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Abstract

Modern research into discrete integrable systems has provided new insights into a wide variety of

fields, including generalisations of special functions, orthogonal polynomials and dynamical systems

theory. In this thesis, we extend one of the most productive insights in this area to higher dimensions.

In particular, we show how to apply ideas from resolution of singularities and birational geometry

to discrete systems in higher dimensions.

The most widely studied setting for these ideas lies in spaces of dimension two. By blowing up

at certain points to resolve singularities found in maps on surfaces, new surfaces are constructed on

which the map becomes an isomorphism, a so-called space of initial conditions. This has led to new

developments in the field, including the discovery of new examples of integrable maps by Sakai [92]

with solutions that have unexpectedly rich properties.

On the other hand, this geometric approach has never been applied to integrable partial difference

equations (often called lattice equations), which share other properties with the maps in dimension

two. In this thesis, we overcome this gap.

In particular, we examine spaces of initial conditions for integrable lattice equations, which are

members of the equations classified by Adler et al [5], known as ABS equations. By explicitly

calculating the induced map on their resolved initial value spaces, we find transformations to new

lattice equations, and hence find novel reductions to discrete Painlevé equations. We also show that

an equation arising from the geometry of ABS equations is satisfied by the coefficients of a cluster

algebra associated with a form of the discrete mKdV.





Chapter 1: Introduction

The aim of this chapter is to introduce the topics underlying this thesis. It provides a historical

context of the field and an overview of major results found by others. All results in this thesis lie in

the field of integrable systems, a field possessing the continuous Painlevé equations at its core. For

this reason, we begin our journey by introducing the Painlevé equations and using them to build to

major areas covered by this thesis.

1.1 The Painlevé Equations

The Painlevé equations arose in the study of special functions defined as solutions of differential

equations. Linear ordinary differential equations are able to define a function as their solutions do

not have singularities depending on constants of integration. Toward the end of the 19th century,

Painlevé’s school sought to find nonlinear differential equations which share this property. By finding

equations with the so called Painlevé property (that is, that all movable singularities in the solution

are poles) Poincaré and Fuchs showed that any first order ordinary differential equation (ODE) with

this property can be transformed into the Weierstrass or Riccati equation, which can be solved in

terms of previously known functions.

In [82, 83], to search for second order ordinary differential equations with this property, equations

for y(z) of the form

y′′ = F (z, y, y′),

were considered (where F is a rational function [55]). It was found that (up to certain transformations)
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such equations can be transformed into one of 50 canonical forms. Of these, 44 could be solved in

terms of previously known functions. The remaining six have been come to be known as the Painlevé

equations, and are given by

y′′ = 6 y2 + z, (PI)

y′′ = 2 y3 + z y + α, (PII)

z y y′′ = z y′2 − y y′ + δ z + β y + α y3 + γ z y4, (PIII)

y y′′ =
1

2
y′2 + β + 2 (z2 − α) y2 + 4 z y3 +

3

2
y4, (PIV)

y′′ =

(
1

2 y
+

1

y − 1

)
y′2 − y′

z
+

(y − 1)2

z2

(
α y +

β

y

)
+ γ

y

z
+ δ

y (y + 1)

y − 1
, (PV)

y′′ =
1

2

(
1

y
+

1

y − 1
+

1

y − z

)
y′2 −

(
1

z
+

1

z − 1
+

1

y − z

)
+
y (y − 1) (y − z)
z2 (z − 1)2

(
α+ β

z

y2
+ γ

z − 1

(y − 1)2
+ δ

z (z − 1)

(y − z)2

)
, (PVI)

for complex constants α, β, γ, δ. The most general form of PVI was added to Painlevé’s list by

Gambier in [31]. Just as many special functions are defined as the solutions of linear functions, the

Painlevé equations define new special functions called the Painlevé transcendents. These solutions

are known to be transcendental (that is, cannot be expressed in terms of earlier known functions)

and therefore define truly new functions.

These equations are known to possess interesting symmetries, some of which give rise to to

Bäcklund transformations. These are transformations which take one solution of an equation to a

solution of the same equation, with different parameter values. For example, if y(z;α) is a solution

of PII with the parameter α, it is known that

y(z;α± 1) = −y − 2α± 1

2y2 ± 2y′ + z
, (1.1)

is a solution of PII with the parameter α± 1.

By eliminating the derivative y′ from (1.1), we arrive at the purely discrete equation [56]

α+ 1
2

yα+1 + yα
+

α− 1
2

yα + yα−1
+ 2 y2

α + z = 0, (1.2)

where yα = y(z;α). This equation may now be considered a discrete evolution equation with α as

2
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the independent variable. We call equations of this type ordinary difference equations or O∆Es.

Additionally, under an appropriate limit this discrete equation (1.2) reduces back to the continuous

Painlevé I equation (PI). We call the equation (1.2) a discrete Painlevé equation.

1.2 Discrete Painlevé Equations

In the past, discrete Painlevé equations were considered to be discrete equations which possessed

some continuum limit to a continuous Painlevé equation (as in the previous example). However,

with the discovery of several non-autonomous integrable discrete equations which do not have a limit

to a continuous Painlevé equation this definition was in need of improvement. Several attempts were

made to find a discrete equivalent to the Painlevé property, including singularity confinement [39, 57]

which will be explored geometrically in the following chapters. In short, singularity confinement is

the phenomenon by which a system is able to recover dependence on initial conditions when passing

over a singularity.

The earliest appearances of discrete Painlevé equations were not however in the context of

Painlevé systems. The first such example appeared in [94], as the following additive (or d–discrete)

equation

xn+1 + xn + xn−1 =
tn
xn

+ 1, tn = t0 + dn, (n ∈ Z). (1.3)

It was not related to Painlevé equations until the 1990s, when in [17] the continuum limit d → 0

was calculated in the study of two-dimensional quantum gravity. The result was the first Painlevé

equation y′′ = 6y2 + z, earning (1.3) the name dPI. Inspired by this study, in [24], Fokas, Its,

and Kitaev showed that there exist more discrete equations which are integrable in the sense of

possessing a Lax pair (a pair of linear operators corresponding to a dynamical system which can be

used to find solutions), and that some reduce to Painlevé equations under appropriate continuum

limits.

This opened the hunt for new Painlevé equations and conjecture on what a discrete equivalent

of the Painlevé property should be. The first candidate, singularity confinement, was proposed

independently by Grammaticos, Ramani, and Papageorgiou [39], and Joshi in [57]. This inspired a

3
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flood of discoveries of new discrete Painlevé equations via the deautonomisation of QRT mappings.

1.2.1 The QRT Mappings

In [86, 85], Quispel, Roberts, and Thompson developed a family of ordinary discrete mappings now

known as the QRT mappings, which are solvable in terms of elliptic functions. These mappings take

the form

xn+1 =
f1(xn)− xn−1 f2(xn)

f2(xn)− xn−1 f3(xn)
, (1.4)

where each of the fi are quartic polynomials expressed in terms of 12 parameters,
f1(x)

f2(x)

f3(x)

 =


α0 x

2 + β0 x+ γ0

β0 x
2 + ε0 x+ ζ0

γ0 x
2 + ζ0 x+ µ0

×

α1 x

2 + β1 x+ γ1

β1 x
2 + ε1 x+ ζ1

γ1 x
2 + ζ1 x+ µ1

 . (1.5)

The mapping (1.4) is known to have an invariant given by

K(x, y) =
α0x

2y2 + β0xy(x+ y) + γ0(x2 + y2) + ε0xy + ζ0(x+ y) + µ0

α1x2y2 + β1xy(x+ y) + γ1(x2 + y2) + ε1xy + ζ1(x+ y) + µ1
. (1.6)

This is an invariant in the sense that if we start with K1 = K(xn, xn−1) and compute K2 =

K(xn+1, xn) we find K1 = K2 if xn+1, xn, xn−1 satisfy (1.4).

In general, deautonomising the parameters will not result in an integrable mapping. However,

utilising the belief that integrable mappings should be confining, and therefore deautonomising

with the condition that the mapping remain confining, many integrable nonautonomous integrable

mappings were found. This vastly expanded the number of discrete Painlevé equations known [88].

In response to this immense equation zoo, there was a need to develop a theory to unify the

concept of discrete Painlevé equations. Following in the footsteps of Okamoto’s work on the

continuous Painlevé equations [79], in [92] Sakai developed the algebro-geometric framework for

discrete Painlevé equations that exists today. This is explored in depth in Chapter 2. In Chapter 4,

we apply techniques from algebraic geometry to partial difference equations for the first time. For a

complete treatment of QRT maps, and details of the background theory of elliptic surfaces on which

they are based, we direct the reader to Duistermaat’s book [22].

4
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1.3 Partial Difference Equations

For many decades there has been active interest in integrable partial difference equations and their

solutions. Analogous to the Painlevé case, the Bäcklund transformations of partial differential

equations (PDEs) give rise to higher dimensional discrete equations, or partial difference equations

(P∆Es). These equations on lattices possess many interesting properties of their own. In fact, since

they possess continuum limits to PDEs and reductions to discrete Painlevé equations, they can be

considered as the most fundamental of these objects.

In [33, 34] the Korteweg-de Vries equation (known to model many physical wave phenomena,

including shallow water waves and hydromagnetic waves in cold plasma [65, 32, 104]) was considered.

It is given by

wt − 6wwx + wxxx = 0. (1.7)

A general method to solve this equation was given (now known as inverse scattering), and it was

shown to possess soliton, or solitary wave solutions. This method was soon extended to the nonlinear

Schrodinger equation, the sine-Gordon equation, and others. This also led to the concept of the Lax

pair of a system being formalised in [67]. The famous potential Korteweg–de Vries (KdV) equation,

given by

ut − 3u2
x + uxxx = 0, (1.8)

is related to (1.7) by w = ux. For some parameter λ, the Bäcklund transformation between two

solutions u1 and u2 of (1.8) is given by the system [102]

(u1 + u2)x =
λ

2
+

1

2
(u1 − u2)2, (1.9a)

(u1 − u2)t = 3(u2
1 x − u2

2 x)− (u1 − u2)xxx. (1.9b)

Such Bäcklund transformations have played an important role in the development of soliton theory.

Using a given (N − 1)–soliton solution u1, integrating (1.9a) will give the N–soliton solution u2.

An extremely important (and beautiful) property of Bäcklund transformations is the Bianchi

permutability property, see [12]. Given two Bäcklund transformations u
α7→ ũ and

u
β7→ û, using parameters α and β respectively, there exists a unique ̂̃u = ˜̂u resulting from the

5
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composition of these two Bäcklund transformations. In other words, the following commuting

diagram holds:

α

αβ

β

u

û

ũ

̂̃u

Fig. 1.1: Commuting Bäcklund transformations

Using the Bianchi permutability property of the Bäcklund transformation (1.9a), the composition

of the transforms u
α7→ ũ and u

β7→ û gives

2(u+ ũ)x = α+ (u− ũ)2, (1.10a)

2(u+ û)x = β + (u− û)2, (1.10b)

2(û+ ̂̃u)x = α+ (û− ̂̃u)2, (1.10c)

2(ũ+ ̂̃u)x = β + (ũ− ̂̃u)2. (1.10d)

We can eliminate the derivatives from this system by computing (1.10a)-(1.10c)+(1.10d)-(1.10b)

(see [46]). This eliminates the derivatives from the system and yields the following purely discrete

equation

(u− ̂̃u)(ũ− û) + β − α = 0. (1.11)

Taking a continuum limit of (1.11), we arrive back at the continuous potential KdV equation (1.8).

Similar to the Painlevé case, the permutability property allows us to consider (1.11) as a discrete

evolution equation over a square lattice, composed of individual quadrilaterals (or quads) such

as Figure 1.1. The equation (1.11) is an example of an equation on quad-graphs, a so-called

quad-equation. See Figure 1.2.
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û

ˆ̂u

ˆ̂
û

ū

ˆ̄u

ˆ̄̂u

¯̄u

ˆ̄̄u

¯̄̄u

Fig. 1.2: Quadrilateral lattice generated by Bäcklund transformations.

By introducing a third lattice direction with corresponding parameter γ, (1.11) can be consistently

applied to the faces of the resulting cubic lattice. This property is called the consistency around the

cube. A Lax pair can be procedurally computed directly from this consistency, and is hence a strong

indicator of integrability. We will see lattice equations and what it means for them to be integrable

in more detail in Chapter 3.

1.3.1 Reductions of Lattices

The Ablowitz-Ramani-Segur conjecture [3] states that a nonlinear PDE is integrable in the sense of

the inverse scattering method if all nonlinear ODEs obtained by reduction have the Painlevé property.

Perhaps the most famous example of such a reduction is that of the modified KdV equation,

vt − 6v2vx + vxxx = 0. (1.12)

Introducing the variable z = x(3t)−1/3 and the dependent variable y = (3t)1/3v [93], after a single

integration we find

y′′ = 2y3 + z y + α, (1.13)

7



1. Introduction

where α is the constant of integration. This is precisely PII. With the discovery of integrable lattice

equations, the natural questions arose: What could be a discrete equivalent of such a reduction, and

are lattice equations similarly related to discrete Painlevé equations via reduction?

The reduction of integrable lattice equations turns out to be a remarkably rich area, dating back

to similarity reductions of integrable lattices in the early 1990s [72]. A purely discrete approach was

developed by Nijhoff and others in [75], where reductions were found by introducing an appropriate

variable and choosing paths in the lattice. In [96] certain classes of symmetric solutions of the lattice

Boussinesq equation were studied, which led to an explicit reduction. An elliptic Painlevé equation

was found as the non-autonomous reduction of a lattice equation in [87].

Recently, Joshi, Nakazono, and Shi [59] were able to find reductions of lattice equations by

imposing the equation on an n−cube and taking a reduction of the resulting n−dimensional lattice.

Conversely, in [60, 61] the authors construct from τ -functions of Painlevé systems a lattice on which

ABS quad-equations appear. In [44] the authors presented a class of reductions of Möbius type for

Q-type lattice equations as given in the ABS classification (which we cover in Chapter 3). In this

thesis, we focus on the method of so-called staircase reductions, first described in [40], which we will

cover in detail in Chapter 3.

Today there exists in both continuous and discrete settings a plethora of examples of partial

differential and partial difference equations known to reduce to continuous and discrete Painlevé

equations respectively, showing the deep relationship between integrable systems of different

dimensions. In Chapter 5 we provide novel reductions of several lattice equations to the discrete

Painlevé equation qPVI.

1.4 Cluster Algebras

In [25, 27], Fomin and Zelevinsky introduced cluster algebras as a tool in Lie theory, though they

have since gained a life of their own. Connections have been found in broad areas of mathematics

from topology and tropical geometry to integrable systems. In [28], fundamental structural results

8



1. Introduction

for finite type cluster algebras were used to prove the periodicity conjecture for Dynkin diagrams.

For a detailed introduction to this rich area we direct the reader to Williams’ 2014 article [103]. Of

particular interest to us is the natural (and profitable) presence of cluster algebras within the field

of discrete integrable systems [105].

In short, a cluster algebra is generated by a directed graph Q called a quiver, with vertices

labelled with variables x = (x1, x2, x3, . . . ) which we call cluster variables, and y = (y1, y2, y3, . . . ),

which we call coefficients. The triple (Q,x,y) is called a seed. Suppose λi,j is the number of arrows

from the vertex i to j, such that λi,j = −λj,i. The quiver defines an operation called mutation in

the following way.

Let µk : (Q,x,y) → (Q′,x′,y′) be the mutation at the vertex k of the quiver Q. The mutation

gives a new quiver Q′ by the following three operations on Q.

1. For all i, j such that λi,k > 0, λk,j > 0, add λi,kλk,j arrows from i to j.

2. Reverse the direction of all directed arrows which have edges at k.

3. Remove any 2-cycles appearing in the resulting quiver.

The new coefficients y′ = (y′1, y
′
2, y
′
3, . . . ) are defined as:

y′k = y−1
k , (1.14a)

y′i = yi(y
−1
k + 1)−λk,i , (λk,i > 0), (1.14b)

y′i = yi(yk + 1)λi,k , (λi,k > 0), (1.14c)

y′i = yi, (λi,k = 0). (1.14d)

The new cluster variables x′ = (x′1, x
′
2, x
′
3, . . . ) are defined as:

x′k =
1

(yk + 1)xk

( ∏
λk,j>0

x
λk,j

j + yk
∏

λj,k>0

x
λj,k

j

)
,

x′i = xi, (i 6= k).

Given an initial seed (Q,x,y), the cluster algebra A(Q,x,y) is the subalgebra generated by the

cluster variables from all seeds obtainable by mutations of the initial seed (Q,x,y). Notably, any

9



1. Introduction

cluster variable in A(Q,x,y) be expressed in terms of Laurent polynomials of the initial seed [26].

The finite type cluster algebras (those with finitely many seeds) possess a classification parallel to the

Cartan–Killing classification of complex simple Lie algebras, and can hence be classified by Dynkin

diagrams [27].

By appropriately labelling the vertices of a mutation periodic quiver [29], many discrete integrable

systems have been shown to be satisfied by cluster variables and coefficients of particular cluster

algebras [80, 52, 81, 11]. Since any cluster variable can be found as a Laurent polynomials of

the initial seed, showing that a discrete integrable system arises from cluster algebra mutations is

sufficient to prove that it possesses the Laurent property [30, 80]. In Chapter 5, we show for the

first time that the coefficients of the cluster algebra generated by a quiver associated with the lattice

mKdV equation can satisfy an equation we find arising from transformations of ABS systems.

1.5 Outline of Thesis

This thesis aims to provide novel insights into the solutions of integrable lattice equations by drawing

a connection between their birational geometry and their iteration. Chapter 1 serves as a review

chapter, briefly introducing the objects of study we will be exploring through algebraic geometry in

future chapters.

Chapter 2 serves as a detailed review of the algebraic geometry of discrete Painlevé equations

as introduced by Sakai in [92]. We show how to find a so-called resolved space of initial conditions

for integrable mappings, and how discrete Painlevé equations arise from translations in affine root

systems. We will see how integrability can be seen on the level of the induced map on the Picard

group. Chapter 3 introduces in more detail the concept of integrable lattice equations, their history,

and what it means for an equation over a lattice to be integrable.

In Chapters 4 and 5 we apply tools from birational geometry to perform resolution of singularities

for lattice equations for the first time. In Chapter 4, by studying the iteration map induced by an

integrable lattice equation and resolving the codimension-2 singular subvarieties that appear, we

10



1. Introduction

show how to build a space of initial conditions on which the map is everywhere regular.

In Chapter 5 we associate to each quad in the lattice such a space of initial conditions and

consider the evolution of this system on the dual graph. We show how this naturally leads to

new transformations of lattice equations, and provide several novel examples of transformations of

ABS equations. Using the results of this chapter, we find new reductions of ABS equations to the

discrete Painlevé equation commonly called qPVI. Finally, we prove that the coefficients of a cluster

algebra first introduced in [81] can satisfy an equation we find as the transformation of several ABS

equations.

Chapter 6 is a discussion of the results and possible future directions of research.
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Chapter 2: Painlevé Equations and Algebraic Geometry

of Integrable Mappings

2.1 A Brief History of Painlevé Equations

In this chapter, we review key ideas in the development and integrability of discrete Painlevé

equations, and view them from the perspective of their geometry. This point of view is one which has

shown itself over recent decades to be an extremely profitable perspective to take when examining

integrable mappings.

The continuous Painlevé equations arise from two independent sources. They first arose from

Painlevé’s study of second order differential equations with what we now call the Painlevé property.

That is, all movable singularities are poles. This, with the addition of the most general form of

Painlevé VI added by Gambier, gave a list of six canonical second order differential equations with

the Painlevé property which were not solvable in terms of any previously known functions [82, 83,

31]. The Painlevé equations also independently arise independently from the study of monodromy

preserving deformations of linear differential equations, and from similarity reduction of PDEs

solvable by inverse scattering. Discrete Painlevé equations attracted attention with the discovery

of scaling limits to the Painlevé differential equations. The concept of singularity confinement

was introduced as a potential discrete analogue of the Painlevé property [39], and using it as an

integrability indicator on non-autonomous QRT mappings [86, 85] discrete Painlevé equations were

found systematically [89]. It is worth noting that the discrete Painlevé equations are in fact the more



2. Painlevé Equations and Algebraic Geometry of Integrable Mappings

fundamental class, with continuous equations being degenerate forms of the more general discrete

systems - the differential operator is itself the continuum limit of a discrete operator.

A major development in the study of the Painlevé equations was taken by Gérard and Okamoto

[35, 79, 37, 36] in the 1970s. Their geometric description of the Painlevé equations relies on foliation

theory and vector bundles.

Definition 2.1. Let (E , π,B) be a vector bundle, where B is the base space, E is the total space and

π is the projection operator: E 7→ B. Let Φ be a foliation and ∆ a holomorphic differential system

on E, such that the following properties hold.

• Each leaf of Φ corresponds to a solution of ∆.

• The leaves of Φ are transversal to the fibres of E.

• For each path p in the base B and each point X ∈ E such that (X) ∈ p, the path p can be lifted

into the leaf of Φ containing point X.

What is now known as the space of initial conditions consists of the leaves of the above foliation.

This work was extended by Sakai in [92] to give a full decription of Painlevé equations in both

continuous and discrete settings through the classification of rational surfaces. We will give an

outline of this classification in Section 2.4.

The geometric view has provided many results beyond this classification. Duistermaat and Joshi

used the space of initial conditions to study the asymptotics of the first Painlevé equation [21].

Takenawa [95] showed how to use the space of initial conditions to calculate the algebraic entropy

of maps. Algebraic geometry has also been used to find special solutions of Painlevé equations. Not

only does this algebro-geometric approach yield a classification, but also solutions and analytical

tools for future study.

In this chapter we will elaborate upon the theory surrounding this algebro-geometric approach

by introducing the notions of blow-ups, root systems and Weyl groups, and the Picard lattice, and

how they are applied in the study of discrete Painlevé equations.

13



2. Painlevé Equations and Algebraic Geometry of Integrable Mappings

2.2 Blowing Up

Throughout this thesis, when confronted with problems of resolution of singularities, we use blow-ups.

The name blow-up is inspired by blowing up an image in photography. Most procedures for

resolution of singularities work by successively blowing up singular points until they become smooth.

Consequently, we can use blow-ups to resolve the singularities of rational maps. Blow-ups are

extremely fundamental in birational gemoetry. In fact, the Cremona group [18, 41], the group of

birational automorphisms of the plane, is generated by blow-ups.

We will be considering singularities that may occur at infinity. To handle such situations, it is

convenient to work in complex projective space. It is common to use homogeneous coordinates in

such a space. However, affine coordinates are also convenient for certain operations. In the following

examples we demonstrate the construction with diagrams drawn in Rn, though throughout this

thesis the base field we work in is C.

Modern algebraic geometry treats blowing up as an intrinsic operation on an algebraic variety.

We will proceed by first giving a geometric construction which will lead to the formal definition at

the end. Understanding blow-ups is a crucial first step in understanding the geometric underpinning

of discrete Painlevé equations.

Consider the curve C given by

y2 − x3 = 0. (2.1)

This curve has a cusp singularity at the origin. In order to resolve this singularity, we view the curve

C as a vertical projection of the smooth space curve C ′ with the parameterisation (x, y, z) = (t2, t3, t),

with the cusp resulting from the curve being tangent to the z–axis at t = 0, see Figure 2.1.

The challenge then is to find a procedure such that in general when given a singular curve C, we

are able to find a smooth curve C ′ lying on a surface in a higher dimension whose projection back

to the original space gives C.

14



2. Painlevé Equations and Algebraic Geometry of Integrable Mappings

Fig. 2.1: The same curve C′ as seen from different angles, causing an apparent cusp in the left image.

Take the surface X ′ given by y − x z = 0, containing a curve C ′ such that its projection onto

z = 0 is C, see the example Figure 2.2.

Fig. 2.2: The projection of X ′ onto R2.

Writing C ′ in terms of the coordinates (x′, y′) = (x, z) = (x, y/x) on X ′ ' C2, we find

x′2 (y′2 − x′) = 0. (2.2)

15



2. Painlevé Equations and Algebraic Geometry of Integrable Mappings

This is a blow-up of the curve C with the origin as centre.

We call this the total transform of C. The factor x′2 gives the exceptional line e given by x′ = 0,

the preimage of the singularity b (the origin) in C2. The parabola y′2 − x′ = 0 is C ′, the strict

transform of C. Gluing X ′ at z = +∞ and z = −∞, we have the following definition.

Definition 2.2. Take a point b : (x, y) = (α, β) lying on a curve C in C2, let [ξ; η] be homogeneous

coordinates on P1, and define the space X ′ by

{((x, y), [ξ : η]) (x− α) η − (y − β) ξ = 0} ⊂ C2 × P1.

The map π : X ′ → C2 is a birational mapping which is an isomorphism away from the exceptional

line e = π−1(b). The strict transform of C is the closure of π−1(C \ b).

In practice, this means if (x, y) = (α, β) is a point b in A2, we view a blow-up as the change of

variables to affine charts (x11, y11) and (x12, y12), where x11 = x − α, y11 = (y − β)/(x − α), and

x12 = (x− α)/(y − β), y12 = y − β. Away from b this is a holomorphic mapping, but has the effect

of replacing the point b by an exceptional line e.

2.3 Resolved Space of Initial Conditions for an Ordinary Difference

Equation

Consider the autonomous ordinary difference equation

xn+1 xn−1 =
a b (xn − c)(xn − d)

(xn − a)(xn − b)
, (2.3)

where n is the discrete valued independent variable, x is a function of n, and a, b, c, d are constant.

This is an example of a multiplicative QRT map. Nonautonomous q-difference versions of this

equation are known to be discrete equivalents of PIII and PVI [38, 92], and are therefore often called

qPIII and qPVI.

With generic initial data (x0, x1), we can use (2.3) to find x2. From x1 and x2 we can find x3,

and this process will continue indefinitely in both the positive and negative directions to form the
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2. Painlevé Equations and Algebraic Geometry of Integrable Mappings

sequence {xn}n∈Z. Since iterations can become unbounded on the domain (for example if xn = a),

to understand the behaviour near infinity we choose to work in a projective space by compactifying

C2 so that the initial conditions (x0, x1) are taken to be in P1 × P1.

Remark 2.1. There are an infinite number of ways to compactify C2 using Hirzebruch surfaces. A

Hirzebruch surface Σi is a P1 bundle over P1, containing some C such that C ·C, the self-intersection

of C, is equal to −i. All Hirzebruch surfaces can be obtained from each other via a sequence of

blow-ups and blow-downs.

The surface Σ0 is isomorphic to P1 × P1. By convention, we use P1 × P1 for discrete equations,

and P2 for continuous.

First, reformulate (2.3) as a system of first order equations for un, vn such that

un = x2n−1,

vn = x2n,

so that the equation (2.3) induces a map ψn,

ψn : P1 × P1 −→ P1 × P1,

(un, vn) 7−→ (un+1, vn+1).

Take generic initial conditions (u0, v0) ∈ P1 × P1. In the forward direction the map ψ0 gives

u1 =
a b

u0

(v0 − c)(v0 − d)

(v0 − a)(v0 − b)
, (2.4a)

v1 =
a b

v0

(u1 − c)(u1 − d)

(u1 − a)(u1 − b)
. (2.4b)

Consider the line in P1 × P1 such that v0 = c, with generic u0. Under (2.3) this line is mapped to

u1 = 0, (2.5a)

v1 = d. (2.5b)

The map has taken a line to a point, losing apparently losing one of the degrees of freedom of the

initial conditions (u0). Similarly, the backwards map ψ−1
0 should take the point (u1, v1) = (0, d) back

to the line v0 = −c. However simply putting this point into the equation gives an indeterminate 0
0 .
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2. Painlevé Equations and Algebraic Geometry of Integrable Mappings

We call points where such indeterminacies occur base points. To circumvent this problem, we want

to find a space of initial conditions on which map induced by (2.3) is free of base points. To achieve

this, for each pair of points un, vn we blow up P1 × P1 everywhere base points appear, to find the

resulting resolved surface Xn.

The equation lifted to Xn gives a map φn : Xn → Xn+1, where Xn is the surface resulting from

the resolution of singularities for the pair un, vn, see Figure 2.3. In this case the surface does not

change between iterations since the equation’s parameters are autonomous. In the case of discrete

Painlevé equations the parameters are nonautonomous and hence these surfaces Xn will not coincide,

however for generic n the blow-up procedure remains the same as the one outlined here.

P1 × P1

π(Xn)

P1 × P1

π(Xn+1)

ψn

φn
Xn Xn+1

Fig. 2.3: Commuting Diagram

Each surface Xn is a leaf of the fibration as described in Definition 2.1, what is now widely known

as the space of initial conditions.

For ease of notation in this section we use the so-called “bar” notation, where u := un, u := un−1,

ū = un+1, ¯̄u := un+2, etc. Using this notation, we find the forward and backward steps of (2.3)

yield the system

ū =
a b (v − c)(v − d)

u (v − a)(v − b)
, (2.6a)

v =
a b (u− c)(u− d)

v (u− a)(u− b)
. (2.6b)

Instead of working in homogeneous coordinates, we cover P1 × P1 in four affine charts using the
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variables u, v, U = 1
u , and V = 1

v . That is,

(u, v) (2.7a)

(U, v) =

(
1

u
, v

)
(2.7b)

(u, V ) =

(
u,

1

v

)
(2.7c)

(U, V ) =

(
1

u
,

1

v

)
(2.7d)

Looking in the first chart, we see the expression for ū (2.6a) becomes indeterminate 0
0 when (u, v) =

(0, c). We call this base point b1 and blow up to remove the indeterminacy. We repeat this procedure

until all such indeterminacies are removed.

2.3.1 Blow-up of b1

Blowing up b1 using the procedure from Definition 2.2, we find the exceptional line e1 covered by

the charts (u11, v11) ∪ (u12, v12), where the first subscript denotes the number of blow-ups so far

performed, and the second subscript indicates chart. These are

(u11, v11) =

(
u,
v − c
u

)
,

(u12, v12) =

(
u

v − c
, v − c

)
.

Writing ū in terms of (u11, v11) and (u12, v12), we find

ū =
a b v11(u11 v11 + c− d)

(u11 v11 + c− a)(u11 v11 + c− b)
,

ū =
a b (v12 + c− d)

u12 (v12 + c− a)(v12 + c− b)
.

When looking for new base points after a blow-up, we only need to look on the resulting exceptional

line, since all other base points already exist in the pre-blown-up space. Resolving these points in

the coordinates of the exceptional line adds unnecessary complexity. Looking on the exceptional

line e1 parameterised by u11 = 0 and v12 = 0, we find

ū =
a b v11(c− d)

(c− a)(c− b)
, ū =

a b (c− d)

u12 (c− a)(c− b)
.
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Since there are no new base points appearing on e1, we blow-up another appearing in the original

charts. If a new base point appears on the exceptional line ei, we must blow it up in the chart of

the ith blow-up. Continuing in the chart (u, v), we can see a new base point b2 where (u, v) = (0, d).

2.3.2 Blow-up of b2

Blowing up b2, we find the exceptional line e2 covered by the charts (u21, v21)∪ (u22, v22). These are

(u21, v21) =

(
u,
v − d
u

)
,

(u22, v22) =

(
u

v − d
, v − d

)
.

Writing ū in terms of (u21, v21) and (u22, v22), we find

ū =
a b (u21 v21 + d− c) v21

(u21 v21 + d− a)(u21 v21 + d− b)
,

ū =
a b (v22 + d− c)

u22(v22 + d− a)(v22 + d− b)
.

Looking on the exceptional line e2 parameterised by u21 = 0 or v22 = 0, we find

ū =
a b (d− c) v21

(d− a)(d− b)
, ū =

a b (d− c)
u22(d− a)(d− b)

.

Since there are no new base points appearing on e2, we blow-up another appearing in the original

charts. Looking in the chart (U, v) (the affine chart where u becomes unbounded), we have

ū =
a bU(v − c)(v − d)

(v − a)(v − b)
.

Here we can see a new base point b3 where (U, v) = (0, a).

2.3.3 Blow-up of b3

Blowing up b3, we find the exceptional line e3 covered by the charts (U31, v31) ∪ (U32, v32). These

are

(U31, v31) =

(
U,
v − a
U

)
,
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(U32, v32) =

(
U

v − a
, v − a

)
.

Writing ū in terms of (U31, v31) and (U32, v32), we find

ū =
a b (U31 v31 + a− c)(U31 v31 + a− d)

v31(U31 v31 + a− b)
,

ū =
a bU32(v32 + a− c)(v32 + a− d)

(v32 + a− b)
.

Looking on the exceptional line e3 parameterised by U31 = 0 or v32 = 0, we find

ū =
ab (a− c)(a− d)

v31(a− b)
, ū =

abU32(a− c)(a− d)

(a− b)
.

Since there are no new base points appearing on e3, we blow-up another appearing in the original

charts. Looking in the chart (U, v), we find

ū =
abU(v − c)(v − d)

(v − a)(v − b)
.

Here we can see a new base point b4 where (U, v) = (0, b).

2.3.4 Blow-up of b4

Blowing up b4, we find the exceptional line e3 covered by the charts (U41, v41) ∪ (U42, v42). These

are

(U41, v41) =

(
U,
v − b
U

)
,

(U42, v42) =

(
U

v − b
, v − b

)
.

Writing ū in terms of (U41, v41) and (U32, v32), we find

ū =
a b (U41 v41 + b− c)(U41 v41 + b− d)

(U41 v41 + b− a) v41
,

ū =
abU42(v42 + b− c)(v42 + b− d)

v42 + b− a
.

Looking on the exceptional line e4 parameterised by U41 = 0 or v42 = 0, we find

ū =
ab (b− c)(b− d)

(b− a)v41
, ū =

abU42(b− c)(b− d)

b− a
.
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There are no new base points appearing on e4.

The initial conditions u, v can also be used to iterate in the backwards direction. Therefore, to

find a truly resolved space of initial conditions, we must also blow up at any base points where v

(2.6b) is undefined.

Repeating the above procedure procedure for v, we find four more base points,

b5 : (u, v) = (−c, 0),

b6 : (u, v) = (−d, 0),

b7 : (u, V ) = (a, 0),

b8 : (u, V ) = (b, 0).

Each of these is resolved after a single blow-up. Thus, after 8 blow-ups of P1 × P1, we have found a

surface X, represented diagrammatically in Figure 2.4.

hv

hu

hv

hu

u

v

1
u

v

u

1
v

1
u

1
v

b1

b2

b3

b4

b5 b6

b7 b8

hv

hu

u

v

1
u

v

u

1
v

1
u

1
v

e5 e6

e3

e4

e7 e8

e1

e2

Fig. 2.4: Surface X resulting from the resolution of (2.3) on P1×P1, with 8 exceptional lines ei, i ∈ {1, . . . , 8}.

We now take a brief excursion into root systems and symmetry groups, which form the basis of

the geometric theory of discrete Painlevé equations. Once we understand these tools we will return

to the example of (2.3).
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2.4 Root Systems and Symmetry Groups

Sakai’s key insight in [92] was showing how the Painlevé equations arise from translations from an

affine Weyl group corresponding to a resolved surface of initial conditions. In this section we give an

introduction to the tools necessary for understanding the geometric theory of Painlevé equations.

Using these tools, we take the example of the affine Weyl group A
(1)
2 and show how this gives rise to

a discrete Painlevé equation. We follow the comprehensive 2017 review paper by Kajiwara, Noumi,

and Yamada [63].

2.4.1 Root Systems

The fundamental object for this section is the root system [54].

Definition 2.3. Consider a finite dimensional vector space V with an inner product denoted by

〈·, ·〉. A root system Φ ⊂ V is a finite collection of vectors (or ‘roots’) that satisfy the following

conditions:

1. The roots span V .

2. The only scalar multiples of a root α ∈ Φ that are also in Φ are −α and α.

3. Given any two distinct roots α, β, the set Φ also contains the element

σα(β) = β − 2
〈α, β〉
〈α, α〉

α,

the reflection of β in the hyperplane orthogonal to α.

Example 2.1. Consider the root system A2. Suppose the vector space V = R2, and start with the

roots α = (2, 0) and β = (−1,
√

3). We call these the simple roots. For any root system Φ there are

a number of choices for which roots are the simple roots, but the set of simple roots ∆ must satisfy

the following properties:

1. ∆ must be a basis for vector space spanned by Φ.
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2. Every element β ∈ Φ can be expressed as the sum β =
∑
α∈Φ cαα such that the coefficients cα

are integers which are all nonpositive or all nonnegative.

The set ∆ is called the basis for Φ.

α

β

Fig. 2.5: Simple roots α and β of A2.

Since A2 is closed under reflection, reflecting α and β in the lines orthogonal to each of them

(represented in Figure 2.5 by dotted lines) we find σα(α) = −α, σβ(β) = −β, σα(β) = σβ(α) = α+β,

and σα(−β) = σβ(−α) = σα+β(α+ β) = −α− β, shown in Figure 2.6.

α

β

−α

−β

α+ β

−α− β

Fig. 2.6: The vectors of the root system A2.

Definition 2.4. The Weyl group W (Φ) of a root system Φ ⊂ V is the group of transformations of

V generated by the reflections σα, with α ∈ Φ.
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In the case of A2, the Weyl group is the symmetry group of an equilateral triangle. Note that the

Weyl group is not the full symmetry group of the A2 root system, which has the symmetry group

of a hexagon. The set of reflection hyperplanes divides V into disconnected components, which we

call Weyl chambers. Each Weyl group element permutes the Weyl chambers.

Accompanying the idea of root systems is their corresponding root lattice. A lattice in a space

V is a discrete subgroup U ⊂ V which spans V . One example of such a lattice is Z2 ⊂ R2. In

subsequent chapters we study discrete integrable systems over this lattice called quad-equations.

Definition 2.5. If Φ ⊂ V is a root system, then Q(Φ) := ZΦ (the additive group spanned by Φ) is

called the root lattice [22].

The proof that Q(Φ) is a lattice is beyond the scope of this section, but it depends on the

following two facts about root systems:

1. If Φ is a root system under both the inner products 〈·, ·〉1 and 〈·, ·〉2, then 〈·, ·〉1 = c〈·, ·〉2 for

some c ∈ R.

2. If 〈α, α〉 ∈ Q for some α ∈ Φ, then 〈β, γ〉 ∈ Q for all β, γ ∈ Φ.

For the remainder of this chapter we are interested in root systems with the property that the inner

product can be normalised so that for any root α, we have 〈α, α〉 = 2. In this case we can neglect

the dual root system, which is spanned by the coroots α∨ =
2

〈α, α〉
α = α.

In the case of A2, the root lattice Q(A2) is a triangular lattice as shown in see Figure 2.7.

Fig. 2.7: Root lattice Q(A2).
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In addition to root systems, there are also affine root systems. A transformation f : V → C is

said to be affine if it is of the form

f(x) = 〈a, x〉+ b, (2.8)

for some a ∈ V and b ∈ C.

Definition 2.6. An affine root system over a vector space V is a root system over the vector space

F of affine functions on V .

The space F is equipped with the inner product 〈·, ·〉F such that for any f, g ∈ F , 〈f, g〉F =

〈∇f,∇g〉, where 〈·, ·〉 is the inner product on V . The dimension of F is dimV + 1.

Root systems and affine root systems are classified by Cartan matrices and Dynkin diagrams.

Suppose we have a root system R with simple roots {α0, . . . , αn}, with an inner product normalised

such that for any R, we have 〈αi, αi〉 = 2 whenever i = j. Define a matrix A, such that

A = (aij)i,j=0,...,n = (〈αi, αi〉)i,j=0,...,n. (2.9)

A is a Cartan matrix corresponding to R. The Cartan matrices are classified by Dynkin diagrams,

and we can therefore do the same for root systems. Each node of a root system’s associated Dynkin

diagram corresponds to one of the simple roots. As an example, see Figure 2.8 for the Dynkin

diagram associated with A2.

Fig. 2.8: Dynkin diagram of A2.

Proposition 2.1. Suppose Φ ⊂ V is a root system. For each α ∈ Φ and r ∈ Z, define an affine

linear function

fα,r(x) = 〈α, x〉+ r. (2.10)

The set S(Φ) of all such functions fα,r is an affine root system.

A rigorous proof of this can be found in [69].
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We call S(Φ) the affine root system associated with Φ. By setting fα,r(x) = 0, it is clear that

there is a one-to-one correspondence between the elements of S(Φ) and the reflection hyperplanes

in Q(Φ). These hyperplanes divide V into disconnected components called alcoves. This naturally

leads us the affine Weyl group W̃ (S(Φ)). The affine Weyl group is generated by the set of reflections

in the Weyl group, together with a Dynkin diagram automorphism π (a function which permutes

the nodes of a Dynkin diagram, and therefore permutes the simple roots of S(Φ)).

In the cases we concern ourselves with, the affine Weyl group is generated by reflections from

the Weyl group paired with translations [54].

Definition 2.7. The null root of an affine root system A with simple roots {α0, α1, . . . , αn} is a

vector δ =

n∑
i=0

ci αi, ci ∈ Z such that 〈αi, δ〉 = 0 for any αi.

Returning to the example of A2, the affine root system S(A2) associated with A2 is called A
(1)
2 .

Up to 90◦ rotation, in this case the lattice formed by the reflection hyperplanes corresponding to

the elements of A
(1)
2 matches the lines in Q(A2), shown in Figure 2.7. A

(1)
2 is generated by the

three simple roots α0, α1, α2 and the corresponding affine Weyl group W̃ (A
(1)
2 ) is generated by the

reflections wi = wαi
, where wαi

is the reflection about the root αi. The null root is δ = α0 +α1 +α2.

Fig. 2.9: Dynkin diagram of A
(1)
2 .

2.4.2 Translations

As stated above, it was shown in [92] that discrete Painlevé equations arise from the translations of

an affine Weyl group. We will now show that translations are generated by the composition of the

reflections which generate an affine Weyl group.

Definition 2.8. For each α ∈ V0 where V0 = {x ∈ V | 〈δ, x〉 = 0}, the corresponding Kac translation
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Tα : V → V is [62]

Tα(x) = x+ 〈δ, x〉α−
(

1

2
〈α, α〉 〈δ, x〉+ 〈α, x〉

)
δ. (2.11)

Kac translations can be constructed as the composition of reflections from the affine Weyl group.

By explicit calculation, we find that the action of the fundamental reflections of the Weyl group

on the simple roots of A
(1)
2 are shown in Table 2.1 [77].

α0 α1 α2

w0 −α0 α0 + α1 α0 + α2

w1 α0 + α1 −α1 α1 + α2

w2 α0 + α2 α1 + α2 −α2

Tab. 2.1: Action of the fundamental reflections on simple roots

We also find that the Kac translation associated with α1 acts on the simple roots by

Tα1
[α0, α1, α2] = [2α0 + α1 + α2,−2α0 − α1 − 2α2, α0 + α1 + 2α2]. (2.12)

By sequentially applying the reflections w0, w1, w2, we find

Tα1
w1 w0 w2 w0[α0, α1, α2] = [α0, α1, α2]. (2.13)

Therefore, Tα1 = w0 w2 w0 w1. It may be possible to find Tα1 as a different but equivalent decomposition.

Similarly, consider the translation

S[α0, α1, α2] = [α0 + δ, α1 − δ, α2] = [2α0 + α1 + α2,−α0 − α2, α2]. (2.14)

Following the same procedure we find

S w1 w2[α0, α1, α2] = [α1, α2, α0], (2.15)

and therefore S w1 w2 = π, where π(αi) = αi+1. This permutes the simple roots and hence is a

Dynkin diagram automorphism.

28
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2.4.3 The Picard Group

The final tool we will need in our algebraic toolbox is the Picard group. Intuitively, the elements of

the Picard group are equivalence classes of codimension-1 subvarieties of a space.

The QRT mappings are defined in P1×P1 by a pencil of bidegree (2, 2) curves, whose intersection

multiplicity is 8. Since the discrete Painlevé equations can be thought of as deautonomisations of

QRT mappings, we expect the resolution of discrete Painlevé equations in P1 × P1 to require 8

blow-ups, generating a surface X. This was the case in Section 2.3.

The Picard group of the surface X is generated by the basis {hu, hv, e1, e2, . . . , e8}, with an

operation denoted +. The curves hu and hv represent the equivalence classes of lines of constant

u and v respectively, and ei represents the exceptional line resulting from the blow-up of the base

point bi. In general, an element of the Picard lattice

x = d1 hu + d2 hv −m1 e1 − · · · −m8 e8, (2.16)

corresponds to the class of curves of bidegree (d1, d2) in P1 × P1 passing through the base points bi

with intersection of multiplicity ≥ mi.

The Picard group Pic(X) of a surface X is the group of isomorphism classes of invertible sheaves

on X. For our purposes it is sufficient to understand the Picard group as a group whose elements

represent the curves on X. Therefore, we consider the Picard group to be

Pic(X) = Zhu ⊕ Zhv ⊕ Ze1 ⊕ · · · ⊕ Ze8.

The Picard group is equipped with a bilinear product called the intersection product, which satisfies

the following relations.

hu · hu = hv · hv = hu · ei = hv · ei = 0, (2.17a)

hu · hv =hv · hu = 1, (2.17b)

ei · ej = −δij . (2.17c)

Most of these relations can be understood with intuition, with the exception of negative self intersection

from line 3. Line 1 reads parallel lines do not meet in P1×P1, and generic lines do not pass through
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the base points. Line 2 simply tells us that horizontal and vertical lines will intersect at a point.

Castelnuovos contraction theorem states that for any curve C isomorphic to P1 with C · C = −1,

there exists a morphism which smoothly contracts C to a point [41]. Therefore, we can think of

negative self intersection as an indication of a blow-up.

Defining an inner product 〈x, y〉 = −x·y, we can think of Pic(X) as a 10 dimensional vector space,

with the natural basis {hu, hv, e1, . . . , e8}. From Hartshorne [41], we know that the anticanonical

divisor of P1 × P1 blown up at 8 points is given by

−KX = 2hu + 2hv −
8∑
i=1

ei. (2.18)

It turns out that if we find the set of irreducible divisors D, that is all Di ∈ PicX such that

Di ·Di = −2, then −KX uniquely decomposes as a linear combination the elements of D. In fact,

D generates an affine root system with null root δ ≡ −KX . In the case of the example from the

previous section, we have

D0 = hu − e1 − e2,

D1 = hu − e3 − e4,

D2 = hv − e5 − e6,

D3 = hv − e7 − e8,

see Figure 2.4. What’s more, the orthogonal complement of D (the set of all αi ∈ Pic(X) such that

αi · Dj = 0 ∀ i, j) forms another affine root system corresponding to the symmetry group of the

equation [92].

Finally, we can put the pieces together to see a discrete Painlevé equation arising from translations

of an affine root system.

2.5 Surface Theory to Discrete Painlevé Equations

Suppose we have a surface Xn resulting from 8 blow-ups of P1×P1, with symmetry group W̃ (A
(1)
2 ).

In this section we will find a discrete Painlevé equation arising from the action of translations from
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W̃ (A
(1)
2 ).

If we have a map φ′ acting on Pic(Xn), then we can consider an equivalent Cremona transformation

acting on the surface Xn [20]. We then wish to realise the group W̃ (A
(1)
2 ) as a group of Cremona

transformations on P1 × P1, with four (nonautonomous) parameters b1, b2, b3, b4.

Since 〈αi, αi〉 = −αi · αi = 2, each αi gives rise to a reflection wi through the hyperplane

perpendicular to αi such that for every x ∈ Pic(Xn),

wi(x) = x+ (x · αi)αi. (2.19)

Since all αi, Dj are perpendicular, wi(Dj) = Dj . We also know from the previous section that the

root system A
(1)
2 is spanned by some {α0, α1, α2} ⊂ Pic(Xn), and its orthogonal complement E

(1)
6

is spanned by some {D0, D1, D2, D3, D4, D5, D6} ⊂ Pic(Xn). We deduce a configuration of base

points such that after completing the resolution as in Section 2.3, the inaccessible curves form E
(1)
6 .

e1 − e2

e2

e5 − e7
e7

hu − e3 − e5

hv − e1 − e3

e3 − e4

e4 − e6

e6 − e8

e8

Fig. 2.10: Surface X obtained by 8 blow-ups of P1×P1, chosen to give the desired symmetry group W̃ (A
(1)
2 ).

From this we see that one possibility for the simple roots of E
(1)
6 in terms of the basis of Pic(Xn)

is

D0 := e1 − e2,
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D1 := hv − e1 − e3,

D2 := e3 − e4,

D3 := hu − e3 − e5,

D4 := e5 − e7,

D5 := e4 − e6,

D6 := e6 − e8,

and hence

α0 = hv − e5 − e7,

α1 = hu − e1 − e2,

α2 = hu + hv − e3 − e4 − e6 − e8.

Using (2.19) and (2.21), we can calculate the action of wi on the Picard lattice. In particular,

w1(hv) = hv + (hv · α0)α0,

= hv + (hv · (hu − e1 − e2)) (hu − e1 − e2),

= hu + hv − e1 − e2. (2.22)

To realise w1 as a Cremona transformation on P1 × P1, we start by finding a sequence of blow-ups

and blow-downs which results in the action hv 7→ hu+hv−e1−e2, then proving that the result does

in fact correspond to w1. Following this procedure, we find the actions of the elements of W̃ (A
(1)
2 )

are

w0 : (u, v, b1, b2, b3, b4) 7−→
(
u− b1

v
, v,−b1, b2 − b1, b3, b1 + b4

)
, (2.23a)

w1 : (u, v, b1, b2, b3, b4) 7−→
(
u,
u v − b2

u
, b1 − b2,−b2, b3, b4 − b2

)
, (2.23b)

w2 : (u, v, b1, b2, b3, b4) 7−→
(
−b23 + b3 u− b4 + u (u+ v)

b3 + u+ v
,
b23 + b3 v + b4 + v (u+ v)

b3 + u+ v
,

b1 + b23 + b4, b2 − b23 − b4, b3, b1 − b23
)
, (2.23c)

π :(u, v, b1, b2, b3, b4) 7−→
(
− u− v − b3, u,−b2,−b4 − b23, b3, b1 − b23

)
. (2.23d)

Explicit calculations can be found in [53].
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Consider the translation (2.12), found to be w0 w2 w0 w1. Suppose the map φ′1 acts on Pic(X)

such that φ′1 = w0 w2 w0 w1. Since this is a translation we expect the equivalent map on Xn to be

an automorphism, and hence we want to find the Cremona transformation of P1×P1 corresponding

to φ′1. If we define

(ū, v̄, b̄1, b̄2, b̄3, b̄4) = φ1(u, v, b1, b2, b3, b4), (2.24)

then by iteratively applying (2.23), and solving the linear difference equations which arise for

b1, b2, b3, b4, we find b1 = b2 = 0, b3 = constant and b4 = −b23, and therefore

(ū, v̄, b̄1, b̄2, b̄3, b̄4) = (u, v, 0, 0, b3,−b23), (2.25)

a trivial case.

Now, suppose the map φ′2 acts on the Picard lattice, such that φ′2 = w1 w2 π
2. Using Table 2.1,

a straightforward calculation shows

w1 w2 π
2[α0, α1, α2] = w1 w2 π[α1, α2, α0],

= w1 w2[α2, α0, α1],

= w1[−α2, α0 + α2, α1 + α2],

= [−α1 − α2, α0 + 2α1 + α2, α2],

= [α0 − δ, α1 + δ, α2],

and hence this is also a translation in W̃ (A
(1)
2 ). Using (2.23), we find that the translation w1 w2 π

2 ∈

W̃ (A
(1)
2 ) gives

un+1 = −un − vn+1 +
(b23 + b4 + C1 − C2)n− C2 + b23 + b4

vn+1
− b3, (2.26a)

vn+1 = −un − vn +
(b23 + b4 + C1 − C2)n− C2

un
− b3, (2.26b)

for constants C1, C2, b3, b4. Upon the substitutions

b3 = γ,

b4 = −α+ 2c− γ2,

C1 = −α+ β − c,

C2 = β + c,
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we find

un+1 + vn+1 + un =
2α (n+ 1) + β − c

vn+1
+ γ, (2.27a)

vn+1 + un + vn =
2αn+ β + c

un
+ γ. (2.27b)

If we also define a function xn such that un = x2n, vn = x2n−1, we have

xn+1 + xn + xn−1 =
αn+ β + c(−1)n

xn
+ γ. (2.28)

In the case c = 0, γ = 1, this is the equation (1.3) discovered by Shohat in [94]. The equation (2.28)

is sometimes known as the asymmetric first discrete Painlevé equation. However, due to its origin

from surface theory, it can also be referred to as dP(E
(1)
6 ).

2.6 Painlevé Equations to Surface Theory

In the same way as a map on the Picard group can give rise to a discrete Painlevé equation (2.26),

it is similarly fruitful to consider a discrete Painlevé equation as inducing a map φ′ which acts on

elements of the Picard group of the corresponding resolved surface.

Consider again the example from Section 2.3. By blowing up at 8 base points, we found a

surface X (Figure 2.4) on which the map induced by (2.3) induces an automorphism. Recall that

the irreducible divisors on this surface are

D0 = hu − e1 − e2, (2.29a)

D1 = hu − e3 − e4, (2.29b)

D2 = hv − e5 − e6, (2.29c)

D3 = hv − e7 − e8. (2.29d)

Using the intersection form we are able to compute the corresponding Cartan matrix

A = (−Di ·Dj)i,j=0,...,3 =



2 −1 0 −1

−1 2 −1 0

0 −1 2 −1

−1 0 −1 2


.
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This is the Cartan matrix of type A
(1)
3 , with the orthogonal complement in Pic(X) giving the

corresponding symmetry group D
(1)
5 .

One advantage of considering the induced mapping on the Picard group is that it is a linear

mapping. Therefore by determining how φ′ acts on each of the basis elements {hu, hv, e1, . . . , e8} we

can compute φ′(x) for any x ∈ Pic(X). We can do this directly by using (2.3) to compute the image

of each of the e1, . . . , e8 and a representative generic hu and hv, and finding the degree of the image

and the intersection with the exceptional lines. While possible, this can be very computationally

difficult.

Since φ′ is an isomorphism it must preserve the inner product (and thus the intersection form),

and hence the intersection number. For any pair of curves C1, C2 on the resolved surface X, we

know φ′(C1) ·φ′(C2) = C1 ·C2. Therefore, the action of φ′ on the set of curves with self-intersection

−2 (2.29) must be a simple permutation.

By finding the image of each of the Di under φ′ then considering the exceptional lines ej at the

end of a sequence of blow-ups, we can find the action of φ′ on the Picard lattice using the linearity

of φ′.

For example, D0 is parameterised by (u, v) = (0, v), and upon substituting u = 0 into (2.6) we

find that the action of φ′ on D0 is D0 7→ ( 1
u , v) = (0, abv ), which is D1. By a similar process, we find

the cycles

D0 7−→ D1 7−→ D0, (2.30a)

D2 7−→ D3 7−→ D2. (2.30b)

The image of hu and hv are complicated, so we first consider the images of ej . Calculating the image

of e5 under the action of (2.6), we find that

φ′(e5) = hv − e6.

Similarly, calculating the image of e6 we find φ′(e6) = hv − e5. Substituting this into φ′(D2) = D3,

we find

φ′(hv − e5 − e6) = hv − e7 − e8,
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φ′(hv)− φ′(e5)− φ′(e6) = hv − e7 − e8,

φ′(hv) = hv + φ′(e6) + φ′(e5)− e7 − e8,

=⇒ φ′(hv) = 2hu + hv − e5 − e6 − e7 − e8.

Similarly for hu, after finding φ′(e1) and φ′(e2) and substituting into φ′(D0) = D1, we find

φ′(hu) = 5hu+2hv − e1 − e2 − e3 − e4 − 2e5 − 2e6 − 2e7 − 2e8.

Using the resulting expressions we computed for φ′(hu), φ′(hv), and each φ′(ej), we have the linear

transformation on the basis of Pic(X) generated by the equation (2.6).

φ′



hu

hv

e1

e2

e3

e4

e5

e6

e7

e8



=



5 2 −1 −1 −1 −1 −2 −2 −2 −2

2 1 0 0 0 0 −1 −1 −1 −1

2 1 0 −1 0 0 −1 −1 −1 −1

2 1 −1 0 0 0 −1 −1 −1 −1

2 1 0 0 0 −1 −1 −1 −1 −1

2 1 0 0 −1 0 −1 −1 −1 −1

1 0 0 0 0 0 0 −1 0 0

1 0 0 0 0 0 −1 0 0 0

1 0 0 0 0 0 0 0 0 −1

1 0 0 0 0 0 0 0 −1 0





hu

hv

e1

e2

e3

e4

e5

e6

e7

e8



. (2.31)

As we shall see, this matrix contains all the necessary information on the integrability of (2.3).

2.6.1 Algebraic Entropy

One popular definition of integrability of mappings is algebraic entropy. In general, the composition

of n degree d maps is degree dn. However, if common factors can be eliminated without changing the

map on generic points this can lower the degree of the iterates. It was observed that for systems with

invariants there is sufficient factorisation for the growth to become polynomial [23, 16, 47, 100]. In

[10] the authors introduced the notion of algebraic entropy as a characterising number of a discrete

system with rational evolution.
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2. Painlevé Equations and Algebraic Geometry of Integrable Mappings

Definition 2.9. Given a map ψ, let the sequence dn be the degree of the successive iterates ψn of

ψ. The limit

ε := lim
n→∞

1

n
log dn,

is always defined. The quantity ε is called the algebraic entropy of the map.

In the cases where dn has polynomial dependence on n, the algebraic entropy is zero. As these

cases permit invariants and low dynamical complexity, vanishing algebraic entropy is strongly linked

with integrability.

The algebraic tools of this chapter can be used to compute the algebraic entropy directly. In

[95], a method is provided to calculate the algebraic entropy of a mapping on a plane with a simple

idea: Take a line of generic intial data and consider the growth of degrees of the line under iteration

of the map. In Pic(X), a straight line has the representation hu + hv. The bidegree of the image

of the line under the mapping is the coefficients of hu and hv of the image in the Picard lattice,

φ′(hu + hv). Using the linear mapping on Pic(X), we find that the entropy is given by

ε = log(max(λn)), (2.32)

where {λn}n∈Z are the eigenvalues of φ′ (2.31). In the particular example (2.31), as expected we

find ε = log(1) = 0.
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Chapter 3: Discrete Lattice Systems and the ABS

Classification

Lattice systems are to maps what partial differential equations are to ordinary differential equations,

and form a well-established and important field in the theory of integrable systems. A great deal

of progress has been made in the solutions of integrable lattice equations, including the discovery of

N−soliton solutions. For selected examples, see [91, 8, 71, 70].

In [76, 14] it was shown that in particular, integrable systems on quad-graphs (that is, cellular

decompositions of a surface whose cells are quadrilateral) are fundamental, and explain many useful

results in the field. For this reason, throughout this thesis we will focus on integrable systems on

quad-graphs. These are equations relating the values of the solution on the vertices of an elementary

quadrilateral or quad, that is a quadrilateral of minimal size on the lattice. This chapter will be

dedicated to exploring the background of integrable lattice equations on quad-graphs, and give

recent developments in the field. In particular, we cover the ABS classification [5, 6] a classification

of integrable systems on quad-graphs (up to certain assumptions).

3.1 Notation

To begin, we must review notation we will use in the study of lattice equations.

Consider a square lattice Z2, letting l and m be the independent variables serving as coordinates,
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and suppose we have the dependent variable xl,m as a function of l and m on the vertices, see Figure

3.1.

l

m

Fig. 3.1: Square lattice on the plane, with vertices labelled with dots.

Throughout this thesis we use the following notation. For some point in the lattice with

coordinates l,m, we define

x := xl,m,

x̄ := xl+1,m,

x̂ := xl,m+1,

ˆ̄x := xl+1,m+1,

and so on. In this setting quad-equations will take the form

Q(x, x̄, x̂, ˆ̄x;α, β) = 0, (3.1)

where α, β are parameters corresponding to the two lattice directions, and x, x̄, x̂, ˆ̄x correspond to

the four vertices of a generic quadrilateral in the lattice, as shown in Figure 3.2.

The parameters α, β are related to the origin many integrable lattice equations have in terms of

Bäcklund transformations of integrable partial differential equations as introduced in Chapter 1.
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α

β

x x̄

x̂ ˆ̄x

Fig. 3.2: Elementary quadrilateral with bar-shift notation.

Throughout this thesis we also use notation on a generic quadrilateral such that for the dependent

variable xl,m at a generic point l,m, we say

x := xl,m,

u := xl+1,m,

v := xl,m+1,

y := xl+1,m+1,

see Figure 3.3. Throughout this thesis we use both standards, with the choice of which depending

on clarity.

α

β

x u

v y

Fig. 3.3: Elementary quadrilateral with vertices x, u, v, y.
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3.2 Initial Conditions

In this thesis we focus on lattice equations in two dimensions, so in this section we introduce initial

conditions for lattice equations specifically in two dimensions. However, the concepts discussed here

generalise to any higher dimension.

In order for a quad-equation to define an evolution over a lattice it is necessary to have some

sensible initial conditions. In the case of lattice equations it is possible for initial conditions to be

overdetermined and hence cause incompatibilities, such as the initial conditions labelled (2) in Figure

3.4. In order to avoid such incompatibilities we consider initial conditions lying along a diagonal

staircase. We consider regular staircases such as the staircase labelled (1) (that is, staircases with

steps of constant height and width). We call (1) a (2, 1)–staircase.

(2)

(1)

Fig. 3.4: Sets of initial conditions.

Definition 3.1. An (m,n)–staircase of initial conditions is a set of initial conditions for a lattice

equation which lie on a staircase of the form of (1) in Figure 3.4, with step width m and height n.

Such choices of initial conditions allow iteration over the lattice in the directions perpendicular to

the staircase [98].

In order to use a staircase of initial conditions to iterate over the whole lattice the staircase must

extend infinitely far in both directions. However, using a finite staircase it is still possible to iterate

over a finite region. For example, using a (1,1)–staircase of initial conditions with only 5 vertices it

41



3. Discrete Lattice Systems and the ABS Classification

is possible to solve over a 3×3 vertex region of the lattice. We see such a configuration in Chapter

5.

3.3 Integrability

There exist many different views on what the definition of integrability should be even in continuous

systems, some of which have directly inspired analogous definitions for discrete systems such as the

existence of a Lax pair [67], and possessing an infinite series of conservation laws [68]. There also

exist many indicators of integrability which are strictly discrete in nature. We provide a brief outline

of a few such definitions here.

1. Singularity Confinement

Singularity confinement was considered as a discrete equivalent to the Painlevé property, analysing

the singularity structure of an equation. We say that a discrete equation confines singularities or is

confining if movable singularities in the solution are cancelled out after a certain number of iterations.

For example, consider the map

xn+1 + xn−1 = xn +
1

xn
. (3.2)

If for some N the iteration xN vanishes, then we find xN+1 and xN+2 become unbounded, and

hence further iterations become indeterminate as we find an expression of the form ∞ −∞. We

therefore consider xN = 0 as a singularity of the mapping [90]. In general we consider a singularity

as where the value of some xn+1 does not depend on xn−1. In such a situation the equation has lost

dependence on a degree of freedom of the initial conditions, and we consider confinement therefore

as the recovery of such a recovery of this degree of freedom.

If instead we introduce a quantity ε such that |ε| � 1 and taking xN = ε, by iterating (3.2) and

taking the limit as ε → 0, instead of indeterminacies we find xN+3 = 0 and xN+4 = xN−1, and

hence we say the system has ‘recovered’ its lost degree of freedom.

This property has a similar definition for lattice equations. Consider a quad-equation for the
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function xl,m

Q(xl,m, xl+1,m, xl,m+1, xl+1,m+1;α, β) = 0, (3.3)

with initial conditions xl−1,m+1, xl−1,m, xl−1,m−1, xl,m−1, xl+1,m−1, such that using (3.3) to iterate

over the lattice we find that at xl,m the system loses dependence on the initial condition xl−1,m−1,

see Figure 3.5. If the system recovers this lost degree of freedom at xl+1,m+1, we again say the

system is confining. As we saw in Chapter 1, this property is not sufficient for integrability [47]. We

explore this property further in subsequent chapters.

xl−1,m

xl−1,m−1 xl,m−1 xl+1,m−1

xl,m xl+1,m

xl−1,m+1 xl,m+1 xl+1,m+1

Fig. 3.5: 3× 3 section of Z2, with initial values marked in bold.

2. Algebraic Entropy

Recall from Chapter 2 the algebraic entropy ε of a map, defined as

ε := lim
n→∞

1

n
log(dn), (3.4)

where dn is the degree of the nth iterate. The sequence 1
n log(dn) always possesses a limit as n→∞,

and hence a map always has a well defined algebraic entropy. Vanishing entropy is considered a strong

indicator of integrability [10, 78, 95].

In the case of quad-equations, the algebraic entropy is defined separately in each of the four

diagonal directions of iteration (corresponding to the four corners of a quadrilateral), and these
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values do not necessarily coincide. In the case of integrable quad-equations, the algebraic entropy

vanishes in all four directions [101].

To find the algebraic entropy of a lattice equation, take a regular (1,1)–staircase as initial

conditions, as in Figure 3.6. Define the sequence of degrees d
(n)
±± (where the subscript denotes

direction of iteration) to be the degree of the iterates along successive diagonals parallel to the

staircase, see Figure 3.6.

1

. .
.

1

d
(1)
++

. .
.

d
(2)
++

d
(2)
−−

. .
.

. .
.

d
(3)
++

d
(2)
−−

1

. .
.

1

d
(1)
++

. .
.

d
(2)
++

d
(2)
−−

. .
.

. .
.

d
(3)
++

d
(2)
−−

1

. .
.

1

d
(1)
++

. .
.

d
(2)
++

d
(2)
−− . .

.
1

. .
.

1

d
(1)
++

1

d
(4)
++

d
(3)
−−

Fig. 3.6: Sequence of degrees used to calculate the entropy of a map in the positive direction of both

independent variables, labels indicate degree of iterate.

Now, just as with maps, the algebraic entropy in each of the four directions is defined as

ε±± = lim
n→∞

1

n
log(d

(n)
±±), (3.5)

and vanishing entropy indicates polynomial growth.

3. Multidimensional Consistency

Multidimensional consistency is the property that several copies of an equation may be imposed

simultaneously on a higher dimensional lattice, such that no inconsistency or multi-valuedness occurs.
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In the case of a quad-equation of the form (3.1) where Q is multilinear in each of the vertices x, x̄, x̂, ˆ̄x,

it is possible to solve uniquely for any of the vertices in terms of the other 3. It is then simple to

test multidimensional consistency (in this case consistency around a cube).

Consistency is a key concept in the study of integrable systems, and a key step was taken in [14]

where it was shown that not only does multidimensional consistency imply the existence of a Lax

pair and zero curvature representation, but that they can be found algorithmically using only the

equation and the consistency property.

To begin, introduce a new lattice direction associated with the independent variable n, with

associated parameter γ. Now considering xl,m,n as the dependent variable depending on l,m, n such

that x̃ = xl,m,n+1 and imposing copies of the equation (3.1) on each elementary quadrilateral of the

3-dimensional lattice, we have the system

Q(x, x̄, x̂, ˆ̄x;α, β) = 0, (3.6a)

Q(x, x̄, x̃, ˜̄x;α, γ) = 0, (3.6b)

Q(x, x̂, x̃, ˆ̃x;β, γ) = 0. (3.6c)

Now, given initial data x, x̄, x̂, x̃, there are three ways to calculate the value of ˆ̄̃x depending on the

order of application of (3.6), or different paths taken over the cube to ˆ̄̃x from the initial data. The

equation (3.1) is said to be multidimensionally consistent if the value of ˆ̄̃x is independent of path

taken.

x x̄

x̂

ˆ̄x

x̃

˜̄x

ˆ̃x
ˆ̄̃x

Fig. 3.7: Elementary cube
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As an example, consider the cross ratio equation, given by

(x− x̂)(x̄− ˆ̄x)

(x− x̄)(x̂− ˆ̄x)
=
β

α
, (3.7)

or in the form (3.1),

α (x− x̂)(x̄− ˆ̄x)− β (x− x̄)(x̂− ˆ̄x) = 0. (3.8)

Solving for the vertex ˆ̄x gives

ˆ̄x =
α x̄ (x− x̂)− β x̂ (x− x̄)

α (x− x̂)− β (x− x̄)
. (3.9)

Introducing a third lattice direction with corresponding independent variable n and parameter γ

also gives

˜̄x =
α x̄ (x− x̃)− γ x̃ (x− x̄)

α (x− x̃)− γ (x− x̄)
, (3.10)

and

ˆ̃x =
β x̂ (x− x̃)− γ x̃ (x− x̂)

β (x− x̃)− γ (x− x̂)
, (3.11)

Now, to find ˆ̄̃x, shift (3.9) in the n direction and substitute in values for ˜̄x and ˆ̃x from (3.10) and

(3.11) respectively. This gives

ˆ̄̃x =
(α− γ) (x̃− x̂) x̄− (β − γ) (x̃− x̄) x̂

(α− γ) (x̃− x̂)− (β − γ) (x̃− x̄)
, (3.12)

which is invariant under cyclic permutation of lattice directions, and therefore (3.7) is

multidimensionally consistent.

Note that ˆ̄̃x does not depend on x, only the vertices spanning a tetrahedron in the elementary

cube marked with black circles in Figure 3.7. This is called the tetrahedron property. A similar

relation holds for the white vertices of the cube.

3.4 Famous Examples of Integrable Quad-Equations

The study of interable lattice equations is relatively new, with the earliest examples appearing in the

1970s and 1980s in the context of discretising known PDEs with soliton solutions [1, 2, 50, 51, 19, 84].

Many examples are two-dimensional, however lattice equations do exist in dimensions 3 and above.

Through examples this thesis has already introduced some integrable lattice equations ((1.11), (3.7)),
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and in this section we introduce a few more famous examples of integrable lattice equations to

demonstrate the depth of this field of study, and stoke the reader’s interest. A more comprehensive

list can be found in [73].

Example 3.1. In Chapter 1, we saw the lattice KdV equation (1.11) appear from Bäcklund

transformations of the KdV equation. In fact, there are many examples of lattice equations in

the KdV family. Possibly the most famous example of an integrable lattice equation is the lattice

potential Kortweg-de Vries (KdV) equation, first presented in [74] in the form

(p− q + û− ū)(p+ q − ˆ̄u+ u) = p2 − q2, (3.13)

where p, q ∈ C are parameters. Related to (3.13) by a Miura transformation is the lattice modified

KdV equation, given by

p(v v̂ − v̄ ˆ̄v)− q(v v̄ − v̂ ˆ̄v) = 0, (3.14)

where vl,m is the dependent variable. Also in this list is the cross ratio equation (3.7). This equation

is also known as the lattice Schwarzian KdV equation, or more recently as Q1 as we will explain in

the next section.

Example 3.2. Another famous example is the discrete sine-Gordon equation, given by

p sin(θ − θ̄ − θ̂ + ˆ̄θ)− q sin(θ + θ̄ + θ̂ + ˆ̄θ) = 0, (3.15)

where θl,m is the dependent variable. It was first presented by Hirota in [50].

Example 3.3. In [4] Adler found a quad-equation resulting as the nonlinear superposition principle

for Bäcklund transformations of the Krichever-Novikov equation [66]. It was given in a different

form in [45] as

p(u ū− û ˆ̄u)− q(u û− ū ˆ̄u) + p q r(1 + u ū û ˆ̄u) = 0. (3.16)

Solutions to this equation were first found in [7], using a non-trivial seed solution and Bäcklund

transformations.

Example 3.4. It is also possible to have an integrable lattice system with several dependent

variables. Consider the following system of equations on a quad, often called the lattice Boussinesq

equation [48].

B1 ≡w̃ − u ũ+ v = 0,
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B2 ≡ŵ − u û+ v = 0,

B3 ≡w − u ˆ̃u+ ˆ̃v +
p− q
û− ũ

= 0.

This is a multicomponent map, such that at each vertex position there are the values u, v and w.

After taking the hat and tilde shifts respectively, one finds

ˆ̃u =
ṽ − v̂
ũ− û

,

ˆ̃v =
ũ v̂ − û ṽ
ũ− û

.

This system is integrable in the sense of multidimensional consistency. Thus three dimensional

consistency also allows the addition of a new direction ū, with a corresponding parameter r. The

new equations are

w̄ − u ū+ v = 0,

w − u ˆ̄u+ ˆ̄v +
r − q
û− ū

= 0,

w − u ˜̄u+ ˜̄v +
r − p
ũ− ū

= 0.

Thus we may have many dependent variables on any n−dimensional square lattice. In Chapter 5

we find such a system of quad-equations through the geometry of the ABS equations.

3.5 The ABS Classification

The ABS list is a complete (up to Möbius transformation) list of 9 integrable lattice equations of

the form (3.1) with the following properties:

1. Linearity in each argument.

2. Possessing the symmetry group of the square.

3. Multidimensional consistency.

4. Tetrahedron property.
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The classification was first performed in [5], and subsequently refined in [15], where the tetrahedron

property was replaced by non-degeneracy conditions. The result is a list of 9 equations (up to Möbius

transformation) in three groups, named H1-H3, A1-A2, Q1-Q4.

Some of these were already well known, for example the cross ratio equation (3.7) is a particular

case of Q1, and the lattice KdV equation (1.11) is H1. Note that the lattice potential KdV (1.11)

is also multidimensionally consistent and possesses the tetrahedron property. Both (1.11) and (3.7)

also each possess the symmetry of a square, as

Q(x, u, v, y;α, β) = σ1Q(u, x, y, v;α, β) = σ2Q(x, v, u, y;β, α), (3.17)

where σ1, σ2 = ±1.

However, the classification also produced some new examples. The full list is given in the following

theorem.

Theorem 3.1. Up to common Möbius transformations of the variables x, u, v, y and point

transformation of the parameters α, β, the list of three dimensionally consistent equations on

quad-graphs with the properties of multi-linearity, symmetry of the square and the tetrahedron

property is exhausted by the following.

List A:

α (x+ v) (u+ y)− β (x+ u) (v + y)− δ2 αβ (α− β) = 0. (A1)

(β2 − α2) (xu v y + 1) + β (α2 − 1) (x v + u y)− α (β2 − 1)(xu+ v y) = 0. (A2)

List H:

(x− y) (u− v) + β − α = 0. (H1)

(x− y) (u− v) + (β − α)(x+ u+ v + y) + β2 − α2 = 0. (H2)

α (xu+ v y)− β(x v + u y) + δ (α− β) = 0. (H3)
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List Q:

α (x− v) (u− y)− β (x− u)(v − y) + δ2 αβ (α− β) = 0. (Q1)

α(x− v) (u− y)− β(x− u) (v − y) + αβ (α− β) (x+ u+ v + y)

−αβ (α− β)(α2 − αβ + β2) = 0. (Q2)

(β2 − α2) (x y + u v) + β (α2 − 1) (xu+ v y)− α (β2 − 1) (x v + u y)

−δ2 (α2 − β2) (α2 − 1) (β2 − 1)/(4αβ) = 0. (Q3)

a0 xu v y + a1 (xu v + u v y + x v y + xu y) + a2 (x y + u v)

+ā2 (xu+ v y) + ã2 (x v + u y) + a3 (x+ u+ v + y) + a4 = 0, (Q4)

where r(x) = 4x3 − g2 x− g3, a2 = r(α), b2 = r(β), and the coefficients ai are given by

a0 = a+ b, a1 = −β a− α b, a2 = β2 a+ α2 b,

ā2 =
a b (a+ b)

2(α− β)
+ β2 a−

(
2α2 − g2

4

)
b,

ã2 =
a b (a+ b)

2(β − α)
+ α2 b−

(
2β2 − g2

4

)
a,

a3 =
g3

2
a0 −

g2

4
a1, a4 =

g2
2

16
a0 − g3 a1.

3.5.1 The Classification

In this section we summarise the ABS classification as given in [5], and demonstrate how the base

varieties in the space of initial conditions are related to this classification. We will discuss these base

varieties and their resolution further in following chapters.

In [5], it was shown that for any quad-equation Q(x, u, v, y;α, β) = 0 satisfying the tetrahedron

property and multidimensional consistency, then defining g(x, u;α, β) such that

g(x, u;α, β) = QQyv −Qy Qv, (3.18a)

g(x, v;β, α) = QQyu −Qy Qu, (3.18b)
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for some antisymmetric k(α, β) = −k(β, α) it is possible to write g(x, u;α, β) in the form

g(x, u;α, β) = k(α, β)h(x, u;α), (3.19)

such that the discriminant of h(x, u;α)

r(x) = h2
u − 2hhu, (3.20)

does not depend on the parameter α. In fact, it turns out that this property (that g factorises

as in (3.19) and the polynomial r does not depend on parameters) is not only necessary, but an

almost sufficient condition for three-dimensional consistency and the tetrahedron property. The list

of functions with this property is made up of twelve items, of which only two fail on consistency.

We will refer to this property as the property (R).

The biquadratics are directly related to the singularity structure of a quad-equation:

Proposition 3.1. Consider a multilinear quad-equation of the form

Q(x, u, v, y;α, β) = 0.

This equation becomes indeterminate where the biquadratics vanish.

Proof. This fact was originally proved in [6], but we include the proof here in our context for

completeness.

Rewriting the generic equation Q(x, u, v, y;α, β) = 0 to isolate dependence on the variable y we

find

0 = Q(x, u, v, y) = yQy + [Q− yQy]

⇒ y =
yQy −Q
Qy

, (3.21)

where, due to the linear dependence of Q on y, neither the numerator nor the denominator depend

on y. A singularity occurs if and only if both numerator and denominator simultaneously vanish.

That is,

yQy −Q = 0,
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Qy = 0.

Firstly, we prove that on singularities, the biquadratics must vanish. Isolating dependence on v, we

can write the above equations as

v[yQvy −Qv]− [vyQvy − yQy − vQv +Q] = 0,

v[Qvy]− [vQvy −Qy] = 0.

We can combine these to eliminate the dependence on v:

v[Qvy][yQvy −Qv]− [Qvy][vyQvy − yQy − vQv +Q] = 0,

v[Qvy][yQvy −Qv]− [vQvy −Qy][yQvy −Qv] = 0.

⇒ QQvy −QvQy = 0.

This is exactly that the biquadratic in x, u vanishes. Similarly, we could have eliminated the

dependence on u to get the condition that the biquadratic in x, v must vanish:

QQuy −QuQy = 0.

Secondly, we must show that if the biquadratics vanish, then we have a singularity. Suppose we

have the vanishing biquadratic

QQvy −QvQy = 0.

If Qv 6= 0, then

Qy =
QQvy
Qv

= 0,

and

yQy −Q = Q

[
yQvy
Qv

− 1

]
= 0,

and since we know Q = 0, we have a singularity. If Qv = 0, then we may replace v in the above by

u or x. If Qx = Qu = Qv = 0, then y is constant and Qy = 0.

Each biquadratic defines a 2-dimensional surface in the 3-dimensional space of x, u, v, and it is

at the intersection of these surfaces that we encounter singularities, or base varieties. This result

has important implications for the results of future chapters.
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Example 3.5. Consider the equation H2 from the ABS list.

(x− y) (u− v) + (β − α)(x+ u+ v + y) + β2 − α2 = 0. (3.22)

This equation has the corresponding biquadratic function g as defined in (3.18) given by

g(x, u;α, β) = 2 (β − α) (x+ u+ α), (3.23a)

g(x, v;β, α) = 2 (α− β) (x+ u+ β). (3.23b)

Taking k(α, β) = 2 (β − α), then we have the polynomials

h(x, u;α) = x+ u+ α, (3.24a)

h(x, v;β) = x+ v + β. (3.24b)

Taking the discriminant r(x) = h 2
u − 2hhuu, we find r(x) = 1.

Solving for the vertex y, we find

y =
x(u− v) + (β − α)(x+ u+ v) + β2 − α2

u− v + α− β
. (3.25)

If (x, u, v) lie on the line defined by the equations

x+ u+ α = x+ v + β = 0, (3.26)

then (3.25) becomes y = 0
0 , and hence y is undefined. In the next chapter we show how to resolve

such singularities for quad-equations.

3.5.2 The Synthesis

To generate the list of quad-equationsQ(x, u, v, y;α, β) = 0 with the properties of the ABS equations,

we start by generating a list of candidate polynomials which could arise as the discriminant r(x)

associated with some quad-equation in the sense of the property (R), then reverse engineer all

quad-equations satisfying the assumptions of the ABS classification.

Due to the symmetry and multilinearity conditions on Q, we know only two cases are possible.

Q = a0 xu v y + a1 (xu v + u v y + x v y + xu y) + a2(x y + u v)
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+ ā2(xu+ v y) + ã2(x v + u y) + a3(x+ u+ v + y) + a4, (3.27)

Q = a1(xu v + u v y − x v y − xu y) + a2(x y − u v)

+ a3(x− u− v + y). (3.28)

where

ai(β, α) = ε ai(α, β), ã2(α, β) = ε ā2(β, α), ε = ±1.

In fact, in the case (3.28) we additionally find we must have a1 = a2 = a3 = 0, which is the

trivial case, violating assumption. We therefore discard this and focus our attention on (3.27). For

equations of this form we have

h(x, u;α) = b0 x
2u2 + b1 xu (x+ u) + b2 (x2 + u2) + b̂2 xu+ b3(x+ u) + b4, (3.29a)

r(x) = c0 x
4 + c1 x

3 + c2 x
2 + c1 x+ c4, (3.29b)

where bi = bi(α).

Given a polynomial r(x) of degree 4, using Möbius transformations one can bring it into one

of 6 canonical forms, depending on its distribution of roots, including any shifted to infinity via

Möbius transformation. Therefore, all quad-equations (up to Möbius transformation) satisfying the

assumptions of the ABS classification will possess a discriminant belonging to the following list:

• r(x) = 0,

• r(x) = 1 (r has one quadruple zero),

• r(x) = x (r has one simple zero and one triple zero),

• r(x) = x2 (r has two double zeroes),

• r(x) = x2 − 1 (r has two simple zeroes and one double zero),

• r(x) = 4x3 − g2 x− g3, ∆ = g3
2 − 27g2

3 = 0 (r has four simple zeroes).

All that remains to complete the classification is to find all quad-equations of the form (3.27) which

have a discriminant belonging to this list and eliminating those which don’t satisfy all assumptions

of the ABS classification.
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Proposition 3.2. For a given polynomial r(x) of (at most) degree 4 in one of the canonical forms

above, the symmetric biquadratic polynomials h(x, u) with r(x) as their discriminant are exhaused

by the following list:

r(x) = 0 : h =
1

α
(x− u)2, (q0)

h = (γ0 xu+ γ1 (x+ u) + γ2)2, (h1)

r(x) = 1 : h =
1

2α
(x− u)2 − α

2
, (q1)

h = γ0 (x+ u)2 + γ1 (x+ u) + γ2)2, γ2
1 − 4 γ0γ2 = 1, (h2)

r(x) = x : h =
1

4α
(x− u)2 − α

2
(x+ u) +

α3

4
, (q2)

r(x) = x2 : h = γ0 x
2 u2 + γ1 xu+ γ2, γ

2
1 − 4γ0 γ2 = 1 (h3)

r(x) = x2 − δ2 : h =
α

1− α2
(x2 + u2)− 1 + α2

1− α2
xu+ δ2 1− α2

4α
, (q3)

r(x) = 4x3 − g2 x− g3 : h =
1√
r(α)

((
xu+ α (x+ u) +

g2

4

)2

− (x+ u+ α)(4αxu− g3)
)
. (q4)

Proof. To prove this we simply need to solve the system of the form

b21 − 4 b0 b1 = c0,

2 b1 (b̂2 − 2 b2)− 4 b0 b3 = c1,

b̂22 − 4 b22 − 2 b1 b3 − 4 b0 b3 = c2,

2 b3(b̂2 − 2 b2)− 4 b1 b4 = c3,

b23 − 4 b2 b4 = c4,

where bi are the coefficients of h(x, u), and ci are the coefficients of r(x) as in (3.29a), (3.29b), which

can be done by straightforward analysis.

The presence of the term
√
r(α) in (q4) clearly shows the presence of elliptic curves at play in

these equations. We can now reconstruct all polynomials Q for each h. From (3.27) we have

g(x, u;α, β) =(ā2 a0 − a2
1)x2u2 + (a1(ā2 − ã2) + a0 a3 − a1 a2)xu (x+ u)

+ (a1 a3 − a2 ã2)(x2 + u2) + (ā2
2 − ã2

2 + a0 a4 − a2
2)xu
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+ (a3(ā2 − ã2) + a1 a4 − a2 a3)(x+ u) + ā2 a4 − a2
3. (3.30)

Using (3.19) and (3.29a), then denoting bi = bi(α), b′i = bi(β), k = k(α, β), we have the following

system for the unknowns ai:

ā2 a0 − a2
1 = k b0,

a1(ā2 − ã2) + a0 a3 − a1 a2 = k b1,

a1 a3 − a2 ã2 = k b2,

ā2
2 − ã2

2 + a0 a4 − a2
2 = k b̂2,

a3(ā2 − ã2) + a1 a4 − a2 a3 = k b3,

ā2 a4 − a2
3 = k b4,

ã2 a0 − a2
1 = −k b′0,

a1 (ã2 − ā2) + a0 a3 − a1 a2 = −k b′1,

a1 a3 − a2 ā2 = −k b′2,

ã2
2 − ā2

2 + a0 a4 − a2
2 = −k b̂2,

a3(ã2 − ā2) + a1 a4 − a2 a3 = −k b′3,

ã2 a4 − a2
3 = −k b′4.

Consider the cases (q0), (q1), (q2), (q3), (q4). Solving the above system we find the polynomials Q

corresponding the the equations Q1δ=0, Q1δ=1, Q2, Q3, and Q4, respectively. A straightforward test

shows that all these functions are consistent around the cube and possess the tetrahedron property.

Taking the cases (h1), (h2), (h3) we find the equations A1δ=0, A1δ=1, H2, H3δ=1, A2, all of which

satisfy consistency around the cube and the tetrahedron property. We also find the polynomials

Q = (x− y)(u− v) + k1(α, β), (Ĥ1)

Q =
1 + k2(α, β)

2
(xu+ v y)− 1− k2(α, β)

2
(x v + u y), (Ĥ30)

where ki(α, β) = −ki(β, α). These equations satisfy the property (R) regardless of the choice of ki,

but are not in general consistent around the cube. Requiring that Ĥ1, H30 satisfy this consistency

condition we find the equations H1 and H3δ=0 belonging to the ABS list.

Thus we have found a list of all multilinear quad-equations (up to Möbius transformation) with

the symmetry of the square which possess the property (R). By requiring that all these equations

also be consistent around the cube, we have found a complete list of integrable quad-equations

(up to Möbius transformation) satisfying the assumptions of the ABS classification given above

(multilinearity, symmetry of the square, multidimensional consistency, tetrahedron property).
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3.6 Reductions

We will now introduce the idea of staircase reductions of lattice equations, first given in [40]. There

exist a plethora of examples of staircase reductions to discrete Painlevé equations. In Chapter 5, by

studying the induced map of a lattice equation over multiple steps we are led to new reductions of

lattice equations related to staircase reductions.

Consider the lattice Z2 with coordinates l,m, and a dependent variable xl,m. To perform a

reduction over such a lattice, we perform what is commonly referred to as a staircase reduction

[40, 99]. In its most basic form, we make the assumption that taking some n1 steps in the l–direction

will give the same value of the solution as taking n2 steps in the m–direction. More explicitly, for

some n1, n2 ∈ Z we impose on the solution xl,m the condition

xl+n1,m ≡ xl,m+n2 .

This condition allows us to define a new function xN = xl,m, such that N = n2 l+n1m. Substituting

this into the equation we wish to reduce, we now have an ordinary difference equation for xN . We

call this reduction an (n1, n2)–reduction.

l

m

xN+2

xN+1

xN

Fig. 3.8: An example (2,1)–reduction.

Taking a regular staircase of vertices in the lattice with step width n1 and height n2, all the

vertices along the upper corners will have the common value xN for some N , and similarly for the
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lower corners. See the example Figure 3.8.

Example 3.6. Consider the ABS equation Q1 over a lattice xl,m, given by

α (xl,m − xl,m+1) (xl+1,m − xl+1,m+1)− β (xl,m − xl+1,m) (xl,m+1 − xl+1,m+1) + δ2αβ (α− β) = 0.

Following [58], we perform a (2,1)-reduction by imposing xl,m+1 ≡ xl+2,m, and hence we can define

the dependent variable un = ul+2m = xl,m governed by the ordinary difference equation

α (un − un+2) (un+1 − un+3)− β (un − un+1) (un+2 − un+3) + δ2αβ (α− β) = 0. (3.31)

Simplifying this expression with the change of variables wn = un+2−un+1 and defining the parameter

γ := δ2αβ (α− β), we find

α (wn + wn−1) (wn+1 + wn)− β wn−1wn+1 + γ = 0. (3.32)

Solving for wn+1 we can see that this is a QRT mapping, since we have

wn+1 =
(−γ − αw2

n)− wn−1 (αwn)

(αwn)− wn−1(β − α)
. (3.33)

Using the expression (1.6) we can immediately see that the invariant is

K =
α(α+ β)(wn + wn−1)2 + β (α+ β)wnwn−1 − αγ

(wn + wn−1)(β wnwn−1) + γ)
. (3.34)

Many examples have been found of reductions of integrable lattice equations to integrable ordinary

difference equations, and by deautonomising the result, discrete Painlevé equations [43, 58].

In the remainder of the thesis, we use tools from birational geometry outlined in the previous

chapter on integrable lattice equations. By building a space of initial conditions on which the induced

map becomes in some sense an isomorphism, we find new information about solutions and reductions

of integrable lattice equations, and the relationship between the singular points of Painlevé equations

and the iteration map of integrable lattice equations.
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Chapter 4: Resolution of Singularities for Quad-

Equations

In Chapter 2 we introduced the idea of resolution of singular points in the plane via blow-ups, then

applied this technique in the study of discrete Painlevé equations. In the case of birational maps

with spaces of initial conditions of dimension d > 2 the map may become undefined along varieties

within that space. We call such singularities singular or base varieties.

It is very natural to be interested in such singularities. Not only are they closely related to

singularity confinement (as we will show in this chapter), in [9] such singularities were used to give

boundary conditions on a section of a lattice that were not overdetermined, and hence obtain exact

solutions of lattices that were constructed on a regular singularity-bounded strip.

In this chapter we extend these ideas of resolution of singularities to varieties of higher dimension,

discussing the process of resolution of higher dimensional subvarieties and framing singularity

confinement of lattice equations in this context.

4.1 Blowing Up Along Submanifolds

Blowing up along subvarieties which are not only point sets has already been shown to be a fruitful

area of research within integrable systems. In [97], the authors construct a birational representation

of Weyl groups of a class which contains the types A
(1)
n , D

(1)
n , and E

(1)
n , important in the study of
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the geometry of discrete Painlevé equations.

When performing a blow-up in a higher dimension, the core idea is the same as before. A blow-up

is, in effect, a geometric transformation which replaces a subvariety U of V with all the directions

pointing out of U . To perform a blow-up centred at a subvariety b in Cn, we use the following

definition.

Definition 4.1. To blow up a codimension-k subvariety b of Cn, let b be the locus of the equations

x1 = x2 = · · · = xk = 0 and [y1 : y2 : · · · : yk] be homogeneous coordinates on Pk−1. The blow-up is

the pullback of the map π : C̃n −→ C3, where C̃n is given by

{((x1, x2, . . . , xk), [y1 : y2 : · · · : yk])|xi yj − xj yi = 0 ∀ i, j} ⊂ Cn × Pk−1.

The subvariety b is called the centre of the blow-up. A blow-up is an isomorphism everywhere away

from b, and maps the centre to an exceptional locus isomorphic to Pk−1.

Notice that taking this definition such that n = k = 2, we naturally find the definition of the

blow-up of a point in C2 given in Chapter 2.

To motivate this process, we begin by considering the p roblem of parameterising a surface. In

many cases it is immediately apparent what such a parameterisation might be (e.g. a sphere, plane,

etc) but in many more cases, particularly where a surface may not be everywhere smooth, finding

such a parameterisation may be significantly more difficult. By blowing up a non-smooth variety to

a smoother, simpler one, a parameterisation for the original surface becomes more apparent.

Example 4.1. Consider the cone given by

x2
1 + x2

2 − x2
3 = 0. (4.1)

This surface is not smooth at the origin, so we blow up with centre (0, 0, 0). Since this is a

codimension-3 subvariety (a point), we use the map π : C̃3 → C3, where C̃3 is the surface described

by

{((x1, x2, x3), [y1 : y2 : y3])|xi yj − xj yi = 0 ∀ i, j} ⊂ C3 × P2.

This is an isomorphism everywhere away from the origin, but replaces the origin with an exceptional
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plane isomorphic to P2. We therefore consider the blow-up in three charts, corresponding to the

three affine charts of P2.

The equations defining this surface are

x1 y2 = x2 y1, (4.2a)

x1 y3 = x3 y1, (4.2b)

x2 y3 = x3 y2. (4.2c)

Since [y1 : y2 : y3] = [y1/y3 : y2/y3 : 1] = [y1/y2 : 1 : y3/y1] = [1 : y2/y1 : y3/y1], in the first blow-up

chart we have affine coordinates

x′1 :=
y1

y3
=
x1

x3
, x′2 :=

y2

y3
=
x2

x3
, (4.3)

and therefore in this chart the blow-up is given by the coordinate transform

x1 = x′1 x
′
3, (4.4a)

x2 = x′2 x
′
3, (4.4b)

x3 = x′3. (4.4c)

Substituting this into (4.1) we find

x′23 (x′21 + x′22 − 1) = 0. (4.5)

The resulting variety has two components. The exceptional plane x′3=0, and the cylinder x′21 +x′22 =

1, which are smooth (see Figure 4.1). Similar results follow for the other two charts.

Fig. 4.1: Cones blown up to a cylinder.
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The cylinder x′21 + x′22 = 1 is parameterised in 3-space by

(x′1, x
′
2, x3) = (cos(u), sin(u), v), (4.6)

where u ∈ [−π, π], v ∈ (−∞,∞). Using (4.4), this immediately gives the parameterisation of the

cone

(x1, x2, x3) = (v cos(u), v sin(u), v). (4.7)

Example 4.2. Consider the Whitney umbrella, the surface X defined by

x2 − y2 z = 0. (4.8)

Notice that this surface is again singular at the origin, see Figure 4.2.

Fig. 4.2: Whitney umbrella.

We may be tempted to once again blow up at the origin as with (4.1) in the previous example.

However using (4.4) we find

z′2 (x′2 − y′2 z′) = 0, (4.9)

yielding the strict transform

x′2 − y′2 z = 0, (4.10)

and exceptional component z2 = 0. In this case, after blowing up the strict transform is exactly the

same as before. The singularity was not improved after blowing up and hence the origin was too

small a centre [42]. In this case, the entire positive z-axis (of which the origin is a part) is a pinch
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singularity. Choosing instead the (codimension-2) z-axis as centre, the total transform of X is the

pullback of the map to C3 from

{((x, y, z), [ξ, η])|x η − y ξ = 0} ⊂ C3 × P1.

We consider this space in two affine charts corresponding to the affine charts of P1. In the chart

parameterised by x′ := ξ/η we have

x′ =
ξ

η
=
x

y
, (4.11)

and hence in this chart the blow-up is given by the change of coordinates

(x, y, z) = (x′ y′, y′, z′). (4.12)

Substituting into (4.8) we find

y′2 (x′2 − z′) = 0, (4.13)

and hence the strict transform is

x′2 − z′ = 0. (4.14)

Fig. 4.3: Strict transform of Figure 4.2.

By inspection, this surface has the parameterisation

(x′, y′, z′) = (v, u, v2), (4.15)
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where u ∈ (−∞,∞), v ∈ (−∞,∞), and hence using (4.12) we have found a parameterisation of the

Whitney umbrella (4.8),

(x, y, z) = (u v, u, v2). (4.16)

These parameterisations were used to generate Figures 4.1 and 4.2. These are simple examples,

and the smooth parameterising manifolds were found after a single step. In other examples it may

take many steps, but in characteristic zero it is always possible to resolve singular varieties after

successive blow-ups in this way [49]. For further information on the resolution of polynomials of

arbitrary dimension, we direct the reader towards [64, 13].

Recall that in Example 3.5 we saw that looking at H2 on a single quadrilateral with vertices

x, u, v, y, the map which gives the value of the vertex y in terms of the other 3 becomes undefined

when x, u, v lie on the line

x+ u+ α = x+ v + β = 0.

This line is a singularity of the map (x, u, v) 7→ y in the same sense as the base points in Chapter 2,

a codimension-2 subvariety on which the map becomes undefined.

The remainder of this chapter is dedicated to the discussion of such singularities on a single

quadrilateral, and their resolution with blow-ups. New difficulties arise when blowing up higher

dimensional base varieties, for example finding the correct choice of centre (as shown in Example 4.2).

In the next section we motivate the resolution of quad-equations with singularity confinement, then

explicitly resolve all singularities which appear when solving for one vertex on a generic quadrilateral

for several examples.

4.2 Singular Varieties of H3δ=0

Consider the ABS equation H3δ=0. Solving for the vertex y and setting δ = 0, this equation takes

the form

y = x
αu− β v
β u− α v

. (4.17)
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Consider this equation over a lattice (l,m) ∈ Z2 with dependent variable xl,m ∈ C ∪ {∞}, and take

as initial conditions xl,m+2, xl,m+1, xl,m, xl+1,m, xl+2,m. This allows the equation to be solved over

a 3× 3 section of the lattice, see Figure 4.4.

xl,m+1

xl,m xl+1,m xl+2,m

xl+1,m+1 xl+2,m+1

xl,m+2 xl+1,m+2 xl+2,m+2

Fig. 4.4: 3× 3 section of Z2, with initial values marked in bold.

Suppose xl,m 6= 0, αxl+1,m = β xl,m+1 and xl+1,m, xl,m+1 6= 0. For all bounded xl,m we have

xl+1,m+1 = 0, and hence for subsequent iterations the solution has apparently lost a degree of

freedom corresponding to xl,m. The number of degrees of freedom of the system has dropped from

4 to 3. Solving for xl+2,m+1 and xl+1,m+2 we find

xl+2,m+1 = xl+1,m
αxl+2,m − β xl+1,m+1

β xl+2,m − αxl+1,m+1
=
α

β
xl+1,m, (4.18a)

xl+1,m+2 = xl,m+1
αxl+1,m+1 − β xl,m+2

β xl+1,m+1 − αxl,m+2
=
β

α
xl,m+1. (4.18b)

Finally, solving for xl+2,m+2 we find

xl+2,m+2 = xl+1,m+1
αxl+2,m+1 − β xl+1,m+2

β xl+2,m+1 − αxl+1,m+2
,

=
xl+1,m+1

αβ

α3 xl+1,m − β3 xl,m+1

αxl+1,m − β xl,m+1
, (4.19)

which is undetermined, since xl+1,m+1 = 0 and αxl+1,m − β xl,m+1 = 0. The iteration has landed

on a singular variety, and xl+2,m+2 is undefined.

However, if instead we start by taking αxl+1,m − β xl,m+1 = ε and at the end of the iterations
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performed above take the limit as ε→ 0, a cancellation occurs and we now find

xl+2,m+2 =
xl,m xl+2,m xl,m+2

xl,m (xl+2,m + xl,m+2 − xl+2,m xl,m+2)
. (4.20)

The fact that these factorisations occur is related to the polynomial growth of the solution and

vanishing algebraic entropy [10]. Note that by passing over a quadrilateral which is locally indeterminate,

the solution at xl+2,m+2 has in a sense recovered the lost degree of freedom, such that under iteration

the number of degrees of freedom of the solution has followed the apparent sequence 4→ 3→ 3→ 4.

From the perspective of an observer who knows only the values of xl+1,m+1, xl+2,m+1, xl+1,m+2,

divining the value of xl+2,m+2 is not possible in this case since there are infinitely many distinct

solutions for which the values of the vertices xl+1,m+1, xl+2,m+1, xl+1,m+2 lie on this base line. In

order to overcome this problem, we want to find initial conditions such that such solutions become

distinguishable and this ambiguity is avoided. We achieve this by blowing up wherever such a

singular variety could occur.

We demonstrate this idea by repeating the example of H3δ=0 from this perspective. On a generic

quad with vertices x, u, v, y solving for y, the equation has a base line b given by

x = β u− α v = 0. (4.21)

Hence, we blow up with the line b as centre.

The singularity b is a codimension–2 base variety, so it is blown up to an exceptional plane e

isomorphic to b×P1, where b is the curve defined by (4.21). Taking [ξ : η] as the projective coordinate

on P1 and defining x′ := ξ
η , then from (4.21), in this chart the blow-up is given by the change of

variables

x′ =
x

β u− α v
, (4.22a)

u′ = β u− α v, (4.22b)

v′ = v, (4.22c)

and therefore,

x = x′ u′, (4.23a)
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u =
1

β
(u′ + α v′), (4.23b)

v = v′. (4.23c)

We say that the variable x′ parametrises the exceptional plane. Substituting into (4.17), we find

y = x′
(
α

β
u′ +

(
α2 − β2

β

)
v′
)
, (4.24)

In this example we encountered the base line b on the quad where x = xl+1,m+1, u = xl+2,m+1, v =

xl+1,m+2, y = xl+2,m+2, and we therefore have

xl+2,m+2 = x′l+1,m+1

(
α

β
x′l+2,m+1 +

(
α2 − β2

β

)
x′l+1,m+2

)
. (4.25)

In this chart the equation is nowhere singular. Since xl+1,m+1, xl+2,m+1, xl+1,m+2 lie on b, then

xl+2,m+2 lies on the image of the exceptional plane e resulting from the blow-up of b.

When xl+1,m+1, xl+2,m+1, xl+1,m+2 lie on b, then the relation αxl+1,m = β xl,m+1 also holds.

We can use (4.17) to calculate the values of x′l+1,m+1, x′l+2,m+1, x′l+1,m+2 on the exceptional plane

e in terms of the initial conditions xl,m+2, xl,m+1, xl,m, xl+1,m, xl+2,m to find

x′l+1,m+1 =
β xl,m xl+2,m xl,m+2

(α2 − β2)xl+1,m(xl,m(xl+2,m+xl,m+2
)− xl+2,m xl,m+2)

,

x′l+2,m+1 = 0,

x′l+1,m+2 = xl+1,m.

Therefore,

xl+2,m+2 =
xl,m xl+2,m xl,m+2

xl,m(xl+2,m + xl,m+2)− xl+2,m xl,m+2
. (4.26)

In this setting, the value of xl,m is carried across the singularity to xl+2,m+2 via the value of x′l+1,m+1,

the variable parameterising the exceptional plane e resulting from the blow-up of the line b given by

(4.21).

By choosing an appropriate compact space of initial conditions (to include where the solution

may become unbounded) and using blow-ups to successively resolve all singular varieties which may

appear, we create a ‘space of initial conditions’ for each quadrilateral such that no singularities or

ambiguities persist. In the next chapter we consider the relationship between these resolved space
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of initial conditions on different quads. For the remainder of this chapter, we perform the explicit

resolution of several examples of ABS equations.

4.3 Resolution of Singularities on One Quadrilateral

In this section we cover the complete resolution of several examples from the ABS list on a generic

quadrilateral, chosen to highlight new challenges which can arise in higher dimensions and how to

overcome them. To begin, consider a quad-equation Q = 0 on a generic quadrilateral with vertices

x, u, v, y, and take the vertices x, u, v as initial conditions solving for the vertex y. In order to include

cases where solutions become unbounded, we compactify C3 to P1 × P1 × P1.

There are an infinite number of valid compactifications of C3. We have also performed resolutions

of initial value spaces of lattice equations in P3, but for the purpose of clarity in this thesis we work

in P1 × P1 × P1. For ease of notation we denote the Cartesian product of N copies of P1 as (P1)N .

To compactify to P1 × P1 × P1, we take each vertex x, u, v in the initial conditions and generate

the three coordinates [x : 1], [u : 1], [v : 1], such that

([x : 1], [u : 1], [v : 1]) ∈ P1 × P1 × P1 = (P1)3.

Using shorthand such that [x : 1] = [1 : X], we can perform a change of variables X = 1/x and

examine the region where X vanishes. This is equivalent to considering where x becomes unbounded.

4.3.1 Resolution of H3δ=0

Consider a map ψ from (P1)3 to (P1)3 mapping the vertices (v, x, u) to (v, y, u) according to H3δ=0.

ψ : (P1)3 → (P1)3, ([v : 1], [x : 1], [u : 1]) 7−→ ([v : 1], [y : 1], [u : 1]). (4.27)

This map takes the 3-dimensional space of initial conditions for solving for y to the 3-dimensional

space of initial conditions for solving for x, with the inverse map

ψ−1 : (P1)3 → (P1)3, ([v : 1], [y : 1], [u : 1]) 7−→ ([v : 1], [x : 1], [u : 1]),
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see Figure 4.5.

y

x u

v

Fig. 4.5: Iteration on one quadrilateral ψ : (P1)3 → (P1)3.

We find that ψ is undefined along the four base lines given by

u = v = 0, (b1)

x = α v − β u = 0, (b2)

X = αV − β U = 0, (b3)

U = V = 0. (b4)

Blowing up along these base varieties (and any new base varieties which appear on the resulting

exceptional planes) we build a space X such that the map lifted to X is everywhere well defined.

b1

b 2 b 3

b4

000 100

010

001

110

011

011 111

x

u
v

Fig. 4.6: Base varieties of H3δ=0 in P1 × P1 × P1, base varieties drawn in bold.

We name the 8 affine charts such that 000 has affine coordinates (x, u, v), 100 has (X,u, v), 010

69



4. Resolution of Singularities for Quad-Equations

has (x, U, v), 001 has (x, u, V ), 110 has (X,U, v), 101 has (X,u, V ), 011 has (x, U, V ), and 111 has

(X,U, V ).

By resolving the base varieties we find in each affine chart we resolve all base varieties which

appear in this space.

Blow-up of b1

In the first affine chart (x, u, v), we have

y = x
αu− β v
β u− α v

, (4.28)

and we see the base varieties

u = v = 0, (b1)

x = α v − β u = 0. (b2)

In this chart we see the base lines b1 and b2, and their intersection at the origin. Consider the blow-up

of this intersection. By replacing (x, u, v) with (x′, x′ u′, x′ v′), (x′ u′, u′, u′ v′), or (x′ v′, u′ v′, v′), we

have

y = x′
αu′ − β v′

β u′ − α v′
, (4.29a)

y = x′ u′
α− β v′

β − α v′
, (4.29b)

y = x′ v′
αu′ − β
β u′ − α

, (4.29c)

respectively. This has not improved the nature of the singularities. Indeed, in the first chart the

equation is left completely unchanged. Instead we must blow up with the entire base line as centre.

To blow up b1, we use the change of variables

x(11) = x,

u(11) =
u

v
,

v(11) = v,

=⇒



x = x(11),

u = u(11) v(11),

v = v(11),

(4.30)
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and 

x(12) = x,

u(12) = u,

v(12) =
v

u
,

=⇒



x = x(12),

u = u(12),

v = u(12) v(12),

(4.31)

where the superscript indicates the blow-up chart. Applying (4.30) and (4.31) to (4.28), we find

y = x(11)αu
(11) − β

β u(11) − α
, (4.32a)

y = x(12)α− β v(12)

β − α v(12)
, (4.32b)

respectively. In both charts b1 is resolved with this blow-up, but b2 persists as x(11) = β u(11)−α = 0.

Blowing up along b2 using the changes of variables

x(21) =
x(11)

β u(11) − α
,

u(21) = β u(11) − α,

v(21) = v(11),

=⇒



x(11) = x(21) u(21),

u(11) =
u(21) + α

β
,

v(11) = v(21),

(4.33)

and 

x(22) = x(11),

u(22) =
β u(11) − α

x(11)
,

v(22) = v(11),

=⇒



x(11) = x(22),

u(11) =
x(22) u(22) + α

β
,

v(11) = v(22),

(4.34)

and applying them to (4.32a), we find respectively

y =
x(21)(αu(21) + α2 − β2)

β
, (4.35a)

y =
αx(22) u(22) + α2 − β2

β u(22)
. (4.35b)

The equation is now fully resolved in this chart. This space now contains two exceptional planes.

Specifically, e2 and e∗1, the lift of e1 after blowing up along b2. In the chart (4.33), e∗1 is the region

given by {v(21) = 0}, and e2 by {u(21) = 0}, and hence they intersect along a line where x(21) is

free. Similarly in the chart (4.34), e∗1 is the region given by {v(22) = 0}, and e2 by {x(22) = 0}, and

hence they intersect along a line where u(22) = 1
x(21) is free. Alternatively, we could have chosen
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to resolve first b2, then b1. While this might change the exact definitions of the coordinates, the

blow-up structure is preserved.

Similarly, in the chart (X,U, V ) = (1/x, 1/u, 1/v), we have

y =
1

X

αV − β U
β V − αU

, (4.36)

where we see the base lines b3 and b4.

X = αV − β U = 0, (b3)

U = V = 0. (b4)

There is a neat symmetry in this equation where the Möbius transformation x → 1/x, u → 1/u,

v → 1/v, y → 1/y leaves the equation unchanged, so the singularity structure in this chart appears

the same as the first.

To blow up b4, we use the change of variables

X(41) = X,

U (41) =
U

V
,

V (41) = V,

=⇒



X = X(41),

U = U (41) V (41),

V = V (41),

(4.37)

and 

X(42) = X,

U (42) = U,

V (42) =
V

U
,

=⇒



X = X(42),

U = U (42),

V = U (42) V (42),

(4.38)

Applying (4.37) and (4.38) to (4.36), we find

y =
1

X(41)

β U (41) − α
αU (41) − β

, (4.39a)

y =
1

X(42)

αV (42) − β
β V (42) − α

, (4.39b)

respectively. In both charts b4 is resolved with this blow-up, but as expected due to symmetry b3
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persists as X(41) = β U (41) − α = 0. Blowing up along b3 using the changes of variables

X(31) =
X(41)

β U (41) − α
,

U (31) = β U (41) − α,

V (31) = V (41),

=⇒



X(41) = X(31) U (31),

U (41) =
U (31) + α

β
,

V (41) = V (31),

(4.40)

and 

X(32) = X(41),

U (32) =
β U (41) − α
X(41)

,

V (32) = V (41),

=⇒



X(41) = X(32),

U (41) =
X(32) U (32) + α

β
,

V (41) = V (32),

(4.41)

and applying them to (4.39a), we find respectively

y =
1

X(31)

β

αU (31) + α2 − β2
, (4.42a)

y =
β U (32)

αX(32) U (32) + α2 − β2
. (4.42b)

Thus the equation is fully resolved. The result remains the same regardless of choice of affine chart

to blow up in. In the next section we consider the map φ (the induced map ψ lifted to the resolved

space X ), including the image of the exceptional planes e1, e2 e3, and e4.

In this example, all base varieties were resolved by blowing up once. However, in some examples

we find new base varieties on the resulting exceptional plane after blowing up, much like in the case

of Painlevé equations where base points appear on exceptional lines.

4.3.2 Resolution of H3δ=1

Consider now the equation H3δ=1, that is

α (xu+ v y)− β (x v + u y) + α2 − β2 = 0. (4.43)

Solving for the vertex y, we have

y =
x(αu− β v) + α2 − β2

β u− α v
. (4.44)
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Compactifying the initial conditions for this quadrilateral x, u, v to P1 × P1 × P1 we find 3 singular

lines, given by

αX + u = β X + v = 0, (b1)

X = αu− β v = 0, (b2)

U = V = 0, (b3)

see Figure 4.7.

b
1 b 2

b3

000 100

010

001

110

101

011 111

x

u
v

Fig. 4.7: Base varieties of H3δ=0 in P1 × P1 × P1, base varieties drawn in bold.

We proceed by blowing up in each of the three charts where these intersections are visible.

Resolution in the chart 111

In this affine chart we have coordinates (X,U, V ), and hence

y =
β U − αV −X U V (α2 − β2)

X (β V − αU)
. (4.45)

Here we see the base varieties

αX U + 1 = β X V + 1 = 0, (b1)

X = β U − αV = 0, (b2)

U = V = 0. (b3)
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In this chart we will only resolve b2 and b3, and leave b1 to be resolved in other charts.

For starters, we blow up b3 with the change of variables

X(31) = X,

U (31) =
U

V
,

V (31) = V,

=⇒



X = X(31),

U = U (31) V (31),

V = V (31),

(4.46)

and 

X(32) = X,

U (32) = U,

V (32) =
V

U
,

=⇒



X = X(32),

U = U (32),

V = U (32) V (32),

(4.47)

where the superscript indicates the blow-up chart. This gives, respectively,

y =
β U (31) − α−X(31) U (31) V (31) (α2 − β2)

X(31) (β − αU (31))
, (4.48a)

y =
β − αV (32) −X(32) U (32) V (32) (α2 − β2)

X(32) (β V (32) − α)
. (4.48b)

After this blow-up we see the strict transforms of b1 and b2,

β X(31) V (31) + 1 = αU (31) − β = 0, (b1)

X(31) = β U (31) − α = 0. (b2)

Blowing up b2 in the chart (X(31), U (31), V (31)) with

X(21) =
X(31)

β U (31) − α
,

U (21) = β U (31) − α,

V (21) = V (31),

=⇒



X(31) = X(21) U (21),

U (31) =
1

β

(
U (21) + α

)
,

V (31) = V (21),

(4.49)

and 

X(22) = X(31),

U (22) =
β U (31) − α
X(31)

,

V (22) = V (31),

=⇒



X(31) = X(22),

U (31) =
1

β

(
X(22) U (22) + α

)
,

V (31) = V (22),

(4.50)
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gives the expressions

y =
β − α(α2 − β2)X(21) V (21) − (α2 − β2)X(21) U (21) V (21)

X(21)
(
αU (21) + α2 − β2

) , (4.51a)

y =
β U (22) − α (α2 − β2)V (22) − (α2 − β2)X(22) U (22) V (22)

αX(22) U (22) + α2 − β2
. (4.51b)

All that is left to resolve in this chart is the section of b1 visible in this chart. We choose to resolve

this in other affine charts.

Resolution in the chart 011

If we define the variables x(31) := (X(31))−1, x(32) := (X(32))−1, then blowing up b3 in this chart is

computationally equivalent to changing chart to find

y =
x(31)(β U (31) − α)− U (31) V (31) (α2 − β2)

β − αU (31)
, (4.52a)

y =
x(32)(β − αV (32))− U (32) V (32) (α2 − β2)

β V (32) − α
. (4.52b)

In this chart all that remains is the resolution of b1, which in this chart is described by

x(31) + β V (31) = αU (31) − β = 0. (b1)

Using the changes of variables

x(11) =
x(31) + β V (31)

αU (31) − β
,

U (11) = αU (31) − β,

V (11) = V (31),

=⇒



x(31) = x(11) U (11) − β V (11),

U (31) =
1

α

(
U (11) + β

)
,

V (31) = V (11),

(4.53)

and 

x(12) = x(31) + β V (31),

U (12) =
αU (31) − β

x(31) + β V (31)
,

V (12) = V (31),

=⇒



x(31) = x(12),

U (31) =
1

α

(
x(12) U (12) + β

)
,

V (31) = V (12),

(4.54)

we find, respectively,

y =
1

α

(
α2V (11) − β x(11) U (11) − (α2 − β2)x(11)

)
, (4.55a)
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y =
β x(12) U (12) − α2U (12)V (12) − (α2 − β2)

αU (12)
. (4.55b)

There are no more singular varieties visible in this chart. We finish by resolving in the chart 100.

Resolution in the chart 100

Starting in this chart we have

y =
αu− β v −X(α2 − β2)

X(β u− α v)
, (4.56)

and we see the base varieties b1 and b2, described by

αX + u = β X + v = 0, (b1)

X = αu− β v = 0. (b2)

As before, blowing up b1 then b2, the equation is again fully resolved.

4.3.3 Resolution of Q1

We will now consider the resolution of Q1, which is significantly more complicated. It involves many

features not seen in the previous example, including new base varieties appearing after blowing up.

Consider the ABS equation Q1, given canonically by

α (x− v)(u− y)− β (x− u)(v − y) + δ2αβ(α− β) = 0. (4.57)

Solving for the vertex y we find

y =
x (αu− β v)− (α− β)u v + δ2αβ (α− β)

(α− β)x+ β u− α v
, (4.58)

Compactify the initial conditions x, u, v to P1 × P1 × P1. In this space we find the system has two

base lines b1 and b2, given in the first affine coordinate chart (x, u, v) by

x− u+ α δ = x− v + β δ = 0, (b1)

x− u− α δ = x− v − β δ = 0, (b2)
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see Figure 4.8. These base lines intersect in the chart where x, u, v become unbounded, so we consider

the equation in the chart (X,U, V ) = (1/x, 1/u, 1/v), which is of the form

y =
αV − β U − (α− β)X + δ2αβ (α− β)X U V

(α− β)U V + β X V − αX U
. (4.59)

In this chart the equations of the base varieties now take the forms

X − U − α δX U = X − V − β δ X V = 0, (b1)

X − U + α δX U = X − V + β δ X V = 0. (b2)

We wish to resolve the singularities visible in this chart.

b 1
b 2

000 100

010

001

110

011

011 111
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Fig. 4.8: Base varieties of Q1 in P1 × P1 × P1, base varieties drawn in bold.

Unlike in previous examples, the base lines b1 and b2 intersect tangentially. Before we can resolve

either base variety we have to ‘untangle’ their intersection, by blowing up at the origin.

We blow up at the origin with the three changes of variables

(X(01), U (01), V (01)) =

(
X,

U

X
,
V

X

)
, (4.60a)

(X(02), U (02), V (02)) =

(
X

U
,U,

V

U

)
, (4.60b)

(X(03), U (03), V (03)) =

(
X

V
,
U

V
, V

)
. (4.60c)

In all three charts of this blow-up we see the proper transforms of b1 and b2, and a new base line b3.

For example, in the first chart (X(01), U (01), V (01)), we have the equation

y =
(β − α) + (αV (01) − β U (01)) + αβ δ2 (α− β) (U (01) V (01)(X(01))2)

X(01) (β V (01) − αU (01) + (α− β)U (01) V (01))
, (4.61)
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and the three base lines b1, b2, b3 given by

1− U (01) − α δX(01) U (01) = 1− V (01) − β δ X(01) V (01) = 0, (b1)

1− U (01) + α δX(01) U (01) = 1− V (01) + β δ X(01) V (01) = 0, (b2)

X(01) = αV (01) − β U (01) + β − α = 0. (b3)

The base varieties b1, b2, and b3 intersect at (X(01), U (01), V (01)) = (0, 1, 1). Therefore, changing

chart to

(X(01), u(01), v(01)) = (X(01),
1

U (01)
,

1

V (01)
), (4.62)

the intersection is still visible and we have the map

y =
(β − α)u(01) v(01) + (αu(01) − β v(01)) + αβ δ2 (α− β) (X(01))2

X(01) (β u(01) − α v(01) + α− β)
, (4.63)

with the base varieties

α δX(01) − u(01) + 1 = β δ X(01) − v(01) + 1, (b1)

α δX(01) + u(01) − 1 = β δ X(01) + v(01) − 1, (b2)

X(01) = (α− β)u(01) v(01) − αu(01) + β v(01) = 0. (b3)

We proceed by blowing up b1, b2, b3 in sequence, along with any new base varieties which appear.

Blow-up of b1

To blow up b1, we use the changes of variables

x(11) = X(01),

u(11) = α δX(01) + u(01) − 1,

v(11) =
β δ X(01) + v(01) − 1

α δX(01) + u(01) − 1
,

=⇒



X(01) = x(11),

u(01) = 1 + u(11) − α δ x(11),

v(01) = 1 + u(11) v(11) − β δ x(11),

(4.64)

and 

x(12) = X(01),

u(12) =
α δX(01) + u(01) − 1

β δ X(01) + v(01) − 1
,

v(12) = β δ X(01) + v(01) − 1,

=⇒



X(01) = x(12),

u(01) = 1 + u(12) v(12) − α δ x(12),

v(01) = 1 + v(12) − β δ x(12).

(4.65)
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4. Resolution of Singularities for Quad-Equations

The exceptional plane e1 is {u(11) = 0} ∩ {v(12) = 0}.

Performing the substitutions (4.64) and (4.65) in (4.62) give

y =
β − α v(11) − (α− β) (u(11) v(11) − β δ x(11) − α δ x(11) v(11))

x(11)(β − α v(11))
, (4.66a)

y =
α− β u(12) + (α− β) (u(12) v(12) − α δ x(12) − β δ x(12) u(12))

x(12) (α− β u(12))
, (4.66b)

respectively. The singularity b1 is now fully resolved, and the proper transforms of b2 and b3 remain.

In the first chart (x(11), u(11), v(11)), they are given by

2α δ x(11) − u(11) = α v(11) − β = 0, (b2)

x(11) = (α− β)u(11) v(11) + α v(11) − β = 0. (b3)

We now blow up b2 in this chart.

Blow-up of b2

To blow up b2, we use the changes of variables

x(21) = 2α δ x(11) − u(11),

u(21) = u(11),

v(21) =
α v(11) − β

2α δ x(11) − u(11)
,

=⇒



x(11) =
x(21) + u(21)

2α δ
,

u(11) = u(21),

v(11) =
β + x(21) v(21)

α
,

(4.67)

and 

x(22) =
2α δ x(11) − u(11)

α v(11) − β
,

u(22) = u(11),

v(22) = α v(11) − β,

=⇒



x(11) =
x(22) v(22) + u(22)

2α δ
,

u(11) = u(22),

v(11) =
v(22) + β

α
.

(4.68)

The exceptional plane e2 is {x(21) = 0} ∩ {v(22) = 0}.

Making the substitutions (4.67) and (4.68) in (4.66a), we now find

y =
δ ((α− β) v(21) (u(21) − x(21)) + 2α v(21) − 2β (α− β))

v(21) (u(21) + x(21))
(4.69a)

y =
δ (2α+ (α− β) (u(22) − v(22) x(22))− 2 (α+ β)β x(22))

u(22) + v(22) x(22)
, (4.69b)
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4. Resolution of Singularities for Quad-Equations

respectively. The singularity b2 is now fully resolved, and only the proper transform of b3 remains.

In the chart (x(21), u(21), v(21)), it is given by

x(21) + u(21) = β (α− β)− α v(21) + (α− β)x(21) v(21) = 0. (b3)

Blow-up of b3

We blow up b3 in the chart (x(21), u(21), v(21)) with the changes of variables

x(31) = x(21) + u(21),

u(31) = u(21),

v(31) =
β (α− β)− (α+ (α− β)x(21)) v(21)

x(21) + u(21)
,

=⇒



x(21) = x(31) − u(31),

u(21) = u(31),

v(21) =
x(31) v(31)

α+ (α− β) (u(31) − x(31))
,

(4.70)

and 

x(32) =
x(21) + u(21)

β (α− β)− (α+ (α− β)x(21)) v(21)
,

u(32) = u(21),

v(32) = β (α− β)− (α+ (α− β)x(21)) v(21),

=⇒



x(21) = x(32) v(32) − u(32),

u(21) = u(32),

v(21) =
x(32) v(32) − β (α− β)

−α+ (α− β) (x(32) v(32) − u(32))
.

(4.71)

The exceptional plane e3 is {x(31) = 0} ∩ {v(32) = 0}. The base line b3 is now fully resolved.

In the chart (x(32), u(32), v(32)), we find two new base lines we call b4 and b5, given by

x(32) = (α− β)u(32) + α = 0, (b4)

(α− β)u(32) − β (α− β)2 x(32) + α = v(32) − β (α− β) = 0. (b5)

In the chart (x(31), u(31), v(31)) only b5 is visible, and hence we blow up b4 and b5 in the second chart.
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4. Resolution of Singularities for Quad-Equations

Blow-up of b4

We blow up b4 in the chart (x(32), u(32), v(32)) with the changes of variables

x(41) = x(32),

u(41) =
(α− β)u(32) + α

x(32)
,

v(41) = v(32),

=⇒



x(32) = x(41),

u(32) =
α− x(41) u(41)

α− β
,

v(32) = v(41),

(4.72)

and 

x(42) =
x(32)

(α− β)u(32) + α
,

u(42) = (α− β)u(32) + α,

v(42) = v(32),

=⇒



x(32) = x(42) u(42),

u(32) =
u(42) − α
α− β

,

v(32) = v(42),

(4.73)

The exceptional plane e4 is {x(41) = 0} ∩ {u(42) = 0}.

The base line b4 is now fully resolved, and all that remains is the total transform of b5, given in

the chart (x(42), u(42), v(42)) by

β (α− β)2 x(42) = v(42) − β (α− β) = 0. (b5)

Blow-up of b5

We blow up b5 in the chart (x(42), u(42), v(42)) with the changes of variables

x(51) = β (α− β)2 x(42),

u(51) = u(42),

v(51) =
v(42) − β (α− β)

β (α− β)2 x(42)
,

=⇒



x(42) =
x(51) + 1

β (α− β)2
,

u(42) = u(51),

v(42) = x(51) v(51) + β (α− β),

(4.74)

and 

x(52) =
β (α− β)2 x(42)

v(42) − β (α− β)
,

u(52) = u(42),

v(52) = v(42) − β (α− β),

=⇒



x(42) =
x(52) v(52) + 1

β (α− β)2
,

u(42) = u(52),

v(42) = v(52)|β (α− β),

(4.75)
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4. Resolution of Singularities for Quad-Equations

The exceptional plane e5 is {x(51) = 0} ∩ {v(52) = 0}.

Making the substitutions (4.74) and (4.75), we find

y =
δ (β − α) (2β (α− β) + x(51) v(51) + v(51))

v(51)(x(51) + 1)
, (4.76a)

y =
δ (β − α) (x(52) v(52) + 2β (α− β)x(52) + 1)

x(52) v(52) + 1
, (4.76b)

and hence the map is now fully resolved.

4.4 Induced Map on a Quadrilateral

Now consider a map of the form (4.27), lifted to a resolved space X as discussed in the previous

chapter.

On a generic quadrilateral with vertices x, u, v, y, compactifying C3 to (P1)3 = P1 × P1 × P1, we

have a map

ψ : (P1)3 → (P1)3, ([v : 1], [x : 1], [u : 1]) 7−→ ([v : 1], [y : 1], [u : 1]),

and its inverse

ψ−1 : (P1)3 → (P1)3, ([v : 1], [y : 1], [u : 1]) 7−→ ([v : 1], [x : 1], [u : 1]).

Upon resolving singularities for the maps ψ and ψ−1, we have the resolved maps φ and φ−1, with

corresponding resolved spaces X and Y, such that the maps φ(X ) = Y and φ−1(Y) = X are

everywhere well defined. The natural question arises: what are the images of exceptional planes

under these maps?

y

x u

v

Fig. 4.9: The map ψ : (P1)3 → (P1)3.
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4. Resolution of Singularities for Quad-Equations

Due to the symmetry of the ABS equations, the map φ becomes self inverse and an automorphism

on the resolved space X , so that for any point p ∈ X we have φ(φ(p)) = p. As an example of this

construction, consider again the model example of H3δ=0. In this case the map works on the space

we found in the Section 4.3.1 by blowing up the base varieties shown in Figure 4.6.

Recall that solving for the vertex y, we find

y = x
αu− β v
β u− α v

. (4.77)

Consider the exceptional plane e1, from the resolution of the line b1 where u = v = 0. The vertices

u and v are shared by the forward and backward iterations, and calculating the forward iteration

under φ, we see that φ(e1) = e1. In a similar fashion, we find φ(e4) = e4.

Now, suppose the initial conditions of a quadrilateral lie on the surface S1 given by

αu− β v = 0. (4.78)

We choose this surface since, on the level of the unresolved space, the forward iteration map ψ blows

it down to the base line b2 for the inverse step. For this reason, we expect that on the level of the

resolved space it must be taken to at least some region of the exceptional plane e2.

In the resolved space of initial conditions of the inverse step, the exceptional plane e2 resulting

from the blow-up of b2 is parameterised by

αu = β v, (4.79a)

y(21) =
y

αu− β v
. (4.79b)

We know from the equation (4.77) which defines this map that in terms of x, u, v, the variable y(21)

(which parameterises e2 for the resolved backward iteration map) is given by

y(21) =
y

αu− β v
=

x

α v − β u
. (4.80)

The image of S1 (4.78) covers all values of y(21), and hence

φ(S1) = e2. (4.81)

Equivalently, we find that φ(e2) = S1.
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4. Resolution of Singularities for Quad-Equations

Finally, we follow a similar argument with another surface S2 also blown down by the equation,

given by

β u− α v = 0. (S2)

On the level of the unresolved space, this plane is blown down to the base line b3, and here we find

that on the level of the resolved space φ(S2) = e3, and hence φ(e3) = S2.

This construction has given us a map φ which is an automorphism on the resolved space of

initial conditions X for one quadrilateral. In the next chapter, we associate every individual quad

in a larger lattice region with an associated resolved value space, Xl,m. This gives us a lattice with

vertices labelled with resolved spaces as introduced in this chapter. We consider the evolution of

these systems.
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Chapter 5: Induced Mapping Between Resolved Spaces

of Lattice Equations

In this chapter we extend the investigation of the previous chapter to larger regions on the lattice.

We considered the singularities of the induced map of a quad-equation which gives the value of

the solution on one vertex of a quadrilateral in terms of the other three, and resolved singularities

appearing in this map. Due to the symmetry of the ABS equations this gave an automorphism on

the resolved 3-dimensional space.

Recall that for a discrete Painlevé equation with dependent variable xn, the iterates are pairs of

points un := x2n, vn := x2n+1. Each pair of points un, vn are considered as coordinates of P1 × P1

and the equation is then thought of as defining a map ψ from P1×P1 to itself. Blowing up at points

where the map is singular generates a so-called resolved space of initial conditions Xn, on which the

map induced by the equation φ : Xn → Xn+1 is everywhere well-defined.

We present a similar approach for quad-equations. Taking three vertices on a square lattice

such that it is possible to use a quad-equation Q = 0 to solve for a fourth vertex with coordinates

l,m, we associate this quad with a corresponding resolved space as defined in the previous chapter.

If we choose a preferred direction of iteration (this direction is typically established by the initial

conditions, see Definition 3.1) then we can assign to each quad a resolved space of initial conditions

Xl,m, parameterised by the two independent variables l,m.

In this chapter we study the spaces of initial conditions over the lattice. It is no longer the
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case that we have a simple everywhere well-defined map between any two neighbouring Xl,m, but

by investigating the relationships between the spaces of initial conditions for each quad we find

previously unseen transformations of lattice equations and new reductions of ABS equations to

discrete Painlevé equations.

5.1 Spaces of Initial Conditions on the Dual Graph

In this this section we introduce the approach of this chapter, giving defining notation and terminology

where necessary, then motivate this approach by reconsidering Section 4.2 from this perspective.

Consider a lattice whose vertices are labelled xl,m, and consider a sublattice consisting of 4

adjacent quadrilaterals labelled A,B,C,D as shown in Figure 5.1. Take 5 points of a regular

(1,1)–staircase in its interior as initial conditions (see Definition 3.1). We call this staircase I0.

xl−1,m

xl−1,m−1 xl,m−1 xl+1,m−1

xl,m xl+1,m

xl−1,m+1 xl,m+1 xl+1,m+1

A B

C D

Fig. 5.1: 5-point staircase of initial values I0 (shown in bold).

These initial conditions can be used to iterate along the diagonal axis in the direction perpendicular

to the direction of I0. Suppose that for a generic quad, in the direction of increasing l,m the equation

has a resolved space of initial conditions X , and in the direction of decreasing l,m a resolved space

Y.
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5. Induced Mapping Between Resolved Spaces of Lattice Equations

Recall from Section 4.4 that we have a mapping between X and Y that is everywhere well-defined.

Therefore, we can equivalently assign Yl−1,m−1 or Xl,m, and hence label the vertices of the dual graph

with a corresponding Xl,m. The dual graph is a new lattice with a vertex corresponding to each

quad of the original lattice, see Figure 5.2.

Definition 5.1. The dual graph Z ′ of a lattice Z is the lattice which has a vertex for every face of

Z, and an edge for everywhere two faces in Z are separated by an edge.

xl−1,m−1 xl,m−1 xl+1,m−1

xl−1,m xl,m xl+1,m

xl−1,m+1 xl,m+1 xl+1,m+1

Xl,m−1 Xl+1,m−1 Xl+2,m−1

Xl,m Xl+1,m Xl+2,m

Xl,m+1 Xl+1,m+1 Xl+2,m+1

Fig. 5.2: Labelling the dual graph with Xl,m.

Note that since in our case the lattice is Z2, the dual graph (Z2)′ ∼= Z2.

If, in addition to a staircase of initial conditions, we are given a corresponding staircase of initial

conditions on the dual graph we can use the equation and its resolution to iterate over the lattice

without indeterminacies, so long as no indeterminacies occur due to the iteration of Xl,m on the dual

graph. This is not always the case however, as we shall show in the following sections.
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In this chapter we study the equation’s evolution on this dual graph. We commence by continuing

with the example of H3δ=0.

Example 5.1. Consider the equation H3δ=0, in the form

y = x
αu− β v
β u− α v

. (5.1)

As in Section 4.2, assume

xl−1,m−1 6= 0, (5.2a)

αxl,m−1 = β xl−1,m, (5.2b)

Recall on the quad A in Figure 5.1 solving for the vertex xl,m, we find xl,m = 0. From the perspective

of the original lattice the equation blows down the system on this quad. We will demonstrate how

we can use the dual graph construction of this chapter to transport the lost initial data across this

singularity.

Recall from the previous chapter that solving for y on a generic quad with vertices x, u, v, y, we

have four base varieties in P1 × P1 × P1,

u = v = 0, (b1)

x = α v − β u = 0, (b2)

X = αV − β U = 0, (b3)

U = V = 0, (b4)

which are each resolved after one blow-up, giving one exceptional plane each.

We saw previously that for generic xl+1,m−1, xl−1,m+1 this blow-down is confined in two steps,

as the vertex xl+1,m+1 recovers the degree of freedom from xl−1,m−1. This locally occurs as a

blow-up on the quad D, where the solution lands on a base variety as iterating the system for

generic xl+1,m−1, xl−1,m+1, as we find

αxl,m+1 = β xl+1,m.

This is not true for all choices xl+1,m−1, xl−1,m+1 however, and we shall now see how exploring the

dual graph construction helps us more easily understand this phenomenon.
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If in the resolved space of initial conditions for the quadrilateral D the solution lies on the

exceptional plane e2, we know from (4.25) that xl+1,m+1 depends on the variable parametrising the

exceptional plane e2 in Xl+1,m+1, in the sense of (4.22a). There is an equivalent exceptional plane

in the resolved space Xl,m for each quad.

Define the variable wl,m to be this variable parametrising the exceptional plane e2 in the space

Xl,m, so that each vertex in the dual graph is labelled with the corresponding wl,m. In terms of the

variables on the original lattice, from (4.22a) we have

wl+1,m+1 =
xl,m

αxl,m+1 − β xl+1,m
. (5.3)

The natural question now arises: Can we find a scalar lattice equation governing this new variable?

In terms of the initial conditions I0 (Figure 5.1), we find wl+1,m+1 is given by

wl+1,m+1 = xl,m (β xl,m − αxl−1,m+1) (αxl,m − β xl+1,m−1) /

(αxl−1,m (αxl,m − β xl−1,m+1) (αxl,m − β xl+1,m−1)

−β xl,m−1 (β xl,m − αxl−1,m+1) (β xl,m − αxl+1,m−1)) . (5.4)

This expression is indeterminate along the base variety b2 from the quads B and C. Making the

following substitutions from the resolution of these base varieties,

wl+1,m =
xl,m−1

αxl,m − β xl+1,m−1
=⇒ xl+1,m−1 =

αxl,m wl+1,m − xl,m−1

β wl+1,m
, (5.5a)

wl,m+1 =
xl−1,m

αxl−1,m+1 − β xl,m
=⇒ xl−1,m+1 =

xl−1,m + β xl,m wl,m+1

αwl,m+1
, (5.5b)

we find

wl+1,m+1 =
xl,m

β xl−1,m − αxl,m−1 + (β2 − α2)(wl,m+1 − wl+1,m)xl,m
. (5.6)

Now this expression is indeterminate where xl,m = β xl−1,m − αxl,m−1 = 0. To blow up this base

variety, we would introduce a variable parametrising the exceptional plane e2 from Yl−1,m−1,

Wl−1,m−1 =
xl,m

αxl,m−1 − β xl−1,m
. (5.7)

However, using (5.1),

xl,m
αxl,m−1 − β xl−1,m

= − xl−1,m−1

αxl−1,m − β xl,m−1
=⇒ Wl−1,m−1 = −wl,m,
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and hence

wl+1,m+1 =
wl,m

(β2 − α2)(wl,m+1 − wl+1,m)wl,m + 1
. (5.8)

This is an equation purely in terms of wl,m. Observe that (5.3) is a Miura transformation, which is

not invertible.

From the resolution of singularities of H3 we have found a transformation of a lattice equation

to a different lattice system by studying the relationship between resolved spaces on the dual graph.

This transformation holds for any choice of initial conditions.

Note that this equation does not possess the complete symmetry of the square and hence is not

itself an ABS equation. Additionally, (5.8) is not fully resolved. The base varieties which remain

correspond to where the solution passes through base varieties of (5.1) on any two of A,B,C at

once. If wl+1,m+1 is not determined then we cannot use it to determine xl+1,m+1, and hence this

configuration of initial values is not confining for all choices of xl−1,m−1, xl−1,m+1, xl+1,m−1.

It is not in general true that the variables parametrising exceptional planes can form their own

independent lattice system in this way. For the remainder of this chapter, we use this approach

to find several more examples of this type of transformation. This leads us to new reductions to

discrete Painlevé equations.

5.1.1 Q3

Consider the ABS equation Q3δ=0 on a generic quadrilateral with vertices x, u, v, y.

(β2 − α2)(x y + u v) + β(α2 − 1)(xu+ v y)− α(β2 − 1)(x v + u y) = 0. (5.9)

Solving (5.9) for the vertex y, we find

y =
β (α2 − 1)xu− α (β2 − 1)x v + (β2 − α2)u v

α (β2 − 1)u− β (α2 − 1) v + (α2 − β2)x
. (5.10)

In the compactified space of initial conditions P1 × P1 × P1 we find the base varieties b1 and b2,

which are given in the first affine chart by

αx− u = β x− v = 0, (b1)
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x− αu = x− β v = 0. (b2)

Now, consider Q3δ=0 over the lattice with vertices labelled xl,m as in Figure 5.1, and consider the

3-dimensional space of initial conditions for the quadrilateral D. Both b1 and b2 are resolved after

a single blow-up.

To resolve the base variety b2, we perform the change of variables

x(11) = x,

u(11) =
x− αu
x− β v

,

v(11) = x− β v,

=⇒



x = x(11),

u =
x(11) − u(11) v(11)

α
,

v =
x(11) − v(11)

β
,

where the superscript represents the blow-up chart. As in the previous example, we wish to compute

the value of u(11) parametrising the exceptional plane e2 in terms of an earlier iteration. Therefore,

we label each vertex on the dual graph with the variable

wl+1,m+1 :=
xl,m − αxl+1,m

xl,m − β xl,m+1
, (5.11)

parametrising the exceptional plane e2 in the corresponding resolved space. In terms of the 5-point

staircase of initial conditions from Figure 5.1 we have

wl+1,m+1 =((α2 − 1) (x1,m − β xl,m−1) (β xl,m − αxl+1,m−1)

((α2 − β2)xl−1,m − β (α2 − 1)xl−1,m+1 + α (β2 − 1)xl,m))

/((β2 − 1) (xl,m − αxl−1,m) (αxl,m − β xl−1,m+1)

(β (α2 − 1)xl,m + (β2 − α2)xl,m−1 − α (β2 − 1)xl+1,m−1)). (5.12)

We now ask if we can express this relation as a scalar lattice equation for wl,m alone.

For generic xl,m−1, xl+1,m−1, we find base varieties for (5.12) corresponding to the base variety

b2 for quads B and C. These occur due to the presence of xl,m+1 and xl+1,m in the definition of

wl+1,m+1, (5.11). That is, (5.12) is undefined where

xl−1,m − αxl,m = xl−1,m − β xl−1,m+1 = 0, (5.13a)

xl,m−1 − αxl+1,m−1 = xl,m−1 − β xl,m = 0. (5.13b)
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We wish to resolve these base varieties. Making the substitutions for wl,m+1 and wl+1,m resulting

from the blow-up of b2 on the quads C and B respectively, we find

wl,m+1 :=
xl−1,m − αxl,m

xl−1,m − β xl−1,m+1
=⇒ xl−1,m+1 =

xl−1,m(wl,m+1 − 1) + αxl,m
β wl,m+1

,

wl+1,m :=
xl,m−1 − αxl+1,m−1

xl,m−1 − β xl,m
=⇒ xl+1,m−1 =

xl,m−1 − xl,m−1 wl+1,m + β xl,m wl,m−1

α
.

Substituting into (5.12), we find

wl+1,m+1 =
α2 − 1

β2 − 1

xl+1,m+1 − β xl+1,m

xl+1,m+1 − αxl,m+1

(wl+1,m − 1) (α2 − β2 wl,m+1 + wl,m+1 − 1)

(wl,m+1 − 1) (α2 − β2 wl+1,m + wl+1,m − 1)
.

At this point it suffices to recognise from (5.9) that

wl,m :=
xl,m − αxl+1,m

xl,m − β xl,m+1
=
α2 − 1

β2 − 1

xl+1,m+1 − β xl+1,m

xl+1,m+1 − αxl,m+1
,

and hence

wl+1,m+1 = wl,m
(wl+1,m − 1) (α2 − 1− (β2 − 1)wl,m+1)

(wl,m+1 − 1) (α2 − 1− (β2 − 1)wl+1,m)
. (5.14)

Finally, defining the parameter

r :=
α2 − 1

β2 − 1
,

we find the lattice equation for wl,m

wl+1,m+1 = wl,m
(wl+1,m − 1) (wl,m+1 − r)
(wl,m+1 − 1) (wl+1,m − r)

. (5.15)

Since each wl,m was defined in a consistent way, we have found a transformation from Q3δ=0 (5.9)

to a new lattice equation (5.15) for wl,m, where

wl+1,m+1 =
xl,m − αxl+1,m

xl,m − β xl,m+1
.

Following this same procedure using the base variety b1 leads us to introduce the dependent

variable zl,m, where

zl+1,m+1 =
αxl,m − xl+1,m

β xl,m − xl,m+1
. (5.16)

If xl,m follows Q3δ=0 (5.9) then we find zl,m obeys the lattice equation

zl+1,m+1 = zl,m
(zl+1,m − 1

r1
)(zl,m+1 − r1 r2)

(zl,m+1 − 1
r1

)(zl+1,m − r1 r2)
, (5.17)
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where the parameters r1 and r2 are defined as

r1 =
α

β
, r2 =

α2 − 1

β2 − 1
.

Note that both (5.15), (5.17) are equations of the form

wl+1,m+1 = wl,m
(wl+1,m + a)(wl,m+1 + b)

(wl+1,m + b)(wl,m+1 + a)
, (5.18)

for some constants a, b. This equation is clearly not fully resolved. Taking (wl,m, wl+1,m, wl,m+1) in

P1 × P1 × P1 we find 6 base varieties, as wl+1,m+1 is undefined when

wl,m = wl+1,m − b = 0, (b1)

wl,m = wl,m+1 − a = 0, (b2)

wl+1,m − a = wl,m+1 − a = 0, (b3)

wl+1,m − b = wl,m+1 − b = 0, (b4)

Wl,m = wl+1,m − a = 0, (b5)

Wl,m = wl,m+1 − b = 0, (b6)

where Wl,m = 1/wl,m.

As in the case of (5.8), this transformation has broken the symmetry of the square in the

horizontal and vertical directions. The symmetry along the diagonal axes is preserved, this equation

is left with the symmetry group of a parallelogram.

In [71] a Lax pair was found for (5.18), and it was associated with the lattice mKdV equation

H3δ=0 by taking the dependent variable wl,m to be the ratio of the vertices xl,m over diagonals on

the lattice (wl,m = xl,m+1/xl+1,m). Selected details are provided in Appendix A. Using the method

outlined in this chapter using the base varieties b1 or b4 for H3δ=0 also yields this transformation.

Recall from Chapter 3 that the ABS equations were classified up to Möbius transformation

by some parameter independent polynomial r(x). In the case where δ = 0, the polynomials

corresponding to H3δ and Q3δ coincide, so that r(x) = x2. However, the common characteristic

polynomial r(x) is found to not be necessary to give a transformation to a common equation.

For the remainder of this section, we demonstrate several more examples of transformations of
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lattice equations to (5.18) using this approach. Later in this chapter we show that (5.18) has a

reduction to a discrete Painlevé equation often called qPVI, with surface type A
(1)
3 , thus relating the

solution of qPVI to several lattice equations.

5.1.2 Q1

Now, consider the ABS equation Q1δ. This is characterised by the polynomial r(x) = 1 and is given

by

α (x− v) (u− y)− β (x− u) (v − y) + δ2αβ (α− β) = 0. (5.19)

Solving (5.19) for the vertex y we find

y =
x (αu− β v)− (α− β)u v + δ2αβ (α− β)

(α− β)x+ β u− α v
. (5.20)

Recall that in the resolution of this equation we changed chart to where x, u, v become unbounded,

giving

y =
αV − β U − (α− β)X + δ2αβ (α− β)X U V

(α− β)U V + β X V − αX U
. (5.21)

We then blew up at the origin in this chart where the two base lines b1 and b2 intersect, and

subsequently blew up b1 and b2 in this blown up space. Depending on which we choose to resolve

first, we find (in terms of X,U, V ) the variables parametrising the exceptional planes e1 and e2

resulting from the blow-ups of b1 and b2 are

v(11) =
V (X − U − α δX U)

U (X − V − β δ X V )
, (5.22a)

v(21) =
V (X − U + α δX U)

U (X − V + β δ X V )
. (5.22b)

Rewriting these in terms of the original coordinates x, u, v, we find

v(11) =
x− u+ α δ

x− v + β δ
, (5.23a)

v(21) =
x− u− α δ
x− v − β δ

, (5.23b)

as if we had performed the resolutions in the original (x, u, v) chart.

Considering this equation over a lattice xl,m, label the vertices of the dual graph with the variables

parametrising e1 and e2 for the corresponding quad. That is, label the dual graph with ul,m, vl,m,
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such that

ul+1,m+1 =
xl,m − xl+1,m + α δ

xl,m − xl,m+1 + β δ
, (5.24a)

vl+1,m+1 =
xl,m − xl+1,m − α δ
xl,m − xl,m+1 − β δ

. (5.24b)

In the case δ = 0, ul,m and vl,m coincide.

Calculating ul+1,m+1 and vl+1,m+1 in terms of the 5-point staircase from Figure 5.1, it is

straightforward to show using (5.19) that

ul+1,m+1 = ul,m
(ul+1,m − 1)(ul,m+1 − α

β )

(ul+1,m − α
β )(ul,m+1 − 1)

, (5.25a)

vl+1,m+1 = vl,m
(vl+1,m − 1)(vl,m+1 − α

β )

(vl+1,m − α
β )(vl,m+1 − 1)

. (5.25b)

These equations are both particular forms of (5.18). Note the equations governing ul,m and vl,m are

identical.

5.1.3 A1

Consider the ABS equation A1δ, given by

α (x+ v) (u+ y)− β (x+ u) (v + y)− δ2αβ (α− β) = 0, (5.26)

or solving for the vertex y,

y =
αu (x+ v)− β v (x+ u)− δ2αβ(α− β)

β(x+ u)− α(x+ v)
. (5.27)

We find two base curves for this equation in P1 × P1 × P1. These are the base lines b1 and b2, given

by

x+ u+ α δ = x+ v + β δ = 0, (b1)

x+ u− α δ = x+ v − β δ = 0. (b2)

Supposing that a lattice with vertices labelled xl,m obeys (5.26), label the vertices of the dual graph

with the variables ul,m and vl,m, such that

ul+1,m+1 =
xl,m + xl+1,m + α δ

xl,m + xl,m+1 + β δ
, (5.28a)
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vl+1,m+1 =
xl,m + xl+1,m − α δ
xl,m + xl,m+1 − β δ

, (5.28b)

so that ul,m and vl,m parametrise the exceptional planes e1 and e2 respectively in the corresponding

resolved space Xl,m for each quad.

Unlike in previous examples, we do not find separate lattice equations between exceptional planes

for ul,m and vl,m. However, we are able to find a system of equations for ul,m, vl,m.

In terms of the 5-point staircase Figure 5.1, ul+1,m+1 is given by

ul+1,m+1 = (α (β δ + xl,m−1 + xl,m) (xl−1,m (α− β) + αxl−1,m+1 − β xl,m)

(δ(α− β) + xl,m − xl+1,m−1)) /

(β(α δ + xl−1,m + xl,m)(δ(β − α)− xl−1,m+1 + xl,m)

(xl,m−1 (β − α)− αxl,m + β xl+1,m−1)). (5.29)

This expression is indeterminate along both b1 and b2 for the quads B and C. If we now make the

substitutions for xl−1,m+1 and xl+1,m−1 in terms of vl+1,m and vl,m+1 from the expressions

vl,m+1 :=
xl−1,m + xl,m − α δ

xl−1,m + xl−1,m+1 − β δ
, vl+1,m :=

xl,m−1 + xl+1,m−1 − α δ
xl,m−1 + xl,m − β δ

,

we find

ul+1,m+1 =
(xl,m + xl,m−1 + β δ)

(xl,m + xl−1,m + α δ)

(vl+1,m − 1) (α− β vl,m+1)

(vl,m+1 − 1) (α− β vl+1,m)
,

=
(xl−1,m−1 + xl,m−1 + α δ)

(xl−1,m−1 + xl−1,m + β δ)

(vl+1,m − 1) (α− β vl,m+1)

(vl,m+1 − 1) (α− β vl+1,m)
, (5.30)

= ul,m
(vl+1,m − 1) (α− β vl,m+1)

(vl,m+1 − 1) (α− β vl+1,m)
. (5.31)

Performing the same calculation for vl+1,m+1 we find the system for ul,m, vl,m

ul+1,m+1 = ul,m
(vl+1,m − 1) (β vl,m+1 − α)

(vl,m+1 − 1) (β vl+1,m − α)
, (5.32a)

vl+1,m+1 = vl,m
(ul+1,m − 1) (β ul,m+1 − α)

(ul,m+1 − 1) (β ul+1,m − α)
. (5.32b)

Alternatively, recognising that

β vl,m+1 − α
β vl+1,m − α

=
vl,m vl,m+1

ul,m ul,m+1

β ul,m+1 − α
β ul+1,m − α

, (5.33)
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we find

ul+1,m+1 = vl,m
(vl+1,m − 1) (αu−1

l,m+1 − β)

(v−1
l,m+1 − 1) (β ul+1,m − α)

, (5.34a)

vl+1,m+1 = ul,m
(ul+1,m − 1) (α v−1

l,m+1 − β)

(u−1
l,m+1 − 1) (β vl+1,m − α)

. (5.34b)

Note that in the case where ul,m = vl,m, (5.32) and (5.34) both reduce to

ul+1,m+1 = ul,m
(ul+1,m − 1) (ul,m+1 − r)
(ul,m+1 − 1) (ul+1,m − r)

, (5.35)

where r = α/β. This is again a form of (5.18). This may be achieved either by choosing initial

conditions such that ul,m = vl,m, or by recognising that in the case δ = 0, then ul,m ≡ vl,m.

5.2 Reduction of ABS Equations

In the previous section we found several transformations of ABS systems to (5.18). In this section

we show that this equation possesses a reduction to an ordinary difference equation with surface

type A
(1)
3 , which can be deautonomised to (depending on the choice of parameters) the equation

qPIII or qPVI.

If both the parameters a, b vanish, then the equation becomes the trivial wl+1,m+1 = wl,m.

Therefore, assuming non-zero a, under the trivial scaling wl,m 7→ awl,m we find

wl+1,m+1 = wl,m
(wl+1,m + 1) (wl,m+1 + b

a )

(wl+1,m + b
a ) (wl,m+1 + 1)

. (5.36)

Defining a new parameter γ := b/a then we have the single parameter equation

wl+1,m+1 = wl,m
(wl+1,m + 1) (wl,m+1 + γ)

(wl+1,m + γ) (wl,m+1 + 1)
. (5.37)

Proposition 5.1. The equation (5.37) possesses a periodic reduction to an ordinary difference

equation with surface type A
(1)
3 .

Proof. Take some nonvanishing variable k, and assume that the solution wl,m has a periodicity such

that

wl,m+1 =
k

wl+1,m
. (5.38)
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Substituting the condition (5.38) into (5.37), we find

wl+1,m+1 = wl,m
(wl+1,m + 1) (wl,m+1 + γ)

(wl+1,m + γ) (wl,m+1 + 1)
,

k

wl+2,m
= wl,m

(wl+1,m + 1) ( k
wl+1,m

+ γ)

(wl+1,m + γ) ( k
wl+1,m

+ 1)
,

wl+2,m

k
=

1

wl,m

(wl+1,m + γ) (k + wl+1,m)

(wl+1,m + 1) (k + γ wl+1,m)
,

wl+2,m =
k

γ wl,m

(wl+1,m + γ) (wl+1,m + k)

(wl+1,m + 1) (wl+1,m + k/γ)
. (5.39)

Since this equation relates only vertices on the lattice with the same m coordinate, we can consider

(5.39) as an ordinary difference equation for the variable yn = wl+1,m, where n = l+ 1. Making this

substitution we find

yn+1 yn−1 =
k

γ

(yn + γ) (yn + k)

(yn + 1) (yn + k/γ)
. (5.40)

This is an ordinary difference equation for yn of the form (2.3) on which we performed resolution

of singularities in Chapter 2. We saw that it has a resolved space of initial conditions of type A
(1)
3 .

This equation can be deautonomised to qPIII [38] or qPVI [92]. Thus, we have found reductions from

the equations H3δ=0, Q3δ=0, Q1δ, and A1δ to the difference equation (5.40).

These reductions are highly nontrivial. For example, consider this reduction in the case Q3δ=0

(5.9). We have a lattice with vertices labelled xl,m. Following Proposition 5.1, we define a new

dependent variable zl,m by

zl+1,m+1 = −β (αxl,m − xl+1,m)

α (β xl,m − xl,m+1)
. (5.41)

This obeys the lattice equation

zl+1,m+1 = zl,m
(zl+1,m + 1)(zl,m+1 + γ)

(zl,m+1 + 1)(zl+1,m + γ)
, (5.42)

where

γ =
β2 (α2 − 1)

α2 (β2 − 1)
.

Using (5.38) and (5.41), we perform the reduction by assuming that for some nonzero k, the solution

xl,m satisfies a periodic condition such that

β (αxl−1,m − xl,m)

α (β xl−1,m − xl−1,m+1)
= k

(
α (β xl,m−1 − xl,m)

β (αxl,m−1 − xl+1,m−1)

)
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otherwise written

k α2(β xl,m−1 − xl,m)(β xl−1,m − xl−1,m+1) = β2(αxl−1,m − xl,m)(αxl,m−1 − xl+1,m−1).

By Proposition 5.1, this periodicity allows us to define the variable yn

yn = −β (αxl,m − xl+1,m)

α (β xl,m − xl,m+1)
, (5.43)

where n = l + 1, so that yn satisfies

yn+1 yn−1 =
k

γ

(yn + γ) (yn + k)

(yn + 1) (yn + k/γ)
. (5.44)

5.3 A Cluster Algebra Associated with ABS Equations

In [81], by performing a (0,0,2)-reduction of a quiver associated with a cluster algebra whose cluster

variables satisfy the Hirota-Miwa equation, a quiver QmKdV was found which generates a cluster

algebra A(QmKdV,x) whose cluster variables x satisfy the bilinear form of the discrete mKdV (5.45),

see Figure 5.3.

1

1

1

2

2

2

1

1

1

2

2

2
. . .

. . . . . .

. . .

Fig. 5.3: The quiver QmKdV

The correspondence between the cluster variables x and the solution of the discrete mKdV is found

in the following way:
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Label the vertices of the bottom left staircase of Figure 5.3 such that the vertex marked with a

box is labelled with x0,0, the vertex immediately to the right of it with x1,0, the vertex above it with

x0,1, and so on. Similarly, label the vertex marked with a circle with w0,0, and continue with the

top right staircase in the same way. Let µ′i denote the sequential mutation of all vertices marked

with an i.

Mutating in the order µ′1, µ
′
2, µ
′
1, µ
′
2. . . , denote xl+1,m+1 and wl+1,m+1 as the new cluster variables

obtained by mutating at wl,m and xl,m, respectively. The cluster variables xl,m, wl,m satisfy the

system of equations

wl+1,m+1 xl,m = xl+1,m wl,m+1 + wl+1,m xl,m+1, (5.45a)

xl+1,m+1 wl,m = wl+1,m xl,m+1 + xl+1,m wl,m+1. (5.45b)

Nonautonomous equations can be found from cluster algebras with coefficients. Letting y be the

coefficients and labelling the quiver QmKdV with cluster variables as in the coefficient free case, we

find that for the cluster algebra A(QmKdV,x,y), the cluster variables satisfy

wl+1,m+1 xl,m = al,m xl,m+1 wl+1,m + bl,m wl,m+1 xl+1,m, (5.46a)

xl+1,m+1 wl,m = cl,m wl,m+1 xl+1,m + dl,m xl,m+1 wl+1,m, (5.46b)

where al,m, bl,m, cl,m, dl,m are rational functions of the coefficients y such that al,m + bl,m = cl,m +

dl,m = 1 holds.

It was shown in [81] that the quiver obtained by performing a (2,-2)–reduction to the quiver

QmKdV generates a cluster algebra whose coefficients satisfy a nonautonomous form of (5.40), the

form of qPVI found in Proposition 5.1 as a reduction of (5.37). A healthy curiosity leads us to sarch

for a labelling of y such that we can draw a connection between the coefficients of the cluster algebra

A(QmKdV,x,y) and the equation (5.37), which we obtained as a transformation of different ABS

equations.
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5.3.1 Labelling of the Coefficients y

Analogous to the procedure used to find (5.45), in order to find a correspondence between the

coefficients of the cluster algebra A(QmKdV,x,y) and the solution of (5.37), we must name the

elements of y in such a way that they can be identified as iterates of (5.37).

To vertices of QmKdV labelled with an xl,m, assign the coefficient ul,m if the vertex is marked

with a 1 in Figure 5.3, or ūl,m otherwise. Similarly, to the vertices labelled with a wl,m, assign the

coefficient vl,m to the vertices marked with a 1, or v̄l,m otherwise.

Upon mutating at all vertices marked with a 1, the new coefficients are labelled vl,m → ūl+1,m+1,

ul,m → v̄l+1,m+1 if the coefficient corresponds to a vertex being mutated, and ūl,m → ul,m, v̄l,m →

vl,m otherwise.

By the definition of the action of mutation on coefficients (1.14), we find that the coefficients y

satisfy the following system of equations

v̄l+1,m+1 =
1

ul,m
, (5.47a)

ul+1,m = ūl+1,m
(ul,m + 1) (vl+1,m−1 + 1)

(u−1
l+1,m−1 + 1) (v−1

l,m + 1)
, (5.47b)

ūl+1,m+1 =
1

vl,m
, (5.47c)

vl+1,m = v̄l+1,m
(vl,m + 1) (ul+1,m−1 + 1)

(v−1
l+1,m−1 + 1) (u−1

l,m + 1)
. (5.47d)

Using (5.47a) and (5.47c) to make substitutions into (5.47d) and (5.47b) respectively, we have the

following system of equations for ul,m, vl,m,

ul+1,m =
1

vl,m−1

(ul,m + 1) (vl+1,m−1 + 1)

(u−1
l+1,m−1 + 1) (v−1

l,m + 1)
, (5.48a)

vl+1,m =
1

ul,m−1

(vl,m + 1) (ul+1,m−1 + 1)

(v−1
l+1,m−1 + 1) (u−1

l,m + 1)
. (5.48b)

Proposition 5.2. Consider the cluster algebra A(QmKdV, x, y). For certain choices of vl,m in the

initial seed, then for some parameter γ both ul,m and vl,m satisfy

ul+1,m+1 = ul,m
(ul+1,m + γ) (ul,m+1 + 1)

(ul+1,m + 1) (ul,m+1 + γ)
, (5.49a)
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vl+1,m+1 = vl,m
(vl+1,m + γ) (vl,m+1 + 1)

(vl+1,m + 1) (vl,m+1 + γ)
. (5.49b)

Therefore the coefficients y can satisfy (5.37).

Proof. Rewriting (5.48), we obtain

ul+1,m =
ul+1,m−1 vl,m

vl,m−1

(ul,m + 1) (vl+1,m−1 + 1)

(ul+1,m−1 + 1) (vl,m + 1)
, (5.50a)

vl+1,m =
ul,m vl+1,m−1

ul,m−1

(vl,m + 1) (ul+1,m−1 + 1)

(vl+1,m−1 + 1) (ul,m + 1)
. (5.50b)

Multiplying (5.50a) and (5.50b) together, we find ul,m and vl,m are related by

ul+1,m

ul+1,m−1

ul,m−1

ul,m
=
vl+1,m−1

vl+1,m

vl,m
vl,m−1

.

Rearranging, we can define functions in terms of xl,m which are constant with respect to m and l,

respectively

λ(l) :=
ul+1,m

ul,m

vl+1,m

vl,m
=
ul+1,m−1

ul,m−1

vl+1,m−1

vl,m−1
, (5.51a)

µ(m) :=
ul+1,m

ul+1,m−1

vl+1,m

vl+1,m+1
=

ul,m
ul,m−1

vl,m
vl,m−1

. (5.51b)

Defining γl,m := ul,m vl,m, then

γl+1,m

γl,m
= λ(l),

γl,m
γl,m−1

= µ(m), (5.52)

and hence γl,m =: L(l)M(m) for some L(l), M(m). Using (5.50a) and the definition of the

non-autonomous parameter γl,m = ul,m vl,m, we find,

ul+1,m+1 =
ul+1,m vl,m+1

vl,m

(ul,m+1 + 1) (vl+1,m + 1)

(ul+1,m + 1) (vl,m+1 + 1)
,

=
ul+1,m

γl,m+1

ul,m+1

γl,m
ul,m

(ul,m+1 + 1) (
γl+1,m

ul+1,m
+ 1)

(ul+1,m + 1) (
γl,m+1

ul,m+1
+ 1)

,

=
γl,m+1

γl,m

ul,m ul+1,m

ul,m+1

(ul,m+1 + 1) (
γl+1,m

ul+1,m
+ 1)

(ul+1,m + 1) (
γl,m+1

ul,m+1
+ 1)

,

= µ(m+ 1)ul,m
(ul,m+1 + 1) (ul+1,m + γl+1,m)

(ul+1,m + 1) (ul,m+1 + γl,m+1)
, (5.53)

and similarly,

vl+1,m+1 = µ(m+ 1) vl,m
(vl,m+1 + 1) (vl+1,m + γl+1,m)

(vl+1,m + 1) (vl,m+1 + γl,m+1)
. (5.54)
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Equations (5.53) and (5.54) are deautonomised versions of (5.37).

If an initial seed is chosen such that λ(l) ≡ µ(m) ≡ 1, then γ is constant and hence

ul+1,m+1 = ul,m
(ul,m+1 + 1) (ul+1,m + γ)

(ul+1,m + 1) (ul,m+1 + γ)
, (5.55a)

vl+1,m+1 = vl,m
(vl,m+1 + 1) (vl+1,m + γ)

(vl+1,m + 1) (vl,m+1 + γ)
, (5.55b)

which are of the desired form (5.49).

Finally, we present a pleasing corollary connecting the integrability of the system (5.46) to the

solutions of ABS equations via the Laurent property.

Corollary 5.1. Consider the bilinear form of the discrete mKdV with coefficients, given by

wl+1,m+1 xl,m = al,m xl,m+1 wl+1,m + bl,m wl,m+1 xl+1,m, (5.56a)

xl+1,m+1 wl,m = cl,m wl,m+1 xl+1,m + dl,m xl,m+1 wl+1,m. (5.56b)

If al,m bl,m, cl,m, dl,m are certain rational functions of solutions of A1δ, H3δ=0, Q1δ, or Q3δ=0, the

system (5.56) exhibits the Laurent property.

Proof. By the definition of mutation, the cluster algebra A(QmKdV, x, y) yields the system

wl+1,m+1 xl,m =
1

1 + ul,m
(wl+1,m xl,m+1 + ul,m xl+1,m wl,m+1) , (5.57a)

xl+1,m+1 wl,m =
1

1 + vl,m
(xl+1,m wl,m+1 + vl,m wl+1,m xl,m+1) . (5.57b)

The coefficients al,m bl,m, cl,m, dl,m from (5.56) are therefore given by

al,m =
1

1 + ul,m
, (5.58a)

bl,m =
ul,m

1 + ul,m
, (5.58b)

cl,m =
1

1 + vl,m
, (5.58c)

dl,m =
vl,m

1 + vl,m
. (5.58d)

From Proposition 5.2, we know that choosing an initial seed such that for some constant γ we have

ul,m = γ/vl,m, then ul,m and vl,m satisfy

ul+1,m+1 = ul,m
(ul,m+1 + 1) (ul+1,m + γ)

(ul+1,m + 1) (ul,m+1 + γ)
, (5.59a)
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vl+1,m+1 = vl,m
(vl,m+1 + 1) (vl+1,m + γ)

(vl+1,m + 1) (vl,m+1 + γ)
. (5.59b)

We prove Corollary 5.1 first for Q3δ=0.

Under the trivial scaling ul,m = −γ yl,m, we have

yl+1,m+1 = yl,m
(yl,m+1 − 1/γ) (yl+1,m − 1)

(yl+1,m − 1/γ) (yl,m+1 − 1)
. (5.60)

From Chapter 5, we know that if ζl,m satisfies Q3δ=0 (5.9) with α, β such that

γ =
β2 − 1

α2 − 1
,

then (5.60) is satisfied by

yl,m =
ζl,m − α ζl+1,m

ζl,m − β ζl,m+1
.

Thus, (5.59) is satisfied by

ul,m = −γ yl,m = −β
2 − 1

α2 − 1

ζl,m − α ζl+1,m

ζl,m − β ζl,m+1
, , (5.61a)

vl,m =
γ

ul,m
=
−1

yl,m
= − ζl,m − β ζl,m+1

ζl,m − α ζl+1,m
. (5.61b)

Substituting (5.61) into (5.58), we have found coefficients al,m, bl,m, cl,m, dl,m as rational functions

of solutions of Q3δ=0 such that (5.56) exhibits the Laurent property.

Following the same reasoning, we can construct similar functions of the solutions of A1δ, H3δ=0,

and Q1δ.
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Chapter 6: Conclusion

In this thesis, we extended the geometric description of initial value spaces for integrable systems

to multiple dimensions. This approach was pioneered by Okamoto [79] for the Painlevé equations.

Sakai’s development [92] of this approach is now famous for his discovery of a large class of discrete

Painlevé equations with similar geometric properties. In this thesis, we extended the geometric

approach to construct initial value spaces for lattice equations.

In Chapter 1 we reviewed the background and major results from earlier work we would use in the

remainder of the thesis. First by reviewing the historical context of Painlevé equations, we were led to

discrete Painlevé equations as O∆Es arising from Bäcklund transformations of continuous Painlevé

equations. This discussion led us to more general theory of O∆Es and higher dimensional P∆Es,

and tying all these objects together under the banner of integrable systems. We also introduced

cluster algebras and their natural appearance within the field of discrete integrable systems.

In Chapter 2 we gave a summary of the algebro-geometric theory of discrete Painlevé equations

introduced by Sakai in [92]. First, we carried out the resolution of singularities of an ordinary

difference equation of surface type A
(1)
3 . Next, we introduced all the geometric tools necessary to

understand Sakai’s construction. We then considered the other direction, and constructed a discrete

Painlevé equation from the action of an affine Weyl group on the Picard lattice realised as Cremona

transformations of P1 × P1. Finally, we showed how this construction is intimately related to the

integrability of the mapping via algebraic entropy [95].

In Chapter 3 we introduced integrable lattice equations, and defined concepts and notation such

as integrability, reductions, and initial conditions in this higher dimensional discrete setting. We
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reviewed the classification and synthesis of the ABS lattice equations and their reduction to discrete

Painlevé equations.

In Chapter 4 we showed how to use blow-ups to resolve singularities of surfaces, including where

they may be singular along some n > 0 dimensional subvariety. Using these techniques we performed

the resolution of singularities of lattice equations for the first time. Performing this resolution for

several examples from the ABS list, we saw how varying parameters affects the blow-up structure.

The Q-class created some difficulties in their resolution which were explained and overcome in

Section 4.3, where we demonstrated the example of Q1. Using these resolutions of singularities we

constructed spaces on which the mapping on a single quadrilateral is everywhere well defined.

In Chapter 5 we expanded on the results of Chapter 4. Labelling every quad with an associated

space of initial conditions Xl,m, we found transformations to new lattice equations by considering the

evolution of the resolved spaces of initial conditions labelling vertices of the dual graph. In particular,

we found transformations of the ABS equations A1δ, H3δ=0, Q1δ, or Q3δ=0 to the quad-equation

(5.18), given by

wl+1,m+1 = wl,m
(wl+1,m + a)(wl,m+1 + b)

(wl+1,m + b)(wl,m+1 + a)
.

We showed that this equation possesses a periodic reduction to a discrete Painlevé equation (qPVI),

and hence we found reductions of the original ABS equations to this discrete Painlevé equation.

Finally, we showed that the coefficients of a cluster algebra introduced in [81] can satisfy (5.18).

From this we used the properties of cluster algebras to prove results about the solutions of these

ABS equations.

Using this approach on lattice equations poses many new challenges. As seen in Section 4.3.3, due

to the higher dimension of the singular sets the resolution of quad equations can be more complicated

than the resolution of points in the plane. However in this thesis, by introducing a framework for the

resolution of singularities of lattice equations, we have been able to find transformations of several

integrable lattice equations to the lattice equation (5.18), and hence a reduction to the discrete

Painlevé equation with surface type A
(1)
3 . Additionally, we were able to use these results to draw a

connection from the solutions of ABS equations to the coefficients of a cluster algebra.
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6. Conclusion

We have hence provided novel insights into the reductions of lattice equations to discrete Painlevé

equations.

An interesting and largely untapped research direction may be to study if integrable lattice

equations can arise from the action of affine Weyl groups, as we saw is the case for O∆Es in

Chapter 2. In particular, since the equation (5.18) gives an O∆E with surface type A
(1)
3 from

a straightforward periodic reduction, does (5.18) arise from the action of the affine Weyl group

W̃ (D
(1)
5 ) as its reduction does, and can it be connected to a surface of type A

(1)
3 ? This would open

a broad direction of research in the area of partial difference equations.
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Appendix

A Lax Pair for (5.18)

In [71], (5.37) appeared as a transformation of the lattice mKdV, or H3δ=0. The equation in the

form

wl+1,m+1 = wl,m
(wl+1,m − a

b )(wl,m+1 − b
a )

(wl+1,m − b
a )(wl,m+1 − a

b )
, (6.1)

appears as the compatibility condition of the Lax pair

ψl,m+1 = ψl+1,m wl,m + (b− awl,m)ψl,m, (6.2a)

ψl+1,m+1 =
a2 − b2

a− bwl,m
ψl,m+1 + λ

awl,m − b
a− bw

ψl,m, (6.2b)

where ψl,m is a scalar function and λ is a spectral parameter.

It was shown that it is possible to write wl,m in terms of fl,m, gl,m as

wl,m =
fl+1,m gl,m+1

fl,m+1 gl+1,m
, (6.3)

where f and g both satisfy

(a+ b) fl−1,m+1 fl+1,m + (a− b) fl−1,m fl+1,m+1 = 2 a fl,m fl,m+1, (6.4a)

(a+ b) fl+1,m−1 fl,m+1 + (b− a) fl,m−1 fl+1,m+1 = 2 b fl,m fl+1,m. (6.4b)

From (6.4) it is possible to derive the following 5-point lattice equation

(p− q)2 fl−1,m−1 fl+1,m+1 − (p+ q)2 fl+1,m−1 fl−1,m+1 + 4 a b f2 = 0. (6.5)

This is Hirota’s discrete-time Toda equation [50].
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systems: II. A
(1)
4 case. Journal of Physics A: Mathematical and Theoretical, 49(49):495201.

[62] Kac, V. G. (1994). Infinite-dimensional Lie algebras, volume 44. Cambridge university press.

[63] Kajiwara, K., Noumi, M., and Yamada, Y. (2017). Geometric aspects of painlevé equations.
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B, 41:025–041.

[81] Okubo, N. (2015). Bilinear equations and q-discrete Painlevé equations satisfied by variables and
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