, however chemically treated plants 

contained significantly (PcO.OOl) a higher (4 times) amount of glucoraphanin than 

inoculated and non-inoculated plants at seedling transplantation.

P. brassicae infection had no effect on levels of glucoraphanin in roots at any stage of 

the infection process compared with uninoculated healthy plants.

Glucoraphanin production in chemical treated inoculated and uninoculated plant was 

enhanced 1.5 fold compared to non-chemical treated plants during symptom 

development phase.

When phosphonate was applied separately or in combination with Bion to 

uninoculated plants, glucoraphanin production was significantly reduced (P<0.001) 

compared with both infected and healthy plants only at 42 DPI (Figure 4.29).
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Gluconapin

At any phase of the life cycle, infection with P. brassicae did not result in any 

significant changes on the content of gluconapin in broccoli roots compared with 

healthy plants. Phosphonate and the combination of phosphonate and Bion treatments 

resulted in greater gluconapin production during early stages of seedling growth (0 to 

14 DPI) both in inoculated and uninoculated plants compared with inoculated and 

uninoculated control plants. There is no significant difference in gluconapin 

production among chemical treatments in inoculated and uninoculated however Bion 

treated uninoculated plant had significantly lower (P<0.01) gluconapin concentrations 

than both inoculated and uninoculated control plants (Figure 4.30).

Total aliphatic glucosinolate production in root tissues

Combined application of phosphonate and Bion in uninoculated plant significantly 

(P<0.01) reduced total aliphatic glucosinolate levels than uninoculated control plant 

(Figure 4.31). There was no difference in total aliphatic glucosinolate levels in the 

roots of inoculated and uninoculated broccoli plants at any stages of disease cycle. 

During early stages of seedling growth/transplanting time (0 DPI), phosphonate, Bion 

and their combination significantly increased production of aliphatic glucosinolates, 

which was more than 3 fold higher than chemical untreated control plants. There was 

no significant difference in total aliphatic production in broccoli root among chemical 

application or diseased or healthy plants during clubroot symptom and characteristic 

gall formation stages (Figure 4.31).
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4.7.2 Indole glucosinolate levels in broccoli root

4-hydroxy glucobrassicin production

There was no significant difference in 4-hydroxy glucobrassicin production in 

broccoli root between P. brassicae infected and healthy plant during transplanting 

time and symptom development stage of clubroot. There was a significant difference 

(PcO.Ol) between the 4-hydroxyglucobrassicin content of uninoculated and 

inoculated control plants by 42 DPI, in which, concentrations were 42% higher in 

inoculated control plants (4.05 Dmol/g DW) compared with healthy control plants ( 

2.85 Dmol/g DW) (Figure 4.32).

Significantly lower concentrations of 4-hydroxy glucobrassicin accumulated when 

phosphonate, Bion and their combination were applied to uninoculated plants 

Phosphonate, Bion and their combined applications in inoculated plants significantly 

(p<0.001) increased 4-hydroxy glucobrassicin production (Figure 4.32).

Glucobrassicin Production

At the time of transplanting there were no significant differences identified in root 

glucobrassicin content among the treatments. Glucobrassicin content had increased in 

all treatments during symptom development stages however, between 21 and 42 days, 

the content of glucobrassicin in some treatments increased while in others it decreased 

(Figure 4.33).

Bion and phosphonate application in uninoculated plants significantly (p<0.001) 

reduced glucobrassicin production, compared to uninoculated control plants during 

characteristic gall formation stage. Bion and combined application of phosphonate 

and Bion in inoculated plants significantly reduced glucobrassicin levels (PcO.OOl)
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compared with inoculated and uninoculated controls at 42 DPI. Phosphonate 

application in uninoculated plant significantly reduced (P<0.01) glucobrassicin levels, 

while Bion and phosphonate-Bion combined application had no effect and remained 

unchanged compared to uninoculated control plants (Figure 4.33).

Neoglucobrassicin Production

Neoglucobrassicin content in roots at the time of transplanting was not equal in all 

treatments. The concentration of neoglucobrassicin due to combined treatment of 

phosphonate and Bion both in inoculated and uninoculated plants was absent at 

transplanting time (Figure 4.34).

Phosphonate, Bion or their combined application in inoculated plants suppressed the 

production of neoglucobrassicin in plant roots during symptom development. 

However, phosphonate application in uninoculated plants significantly (P<0.05) 

enhanced neoglucobrassicin accumulation compared to healthy control plants. (Figure 

4.34). Phosphonate application to inoculated plants significantly reduced 

neoglucobrassicin production while Bion and their combined application in inoculated 

plants had no effect and remained unchanged compared to inoculated control plant 

during matured gall formation stage. However phosphonate (P<0.001) Bion (P<0.01) 

and their combined (P<0.05) application in uninoculated plant significantly increased 

neoglucobrassicin production compared to uninoculated control plant during gall 

formation stage (Figure 4.34).

103



Total indole glucosinolate production in roots

Total indole glucosinolate production in roots at the time of inoculation was very low 

in all treatments and there were no significant differences among chemical treated and 

inoculated control (Figure 4.35).

Level increased by at least 5 times at symptom development and mature gall 

formation phases of clubroot disease, however, phosphonate and Bion application in 

inoculated plant significantly (P<0.001) suppressed the level of total indole 

glucosinolate but their combined treatment did not change total indole glucosinolate 

content compared to inoculated but untreated control plants.

Phosphonate application in uninoculated plants significantly (P<0.001) increased the 

accumulation of total indole glucosinolates. Bion or combined application had no 

effect compared to uninoculated control plant during gall forming stage (Figure 4.35).

Glucoiberin
(Root)

Time (days post inoculation)

Phosphonate & Inoculated Bion & Inoculated Combine (Ph+Bn) & Inoculated

£==■ Phosphonate & Uninoculated ESS Bion & Uninoculated ES5 Combine (Ph+Bn) & unioculated 

■ ■  Inoculated (P. brassicae) control SES Uninoculated (Healthy) control

Figure 4.27. The effect of phosphonate and Bion on glucoiberin content of Brassica 
oleracea (Broccoli) root tissues following Plasmodiophora brassicae infection (0 to 
42 days post inoculation). Data points represent the mean of four experimental 
replicates and error bars are the standard errors (±SE).
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Progoitrin 
( Root )

Time (days post inoculation)

«  Phosphonate & Inoculated M  Bion & Inoculated H  Combine (Ph+Bn) & Inoculated 

Phosphonate & Uninoculated ->=-= Bion & Uninoculated ■ ■  Combine Ph+Bn)&Unioculated 

* *  Inoculated (P. brassicae) control Uninoculated (Healthy) control

Figure 4.28. The effect of phosphonate and Bion on progoitrin content of Brassica 
oleracea (broccoli) root tissues following Plasmodiophora brassicae infection (0 to 
42 days post inoculation). Data points represent the mean of four experimental 
replicates and error bars are the standard errors (+SE).

Glucoraphanin
(Root)

Time (days post inoculation)

Phosphonate & Inoculated Bion & Inoculated ■ §  Combine (Ph+Bn) & Inoculated

Phosphonate & Uninoculated 333 Bion & Uninoculated 333 Combine Ph+Bn )&Unioculated 

m  Inoculated (P. brassicae) control S S  Uninoculated (Healthy) control

Figure 4.29. The effect of phosphonate and Bion on glucoraphanin content of 
Brassica oleracea (broccoli) root tissues following Plasmodiophora brassicae 
infection (0 to 42 days post inoculation). Data points represent the mean of four 
experimental replicates and error bars are the standard errors (±SE).
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Gluconapin
(Root)

Time (days post inoculation)

Phosphonate & Inoculated Bion & Inoculated Combine (Ph+Bn) & Inoculated

SHSJ Phosphonate & Un inoculated Bion & Uninoculated 555 Combine (Ph+Bn )&Unioculated

■ ■  Inoculated (P. brassicae) control Uninoculated (Healthy) control

Figure 4.30. The effect of phosphonate and Bion on gluconapin content of Brassica 
oleracea (broccoli) root tissues following Plasmodiophorci brassicae infection (0 to 
42 days post inoculation). Data points represent the mean of four experimental 
replicates and error bars are the standard errors (+SE).

Aliphatic Total 
(Root)

Time (days post inoculation)

Phosphonate & Inoculated ■ ■  Bion & Inoculated Combine (Ph+Bn) & Inoculated

= =  Phosphonate & Uninoculated S 3  Bion & Uninoculated 555 Combine (Ph+Bn)&Unioculated

H  Inoculated (P. brassicae) control SSS Uninoculated (Healthy) control

Figure 4.31. The effect of phosphonate and Bion on total aliphatic glucosinolates 
content of Brassica oleracea (broccoli) root tissues following Plasmodiophora 
brassicae infection (0 to 42 days post inoculation). Data points represent the mean of 
four experimental replicates and error bars are the standard errors (±SE).
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4-OH Glucobrassicin 
( Root )

Time (days post inoculation)

Phosphonate &  Inoculated 1 H  Bion &  Inoculated ■ ■  Combine (Ph+Bn) &  Inoculated 

“  Phosphonate &  Uninoculated™  Bwn &  Uninoculated ^  Combine (Ph+Bn)&Unioculated 

■ ■  Inoculated (P. brassicae) control s s s  Uninoculated (Healthy) control

Figure 4.32. The effect of phosphonate and Bion on 4-hydroxy glucobrassicin content 
of Brassica oleracea (broccoli) root tissues following Plasmodiophora brassicae 
infection (0 to 42 days post inoculation). Data points represent the mean of four 
experimental replicates and error bars are the standard errors (±SE).

Glucobrassicin
(Root)

Tim e (days post inoculation)

■ ■  Phosphonate &  Inoculated ■ ■  Bion &  Inoculated ■ ■  Combine (Ph+Bn) &  Inoculated

“  Phosphonate &  Uninoculated ^  Bion &  Uninoculated E S  Combine (Ph+Bn)&Unioculated 

Inoculated {P. brassicae) control 5 5 5  Uninoculated (Healthy) control

Figure 4.33. The effect of phosphonate and Bion on glucobrassicin content of 
Brassica oleracea (broccoli) root tissues following Plasmodiophora brassicae 
infection (0 to 42 days post inoculation). Data points represent the mean of four 
experimental replicates and error bars are the standard errors (+SE).
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Neoglucobrassicin 
( Root )

Time (.days post inoculation)

■ ■  Phosphonate & Inoculated ^  Bion & Inoculated ■ ■  Combine (Ph+Bn) & Inoculated

£ 3  Phosphonate & Uninoculated ^  Bion & Uninoculated S 3  Combine (Ph+Bn >&Unioculated 

■ ■  Inoculated (P. brassicae) control £53 Uninoculated (Healthy) control

Figure 4.34. The effect of phosphonate and Bion on neoglucobrassicin content of 
Brassica oleracea (broccoli) root tissues following Plasmodiophora brassicae 
infection (0 to 42 days post inoculation). Data points represent the mean of four 
experimental replicates and error bars are the standard errors (+SE).

Indole Total
(Root)

Phosphonate & Inoculated M i  Bion & Inoculated ■  Com bine (Ph+Bn) & Inoculated 

£ 3  Phosphonate & Uninoculated 5 5 5  Bion & Uninoculated £ 5 5  Com bine (Ph+Bn) & unioculated 

■ ■  Inoculated (P. brassicae) con tro l £ £ £  Uninoculated (Healthy) contro l

Figure 4.35. The effect of phosphonate and Bion on total indole glucosinolate content 
of Brassica oleracea (broccoli) root tissues following Plasmodiophora brassicae 
infection (0 to 42 days post inoculation). Data points represent the mean of four 
experimental replicates and error bars are the standard errors (+SE).
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4.7.3 Aliphatic Glucosinolate Production in Aerial Tissue of Broccoli 

Glucoiberin production

Plasmodiophora brassicae infection in broccoli seedlings had no significant effect on 

glucoiberin production in aerial tissue of broccoli during gall formation stage, but 

infection caused a significant reduction (P<0.001) of glucoiberin production in 

broccoli aerial tissue compared to healthy control plants during symptom 

development stage.

Phosphonate, Bion and their combined application in both inoculated and 

uninoculated plant suppressed glucoiberin production at all stages of disease 

development except 21 DPI, however chemical application in inoculated plants gave 

significantly (P<0.001) higher levels of glucoiberin compared to chemical treated 

uninoculated plants during mature gall formation (Figure 4.36).

Progoitrin production

Plasmodiophora brassicae infection caused a significant reduction (PcO.OOl) of 

progoitrin during symptom development stage (21 DPI), which was a two-fold 

decrease compared to healthy controls. There was no difference in glucoiberin content 

between infected and healthy plant at later stages of disease development (42 DPI).

Phosphonate, Bion and their combined application in both inoculated and inoculated 

plants suppressed levels of progoitrin in aerial tissues at early and later stages of 

disease development however chemical treated inoculated and uninoculated plants 

gave lower amounts of progoitrin than untreated uninoculated control plants (Figure 

4.37).
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Glucoraphanin production

The concentration of glucoraphanin did not change in response to infection with P. 

brassicae at any stage of disease compared to uninoculated healthy plants. 

Glucoraphanin production in broccoli leaves and shoots were three times higher in 

inoculated and uninoculated plants at transplanting time compared to symptom 

development and gall formation stages.

Throughout disease development, combined application of phosphonate and Bion in 

both inoculated and uninoculated plants gave lower amounts of glucoraphanin 

compared to single application of phosphonate and Bion (Figure 4.38).

Gluconapin production

P. brassicae infection had no significant effect on gluconapin production in broccoli 

aerial parts at the gall formation stage (42 DPI). At symptom development, 

gluconapin production decreased two-fold in infected plants compared to healthy 

plants. The amount of gluconapin was higher at the transplant stage than both 

symptom development and gall formation stages.

Single applications of phosphonate or Bion either in inoculated or uninoculated 

significantly increased the levels of gluconapin. However their combined application 

did not enhance the gluconapin accumulation and concentrations of gluconapin 

remained the same in inoculated and healthy control plant at transplanting time 

(Figure 4.39).
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Total aliphatic glucosinolate

Considering all treatments, contents of total aliphatic glucosinolate were significantly 

higher (PcO.OOl) at the time of seedling transplantation compared to later symptom 

(21 DPI) and gall formation (42 DPI) stages of disease development. There were no 

significant differences in total aliphatic glucosinolate accumulation in aerial tissues 

from inoculated plants compared with healthy plants at any stage of the disease cycle. 

Phosphonate and Bion application in either inoculated or uninoculated plants reduced 

aliphatic glucosinolates accumulation 1.5 to 2 fold at the symptom and gall producing 

stage of clubroot disease in broccoli (Figure 4.40). However, combined application of 

Phosphonate and Bion significantly reduced the total aliphatic glucosinolate content 

compared with application of phosphonate (P<0.001) and Bion (P<0.01) alone at the 

time of seedling transplanting (Figure 4.40).

4.7.4 Indole glucosinolate production in broccoli aerial tissues 

4-hydroxy glucobrassicin production

Chemical treatment (phosphonate, Bion or their combination) in both inoculated and 

uninoculated plant completely suppressed the accumulation of 4-hydroxy 

glucobrassicin during mature gall forming stage of disease development. At the 

symptom development stage, phosphonate application in uninoculated plants 

significantly increased (P<0.001) 4-hydroxy glucobrassicin production (1.77 pmole/g 

DW) compared to phosphonate treated inoculated plant (0.45 pmole/gDW). At early 

stages of disease development, no significant differences were observed among 

chemical treatments and concentrations varied between 0.25 to 0.45pmole/g DW 

among all treatments including control plants (Figure 4.41).



There was a significant difference (PcO.OOl) between the content of 4-hydroxy 

glucobrassicin in P. brassicae infected and healthy plants at the mature gall formation 

stage. Concentrations were nine fold higher in infected plants (2.22 pmole/gDW) 

compared with healthy plants (0.25 pmole/g DW). During the symptom development 

stage, infection caused seven times higher 4-hydroxyglucosinolate production 

compared to healthy plants.

Glucobrassicin production

The glucobrassicin content in infected and healthy control plants was not different at 

both symptom development and gall formation stage. At every stage of the pathogen 

life cycle, chemical treatment of both inoculated and uninoculated root reduced the 

levels of glucobrassicin. No significant differences in glucobrassicin concentration 

were detected among the chemical treatments either in inoculated or uninoculated 

seedlings during early stage of the pathogen life cycle however, large variations of 

glucobrassicin production were observed among the chemical treated plants during 

symptom development and gall forming stages of the pathogen life cycle. 

Phosphonate and Bion in inoculated plants and Bion in uninoculated plants had no 

significant differences on levels of glucobrassicin at both symptom and severe gall 

forming stages, whereas combined application of phosphonate and Bion significantly 

(P<0.01) reduced glucobrassicin accumulation in leaves and shoots of broccoli 

seedling at same or later stages of pathogen infection (Figure 4.42).

Neoglucobrassicin production

Neoglucobrassicin production in above ground organs was not detected in chemical 

treated inoculated and uninoculated plants at 0 DPI and also in Bion treated
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inoculated plant at 21 DPI, whereas P. brassicae infection significantly (PcO.OOl) 

enhanced neoglucobrassicin accumulation (1.65 p.mole/g DW) at symptom 

development stage (21 DPI). Neoglucobrassicin content was low during initial 

infection stages (0.3 pmole/g DW) but increased four-fold in infected plant (2.0 

pmole/g DW) at later stages of infection (42 DPI) which was significantly (P<0.05) 

lower compared to healthy plants (1.3 pmole/g DW).

Phosphonate and phosphonate-Bion combined application to inoculated plant 

significantly (P<0.01) increased neoglucobrassicin levels compared with untreated 

inoculated plants during matured gall forming stage (42 DPI). Chemically treated 

uninoculated plant had significantly (P<0.05) less neoglucobrassicin production in 

above ground organ compared with both non-chemically treated plants during gall 

formation stages (Figure 4.43).

Total Indole glucosinolate production

Total indole glucosinolate levels in leaves and shoots were significantly higher in 

untreated P. brassicae infected control plants than in healthy plants at both symptom 

(P<0.05) and mature gall forming stage (P<0.01).

Initially, indole levels were low and gradually increased during the infection process. 

Chemical activator application in both inoculated and uninoculated plant suppressed 

the accumulation of total indole in above ground organs compared to non treated 

diseased and healthy control plants during symptom and gall formation stages of 

clubroot in broccoli (Figure 4.44).
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Glucoiberin (leaf-shoot)

Time (days post inoculation)

Phosphonate & Inoculated Bion & Inoculated ■ ■  Combine (Ph+Bn) & Inoculated

= :  Phosphonate & Uninoculated Bion & Uninoculated S= = 3 Combine (Ph+Bn) & unioculated 

Inoculated (P. brassicae) control £53 Uninoculated (Healthy) control

Figure 4.36. The effect of phosphonate and Bion on glucoiberin content of Brassica 
oleracea aerial tissues following Plasmodiophora brassicae infection (0 to 42 days 
post inoculation). Data points represent the mean of four experimental replicates and 
error bars are the standard errors (±SE).

Progoitrin (leaf-shoot)

Time (days post inoculation)

■ ■  Phosphonate & Inoculated ■ ■  Bion & Inoculated am  Combine (Ph+Bn) & Inoculated

5 3 3  P h osp honate*  Uninoculated S33  Bion & Uninoculated g s  Combine (Ph+Bn) & unioculated 

H i  Inoculated (P. brassicae) control Uninoculated (Healthy) control

Figure 4.37. The effect of phosphonate and Bion on progoitrin content of Brassica 
oleracea (broccoli) aerial tissues following Plasmodiophora brassicae infection (0 to 
42 days post inoculation). Data points represent the mean of four experimental 
replicates and error bars are the standard errors (±SE).
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Glucoraphanin
(leaf-shoot)

Time (days post inoculation)

■ ■  Phosphonate & Inoculated Bion & Inoculated Combine (Ph+Bn) & Inoculated

Phosphonate & Uninoculated s a s  Bion & Uninoculated ~ ~  Combine (Ph+Bn) & unioculated 

■ ■  Inoculated (P. brassicae) control Uninoculated (Healthy) control

Figure 4.38. The effect of phosphonate and Bion on glucoraphanin content of 
Brcissica oleracea (broccoli) aerial tissues following Plasmodiophora brassicae 
infection (0 to 42 days post inoculation). Data points represent the mean of four 
experimental replicates and error bars are the standard errors (+SE).

Gluconapin
(leaf-shoot)

Time (days post inoculation)

Phosphonate & Inoculated ,,®*, Bion & Inoculated ■ ■  Combine (Ph+Bn) & Inoculated 

S 3  Phosphonate & Uninoculated S 3  Bion & Uninoculated e ss  Combine (Ph+Bn) & Unioculated 

WKt Inoculated (P. brassicae) control S 3  Uninoculated (Healthy) control

Figure 4.39. The effect of phosphonate and Bion on gluconapin content of Brassica 
oleracea (broccoli) aerial tissues following Plasmodiophora brassicae infection (0 to 
42 days post inoculation). Data points represent the mean of four experimental 
replicates and error bars are the standard errors (±SE).
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Aliphatic total 
(leaf-shoot)

»  30-i
<u

Time (days post inoculation)

■ ■  Phosphonate & Inoculated ■ ■  Bion & Inoculated ■ ■  Combine (Ph+Bn) & Inoculated 

SSE Phosphonate & Uninoculated ESS Bion & Uninoculated 5=3 Combine (Ph+Bn) & Unioculated

Inoculated (P. brassicae) control Un inoculated (Healthy) control

Figure 4.40. The effect of phosphonate and Bion on total aliphatic glucosinolate 
content of Brassica oleracea (broccoli) in aerial tissues following Plasmodiophora 
brassicae infection (0 to 42 days post inoculation). Data points represent the mean of 
four experimental replicates and error bars are the standard errors (+SE).

40HGIucobrassicin
(leaf-shoot)

Time (days post inoculation)

■ ■  Phosphonate & Inoculated Bion & Inoculated Combine (Ph+Bn) & Inoculated

Phosphonate & Uninoculated ESS Bion & Uninoculated SEE Combine (Ph+Bn) & Unioculated 

■ i  Inoculated (P. brassicae) control SEE Uninoculated (Healthy) control

Figure 4.41. The effect of phosphonate and Bion on 4 OH glucobrassicin content of 
Brassica oleracea (broccoli) aerial tissues following Plasmodiophora brassicae 
infection (0 to 42 days post inoculation). Data points represent the mean of four 
experimental replicates and error bars are the standard errors (±SE).
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Glucobrassicin
(leaf-shoot)

Time (days post inoculation)

Phosphonate & Inoculated Bion & Inoculated ■ ■  Combine (Ph+Bn) & Inoculated

S=S Phosphonate & Uninoculated =£3 Bion & Uninoculated ==3 Combine (Ph+Bn) & Unioculated 

■ ■  Inoculated (P. brassicae) control =333 Uninoculated (Healthy) control

Figure 4.42. The effect of phosphonate and Bion on glucobrassicin content of 
Brassica oleracea (broccoli) aerial tissues following Plasmodiophora brassicae 
infection (0 to 42 days post inoculation). Data points represent the mean of four 
experimental replicates and error bars are the standard errors (+SE).

Neoglucobrassicin
(leaf-shoot)

Phosphonate & Inoculated ■ ■  Bion & Inoculated ■ ■  Combine (Ph+Bn) & Inoculated

Phosphonate & Uninoculated SS3 Bion & Uninoculated s= S  Combine (Ph+Bn) & Unioculated 

■ ■  Inoculated (P. brassicae) control =3= Uninoculated (Healthy) control

Figure 4.43. The effect of phosphonate and Bion on neoglucobrassicin content of 
Brassica oleracea (broccoli) aerial tissues following Plasmodiophora brassicae 
infection (0 to 42 days post inoculation). Data points represent the mean of four 
experimental replicates and error bars are the standard errors (±SE).
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Indole total 
(leaf-shoot)

Time (days post inoculation)

■ ■  Phosphonate & Inoculated ■ ■  Bl0n & Inoculated mm Combine (Ph+Bn) & Inoculated 

S55 Phosphonate & Uninoculated E23 Bion & Uninoculated Combine (Ph+Bn) & Unioculated 

■ 1  Inoculated (P. brassicae) control =22 Uninoculated (Healthy) control

Figure 4.44. The effect of phosphonate and Bion on total indole glucosinolate content 
of Brassica oleracea (broccoli) aerial tissues following Plasmodiophora brassicae 
infection (0 to 42 days post inoculation). Data points represent the mean of four 
experimental replicates and error bars are the standard errors (±SE).
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4.8 Discussion: The effect of phosphonate and Bion on glucosinolate levels 
following P. brassicae inoculated and uninoculated plant

This is the first report analysing glucosinolate levels in Brassica inoculation with 
Plasmodiophora brassicae prior to foliar sprays of phosphonate or Bion. This study 
provides the first direct evidence that these plant defence chemicals can strongly 
affect aliphatic and indole glucosinolate levels both in aerial and root tissues during 
root infection by the obligate clubroot pathogen, Plasmodiophora brassicae. This 
study focused on the analysis of aerial and root tissues at the initial infection (0-7 
DPI), clubroot symptom development stage (7-28 DPI) and finally the later stage of 
this infection process (42 DPI, time of characteristic gall formation).

Results at the final stage of clubroot gall maturation (42 dpi) on variations of 
glucosinolate levels following the application of phosphonate and Bion are 
summarized (Table 4.1). Results have been displayed to show the changes 
glucosinolate levels in treated, uninoculated plants and treated in inoculated plants, 
compared with non treated uninoculated and inoculated control plants respectively. 
Significant changes in glucosinolate levels occurred at the stage of characteristic gall 
formation.

Phosphonate or Bion application has a significant systemic impact on total indole root 
glucosinolate levels in B. oleracea cv. Marathon. No significant changes in root 
aliphatic glucosinolate levels following single applications of phosphonate or Bion in 
either pathogen inoculated or uninoculated plants.
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Table 4.1. Summary of the variations of individual aliphatic and indole and total 
aliphatic and indole glucosinolate following P. brassicae inoculation and chemical 
treatment in aerial and root tissue of B. oleracea spp italica cv. Marathon (Broccoli) 
during matured gall formation (42 DPI)

Treatments Individual and total aliphatic and indole glucosinolate profile

GB PN GR GN Aliphatic
Total

40H
GBS

GBS NGBS Indole
Total

Root tissue Compared with uninoculated, untreated( healthy) plant
Unino & Ph ns nd ***

□
ns ns ns ns *** ***

Unino & 
Bion

ns nd ns ** ns ns ** ** ns

Unino & 
Ph+Bn

ns nd ***
□

ns ** *□ ns *□ ns

Inoculated Compared with inoculated, untreated ( diseased) plant
Ino & Ph ns ns ns ns ns *□ ***

□
*□ *** []

Ino & Bn ns ns ns ns ns ns ***
□

ns *** []

Ino & 
Ph+Bn

** ** ns ns ** ***
□

ns ns ns

Aerial
tissue

Compared with uninoculated, untreated( healthy) plant

Unino & Ph ***
□

***
□

*□ *** j 1
nd

*** j ns/n
d

ns ns ns

Unino & 
Bion

***
□

***
□

*□ ***
nd

*** 1 j ns/n
d

***
□

ns *** ;

Unino & 
Ph+Bn

***
□

***
□

***
□ d

*** ns/n
d

***
□

ns ***

Inoculated Compared with inoculated, untreated ( diseased) Diant
Ino & Ph ***

□
***
□

ns *** ; 
nd

*** 1 *** 
□ nd

ns *** ] ns

Ino & Bn ***
□

***
□

ns ***
nd

* * * ] *** 
□ nd

ns ns ns

Ino & 
Ph+Bn

***
□

***
□

***
□ d

*** ! j ***
nd

***
□

** ***

GB; Glucoiberin, PN; Progoitrin, GR; Glucoraphanin, GN; Gluconapin; 40HGBS; 4 OH 
Glucobrassicin, GBS; Glucobrassicin, NGB; Neoglucobrassicin, Ph; potassium phosphonate, 
Bn; Bion, Nd; Not detected. Ns; not significant at P<0.05, □; Decreased, ; Increased, *; 
P<0.05, **; P<0.01 and ***; PcO.OOl.

120



A single application of phosphonate or Phosphonate + Bion in uninoculated plant significantly decreased the production of glucoraphanin in root tissue while no changes were observed in inoculated plants. A  single application of phosphonate or Bion has almost no effect on root total aliphatic glucosinolate levels either in inoculated or uninoculated plants. Interestingly, total aliphatic glucosinolate production was significantly reduced in uninoculated, but then increased in inoculated plants following the combined application of phosphonate and Bion signifying that the aliphatic glucosinolate synthesis pathway shifted following infection. Furthermore, combinations of phosphonate and Bion might regulate accumulation of aliphatic glucosinolate levels in root tissues of broccoli. This indicates that the root pathogen triggers signalling pathways, and may significantly alter food quality by stimulated biosynthesis pathway of particular compounds (van Dam et al. 2003).
Phosphonate or Bion application to shoot in inoculated plant significantly (PcO.OOl) reduced indole levels in root tissues compared to inoculated control plants, whereas phosphonate application in uninoculated plants stimulated accumulation rate of indole levels. The application of Bion to uninoculated plants did not change total indole levels however, glucobrassicin and neoglucobrassicin significantly increased and decreased, respectively. This result indicates that P. brassicae infection interacting with single application of phosphonate or Bion suppressed the production of indole glucosinolates in root tissue.
The total indole reduction might be correlated to gall formation. There is evidence that indole glucosinolates are implicated in gall formation. Plants with lower indole production have a lower capacity for indole acidic acid synthesis and turnover of



indole glucosinolates (Chong et al. 1984; Ludwig-Müller et al. 1997). Disease 

severity score (Figure 4.47) clearly indicates that single applications of phosphonate 

or Bion significantly reduce gall severity and gall size compared with non-treated 

inoculated control plants. These results from our observation certainly establish a 

significant correlation between glucobrassicin reduction and suppression of symptom 

development. Metabolites of glucobrassicin may be associated with the development 

of galls (Ockendon and Buczacki 1979; Ludwig-Müller and Cohen 2002).

Ludwig-Müller (1997) showed that after inoculation with P. brassicae, symptoms of 

clubroot in the Chinese cabbage varieties, Granat and Osiris showed higher 

glucosinolate levels, especially indole glucosinolates. Ludwig Muller also confirmed 

through scanning electron microscopy that plasmodia of P. brassicae were confined 

in the resistant variety (Parkin), demonstrating that indole glucosinolate levels affect 

the auxin content and may influence symptom development of clubroot disease. The 

absence of these compounds does not confer resistance to the plant, but rather 

prevents club development. Evidence from other literature concerning this point is 

conflicting. Butcher et al. (1976) and Chong et al. (1981 & 1984) found correlations 

between low indole glucosinolates content of the plants and resistance to clubroot, 

however Mullin et al. (1980) did not confirm these results. Previous demonstration by 

Ludwig-Müller et al. (1993) indicated that indole glucosinolates only increased when 

club formation was observed. Invasion of roots of the susceptible variety Granat in 

liquid culture did not lead to clubroot symptoms, and the indole glucosinolates 

content did not increase compared with controls.
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The data summarised in Table 4.1 indicate that either individual or total aliphatic 

glucosinolate production in aerial tissues was significantly (PcO.OOl) lower following 

both single and combined applications of phosphonate and Bion in inoculated and 

uninoculated plants. These results suggest that phosphonate and Bion induce a 

systematic response resulting in a reduction of aliphatic glucosinolate levels. This also 

indicates that P. brassicae infection did not affect aliphatic glucosinolate 

accumulation in aerial tissues. Information published by Kiddle et al. (1994) and 

Ludwig-Miiller (1997) showed that Bion application in did not increase overall 

glucosinolate levels in shoots of B. nigra and B. campestris.

The levels of indole glucosinolates in aerial tissue remained unchanged following 

phosphonate application in uninoculated and inoculated plants. Phosphonate and Bion 

combined induced significant (PcO.OOl) reduction of total indole levels, but a single 

application of Bion in uninoculated plant significantly reduced total indole levels. 

Total indole glucosinolates of inoculated plant roots remained unaffected. This 

suggests both Bion application and pathogen infection influenced the signalling 

pathway in B. oleracea. This also indicates that a decrease or no change in root 

glucosinolate synthesis would not necessarily decrease levels in shoots as well, 

because the above ground and below ground aliphatic and indole profiles are 

regulated independently (Sang et al. 1984; Potter et al. 1999).

The significant overall correlation due to phosphonate and Bion application 

particularly in root tissues in P. brassicae infected and uninfected plants throughout 

the experiment (0 to 42 DPI) indicated that metabolites of glucosinolates may be 

associated with the progression of gall formation. Phosphonate has been shown to
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enhance the plant defence responses, including lignification, phytoalexin 

accumulation and hypersensitive cell death (Guest 1984; Saindrenan et al. 1988). In 

several plant species, jasmonic acid and salicylic acid (plant signalling hormone) have 

systemic activity (van Dam et al. 2001; Rostas et al. 2003). Based on the previous 

knowledge, it was hypothesised that phosphonate and Bion application against 

clubroot pathogen could play an important role altering defence compound like 

glucosinolates and may also varying roots and shoot induced responses. Recent 

demonstration by Van Dam et al. (2003) suggested that SA applications reduced root 

glucosinolates in root treated plants whereas shoot levels remained similar. This 

indicates that the physiochemical regulation, clarification of signalling pathways of 

major glucosinolate profiles in root-shoot tissues of brassicas requires further 

investigation, including the effects of phosphonate and Bion on both root and shoot 

organs.

Thus decreased (□) levels of indole glucosinolates reflect suppression of symptom 

development by phosphonate or Bion.

The full significance of these findings reported here and the effect of phosphonate and 

Bion on other pathogens in field and glasshouse condition has yet to be assessed. The 

results also suggested that current ideas regarding the symptom development and 

relative importance of indole glucosinolate synthesis pattern (MacDanell et al. 1988; 

Ludwig-Müller et al. 1999a & 1999b) needs to be revaluated.
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4.9 Results: The effect of phosphonate and Bion on clubroot disease severity

In the glasshouse trial, potassium phosphonate, Bion or their combination were 

sprayed to evaluate their suitability in suppressing clubroot severity. Plants were 

harvested 42 days post inoculation. Gall size was scored (0 to 5 scale) visually and 

fresh weight of gall (g) was also compared to determine a suitable management option 

for clubroot disease of broccoli.

There were significant differences in disease scores of broccoli plants among the 

chemical treatments 6 weeks post inoculation. Phosphonate application showed 

significantly lower (P<0.001) disease score (2.5) followed by Bion (3.25), combined 

treatment (3.50) compared with inoculated control treatment (4.75). There was no 

significant difference between Bion and phosphonate-Bion combined application in 

suppressing gall formation however, Bion and combined treatment significantly 

(P<0.05) reduced gall weight compared with the inoculated control treatment (Figure 

4.45 and 4. 46).

The same trend was seen in fresh gall weights among chemical and non-chemical 

treated control plant. Fresh weights of galls were affected by the chemical treatments. 

Highest fresh gall weight (56.8 g) was harvested from the non treated plant which had 

significantly higher (PcO.OOl) fresh gall weights compared with the rest of the 

treatments (Figure 4.46). Phosphonate treated plants produced significantly lower 

fresh gall weight followed by Bion (32.5 g) and the combined treatment (45.8 g) 

plants. Phosphonate treated plant contained galls at least 3 times smaller than control 

plants (Figure 4.47).
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Bion Pathogen Combined Phosphonate
control (Ph+Bn)

Figure 4.45. The effect of phosphonate and Bion on clubroot disease severity (gall 
score) 42 day after inoculation. Least significant differences (LSD): 0.832.

Figure 4.46. The effect of phosphonate and Bion on fresh gall weight following 
Plasmodiophora brassicae harvested at 42 day after inoculation. Least significant 
differences (LSD): 6.074.
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Figure 4.47 The effect of chemicals on clubroot disease severity, A. Untreated uninoculated healthy 
root B. Untreated inoculated (P. brassicae) control root C. Phosphonate & Bion treated root D. Bion 
treated root E. Phosphonate treated root.
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4.10 Discussion

Plants absorb phosphonate through leaves and stems, then show increased defence 

responses following inoculation (Guest and Bompeix 1990; Grant et al. 1990). This 

may inhibit the formation of infective and reproductive structures. Bion (acibenzolar, 

50% a.i. wettable granule formulation) is a non fungicidal compound used to combat 

plant pathogens by inducing the plant’s natural defence mechanisms (Tally et al. 

1999). This chemical is a functional analogue of salicylic acid shown to accumulate in 

plants challenged with a pathogen (Friedrich et al. 1996). Following accumulation of 

salicylic acid, plant defence gene(s) are induced (Lawton et al. 1996) triggering the 

production of defence compounds.

In this study chemicals were sprayed on 10 day old seedling leaves 4 days prior to 

seedling transplanting into the inoculated potting mix. Phosphonate (Agrifos 600) 

significantly reduced the severity of clubroot of broccoli in glasshouse trials more 

than Bion or a combination of phosphonate and Bion. Similar results were observed 

when gall size was measured, indicating that phosphonate is most effective in 

reducing fresh gall weight compared to other treatments.

Phosphonate is directly toxic to target pathogens but also may protect plants by 

enhancing the defence response of the treated plant against the invading pathogen 

(Guest et al. 1988; Grant et al. 1990; Guest and Bompeix 1990).

A low dose of phosphonate (lg a.i./L of water ) was applied because of possible side 

effects such as leaf burning, and stunting have been documented under phosphate 

limiting conditions ( Carswell et al. 1996). Also excessive concentrations can result in
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severe phytotoxicity (Pilbeam et al. 2000; Hardey et al. 2001). Phosphonate treatment 

reduced gall formation 6 weeks after inoculation, and the average gall score was 2.5 

out of 0 to 5 scale, whereas non treated, inoculated control plant had an average gall 

score of 4.75.

A higher rate of phosphonate application may provide excellent clubroot control 

however they also may not be economically feasible and may cause phytotoxicity. In 

this instance, further studies need to be undertaken to optimise the doses and minimise 

phytotoxicity, both in glasshouse and field trials.

The first report on the efficacy of phosphonate to control clubroot of B. rapa var. 

cinensis, B. rapa var. perkinensis and B. oleracea var. capitata in naturally infested 

muck soils was reported by Abbasi and Lazarovits at al. (2006). Their published 

results support the findings of our glasshouse trial, however they applied phosphonate 

as a number of soil drenches before and after transplanting. Phosphonate 

concentration of 0.07 and 0.14% a. i /L. as soil drenching before and after planting 

significantly reduced clubroot severity under glasshouse condition.
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Chapter V. General Discussion

Optimised inoculation procedures for Plasmodiophora brassicae on broccoli under 

greenhouse conditions were developed. Changes in glucosinolate levels in root and shoot 

organs were demonstrated following natural and artificial infection with P. brassicae. 

Both phosphonate and Bion were shown to alter glucosinolate levels following pathogen 

infection, and phosphonate was shown to reduce clubroot severity.

Root and aerial tissues from naturally and artificially infected plants were analysed for 

four aliphatic glucosinolates (glucoiberin, progoitrin, glucoraphanin and gluconapin) and 

three indole glucosinolates (4-hydroxy glucobrassicin, glucobrassicin and 

neoglucobrassicin). In aerial tissues, aliphatic glucosinolate levels were unchanged 

following P. brassicae infection. Indole glucosinolate levels were significantly higher in 

inoculated plants at each sampling time point (7, 14, 21, 28, 35 and 42 DPI) compared to 

uninoculated plants. Particular glucosinolate levels increased or decreased mostly at 

symptom development and mature gall forming stages.

In root tissue, aliphatic glucosinolate levels in diseased plants were significantly higher at 

symptom development phase (28 DPI) while no significant changes were observed 

between diseased and healthy roots at primary, early secondary infection stage and later 

mature gall forming stages. Total indole glucosinolate levels declined at the primary 

stage of infection, but significantly increased during symptom development phase to gall 

forming stages.

Data from these experiments suggest that aliphatic glucosinolates, both in root and in 

aerial tissues, are less affected than indole glucosinolates by clubroot infection. Changes
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in indole glucosinolate levels following clubroot in relation to clubroot disease 

development have been reported in previous studies. The concentration and synthesis of 

auxin and cytokinins are increased in P. brassicae infected tissues. While it was 

demonstrated that the vegetative secondary plasmodia of the pathogen produce cytokinins 

(Muller and Hilgenberg 1986), the increased amount of IAA might be due to the 

increased synthesis and turnover of auxin precursors in infected roots (Searle et al. 1982; 

Rausch et al 1983). The break down of indole glucosinolates, which could lead to the 

release of relatively large amounts of auxin, is responsible for inducing clubroot 

symptoms (Butcher et al. 1974). This implies that levels of indole glucosinolates do not 

increase in resistant host. This hypothesis is consistent with the evidence shown by 

Ludwig-Miiller et al. (1997) that indole glucosinolate increased during development of 

the clubroot disease in two susceptible varieties, but did not change in two 

Plasmodiophora-resistant Chinese cabbage varieties.

This study aimed to observe the changes of glucosinolate concentration following P. 

brassicae infection and foliar spray of potassium phosphonate and Bion. Glucosinolate 

profiles and suppression of gall formation were monitored. The levels of aliphatic 

glucosinolate in root tissues increased 2.5 times in treated plants compared to untreated 

plants 4 days after chemical treatment. Glucosinolate accumulation gradually decreased 

both in inoculated and uninoculated plants over time. During gall formation chemical 

treatments of either inoculated or uninoculated plants induced no changes in 

glucosinolate levels compared to untreated inoculated or inoculated plant. This result 

indicates aliphatic glucosinolate levels are almost unaffected due to P. brassicae infection 

or chemical treatment.
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At final stage of gall formation, the accumulation of indole glucosinolates in Bion and 

phosphonate treated inoculated plant root were suppressed significantly compared to 

inoculated plants but treated uninoculated plants showed almost similar levels of indole 

glucosinolates to uninoculated plants.

There is good evidence that pathogen infection stimulated the accumulation of indole 

glucosinolates but that chemical application inhibited the growth of the pathogen and 

ultimately resulted in a suppression of indole production. This finding might be 

correlated with the results from the clubroot gall score and fresh gall size significantly 

reduced in phosphonate and Bion treated plants. Previous studies show that gall 

formation is directly or indirectly correlated with the production of indole glucosinolates. 

In particular, glucobrassicin may play vital role in gall formation. This was also 

investigated by Butcher et al. (1974) who found that plants having little or no indole 

glucosinolates were resistant to clubroot and developed fewer symptoms. In this study, 

glucobrassicin levels in phosphonate and Bion treated inoculated plant at 42 DPI dropped 

nearly 200% and 20% compared to untreated inoculated plants respectively. Similar data 

was recorded for neoglucobrassicin and 4-hydroxy glucobrassicin. Gall development was 

suppressed by phosphonate and Bion indicating that these chemicals suppress the 

pathogen growth and development, simultaneously reducing indole glucosinolate 

accumulation or as in the case of phosphonate as directly inhibitory to the pathogen.

There might be another possibility that the chemical directly interrupted the biosynthesis 

of indole glucosinolate in plant root. Because phosphonate application in uninoculated 

plants slightly increases neoglucobrassicin accumulation resulted significant increase of 

total indole glucosinolate levels (42 DPI) than untreated uninoculated plants. Bion and
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combined application of Bion and phosphonate had a dual effect as glucobrassicin level 

decreased significantly in uninoculated plant and neoglucobrassicin significantly 

increased compared to untreated uninoculated plant (42 DPI). A similar pattern was 

observed in combined applications of phosphonate and Bion treated plant. For this 

reason, the second hypothesis needs to be further investigated as there is no available 

evidence published elsewhere with such a interaction between Bion or phosphonate, P. 

brassicae infection and glucosinolate profiles in brassica. Abbasi and Lazarovits et al. 

(2006) tested the effect of phosphonate on clubroot formation and found similar 

effectiveness to this study, but they did not monitor glucosinolate levels following 

infection.

Chemical application in aerial tissues of inoculated and uninoculated plants, significantly 

suppressed total aliphatic glucosinolate levels. Phosphonate application in uninoculated 

plants did not cause any changes in total indole glucosinolates levels, but Bion and 

combined applications significantly reduced indole production levels compared to 

untreated uninoculated plants. Phosphonate and Bion application did not cause any 

change in indole glucosinolate levels in inoculated plants but combined applications 

significantly reduced levels of total indole compared to untreated inoculated plants. These 

results show a complex pattern of indole glucosinolate accumulation in aerial plant 

tissues following pathogen infection of roots.

The most plausible physiological explanation for the observed differences in root and 

shoot patterns is that both organs have a different regulation of glucosinolate biosynthesis 

and turnover. Transportation of glucosinolates via the phloem over long distances (Chen 

et al. 2001) is not likely to be the main cause. This is supported by the observation that
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the induction of specific indole glucosinolates by aphids occurs in leaves as well, 

producing a role for transport from the roots (Kim and Jander 2007). Progress has been 

made in identifying transcription factors of glucosinolate biosynthesis (Yan and Chen, 

2007). Several of these glucosinolate transcription factors showed organ specific 

expression patterns (Gigolashvili et al. 2007a & 2007b & 2008) However, a more 

detailed experimentation and analysis of tissue specific regulation of glucosinolates 

synthesis and turn-over, as well as integration into the general metabolism is needed to 

elucidate the mechanism of specific gene involvement in specific glucosinolates 

accumulation rate throughout the biosynthetic and signalling pathway of particular 

glucosinolate.

This study has demonstrated the effect of clubroot on aliphatic and indole glucosinolates 

in root and aerial tissues of 35 days field grown brassica (B. rapa cv. cinensis). Our 

attempt was to compare glucosinolate profiles of managed and naturally grown clubroot 

infected brassica crop. Interesting results from both natural and controlled systems were 

found. This glasshouse trial was good model of field grown samples. In both cases, 

clubroot disease strongly enhanced indole glucosinolate accumulation both in root and 

aerial tissues. Only a small dissimilarity was observed in aliphatic glucosinolates. In the 

glasshouse trial, clubroot infection did not affect total aliphatic glucosinolates in the 

aerial parts while field grown sample analysis showed 12% reduction of total aliphatic 

accumulation in clubroot infected aerial tissues. In roots, total aliphatic glucosinolates 

increased 3 times and similarly, in glasshouse trial, total aliphatic glucosinolates 

increased 1.5 times during gall development (28 DPI). The evidence of this comparative
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study suggests that the changes in glucosinolate profiles following P. brassicae infection 

followed a similar trend in field and glasshouse-grown plants of different species.

This study focused on changes in glucosinolate profiles following clubroot infection, 

rather than defensive roles of particular glucosinolates. Individual glucosinolate levels 

strongly responded to pathogen infection, particularly the indole glucosinolates. A 

possible reason for this is the direct or indirect involvement of Indole Acidic Acid (IAA) 

in gall formation. Myrosinase may preferentially convert indole glucosinolates to their 

corresponding nitriles and then to IAA (Fenwick et al. 1983a) hence, indole 

glucosinolates can be an alternative pathway of auxin production in brassica. The 

induction of auxin via indole glucosinolates may be responsible for many of the 

symptoms in brassica following pathogen attack (Mithen 1992). There are several factors 

that still need to be investigated before a precise role can be attributed, including changes 

to TrpOXE (Tryptophan Oxidase Enzyme) activity after infection, the activity of nitrilase 

and the pH of infected cells, and how this influences the products from myrosinase- 

catalysed degradation (Ludwig-Muller et al. 1999a & 1999b).

One aliphatic glucosinolate, progoitrin (2 hydroxy-3 butenyl) significantly increased both 

in root and aerial tissues following infection of P. brassicae, both in field and glasshouse 

trial study. It is necessary to investigate if there is any involvement of progoitrin in 

disease resistance. The toxic activity of hydrolysis products of indole glucosinolates to 

some pests and pathogens have been reported (Mithen et al. 1986). The hydrolysis 

product of hydroxyl aliphatic glucosinolates like progoitrin had no toxic activity towards 

Leptosphaeria maculans (Mithen et al. 1986).
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The evidence from suppression of gall formation and fresh gall size after chemical 

treatment shows that phosphonate is strongly effective and Bion moderately effective 

against P. brassicae development but combined application was not effective in 

suppressing gall development. Conflicting patterns of glucosinolate profiles both root and 

shoot tissues due to combined applications of phosphonate and Bion application were 

found. This suggests a need to further investigate glucosinolate profiles and clubroot 

management following combined applications of phosphonate and Bion, both in foliar 

and root treatment using different doses. Effectiveness of phosphonate might be due to 

its ability to be absorbed rapidly and translocate within the plant in both the xylem and 

phloem (Cohen and Coffey 1986). It can persist in plant tissues for extensive periods 

(Carswell et al. 1996) have protective and curative properties (Wicks et al. 1991; Marks 

and Smith 1992) and displays a complex mode of action, ranging from direct effects such 

as activation of host defence responses against a number of plant pathogens (Grant et al. 

1990; Guest and Bompeix 1990).

In vitro studies have demonstrated that a range of isothiocyanates, such as sulforaphane 

derived from glucoraphanin, the most abundant glucosinolate in broccoli, inhibited Phase 

I enzymes responsible for activation of carcinogens and induces Phase II detoxification 

enzyme systems, the body’s cancer defence mechanisms (Zang et al. 1992; Johnson 

2000; Talalay and Fahey 2001; Munday and Munday 2004). In our study, glucoraphanin 

significantly increased in aerial tissues following infection during symptom development 

time (14 DPI) and also significantly increased in root tissues during gall maturation (28 

DPI). This information might be good sign for breeders who are working on breeding for 

beneficial glucosinolate rich brassica varieties. Considering overall increase of
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glucosinolates that occurred in root tissue following infection, researchers may 

concentrate further on developing glucosinolate rich varieties of root brassica crops such 

as radish.

In this study of glucosinolate levels in roots and shoots some general patterns have been 

identified that may help us to understand better the role of different glucosinolates 

compounds in natural and controlled conditions. The levels and distribution of 

glucosinolates have been much better defined in relation to clubroot. The relationship 

between clubroot and aerial tissue glucosinolate profiles and fungicide interaction to root- 

shoot glucosinolates distribution is mostly unknown. More effort should go into 

analysing glucosinolate profiles in above ground tissues following root infection and 

chemical spray both as foliar and root treatments (soil drenching). This would provide 

insights into possible mechanisms causing the observed diversity in glucosinolate 

profiles. In addition, it would greatly benefit plant breeders wishing to manipulate 

glucosinolate composition in respect of health benefits and pest and pathogen specific 

defence responses.
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