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Abstract
Motivated by the variability in hyperspectral images due to illumination and the diffi-
culty in acquiring labelled data, this thesis proposes different approaches for learning
illumination invariant feature representations and classification models for hyperspec-
tral data captured outdoors, under natural sunlight. The approaches integrate domain
knowledge into learning algorithms and hence does not rely on a priori knowledge
of atmospheric parameters, additional sensors or large amounts of labelled training
data.

Hyperspectral sensors record rich semantic information from a scene, making them
useful for robotics or remote sensing applications where perception systems are used
to gain an understanding of the scene. Images recorded by hyperspectral sensors can,
however, be affected to varying degrees by intrinsic factors relating to the sensor itself
(keystone, smile, noise, particularly at the limits of the sensed spectral range) but
also by extrinsic factors such as the way the scene is illuminated. The appearance
of the scene in the image is tied to the incident illumination which is dependent on
variables such as the position of the sun, geometry of the surface and the prevailing
atmospheric conditions. Effects like shadows can make the appearance and spectral
characteristics of identical materials to be significantly different. This degrades the
performance of high-level algorithms that use hyperspectral data, such as those that
do classification and clustering.

If sufficient training data is available, learning algorithms such as neural networks
can capture variability in the scene appearance and be trained to compensate for
it. Learning algorithms are advantageous for this task because they do not require
a priori knowledge of the prevailing atmospheric conditions or data from additional
sensors. Labelling of hyperspectral data is, however, difficult and time-consuming, so
acquiring enough labelled samples for the learning algorithm to adequately capture
the scene appearance is challenging. Hence, there is a need for the development of
techniques that are invariant to the effects of illumination that do not require large
amounts of labelled data.

In this thesis, an approach to learning a representation of hyperspectral data that
is invariant to the effects of illumination is proposed. This approach combines a
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physics-based model of the illumination process with an unsupervised deep learning
algorithm, and thus requires no labelled data. Datasets that vary both temporally
and spatially are used to compare the proposed approach to other similar state-of-
the-art techniques. The results show that the learnt representation is more invariant
to shadows in the image and to variations in brightness due to changes in the scene
topography or position of the sun in the sky. The results also show that a supervised
classifier can predict class labels more accurately and more consistently across time
when images are represented using the proposed method.

Additionally, this thesis proposes methods to train supervised classification models
to be more robust to variations in illumination where only limited amounts of la-
belled data are available. The transfer of knowledge from well-labelled datasets to
poorly labelled datasets for classification is investigated. A method is also proposed
for enabling small amounts of labelled samples to capture the variability in spectra
across the scene. These samples are then used to train a classifier to be robust to
the variability in the data caused by variations in illumination. The results show
that these approaches make convolutional neural network classifiers more robust and
achieve better performance when there is limited labelled training data.

A case study is presented where a pipeline is proposed that incorporates the methods
proposed in this thesis for learning robust feature representations and classification
models. A scene is clustered using no labelled data. The results show that the pipeline
groups the data into clusters that are consistent with the spatial distribution of the
classes in the scene as determined from ground truth.
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V line-of-sight visibility between region and sun
W

(l)
ji the weight connecting neuron i in layer l with neuron j in layer l+1

X log-chromaticity
xi feature value i of the input to the neural network
yi feature value i of the target of the neural network
z

(l)
i weighted sum of neurons in layer (l-1) and the bias term going into

the i-th neuron in layer l
α learning rate
Γ sky (or view) factor
ω direction of the illumination invariant axis in log-chromaticity space
ρ albedo (function of wavelength)
τ solar path transmittance (function of wavelength)
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θ angle between the surface normal and vector towards the sun

List of Acronyms

ARI adjusted rand index
AVIRIS airborne visible/infrared imaging spectrometer
CNN convolutional neural network
CRF conditional random field
CSA-SAE cosine spectral angle-stacked autoencoder
DAE denoising autoencoder
DN digital number
FA factor analysis
GP Gaussian process
GPS global positioning system
GPU graphics processing unit
IARR internal average relative reflectance
ICA independent component analysis
ILSVRC ImageNet large scale visual recognition challenge
KNN k-nearest-neighbour
KSC Kennedy space station
LDA linear discriminant analysis
LiDAR light detection and ranging (also commonly known as a ‘laser

range scanner’)
LLE local linear embedding
MLP multi-layer perceptron
MSE mean squared error
PCA principal component analysis
PSNR peak signal-to-noise ratio
ReLU rectified linear unit
ROSIS-3 reflective optics system imaging spectrometer
RSA-SAE relit spectral angle-stacked autoencoder
SA-SAE spectral angle-stacked autoencoder
SAE stacked autoencoder
SAM spectral angle mapper
SID spectral information divergence
SID-SAE spectral information divergence-stacked autoencoder
SSE-SAE sum of squared errors-stacked autoencoder
SWIR short-wave infrared
SVM support vector machine
USGS United States geological survey
VIS visible
VNIR visible and near infrared



Glossary

Autoencoder: A type of neural network which learns to reconstruct an input in the
output layer.

Convolutional Neural Network: A type of neural network which learns localised
kernels which convolve over the data.

Diffuse: A material that reflects light uniformly in all directions. Also called Lam-
bertian.

Diffuse Skylight: Extraterrestrial sunlight that has been scattered by particles in
the atmosphere. Predominantly blue in colour.

Digital Number: The units of a pixels intensity as measured by a sensor.

Incident Illumination: The light that illuminates a region in the scene.

Neural Network: A computational network of mathematical units capable of learn-
ing a mapping from an input to an output. Related to the field of deep learning.

Radiometric Normalisation: The process of converting the digital number of each
pixel to reflectance.

Sky Factor: Proportion of the sky dome hemisphere that is visible from a region in
the scene.

Terrestrial Sunlight: Extraterrestrial sunlight that has not been scattered by par-
ticles in the atmosphere and reaches the earths surface.



Chapter 1

Introduction

The use of hyperspectral data in supervised applications is constrained by the lack
of labelled training data. Thus, the aim of this thesis is to develop illumination
invariant representations and classification models for outdoor hyperspectral data
that use limited or no labelled training samples. When collected in the outdoor
environment, where the light source is the sun, much of the variability in hyperspectral
data spanning the visible to short-wave infrared (SWIR) wavelengths is related to how
the scene is illuminated and collecting and annotating enough data to capture this
variability is difficult. Through the use of learning algorithms that leverage models
of the physical processes involved with scene illumination, this thesis presents an
approach to robustly representing and classifying hyperspectral data acquired under
natural light with little to no annotated training data.

1.1 Motivation

Sensors which perceive the environment provide a means in which machines can quan-
tify and mimic human understanding of the physical world. The perceptual data col-
lected from sensors on-board robots and remote-sensing platforms provide a wealth of
information which can be harvested and interpreted in order to carry out high-level
processes such as classification (e.g. Camps-Valls et al. (2014)), odometry (e.g. Nistér
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et al. (2004)), planning (e.g. Baltzakis et al. (2003)), mapping (e.g. Se et al. (2002)),
detection (e.g. Ren et al. (2015)) and recognition (e.g. Turk and Pentland (1991)).
Imaging sensors in particular have received considerable attention in the develop-
ment of these platforms due to their ability to non-destructively capture information
at high spatial resolution and their ability to work from a variety of viewing distances
and under a variety of different environmental conditions (e.g. rain). Hyperspec-
tral sensors are a particularly powerful variety of imaging sensor that are capable of
measuring the spectral reflectance of objects in numerous, contiguous band-passes in
the visible to SWIR range. Unlike multispectral sensors which measure reflectance
in a small number of broad, discontiguous bands of variable width, hyperspectral
sensors capture the entire spectral curve, seamlessly across the observed range. This
makes it possible to resolve the shape, intensity and wavelength location of absorp-
tions within the spectrum that are relevant to a broad range of quantitative tasks
including geological mapping, agriculture and defence (Schowengerdt, 2007).

A major problem with using an imaging system operating outdoors, in particular a
hyperspectral imaging system, is that the appearance of the scene is highly variable
(Ramakrishnan, 2016). When capturing the appearance of a scene, variations (e.g. in
brightness) are translated to the image resulting in degradations in the performance
of high-level tasks using the image data (Corke et al., 2013). This is because objects
and materials that are intrinsically similar can appear to be differently in the image
and objects and materials that are intrinsically different can appear to be similarly
in the image (Figure 1.1). The appearance of a scene is determined largely by the
ways in which light interacts with the environment. Consequently, along with non-
Lambertian factors, one of the largest sources of variability in scene appearance is
related to the variability of the incident illumination.

The appearance of the scene as measured by a camera is based on how the scene
reflects incoming light, that is, the incident illumination. When light is emitted from
the sun it transmits through the atmosphere and is absorbed and scattered across
certain wavelengths by atmospheric gasses, water and other particles (Schowengerdt,
2007). This modifies the colour temperature and intensity of the spectrum of incident
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Figure 1.1 – Example of illumination variability in an RGB image. Scene constituents
that are semantically similar appear differently under shadow and sunlight (e.g. the
grass), and constituents that are semantically different appear similarly in shadow
(e.g. the grass and concrete).

light based on the ambient atmospheric composition. Hence, obtaining measurements
under consistent conditions over long periods of time is difficult due to the variability
in the primary light source illuminating the scene (i.e. sunlight).

Additionally, there are factors which alter how the incident light illuminates the
scene in a single image. The spectrum of the incident light source is modified by
the geometry of the scene (Schowengerdt, 2007). The angle at which the illuminant
strikes the surface effects the intensity at which it is reflected back (Hapke, 1981).
Parts of the scene may also occlude other regions of the scene from the primary light
source. However, these occluded regions may still be illuminated by indirect sources
of light, such as rays from the primary source that are reflected off of the sky and other
materials in the scene. This phenomenon results in shadows. The indirect incident
illuminant bears the wavelength-intensity distribution of light of the materials from
which it is reflected and hence differs significantly from the primary light source.
This effect is also possible when there are clouds occluding the primary light source.
The amount of sky visible to the surface influences how much indirect skylight it is
illuminated by.

Thus, the appearance of the scene is dependent on the atmospheric composition and
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(a) Almonds in a tree (Bargoti and Un-
derwood, 2017).

(b) A mine face containing Martite and Shale (Murphy et al., 2012).

Figure 1.2 – It is difficult to label the constituents of both of these images.

the azimuth and elevation of the sun, which can vary over time, the geometry of the
scene, which varies across a single image, and the material properties of elements of
the scene. Estimating material properties is valuable for use in high-level algorithms,
however, isolating them from the other factors of variation remains an ill-posed prob-
lem due to the number of unknown variables and complex ways in which they interact.
If high-level algorithms using hyperspectral data are to work reliably in the outdoors,
it is important to find representations and classification models that are robust to
these complex interactions.

As the development of learning algorithms moves forward at a rapid pace, a trend
is emerging in their application to image data. There is a strong reliance on using
large datasets to teach learning algorithms to solve problems. For example, very
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Figure 1.3 – Use of a spectrometer in the field to obtain ground truth information.

good classification results can be achieved by training on a very large dataset which
captures all of the variability in the data (e.g. Krizhevsky and Hinton (2012), Szegedy
et al. (2015)). In doing so, it is less tempting to incorporate domain knowledge
into state-of-the-art techniques, for example, physics-based models that have been
developed over many years which mathematically model the interactions of light with
the environment (e.g. Hapke (1981)). The strong reliance on large datasets is only
feasible when large labelled datasets are available for learning and unfortunately for
applications which use hyperspectral data, labelled data is limited due to the difficulty
in acquiring it.

Once captured, there are multiple ways of assigning labels to hyperspectral data (i.e.
annotating pixel data). One approach is by visually inspecting RGB colour imagery,
individual bands or false-colour imagery constructed from other wavelengths beyond
the visible range and then manually labelling regions of pixels. In many scenarios,
particularly when there is a high degree of variation in illumination, this can be
challenging because different materials can appear similar (Figure 1.1). For example,
in an agriculture context, labelling green apples, avocados or almonds in a tree is
problematic due to their similar appearance to leaves, both in colour and texture
(Figure 1.2a). Another example is in an open pit mining operation where different
materials can appear very similar (Murphy et al., 2014a). In Figure 1.2b, it is very
difficult to distinguish between the shale region and the martite region of the mine
face. An alternative to labelling regions of pixels by inspection of the image is to look
at the spectral information of individual pixels, and have an expert annotate them.
The spectral information is much more informative of the material’s class, but it is
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challenging and time-consuming to label individual pixels. In reality, this is because
the pixel spectra from the image are often affected by illumination, noise and spectral
mixing among other things. The spectra that are the most unrecognisable, such as
the ones in shadow, can be difficult to label. However, these examples are necessary
to train the classifier to be robust to the sorts of effects expected in the image. For
these reasons it is usually necessary to take a field spectrometer into the environment
(Figure 1.3) and measure the spectra of individual targets at high spectral resolution,
and then tag the location or target so that it can be matched to the image. The targets
can be artificially illuminated and spectra collected are generally less noisy than
there image counterparts making it easier to label, however, collecting the readings
is extremely laborious because of the difficulties in aligning the spatial scale of the
samples with the spatial scale of the image, co-locating the measurements with pixels
in the image and collecting a large number of measurements at the sufficient spatial
resolution. In environments such mine pits, interacting with the scene can also be
hazardous with the possibility of rock falls, explosives and heavy machinery in the
environment. In summary, annotating hyperspectral data is difficult, thus classifiers
and feature learners are often limited to using small amounts of labelled training data
that do not accurately capture the variability of the scene. If the labelled data does
not capture the large and complex variability in the outdoor scene, then it cannot
be modelled by learning algorithms for applications which use hyperspectral data.
Because of the difficulty in labelling hyperspectral data for training, there is a need
to develop methods which are robust to large variations in hyperspectral data due to
illumination that do not require a large amount of labelled data.

1.2 Contributions of Thesis

In this thesis, an approach is proposed for learning illumination invariant representa-
tions and classification models for outdoor hyperspectral data. The approach lever-
age’s domain knowledge in the form of physics-based models, and learns the elements
to the problem that are unknown. By integrating domain knowledge into learning al-
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gorithms (specifically, deep learning algorithms), fewer labelled samples are required
for learning, but the representations and classification models can still account for
large amounts of variation in the data. Specifically, the illumination effects targeted
are the influence of the geometry of the surface with respect to the sun and sky on
the incident illumination, including variations in brightness and shadows caused by
occlusions from the primary light source.

The specific contributions are:

• A set of unsupervised approaches to learning feature representations specifically
designed for hyperspectral data. The approaches use remote sensing methods to
improve a deep learning technique, and the representations are designed to be
invariant to variations in the intensity (i.e. brightness) of the incident illuminant
and improve performance when scenes have a variable surface geometry. These
techniques are useful for dimensionality reduction or feature extraction.

• An extended unsupervised approach to learning a low-dimensional, illumina-
tion invariant feature representation of hyperspectral data. This representation
retains the discriminative information of the original spectra, but is also invari-
ant to shadows as well as illumination intensity effects. Hence, materials in an
image that are the same will appear the same, regardless of the illumination
effects. The technique requires no labelled data, a priori knowledge or addi-
tional sensors and the representation is useful for classification, clustering or
any high-level task where robustness to the illumination is a desirable property.

• A transfer learning scheme for utilising training samples from well-labelled hy-
perspectral images in order to pre-train a classifier for better performance on
poorly labelled images. This is useful for learning better spectral features when
there are limited labelled training samples available. The pre-trained features
are also faster to train. Using this scheme, it is possible to transfer knowledge
from airborne datasets, of which there exist well-labelled, public datasets, to
field-based datasets, which typically must be labelled from scratch.
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• An image-based approach for estimating the terrestrial sunlight-diffuse skylight
ratio. This is important for spectral relighting (e.g. Marschner and Greenberg
(1997)), which involves altering the appearance of an image such that it is
illuminated differently. Relighting is used heavily in the context of this thesis.

• A relighting-based approach to learning a robust classification model using lim-
ited labelled training data. This classification model can predict labels for each
pixel in a hyperspectral image, given a training set where the labels have poor
spatial coverage of the scene. Samples acquired from localised, sunlit regions can
train the classifier to accurately predict labels for regions with large variations
in geometric orientation and regions in shadow.

1.3 Publications

The work in this thesis has led to the following publications:

• Lloyd Windrim, Arman Melkumyan, Richard Murphy, Anna Chlingaryan and
Juan Nieto. Unsupervised Feature Learning for Illumination Robustness. In
Proceedings of the International Conference on Image Processing, pages 4453-
4457, IEEE, 2016. - This paper presents one of the unsupervised approaches
proposed in Chapter 4 for learning feature representations specifically for hy-
perspectral data that are invariant to the illumination intensity.

• Lloyd Windrim, Rishi Ramakrishnan, Arman Melkumyan and Richard Murphy.
A Physics-based Deep Learning Approach to Shadow Invariant Representations
of Hyperspectral Images. In Transactions on Image Processing 27.2(2018):665-
677, IEEE. - This paper extends the unsupervised approach proposed in Chap-
ter 4 for learning hyperspectral feature representations that are invariant to
both shadows and the illumination intensity.

• Lloyd Windrim, Rishi Ramakrishnan, Arman Melkumyan and Richard Murphy.
Hyperspectral CNN classification with Limited Training Samples. In Proceed-
ings of the British Machine Vision Conference, pages 2.1-2.12, BMVA Press,
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2017. - This paper presents the image-based approach to extracting the ter-
restrial sunlight-diffuse skylight ratio as well as the relighting-based approach
to learning a robust hyperspectral classification model when there is limited
labelled training samples, proposed in Chapter 5.

• Lloyd Windrim, Arman Melkumyan, Richard Murphy, Anna Chlingaryan and
Rishi Ramakrishnan. Pretraining for Hyperspectral Convolutional Neural Net-
work Classification. In Transactions on Geoscience and Remote Sensing, IEEE.
Accepted for inclusion in a future issue. Pre-print available as of 03 January
2018. - This paper presents the transfer learning scheme proposed in Chapter 5.

1.4 Structure of Thesis

This thesis is structured as follows:

Chapter 2 introduces hyperspectral sensing, the outdoor illumination model and
associated relighting equations and deep learning, followed by an overview of the
relevant literature. The literature covered includes how illumination invariance has
been approached using methods from the fields of computer vision, remote-sensing,
multi-modal sensing and statistical learning, with a focus on approaches for hyper-
spectral imagery. The literature tracking the progress of the convolutional neural
network (CNN) is presented, along with a review of how deep learning has been
utilised for hyperspectral applications. Finally, the use of data augmentation in ma-
chine learning is briefly reviewed.

Chapter 3 presents the datasets and evaluation metrics used throughout the thesis.

Chapter 4 proposes unsupervised approaches to learning low-dimensional, illumi-
nation invariant feature representations for hyperspectral images. The approaches
are extensively evaluated and the results and their implications are presented and
analysed.

Chapter 5 proposes a transfer learning scheme, image-based approach to estimating
the terrestrial sunlight-diffuse skylight ratio and the relighting-based approach to
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learning robust hyperspectral classification models. This is for the scenario where
there is limited labelled training data. The results of rigorous evaluation of these
approaches are presented and analysed.

Chapter 6 develops a pipeline for a case study which utilises the proposed unsuper-
vised feature representation and robust classification model to cluster a hyperspectral
image without using any labelled data. The performance of the pipeline is discussed.

Chapter 7 discusses the conclusions of this thesis and future work.



Chapter 2

Background

This chapter presents an overview of the theory most relevant to this thesis, followed
by a summary of the literature. The relevant theory includes the basic principles of
hyperspectral imagery, the illumination model and relighting that is used throughout
this thesis, and deep learning, including the workings of an autoencoder and CNN.
The literature addressing the problem of variability in illumination is reviewed, fol-
lowed by the progression of deep learning and how it has been used for hyperspectral
applications.

2.1 Hyperspectral Sensing

A digital RGB camera captures a high spatial resolution image over only three chan-
nels, where each channel consists of an integration of the incident light over many
wavelengths using a wide-band filter. Conversely, hyperspectral sensors capture high
spatial resolution images with numerous channels (tens to hundreds) each covering
a narrow range of wavelengths (Figure 2.1). Each pixel in a hyperspectral image
contains the spectrum of the material it captures across the visible, near infrared
and SWIR portions of the electromagnetic spectrum (e.g. in the range 400 nm to
2500 nm). Hence, each pixel spectrum provides a more detailed measurement of the
reflectance behaviour of a material. Because reflectance is measured across narrow
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(a) RGB sensor response. (b) Hyperspectral sensor response.

Figure 2.1 – An example of the differences between the sensor response of an RGB
camera and a hyperspectral camera in terms of the width and number of filters.

intervals of wavelength, subtle changes in reflectance can be detected that would be
impossible to pick up with an RGB camera.

A hyperspectral image can be conceptualised as a cube, with two dimensions attribut-
ing to the x and y dimensions of the scene and the third dimension formed by many
different wavelengths sequentially stacked one upon the other (Figure 2.2).

Hyperspectral images are typically acquired from sensors on-board airborne platforms
such as aircraft and balloons and more recently data has been acquired from field-
based platforms such as ground-based systems and robots. The higher the altitude of
the sensor, the larger the area of ground described by each pixel is and thus the easier
it is acquire scans with greater swath. However, as the pixel size increases, the spatial
resolution decreases. If multiple spectrally distinct materials present in the scene are
mixed together in a pattern that is too fine to be resolved by the spatial resolution
of the sensor, then the pixels of the cube will be a composite (sum) of the reflectance
signals from all of these materials. This process is called spectral mixing (Bioucas-dias
et al., 2012; Mustard and Pieters, 1987). It is particularly prominent in hyperspectral
data collected from airborne or spaceborne platforms because of the larger pixel sizes.
There are also numerous ways in which environmental factors can affect the signal
detected by hyperspectral sensors including the atmospheric conditions, the geometry
of the scene and the season.
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Figure 2.2 – A hyperspectral image can be conceptualised as a hypercube with two
spatial dimensions and a spectral dimension.

Due to the high spatial and spectral resolution of hyperspectral images, it is possi-
ble to identify surface materials from a scene through an analysis of their diagnostic
spectral features. These diagnostic spectral absorption features appear due to pro-
cesses relating to the chemical and structural composition of each material. This
allows hyperspectral cameras to be used in many diverse applications such as food
safety (Elmasry et al., 2012; Feng and Sun, 2012), military surveillance (Eismann
et al., 1996; Stein et al., 2001; Yuen and Richardson, 2010), medical imaging (Lu
and Fei, 2014), environmental monitoring (Adam et al., 2010; Govender et al., 2007),
geological mapping (Murphy et al., 2012; Van der Meer et al., 2017) and precision
agriculture (Haboudane et al., 2002).

2.1.1 Classification

Using classification algorithms, it is possible to automate the process of surface ma-
terial identification of a scene from a hyperspectral image (Camps-Valls et al., 2014).
The advantage of hyperspectral imagery is that each pixel contains sufficient informa-
tion so that it is possible to classify a scene at the pixel level using these algorithms.
There are a number of ways in which this is typically done.

One way is to build up a library of reference spectra, ideally collected under laboratory
conditions using a non-imaging spectrometer. If the library contains several entries
per class, then the pixel spectra in an image can be matched to the most similar
entry in this library (Murphy et al., 2012). This determines its class. There are
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many ways to match the spectra to the reference library, but the most common
way is the spectral angle mapper (SAM) (Kruse et al., 1993; Yuhas et al., 1992).
SAM computes the inverse cosine of the normalised dot product between the target
spectra and all reference spectra in the library. A pixel is assigned the class of a
reference spectra if it lies within a certain angular threshold (normally expressed in
radians). Alternatively, a spectrum is assigned the class of the reference spectrum
with which it has the smallest angle. The advantage of SAM is that it is robust to
scaler multiples of the spectra that are constant across the wavelength, which can
occur due to differences in brightness (Hecker et al., 2008).

Another approach is to collect training spectra from the image being examined, either
as pixels in the image or samples collected from the scene that are scanned separately,
annotate them and train a supervised classification model which can be used for
inference. There are many methods for training a classification model, including a
support vector machine (SVM) (Melgani and Bruzzone, 2004), k-nearest-neighbour
(KNN) (Yang et al., 2010), Gaussian process (GP) (Schneider et al., 2010), decision
tree (Ham et al., 2005) and neural networks (Ratle et al., 2009). Once the model has
been trained to sufficiently minimise a loss function using enough samples to capture
the variability of each class in the training set, the model can be used to predict the
class label of new data drawn from the same distribution as the training data.

Typically, to use the second approach, a small fraction of the pixels from each class
in the scene to be classified are annotated and used to train the classifier. Then,
predictions for the rest of the pixels in the image are computed using the classifier.

The classifier requires each input pixel be described by a set of features. Features are
the way in which the hyperspectral data are represented. The goal of the features
is to make high-level tasks such as classification more efficient by maximising the
separation between classes. It is possible to simply use the intensity or reflectance at
each wavelength as the feature space. However, this is very simplistic and can often
lead to problems with overfitting due to the dimensionality of the data (Bishop, 2006).
Also, there is a lot of redundancy in this representation of the data due to the high
degree of correlation between the channels (Demarchi et al., 2014). Traditionally,
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it has been popular to use hand-crafted features which are designed using domain
knowledge of the data. For example, layers of clay are mapped on a mine face using the
width and depth of spectral absorption features at 2200 nm (Murphy et al., 2014a). It
is often difficult, time-consuming and requires sufficient expertise to hand-craft these
features, which is why an alternative approach is to use feature learning. Feature
learning is an autonomous means of extracting features from the data. Methods for
learning features can be supervised such as linear discriminant analysis (LDA) (Du,
2007) and kernel methods (Kuo et al., 2009). There are also unsupervised methods
such as principal component analysis (PCA) (Cheriyadat and Bruce, 2003; Rodarmel
and Shan, 2002) or independent component analysis (ICA) (Chiang et al., 2000). As
an alternative to feature extraction, there are also feature selection techniques which
find a subset of bands to use as features which optimise some criteria, such as class
separation (Backer et al., 2005). Dimensionality reduction techniques (e.g. PCA)
can be interpreted as feature extraction/selection methods as they are finding an
abstraction of the raw data that is useful for classification.

Many of the hyperspectral classifiers mentioned above only use spectral information.
However, many modern classification techniques also use the spatial dimension of the
hyperspectral image. The spatial dimension provides contextual information about a
pixel, which is usually correlated with its material class. A variety of approaches to
spectral-spatial classification have been proposed. Some approaches combine morpho-
logical features with spectral vectors (Fauvel et al., 2012, 2008). Other approaches
use segmentation to spatially regularise a pixel-wise classification map. In Tara-
balka et al. (2009), segmentation using partial clustering is combined with a spectral
SVM classifier using majority voting. Similarly, watershed segmentation was used in
Tarabalka et al. (2010). The classification maps obtained using spectral-spatial clas-
sification methods are usually more homogeneous than those obtained from purely
spectral-based methods.
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2.1.2 Dimensionality Reduction

Dimensionality reduction is the statistical process of reducing the number of dimen-
sions (or variables) required to describe a dataset. Hyperspectral datasets are of high
dimensionality as the reflectance at each wavelength for a single pixel can be inter-
preted as a separate dimension. The high dimensionality of hyperspectral data is
linked to problems such as the curse of dimensionality (Donoho et al., 2000; Hughes,
1968; Lee and Landgrebe, 1993). With more dimensions, exponentially more data
points are required to accurately represent the data’s distribution. Hence, a low ratio
between the number of data points and the number of dimensions may limit many
algorithms from working well where the data has a large number of dimensions. Most
of the mass of a high dimensional multivariate Gaussian distribution is near its edges.
Thus, many algorithms designed around an intuitive idea of ‘distance’ in two or three
dimensional space, cease to work at higher dimensions, where those intuitions no
longer hold. Other problems with having a high number of dimensions are the high
storage requirements for the data and slow processing speeds (Bioucas-dias et al.,
2012). For these reasons, many algorithms perform poorly when the data has too
many dimensions due to the increased complexity of the task (Pal and Foody, 2010).
Hyperdimensionality also makes it difficult to visualise the data without advanced
software tools. As previously mentioned, because proximal wavelengths in hyper-
spectral data are often highly correlated, there can be redundant information in the
datacube. Therefore, it makes sense to reduce the number of dimensions in the data
without loss of information.

The goal of dimensionality reduction is to compress the data whilst preserving all
of its relevant information. As these criteria are also important for finding features,
there is significant overlap in the techniques used for feature extraction/selection and
dimensionality reduction. For this reason, many of the papers proposing dimension-
ality techniques for hyperspectral data use a classification application as a means of
evaluating them. Besides the basic techniques (e.g. PCA, factor analysis (FA) and
ICA) there are many dimensionality reduction techniques that have been appropri-
ated for use with hyperspectral data, such as local linear embedding (LLE) (Chen and
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Qian, 2007; Han and Goodenough, 2005; Kim and Finkel, 2003), ISOMAP (Guangjun,
Dong Yongsheng and Song, 2007; Sun et al., 2014) and Laplacian eigenmaps (Qian
and Chen, 2007). Approaches also exist for dimensionality reduction of spectral-
spatial features (Zhang et al., 2013). The need for reducing the dimensionality of
hyperspectral data motivates the development of low-dimensional representations.

2.2 Outdoor Illumination Model and Relighting

Many of the techniques proposed in this thesis incorporate a model describing pro-
cesses of illumination into deep neural networks. The model is described in this sec-
tion. Firstly, the illumination sources assumed to be present in an outdoor scene are
described. Then, the outdoor illumination model from which the relighting equations
can be derived is explained.

2.2.1 Sources of Illumination

An outdoor scene has several sources of illumination, with the two most dominant
sources being direct terrestrial sunlight and diffuse skylight (Gijsenij et al., 2012;
Sato and Ikeuchi, 1995). The terrestrial sunlight source consists of the extraterres-
trial light emitted from the sun that passes through earth’s atmosphere. The light
takes on a spherical pattern when it is first emitted, but by the time it reaches
earth it has travelled such a long distance that is can be considered a parallel light
source (Schowengerdt, 2007). When the sunlight passes through the atmosphere, it
is absorbed and scattered across specific ranges of wavelengths. The proportion of
light that penetrates through the atmosphere and reaches the earth’s surface (called
the solar path transmittance (Schowengerdt, 2007)) is wavelength dependent and ex-
tremely variable. This is the terrestrial sunlight. The diffuse skylight occurs due to
the Rayleigh scattering of light by particles that are smaller than the wavelength of
the visible light. This results in blue light being preferably scattered (during daylight
hours). By assuming consistent cloud coverage, the sky is considered to be a dome,
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Figure 2.3 – The three sources of illumination assumed to be present in an outdoor
scene, illuminating a region i. They are the terrestral sunlight Esunτ , the diffuse
skylight Esky and the indirect illumination Eind from the region j.

(a) Terrestrial sunlight Esunτ . (b) Diffuse skylight Esky.

Figure 2.4 – Example of differences in intensity and spectral power distribution of
terrestrial sunlight and diffuse skylight as simulated by an atmospheric modeller
(Gueymard, 2001).

and the diffuse skylight is modelled as a hemispherical light source (Sato and Ikeuchi,
1995). The intensity and spectral power distribution of the terrestrial sunlight differs
significantly from the diffuse skylight, as seen in the example in Figure 2.4. Additional
to these sources of illumination, there is indirect illumination. Light that is reflected
off of surfaces in the scene can illuminate other surfaces, but with a much weaker
intensity. The sources of illumination in outdoor scenes are shown in Figure 2.3.
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2.2.2 Physics-Based Illumination Model

The following outdoor illumination model (Ramakrishnan, 2016) for the radiance
of spectra reflected from a scene consists of the parallel, terrestrial sunlight source
Esunτ , hemispherical diffuse skylight source Esky and indirect illumination source
Eind each described above. Assuming all materials in the scene diffusely reflect light,
the radiance L of a region i as captured by a camera can be approximated as:

Li(λ) = Le,i(λ) + ρi(λ)
π

[ViEsun(λ)τ(λ) cos θi + ΓiEsky(λ) + Eind] , (2.1)

where ρi is the albedo of the material, Vi is a binary variable indicating whether
there is line-of-sight visibility between the region and the sun position, τ is the solar
path transmittance, Le,i is the emitted radiance, θi is the angle between the surface
normal and the line-of-sight vector towards the sun, and Γi is the sky (or view) factor
ranging from 0 to 1 indicating the portion of the sky dome that is visible. The emitted
radiance occurs when objects heat up and begin to glow. In this work, it is assumed
for simplicity that there is no emission in the scene and that indirect illumination is
negligible. Thus, the model simplifies to:

Li(λ) = ρi(λ)
π

[ViEsun(λ)τ(λ) cos θi + ΓiEsky(λ)] . (2.2)

Through inspection of this model, it can be seen that the spectral variability in the
appearance of a material is related to the sources of illumination (Esun and Esky),
the geometric factors (Vi, θi and Γi) that control the intensity of the sources of
illumination, as well as the atmospheric conditions (τ ). The advantage of this model
is that it allows each illumination source to be treated independently.

2.2.3 Relighting

Relighting is a technique for scaling the appearance of a material by a wavelength de-
pendent function such that it appears to be under different illumination conditions.
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Relighting has predominantly been used in the computer vision and remote sens-
ing literature to relight color and spectral images (Beauchesne and Sbastien, 2003;
Marschner and Greenberg, 1997; Ramakrishnan et al., 2015; Troccoli and Allen, 2005).

In Ramakrishnan (2016), relighting equations are derived from the model (2.2) for
different scenarios. To relight the radiance L of a region i in sunlight with respect to
diffuse skylight, the scaling factor is calculated as:

Lj(λ) = Li(λ) 1
Esun(λ)τ(λ)
Esky(λ) cos θi + Γi

. (2.3)

Relighting a region to have only a diffuse skylight component is equivalent to relighting
a region to be in shadow. Similarly, to relight the radiance L of a region i in sunlight
with respect to full terrestrial sunlight and diffuse skylight exposure, the scaling factor
is calculated as:

Lj(λ) = Li(λ)

Esun(λ)τ(λ)
Esky(λ) + 1

Esun(λ)τ(λ)
Esky(λ) cos θi + Γi

. (2.4)

This is equivalent to relighting a scene to be in sunlight, where the angle between
the surface normal and the line-of-sight to the sun is zero, and the full sky dome is
visible, producing maximum exposure. The derivation for these relighting equations
is in Appendix D.

2.3 Deep Learning

Deep neural networks comprise a subset of machine learning algorithms, which learn
parametrised models from data. Neural networks often have many parameters com-
pared to most other machine learning algorithms, and hence require a significant
amount of data to train them in order to learn generalisable models. Because of their
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large number of parameters, multiple layers and non-linear components, neural net-
works can learn very powerful models, and thus have had success in a range of tasks
including speech recognition (Dahl et al., 2012; Graves et al., 2013; Hinton et al.,
2012), text recognition (Wang et al., 2012), digit recognition (LeCun et al., 1990) and
object recognition (He et al., 2016; Simonyan and Zisserman, 2014). In many of these
tasks, deep neural networks achieve state-of-the-art results on benchmark datasets,
outperforming hand-crafted feature-based techniques. This section provides a brief
theoretical background to deep neural networks.

2.3.1 Multi-layer Perceptron

The most simple type of multi-layered neural network is the multi-layer perceptron
(MLP) (Ng, 2011), which learns a non-linear mapping from data at the input layer to
values in the output layer. The output layer can be a layer of classification labels, but
this is not always the case as will be explained in Section 2.3.2. The fundamental unit
of an MLP is a neuron (Figure 2.5a). The neuron takes a set of inputs x, computes a
weighted addition of them with weights W and an additional bias term b, and then
passes the result through an activation function f to compute the output a as follows:

a = f(
N∑
i=1

Wixi + b), (2.5)

where N is the number of inputs, and the activation function could be a sigmoid:

f(ω) = 1
1 + exp−ω , (2.6)

Although the activation function is not limited to a sigmoid. Several of these neurons
form a layer, and several layers combine to form a network (Figure 2.5b). The value
of each neuron is then calculated as:

a
(2)
1 = f(

N∑
i

W
(1)
1i xi + b

(1)
1 ), (2.7)
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(a) The fundamental
unit of a neural network,
a neuron. This particu-
lar neuron takes three in-

puts.

(b) Multiple layers form a network. Note
that the dashed line indicates that the bias
term is different for the calculation of each

output unit.

Figure 2.5

a
(2)
2 = f(

N∑
i

W
(1)
2i xi + b

(1)
2 ), (2.8)

a
(3)
1 = f(

N∑
i

W
(2)
1i xi + b

(2)
1 ), (2.9)

where the first subscript indice of the weight W refers to the output unit it is related
to and the second subscript indice refers to the input unit it is related to (the subscript
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for b refers to the output unit that the bias is related to). The superscript indice
refers to the layer number, with the input data x being the first layer. Note that
each neuron is connected to every other neuron in its adjacent layers, but not to the
neurons in its own layer. These equations can be simplified to a matrix form and
generalised to any number of layers. By letting z(l)

i be the weighted sum of the input
units and bias term going into the i-th neuron in layer l, then for the first layer:

z(2) = W(1)x + b(1), (2.10)

a(2) = f(z(2)), (2.11)

and in every subsequent layer up to L layers:

z(l) = W(l−1)a(l−1) + b(l−1), (2.12)

a(l) = f(z(l)), (2.13)

for l = L,L− 1, L− 2, ..., 3. By letting a(1) = x, the equations 2.12 and 2.13 can be
further generalised for l = L,L−1, L−2, ..., 3, 2. The layers in between the input and
output layer are often referred to as the hidden layers (Deng et al., 2010; Schmidhuber,
2014). The MLP can have many different architectures where the number of layers
and width of each layer changes.

The previous set of equations determines the feed-forward value of each neuron once
the parameters for W and b have been learnt. The backpropagation algorithm is
used to train the network from the data by learning the parameters for W and b. In
order to do backpropagation, a cost function must be defined on the output layer that
is a function of all of the parameters in the network. Hence the parameters can be
learnt by minimising this cost function. If a training label y(m) exists for each input
x(m), then the cost function of the MLP for all observations, including a regularization
term, can be defined as:
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E(W,b) = 1
M

M∑
m=1

(1
2‖a

(L)(m) − y(m)‖)2 + λ

2

I,J,L−1∑
i,j,l=1

(W (l)
ji )2, (2.14)

where a(L)(m) is the values of the neurons in the output layer L, which are dependent
on x(m). M is the number of observations, λ is the regularization parameter, and I
and J are the number of units in layers l and l + 1 respectively. The regularization
term prevents overfitting of the parameters, which is when the network does not
generalise to new data (Bishop, 2006). A squared error cost function such as this one
is useful for both regression and classification problems. For regression problems, y

takes on real, continuous values. For classification tasks, each y becomes a one-hot
vector (e.g. [0 0 1 0] for a four class problem). Of course, MLPs are not limited
to a squared error cost function. Other measures of error can also be used, such as
cross-entropy (Golik et al., 2013), which is popular for classification.

In order to use optimisation to find the parameters that minimise the cost function
in equation 2.14, the partial derivatives of equation 2.14 must be calculated:

∂

∂W
(l)
ji

E(W,b) = 1
M

M∑
m=1

∂

∂W
(l)
ji

(1
2‖a

(L)(m) − y(m)‖)2 + λW
(l)
ji , (2.15)

∂

∂b
(l)
j

E(W,b) = 1
M

M∑
m=1

∂

∂b
(l)
j

(1
2‖a

(L)(m) − y(m)‖)2, (2.16)

where for a single observation m:

∂

∂W
(l)
ji

(1
2‖a

(L) − y‖)2 = δ
(l+1)
j a

(l)
i , (2.17)

∂

∂b
(l)
j

(1
2‖a

(L) − y‖)2 = δ
(l+1)
j , (2.18)

for l = 1, 2, 3, ..., L − 1, with the value of δ dependent on the layer number l. For
the output layer l = L, in which there are K units, the δ for each output unit k is
calculated as:

δ
(L)
k = −(yk − a(L)

k ) · f ′(z(L)
k ), (2.19)
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and for all other layers l = L− 1, L− 2, L− 3, ..., 2,

δ
(l)
i =

∑
J

(δ(l+1)
j W

(l)
ji )f ′(z(l)

i )., (2.20)

where i is the index of the unit in layer l and j represents the index of the unit in layer
l + 1. In this way, the gradient of the error is propagated back through the network
via the weights. The parameter update equations for gradient descent optimisation
are:

W
(l)
ji := W

(l)
ji − α

∂

∂W
(l)
ji

E(W,b), (2.21)

b
(l)
j := b

(l)
j − α

∂

∂b
(l)
j

E(W,b), (2.22)

where α is the learning rate.

The MLP is trained by first initialising all of the parameters, either randomly or by
some other means, then doing a feed-forward pass of the data through the network,
measuring the error between the target data and the neuron activation values in the
output layer, and then backpropagating the error through the network. This process
is repeated until the error - or cost - converges. If the parameters are updated
iteratively to minimise the cost function, then the MLP learns to map the x values to
their corresponding y values via a highly non-linear function comprising the weights
and biases at each layer of the network.

2.3.2 Autoencoder

A deterministic autoencoder (Bourlard and Kamp, 1988; Hinton and Salakhutdinov,
2006; Kramer, 1991) is a special case of the regression MLP, where the target vector
is set as the input data:

y := x, (2.23)

and hence the MLP learns to reconstruct its input layer in the output layer. This
is an unsupervised learning process as no labelled training data are required. The
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Figure 2.6 – An example of a stacked autoencoder. The MLP reconstructs the input
in the output layer and has a symmetric architecture, with a code layer in the
middle of the hidden layers.

autoencoders are often structured such that the width of the hidden layers gets pro-
gressively smaller until a bottleneck point, after which they get larger again, such that
the width of the layers is symmetric about the smallest hidden layer (Figure 2.6). The
benefit of this is that the layer with the smallest width, often called the code layer
or bottleneck layer, becomes a condensed representation of the input data. This is
because the code layer is forced to encode any important structure in the input data
so that it can accurately reconstruct it. The weights and biases that map the input
data to the code layer are called the encoder stage of the network, and the weights
and biases that reconstruct the input from the code layer are called the decoder stage.
When an autoencoder contains multiple hidden layers it is called a stacked autoen-
coder (SAE) (Larochelle et al., 2007). To train the parameters in each layer of an
SAE, a greedy pre-training step, in which layers are trained in turn whilst keeping
other layers frozen, usually precedes an end-to-end fine-tuning step, whereby all layers
are trained at the same time. Because SAEs can learn a condensed form of the data,
they find use as an unsupervised method for finding low dimensional encodings or
feature representations of the data.

There are variants of the basic deterministic autoencoder, including the sparse au-
toencoder (Ng, 2011) and the contractive autoencoder (Rifai et al., 2011). These
autoencoders have additional constraints imposed on them to promote sparsity and
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robustness, respectively. Imposing a constraint is a form of regularisation, similar to
what the penalty term in the cost function of equation 2.14 is doing in order to pre-
vent overfitting. These regularised autoencoders can also be stacked to form deeper
architectures, just like the basic SAEs.

Another type of autoencoder exists called the denoising autoencoder (DAE). For the
DAE, a stochastic corruption process is applied to the input layer only (Figure 2.7),
forcing the network to learn an encoder-decoder mapping to reconstruct the uncor-
rupted, clean input, so that it preserves the input information and reverses the effect
of the corruption process (Vincent et al., 2008).

In the DAE cost function, the error is computed between the clean input x and the
output neurons a(L)(m) which are a function of the corrupted input x̃. The training
process is exactly the same as with SAEs, but the mapping learnt is more complex
because it must denoise the corrupted input which often results in being able to learn
more robust features.

There are several common methods of corrupting the input. These include the addi-
tion of Gaussian noise, forcing a randomly masked fraction of the input elements to be
zero (masking noise), and forcing a randomly masked fraction of the input elements to
be zero or one (salt-and-pepper noise)(Vincent et al., 2010). Masking noise is equiv-
alent to having missing elements in a given input sample, and the DAE is trained
to fill in these missing values which is possible by capturing the high-dimensional
dependencies in the data.

2.3.3 Convolutional Neural Network

Another popular deep learning algorithm is a CNN (LeCun et al., 1990). CNNs are
structured slightly differently to MLPs. They often consist of a number of convolu-
tional and pooling/subsampling layers followed by fully connected layers (Figure 2.8).
Whilst the neurons of the MLP are connected to all neurons in the adjacent layers,
the neurons in the convolutional layers of the CNN are only locally connected, and
they share weights with other neurons. This can be interpreted as the weights acting
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Figure 2.7 – An example of a stacked DAE. The input layer is corrupted in some way
(e.g. by masking out some of the units), and the network must reconstruct the
clean input in the output layer.

Figure 2.8 – An example of a CNN architecture - AlexNet (Krizhevsky and Hinton,
2012). There are convolutional layers, activation functions, pooling layers and fully
connected layers. AlexNet was designed to classify 224 × 244 pixel images as one
of 1000 possible classes.

as filters which convolve over the input data, thus outputting the neuron values in
the next layer (Figure 2.9). When the CNN is trained, the filters or kernels, as they
are sometimes called, are refined to detect localised features in the data. The benefit
of the shared weights in the convolutional layers is that there are fewer parameters to
learn. Multiple filters can be trained to filter the data, and the result is one feature
map output for each filter/kernel. Non-linear activation functions are applied to each
element of the feature map independently just as with the neurons in the hidden
layers of the MLP. The rectified linear unit (ReLU) is a common choice of activation
function for CNNs (Nair and Hinton, 2010). Other activation functions include the
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Figure 2.9 – The process of a 3 × 3 kernel filtering a 2D image to produce a feature
map.

leaky ReLU (Maas et al., 2013), parametric ReLU (He et al., 2015), sigmoid (i.e.
logistic) and TanH.

The pooling layers are designed to aggregate the statistics of the data output from
the convolutions at various locations, effectively summarising the feature maps. This
process might involve finding the average or maximum over a specified area of the
feature map. By taking advantage of the stationary nature of the data, the number
of elements in the feature maps are reduced, reducing the likelihood of overfitting,
and some translational invariance is built into the features.

The fully connected layers are simply an MLP where all neurons in adjacent layers
are connected to each other. The feature maps output by the kernels in the final
convolutional layer must be vectorised before they are passed into the fully connected
layers. After the fully connected layers, there is usually a classification layer such as
softmax which outputs a vector of scores over the label space. These scores can be
used to predict the class label.

If a CNN classifier is applied to image data, then the dimensions of the data input
into the first convolutional layer are m × n × d × 1 where m is the number of rows,
n is the number of columns and d is the number of channels in the image (e.g. d = 3
for an RGB image). The k1 kernels in the first convolutional layer will have size
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Cm1 × Cn1 × Cd1 × 1 where Cm1 is the number of rows in each kernel, Cn1 is the
number of columns in each kernel and Cd1 is the number of dimensions of each kernel.
Also, Cm1 < m, Cn1 < n and Cd1 ≤ d. The size of each of the k1 feature maps
produced is (m − Cm1 + 1) × (n − Cn1 + 1) × (d − Cd1 + 1). These dimensions are
usually further reduced by pooling. The k2 kernels in the second convolutional layer
will have size Cm2×Cn2×Cd2× k1, and the kl kernels in the l-th convolutional layer
will have size Cml × Cnl × Cdl × kl−1.

CNNs are typically supervised learners, so they require some form of label associated
with each of the training points (e.g. a class label associated with each image).
The parameters of the CNN are learnt by establishing an error measure with a cost
function, using the backpropagation algorithm to compute the error derivatives at
each layer and then iteratively minimising the error with an optimisation technique,
such as stochastic gradient descent.

2.4 Literature Review

A key problem being addressed in this thesis is the variability in hyperspectral data
caused by illumination. There are a range of approaches in the literature to solving a
similar problem under the name of illumination invariance. An illumination invariant
image is one which is independent of the effects of illumination. In this review, many
of these approaches are compared and discussed in the context of outdoor imaging
with a hyperspectral sensor.

In this thesis, deep learning algorithms are employed for learning feature represen-
tations and classification models for hyperspectral data that are invariant to the
illumination. Thus, the advancements of CNNs and the corresponding utilisation of
deep learning in hyperspectral applications is reviewed. Finally, data augmentation
in the literature is briefly reviewed.
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2.4.1 Illumination Invariance

The problem of illumination invariance in images has received attention from several
different research communities. Solutions have been formulated using image-based,
learning-based, multi-modal and remote sensing techniques. Each of the techniques
have strengths and weaknesses. Many of these techniques have either been extended
or have inspired the development of algorithms for finding illumination invariant
hyperspectral images. Many new techniques devised specifically for hyperspectral
images have also been proposed.

In the field of computer vision, illumination invariance has been tackled by considering
images as a combination of the intrinsic material properties of their constituents and
the illumination in the scene. By removing the illumination, an invariant image can
be found. The benefit of image-based approaches for finding illumination invariant
representations is that they often do not rely on information from additional external
sensors.

Colour constancy techniques aim to remove the effects of varying illumination such
that materials under different illumination conditions appear to be constant (Agarwal
et al., 2006). One such technique is the Grey-World approach (Buchsbaum, 1980),
which assumes that the average colour over the entire image is grey, and any deviation
from grey is due to the scene illuminant. Hence, the image is corrected to reduce
alterations in the color due to the illuminant. In a similar way, the Scale by Max
(Agarwal et al., 2006) approach assumes that there is something white in the scene
which reflects all of the illumination at each channel. An estimate for the illuminant
can be found as the maximum intensity value of each channel across the image, and
this estimate can be used to correct the colours in the image.

Whilst colour constancy can correct the effects of illumination for simple colour im-
ages of the scene, these approaches are limited because they often do not account
for geometric variability and multiple light sources in an image. Such is the case
when there are shadows in the image. This makes them unsuitable for most outdoor
scenarios where shadows and geometric variability almost always occur. Methods
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developed by Lynch et al. (2013) and Gijsenij et al. (2012), which work for multi-
ple light sources, out-perform the more basic colour constancy techniques. They do
not, however, account for variability in the surface geometry of the scene. These
techniques also have not been extended for use with hyperspectral data and rely on
limiting assumptions in order to work, such as the average colour in an image being
grey.

Some very successful approaches to illumination invariance in computer vision and
image processing are derived from a Lambertian model for photodetector response:

ρj = σ
∫
E(λ)S(λ)Qj(λ)dλ (2.24)

where ρj is the camera sensor response of the jth sensor, σ is a constant based on
the scene geometry given by the dot product of the surface normal and the incident
illumination direction, E(λ) is the spectral power distribution of the illuminant, S(λ)
is the surface reflectance and Qj is the spectral sensitivity of the camera sensor. Il-
lumination invariant features can be derived from this model by assuming Planckian
illumination, narrow-band camera sensor functions and Lambertian surfaces. One
of these approachs (Marchant and Onyango, 2000) derives an invariant feature from
RGB images, and extends this to multiple invariant features for spectra covering
more than three wavelengths (Marchant and Onyango, 2002). Other methods take
the logarithm of photodetector responses to separate the surface reflectance compo-
nents from the illuminant dependent components of the response. After taking the
logarithm, Ratnasingam and McGinnity (2012) find an optimal linear combination of
sensor responses to remove the effects of the illuminant and scene geometry. In Fin-
layson et al. (2006, 2002, 2004, 2009), prior to taking the logarithm, the chromaticity
of the sensor responses are computed to normalize out the illuminant intensity and
scene geometry effects. It can be shown that the log-chromaticity vectors for a given
surface will move along a camera-dependent direction as the illuminant changes, in-
dependent of the surface reflectance. Hence, it is possible to remove the effects of the
illuminant by projecting the log-chromaticity vectors into the subspace orthogonal
to that direction. When dealing with RGB images, it is difficult to determine the
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exact direction of the orthogonal subspace as the narrow-band assumption does not
hold true. However, other methods for determining the camera-dependent direction
to project onto have been investigated. A Macbeth ColourChecker (Finlayson et al.,
2002) was imaged using an RGB camera under different daylight illumination condi-
tions so that the direction of change can be found for that camera. Another approach
(Finlayson et al., 2004, 2009) looks at many different projections and selects the one
with the smallest entropy. There have been numerous applications which have used
these illumination invariant images, including road segmentation (Álvarez and An-
tonio, 2011), image-based outdoor localisation (Corke et al., 2013; Mcmanus et al.,
2014) and urban street classification (Upcroft et al., 2014). Shadows are removed
from RGB images by Yang et al. (2012) by computing an intrinsic image found with
a similar approach to Finlayson et al. (2006) and then doing bilateral filtering.

The approach of Finlayson et al. (2006) has been extended from RGB images to multi-
spectral and hyperspectral images (Drew and Salekdeh, 2011; Salekdeh, 2011). This
involves log-chromaticity vectors with much higher dimensionality, covering wave-
lengths from the visible and near infrared (VNIR) range (v 400 − 1000nm) to the
SWIR range (v 1000 − 2500nm). However, given that every channel in the hyper-
spectral sensor is narrow-band, it is easier to determine the orthogonal projection
than it is with RGB sensors. The orthogonal projection matrix can be computed
directly as a function of the sensor wavelengths and various constants, removing the
need to use Macbeth colour checkers or entropy minimisation. The result is that an
invariant spectrum can be found, having the same number of channels as the original
spectrum.

The biggest problem with the approaches based on the Lambertian model of equa-
tion 2.24, is related to one of the assumptions that are made in order to derive
the illumination invariant features - the assumption of Planckian illumination. In
this assumption, the spectral power distribution of the incident light is modelled by
Wein’s approximation to Planck’s law. As the illuminant transmits through the at-
mosphere, deep absorption features are introduced into its spectrum as it encounters
molecules such as oxygen, carbon dioxide and water. These absorptions features are
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Figure 2.10 – An illustration of how the solar radiation spectrum, which has a spectral
power distribution similar to that of a 5400 K black body, is absorbed at specific
wavelengths by gas molecules as it is transmitted through the atmosphere. After
this occurs, the spectral power distribution no longer resembles the black body
distribution due to the additional atmospheric absorption features. These curves
were generated using the SMARTS atmospheric modeller (Gueymard, 2001).

not accounted for by the approximation even though they have a large impact on the
incident light spectra (Schowengerdt, 2007). Whilst these absorption features do not
have a significant effect on three channel RGB images, they have a much more promi-
nent influence on the shape of a hyperspectral curve (Figure 2.10). Another potential
problem is that these illumination invariant features are not optimised for class sep-
arability. Hence there might be a trade-off between the illumination invariance and
the discriminability of different materials.

Many remote sensing techniques turn the problem of finding illumination invariant
representations of imagery into a radiometric normalisation task. An estimate for re-
flectance spectra, which hypothetically are independent of the incident illumination,
is found by dividing the observed signal by the incident illumination. This is con-
ceptually similar to colour correction from the computer vision literature (discussed
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above).

Empirical normalisation techniques, including residual images, internal average rel-
ative reflectance (IARR), continuum removal and empirical line are often used to
correct overhead imagery acquired by aircraft or satellites. This is due to the diffi-
culty of measuring or estimating the illumination sources for these cases. Continuum
removal requires the spectra to be in reflectance and adjusts individual pixels by fit-
ting a convex hull over the peaks of each spectrum before the spectra are divided by
their respective hull (Clark and Roush, 1984). Whilst this approach can normalise out
the effects of solar irradiance, it cannot remove the unwanted atmospheric absorption
features. In the IARR approach, each digital number (DN) pixel spectrum is divided
by the mean DN spectrum calculated over the entire image (Kruse, 1988) in order
to compute an approximate for reflectance. Whilst this can remove multiplicative
atmospheric absorption features, it cannot compensate for the effects of topographic
variation or additive effects such as path radiance. The empirical line method uses
multiple reflectance measurements obtained from bright and dark targets from within
the scene with a spectrometer. Linear relationships between the observed reflectance
spectra and the raw image data are determined. The slope and intercept of this rela-
tionship are used to convert image data in DN or radiance to reflectance (Smith and
Milton, 1999). Unlike the convex hull and IARR methods, the empirical line method
can remove the effects associated with path radiance. However, it cannot compensate
for topographic variations and also requires extensive field measurements. For the
residual image approach, a wavelength is chosen and then all spectra are scaled such
that the pixels of the chosen wavelength all have an intensity equal to the maximum.
Then, the mean intensity of each channel over the image is subtracted from all of the
pixels in each channel, producing an estimate for reflectance (Marsh and McKeon,
1983). This method can remove the effects of atmospheric absorption features, view
path radiance and topographic variations.

The empirical normalisation methods have the advantage of being simple to imple-
ment and, apart from the spectrometer for the empirical line method, no additional
sensors are required. However, they are limited in that they cannot account for the
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changes in spectra induced by shadows and many of the methods do not remove the
effects related to variability in the scene geometry.

An alternative to empirical normalisation that also does not require direct measure-
ment of the illumination sources is through the use of a computational atmospheric
radiative transfer model to simulate the illumination sources. These models can pro-
duce an estimate of the terrestrial sunlight and diffuse skylight via simulation of light
propagation through the atmosphere given a particular aerosol composition, turbidity
and moisture among other parameters. There are several radiative transfer models
available, from the relatively simple ones that are popular in the field of computer
graphics (Hošek and Wilkie, 2013; Perez et al., 1993; Preetham et al., 1999) to the
more complex ones, SMARTS (Gueymard, 2001) and MODTRAN (Berk et al., 1987),
used in remote sensing applications.

The problem with radiative transfer models is that they have many parameters which
must be known a priori. If the illumination sources are to be accurately simulated,
the various atmospheric parameters must either be measured or estimated from the
location and season (e.g. based on closest meteorological station data). The data
needed to set these parameters is not always available and if the geographical location
of the sensor is unknown then the models cannot be used to correct a captured image.
Also, whilst the radiative transfer model can simulate how the illumination sources
interact with the atmosphere, how they interact with the scenes with complex surface
geometry remains largely unknown.

Of course, rather than simulating the illumination sources or using empirical methods,
a much more reliable method for radiometric normalisation is to simply measure the
atmospheric sources using hardware of some kind. One approach is to normalise the
raw digital values observed by the sensor against the material spectrum of a material
of known reflectance such as a diffuse calibration board placed in the scene (i.e. flat-
field correction) (Murphy et al., 2008; Rast et al., 1991). Another approach is to
measure the incoming incident illumination using a downwelling irradiance sensor
and use this to normalise the digital values of all pixels in the scene (Borengasser
et al., 2007). The limitation of these methods is that they only provide a correct
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measurement of the illumination for the region that the calibration board or sensor
is placed. They cannot capture the variation in the incident illumination due to the
scene geometry and occlusions (i.e. shadows). The ideal scenario would be to measure
the incident illumination at every point in the scene, however this is not practical.

Instead of trying to measure the illumination and correct for it at every pixel in the
image, physics-based models for remotely-sensed data can be formulated to derive
wavelength-dependent scaling terms which de-shadow the spectra, correcting them
as if they were illuminated by sunlight (Adler-golden et al., 2001, 2002; Richter and
Müller, 2005). The limitation of these methods is similar to the radiometric nor-
malisation approaches, as they require accurate measurements or estimations with
radiative transfer models of the direct terrestrial sunlight and diffuse skylight which
are difficult to acquire. Also, since much of the remotely-sensed data is captured
from satellites or airborne platforms, many of the models disregard the influence of
scene geometry because the spatial resolution is so low. For close-range sensing, the
geometric parameters must be factored into the models.

The remote sensing approaches to illumination invariance largely fail to account for
variations due to the geometry and occlusions in the scene. These variations af-
fect both the amplitude and spectral shape of the incident illumination, and hence
have a significant impact on the spectra observed by the sensor. This limitation can
be overcome using multi-modal approaches that incorporate geometric information
(Broadwater and Banerjee, 2013; Friman et al., 2011; Ientilucci, 2012; Ramakrishnan,
2016). Mutli-modal approaches utilise additional sensors such as light detection and
ranging (LiDAR) and GPS to form geometry-based illumination models of the scene
making it possible to compensate for shadows in spectra captured over the VNIR and
SWIR spectrum. They often do not require any labelled data and can take into ac-
count the impact of the atmosphere when used in conjunction with radiative transfer
models.

The approach in Ramakrishnan (2016) uses equation 2.3 to relight the spectrum
of each pixel to a common illuminant (skylight) to remove the variability due to
illumination. This required a hyperspectral image to be fused with LiDAR data,
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so that all of the geometric parameters required for relighting were known, as well
as whether or not each pixel had a direct line-of-sight with the sun. Although the
multi-modal approaches can compensate for the illumination variability such that
the scene-geometry is accounted for, the limitation is that the additional sensors are
not always available. Also, when they are available they rely on accurate spatial
registration with the hyperspectral image data.

Learning approaches (Guo et al., 2011; Lalonde and Efros, 2010; Zhang et al., 2015;
Zhu et al., 2010) for detecting and removing shadows from RGB images have been
proposed as an alternative means of finding illumination invariant representations of
scenes. These methods rely on fewer assumptions than the purely image-based ap-
proaches to illumination invariance, but instead require labelled training data or user
interaction to learn a model. Likewise, labelled data of the classes of interest are used
to train Support Vector Machines and CNNs to accurately classify hyperspectral pix-
els, regardless of the illumination conditions (Chen et al., 2016; Izquierdo-Verdiguier
et al., 2013; Makantasis et al., 2015). In Healey and Slater (1999), a library of known
reflectance for each class is used with a physical model incorporating the illumination
conditions to learn a set of orthonormal basis functions for that class. Using these
class-specific basis functions, an illumination insensitive likelihood for each material
can then be calculated for a given spectral vector. Despite not having to make any
assumptions about the image data, the reliance of the learning-based methods on la-
belled data limits their application as labelled hyperspectral data is time-consuming
and expensive to acquire (as explained in Chapter 1). Regions under very low lighting
can also be challenging to label correctly and sometimes samples must be physically
collected from the scene for analysis in order to label them. In many applications
(such as mining), this can be both difficult and hazardous.

Unsupervised learning techniques have the advantage of not requiring labelled data.
Robust Principle Component Analysis (Wright et al., 2009) treats shadows as outliers
or sparse errors in a set of images and recovers an uncorrupted low-rank matrix where
the shadows are removed. This method, which requires no labelled data, worked well
on a set of greyscale images of human faces that were illuminated differently. It



2.4 Literature Review 39

does however require that multiple images are captured of the same scene under
different conditions which is an undesirable and impractical constraint for outdoor
imaging. Another unsupervised method (Zheng et al., 2015) separates illumination
and reflectance spectra in hyperspectral images in a low dimensional subspace, using
a low-rank matrix factorization method. This approach was tested with a range of
illuminants such as daylight, fluorescence and LED, but its ability to separate the
illuminant when parts of the scene are illuminated by direct irradiance and diffuse
skylight (sunlit regions) and others by diffuse skylight only (shadowed regions) must
still be evaluated.

In summary, illumination invariance for hyperspectral imagery has been approached
using techniques from several different research fields. Each field has associated ad-
vantages and disadvantages. Image-based approaches originally designed for finding
illumination invariant colour images and extended to work for hyperspectral images
do not properly account for the effects of the atmosphere on the incident illumination.
Remote sensing methods overcome this through the use of either radiative transfer
models which simulate the propagation of light through the atmosphere or direct
measurement of the incident illumination using hardware. The limitation of radiative
transfer models is that they require the estimation of many atmospheric parameters,
which is often difficult to acquire data for. Remote sensing techniques also rarely
take into account small-scale changes in the geometry of the scene due to the low
spatial resolution of the data. Multi-modal techniques overcome this by utilising geo-
metric data fused with remotely-sensed imagery, but at the cost of additional sensors
which are not always available. Finally, learning-based techniques take a more data-
driven approach, and hence do not rely on complex atmospheric models or additional
sensors, but can still account for geometry and the atmosphere. The disadvantage of
supervised approaches is that they require labelled data which is laborious to acquire,
and unsupervised techniques either work under impractical constraints or have not
been shown to work for multiple illuminants, which is the case when there is shadows
in the image.

Hence, there is a need for the development of methods for determining illumination
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invariant algorithms for outdoor hyperspectral data that do not rely on a priori
knowledge of atmospheric parameters, additional sensors, vast amounts of labelled
data and do not make limiting or impractical assumptions. These algorithms must
compensate for the effects of geometry, including its influence on the intensity of the
incident illuminant and shadows.

2.4.2 Advancements in Convolutional Neural Networks

In recent years, CNNs (a supervised learning technique) have revolutionised the field
of computer vision and, in particular, image classification. This technique is not
new, for example, it was applied to the problem of hand written digit recognition in
the 90s (LeCun et al., 1990). In 2012, however, it made a comeback when AlexNet
(Krizhevsky and Hinton, 2012) was used to win the ImageNet large scale visual recog-
nition challenge (ILSVRC) (Deng et al., 2009) competition by an impressive margin
from the previous year and the second place (scoring 16.4% in top-5 classification er-
ror, approximately 10% better than the Fisher vector based approaches). This started
a new trend where image classification techniques moved away from more traditional,
hand-engineered features and moved towards features that were learnt from the data.
To achieve robust classification results, AlexNet was trained by augmenting the input
data with translations, horizontal reflections and colour adjustments.

In ILSVRC 2014, most of the entries were based on CNN architectures (Russakovsky
et al., 2015). In ILSVRC 2014, GoogLeNet (Szegedy et al., 2015), another CNN ap-
proach, won the competition with a classification error of 6.7%. Their success came
from using 1× 1 convolutional layers to increase the width and depth of the network.
Another notable performer that year was VGGNet (Simonyan and Zisserman, 2014)
which also used smaller filter sizes for the convolutional layers than AlexNet. The
success of both GoogLeNet and VGGNet is attributed to these small window sizes.
Several stacked layers of small filters have the same receptive field as one large fil-
ter, but with more non-linear activation layers in between them, which makes the
output much more discriminative. This is expected to be the reason for its superior
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performance.

The ILSVRC 2016 winner of the image classification competition was the residual
network (ResNet) (He et al., 2016). By introducing residual layers, the network had
fewer filters to learn and hence could be made much deeper (34 layers compared to the
19 layer VGGNet) without running into the problem of vanishing gradients. ResNet
reduced the top-5 classification error to 4.5%, and an ensemble of ResNets further
reduced this error to 3.6%.

Although previously considered too expensive to train, CNNs have grown in popu-
larity with the increase in large annotated image databases and high performance
graphics processing unit (GPU)s to reduce the computation time. From the ILSVRC
results of the last few years, CNNs have been shown to outperform traditional hand
crafted features in classification tasks. CNNs are now achieving state-of-the-art re-
sults in many different applications such as stereo-matching (Pang et al., 2017), object
detection (Ren et al., 2015), classifying remotely-sensed images (Castelluccio et al.,
2015; Zhang et al., 2016) and learning hand-eye coordination for robotic grasping
(Levine et al., 2017).

2.4.3 Deep Learning Models for Hyperspectral Data

With their great success in other domains, deep learning techniques such as deep
MLPs, autoencoders and CNNs are now being adopted for hyperspectral research.
The hyperspectral application that deep learning algorithms have been utilised most
strongly in is pixel-wise classification of hyperspectral images. Many of the early
deep learning classifiers for hyperspectral data utilised SAEs. An early work to em-
ploy deep learning in hyperspectral images was Licciardi et al. (2009) who extracted
unsupervised features from pixel spectra using a SAE before classifying them with an
MLP. Following this an SAE was assessed as an unsupervised feature extractor for an
MLP spectral classifier in Demarchi et al. (2014). Other notable works were in Chen
et al. (2014) and Lin et al. (2013), where pixels were classified using a multi-layer
spectral-spatial SAE combined with a logistic regression layer. In this network, the
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input vector was a concatenation of the pixel spectral vector and a vectorized window
of surrounding pixels from a principle component. Later, deep belief nets (Chen et al.,
2015; Li et al., 2014) and DAEs (Xing et al., 2015) with a logistic regression layer
and sparse SAEs with an SVM (Tao et al., 2015) were used for the spectral-spatial
feature extraction and classification of hyperspectral pixels. Liu et al. (2015) used
SLIC superpixels to impose spatial constraints on a DAE spectral feature extractor
for spectral-spatial classification. The significance of these early works was that they
proposed a way to train a deep neural network on hyperspectral data. Some of these
works also paved the way for deep neural network frameworks to learn features from
both the spectral and spatial dimensions.

With the success of these initial works, and with the trends in other domains such as
computer vision, CNNs quickly became popular to use for classifying hyperspectral
data. The difference between the CNNs and the SAEs was that CNNs convolved
filters (shared weights) rather than having fully connected layers. However, many of
the earlier proposed CNN classifiers only convolved in the spatial domain and not the
spectral domain. The CNN in Makantasis et al. (2015) convolved a small window
over spatial patches extracted from a reduced dimensionality hyperspectral cube. A
similar approach was taken by Zhao and Du (2016), but the spatial features were
combined with spectral features learnt using a method based on Local Discriminant
Embedding. In Lee and Kwon (2016) spatial patches were extracted from a non-
reduced hyperspectral cube, but there were still no convolutions occurring over the
spectral channel (i.e. high dimensional spatial kernels were learnt).

Progressively, CNNs were used to learn features in the spectral domain. A very simple
CNN was proposed by Hu et al. (2015a) which learnt features by convolving over the
spectral channel. This approach was shown to perform favourably against other types
of neural networks as well as SVMs. Following this, other CNN approaches where the
filters were convolved in the spectral domain were proposed, many of which incorpo-
rated spatial information as well. The CNN in Mei et al. (2016) used the architecture
of Hu et al. (2015a) with modifications to exploit both the spectral and the spatial
information. The filters convolved over an input layer which concatenated the re-
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flectance at all channels and the spatial context. Similarly, Mei et al. (2017), inspired
by the spectral feature learning of Hu et al. (2015a), added spatial context to the
learning pipeline. Yang et al. (2016) and Yang et al. (2017) took a different approach
of learning the spectral and spatial filters separately and then combining the high
level information. Using a two-arm architecture where one arm had filters convolv-
ing in the spectral domain and the other arm had filters convolving in the spatial
domain, the two arms were combined in a fully-connected layer. Chen et al. (2016)
pioneered another completely different approach to learning spectral and spatial fea-
tures with the CNN. A 3-D CNN was proposed where the kernel convolved in both
the spectral and spatial dimensions in spatially smaller hypercubes extracted from
the hyperspectral image. Cao et al. (2016) trained a CNN to learn spectral features
which were fused with a SLIC segmentation under a Bayesian framework to impose
spatial constraints on the classification. In a unique approach, Li et al. (2016) con-
volved filters spectrally to train a CNN on pixel pairs, and used a voting strategy
with pixel neighbourhoods to predict the classification label. Recently, deep residual
networks, popular in the computer vision literature (He et al., 2016), have been used
to classify hyperspectral pixels using spectral information (Zhong et al., 2017).

Deep learning approaches have also been used for hyperspectral applications other
than classification. Methods for unsupervised feature extraction from hyperspectral
data have been developed using CNNs (Romero et al., 2014, 2016). A conditional
random field (CRF) was used with a CNN to segment a hyperspectral image in Alam
et al. (2016). An SAE has been used for unsupervised non-linear spectral unmixing
(Licciardi et al., 2012a; Licciardi and Del Frate, 2011), to enhance the quality of
hyperspectral images (Licciardi and Chanussot, 2015; Licciardi et al., 2014) and to
extract features for finding extended morphological profiles (Licciardi et al., 2012b).

Many of the mentioned deep learning approaches to processing hyperspectral data in
the literature have shown how deep, learnt features can improve results over tradi-
tional hand-crafted features for various high-level tasks. They have also tackled the
problem of combining spatial and spectral information in a unified framework. How-
ever, few have considered the problem of limited labelled training data. Because of the
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variability in hyperspectral data arising from the complex interaction of illumination
and scene geometry, limited training data is a significant problem as this variability
cannot be captured. This prevents algorithms from being robust to variations. In
most of the current literature on applications of deep learning to hyperspectral data,
a sufficient amount of labelled data is used to capture the variability. There are also
other problems associated with limited training data, including non-discriminative
features and overfitting.

Different aspects of the limited training samples problem have received some atten-
tion. The work of Yu et al. (2017) and Ghamisi et al. (2016) identified the potential
for overfitting when training a CNN on hyperspectral data due to limited training
samples. The solution of Yu et al. (2017) to this problem was to reduce the number
of parameters in the network (e.g. removing the fully connected layers, using 1 × 1
spatial kernels) and by doing basic spatial data augmentation such as rotations and
flips. The solution of Ghamisi et al. (2016) was to use feature selection methods to
reduce the number of bands in the dataset. Whilst these help to prevent overfit-
ting, they do not solve the problem of not having enough variability captured in the
training dataset. In Kemker and Kanan (2017), a self-taught learning framework is
used to approach the limited training data problem. Networks were pre-trained on
unlabelled data before they were trained on a small amount of labelled data for a
target classification task. The benefit of this approach is that if there is a sufficient
quantity of unlabelled data, then generalised features can be learnt with unsupervised
learning that can be fine-tuned with limited amounts of labelled data to effectively
discriminate between different classes. The problem however is that the features can-
not be made robust to variations unless there is enough labelled training samples to
capture the variability. To address this problem, Chen et al. (2016) took a virtual
sample approach to adding variability to the training data in order to make the fea-
tures more robust without needing additional labelled data. The virtual samples are
scalar multiples of the original spectra in the scene, designed to emulate variable illu-
mination. The problem with this approach is that the process for creating the virtual
sample is based on a very simplified model, with no modelling of the illuminant or
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scene geometry, and hence cannot generate new training samples that are an accurate
representation of those in the scene.

A related problem is that a limited number of datasets were used for the evaluation of
many of these deep learning algorithms, captured from satellite or airborne platforms.
In many of the above works, particularly those with a classification application, the
proposed methods are tested on well-researched benchmark hyperspectral datasets
(e.g. Indian Pines, Pavia University, Salinas, etc.). Illumination variability might not
be as prevalent in data acquired from satellite or airborne platforms due to the spatial
scale. Also, relative to many other scenarios, there is more labelled data available
for these images and hence there is less motivation to develop learning algorithms
that require limited amounts of labelled data. This is evident in the trend of many
of these works to explore and develop novel deep learning architectures which rely
on lots of labelled training data, rather than to incorporate domain knowledge into
deep learning algorithms. Thus, it appears as though the research community is
largely stagnating on a solution to the problem of making learning algorithms robust
to illumination variability in the presence of limited labelled data.

2.4.4 Data augmentation

Augmentation of training data is a common strategy used in conjunction with machine
learning algorithms, including neural networks, to build invariance into the learnt
models when there are limited amounts of labelled training data available. Various
types of label-preserving transformations are popular for training CNNs to classify
RGB images, such as pixel translation, rotation, scaling/zooming, shearing, noise
injection, elastic deformations and rendering a scene from novel viewpoints (Ciresan
et al., 2010; Gupta et al., 2014; Jaderberg et al., 2014; Zhang et al., 2014). By
training with augmented datasets, the networks learn to be invariant to these types
of transformations in the test data, even if they are poorly represented in the training
data.

Most of the augmentations utilised by these approaches are spatial in nature, as they
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have been used for RGB applications where CNNs were learning spatial features.
There are some methods which use augmentation in the colour/spectral domain,
which is useful for training algorithms to be robust to the effects of illumination. To
train AlexNet (Krizhevsky and Hinton, 2012), the intensities of the RGB channels
are altered with a very basic approach of applying PCA on the pixel colour values
and adding multiples of the principal components that are found to each pixel. This
made the final classifier slightly more robust to changes in intensity and colour. In the
hyperspectral literature, Chen et al. (2016) took a similar approach in devising the
scheme of virtual samples. However, as discussed previously, these virtual samples are
not generated by modelling the interaction of the illuminant with the scene geometry
and, therefore, cannot accurately simulate the variability in the scene (especially
the effects of shadows). In Izquierdo-Verdiguier et al. (2013), hyperspectral signals
from data in shadow are exponentially modulated to improve SVM classification
performance in the shadow. This approach cannot be used to simulate what a normal
sunlit pixel would appear as in shadow, so its usefulness is limited as labelled data is
still required to capture most of the variability in the scene.

By accurately simulating the influence of the incident illumination on spectra, data
augmentation could be used as a strategy to make learning algorithms, trained on
hyperspectral data, robust to illumination variability despite having a limited amount
of labelled data.

2.4.5 Summary

Different research communities have attempted to develop representations and models
for hyperspectral data that are robust to the effects of illumination. However, there
are drawbacks of the approaches from each field, including the reliance on limiting
assumptions, a priori knowledge of the atmospheric conditions which is difficult to
obtain, additional sensors which are not always available or large amounts of labelled
data to train on which are usually difficult to acquire. Thus, the problem still requires
new solutions which overcome these drawbacks.
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Learning algorithms typically do not make limiting assumptions and do not rely on a
priori knowledge about the atmospheric conditions or additional sensors. However,
at present, they largely rely on sufficient amounts of labelled training data to capture
the variability in the image. A variety of learning algorithm, the deep neural network,
has been gaining momentum in many fields related to image and signal processing
over the last few years, including hyperspectral data processing. Researchers have
proposed novel strategies to training neural networks to learn spectral and spatial
features for a range of applications including classification, non-linear unmixing and
image quality enhancement. With all of the progress being made in this field, it
remains clear from the literature that the problem of compensating for variability in
illumination with limited labelled training samples still needs addressing.

Through the use of data augmentation, it has been shown to be possible to incorpo-
rate domain knowledge into learning algorithms to make them invariant to unwanted
variations such as spatial and spectral transformations, despite having limited labelled
data to capture these variations.



Chapter 3

Datasets and Metrics

This chapter describes the datasets and metrics used in the experiments to evaluate
the algorithms proposed in chapters Chapter 4 and Chapter 5.

3.1 Datasets

To demonstrate generality, the datasets used in this thesis were specially selected
with the purpose of validating the algorithms proposed in this thesis under a range
of scenarios (Table 3.1). A range of different sensors were used to acquire the data,
including SPECIM, reflective optics system imaging spectrometer (ROSIS-3) and
airborne visible/infrared imaging spectrometer (AVIRIS) operating in the VNIR and
SWIR spectral ranges. These spectral sensors have a spectral resolution varying from
2 nm (SPECIM) to 10 nm (AVIRIS). Hyperspectral images with very high spatial
resolutions captured from field-based sensors (on the ground) are used, as well as
images with lower spatial resolutions typically captured from airborne and spaceborne
sensors. Coarse spatial resolution increases the likelihood that mixing (linear and
non-linear) will occur within an image pixel because the increased pixel size would
increase the chances that more than one type of material would be included in it
(Bioucas-dias et al., 2012; Mustard and Sunshine, 1999). Hence, spatial resolution
also has an impact on algorithms operating in the spectral domain. For generality,
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the noisy water absorption bands in the SWIR range were only removed from some
of the datasets.

The scenes captured by each sensor consist of vegetation, urban and mining material
classes. Spectra therefore have an assortment of different absorption features. The
captured scenes also vary in geometric complexity, with some having highly struc-
tured geometries due to man-made elements (e.g. captured in an urban environment)
and others having highly unstructured geometries because they are made from an
assortment of natural materials (e.g. captured in an open pit mine). The datasets
were also selected so that they exemplify a variety of illumination conditions. Some
scenes have large topographic variations in brightness and others have shadows due
to areas that are occluded from direct terrestrial sunlight. There are also timelapse
datasets where large changes in illumination occur over time. The range of differ-
ent data demonstrates the robustness of the algorithms under different illumination
conditions.

Some of these images were normalised to apparent reflectance with flat-field calibra-
tion using a calibration target of known reflectance placed within the field of view of
the sensor. Sometimes the brightness of objects in portions of the scene is greater
than the brightness of the calibration panel. This can be caused by spatial variation
in illumination or variation in the orientation of objects relative to the calibration
panel. Where this occurs, the value of relative reflectance can exceed unity. This has,
however, no bearing on the algorithms presented in this thesis.
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Table 3.1 – A summary of the datasets used in the experiments. Datasets were cap-
tured under different weather conditions, at different times, with different cameras
and with different scene contents in order to extensively evaluate the generality
of the proposed algorithms. The table indicates the chapter’s where the data was
were used for experiments.

Dataset Name Spectrum Sensor Chapter 4 Chapter 5 Chapter 6

Simulated USGS VNIR + SWIR - X × ×
X-rite VNIR A X × ×

Great Hall (VNIR) VNIR A X X ×
Great Hall (SWIR) SWIR A X X ×
Mining timelapse VNIR A X X X

Mining SWIR A × X ×
Gualtar steps VIS D X X ×

Gualtar timelapse VIS D X × ×
Pavia University VNIR C X X ×

KSC VNIR + SWIR B X × ×
Indian Pines VNIR + SWIR B × X ×

Salinas VNIR + SWIR B × X ×

3.1.1 Sensors

The sensors used to acquire the datasets used in this thesis are the:

• Sensor A: Specim AISA Eagle and Hawk. A pair of push broom line-
scanners manufactured by Specim (Oulu, Finland). The AISA Eagle sensor
captures scans in the VNIR range of 400 − 970 nm with a spectral resolution
of 2-4 nm. The AISA Hawk sensor captures scans in the SWIR range of 970−
2450 nm with a spectral resolution of 6-8 nm. A second Specim sensor (model
unknown) was also used and captures scans in the VNIR range of 378 − 1003
nm, with 396 channels at a spectral resolution of approximately 2 nm.
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• Sensor B: AVIRIS (Eastwood et al., 1987). A push broom line-scanner devel-
oped at the Jet Propulsion Laboratory. AVIRIS captures scans with a 614 pixel
swathe width in the VNIR and SWIR range of 400 − 2500 nm with a spectral
resolution is 10 nm. AVIRIS is typically operated on-board aircraft platforms,
capturing overhead scans.

• Sensor C: ROSIS-3. Is a push broom line-scanner developed jointly by MBB
Ottobrunn, GKSS Geesthacht and DLR Oberpfaffenhofen. ROSIS-3 captures
scans with a 512 pixel swathe width in the VNIR range of 430− 860 nm, with
a spectral resolution of 4 − 6 nm. Like AVIRIS, ROSIS-3 was intended for
capturing aerial scans.

• Sensor D: Custom-built hyperspectral imaging system (Foster et al.,
2006). This system is based on a low-noise Peltier-cooled digital camera (Hama-
matsu, model C47492-95-12ER, Hamamatsu Photonics K. K., Japan) and uses a
fast tunable liquid-crystal filter (VariSpec, model VS-VIS2-10-HC-35-SQ, Cam-
bridge Research and Instrumentation, Inc., Massachusetts). It captures a 1344×
1024 pixel image with 33 channels in the visible (VIS) range of 400 − 720 nm
and a spectral resolution of 10 nm.

3.1.2 Dataset 1: Simulated USGS

Mineral spectra from the United States geological survey (USGS) spectral library
(Clark et al., 2007) were used to simulate spectra acquired under different illumination
conditions - specifically, different brightnesses. Ten minerals were selected. These
spectra were used to generate spectral samples comprising 424 channels in the spectral
range 383 − 2496 nm, with a spectral resolution ranging from 2 − 10 nm resolution,
aligned with the characteristics of the spectral measurement device used to obtain
the spectra by the USGS (Figure 3.1a). The data was simulated using the principle
that the radiance at the sensor L is the product of the material reflectance ρ and the
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Figure 3.1 – Simulated USGS dataset.

terrestrial sunlight Esun(λ)τ(λ) with some additive noise:

L(λ) = I(λ)ρ(λ)Esun(λ)τ(λ) + noise, (3.1)

where I is a scale factor controlling the brightness. The terrestrial sunlight was gen-
erated using an atmospheric modeller (Gueymard, 2001). Spectra from a calibration
panel were also simulated. These data are used to normalise the simulated radiance
data to reflectance.

Using this approach, bright and dark datasets were generated. The brightness scaling
factors used were 1 and 0.3, producing four datasets in total (datasets with reflectance
and DN units for each brightness scaling factor). Each dataset consisted of 10,000
spectral samples (1000 samples for each of the ten classes). The simulated data is
equivalent to having two panels with ten materials each and pointing one directly at
the sun (scaling factor of 1) and pointing one such that its normal makes an angle of
cos−1 0.3 radians (approximately 72 degrees) with the line of sight between the panel
and the sun. This simulation does not factor in the variable sky exposure that would
occur in the real world. Within one of the simulated datasets (i.e. one panel), there is
no variation in illumination. Across the two simulated datasets, there is variability in
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(a) A colour composite image of the
Xrite dataset under 6500K lighting.
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(b) Xrite class spectra.

Figure 3.2 – The X-rite dataset.

the brightness due to differences in the geometric orientation (Figure 3.1b). In the real
world, this scenario could occur by sensing two identical surfaces that have different
orientations or by sensing a single surface twice, with the sun changing position and
illuminating it from a different angle.

3.1.3 Dataset 2: X-rite panel

The X-rite ColorChecker is an array of 24 different coloured squares. They reflect
light in the visible spectrum in the same way as many naturally coloured objects.
VNIR images of an X-rite colorChecker were captured indoors (Figure 3.2a) with
the SPECIM sensor with the unknown model name (Color-temp). Each image was
captured under a different light source, with five different light temperatures used.
These were 2500K, 3000K, 3500K, 4300K and 6500K. At different temperatures, both
the colour and the brightness of the illumination source varies. For a single image,
the geometry is very uniform and there is little cause for variation in the illumination.
The image consisted of 697 × 1312 pixels, with the spectra having DN units. The
intensity and shape of the spectrum of each colour changes as the temperature of the
illumination source varies (Figure 3.2b). There is an overall shift in the absorption



3.1 Datasets 54

(a) A colour composite image of the Great Hall VNIR dataset.
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(b) Great Hall (VNIR) mean class spec-
tra.

Figure 3.3 – Great Hall (VNIR) dataset.

features towards the shorter wavelengths as the temperature rises.

3.1.4 Dataset 3: Great Hall (VNIR)

The VNIR scan of the Great Hall of the University of Sydney (Figure 3.3a) was cap-
tured with a field-based Specim AISA Eagle sensor in the year 2013 (Ramakrishnan,
2016). The image consists of 320×2010 pixels and 132 spectral channels with a spec-
tral resolution of 4 nm. The outdoor scene consists predominantly of a structured
urban environment, with different material classes including roof, sandstone build-
ing, grass, path, tree and sky. The roof and path classes are very similar spectrally
(Figure 3.3b), however, the other classes are quite discriminable, including the tree
and grass. Data were collected under clear-sky conditions, with shadows being evenly
distributed across the structure.

A calibration panel of known reflectance is attached to a tripod and placed in the
scene so that the incident illumination can be measured. The apparent reflectance
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(a) A greyscale image (intensity at wavelength 1633 nm) of the Great Hall SWIR dataset.
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(b) Great Hall (SWIR) mean class spectra of
pixels in sunlight.
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dataset.

Figure 3.4 – Great Hall (SWIR) dataset.

across the image was calculated using flat-field correction.

3.1.5 Dataset 4: Great Hall (SWIR)

The SWIR hyperspectral scan of the Great Hall of the University of Sydney (Fig-
ure 3.4a) was captured with a field-based Specim AISA Hawk sensor in the year 2014
(Ramakrishnan et al., 2015). It is similar to the VNIR scan in that has the same
scene constituents (Figure 3.4b), however, the scan was taken on a different day and
also from a slightly different viewing angle. The image comprises 293 × 1306 pixels
with 238 spectral channels at a spectral resolution of 6 nm.

Data were captured under partly cloudy skies. Most of the scene is exposed to high
intensity illumination, however, large shadows exist, predominately over the building
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(a) 11:30 (b) 13:30

Figure 3.5 – Colour composite images from the mining timelapse dataset. The blue line
indicates the rough geological boundary, identified by an expert, which separates
the martite ore from the shale. The red square highlights a region where shadows
have become more prominent since the previous image in the timelapse.

(a) 11:30 (b) 13:30

Figure 3.6 – Images captured with an RGB camera of the mine at the times of scan-
ning.

and roof regions in the image due to self-occlusion of terrestrial sunlight (the shadows
are less evenly distributed than in the VNIR image). There is a distinct change in
the shape and intensity of the spectra due to these shadows (Figure 3.4c).

The scene contains a calibration panel which is used to convert the data from DN
to apparent reflectance, using flat-field correction. The dataset contains noise due
to atmospheric water absorption bands located at 1110-1155, 1338-1514 and 1790-
2078 nm, but these bands were not removed. The image is captured from a sensing
platform roughly 85 m from the Great Hall.

3.1.6 Dataset 5: Mining timelapse

A timelapse consisting of two VNIR images (Figures 3.5 and 3.6) (Murphy et al.,
2012) was acquired of a mine face in Western Australia from a field-based SPECIM
AISA Eagle sensor in the year 2009. Each image has 289 × 1443 pixels with 220
channels and a spectral resolution of 2 nm. The sensor was approximately 30 m from
the mine face and so the spatial resolution is approximately 6 cm per image pixel.
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Figure 3.7 – Mining timelapse mean class spectra.

Data were collected under clear-sky conditions. The first image was captured at 11:30
and the second at 13:30. A small shadow in the 11:30 image becomes larger in the
13:30 image as the sun changes position in the sky and more of the mine face be-
comes occluded by overhanging rocks. The scene exemplifies a natural, unstructured
environment. Two types of ore are present; Martite and Shale (Figure 3.7), which
are divided by a boundary identified by a geologist. There are actually two types of
Shale that can be found in the image, although there is no ground truth information
for how these classes are spatially separated. A calibration panel of known reflectance
is placed in the scene for normalising the pixel spectra to apparent reflectance. The
images are spatially registered to correct any misalignments.

3.1.7 Dataset 6: Mining

The mining image (Figure 3.8a) (Murphy et al., 2014a) consists of a single field-
based SWIR scan with a field-based SPECIM AISA Hawk sensor of a mine face (a
different to the one in the mining timelapse dataset) captured in 2011. The image
has 320×2015 pixels with 235 channels at a spectral resolution of 6 nm. The distance
from the sensor to the mine face is about 10 m, hence the spatial resolution is about
0.46 cm per image pixel.

The mine face has an unstructured geometry and large amounts of variation in bright-
ness as well as areas of occlusion from terrestrial sunlight. The five geological classes
are nontronite, kaolinite (disordered), light shale, white shale and whaleback shale,
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(a) A greyscale image (intensity at wavelength 1633 nm) of the mining dataset.
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(b) Mean class spectra.

Figure 3.8 – Mining dataset.

with labels provided by Chlingaryan et al. (2016). Because the shale classes are spec-
trally similar (Figure 3.8b), the optimal distinguishing features in the spectrum are
very hard to detect which makes classification a complex task. As with the mining
timelapse, a calibration panel of known reflectance is placed in the scene so that the
scene was converted to relative reflectance. The noisy water absorption bands were
not removed.

3.1.8 Dataset 7: Gualtar steps

The VIS image of the steps in Gualtar (Figure 3.9a) (Nascimento et al., 2016) has
1024×1344 pixels, captured with the custom-built hyperspectral imaging system with
33 channels and a spectral resolution of 10 nm. The image was captured in the year
2003 from a field-based platform (at a distance of approximately 50 m away), so the
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(a) A colour composite image of the gualtar steps
dataset.
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(b) Gualtar steps mean class spectra of pixels
in sunlight.
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(c) Comparison of mean spectra in sunlight
and in shadow for the Gualtar steps.

Figure 3.9 – Gualtar steps dataset.

spatial resolution was high.

The image was captured at midday and consequently there is a large shadow that
covers roughly half of the image. The scene constitutes some brick steps with cement
in between, grass and a white-painted wall (Figure 3.9b). Part of each class is in the
sun and part is in the shadow (Figure 3.9c). In the sunlit region of the image, the brick
steps also change orientation slightly with respect to the sun, thus, there is a small
difference in the brightness of the light illuminating them. There is a small neutral
probe sphere embedded in the scene which is used to convert the image spectra to
relative reflectance.
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(a) Gualtar timelapse mean class spectra of
pixels in sunlight.
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(b) Comparison of mean spectra in sunlight
and in shadow in the 11:44 image.

Figure 3.10 – Gualtar timelapse dataset.

3.1.9 Dataset 8: Gualtar timelapse

A timelapse consisting of nine VIS images is captured of a building in Gualtar in 2003
(Figure 3.11) (Foster et al., 2015). Each image in the timelapse consists of 1024×1344
pixels with 33 channels having a spectral resolution of 10 nm. Just like the Gualtar
steps, the image is captured with the custom-built hyperspectral imaging system
mounted on a field-based platform (roughly 50 m away), so the spatial resolution is
very high.

The images are captured at approximately one hour intervals starting from 11:45.
There are natural changes in the illumination of the scene, with the most prominent
change being the movement of a shadow over the building (Figure 3.10b). By 16:45
the building is completely in shadow. As with the Gualtar steps image, a neutral
probe sphere in the image is used to convert the data to apparent reflectance.

3.1.10 Dataset 9: Pavia University

An aerial VNIR image (Figure 3.12a) is acquired over Pavia University using the
ROSIS-3 sensor, consisting of 610×340 pixels with 103 spectral channels. The spectral
resolution is 6 nm and the spatial resolution is approximately 1.3 m. The spectra in
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(a) 11:44 (b) 12:45 (c) 13:46

(d) 14:47 (e) 15:45 (f) 16:45

(g) 17:46 (h) 18:53 (i) 19:44

Figure 3.11 – Colour composite images from the gualtar timelapse dataset.
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(a) A colour composite image of
the Pavia Uni dataset.
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(b) Pavia Uni class spectra.

Figure 3.12 – Pavia Uni dataset.

the image have been normalised to reflectance. The scene consists of nine classes,
encompassing both urban and natural vegetation classes. Some of the classes are
spectrally similar (Figure 3.12b). The Pavia University dataset has been provided by
Professor Paolo Gamba, Pavia University.

3.1.11 Dataset 10: Kennedy Space Centre

The Kennedy space station (KSC) image (Figure 3.13a) was acquired by the AVIRIS
VNIR/SWIR sensor in 1996. The image has 512×614 pixels and 176 spectral channels
(after water absorption bands are removed). The spectral and spatial resolution
are 10 nm and 18 m respectively. The 13 classes are a mix of urban and natural
(Figure 3.13b). The data are normalised to reflectance.

3.1.12 Dataset 11: Indian Pines

Indian Pines (Landgrebe and Biehl, 1992) is an aerial image (Figure 3.14a) of land
that is part agriculture and part forest, captured in 1992. The 145× 145 pixel image
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(a) A colour composite image of
the KSC dataset.
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(b) KSC class spectra.

Figure 3.13 – KSC dataset.

(a) A colour composite image of the In-
dian Pines dataset.
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(b) Indian Pines class spectra.

Figure 3.14 – Indian Pines dataset.
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(a) A colour compos-
ite image of the Salinas

dataset.
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(b) Salinas class spectra.

Figure 3.15 – Salinas dataset.

is captured with the AVIRIS sensor and has a spatial resolution of 20 m. There are
200 channels once the water absorption bands are removed. The spatial resolution
is 20 m and the spectral resolution is 10 nm. The image spectra are normalised to
reflectance. Because the classes are all related to vegetation, the spectra all have
similar absorption features (Figure 3.12a).

3.1.13 Dataset 12: Salinas

Similar to the Indian Pines dataset, the Salinas dataset is an aerial image of agri-
cultural land captured with the AVIRIS sensor (Figure 3.15a). There are 145 × 145
pixels with a spatial resolution of 3.7 m and 204 channels once the water absorption
bands have been removed. The spectral resolution is 10 nm (Figure 3.15b).
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3.2 Metrics

The following describes the evaluation metrics used in this thesis.

3.2.1 Fisher’s discriminant ratio

Fisher’s discriminant ratio is a measure of how separable classes are in a feature
space. When transforming data to a lower dimensional feature space, it is important
that classes retain, or if possible improve, their separability in that space. Fisher’s
discriminant ratio (Theodoridis and Koutroumbas, 1998) is used in feature selection
algorithms as a class separability criterion (Lin et al., 2004; Wang et al., 2011)

The measure is calculated for a pair of classes and takes the ratio of the between-class
scatter and the within-class scatter. A pair of classes has a high score if their means
are far apart and points within each class are close to other points in the same class,
indicating good separability. For p dimensional data points from class A and class
B, with respective means of µA and µB over all points in each class, the Fisher’s
discriminant ratio is calculated as:

J(A,B) = ‖µA − µB‖
2
2

S2
A + S2

B

, (3.2)

where J is the ratio, ‖·‖2 is the L2 norm, and S2
i is the within-class scatter of class i,

given by:
S2
i = 1

Ni

∑
n∈Ni

‖xn − µi‖2
2, (3.3)

where xn is a point in class i, which has Ni points in total.

An important property of this measure is that it is invariant to the scale of the data
points. This allows feature spaces found using different approaches to be compared
consistently. It is also important that the measure is invariant to the number of
dimensions p so that the data with the original dimensionality can be compared to
data with reduced dimensionality.
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For multi-class problems, the mean of the Fisher’s discriminant ratio for all possible
pairs of classes can be found.

3.2.2 Adjusted rand index

The adjusted rand index (ARI) is an evaluation metric for clustering (Hubert and
Arabie, 1985; Rand, 1971). It measures the similarity of two data clusterings. If one
of those data clustering is the actual class labels, then the ARI can be considered the
accuracy of the clustering solution. This measure is useful as an indirect measure of
how separable classes are in a feature space (Yeung and Ruzzo, 2001). If the classes
are well separated, then they should be easy to cluster and the ARI should be high.

If ni and nj are the number of points in class ui and cluster vj respectively and nij
is the number of points that are in both class ui and cluster vj, then the ARI is
calculated as:

ARI =

∑
ij

(
nij

2

)
−
[∑
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(
ni

2
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(
nj
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2

) . (3.4)

This adjustment of the rand index makes it more likely that random label assignments
will get a value close to zero. The best clustering score has an ARI of 1, and the
worst clustering score (equivalent to randomly allocating cluster association) has an
adjusted rand index of 0.

3.2.3 Peak signal-to-noise ratio

In an image processing context, the peak signal-to-noise ratio (PSNR) is used to
compute how similar two images, given one of the images has been corrupted in some
way (eg. it has been compressed, reconstructed or noise has been added). Hence, it
is measuring the quality of the corrupted image with respect to the original image
(Hore and Ziou, 2010; Huynh-Thu and Ghanbari, 2008). This measure can be used
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to evaluate how invariant a spectral feature mapping is to the illumination conditions
by computing how similar images captured at different times are when represented by
the feature (Xie et al., 2011). For example, if a feature is not illumination invariant,
then images represented by the feature captured at times where the illumination
conditions are different will not be similar, and the PSNR will be low.

The PSNR, in decibels, is calculated as:

PSNR(Im1, Im2) = 10× log10
peakval2

MSE(Im1, Im2) , (3.5)

where the mean squared error (MSE) between the two images Im1 and Im2 with R
rows and C columns is:

MSE(Im1, Im2) = 1
RC

∑
i∈R

∑
j∈C

[Im1(i, j)− Im2(i, j)]2. (3.6)

The higher the PSNR is, the more similar the two images are.

3.2.4 Percentage change in classification label

Given two classified images, the percentage of pixels in the first image that had a
different classification label in the second image is calculated as:

%change = 100× Nchanged

Ntotal

, (3.7)

where Nchanged is the number of pixels in first image that changed classification label
and Ntotal is the total number of pixels in one image.

This measure can be used to quantify the impact of variable illumination conditions
on classification performance, by looking at the proportion of pixels that change label
between images captured at different times (Schneider et al., 2011). It requires a
timelapse of spatially registered images.
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3.2.5 F1 classification score

Also known as the F-score, the F1 classification score is a measure of binary classi-
fication accuracy. It is the harmonic mean of precision and recall (Van Rijsbergen,
1979):

F1score = 2× precision ∗ recall
precision+ recall

, (3.8)

where precision is the fraction of the instances retrieved by the classifier that are
relevant, and the recall is the fraction of relevant instances that are retrieved by the
classifier. If relevant instances are considered "true" and none-relevant instances con-
sidered "false", and if instances retrieved by the classifier are considered "positive" and
other instances considered "negative", then the precision and recall can be calculated
as:

precision = TP

TP + FP
, (3.9)

recall = TP

TP + FN
, (3.10)

where TP is the number of true positives, FP is the number of false positives and
FN is the number of false negatives. An F1 score of 1 indicates the best accuracy,
and a score of 0 indicates the worst accuracy.

For a multi-class classification problem, the classification of each class is individually
considered as a binary classification task, and the F1 score is determined for that
class. Then the mean of the F1 scores for all classes is calculated.

3.2.6 Number of epochs

The number of epochs that the optimisation of a neural network requires to reach
within 1% of convergence is a good indication of the training time. Whilst a direct
measurement of the training time is more intuitive to interpret, it is highly dependent
on the computer processor and software packages used. This makes the result non-
generic. If the training time is measured in terms of epochs, then an estimate of the
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training time can be calculated for any processor and package if the time taken for
one epoch with that processor is known.



Chapter 4

Unsupervised Illumination

Invariant Representation of

Hyperspectral Data

This chapter proposes a method for unsupervised feature learning/dimensionality re-
duction of hyperspectral data, such that the low dimensional feature representation
is robust to the variability caused by the scene geometry and illumination conditions
(e.g. shadows) whilst maintaining the high class discriminability of the full spec-
trum. Chapter 1 motivated the importance of having robust feature representations
of hyperspectral images. Section 2.4.1 described many of the current approaches to
compensating for the variability in spectra due to the influence of the atmosphere and
geometry on illumination. It remains a largely unsolved problem with most existing
solutions either failing to account for the influence of geometry or requiring a priori
knowledge, labelled data or the use of additional sensor modalities such as LiDAR.
Coupled with the fact that additional sensor modalities and a priori knowledge are
not always available, there exists a need for the development of unsupervised algo-
rithms to process hyperspectral images as there is often only a limited amount of
labelled data available due to the large manual effort needed to annotate on a per-
pixel scale (see Chapter 1). Many labelled samples would be required to capture the
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large amount of variability in the data due to the environmental factors (i.e. scene
illumination).

The methods proposed in this chapter integrate domain knowledge into an autoen-
coder - an unsupervised deep learning framework. The autoencoder has the advan-
tage of reducing the high dimensionality of the hyperspectral data, where correlation
results in large amounts of redundancy in the data (Demarchi et al., 2014). In the pro-
cess of reducing the dimensionality of the data, the autoencoder also extracts features
with greater representative power than the raw intensity or reflectance. The features
learnt by the final autoencoder proposed in this chapter can be used to discriminate
between different classes and are also less sensitive to the influence of the variable
geometry of the scene on the incident illumination. Currently, both the illumination
variability in the environment and the high dimensionality of hyperspectral images
limit the usefulness of these sensors in outdoor robotics, computer vision and remote
sensing applications (Ramakrishnan et al., 2015; Schneider et al., 2011). Many high-
level algorithms such as those that do mapping/classification, target detection, object
detection, segmentation and change detection would benefit from low-dimensional, il-
lumination invariant representations of hyperspectral images.

The advantages of the unsupervised approaches proposed in this chapter over other
techniques in the literature (Section 2.4) are that they require no labelled training
data, no additional sensors and no a priori knowledge of location, season or atmo-
spheric conditions. These approaches also do not make the same assumptions as
many of the computer vision approaches, in particular, the Planckian illumination
assumption, which is less likely to hold true in the context of hyperspectral imaging
(as explained in Section 2.4.1). Instead, they rely on the learning power of the neural
networks with incorporated domain knowledge.

In Section 4.1, a set of autoencoders are proposed for finding low dimensional feature
representations of hyperspectral data. These autoencoders draw from remote sensing
techniques to learn a superior representation. They are also designed to be insensitive
to changes in brightness. In Section 4.2, the relit spectral angle-stacked autoencoder
(RSA-SAE) is proposed which extends the hyperspectral autoencoder to make it
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invariant to shadows. Experimental results validating the proposed algorithms are
presented in Section 4.3 and discussed in Section 4.4 before conclusions are made in
Section 4.5.

4.1 Hyperspectral Stacked Autoencoders

Autoencoders are a specific type of deep learning algorithm capable of reducing the
dimensionality of data with multiple layers of non-linear functions that can learn a
mapping from a high dimensional space to a low dimensional feature space. A typ-
ical autoencoder uses a reconstruction cost function that is based on the Euclidean
distance (Section 2.3.2). In the remote sensing literature, alternative measures to the
Euclidean distance are used for comparing spectra to one another. These measures
are more suited to spectral data because, unlike the Euclidean distance, they are pre-
dominantly dependent on the shape of the spectra rather than their magnitude. The
novel autoencoders proposed in this section use reconstruction cost functions based
on spectral similarity measures used in the remote sensing literature instead of the
standard Euclidean distance. These are the spectral angle (Yuhas et al., 1992), the
cosine of the spectral angle and the spectral information divergence (SID) (Chang,
2000). Each of these has been incorporated into the backpropagation learning al-
gorithm for the autoencoder. Because of the dependence of the similarity measures
on spectral shape, it is expected that these autoencoders will learn a better low di-
mensional feature representation than those that use the Euclidean distance. These
similarity measures also ostensibly have brightness invariant properties which make
the representations learnt by the proposed autoencoders invariant to the brightness.
Spectra reflected from surfaces with different orientations with respect to the position
of the sun are similar in shape. Thus, it is also expected that the autoencoders that
use the remote sensing similarity measures will out-perform those using the Euclidean
distance in scenarios with highly variable scene geometry.
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4.1.1 Cosine Spectral Angle Stacked Autoencoder

The spectral angle is a similarity measure between two vectors. The angle between
vectors is indicative of their shape instead of their magnitude, making it a useful
measure for applications utilising spectral data. This measure is also insensitive to
differences in brightness, which can be interpreted as changes in the magnitude of
the spectral vectors, rather than changes in the direction of the vectors in the multi-
dimensional space. Hence, the angle remains the same. By using a reconstruction
cost function for an autoencoder based on the spectral angle, the features learnt are
insensitive to variations in the brightness of spectra.

The spectral angle θSA is the angular distance between two spectral vectors, A and
B of dimensionality T , given by:

θSA = cos−1
∑T
t=1 AtBt

|A||B|
. (4.1)

For the first novel autoencoder, the cosine of the spectral angle is incorporated into
the reconstruction cost function. That is, the reconstruction cost is calculated as
the cosine of the spectral angle between the reconstructed spectrum output by the
encoder-decoder network and the spectrum input into the network. As the cosine of
the angle gets larger for smaller distances, it must be subtracted from one such that
smaller distances, which are desired, correspond to minimising the overall cost. For
a single observation, the reconstruction cost is:

ECSA(f(z(L)),y) = 1−
∑K
k=1 f(z(L)

k )yk
|f(z(L))||y| , (4.2)

where K is the original dimensionality (i.e. number of bands), L is the index of the
output layer, yk is an element of the target data y which is set to equal the input
data x, f is the activation function, f(z(L)

k ) is an element of the reconstructed input
f(z(L)) and:

z(l) = W(l−1)a(l−1) + b(l−1), (4.3)

a(l) = f(z(l)), (4.4)
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a(1) = x (4.5)

for l = L,L− 1, L− 2, L− 3, ..., 2, with learnable parameters W and b.

The reconstruction cost function for all observations, including a regularization term
is:

E(W,b) = 1
M

M∑
m=1

ECSA(W,b; y(m)) + λ

2

I,J,L−1∑
i,j,l=1

(W (l)
ji )2, (4.6)

where M is the number of observations, λ is the regularization parameter, and I

and J are the number of units in layers l and l + 1 respectively. The regularization
term prevents the parameters from getting too large whereby overfitting occurs. The
partial derivatives for backpropagation are:

∂

∂W
(l)
ji

E(W,b) = 1
M

M∑
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∂
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(l)
ji

ECSA(W,b; y(m)) + λW
(l)
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∂
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(l)
j

ECSA(W,b; y(m)), (4.8)

where for a single observation m, when l = 1:

∂

∂W
(1)
ji

ECSA(W,b; y(m)) = δ
(2)
j xi. (4.9)

and when l = 2, 3, ..., L− 1:

∂

∂W
(l)
ji

ECSA(W,b; y(m)) = δ
(l+1)
j f(z(l)

i ). (4.10)

∂

∂b
(l)
j

ECSA(W,b; y(m)) = δ
(l+1)
j , (4.11)

for l = 1, 2, 3, ..., L− 1. The value of δ is dependent on the layer number l. For l = L,

δ
(L)
k = f ′(z(L)

k )
|f(z(L))||y|

[
(f(z(L)) · y)f(z(L)

k )
|f(z(L))|2 − yk

]
, (4.12)
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and for l = L− 1, L− 2, L− 3, ..., 2,

δ
(l)
i =

J∑
j=1

(δ(l+1)
j W

(l)
ji )f ′(z(l)

i ). (4.13)

The parameter update equations for gradient descent optimisation are:

W
(l)
ji := W

(l)
ji − α

∂

∂W
(l)
ji

E(W,b), (4.14)

b
(l)
j := b

(l)
j − α

∂

∂b
(l)
j

E(W,b), (4.15)

where α is the learning rate. This approach is called the cosine spectral angle-stacked
autoencoder (CSA-SAE), and its derivation is in Appendix A.

4.1.2 Spectral Angle Stacked Autoencoder

The spectral angle itself is also proposed as a novel reconstruction cost function. Like
the cosine of the spectral angle, it is a similarity measure between two vectors and is
insensitive to differences in brightness. In comparison to its cosine counterpart, the
spectral angle requires an additional operation to calculate. It is, however, sometimes
preferred. The spectral angle gets smaller when spectra are more similar, so it does
not need to be subtracted from one when calculating the cost. The spectral angle
reconstruction cost function is calculated as:

ESA(f(z(L)),y) = cos−1
∑K
k=1 f(z(L)

k )yk
|f(z(L))||y| , (4.16)

and the reconstruction cost function for all observations, including a regularization
term is:

E(W,b) = 1
M

M∑
m=1

ESA(W,b; y(m)) + λ

2

I,J,L−1∑
i,j,l=1

(W (l)
ji )2. (4.17)

The partial derivatives for backpropagation are the same as in 4.7 and 4.8, however
the similarity cost is the ESA instead of the ECSA, and the calculation of δ for l = L
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is now:

δ
(L)
k = 1√√√√1−

[
(f(z(L)) · y)
|f(z(L))||y|

]2

f ′(z(L)
k )

|f(z(L))||y|

[
(f(z(L)) · y)f(z(L)

k )
|f(z(L))|2 − yk

]
, (4.18)

with 4.13 still applying for l = L − 1, L − 2, L − 3, ..., 2,. The parameter update
equations are as in 4.14 and 4.15. This approach is called the spectral angle-stacked
autoencoder (SA-SAE), and its derivation is in Appendix B.

4.1.3 Spectral Information Divergence Stacked Autoencoder

The SID is an information-theoretic measure which measures the probabilistic dis-
crepancy between two spectra in order to calculate their similarity. Experiments have
shown that it can preserve spectral properties and characterise spectral variability
more effectively than the spectral angle (Chang, 2000).

The SID between two spectra A and B is given by:

SID(A,B) =
N∑
n=1

pnlog
pn
qn

+
N∑
n=1

qnlog
qn
pn

(4.19)

where N is the length of the vectors p and q, and

p = A∑T
t=1 At

, (4.20)

q = B∑T
t=1 Bt

. (4.21)

To incorporate the SID into the autoencoder cost function, 4.19 is first simplified to:

SID(A,B) =
N∑
n=1

(pn − qn)(log(pn)− log(qn)). (4.22)

Then, by making A the reconstructed spectrum output by the network and B the
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spectrum input into the network, the relevant terms are substituted into 4.22:

ESID(f(z(L)),y) =
K∑
k=1

[
f(z(L)

k )∑K
d=1 f(z(L)

d )
− yk∑K

d=1 yd

]
[logf(z(L)

k )

− log
K∑
d=1

f(z(L)
d )− log(yk) + log

K∑
d=1

yd], (4.23)

and the reconstruction cost function for all observations, including a regularization
term is:

E(W,b) = 1
M

M∑
m=1

ESID(W,b; y(m)) + λ

2

I,J,L−1∑
i,j,l=1

(W (l)
ji )2. (4.24)

Just like the autoencoder based on the spectral angle, the partial derivatives for
backpropagation are the same as in 4.7 and 4.8, but with ESID instead of ECSA and
δ for l = L calculated differently:

δ
(L)
k = − f ′(z(L)

k )∑K
d=1 f(z(L)

d )

[
qk
pk
− logpk

qk
− 1 +

K∑
d=1

(pd − qd + pdlog
pd
qd

)
]
, (4.25)

where
p = f(z(L))∑K

c=1 f(z(L)
c )

, (4.26)

q = y∑K
c=1 yc

, (4.27)

with 4.13 still applying for l = L−1, L−2, L−3, ..., 2. The parameter update equations
are once again as in 4.14 and 4.15. This approach is called the spectral information
divergence-stacked autoencoder (SID-SAE), and its derivation is in Appendix C.

4.2 Relit Spectral Angle Stacked Autoencoder

Variability in illumination can lead to poor performance by high-level algorithms such
as clustering, classification or segmentation. Compensating for this variability is still
a largely unsolved problem (see Section 2.4.1). The dimensionality reduction/feature
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extraction methods proposed in Section 4.1 naturally have some illumination invari-
ance properties relating to the similarity measures used to derive them. For instance,
the spectral angle measure is insensitive to differences in intensity between pixels.
When used as the reconstruction cost function of an SAE, the code layer is learnt
so that the shape of the reflectance vector is reconstructed instead of its magnitude.
Semantically similar pixels that are illuminated with different intensities, will have
similarly shaped reflectance vectors, and thus are more likely to appear similar in the
learnt code layer. This is similarly the case with the SID-based autoencoder, where
differences in brightness are measured as variances in a probability distribution.

The limitation of these methods are their failure to similarly represent pixels belonging
to the same material that are within sunlit and shadowed regions, i.e. those that
are illuminated predominantly by diffuse skylight and not by sunlight. Under these
conditions, the shape of the spectral curve and its magnitude changes because its
wavelength-intensity distribution changes. This results in the shadowed pixels taking
on different values in the code layer from their sunlit equivalents (e.g. the spectral
angle is insensitive to a constant multiplier across all bands, but not changes in the
wavelength-intensity distribution). Shadows can occur for reasons related to scene
geometry, such as a region being occluded from direct sunlight by another part of
the scene, or because the normal vector of a surface is at a 90 degree angle to the
line-of-sight with the sun. Shadows can also occur due to variable and patchy cloud
cover in the sky occluding the path of light.

By incorporating an outdoor illumination model into the autoencoder framework, the
approach proposed in this section aims to overcome the inability of the autoencoders
described in (Section 4.1) to encode identical materials in sunlit and shadowed regions
similarly. This novel SAE is called the RSA-SAE. The method combines and leverages
a physics-based model from a multi-modal technique with a radiative transfer model
from the remote-sensing literature, within the unsupervised learning framework of a
DAE. Instead of relying on the assumption of Planckian illumination, the proposed
approach differs to those based on the Lambertian model for photodetector response
(2.24) as it learns the illumination invariant mapping from the data using the DAE’s
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multiple layers of non-linear functions.

The outcome of the approach is a mapping, learnt from the image spectra, to a low-
dimensional, shadow invariant encoding, producing an illumination invariant repre-
sentation of the pixels in the hyperspectral image. The method does not need any
labels for the training data nor, a priori knowledge of the scene, such as the scene
geometry or atmospheric conditions. Therefore, no data from additional sensors are
required. Once trained on spectra from a given scene, the learnt mapping can also
be used on similar scenes acquired under different lighting conditions (e.g. captured
at different times of the day). The spectra will be consistently mapped to an illu-
mination invariant encoding. The encoded data can be used for high-level pixel-wise
applications such as classification and is particularly useful in scenarios where there
is limited or no labelled training data available for shadowed regions to train the
supervised models.

4.2.1 Overview

Inspired by both the DAE and data augmentation, the RSA-SAE learns a shadow-
invariant encoder-decoder network. The encoder phase of the RSA-SAE aims to map
identical materials in shadowed and sunlit regions to the same low dimensional repre-
sentation, as shown in Figure 4.1. This is achieved by first obtaining a hyperspectral
image, with each pixel represented either by raw digital numbers or converted to ra-
diance units through radiometric calibration. A sunlit pixel in the image is automati-
cally selected using weighted sampling of the squared image intensity and normalised
to reflectance using flat-field correction with a calibration board of known material
reflectance properties. Of course, this normalisation only correctly removes the effects
of illumination for pixels with the same or similar orientation as the calibration panel
and under precisely the same conditions of illumination (i.e. not pixels in shadow).
The original data is then relit such that it is illuminated by diffuse skylight only
and normalised to reflectance using the same flat-field measurement of the illumina-
tion as before. The normalised relit spectra are therefore a representation of what
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Figure 4.1 – Framework for training the RSA-SAE network. The patches of colour
indicate the illumination colour, with blue and yellow representing skylight and
sunlight respectively. When the square is completely blue, it indicates that the
pixel is illuminated by skylight only and hence is in shadow, with the different
shades of blue representing different atmospheric conditions. By minimising the
spectral angle cost function ESA, the network is trained to reconstruct the original
sunlit spectra (the green bar) from the input spectra after it is relit to be in shadow
using one of the candidate atmospheres ωn and the relighting equation r. After
the network is trained, the encoder is expected to map real shadowed and sunlit
spectra from the same class to the same values in the code layer, which is the new
low dimensional representation of the data.

the reflectance of the pixel would be, if it were in a shadowed region in the original
normalised image. The relit reflectance spectra x̃ and original reflectance spectra x

are used as the corrupted and uncorrupted data, respectively, in the RSA-SAE. The
network is trained to reconstruct the uncorrupted spectra in the output layer, from
both uncorrupted and corrupted spectral inputs.

Since the RSA-SAE is being trained to reconstruct the same spectra despite the input
being in shadow or sunlight, it is expected that the hidden layer will be invariant to the
illumination conditions. Hence, the hidden layer is a low dimensional representation
of the data, with the encoder providing an illumination invariant mapping to the
representation.
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4.2.2 Autoencoder Framework

The DAE framework consists of several symmetric, fully connected layers of neurons,
with the input data being altered by a relighting corruption process, and the un-
corrupted data reconstructed in the output layer. The number of neurons used in
each layer is dependent on the dataset. The number of neurons in the first and last
layer is always equal to the number of bands in the data and the number of neurons
in the code layer is the number of desired dimensions. The number of neurons in
the intermittent layers are chosen such that each layer gets smaller from the input
to the code layer and then symmetrically larger from the code layer to the output
layer. Data are therefore being progressively forced through a bottleneck to learn the
most important information required to reconstruct the data. There is a sigmoidal
activation function associated with each neuron. This choice of activation function is
justified in the next section.

4.2.3 Training

As is the case with standard SAEs, training a network with many layers using back-
propagation often results in poor solutions (Hinton and Salakhutdinov, 2006). Hence,
an initial solution is found using a pre-training step (Bengio et al., 2007) whereby a set
of single-layered autoencoders are first trained on the data in a greedy fashion without
any relighting corruption, and by using the squared error reconstruction cost function
(2.14). The network parameters learnt in the layerwise pre-training are then used to
initialise the full network for training using the RSA-SAE method described above.
The RSA-SAE training is effectively an end-to-end fine-tuning step. The RSA-SAE
uses the spectral angle reconstruction cost function (4.17) so that that structure in
the shape of the reflectance spectra can be learnt rather than the brightness, with:

a(1) = x̃ = r(x), (4.28)

where r is the relighting equation.
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The pre-training of the single-layered autoencoders is done using spectra from the
entire hyperspectral image. Since fine-tuning is performed using the relit spectra
as well, the dataset increases in size by the number of augmentations used. Hence,
training time increases, even though the bulk of the learning has already been done in
the pre-training step. Since the RSA-SAE fine-tuning of the network is only training
the autoencoder to encode spectra from the same class under different illuminations
similarly, a sample of the spectra is used. To do this, spectra from the hyperspectral
image are spatially sampled using weighted sampling of the squared intensity of the
image pixels. Besides reducing the number of points for training, this has the ad-
ditional benefit of ensuring most of the points are in the sun (as it is sunlit points
which are relit to shadow). Although, preliminary tests indicate it does not hinder
the performance if some of the sampled points are in shadow.

A property of the spectral angle reconstruction cost is that it is undefined for |f(z(L))| =
0. Hence, an activation function f must be chosen that does not include zero in its
range. This removes the chance of having an undefined reconstruction cost. A sig-
moid function is chosen as the activation function because it is bound by a horizontal
asymptote at zero such that its range is 0 < f(x) < 1. It is therefore impossible
for |f(z(L))| to equal zero, which is not the case if functions such as ReLU and the
hyperbolic tangent are used.

4.2.4 Spectral Relighting

The spectral relighting augmentation used by the RSA-SAE is based on the outdoor
illumination model of equation 2.2. In Ramakrishnan et al. (2015), this model was
used to derive a relighting method, where entire images were relit using a common
illuminant. In order to relight the radiance from a region (A), to have diffuse skylight
as its illuminant, the original spectra LA is multiplied by a wavelength dependent
scaling factor given by equation 2.3.

The above process ensures all of the spectra in the image appeared as though they were
under constant illumination. For the RSA-SAE, radiometrically normalised spectra
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are relit using equation 2.3 to have a diffuse skylight illuminant, as this emulates what
they would look like under shadow. This is the corruption process which the DAE
learns to reverse by reconstructing the spectra to be illuminated by sunlight in the
output layer of the autoencoder.

The relighting equation (2.3) requires knowledge of the atmospheric parameters,
namely the terrestrial sunlight-diffuse skylight ratio Esun(λ)τ(λ)

Esky(λ) , and the scenes ge-
ometric parameters, the visibility, sun angle and sky factor. This is to accurately
emulate the illumination in the scene of interest. In Ramakrishnan et al. (2015), geo-
metric data obtained from the LiDAR could be used to easily determine the visibility,
sun angle and sky factor. The terrestrial sunlight-diffuse skylight ratio is also esti-
mated using the LiDAR by selecting two points across a shadow boundary obtained
from the same material and with the same geometry. Regarding the RSA-SAE, as
no additional sensors such as LiDAR are assumed to be used during data collection,
the atmospheric conditions and scene geometry required for relighting are unknown.

To overcome this lack of a priori knowledge, a large number of candidate atmospheric
models are generated for each spectral sample through the use of the SMARTS radia-
tive transfer model (Gueymard, 2001). The parameters of this model are randomly
sampled for each candidate and the network is trained to reconstruct all of the relight-
ings of a given sunlit reflectance spectrum as the same sunlit reflectance (Figure 4.1).
The intuition behind this approach is that the network captures commonality in the
data and learns to reconstruct sunlit spectra from shadowed spectra regardless of the
prevailing atmospheric composition.

The SMARTS radiative transfer model requires several parameters as input, including
turbidity, carbon dioxide, oxygen, ozone and water vapour. In this scenario, the
only sensor used is the camera, so measurements of the atmospheric composition
are unavailable. To generate a candidate atmosphere, each parameter is uniformly
sampled between the recommended upper and lower bounds typical for that parameter
(Table. 4.1). The model outputs direct normal irradiance (equivalent to Esunτ ) and
the diffuse skylight irradiance (Esky). To corrupt the spectra at the input of the
autoencoder, the candidate illumination source spectra are input into the relighting
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equation (2.3), along with uniformly sampled sun angle and sky factor parameters
(Table. 4.2). The sky factor is sampled between 0 where no sky is visible and 1 where
the full hemisphere is visible. The sun angle is sampled between 0◦ where the surface
is directly facing the sun and 90◦ where the surfaces normal is perpendicular to the
light of sight to the sun. The visibility is set to 0 to so that the relighting is emulating
shadow.

Table 4.1 – The parameters sampled from the SMARTS radiative transfer model
to generate the candidate terrestrial sunlight-diffuse skylight ratios needed for re-
lighting. All parameters are sampled uniformly between the given bounds, with the
lower bound exemplifying pristine conditions and the upper bound exemplifying
severe atmospheric pollution.

Gas lower bound concen-

tration (ppm)

upper bound concen-

tration (ppm)

formaldehyde -0.003 0.007
methane 0 0.4

carbon monoxide -0.1 9.9
nitrous acid -9.9E-4 0.01
nitric acid 0 0.012
nitric oxide 0 0.5

nitrogen dioxide 0 0.2
nitrogen trioxide -4.9E-4 2E-4

ozone -0.007 0.175
sulphur 0 0.2

carbon dioxide 360 380

visibility (turbidity) 0.77 km 764 km
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Table 4.2 – The geometric parameters sampled for the relighting. All parameters are
sampled uniformly between the given bounds.

param lower bound upper bound

sky factor Γ 0 1
sun angle θ 0◦ 90◦

Figure 4.2 summarises how the RSA-SAE is trained and used to find low-dimensional,
illumination invariant representations of hyperspectral images.
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Figure 4.2 – Summary of process for training the RSA-SAE network to find low-
dimensional, illumination invariant representations of hyperspectral images. The
layerwise autoencoder pre-training and RSA-SAE training are described in more
detail in Section 4.2.3 and the spectral relighting augmentation is described in
Section 4.2.4.
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4.3 Experimental Results

The hyperspectral autoencoders proposed in Section 4.1 and the illumination invari-
ant extension proposed in Section 4.2 were evaluated experimentally with a number
of datasets to demonstrate the algorithms ability to generalise to different scenes,
illumination conditions and sensors used to capture the images. The datasets covered
both simple and complex scene geometries.

4.3.1 Network Architecture and Parameters

The network architecture and tunable parameters of the autoencoder were found in
preliminary experiments using a coarse grid search, minimising the reconstruction
error. A common architecture was chosen for the experiments to be described in
Section 4.3.2 that performed well across all of the datasets. This was not necessarily
the best performing architecture for each dataset, however, the purpose of the exper-
iments was to demonstrate improved performance for a given architecture. For the
Great Hall VNIR, KSC, Pavia Uni, Simulated and X-rite datasets, an encoder ar-
chitecture of K-100-50-10 was used with symmetric decoders, where K is the original
dimensionality of the data. The Gualtar steps dataset required a different architec-
ture due to its relatively small number of bands. The architecture for the Gualtar
Steps and Gualtar timelapse datasets was 33-25-10-5, with symmetric decoders. For
the experiments described in Section 4.3.3, the Great Hall SWIR dataset had an ar-
chitecture of 152-50-40-30 and the mineface timelapse dataset had an architecture
of 220-100-50-30. Note, the noisy spectral regions affected by atmospheric water ab-
sorption (1110-1155, 1338-1514 and 1790-2078 nm) were removed from the Great Hall
SWIR dataset before conducting any experiments, reducing the number of bands from
238 to 152. It was found that the number of layers chosen and width of each layer
had a minimal impact on the results as long as the autoencoder layers were wide
enough to have the representation power to reconstruct the spectra from the code
layer and there was multiple hidden layers (e.g. at least two or three (Tadeusiewicz
et al., 2014)). Having a greater width and number of layers in the network than
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what was required added redundancy, but did not degrade the results in preliminary
experiments (as long as there was no overfitting).

For all datasets, the regularization parameter was set to 10−4, the activation function
used was a sigmoid and 1000 epochs of L-BFGS (Lui and Nocedal, 1989) was used
to optimise the networks. As this method is unsupervised, the method is trained
on the same image it is evaluated on (similar to the evaluation of a dimensionality
reduction approach). Hence, for each experiment, the number of data points used to
train the autoencoders from Section 4.3.2 and pre-train the RSA-SAE autoencoder
from Section 4.3.2 was the number of pixels in the image Section 3.1. For some
experiments, a trained encoder was applied to new, unseen images (e.g. experiments
using a timelapse dataset). The dimensionality of the new representation was the
number of hidden units in the deepest code layer (e.g. five dimensions for the Gualtar
Steps dataset).

To fine-tune a network using the RSA-SAE method, weighted sampling of the squared
image intensity was used to reduce the training time. From each image, 5000 pixels
were sampled prior to the data augmentation step. Ten candidate atmospheres were
used to augment the data, creating a training dataset of 50,000 samples. Weighted
sampling was necessary such that the majority of pixels used to train the RSA-SAE
network were illuminated by sunlight. The geometric parameters for each pixel were
individually sampled.

4.3.2 Evaluation of Hyperspectral Stacked Autoencoders

The autoencoders proposed in Section 4.1 (CSA-SAE, SA-SAE and SID-SAE) were
compared with other unsupervised dimensionality reduction/feature extraction meth-
ods based on their ability to discriminate spectra from different classes and similarly
represent spectra from the same class with a reduced number of dimensions. These
included PCA, FA, the sum of squared errors-stacked autoencoder (SSE-SAE) us-
ing the squared error reconstruction cost function (2.14), and the raw data without
any dimensionality reduction. The degree of variability in the scene differed between
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datasets, and the algorithms were evaluated on how robust they were to this vari-
ability. A number of datasets, described in Section 3.1, were used to evaluate the
dimensionality reduction techniques. All of the chosen datasets were used in nor-
malised reflectance form, and the simulated and Great Hall VNIR datasets were also
evaluated in DN form. For all experiments, the number of dimensions was reduced
to five.

The first set of results compared each autoencoders ability to represent different
classes with fewer dimensions. It is desirable that in the new feature space spectra
from different classes are separated and spectra from the same class are closer to-
gether. This was measured with the Fisher’s discriminant ratio (Section 3.2.1). If
classes are well represented in the low dimensional space, then it is expected that
the data will cluster into semantically meaningful groups (rather than groups that
have a similar incident illumination). Hence, as an additional method of evaluation,
the low dimensional data was clustered using k-means (Macqueen, 1967), where the
number of clusters was set to the number of classes in the dataset. The clustering
performance was measured using the ARI (Section 3.2.2).

The Fisher’s ratio results showed that for most datasets, the novel hyperspectral au-
toencoders represented the different classes with fewer dimensions with more between-
class discriminability and within-class uniformity than the other approaches (Fig-
ure 4.3). Clustering performance was also higher when using the hyperspectral au-
toencoders to represent the data (Figure 4.4). The hyperspectral autoencoder based
on the cosine of the spectral angle (CSA-SAE) had the best overall performance.
The results of Figure 4.3 indicated that this method performed well in compari-
son to the other methods on the simulated reflectance and DN datasets, Great Hall
VNIR reflectance and DN datasets and Pavia Uni dataset. The clustering results
of Figure 4.4 supported the Fisher’s ratio results in terms of relative performance,
especially in comparison to the no-dimensionality reduction, PCA and FA results.
The CSA-SAE had ARI scores of above 0.7 for the simulated reflectance dataset,
Great Hall VNIR reflectance and DN datasets. In terms of distance, the SID-SAE
approach performed well on the simulated reflectance and DN datasets and the Pavia
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Figure 4.3 – Comparison of representation power of different dimensionality reduc-
tion/feature extraction methods, for a range of different datasets (horizontal axis).
The methods were evaluated on how well different classes were represented in the
low dimensional space using the Fischer’s discriminant ratio. The higher the score,
the better the representation because spectra from different classes were more sep-
arated relative to spectra from the same class. Scores have been standardised for
comparison across datasets by dividing each score by the maximum achieved for
that dataset. The * in the legend indicates the methods developed and proposed
in this thesis.

Uni dataset, but only performed marginally better than the standard autoencoder,
the SSE-SAE, on the other datasets. All methods had similar class separation on the
Pavia Uni and simulated DN datasets, and the clustering performance of all methods
for these datasets was low (ARI below 0.4). FA had the best separation for the KSC
and X-rite 3500K datasets.

The next set of results evaluated how invariant the low-dimensional representations
were to changes in brightness. Using the data that was simulated with different



4.3 Experimental Results 91

simulated re
flect.

simulated DN

Great H
all V

NIR re
flect.

Great H
all V

NIR DN

Pavia Uni
KSC

X-rit
e 3500K

0

0.2

0.4

0.6

0.8

1
ad

ju
st

ed
 r

an
d 

in
de

x

SID-SAE*
SA-SAE*
CSA-SAE*
SSE-SAE
PCA
FA
no dim reduction

Figure 4.4 – Comparison of clustering results after using different dimensionality re-
duction/feature extraction methods, for a range of different datasets (horizontal
axis). The methods were evaluated using the adjusted rand index of the clustered
low dimensional data. The higher the score, the better the clustering performance
is. The * in the legend indicates the methods developed and proposed in this thesis.

brightness, dimensionality reduction mappings were learnt by training on data illu-
minated by a source with one intensity (scaling factor equal to 1), and then applied to
the said dataset as well as the data illuminated by a source with a different intensity
(scaling factor equal to 0.3). The Fisher’s discriminant ratio was then found between
spectra of the same class from both datasets to determine how similar the classes of
spectra were under different brightnesses (taking the mean over the classes). In a
real-world outdoor dataset, differences in brightness can arise due to the variations in
geometry with respect to the sun, and also changes in the brightness of the sun (for
example, in a dataset of the same scene captured at different times).

The results show that the autoencoder approaches, including the baseline SSE-SAE
autoencoder, all had superior brightness invariance to PCA, FA and, at least for the
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Figure 4.5 – Comparison of brightness invariance of different dimensionality reduc-
tion/feature extraction methods, for a simulated reflectance and DN dataset. The
methods were evaluated on how well classes with different brightnesses were rep-
resented in the low dimensional space. The lower the score, the better the repre-
sentation because spectra from the same class but with different brightness were
more similar relative to spectra from the same class and brightness. Scores have
been standardised for comparison across datasets by dividing each score by the
maximum achieved for that dataset. The * in the legend indicates the methods
developed and proposed in this thesis.

reflectance dataset, the original high dimensional spectra (Figure 4.5). The SA-SAE
performed better than the other approaches on the simulated reflectance dataset
whilst the CSA-SAE performed marginally better than the other approaches on the
simulated DN dataset. The encodings of the material spectra under different bright-
nesses found using the autoencoder approaches appeared quite similar (Figure 4.6).

Finally, the autoencoders invariance to the wavelength-intensity distribution of the
illuminant was evaluated. The first dataset, X-rite, comprised of the same scene im-
aged under indoor lighting with different temperatures (and thus, different illuminant
intensity-wavelength distributions). The Fisher’s discriminant ratio is found between
spectra of the same class under these different illuminants. The second dataset,
Gualtar steps, comprised of a scene half in shadow. The Fisher’s discriminant ratio
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(a) SSE-SAE. (b) SID-SAE.

(c) SA-SAE. (d) CSA-SAE.

Figure 4.6 – Comparison of low dimensional autoencoder representation of different
classes under different brightnesses, for the simulated reflectance dataset. Results
show only four out of the ten classes.

between corresponding classes in shadow and sunlight was found (taking the mean
over all classes).

There was no stand-out autoencoder that was the most invariant to the illuminant
(Figure 4.7). Regarding invariance to the temperature of the indoor light, the SA-SAE
and SSE-SAE were the top performing dimensionality reduction approaches, with the
spectra with its original dimensionality representation being the most similar under
the different lighting conditions. The other methods all performed quite poorly. For
the dataset with the shadow, the CSA-SAE represented the classes in and out of the
shadow most similarly.
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Figure 4.7 – Comparison of illuminant invariance of different dimensionality reduc-
tion/feature extraction methods. The X-rite dataset consisted of an image captured
indoors under different illuminant temperatures and the Gualtar steps dataset had
a large shadow across it, which also represented a change in the illuminant. The
methods were evaluated on how well classes with different illuminants were repre-
sented in the low dimensional space. The lower the score, the better the represen-
tation because spectra from the same class but with different illuminants are more
similar. Scores have been standardised for comparison across datasets by dividing
each score by the maximum achieved for that dataset. The * in the legend indicates
the methods developed and proposed in this thesis.

4.3.3 Evaluation of RSA-SAE

The proposed RSA-SAE was evaluated based on its ability to not only represent
spectra with fewer dimensions but, additionally, how illumination invariant its repre-
sentation of the spectra was. For each of the experiments, features found using the
RSA-SAE method were compared against those found with unsupervised dimensional-
ity reduction techniques and state-of-the-art illumination invariant feature extraction
techniques. Techniques were picked that were suitable for comparison because they
did not require labels, additional sensors or a priori knowledge. The dimensionality
reduction methods in the comparison included PCA, FA and a standard Autoencoder



4.3 Experimental Results 95

2 4 6 8 10
dimension

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fe
at

ur
e 

va
lu

e

green 2500K
green 3500K
magenta 2500K
magenta 3500K
yellow green 2500K
yellow green 3500K

(a) Comparison of X-rite spectra under differ-
ent illuminants represented using the SA-SAE

approach.
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(b) Comparison of Gualtar spectra under dif-
ferent illuminants represented using the CSA-

SAE approach.

Figure 4.8 – Comparison of low dimensional autoencoder representation of different
classes under different illuminants.

(SSE-SAE) based on the squared error cost function. State-of-the-art illumination
invariant feature extraction techniques were the photodector model-based methods
including Marchant and Onyango (2002), the popular method for finding 1D shadow
invariant images from RGB images using projections in the log-chromaticty space
(Finlayson et al., 2004) and the extension of that method to hyperspectral images
(Drew and Salekdeh, 2011). Finlayson et al. (2004) was applied to a three-channel
image extracted from the hyperspectral image. Other state-of-the-art approaches in-
cluded were the unsupervised statistical learning method for separating the illuminant
from VIS hyperspectral reflection images using low-rank matrix factorization (Zheng
et al., 2015) and the CSA-SAE proposed in section Section 4.1.1, developed for learn-
ing brightness invariant spectral features that the RSA-SAE extends. A number of
datasets, described in Section 3.1, were used to evaluate the proposed autoencoder
to demonstrate its generality. Because Zheng et al. (2015) required some data that
was only available in the visible spectrum, this method was only evaluated with the
Gualtar Steps dataset.



4.3 Experimental Results 96

(a) Colour image. (b) PCA. (c) FA. (d) Marchant and
Onyango (2002).

(e) Finlayson et al.
(2004).

(f) Drew and
Salekdeh (2011).

(g) Zheng et al.
(2015).

(h) SSE-SAE. (i) CSA-SAE* (j) RSA-SAE*

Figure 4.9 – Qualitative results from the Gualtar steps. Colour composites of features
learnt using various approaches. In the case of dimensionality reduction methods,
each dimension is considered a feature. The * indicates the methods developed and
proposed in this thesis.

Illumination Invariance of RSA-SAE Representation

The first experiment compared the illumination invariance and discriminability of
the image representations/encodings found using each of the methods by analysing
the similarity of different materials in the encoding in shadow and when illuminated
by sunlight. The Gualtar steps and Great Hall SWIR datasets in DN form were
used for evaluation because each image comprises a large shadow. Once all methods
had been applied to the images (e.g. dimensions reduced or features extracted), 10
samples were taken from different semantic regions under shadow and under sunlight
in the images. To evaluate how good each method was at representing hyperspectral
data, the Fisher’s discriminant ratio (Section 3.2.1) between the encodings of each of
these collections of samples was found, with lower values indicating more similarity
and higher values indicating more separability. The mean Fisher’s discriminant ratio
between corresponding classes in shadow and sunlight was reported as the sun-shadow
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distance (where shadow and sunlit data are considered as different classes). The
mean Fisher’s discriminant ratio between different classes was reported as the class
separability, for the case when classes consisted of only sunlit data and also the
case when classes consisted of sunlit and shadowed data. The sun-shadow distance
directly measures illumination invariance and the sun-only class separability directly
measures class discriminability. The sun and shadow class separability measures both
illumination invariance and class discriminability. Qualitatively, for each method,
colour composites were created from the three most illumination invariant features
from the Gualtar steps dataset. If the features were invariant to illumination then
the resulting composite should not show any lighting effects (e.g. shadows). For all
methods which reduced the dimensionality of the images, the dimensionality of the
Gualtar steps image was reduced from 33 to five, and the dimensionality of the Great
Hall SWIR image was reduced from 152 to 30.
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Table 4.3 – Quantitative results from the Gualtar steps and Great Hall. The sun-
shadow distance is the mean Fisher’s discriminant score between classes in shadow
and sunlight and the class separability is the mean Fisher’s discriminant score be-
tween different classes, for the sun-only case and the case with sun and shadow
data. Ideally, it is desirable for the sun-shadow distance to be low and the class
separability to be high. Note, that whilst the sun-shadow distance is a direct
measure of the similarity between pixels in sun and shadow, the class separability
(sun+shadow) is also affected by the similarity of sunlit and shadowed pixels, as
it contributes to the intra-class scatter. Thus, the class separability (sun+shadow)
is the most complete measure of the quality of the feature space. The class sep-
arability (sun-only) measures the quality of the feature space when illumination
variability due to shadow is not a consideration. The best results from each cate-
gory are highlighted in bold. The * indicates the methods developed and proposed
in this thesis.

Gualtar steps (VIS) Great Hall (SWIR)
Method sun-shadow

distance
class sep-
arability
(sun-only)

class sep-
arability
(sun+shadow)

sun-shadow
distance

class sep-
arability
(sun-only)

class sep-
arability
(sun+shadow)

reflectance 46.90 79.38 1.74 42.09 73.39 12.47
PCA 48.23 81.15 1.74 46.18 77.90 12.59
FA 52.79 88.80 1.71 49.02 87.21 13.48
Marchant and
Onyango (2002)

3.60 5.62 1.32 0.28 5.25 0.36

Finlayson et al.
(2004)

1.22 26.29 16.94 13.48 80.38 4.20

Drew and
Salekdeh (2011)

12.43 16.29 4.73 0.75 11.74 1.77

Drew and
Salekdeh
(2011)+PCA

19.71 17.71 5.19 1.53 19.75 3.60

Zheng et al.
(2015)

46.74 82.10 1.81 NA NA NA

SSE-SAE 18.77 95.54 5.79 33.53 37.64 3.41
CSA-SAE* 11.24 21.94 3.25 38.75 156.15 8.61

RSA-SAE* 3.69 52.84 11.88 3.57 181.46 30.91

The quantitative results (Table 4.3) and qualitative results (Figure 4.9) showed that
the basic dimensionality reduction methods PCA, FA and SSE-SAE were good at sep-
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arating different classes in the low dimensional space when there were no shadows, but
had poor class separability when shadows were present in comparison to other meth-
ods. This was evident in the SSE-SAE feature vectors (Figure 4.10) where the feature
vectors for all of the classes in sunlight were distinct, but the feature vectors for the
brick, grass and cement classes in shadow were very similar. The illumination invari-
ant feature extraction techniques (Drew and Salekdeh, 2011; Finlayson et al., 2004;
Marchant and Onyango, 2002) had a low sun-shadow distance (the qualitative results
in Figure 4.9 and Figure 4.10 showed that there was almost no difference between the
sun and shadow regions for a given class). However, the sun-only class separability
was far lower than the basic dimensionality reduction methods, and hence they also
had a low class separability when shadows were included (apart from Finlayson et al.
(2004)). Even when PCA was used to extract features from the illumination invariant
data (Drew and Salekdeh, 2011) that maximised variance, the class separability was
still relatively low. The CSA-SAE showed comparable performance with Marchant
and Onyango (2002) and Drew and Salekdeh (2011) for the Gualtar steps dataset, and
out-performed them on the Great Hall dataset. However, Figure 4.9 reveals that the
regions in shadow were represented differently to the regions in sunlight, indicating
that the CSA-SAE feature space was not invariant to shadows. Although the regions
under shadow and sunlight had a similar colour in the colour composite, suggesting
that there were no features dedicated to capturing shadows, there were changes in
intensities across the shadow boundary such that all features were effected by the
shadow. The source separation method (Zheng et al. (2015)) performed compara-
bly with the reflectance representation, both quantitatively and qualitatively. The
RSA-SAE performed well, having both a low sun-shadow distance and a high class
separability for the sun-only and sun+shadow cases (the best sun+shadow class sep-
arability for the Great Hall and the second best for the Gualtar steps). In Figure 4.9,
the shadow was very hard to see suggesting that the low-dimensional representation
was invariant to the illumination conditions. In Figure 4.10 the feature vectors for
corresponding classes in sun and shadow were quite similar and there was also a
distinct difference between the feature vectors of different classes.
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(c) Drew and Salekdeh (2011).
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(d) Marchant and Onyango (2002).

Figure 4.10 – Results from the Gualtar steps. Plot of the mean feature vector for each
class in sun and shadow for some selected approaches. The SSE-SAE approach was
designed for feature extraction, whilst the Drew and Salekdeh (2011) and Marchant
and Onyango (2002) approaches were designed for illumination invariance. The
proposed RSA-SAE approach was designed for both feature extraction and illumi-
nation invariance. The * indicates the methods developed and proposed in this
thesis.
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A different experiment was also used to compare the illumination invariance of the
representations found using the different techniques. The similarity of the encodings
of a sequence of images captured at different times of the day was analysed. The
Gualtar timelapse dataset in DN form was chosen for the experiment because the
position of the sun moved throughout the day that the data was captured on, causing
moving shadows and changes in the brightness of surface materials across images. An
illumination invariant representation of this set of images should appear similar. The
different techniques were used to learn a mapping from the 11:44 image of the Gualtar
timelapse dataset (the first of the time sequence). These mappings were then applied
to the images captured at all other times of day to obtain the low-dimensional encoded
images. To evaluate each method, the PSNR (3.2.3) was found between the encoded
11:44 image and all other encoded images to measure how much the image changed
across the day when under the new representation. High PSNR values indicated
greater similarity between the two images and thus better performance. For each
feature, the mean and standard deviation of the PSNR scores across the day was
calculated. For all methods the dimensionality was reduced from 33 to five.

Changes in the colour composites when the shadow in the Gualtar timelapse images
moved gave a qualitative indication of the illumination invariance of the features (Fig-
ure 4.11). The SSE-SAE encodings had a significant colour change in the composite
across the shadow boundary, and because the shadow moved throughout the day
the encoded image changed as well. The CSA-SAE changed in intensity rather than
colour across the shadow boundary, suggesting that the points in and out of shadow
had a more similar representation in the new feature space, but were not totally invari-
ant. The RSA-SAE performed very well, with no colour or intensity change across
the shadow boundary. Across the day, the encoded hyperspectral image remained
relatively constant despite the significant changes in illumination.
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(a) Original.

(b) SSE-SAE.

(c) CSA-SAE*.

(d) RSA-SAE*.

Figure 4.11 – Gualtar timelapse qualitative results. Colour composites of three se-
lected timesteps using features/dimensions from each autoencoder method, linearly
scaled to increase contrast. The x and o indicate the location of the shadowed and
sunlit samples used in Fig. 4.12. The * indicates the methods developed and pro-
posed in this thesis.
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(a) SSE-SAE.
wavelength (nm)

400 450 500 550 600 650 700
no

rm
al

is
ed

 r
ef

le
ct

an
ce

0

0.5

1

1.5
pixel in sun
pixel in shadow
reconstruction of pixel in sun
reconstruction of pixel in shadow

(b) CSA-SAE*.
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(c) RSA-SAE*.

Figure 4.12 – Gualtar timelapse quantitative results. Comparison of the spectrum and
reconstruction of a pixels spectrum sampled in shadow and sunlight using each
of the three SAEs. Curves were normalised for visualisation by subtracting the
minimum and dividing by the maximum. The * indicates the methods developed
and proposed in this thesis.

Table 4.4 – Gualtar timelapse quantitative results. Mean±std of PSNR (dB) between
the 11:44 image and all other timesteps for each feature/dimension, averaged over
all times. The higher the PSNR, the more similar the images were, which was
desirable. The top 10 features/dimensions are highlighted in bold, as well as the
method with the best overall result. The * indicates the methods developed and
proposed in this thesis.

Feature
Method 1 2 3 4 5 All
PCA -10.6±2.5 9.8±5.8 18.1±4.6 21.1±3.2 21.3±3.8 11.9±12.8
Drew and Salekdeh
(2011)+PCA

1.1±1.3 10.1±1.0 8.8±2.4 13.5±0.7 18.3±0.3 10.4±5.9

Marchant and
Onyango (2002)+PCA

8.4±1.6 15.8±1.4 22.8±3.4 14.4±1.1 19.1±1.4 16.1±5.2

FA -20.6±2.5 -19.8±2.5 -18.8±2.5 -19.3±2.5 -17.4±2.5 -19.2±2.6
SSE-SAE 14.0±1.8 13.7±2.1 6.8±1.5 11.6±1.9 12.4±3.0 11.7±3.3
CSA-SAE* 24.7±2.6 26.7± 2.1 25.1±2.7 23.5±2.7 22.3±3.7 24.5±3.0

RSA-SAE* 22.9±1.7 34.9± 1.6 28.9± 1.4 25.5± 1.7 26.3± 3.3 27.7± 4.6

The findings of the quantitative results from the timelapse (Table 4.4) were similar
to the qualitative results (Figure 4.11). They show the similarity of each feature for
all nine images in the timelapse and showed results from the other approaches tested.
It can be seen that four of the top five illumination invariant features belonged to



4.3 Experimental Results 104

the RSA-SAE. The first of the RSA-SAE features was not as invariant as the other
features, however, this was far superior to the other approaches where the illumination
effected almost all of the features. With that said, the images made with the features
found using the CSA-SAE approach exhibited much less change due to illumination
than those found using the SSE-SAE, PCA, FA, Marchant and Onyango (2002) and
Drew and Salekdeh (2011) with PCA approaches.

Fig. 4.12 shows the spectral curves of pixels sampled in sunlight and shadow from
the 11:44 Gualtar timelapse image, and the spectra that was reconstructed by the
decoder of each SAE. The spectral curves had been normalised for visualisation so
that it was the shape of each curve being displayed rather than the magnitude (the
shadowed pixel would usually have a much lower reflectance than the sunlit pixel).
The SSE-SAE reconstructed the shape of the shadowed pixel accurately and the shape
of the sunlit pixel poorly. The CSA-SAE accurately reconstructed the shape of both
the shadowed and sunlit pixels. The RSA-SAE reconstructed the sunlit spectra from
both the sunlit and shadowed spectra.

Classification Application of RSA-SAE Features

The illumination invariance and discriminability of the RSA-SAE features was eval-
uated by applying them to a pixel-wise supervised classification application. The
purpose of this experiment was to demonstrate the applicability of the RSA-SAE fea-
tures to high-level algorithms. The mining timelapse dataset (Section 3.1) in DN form
was used, whereby mappings were learnt on the 11:30 image only and then these map-
pings were used as spectral features for KNN and SVM supervised classifiers. Whilst
the features were learnt on pixels from the whole image (the methods are unsupervised
and hence require no labels), the classifiers were trained on 458 labelled pixels from
an image of a small set of rock samples from the scene. No labelled training data were
available for the rocks with the same shadows or illumination conditions as the ones in
the actual scene. When the learnt classifier was applied to both images, each method
was evaluated by calculating the percentage of pixels that changed classification label
(Section 3.2.4) between the 11:30 and 13:30 images (smaller numbers indicate greater
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robustness to illumination). This measure indicated how robust the classifiers are to
illumination. The accuracy of the classification maps was also roughly assessed as a
geologist had indicated where the approximate geological boundary between the shale
and mineral was (Figure 4.13a). However, there was no semantic knowledge of how
the two types of shale were distributed. For all methods, 30 features were learnt from
the 220-dimensional image. PCA was used with feature extraction methods that did
not reduce the dimensionality of the data.

Table 4.5 – Mineface quantitative results. Percentage of pixels that changed classifi-
cation label from 11:30 to 13:30. The top result from each classifier is highlighted
in bold. The * indicates the methods developed and proposed in this thesis.

Features KNN SVM

Reflectance 35.2 33.7
PCA 34.9 34.2

Drew and Salekdeh (2011)+PCA 14.2 20.3
Marchant and Onyango (2002)+PCA 18.0 11.7

FA 58.2 51.5
SSE-SAE 27.4 26.4
CSA-SAE* 37.7 28.2

RSA-SAE* 26.9 11.8

The RSA-SAE features produced some of the most consistent classification results
across the timelapse for both classifiers (Table 4.5). The SSE-SAE features produced
more consistent results than the CSA-SAE features, but from the visualisation of the
KNN results in Fig. 4.13, it can be seen that their labelling of the scene does not align
with the ground truth geological regions and it is possible to see where the shadow
has resulted in misclassification of the pixels. Fewer pixels changed predicted label
across the day when the classifier was trained using the features of Marchant and
Onyango (2002) and Drew and Salekdeh (2011), although, the resulting prediction
maps show that the classifier struggled to differentiate between the two types of shale
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Figure 4.13 – Mineface qualitative results. Classification results over the day using
features from the different methods. The first row shows a colour composite of
each hyperspectral image with ground truth geological regions (Schneider et al.,
2011). Labels assigned by the classifier were Martite (light blue), Shale (yellow)
and Magniferous Shale (olive green). The red box indicates one of the regions in
shadow. The * indicates the methods developed and proposed in this thesis.
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Figure 4.14 – Mineface results. Comparison of the original sunlit spectrum for Martite,
original corresponding spectrum in the shadow and several spectra relit to be in
shadow (dashed curves) using the original sunlit spectrum. One of the relit spectra
closely matched the real spectrum of Martite in shadow, so by training the network
to reconstruct the sunlit spectrum from the relit spectra, the proposed approach
learnt to encode the real shadowed spectra in the same way as the sunlit spectra.

as almost no pixels had been labelled as magniferous shale. Once again, these methods
are achieving illumination invariance at the expense of representation power. The
SA-SAE and RSA-SAE features produced reasonably accurate classification maps,
with the RSA-SAE result being more consistent across the two times. Both PCA and
FA features produced results that were inconsistent across the two times of day and
also lacked alignment with the ground truth mapping. Figure 4.14 shows how closely
the relit spectra matched actual shadowed spectra, which is critical for the success of
the RSA-SAE.

4.4 Discussion

The following section provides an analysis of the illumination invariant autoencoder
results of Section 4.3.
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4.4.1 Evaluation of Hyperspectral Stacked Autoencoders

The autoencoder approaches were expected to have better overall performance than
PCA as they were able to learn non-linear mappings to the low dimensional spaces.
This property allowed for more complex transformations to occur. The results (Fig-
ures 4.3 and 4.4) supported this for some of the datasets. The proposed hyperspectral
autoencoders had a better overall performance than the SSE-SAE, and further, the
autoencoders based on the spectral angle performed better than the SID-SAE. By
using the spectral angle as the reconstruction cost function, the autoencoders learnt
complex mappings that captured features describing the shape of the spectra. This
was in comparison to the autoencoders that used the squared error measurement of
reconstruction error. These autoencoders learnt features which described the inten-
sity of the spectra. The intensity is highly dependent on the illumination conditions
and hence was not the best characteristic on which features should be based on.
The autoencoders using the spectral information divergence performed slightly bet-
ter than the SSE-SAE approaches because the distance function could account for
small variations in the probability distribution of each spectra and was also unaffected
by wavelength-constant multiplications. Hence, the learnt mapping was invariant to
intensity changes. FA performed best on the X-rite 3500K dataset. However, this was
likely to be because the X-rite 3500K dataset was the only dataset that had almost
no intraclass variability. Thus, features were learnt which maximised the variability
between classes and there was very small separation created within each class.

In some cases, the hyperspectral autoencoders did not outperform the other ap-
proaches. There was almost no performance improvement in Figure 4.3 from using the
angle based methods for the KSC and X-rite 2500K datasets. However, the clustering
results (Figure 4.4) were relatively low for these datasets for all methods, suggesting
that they were particularly difficult to represent with unsupervised approaches. Clus-
tering results were also low for the simulated DN and Pavia Uni datasets. The KSC,
Pavia Uni and X-rite 3500K datasets contain many classes (greater than eight), many
of which are very similar. For example, the KSC dataset contains several different
’marsh’ classes. With that said, the hyperspectral autoencoders still outperformed
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the PCA, FA and no dimensionality reduction approaches for the KSC dataset. Re-
garding the simulated DN dataset, the angular methods were expected to achieve
similar results on both the reflectance and DN datasets, because the shape of the
spectra is unique for different classes regardless of normalisation. For the distance
results (Figure 4.4) this was true, but for the clustering results, this was only the case
for the Great Hall datasets and not the simulated datasets. The clustering results
show that all methods performed badly on the simulated DN dataset, suggesting that
if not normalised, the differences in the spectra can become very small, making it
difficult for any unsupervised methods to separate the classes.

The simulated brightness experiment results (Figure 4.5) show that all of the autoen-
coders provided an advantage over PCA, FA and no dimensionality reduction when
it came to brightness invariant representation of reflectance spectra. The encodings
of spectra with different brightnesses appeared similar in the learnt feature space
(Figure 4.6), indicating invariance to brightness. Mappings learnt on simulated data,
illuminated with a specific brightness, were able to generalise to simulated data illu-
minated with a brightness that the mappings were not trained on. This was expected
from the proposed hyperspectral autoencoders because their reconstruction cost func-
tions are robust to brightness variations. Interestingly, the SSE-SAE also exhibited
some brightness invariance despite the reconstruction cost function being dependent
on the intensity of the spectra. It was expected that this occurred because there was
no brightness variability within the training set. As a result the SSE-SAE learnt to
ignore brightness variability because it did not require reconstruction. If, however,
there was variability in the brightness of the training data then it is likely that the
SSE-SAE would capture the very basic intensity multiplication in the training dataset
with its non-linear function approximators and encode these variations in a number
of features/dimensions. If the trained encoder was then applied to new data with a
different intensity of the source brightness, then some of the features in the encoding
would vary depending on the brightness. PCA and FA attempted to decouple the
sources of variation, but their representation power was limited by linear functions.
Thus, they provided no advantage over using no dimensionality reduction, and for the
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simulated DN, they actually had worse brightness invariance than when there was no
dimensionality reduction used.

The results for the illuminant experiments (Figure 4.7) differed between the indoor
light temperature experiment (X-rite) and the outdoor shadow experiment (Gualtar
steps), in terms of which methods performed the best. For the X-rite data, amongst
the dimensionality reduction approaches, the SA-SAE appeared to represent the 24
different classes best under the five different illuminants or light bulb temperatures.
However, the no dimensionality reduction approach achieved significantly better re-
sults than the dimensionality reduction approaches. In the Gualtar steps experiment,
the CSA-SAE represented the classes most similarly under shadow and sunlight, but
was one of the worst performers for the X-rite dataset. This suggests that none of the
dimensionality reduction methods are properly representing the data under different
illuminants. To investigate this, Figure 4.8 shows the top performing dimensional-
ity reduction methods from both datasets representation of the spectra under the
different illuminants. The SA-SAE’s representation of the X-rite spectra was good.
There were clear correlations between each corresponding colour across different light
temperatures in the low dimensional representation. Dimensions eight and nine in
particular seemed to show invariance to the illuminant temperature. However, the
other dimensions exhibited a noticeable amount of variation due to the illuminant
changing, making it difficult to distinguish between similar colours, such as green
and yellow green. Likewise, with the CSA-SAE’s representation of the Gualtar steps
classes in sun and shadow, the majority of classes exhibited significant variation across
all dimensions due to the change in lighting conditions. The only class that seemed
to be represented similarly under shadow and sunlight was the wall. The inability
of the methods to similarly encode materials under different illuminants was due to
the properties of the distance measures from which they were derived. The spectral
angle, the cosine of the spectral angle and the spectral information divergence are all
brightness invariant measures; however, they are not invariant to the effects of shad-
ows or changes in the illuminant temperature. In the case of the spectral angle, this
is because it is invariant to a multiplication of the spectra that is constant across all
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wavelengths, but shadows cause a wavelength dependent change in the spectra. For
example, there may be a relative increase in reflectance towards the blue wavelengths
(Murphy et al., 2012), caused by indirect illumination from skylight. There may also
be a biased response to spectral noise where noisy parts of the reflectance spectrum
may be greater or smaller than adjacent spectral regions (Murphy et al., 2014a). This
change in spectral curve shape makes the spectral angle not invariant to the effects
of shadows. For the autoencoders that use the spectral angle, this means that two
materials from the same class but under different illuminants will be reconstructed
very differently (because the angle between them is large), and hence will appear dif-
ferently in the low-dimensional code layer. This explains why for the X-rite dataset
results, the methods represented the same classes under different illuminants more
poorly than the full dimensional, original representation because they were actually
increasing the intra-class variation.

4.4.2 Evaluation of RSA-SAE

Illumination Invariance of RSA-SAE Representation

Along with the large shadow in the Gualtar steps image, some of the bricks orientation
to the sun also changes with their geometry, which impacts their spectral response.
The composites formed from the SSE-SAE, PCA and FA features (Figure 4.9) show
that these methods are sensitive to the illumination conditions, not only to the shadow
but also to the different amounts of light illuminating the bricks in the sun due to
the geometry. This was to be expected as these dimensionality reduction/feature
extraction methods capture all of the factors contributing to the data’s variability
when computing the low-dimensional image, including the illumination factors. This
was reflected in the quantitative results (Table 4.3), where the large difference in class
separability performance with and without the shadow suggests that these methods
are trying to separate spectra within a given class when they are under different
illumination. This sensitivity to illumination was less evident in the colour composite
of the CSA-SAE features as the different levels of brightness illuminating the bricks
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were less visible. The CSA-SAE method was expected to be more robust to the
influence of the scene geometry with respect to the position of the sun on the incident
illumination. This is because of the dependency of its reconstruction cost function
on the shape of spectra rather than the magnitude, and the similar spectral shape of
materials with different geometries. It can be seen, however, that it was not robust
to the shadow which is still visible in the encoded image (the reasoning for this was
discussed in Section 4.4.1).

The method of Finlayson et al. (2004) was effective at finding an image that was
invariant to the illumination effects in the scene. However, the resulting 1D image
lost much of its discriminability as the target of the method was not to preserve
information, which explains its poor performance on the Great Hall dataset. The
features found using Marchant and Onyango (2002) and Drew and Salekdeh (2011)
displayed good illumination invariance. Despite this, Drew and Salekdeh (2011) had a
relatively high sun-shadow distance. This is because it represented the wall class un-
der the different illuminations poorly, evident from the different colours in the colour
composite (Figure 4.9) and also in the feature vector for the wall in sun and shadow
in Figure 4.10. The method for separating illumination from reflectance spectra us-
ing low-rank matrix factorisation (Zheng et al., 2015) was ineffective at removing the
different effects of illumination from the image. This could be because some of the
pixels in the scene are illuminated differently to others due to the occlusions (i.e. in
shadow), whereas this method was designed for separating out a constant illuminant.

The proposed RSA-SAE method encoding of the image pixels displayed almost no evi-
dence of the shadow in the scene or the different lighting conditions on the brick due to
geometry, whilst maintaining good discrimination amongst the different classes. The
results suggest that the method is operating effectively as a dimensionality reduction
algorithm whilst also ensuring illumination invariance in the new low-dimensional
feature space, as these two targets have both been incorporated into the algorithm.
By utilising the autoencoder architecture, it is learning a highly discriminable hid-
den layer, and the incorporation of the physics-based model for illumination makes
this hidden layer invariant to the illumination. The other approaches failed to meet
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both objectives as effectively. Also, since the algorithm is representing the sunlit and
shadowed materials similarly, the relighting process must be accurately emulating
how the material spectra appear in shadow. It should be noted that the RSA-SAE
had a higher class separability for the sunlit-only classes than the SA-SAE on both
datasets, suggesting that the illumination invariant extension is not degrading the
autoencoders dimensionality reduction/feature extraction performance.

The results from the Gualtar timelapse dataset (Figure 4.11) further demonstrate
the robustness of the RSA-SAE to the illumination. The SSE-SAE network learns
features dedicated to capturing shadows so that it can reconstruct them. This was
evident by the different colours of the composite image across the shadow boundary.
The composite image changed significantly over the day as the shadow moved. Given
the shadowed regions are the same colour as the sunlit regions in the colour composite,
the CSA-SAE features are less dedicated to capturing shadows, however, the shadows
still affected the output of the features, evident by the change in intensity across the
shadow boundary of the colour composite (similar to the results in Figure 4.9). As
a result there was a small change in the colour composites over the day and the
PSNR was relatively high (Table 4.4). The RSA-SAE features showed no obvious
change in colour or intensity across the shadow boundary, suggesting that the feature
representation is shadow invariant. There was, however, a distinct difference in the
pixels below the balcony. This is suspected to be due to indirect illumination, which
introduces effects to which the network is not trained to be robust. From Table 4.4,
the first of the RSA-SAE features was not as invariant as the other features, however,
this is far superior to the other approaches where the illumination effects almost all
of the features.

The SSE-SAE (Figure 4.12a) and CSA-SAE (Figure 4.12b) reconstructed the shape
of the shadowed pixel best, however, this was actually a disadvantage as it resulted in
the shadow and sunlit spectra having different encodings because of the reconstruc-
tions having different shapes, despite belonging to the same class. The RSA-SAE
(Figure 4.12c) was trained on corrupted relit data and hence reconstructed the sunlit
spectra from the shadowed input, which is why the encoding of sunlit and shadowed
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pixels were more similar. The CSA-SAE and RSA-SAE also reconstructed the sunlit
spectra from the sunlit input more accurately than the SSE-SAE, because they used
the spectral angle reconstruction cost function (4.2) which promotes reconstruction
of the spectral shape rather than magnitude.

Classification Application of RSA-SAE Features

From the mining results of Figure 4.13 and Table 4.5, given a small training set was
used, it was difficult for the classification model to capture the variability in the min-
eral classes due to illumination. Hence, the methods that used the spectral angle
reconstruction cost function, which were more robust to changes in illumination due
to the highly variable geometry of the surface and the position of the sun, produced a
more accurate mineral classification. As the RSA-SAE is invariant to the changes in
shadow, it also produced a more temporally consistent classification. However, illumi-
nation invariance did not guarantee good performance. The approaches of Marchant
and Onyango (2002) and Drew and Salekdeh (2011) represented the spectra so that
shadowed material appeared similar to sunlit material, evident by the similar maps
at different times of the day. However, just as in the previous experiments (Figure 4.9
and Table 4.3), they have obtained illumination invariance at the expense of some
representation power. The two types of shale were represented so similarly that the
classifier could not distinguish between them. This is because these methods were not
designed for feature extraction. Using PCA afterwards did not help as the specific
spectral absorption features that differentiate the two shale classes were already lost
once the illumination invariant representation was found. The RSA-SAE was able to
represent the spectra in an illumination invariant space without compromising any of
the features that make classes unique, making it the only approach with an accurate
classification map that was also temporally consistent.

Figure 4.14 shows plots of the sunlit and shadowed spectra of Martite, as well as
some of the relit spectra used by the RSA-SAE. It can be seen that one of the relit
spectra matched the shadowed spectrum very closely, allowing the network to learn
to be invariant to the real shadows in the image.
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4.5 Summary

The complex ways that illumination interacts with the outdoor environment can re-
sult in unwanted variability in image data captured from these environments. Hence,
illumination invariance is an important characteristic for platforms in computer vi-
sion, remote sensing and robotics that utilise hyperspectral data. It is important that
illumination invariance does not come at the cost of the class discriminability of the
data. Different classes should either remain or be more separable in an illumination
invariant feature space. For platforms to use hyperspectral data efficiently, it is also
important that the dimensionality of the data is reduced.

In this chapter, a method for finding low dimensional illumination invariant feature
representations of hyperspectral data was proposed. Brightness invariant autoen-
coders developed specifically for hyperspectral data were presented, followed by an
extension which made the autoencoder invariant to shadows. This means that in
the new low dimensional image, pixels from the same material that are in shadow
and sunlight, or have different brightnesses due to geometry or change in the suns
position, will have a very similar representation. Experiments showed that the class
discriminability was also preserved in the new representation. This representation is
useful for higher-level algorithms that use hyperspectral data, such as classification,
clustering or segmentation.

The key advantages of the proposed approach are that it does not require additional
sensor modalities such as LiDAR, labelled training data or a priori knowledge of the
atmospheric conditions or scene geometry. It also does not make the assumption of
Planckian illumination, which is limiting for hyperspectral data because the incident
illumination is greatly effected by the atmosphere. The proposed method is able to
outperform similar methods as it is designed to simultaneously achieve both feature
extraction and illumination invariance.

The dimensionality reduction/feature extraction techniques proposed in this chapter
are illumination invariant. One of the applications of these representations is super-
vised spectral classifiers. However, this requires the training of a separate classifier
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with labelled data. In Chapter 5, neural networks for end-to-end classification are
proposed under the constraint of limited available training data.



Chapter 5

Supervised Classification of

Hyperspectral Data with Limited

Training Samples

This chapter proposes a method for training a supervised hyperspectral CNN classifier
when there are only a limited number of labelled training samples available. Pixel-wise
classification is one of the most useful applications for hyperspectral imaging systems,
as this can be used to autonomously map the materials within a scene (Camps-Valls
et al., 2015). Because they can learn features for classification rather than relying on
hand-crafted ones, CNNs have been shown to be a powerful tool for supervised image
classification (He et al., 2016; Krizhevsky and Hinton, 2012). CNNs also provide a
good platform for transfer learning (Ahmed et al., 2008; Oquab et al., 2014), whereby
data from other domains can be leveraged for tasks where training data is limited.
Recently, CNNs have been adapted for material classification in hyperspectral images
(Chen et al., 2016; Hu et al., 2015a).

The problem with CNNs is that they require significant amounts of training data be-
cause there are many learnable parameters, otherwise overfitting can occur (Larochelle
et al., 2009). Parallel to this issue is the difficulty in acquiring labelled hyperspec-
tral training samples (Yu et al., 2016), and the enormous amounts of variability in
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hyperspectral data due to the illumination (see Chapter 1). As was discussed in
Section 2.4.3, very few of the CNN approaches proposed for hyperspectral data are
tackling the problem of limited labelled training samples.

To address the above problem, approaches for training a hyperspectral CNN un-
der the constraint of a limited amount of labelled data are proposed and developed.
In Chapter 4, an unsupervised learning method for finding low dimensional feature
representations of hyperspectral data, using autoencoders, was proposed. The ap-
proach did not require any annotated training data. Classifiers for the autonomous
identification of materials require annotated training data. It is possible to use the
unsupervised method proposed in Chapter 4 to first learn features from the data that
suppress the illumination variability, before adding a supervised classification layer
on top of the encoder, similar to Chen et al. (2014). However, this would require
training the classifier separately in order to preserve the illumination invariance in
the features, and there remains a high chance of overfitting of the parameters of the
classifier if there are not enough labelled training samples available. Also, if some an-
notated data is available then better features can be learnt using a supervised training
scheme, instead of an unsupervised training scheme as in Chapter 4. In this chapter,
an approach is taken where the labelled training data is expanded with augmentation
to capture more variability and knowledge is leveraged from other labelled datasets
with transfer learning. With this process, an end-to-end CNN classifier, where the pa-
rameters of the features and classifier are jointly optimised, can be trained to perform
with high accuracy when there are limited available training samples.

The architecture of the hyperspectral CNN is presented in Section 5.1. A method to
make the CNN more robust when there are limited labelled training data available
is proposed by utilising transfer learning, which is developed in Section 5.2, and
spectral relighting augmentation, which is developed in Section 5.3. Experiments are
conducted in Section 5.4 to evaluate the methods for making the CNN more robust
to the limited training samples, and analyse the filters learnt by the CNN, drawing
links to the material spectra. Finally, the results are analysed in Section 5.5 before
conclusions are drawn.
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5.1 CNN Architecture for Hyperspectral Classifi-

cation

Figure 5.1 shows a simplified version of an example of the architecture that was used
for the hyperspectral CNN. Each input into the CNN is a single pixel spectra with
dimensions 1× 1×K× 1 from a datacube (where K is the number of channels). The
first stage of the architecture of the hyperspectral CNN consists of the convolutional
layers. The first convolutional layer filters the input spectra with k1 filters of size
1 × 1 × M × 1 (such that each filter spans M channels of the pixels spectrum).
The best filter size (M) for the first convolutional layer of the pre-trained network
is determined experimentally in Section 5.4.2. The second convolutional layer filters
the output of the first layer with 10 filters of size 1 × 1 × 10 × k1. All subsequent
convolutional layers filter the previous layers output with 10 filters of size 1×1×10×10.
No pooling or downsampling layers are included in this network so to preserve the
spectral resolution. The second stage of the architecture consists of the fully connected
layers, which each have 20 neurons. A ReLU non-linearity is applied to the output of
each convolutional and fully connected layer. A normalisation layer follows the ReLU
and is applied to the convolutional layers only. A softmax classifier is appended to
the output of the last fully connected layer. This architecture was loosely based
on successful image CNN architectures such as AlexNet (Krizhevsky and Hinton,
2012) as well as other hyperspectral CNN architectures (e.g. Hu et al. (2015b)), with
preliminary experiments used to determine some of the required parameters.

The hyperspectral CNN proposed in this work is designed to classify individual pixel
spectra. This is done using spectral information only, hence the spatial information in
the image is not being utilised for training. This is due to the unreliable nature of tex-
ture for classification purposes, as discussed in Chapter 1. For example, a sandstone
brick and crushed sandstone are the same material, but are visually different, and
so the spectral information is more reliable for classification purposes. Hence, these
networks are only trained by convolving filters over the spectral domain, and each
pixel is classified independently of its neighbouring pixels. This approach is similar
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Figure 5.1 – Simplified diagram of example CNN architecture used. N stands for the
number of classes, the red circle indicates the predicted class. Each convolutional
layer has a normalization layer. All layers have an associated ReLU activation
layer. This particular network has three convolutional and three fully connected
layers.

to the 1-D spectral CNN classifiers of Hu et al. (2015a) and Chen et al. (2016) and
reduces the number of learnable parameters and any potential overfitting on small
contextual regions that are not representative of the entire scene. In doing this, each
pixel spectra in the hyperspectral image is assigned a classification label. Of course,
this work provides a baseline upon which future efforts can be built to incorporate
neighbouring pixels into the learning (i.e. spatial information processing). The ex-
periments will touch on this by showing one way that the spatial information can be
incorporated into the classification process when there is limited data available.

CNNs are much more efficient than their fully-connected counterparts (used in Chap-
ter 4). Unlike fully-connected networks, which make no assumptions about the local
statistics of the data and hence have many connections between neurons, CNNs ex-
ploit statistics generated from a local neighbourhood (LeCun and Bengio, 1995). That
is, they assume that features in the data are localised to smaller regions of the data,
and these localised features can occur in the same way anywhere in the data. In terms
of image data and spatially convolving CNNs, this means that low-level features such
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as edges and corners are localised to small regions of the image rather than the whole
image, and they can also occur anywhere in the image. By exploiting local statis-
tics with convolving filters, the weights of the network are effectively shared between
neurons and there are far fewer parameters to train (Ba and Caruana, 2014). This
is a form of regularisation that helps to prevent the network from overfitting. Given
the constraint of limited labelled hyperspectral data, it is beneficial to use a CNN
rather than a fully-connected network to classify pixels in a hyperspectral image be-
cause there are fewer parameters. Hence, less data is required to train generalisable
models.

By using a CNN, the assumption about local statistics is made. It assumes that there
are spectral features that occur at localised regions of the spectrum. This assumption
is quite reasonable because although there are often large-scale trends in the spectra
such as positive or negative gradients, many of the characteristic absorptions only
occur over a small number of wavelengths. An example of this is the absorption
features that occur due to the water held by materials. Water absorbs light over spe-
cific regions of wavelengths (Figure 5.2a), thus, a material such as montmorillonite
has localised absorption features in its reflectance spectrum due to the water in its
structure (Figure 5.2b)(Murphy, 2015). These specific absorptions are also superim-
posed on a generalised reduction in reflectance towards longer wavelengths caused by
the exponential increase in absorption by water (Figure 5.2a) (Milliken and Mustard,
2005). Although this generalised trend is not localised to a subset of wavelengths, it
could be learnt by the deeper layers of the CNN as the overall trend is superimposed
onto other effects. The filters in the deeper layers have a larger receptive field and
thus span a larger number of wavelengths, allowing them to learn broader features.

The CNN is highly advantageous to use if the localised features can also occur any-
where along the spectrum. Although this is not a strict requirement, it is one of
the main reasons CNNs are so effective. However, this characteristic of hyperspectral
data is less intuitive. In natural images, edges are invariant to their spatial location in
the image. However, absorption features in spectra occur at specific wavelengths due
to a material’s unique chemical and structural properties. Whilst a specific material
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Figure 5.2 – Absorption by water at specific wavelengths superimposed on a gener-
alised increase towards larger wavelengths and its impact on the reflectance spec-
trum of a material which holds water (montmorillonite).

absorption will only ever occur at the same wavelength region, the shapes of these
absorptions are not necessarily unique. That is, even though the underlying chemical
and physical structures of materials are different, the statistics in the data could be
similar at different wavelengths. An example of this is the sharp rise in reflectance
that occurs at around the 680 nm wavelength for vegetation spectra (Figure 5.3). This
absorption feature is unique to vegetation spectra and is caused by a sharp increase
in the absorption of chlorophyll A (at about 680 nm) and increased scattering of
light at longer wavelengths caused by the internal structure of the leaf (Clark, 1999).
Similarly, the mineral geothite has an intense absorption at 850-900 nm followed
by a sharp increase in reflectance towards longer wavelengths (Haest et al., 2012;
Murphy and Monteiro, 2013; Murphy et al., 2014b). Although the absorption feature
in geothite is caused by a different physical process to that observed in vegetation,
its generalised shape is similar - an intense absorption followed by a relatively sharp
increase in reflectance. Hence, it is possible for a CNN to learn a filter for capturing
this general shape of the feature at both points in the spectrum.

5.2 Transfer Learning

CNNs have become increasingly popular in the field of computer vision and image pro-
cessing, with their usage spanning diverse subject areas including image recognition
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Figure 5.3 – Simplified diagram showing an example CNN filter convolving over a veg-
etation spectra. The orange circles represent the neurons in the input layer and the
green circles represent a small learnable filter. There is a localised characteristic
absorption feature that occurs at around 680 nm. Whilst this feature is unique to
vegetation and only occurs at this wavelength (relating to the physiology of vege-
tation), features with a similar shape can occur in different parts of the spectrum
for different materials composed of completely different elements. These statistics
are exploited by the CNN, which learns a filter for capturing features with this
shape anywhere in the spectrum.

(Krizhevsky and Hinton, 2012), object detection (Ren et al., 2015), semantic segmen-
tation (Long et al., 2015a) and image captioning (Xu et al., 2015). The widespread
use of CNNs in these communities has been facilitated by pre-trained networks which
have been previously trained on large amounts of data and tailored slightly for new
tasks. This transfer of knowledge makes it less time consuming to train a new clas-
sifier and reduces the need for a large labelled dataset. It is now common practice
to use an off-the-shelf pre-trained CNN such as AlexNet (Krizhevsky and Hinton,
2012) as a starting point for image classification related tasks (Marmanis et al., 2016;
Romero et al., 2016). The knowledge learnt by a pre-trained CNN can be transferred
to a new classification task by fine-tuning it on new data (Bengio, 2012; Glorot et al.,
2011; Yosinski et al., 2014) (Figure 5.4). In doing this, the large amount of data used
to pre-train the CNN can be leveraged, producing better results and requiring less
training for the new classification task. This is particularly useful for scenarios where
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Figure 5.4 – The basic transfer learning process.

there are limited amounts of training data available for the new task.

The reason that this is possible is because the most popular pre-trained CNNs are
typically quite deep and have been trained on very large, manually annotated datasets
(in the order of 1000 object categories and 1.2 million images). As a result, the earlier
layers in the pre-trained CNN architectures tend to learn very generic, basic image
features such as edges and corners at different orientations (similar to Gabor filters).
These types of features are common in most images, not just the types of images
in the training sets. In the deeper layers, more abstract features are learnt such as
combinations of basic features that take on the shapes of the object classes in the
training dataset. These features are less generic, and are most useful for classifying
the types of images specifically in the training set (Long et al., 2015b; Yosinski et al.,
2014; Zeiler and Fergus, 2014). When one of these pre-trained CNNs is fine-tuned on
data from new classes, then during training the network will alter the deeper weights
such that they resemble the more relevant classes, and will most likely preserve the
lower level features as they remain useful. The benefit of this is that the network
does not have to learn all of the parameters from scratch. Training from scratch is
time consuming and produces poor results when the quantity of training data for the
new task is low.
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Although CNNs have been used successfully for pixel-wise classification of hyperspec-
tral images, their performance and widespread use is still very far behind the CNNs
adoption in the computer vision community. A large contributing factor for this is
the lack of off-the-shelf networks available for training hyperspectral CNNs. The
large majority of hyperspectral CNNs in the literature (e.g. Cao et al. (2016); Hu
et al. (2015a); Yang et al. (2016)) have been trained and tested on publicly available,
thoroughly annotated datasets (e.g. Pavia University, Indian Pines, Salinas, Kennedy
Space Center from Chapter 3). The sufficient labelling of these datasets has allowed
these networks to be trained from scratch. But for many applications, datasets will
not have been annotated to the same degree, making it much harder to train a CNN
classifier as they require a sufficient number of training samples. This is particularly
true for CNNs with many layers, where training with small amounts of data will often
lead to overfitting of the parameters (Larochelle et al., 2009). For these scenarios, it
would be of great benefit to have some pre-trained networks available that could be
fine-tuned for new classification problems. This would reduce the training time and
increase the performance of hyperspectral CNNs, especially for applications where the
amount of annotated training data is limited. Once these networks are trained they
can be used multiple times to make training new networks much faster. This would
help facilitate the wide-spread usage of CNNs in hyperspectral applications, and the
remote sensing community working with hyperspectral data could see the significant
classification performance gains already seen in the computer vision community.

There are many questions that must be considered when training these off-the-shelf
pre-trained CNNs for hyperspectral classification. For instance, regarding the datasets
used for pre-training, the popular pre-trained CNN AlexNet (Krizhevsky and Hinton,
2012) was trained on a very large set of natural images with a variety of classes - Ima-
geNet (Deng et al., 2009). In the hyperspectral community, there are not many public
datasets that are thoroughly labelled, so if they do not cover similar material classes
to the new task, it must be determined if it is still worthwhile doing pre-training. The
datasets used for pre-training will have been captured from a different sensor to the
dataset for the new task, posing compatibility issues. Hence, a suitable wavelength
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interval for the pre-training dataset must be investigated. This will determine the
resolution that data for new tasks that use the pre-trained network must have. A
suitable filter size for the first convolutional layer is also an important consideration.
Each of these factors will affect the overall performance of how well hyperspectral
CNNs can be fine-tuned for new applications.

Another major concern which must be addressed, is that many of the publicly avail-
able, annotated hyperspectral datasets have been captured from either airborne or
satellite platforms. Very few annotated public datasets have been captured from a
field-based platform. Hence, it must be determined if it is possible to use the pre-
trained networks, that have been trained on data from an overhead perspective and
at large sensor to target distances, to initialise networks for field-based applications.
Field-based hyperspectral sensing is important for many robotics and autonomous
applications in mining (Murphy and Monteiro, 2013; Murphy et al., 2012; Schneider
et al., 2012), agriculture (Wendel and Underwood, 2016), urban sensing (Ramakrish-
nan et al., 2015) and disaster response (Trierscheid et al., 2008). Since the potential
of transferring knowledge from airborne platforms to field-based platforms has not
been formally determined by previous works, this is the focus of the transfer learning
experiments in this thesis.

The overall objective of this transfer learning analysis is to consider all of these
questions and to facilitate the use of powerful CNN classifiers for hyperspectral data
through transfer learning. The findings of this work make training CNNs (a state-of-
the-art classification tool) for hyperspectral applications much easier and faster and,
in some cases, with improved results.



5.2 Transfer Learning 127

5.2.1 Datasets to use for pre-training

Table 5.1 – A selection of the most common, annotated hyperspectral datasets which
are publicly available.

dataset spatial
size
(pixels)

spatial
res
(m/pixel)

# channels spectral
range
(nm)

spectral
res (nm)

# classes
labelled

sensed by

Indian Pines 145 x 145 20 200 400-2500 10 16 AVIRIS
Salinas 512 x 217 3.7 204 400-2500 10 16 AVIRIS
Kennedy
Space Cen-
tre

512 x 614 18 176 400-2500 10 13 AVIRIS

Pavia Uni-
veristy

610 x 340 1.3 103 430-860 4 9 ROSIS-3

Pavia Centre 1096 x 715 1.3 102 430-860 4 9 ROSIS-3

To train the proposed CNN which will be used to initialise new CNNs, a dataset
must be chosen. Several publicly available hyperspectral datasets that have been
thoroughly annotated, exist (Table 3.1). These datasets are all captured from airborne
platforms and have different spatial and spectral resolutions. It is also worth noting
that all datasets, because captured from air, have quite a large spatial resolution (in
the order of meters) and are all overhead in perspective.

The datasets used to train the proposed pre-trained CNN should have balanced class
sizes (Kubat and Matwin, 1997). Hence, the public datasets with the bigger class sizes
are chosen to be used for the pre-training. The number of samples per class are higher
on average in the Salinas and Pavia University datasets, which is desirable, whereas
the classes in the Indian Pines, Kennedy Space Centre and Pavia Centre datasets
have far fewer samples, making it more difficult to train a deep CNN. In order to
increase the number of samples per class, some of the more similar vegetation classes
can be grouped together. This has the added advantage of helping the pre-trained



5.2 Transfer Learning 128

Table 5.2 – Classes and number of samples for Indian Pines.

Class Number of samples
Alfalfa 46

Corn-notill 1428
Corn-mintill 830

Corn 237
Grass-pasture 483
Grass-trees 730

Grass-pasture-mowed 28
Hay-windrowed 478

Oats 20
Soybean-notill 972
Soybean-mintill 2455
Soybean-clean 593

Wheat 205
Woods 1265

Buildings-Grass-Trees-Drives 386
Stone-Steel-Towers 93

network to avoid learning filters to do fine-grained classification (e.g. classifying
lettuce at different stages of growth). Since these pre-trained networks are to be used
to initialise other networks, there is no need for such a fine-grained classification, and
it is more beneficial to have bigger class sizes (Huh et al., 2016). The datasets chosen
for pre-training with their original class names and sizes are shown in Tables 5.2,5.3
and 5.4.

5.2.2 Forming a composite dataset for pre-training

Rather than use a single dataset, it is more advantageous to use a composite of several
of the datasets. This has the benefit of increasing the number of classes in the dataset
so that more diverse features can be learnt and more knowledge can be transferred
to new learning tasks (Huh et al., 2016).

These datasets have different properties and come from multiple sensors, so they must
be combined together in a reasonable way. This involves interpolating all datasets so
that they all have a common spectral resolution and range. If the common resolution
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Table 5.3 – Classes and number of samples for Salinas.

Class Number of samples
Brocolo green weeds 1 2009
Brocolo green weeds 2 3726

Fallow 1976
Fallow rough plow 1394
Fallow smooth 2678

Stubble 3959
Celery 3579

Grapes untrained 11271
Soil vineyard develop 6203

Corn senesced green weeds 3278
Lettuce romaine 4wk 1068
Lettuce romaine 5wk 1927
Lettuce romaine 6wk 916
Lettuce romaine 7wk 1070
Vineyard untrained 7268

Vineyard vertical trellis 1807

Table 5.4 – Classes and number of samples for Pavia University.

Class Number of samples
Asphalt 6631
Meadows 18649
Gravel 2099
Trees 3064

Painted metal sheets 1345
Bare soil 5029
Bitumen 1330

Self-blocking bricks 3682
Shadows 947

is too fine then interpolation errors will arise for datasets with a coarse resolution,
but if it is too coarse then much of the important information in the spectrum will
be lost. The best spectrum for this composite dataset is determined experimentally
in Section 5.4.2.

Another way the different datasets must be made more similar, is through pre-
processing of the spectra prior to input into the CNN. This also helps the CNN
to learn better features (Pal and Sudeep, 2016). To do this, first the spectra must



5.2 Transfer Learning 130

be normalised to reflectance via a flat-field calibration panel or other method. By
measuring each spectrum relative to the incident illumination, most of the difference
arising from capturing images with different cameras, is removed. At this point the
spectrum should be between zero and one. Then, the spectrum is offset so that the
reflectance at an arbitrarily selected wavelength (e.g. half way through the spectrum)
is set to zero. This makes some of the input units negative and some positive without
compromising the reflectance spectrum’s natural structure, and vertically centres the
spectra about the zero axis, further removing intensity differences due to capturing
images with different cameras. Similar pre-processing is used to train spatial CNNs
on image data.

5.2.3 Pre-training and fine-tuning a network

Algorithm 5.1: Procedure for pre-training a CNN and then transferring the
knowledge learnt - by fine-tuning for a new task.
Input : composite dataset Dcomp, dataset for new task Dnew with N classes
Output: CNN for new task CNNnew

1 pre-process Dcomp with radiometric normalisation and wavelength zeroing;
2 train a CNN, CNNcomp, on Dcomp;
3 for k=1:number of new tasks do
4 pre-process Dnew with radiometric normalisation and wavelength zeroing;
5 interpolate Dnew so that the spectral resolution matches those of Dcomp;
6 replace the last fully connected layer of CNNcomp with a fully connected

layer that has N neurons;
7 randomly initialise the parameters of the last fully connected layer of

CNNcomp using the Xavier method (He et al., 2015);
8 fine-tune this network using Dnew ;

Algorithm 5.1 details how to pre-train a CNN with the architecture outlined above
on the composite airborne dataset and then fine-tune that network on data for a new
task (e.g. data captured from a ground-based sensor). As is shown in the algorithm,
the CNN only needs to be trained on the composite dataset once and after that can be
re-used many times by fine-tuning it on new datasets. In this sense, the knowledge
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acquired from the composite dataset can be transferred to many new tasks (Dong
et al., 2014).

5.3 Spectral Relighting Augmentation

When there are a limited number of training samples, it is difficult for a supervised
classifier to capture the variability in the data, even if transfer learning is used.
Incorporating illumination variability into the training of supervised hyperspectral
classifiers is an ongoing research question, with two main approaches being utilised.
The first is by using large amounts of training data that sufficiently represent the
variability within the scene. However, a significant amount of data is required in
order to capture such variability and this becomes increasingly difficult in complex
scenes. The geometric structure of surfaces occludes regions from being illuminated
evenly by terrestrial sunlight and diffuse skylight, with incident illumination and
intensity varying on a per-pixel basis. Further, because of the high-dimensionality of
hyperspectral data, more data is required to adequately fill the space (i.e. the curse
of dimensionality). The second method is to use pre-processing to convert the data
to a form that is less dependent on illumination. This is typically done by converting
the raw DN values to reflectance using a process by which the hyperspectral image
is normalised against a material of known reflectance within the scene such as a
calibration board (e.g. flat-field correction, see Section 2.4.1). Flat-field correction is
only correct for the region in which the calibration board was placed. In areas with
significantly different incident illumination, the incident illumination varies based
on the illumination sources and geometry of the surface. Also, placing additional
hardware within the scene is impractical in hazardous environments, or for robotic
platforms operating in dynamic environments.

A common tactic for making a classifier more robust to undesirable variances, is to
use data augmentation to artificially simulate those variances in the training data
so that the classifier can learn to account for them (Gupta et al., 2014; Jaderberg
et al., 2014; Zhang et al., 2014). The strategy developed in this section involves
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augmenting the input spectra using a relighting technique (Ramakrishnan et al.,
2015), similar to Section 4.2, in order to make the classifier robust to illumination
variability. Critical to the relighting is the calculation of the ratio between the two
primary outdoor illumination sources (terrestrial sunlight and diffuse skylight), for
which a novel, image based method is proposed.

The advantages of the proposed augmentation strategy are that it does not require
multiple sensor modalities (e.g. hyperspectral camera with LiDAR) or computational
atmospheric models. It allows training data to be collected from within sunlit regions,
which are commonly easier to label, while classification can be performed on both
sunlit and shadowed regions.

5.3.1 Augmenting Spectra

Training supervised classification algorithms using small labelled regions fails to ac-
count for illumination variability induced by the complex geometry of a scene. This
thesis proposes the use of relighting (Ramakrishnan et al., 2015) as a data augmenta-
tion strategy, in order to encompass the illumination variations typically found in the
outdoor environment. Such variations include the surface orientation with respect to
the sun, the amount of sky exposure and shadows. This allows training data to be
obtained from regions in the image that are either easy to access or easy to label,
and inference can then be performed on the remaining data. The following relighting
equation focuses on obtaining labels from sunlit regions, and classifying on shadowed
and sunlit data, though the approach is easily transferable to the reverse scenario
(labelling shadowed regions and inferring on sunlit and shadowed regions).

Relighting is the process of simulating the spectral appearance of a region under
different illumination and geometrical conditions that are not encompassed by the
training set. The relighting equations 2.3 and 2.4 were derived for the individual
cases of relighting sunlit spectra to shadow and full exposure respectively. However,
for augmentation purposes, in this work it is desirable to have one equation to sample,
which will cover both the sunlit and shadowed scenarios. Hence, a generic equation is
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formulated by including a binary visibility term V . The visibility determines whether
the simulated region has a line-of-sight with the sun and hence whether the spectra
are relit to shadow or sunlight. Also, rather than relighting spectra to full exposure for
the sunlit case, the equation is modified to include the sun angle θ and sky factor Γ of
the relit region so that the geometry of the relit spectrum’s surface can be augmented.
By doing this, the variability of the geometry of sunlit pixels in the scene captured
by the training data can also be increased via augmentation.

For a single sunlit datapoint at region i, the augmented version Lj is calculated by
multiplying the training spectra Li (prior to pre-processing) by a wavelength depen-
dent scaling factor:

Lj(λ) = Li(λ)
Vj
Esun(λ)τ(λ)
Esky(λ) cos θj + Γj

Esun(λ)τ(λ)
Esky(λ) cos θi + Γi

, (5.1)

where θi and Γi are the geometric parameters describing the sun angle and sky factor
of the original training datapoint, while Vj, θj and Γj are the parameters of the aug-
mented datapoint. When Vj is 0, relighting has the effect of simulating the appearance
of the original datapoint within a shadowed region, while setting it to 1 simulates the
same datapoint with a different orientation. Relighting alters both the brightness and
spectral curve shape of the datapoint. The derivation for this relighting equation is
in Section D.3.

In order to relight the data during training, several illumination and geometric param-
eters are required. The first is the terrestrial sunlight-diffuse skylight ratio Esun(λ)τ(λ)

Esky(λ) ,
which describes the relationship, in terms of both spectral distribution and intensity,
between the primary illumination sources in the outdoor environment. The geometric
parameters, such as the sun angle and sky factors are typically known when utilising
multi-modal systems, where geo-registered point cloud data can be used explicitly
to estimate these values (Ramakrishnan et al., 2015). However, for image based
methods, these parameters remain unknown, therefore a sampling procedure is used
during training to augment the data with the relighting equation. During each batch
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Algorithm 5.2: Augmenting a batch of spectra for training the CNN. U and
B represent uniform and Bernoulli distributions respectively.
Input : batch of spectra data, number of irradiance ratio estimates M
Output: augmented batch of spectra dataAug

1 dataAug ← data
2 for k = 1 to M do
3 sample θA ∼ U [0, π2 ), ΓA ∼ U [0, 1]
4 irradianceRatio← eq.(5.6)(θA,ΓA)
5 for l = 1 to size of batch do
6 Vj ∼ B(1, 1

2), θi ∼ U [0, π2 ), θj ∼ U [0, π2 ], Γi ∼ U [0, 1], Γj ∼ U [0, 1]
7 relitSpectra← eq.(5.1)(data; Vj,θi,θj, Γi,Γj,irradianceRatio)
8 dataAug ← dataAug ∪ relitSpectra

of gradient descent optimisation of the network, the geometric parameters Vj, θj, Γj,
θi and Γi are sampled as shown in Algorithm 5.2.

5.3.2 Image Based Estimation of the Terrestrial Sunlight-

Diffuse Skylight Ratio

The terrestrial sunlight-diffuse skylight ratio is integral to the relighting process.
Manual methods involving the user selecting two adjacent points obtained from the
same material (Ramakrishnan et al., 2015), or the use of computational atmospheric
models may be used, but these require the knowledge of parameters such as turbidity,
gas concentration, water vapour and humidity (Berk et al., 1987). Automatic meth-
ods also exist (Ramakrishnan, 2016), but these require extra sensor modalities (e.g.
LiDAR). Within the colour-constancy literature (see Section 2.4.1), there are numer-
ous techniques for estimating the illuminant from an image (Barron, 2015). However,
these techniques often assume that there is only one illuminant in the scene. Methods
that assume multiple illuminants (Cheng et al., 2016) usually extract the combination
of illuminants incident at each region, rather than the individual terrestrial sunlight
and diffuse skylight illuminants. Whilst the combination of illuminants is useful for
correcting the colour of a region, it cannot be used for computing the ratio of illumi-
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nants necessary for the relighting process.

In Chapter 4, the terrestrial sunlight-diffuse skylight ratio did not need to be accu-
rately estimated. Instead, many candidate ratios were generated so that commonality
in the data could be learnt through an unsupervised process. The resulting autoen-
coder mapped spectra to a representation which was independent of the prevailing
atmospheric conditions. For the supervised CNN classifier to learn to map spectra
to their correct label, the distribution of the training data must accurately portray
the distribution of the test data. Hence, the training data must be augmented using
a terrestrial sunlight-diffuse skylight ratio that closely reflects the scenes prevailing
atmospheric conditions.

Thus, in this work, a novel image based method for estimating the terrestrial sunlight-
diffuse skylight ratio from the scene itself is proposed. Because the ratio is derived
from the inherent properties of the data collected from the scene, it is a better estimate
of the prevailing atmospheric conditions. The method consists of a three stage process
of candidate generation, refinement and smoothing.

If two spectra from regions (A,A′) of the same material are selected from a sunlit and
shadowed region respectively, both of which have the same orientation, the terrestrial
sunlight-diffuse skylight ratio can be approximated by equating the reflectance of two
regions having the same material, but one being in shadow. From the model (2.2):

LA(λ) = ρA
π

[Esun(λ)τ(λ) cos θA + ΓAEsky(λ)] , (5.2)

LA′(λ) = ρA′

π
[ΓA′Esky(λ)] , (5.3)

where LA is the radiance of the material in sunlight and L′A is the radiance of the
material in shadow. Equating the reflectances ρA and ρA′ and simplifying gives:

Esun(λ)τ(λ)
Esky(λ) = ΓA′LA(λ)− ΓALA′(λ)

LA′(λ)cosθA
, (5.4)
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Figure 5.5 – Example of how points of different material, given by the different colours,
are projected into a 2D log-chromaticity space by taking the log of the ratio of two
wavelengths. The spread intra-class variation within each colour is due to variations
in the illuminant, such as when the material is in shadow. In this space, there exists
an illumination invariant direction w which captures changes in material and an
orthogonal direction w⊥ which captures changes in the illuminant.

and if regions A and A′ are at the same orientation, then:

ΓA = ΓA′ (5.5)

Esun(λ)τ(λ)
Esky(λ) = ΓA

cos θA

[
LA(λ)
LA′(λ) − 1

]
,

∝ LA(λ)
LA′(λ) − 1. (5.6)

Since the scene geometry is considered to be unknown due to the use of only image
data, it is assumed that the scene is spatially consistent. Hence, the selection of
pairs of adjacent points in sunlit and shadowed regions from the same material are
assumed to be at the same orientation and can be used to obtain candidate terrestrial
sunlight-diffuse skylight ratios that are a scalar multiple of the underlying ratio using
5.6. The scalar multiple is dependent on the orientation of the pair of regions.

To automatically select adjacent pairs of points in and out of the shadowed regions,
three bands are generated to form a pseudo RGB image. Hypothetically these can
be any bands, however they should be chosen to maximise the discriminability of
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Figure 5.6 – Depiction of candidate pairs along horizontal and vertical transects pro-
jected onto illumination and invariant axes for an example image. Pairs on a class
boundary have a large separation on the invariant axis, whilst pairs on a shadow
boundary have a small separation on the invariant axis and a large separation on
the illumination axis.

the classes. If in the visible domain, these bands can be 450nm, 550nm and 600nm
(peak wavelengths of an RGB camera), and if in the Short-Wave Infrared (SWIR)
domain the bands can be 1060nm, 1250nm and 1630nm (the middle of sections of
the spectrum outside the destructible water bands). Next, the three channel image is
converted to 2D log-chromaticity space (Figure 5.5) where the illumination invariant
direction is found through entropy minimization (Corke et al., 2013; Finlayson et al.,
2004). The 1D projection of the image onto this axis should be invariant to changes
in the illumination. The orthogonal axis is found (deemed the illumination axis)
which captures large changes in illumination resulting from either shadow or spectrally
discrete class boundaries.

Candidate pairs of adjacent points, which are assumed to have similar orientation, are
taken from horizontal and vertical transects (Figure 5.6) of the pseudo RGB image
and projected onto the invariant and illumination axes:

Iinvi
= eXiw, (5.7)

Iilli = eXiw
⊥
, (5.8)

where Xi is the log-chromaticity of point i, the vector w is the direction of the in-
variant axis and Ii is the exponential of the points location on either the invariant
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or illumination axis. If there is a large difference between a pair along the illumina-
tion axis (corresponding to either a shadow or material class boundary) but a small
difference between the pair along the invariant axis (ruling out the class boundary),
then the pair is considered to be valid (Figure 5.6) and the ratio between the spec-
tra is calculated. For a candidate pair of points, the validity of them constituting a
sun-shadow pair can be determined using:

|Iinv1 − Iinv2|
Iinv2

< µ, (5.9)

|Iill1 − Iill2|
min(Iill1 , Iill2) > ξ, (5.10)

where reasonable values for µ and ξ are 0.3 and 1.2 respectively. The average ratio
is subsequently taken over all valid candidate pairs (Figure 5.7) before smoothing
with an Savitzky-Golay filter (Savitzky and Golay, 1964). The result is used to
estimate LA(λ)

LA′ (λ) in equation 5.6. The geometric parameters θA, ΓA in equation 5.6
are unknown, although, they can be sampled along with the geometric parameters
needed for relighting as in Algorithm 5.2.

5.4 Experimental Results

The improvement in hyperspectral CNNs which use transfer learning and spectral
relighting augmentation when there is limited labelled training data are evaluated
experimentally in Section 5.4.2 and Section 5.4.3 respectively. To obtain a more intu-
itive understanding of what the CNN is learning from the spectral data, an attempt is
made to draw links between the filters, the spectra and which features in the spectra
are activating the filters Section 5.4.4.

5.4.1 Network Architecture and Parameters

For the experiments where networks were trained with an unspecified filter size, the
filter size in the first layer (M) was 30 for the Great Hall SWIR and mining timelapse
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(a) Ratios from all valid sun-shadow pairs of
spectra.

(b) Mean of ratios from valid pairs.

(c) Smoothed ratio.

Figure 5.7 – Synthetic example of the process of extracting Lsun/Lshadow once valid
sun-shadow pairs have been identified from the candidate pairs.

datasets, and was 10 for the Gualtar steps dataset. The smaller filter size for the
Gualtar steps dataset was due to the reduced number of channels. These filter sizes
were chosen based on the filter size experiments of Section 5.4.2. Unless otherwise
stated, two convolutional and two fully connected layers were used for the networks
for all datasets. These values were chosen based on preliminary experimentation.
For some of the experiments, it is shown that the performance improvements are not
highly dependent on the architecture used.

The networks were optimised using 200 epochs of stochastic gradient descent with
a learning rate of 10−5, momentum of 0.9 and batch size of 50. This is with the
exception of the networks in Section 5.4.2 which were pre-trained using 1000 epochs,
and then the fine-tuned networks were left to optimise until convergence.
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5.4.2 Evaluation of Transfer Learning

The experiments for the transfer learning work encompassed two key aspects. The
first was to propose a suitable way to train a CNN that could be used as a pre-
trained network and fine-tuned for new spectral classification tasks. The second
aspect was comparing the networks which were pre-trained and fine-tuned against
networks that were trained from scratch, which is the current method for training
many hyperspectral CNNs (Chen et al., 2016; Hu et al., 2015b). The focus of this
analysis was field-based applications, so networks were pre-trained from data captured
from airborne sensor platforms, and fine-tuned on data captured from field-based
sensor platforms.

In the first experiments, the properties of the pre-trained network, including the
wavelength interval length of the input data and the size of the filters in the first
convolutional layer, were determined experimentally. Given that knowledge is being
transferred between datasets captured from different sensors, with different spectral
and spatial resolutions, it is important to determine the impact of these properties on
the learning. Separate pre-trained CNNs were made for VNIR and SWIR datasets.
For these experiments, only the Pavia University dataset and the Salinas dataset
were used for pre-training the VNIR and SWIR networks respectively (no composite
datasets were used). Eight classes were used for each pre-training dataset, with 1000
samples per class used for training. For the Pavia University VNIR dataset the eight
classes used were asphalt, meadows, gravel, trees, painted metal, bare soil, bitumen
and self-blocking bricks (Table 5.4). Some of the classes from Salinas were grouped
together to avoid fine-grained classification: ‘broccoli green weeds 1’ and ‘broccoli
green weeds 2’ were be grouped as ‘broccoli’; ‘fallow’,‘fallow rough plow’ and ‘fallow
smooth’ are grouped as ‘fallow’ and ‘lettuce romaine’ weeks 4, 5, 6 and 7 are grouped
as ‘lettuce’ (Table 5.3). For the Salinas SWIR dataset the eight classes used were
broccoli, fallow, stubble, celery, grapes, soil-vine, corn weeds and lettuce. Only the
SWIR component of the Salinas dataset was used (1020− 2400 nm).

The first two target datasets that the pre-trained networks were fine-tuned on, where
‘target’ defines a new dataset requiring classification that differs to the ones that the
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CNN was pre-trained on, were the field-based VNIR and SWIR hyperspectral images
of the University of Sydney’s Great Hall. These datasets were chosen because the
scene contains structured (e.g. a building) and unstructured (e.g. a tree) elements
and within-class variations in illumination, requiring the CNN classifier to be robust.
The third target dataset is the field-based SWIR hyperspectral mining image. The
scene is completely unstructured, with large variations in surface geometry. This
dataset was used in the evaluation because the light shale, white shale and whaleback
shale classes of spectra are similar, with the distinguishing features being very hard to
detect making classification a complex task. It is worth noting that whilst the Great
Hall dataset contains some similar classes to the pre-training dataset, the classes of
the mining dataset are completely different to those in the pre-training dataset. Sec-
tion 3.1 provides a summary of the datasets used for pre-training and also the target
datasets that the pre-trained CNNs were fine-tuned on. All data was normalised to
reflectance using flat-field correction.

The pre-trained networks were evaluated using the classification performance from
fine-tuning them on the target datasets. The dataset for the target classification task
consisted of 200 training samples per class, 50 validation samples per class and 800
test samples per class. The metrics used for comparison were the F1 classification
score (Section 3.2.5) after convergence and the number of epochs of optimisation that
were required to reach to within one percent of convergence (Section 3.2.6). With
these metrics, the added benefit of pre-training was evaluated in terms of classification
error and the speed of convergence. All experiments were repeated five times, with
the mean result reported.

Firstly, different spectral widths of the filters in the first convolutional layer of the
pre-trained network were compared. The wavelength interval was fixed at 4 nm. The
filter size was varied to cover 40 nm, 80 nm, 120 nm, 160 nm and 200 nm which
corresponded to 10, 20, 30, 40 and 50 input neurons respectively (4 nm per neuron).

The results (Figure 5.8) suggest that the filter width doesn’t have a significant impact
on the classification score (at least, within the bounds experimented on). Filter width
did have an impact on the convergence time. Across all datasets, the 120 nm filter (30
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(a) Classification score after convergence for dif-
ferent filter sizes
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(b) Number of epochs to reach 1% of classifica-
tion score for different filter sizes
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(c) Classification score after convergence for dif-
ferent wavelength intervals
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(d) Number of epochs to reach 1% of classifica-
tion score for different wavelength intervals

Figure 5.8 – Transfer learning results: Comparison of the results of using different
filter sizes for the first convolutional layer of the pre-trained network and different
wavelength intervals.

neurons for a 4 nm wavelength interval) required the shortest time for the optimisation
to converge, and hence was concluded to be the best size.

Secondly, different wavelength intervals for the data to do the pre-training were com-
pared. This is important because the pre-training and target datasets must both
have the same wavelength interval, so either one will have to be down-sampled or
the other will have to be up-sampled if they are different. For the experiment, the
wavelength interval was set to 2 nm, 4 nm, 8 nm and 16 nm. The spectral width
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of the first convolutional layer filters was fixed at 120 nm (which required adjusting
the number of units due to the changing wavelength interval). For both experiments,
a CNN architecture with three convolutional layers and three fully connected layers
was used.

For the classification score, the results (Figure 5.8) were very similar across all datasets
apart from the mining SWIR dataset where the 4 nm spectral interval marginally had
the best classification score. The convergence times showed a bit more variation, with
the Great Hall SWIR dataset optimising much faster with shorter resolutions (2− 4
nm) but the Great Hall VNIR and Mining SWIR datasets optimising slightly faster
with the mid-length resolutions, particularly 8 nm, than with the shorter resolutions.
For all datasets, the larger 16 nm optimised the slowest. No result could be obtained
for the Great Hall VNIR dataset for 2 nm. It was concluded that 4 nm be the most
appropriate resolution due to its sound performance on all datasets.

For the second set of transfer learning experiments, the performance of a CNN pre-
trained with a composite dataset was compared to a CNN trained from scratch,
that is, without pre-training, where the learn-able parameters were all randomly
initialised. For these experiments, VNIR and SWIR composite datasets were formed
for the pre-training (coming from multiple datasets). The VNIR dataset was made
up of eight classes from Pavia University and eight classes from Salinas, with 1200
samples per class used for training. The similar classes from Salinas that were grouped
together in the first set of experiments were once again grouped together to avoid fine-
grained classification. The spectrum of the VNIR dataset was 430 − 860 nm. The
SWIR dataset was made up of eight classes from Salinas and five classes from Indian
Pines, with 1200 samples per class used for training. Some of the classes from Indian
Pines were also grouped together to avoid fine-grained classification: ‘corn-notill’,
‘corn-mintill’ and ‘corn’ are grouped as ‘corn’, ‘grass-pasture’, ‘grass-trees’ and ‘grass-
pasture-mowed’ were grouped as ‘grass’ and ‘soybean-notill’, ‘soybean-mintill’ were
grouped as ‘soybean-till’ (Table 5.2). The eight classes from Pavia University and
Salinas were the same as in the first experiments, and the classes for Indian Pines
were corn, grass-trees, soybean-till, soybean-clean and woods. The classes selected
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Table 5.5 – The classes chosen from each dataset to pre-train the composite CNNs.

VNIR SWIR
Pavia University Indian Pines

asphalt corn
meadows grass-trees
trees soybean-till

painted metal soybean-clean
bare soil woods
bitumen

self-blocking bricks
Salinas Salinas
broccoli broccoli
fallow fallow
stubble stubble
celery celery
grapes grapes

soil vineyard soil vineyard
corn-senesced corn-senesced

lettuce lettuce

from each of the datasets to make the composite datasets used for pre-training are
summarised in Table 5.5. The spectrum of the SWIR dataset was 1020 − 2400 nm.
Prior to combining datasets, the wavelength interval was made to be 4 nm (based on
the previous wavelength interval results).

The target datasets on which the pre-trained networks were fine-tuned, were the same
hyperspectral images of the University of Sydney’s Great Hall and mining dataset
from the first experiments. In this experiment, the number of samples used for train-
ing and testing on the new datasets depended on the experiment. All data was
normalised to reflectance using flat-field correction.

The performance of the network as it optimised when pre-trained was compared
against a network trained from scratch. The parameters of the network trained from
scratch were randomly initialised using the state-of-the-art improved Xavier method
(He et al., 2015), which has been shown to produce good results. The metric used
for evaluation was the F1 classification score after convergence and also the number
of epochs taken for the classification score to get to within one percent of that score.
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All experiments were repeated five times, with the mean result reported.

Firstly, the impact of pre-training with a varying number of training samples for
fine-tuning in the target dataset was analysed. A CNN architecture with three con-
volutional layers and three fully connected layers was used. The number of samples
in the target training set was varied logarithmically between 50 and 2000 and the
testing set was fixed at 800 samples per class, with 50 samples used for validation.

The results (Figure 5.9) compare training from scratch with pre-training (i.e. utilising
transfer learning) and suggest that transfer learning (i.e. pre-training) improves the
classification error when there is a small amount of training data (less than approx-
imately 100 samples per class). This was consistent for all datasets. However, when
there were a larger number of training samples, the classification error was the same
regardless of whether knowledge was transferred via pre-training or not.

The most significant impact of the transfer learning was seen in the time taken for
convergence. For the Great Hall VNIR results, training from scratch took a long time
to optimise when there was a small amount of training data, and this time decreased
quite rapidly as the amount of training data increased. When pre-training was done
to initialise the network, the training time was relatively consistent for all numbers
of training samples tested. For small training set sizes, the pre-trained networks
optimised much faster than the networks trained from scratch (roughly four times
fewer epochs were required to reach one percent of convergence). For larger dataset
sizes, there was still an improvement in the optimisation time, but it was smaller
because the time taken when training from scratch improved significantly. For the
Great Hall SWIR and Mining SWIR datasets, when pre-training, the optimisation
convergence time was more dependent on the number of samples than it was for the
Great Hall VNIR dataset. Just as with training from scratch, it took more time
to converge for small amounts of training data and became faster as the size of the
training set increased. However, the convergence time when pre-training was better
than the convergence time when training from scratch, particularly for the smaller
training sets. For the larger datasets, convergence time became more similar, as did
the classification error.
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Secondly, the generality of the results for different architectures was analysed. The
performance when training from scratch and pre-training for several different CNN
architectures was compared. The number of training samples was fixed at 200, the
number of validation samples was fixed at 50 and the number of testing samples was
fixed at 800. The number of convolutional layers and fully connected layers in the
CNN was varied between two and five. From the filter width experimental results,
the spectral width of the first layer convolving filter was fixed at 120 nm for both
experiments.
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after convergence
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(d) Great Hall SWIR number of epochs to
reach 1% of convergence of classification score
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(e) Mining SWIR F1 classification score after
convergence
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Figure 5.9 – Transfer learning results: Comparison of pre-training and training from
scratch for different numbers of training samples available for the target dataset.
For the Great Hall VNIR dataset, the CNN was pre-trained on the VNIR composite
dataset (Table 5.5). For the Great Hall SWIR and Mining SWIR datasets, the CNN
was pre-trained on the SWIR composite dataset (Table 5.5).
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Figure 5.10 – Transfer learning results: Mean percentage change in parameters from
initialisation to convergence for each layer of the hyperspectral CNN, for the net-
works trained on 316 samples per class. For each parameter, the difference between
the converged parameter value and the initialised parameter value was taken as a
percentage of the initialised parameter value.
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(a) Great Hall VNIR F1 classification score
after convergence
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(b) Great Hall VNIR number of epochs to
reach 1% of convergence of classification score
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(c) Great Hall SWIR F1 classification score
after convergence
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(d) Great Hall SWIR number of epochs to
reach 1% of convergence of classification score
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(e) Mining SWIR F1 classification score after
convergence
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1% of convergence of classification score

Figure 5.11 – Transfer learning results: Comparison of pre-training and training from
scratch for different architectures. For the Great Hall VNIR dataset, the CNN was
pre-trained on the VNIR composite dataset (Table 5.5). For the Great Hall SWIR
and Mining SWIR datasets, the CNN was pre-trained on the SWIR composite
dataset (Table 5.5). The horizontal axis gives the number of convolutional (conv)
layers and the number of fully connected (fc) layers used in the network.
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The architecture results (Figure 5.11) show that the training set size used was suffi-
cient enough for the classification error to be the same for pre-training and training
from scratch, however, the time until convergence differed between the two initialisa-
tion approaches. The key observation was that the convergence time for the networks
that were pre-trained was less sensitive to the architecture than the networks trained
from scratch, where there was an optimal architecture for fastest convergence time.
For all datasets, the results show that the fastest convergence time comes from train-
ing a network with four convolutional and four fully connected layers from scratch,
and then increasing the network to five layers results in a decrease in convergence
time. However, when using pre-training, five layers can be trained without noticeably
increasing the convergence time.

To further show the generality of the performance gains from transfer learning regard-
ing CNN architecture, a spectral-spatial network for hyperspectral classification was
evaluated. The architecture was based on Yang et al. (2017), where there were sep-
arate spectral and spatial CNN branches that merged together with fully-connected
layers before the softmax layer. This particular architecture works on the principle
of learning the low-level spectral and spatial features individually and then learn-
ing the higher level dependencies between them, rather than simply learning filters
which convolve in the spatial and spectral dimensions in the hypercube, where low-
level dependencies are learnt. The pre-trained networks learnt in this chapter can be
used to initialise the parameters of the spectral CNN branch of the spatial-spectral
network with very little adjustment. The parameters of the spatial branch and the
fully connected layers that merge the spectral and spatial CNNs were initialised ran-
domly. Minor adjustments made to the architecture from Yang et al. (2017) were
the substitution of the spectral branch with the pre-trained VNIR composite network
architecture, and the increase in spatial filter size from 3×3 to 5×5 due to the higher
spatial resolution of the field-based images. A spatial-spectral network was trained
on a small number of samples collected from the Great Hall VNIR dataset (100 and
500 samples per class), and only allowed to optimise for 50 epochs. The results of
pre-training the spectral CNN branch and training it from scratch were compared,
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(a) 100 training samples per class.
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(b) 500 training samples per class.

Figure 5.12 – Transfer learning results: Comparison of pre-training and training from
scratch for a spectral-spatial network. For the pre-trained case, the spectral CNN
branch was pre-trained on the VNIR composite dataset (Table 5.5) and the spatial
CNN branch and fully connected layers were randomly initialised. All networks
were optimised for 50 epochs. Spatial-only and spectral-only results were included
for comparison.

using the improved Xavier method (He et al., 2015) as before.

The results (Figure 5.12) show that with 100 training samples, there was a perfor-
mance increase of about 5% in the spectral-spatial network when the spectral CNN
branch was pre-trained. In the 500 training sample case, the classification score of
learning all of the parameters from scratch was already too high, and so the pre-
training barely improved it any more. Although the results of only using the spectral
networks were very good, there was a small improvement in the results when the
spatial texture information was added.

5.4.3 Evaluation of Spectral Relighting Augmentation

The spectral relighting augmentation strategy proposed to improve CNN performance
when the number of training samples is limited was evaluated using three outdoor
field-based datasets: Great Hall SWIR, mining timelapse and Gualtar steps. These
datasets comprise a variety of classes and illumination conditions. For the evaluation,
separate CNNs were trained on two sets of labelled training data. One set (referred
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to as ‘comprehensive’) was collected from both sunlit and shaded regions of the im-
age, and also had a large spatial coverage such that it best represented the variation
in scene geometry and incident illumination. The second labelled training dataset
(referred to as ‘limited’) was only collected in sunlit regions and the spatial coverage
was small - limited to a patch (red squares in Figures 5.14a and 5.15b), such that
there was a very poor representation of the scene geometry and incident illumination.
Networks were trained on the limited dataset using the proposed data augmenta-
tion. Their performance was compared to networks that were trained on the limited
and comprehensive datasets without any augmentation. The results of the networks
trained on the comprehensive training data can be seen as roughly an upper bound for
the results of training on the limited datasets. The performance of the CNN trained
on the limited data, both augmented and not augmented, was compared against other
classification approaches trained on the limited data including SAM (Yuhas et al.,
1992), an SVM (Melgani and Bruzzone, 2004), and a CNN trained on spectra pro-
jected into an illumination invariant space using a log-chromaticity method (Drew
and Salekdeh, 2011). SAM is insensitive to differences in brightness between the
training data and the target data. For the mining timelapse dataset, networks were
trained on the 13:30 image only.

To evaluate the classifiers, test set sizes of roughly 225000, 90000 and 230000 pixels
spectra were chosen for the Great Hall, mining timelapse and Gualtar steps datasets
respectively. The number of training examples was varied logarithmically between
100 and 1000 examples per class (5 increments: 100, 178, 316, 562, 1000). The lower
bound was selected in order to demonstrate the performance of CNNs with spectral
relighting augmentation under the condition of limited labelled training samples. The
upper bound was selected to demonstrate its performance in scenarios where more
labelled training data is available. Only the wall, brick and grass classes were used
from the Gualtar steps dataset as not enough pixels from the cement class could be
labelled. For the mining timelapse dataset, the two shale classes were combined into
one class due to a lack of ground truth data for the distributions of the individual
classes. Ten candidate terrestrial sunlight-diffuse skylight ratios were generated for
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the augmentation such that each pixel spectra was relit ten times, with roughly half of
those relightings being to shadow and half remaining sunlit but with different orienta-
tions. This expanded the training dataset to 11 times its original size. The validation
dataset consisted of 50 examples per class, sampled with the same restrictions as the
training data (i.e. limited or comprehensively). The mean and standard deviation
for five randomly initialised networks was recorded.

Unless otherwise stated, all data passed to the CNN were in DN form and pre-
processed using the zero-wavelength technique (described previously). So that one
of the cases maintained convention with the remote sensing community, the Gualtar
steps dataset was pre-processed with flat-field correction, such that it was normalised
to apparent reflectance. Data used by the SVM and SAM classifiers for all datasets
were normalised to reflectance using flat-field correction as this was found to be the
best pre-processing method in preliminary experiments.

The results (Figure 5.13) show the impact of the spectral augmentation with different
amounts of training data. A visualisation of some of the results in image form is also
shown (Figures 5.14, 5.15, 5.16). The results from all three datasets showed that
there was a clear advantage to augmenting the labelled data used to train the CNN.
The CNN achieved better classification scores with augmentation in comparison to not
using augmentation for all training set sizes and all datasets for the limited case, with
most of the gap between training the CNN with limited and comprehensive training
sets being bridged. Regions in shadow that were not included in the training set
were misclassified by the CNN when trained on the non-augmented data, but mostly
classified correctly by the CNN when trained on the augmented data. The results
of training with the augmented data were also superior to the CNN trained on data
that was projected into an illumination invariant space (Drew and Salekdeh, 2011).
The SAM and SVM classifiers performed comparably to the augmented CNN on the
mine face and the SAM classifier also performed comparably on the Gualtar steps
datasets. Both of these datasets had quite discriminative classes. However, the SAM
and SVM classifiers performed significantly worse on the Great Hall SWIR dataset
which had more spectrally similar classes. The performance of the augmented and
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(a) Great Hall SWIR.
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(b) Mining timelapse (13:30).
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(c) Gualtar steps.

Figure 5.13 – Spectral relighting augmentation results: Results showing the benefit of
training a CNN with the proposed data augmentation approach. The performance
of the augmented CNN was compared with other approaches. ‘Limited’ indicates
that a classifier was trained on localised, well-lit regions of the image, and ‘compre-
hensive’ indicates that a classifier was trained on the whole image (both well-lit and
shadowed regions, see Figures 5.14a and 5.15b). The number of training samples
was varied logarithmically between 100 and 1000, and the mean and standard de-
viation of the F1 classification score was reported for three different hyperspectral
datasets.

non-augmented CNN as the amount of training samples was increased, was relatively
consistent for the Great Hall SWIR and Gualtar steps datasets.

Figure 5.17 shows the improvement that augmented training data provided specif-
ically in the shadowed and sunlit areas for two of the Great Hall classes. In both
sun and shadow, most of the gap between training the CNN with limited and com-
prehensive data was bridged by the augmentation. Also, in contrast to the SVM,



5.4 Experimental Results 155

(a) False colour image of Great Hall building with
example of limited sunlit regions where labels are ex-

tracted.
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(c) With augmentation.

Figure 5.14 – Spectral relighting augmentation results: CNN classification of the
Great Hall using 1000 training examples per class, drawn from the limited regions
(red squares).

(a) Mine face image captured at 11:30. (b) Mine face image captured at 13:30.
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Figure 5.15 – Spectral relighting augmentation results: CNN classification of the
mining timelapse using 100 training examples per class drawn from the limited
regions (red squares). The same network was used to classify the image at both
times of the day. The blue line is a rough class boundary identified by geologists.

which performed well on the sunlit regions for these two classes but poorly on the
shadowed regions, the augmented CNNs performance in the shadow approached its
performance in the sun. The CNN trained on the illumination invariant projection of
the data (Drew and Salekdeh, 2011) had similar performance in sunlit and shadowed
regions but was significantly worse than the augmented CNN, whose performance in
the shadow surpassed all other methods trained on limited data.
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Figure 5.16 – Spectral relighting augmentation results: Improvement in CNN per-
pixel classification of a hyperspectral image with a shadow when using spectral
relighting augmentation. Training labels were extracted from either the entire
image or only sunny areas. Results shown for the Gualtar steps dataset using 316
training examples per class.
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Figure 5.17 – Spectral relighting augmentation results: F1 classification score of Great
Hall classes in shadow and sunlight, for several different methods, trained on limited
regions and the whole image (comprehensive), for training set size 100 samples per
class.

Temporally, the CNN trained with augmentation exhibited greater invariance over
the day in comparison to all other approaches, given by the reduced percentage of
pixels that changed classification label between 11:30 and 13:30 (Figure 5.18).

Figure 5.19 shows an example of the valid candidate pairs of sun-shadow pixels from
the same material that the image based algorithm automatically selects for the min-
ing timelapse image. Many of the pairs fall along the shadow boundaries. Figure 5.20
shows a comparison between using the automatic approach of Section 5.3.2 and man-
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Figure 5.18 – Spectral relighting augmentation results: Percentage of pixels that
changed classification label from the 11:30 to 13:30 mine face images for several
different methods trained on localised regions and the whole image for different
sized training sets.

Figure 5.19 – Spectral relighting augmentation results: Example of the valid candi-
date pairs of sun-shadow pixels found on the mine face using the automated image
based approach for determining the diffuse skylight-terrestrial sunlight ratio. Re-
sult shown for the 13:30 mining timelapse image.

ual selection of points for extracting the ratio between sunlit spectra and shadowed
spectra used in 5.6 to estimate the terrestrial sunlight-diffuse skylight ratio for the
Great Hall SWIR dataset. The manually selected points were carefully chosen to be
on shadow boundaries of the same material and with the same geometric orientation.
Hence, the ratio calculated using these points can be considered a gold-standard. The
ratio extracted with the automatic approach had a similar shaped curve, but its mean
value was lower than the gold-standard. Once the terrestrial sunlight-diffuse skylight
ratio is found, it can be used for relighting. Figure 5.21 shows an example from the
Gulatar steps image of how close a sunlit spectrum augmented to be in shadow using
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Figure 5.20 – Spectral relighting augmentation results: Comparison of automatic
extraction of LA/LA′ in 5.6 using the approach in Section 5.3.2 with extraction
using manually selected points from the image, for the Great Hall SWIR dataset.
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Figure 5.21 – Spectral relighting augmentation results: Example showing the accuracy
of the spectral relighting augmentation for the Gualtar steps dataset.

relighting is to the spectrum in shadow.

Figure 5.22 shows that, for all three datasets, the spectral relighting augmentation of
the training data improved the results regardless of whether the data was in the raw
DN form or had been normalised to reflectance. It also shows that the spectral re-
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Figure 5.22 – Spectral relighting augmentation results: Comparison of training CNN
with augmented and non-augmented spectra, in reflectance and DN form, for train-
ing set size 500 samples per class. The classifiers were trained on localised, well-lit
(limited) regions of the image (see Figures 5.14a and 5.15b).
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Figure 5.23 – Spectral relighting augmentation results: Comparison of training CNN
with augmented and non-augmented spectra, with different architectures, for train-
ing set size 500 samples per class. The classifiers were trained on localised, well-lit
(limited) regions of the image (see Figures 5.14a and 5.15b). Conv indicates the
number of convolution layers and fc indicates the number of fully connected layers.
The Great Hall SWIR dataset was used. Zero-wavelength pre-processing was used.
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Figure 5.24 – Spectral relighting augmentation results: Results showing the benefit of
training other classifiers (SVM and SAM) with the proposed data augmentation.
The classifiers were trained on localised, well-lit (limited) regions of the image (see
Figures 5.14a and 5.15b). The number of training samples was varied logarith-
mically between 100 and 1000, taken from the limited regions, and the mean and
standard deviation of the F1 classification score was reported for the Great Hall
dataset. The spectra was normalised to reflectance.

lighting augmentation improved the CNNs performance for several different numbers
of convolutional and fully connected layers used (Figure 5.23). That is, the success of
the relighting augmentation was not dependent on the method of pre-processing or the
architecture. Figure 5.24 shows that the improvement in classification performance
was not limited to CNNs. The classification accuracy of SVM and SAM classifiers
also improved when their limited training datasets were augmented, demonstrating
that the relighting approach is agnostic to the classifier.

The improvement in a spectral-spatial CNN classifier when spectral relighting aug-
mentation is used, was evaluated. The same spatial-spectral network architecture
used to evaluate transfer learning (Figure 5.12) was used, with the spectral branch
trained via spectral relighting augmentation. The spatial branch was not trained with
any augmented data. The evaluation was done with the Great Hall SWIR dataset,
chosen because the different classes have a distinguishable texture, making it a suit-
able dataset to incorporate spatial information. A limited training set size of 100
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Figure 5.25 – Spectral relighting augmentation results: Comparison of relighting aug-
mentation versus no augmentation for a spectral-spatial network, on the Great
Hall SWIR dataset. For the augmented case, the spectral CNN branch was trained
with spectral relighting augmentation and the spatial CNN branch and fully con-
nected layers were trained normally. All networks were optimised for 200 epochs.
Spatial-only and spectral-only results were included for comparison.

samples collected in a fully illuminated, localised region was used for training. The
CNN was allowed to optimise for 200 epochs. The results compare using spectral
relighting augmentation on the spectral branch of the network and not using any
augmentation. All learnable parameters were initialised from scratch.

The results (Figure 5.25) show that augmentation improved the performance of a
spectral-spatial architecture, when the architecture was set up as similar to Yang et al.
(2017). There was only a minor increase in performance between the spectral and
spectral-spatial networks, for both the augmentation case and the non-augmentation
case. The increase in performance when using augmentation with the spatial-spectral
network was very similar to the increase in performance when using augmentation
with the spectral-only network.

The final set of spectral relighting augmentation results compared the CNN perfor-
mance when the spectra was augmented using the terrestrial sunlight-diffuse skylight
ratio found by randomly sampling the parameters of the SMARTS atmospheric mod-
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Figure 5.26 – Spectral relighting augmentation results: Comparison between augment-
ing the spectra with different methods for extracting the terrestrial sunlight-diffuse
skylight ratio. The augmented (SMARTS) approach used a ratio generated by ran-
domly sampling the parameters of the SMARTS atmospheric modeller (as in Sec-
tion 4.2) and the augmented (image-based) approach used throughout Section 5.3
estimates the ratio from the image. The no augmentation case is also displayed.
CNN classification of the Great Hall using 500 training examples per class, drawn
from the limited regions (red squares). Zero-wavelength pre-processing was used.

Table 5.6 – Spectral relighting augmentation results: Quantitative form of the results
in Figure 5.26, with the mean and standard deviation reported for five repetitions.

Method Roof Building Grass Path Tree Sky Mean

No augmentation 54.76±8.90 87.12±4.10 97.70±3.19 92.54±6.16 63.37±18.54 82.07±16.00 79.59±4.38
Augmented
(SMARTS)

62.14±13.67 88.71±4.80 89.19±9.12 81.16±11.67 85.97±19.90 90.26±3.73 82.91±5.72

Augmented
(image-based)

82.48±3.01 94.76±1.78 94.73±3.83 91.98±1.90 97.78±0.54 93.54±4.57 92.55±1.55

eller, against estimating the ratio from the image using the approach proposed in
Section 5.3.2. The results (Figure 5.26 and Table 5.6) show that the CNN using the
atmospheric modeller approach (used in Section 4.2) incorrectly classified the shaded
regions in the image, and the overall classification accuracy was lower. The CNN
which used the proposed image based approach to obtain the terrestrial sunlight-
diffuse skylight ratio performed much better in the shaded regions of the image.

5.4.4 Analysis of the Learnt Filters

To attempt to get a better intuition for what the filters in these networks are learning
from the spectral data, ten of the first layer filters were plotted (Figure 5.27) from the
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Figure 5.27 – Filter analysis results: Visualisation of the first 10 filters of the first
layer of the network fine-tuned on the Great Hall VNIR dataset. The top row is
the first five and the bottom row is the last five.

VNIR composite CNN after it was fine-tuned on the Great Hall VNIR dataset for the
transfer learning experiment Section 5.4.2. Each filter attempts to capture a unique
characteristic in the spectrum. It is difficult to gauge from the filters alone what sort
of features they are capturing. Thus, an example spectra from each of the six classes
in the Great Hall VNIR dataset was plotted (Figure 5.28) along with the activation
of the ReLU units associated with the filters in Figure 5.27 when convolved over each
spectrum. In a similar set of plots, the third convolutional layer activations for the
Great Hall VNIR were also shown (Figure 5.29).
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Figure 5.28 – Filter analysis results: Visualisation of where in the spectrum is acti-
vated by the first 10 filters of the first convolutional layer of the network fine-tuned
on the Great Hall VNIR dataset. Each greyscale bar corresponds to a filter, and is
aligned with the spectrum above it to show how the reflectance at each wavelength
activates each filter. The whiter the region of the greyscale bar, the more that
part of the spectrum is activating that particular filter. The original reflectance
spectrum is dashed and the pre-processed spectrum is solid. Note that there is no
padding on the edges of the spectrum, so the filtering does not extend to the end
of the spectrum and does start at the beginning.
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Figure 5.29 – Filter analysis results: Visualisation of where in the spectrum is acti-
vated by the first 10 filters of the third convolutional layer of the network fine-tuned
on the Great Hall VNIR dataset. Each greyscale bar corresponds to a filter, and is
aligned with the spectrum above it to show how the reflectance at each wavelength
activates each filter. The whiter the region of the greyscale bar, the more that
part of the spectrum is activating that particular filter. The original reflectance
spectrum is dashed and the pre-processed spectrum is solid. Note that there is no
padding on the edges of the spectrum, so the filtering does not extend to the end
of the spectrum and does start at the beginning.
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5.5 Discussion

The following section provides an analysis of the results of Section 5.4.

5.5.1 Evaluation of Transfer Learning

The kernels in the first convolutional layers filter the spectrum. Hence, the choice
of width of the filters in the first layer is important as a bigger filter provides more
context, but if it is too big it can drown out important absorption features. Ideally, it
must be of a sufficient size to capture the most significant features. The results (Fig-
ure 5.8) suggest that the best filter size is 120 nm as it had the shortest convergence
time and similar classification error to the others. Vibrational absorption features,
which tend to be the most diagnostic features in the spectrum, typically occur over
a shorter width relative to electronic absorption features (Clark, 1999). A 120 nm
filter is a good size for capturing such features. For example, in the mining dataset
kaolinite spectra has an aluminium hydroxide absorption feature that occurs at about
2.2 µm, with a width that roughly matches 120 nm. If the filters were smaller than
this, then the broader electronic features would be captured poorly, and if they were
wider then perhaps the critical vibrational features would not be captured as well.

Regarding the wavelength interval results (Figure 5.8), it is important to use a res-
olution which balances the issues associated with up-scaling and down-scaling. For
example, the Salinas dataset, which was used to train the SWIR pre-trained network,
has a relatively coarse resolution (10 nm). If the selected wavelength interval is too
small (e.g. 2 nm), then errors could be introduced when the coarser data used for
pre-training is up-sampled to much finer resolutions. This was seen in the conver-
gence time results for the mining dataset. Conversely, if too big, as is the case with
16 nm, then the performance drops, as much of the fine spectral detail in the data is
lost once it is interpolated, as seen in the convergence time results for the Great Hall
SWIR and mining datasets. These considerations are also applicable to the datasets
being used to do the fine-tuning. For this reason, the mid-length resolutions of 4− 8
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nm are determined to be the safest resolutions to use for the data to pre-train and
fine-tune the network.

The improvement in convergence time that was observed when pre-training rather
than initialising randomly (Figure 5.9) is related to the change (as a percentage)
in the parameters in each of the layers from their initialisation until convergence
(Figure 5.10). As the networks being trained from scratch were initialised randomly,
there was a large change in the parameters in all of the layers before they converge.
The networks that were pre-trained and then fine-tuned experienced a large amount of
change in the final layer. This was expected as the final layer was randomly initialised
due to the fine-tuning dataset having a different number of classes to the pre-training
dataset, and hence a different number of output neurons. However, all of the other
layers, which were initialised using the parameters of the pre-trained network, barely
changed at all over the optimisation. Hence, the optimisation required less time to
reach convergence.

The fact that the pre-trained filters did not change much when being used for a
completely new dataset, suggests that they are quite generic and pick up absorption
characteristics in a spectrum that are not specific to any one class. This is useful
for transfer learning because it means that these features can be learnt once, else-
where, and then transferred to new scenarios as required. For example, the mining
dataset contains completely different classes to the classes of spectra used to pre-train
the CNN, yet the filters were still transferable because the pre-training produced an
improvement in the results. Interestingly, filters learnt on the SWIR pre-training
dataset, which has no whaleback shale samples, have transferred to the mining prob-
lem and are detecting the subtle diagnostic absorption features that discriminate the
different classes of shale. With that said, there was a larger change in the filter
parameters in each layer for the mining dataset than the Great Hall datasets (Fig-
ure 5.10). This was because of the very different composition of the materials in
the mining dataset compared to the materials in the pre-training dataset. However,
the change was still small with respect to the change in parameters when the filters
were learnt from scratch. It is also very interesting to see that the filters learnt from
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the airborne data were transferable to classification of data acquired from field-based
platforms. This was unexpected because the airborne spectra were integrated across
a much larger area of ground and therefore are likely to be spectral mixtures. Spectra
collected from ground-based platforms are more pure as the sensors scan the scene
with a finer spatial resolution. It is suspected that the filters learnt by the CNN
transfer well between low spatial resolution airborne data and high spatial resolution
ground-based data because they are learnt on localised parts of the spectrum rather
than the entire spectrum. If a fully-connected network was used where filters were
learnt from the entire spectrum and there were no convolutions, then it is presumed
that the filters would be less useful when fine-tuning on ground-based data.

The architecture experimental results (Figure 5.11) showed that it was possible to
train deeper networks (e.g. five layers instead of four) without the associated increase
in convergence time when using transfer learning. This is often an advantage, as
was the case for the Great Hall VNIR dataset as the five layer architecture had a
slightly higher classification score than the four layer architecture. Nevertheless, a
disadvantage of transfer learning is that the architecture of the network being trained
on the target data is constrained to be the same as the one that was pre-trained for
all of the layers to be transferred. However, this was not a limiting constraint, as
seen in the results, which show that the architecture choice had minimal impact on
the classification score. It was also shown that transfer learning improved the results
when using a spectral-spatial architecture (Figure 5.12). The results were consistent
with those in Figure 5.9, as the biggest benefit to using transfer learning came from
performance increases when there was a small number of training samples as well
as not having to train for as long because the network was being fine-tuned rather
than trained from scratch. Thus, good results (99%+) were achieved with only 100
training samples per class and 50 epochs. Interestingly, for the 100 training sample
case, the performance improvements from transfer learning for the spectral network
were bigger than the performance improvements of adding the spatial component to
the network architecture. This suggests that the spectral knowledge transferred from
the airborne composite dataset was of greater value for the ground-based classification
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task than the additional ground-based spatial information.

5.5.2 Evaluation of Spectral Relighting Augmentation

All of the results indicated that the spectral relighting augmentation was effective at
improving the training of CNNs with limited amounts of data. In Figure 5.13 and
Figure 5.17, most of the gap between training the CNN with limited and comprehen-
sive data was bridged by augmenting the limited training data. These results suggest
that the augmentation allowed the limited training data to capture the variability as
if pixels from all over the image were labelled - covering areas with different geom-
etry (there is improved performance for the classes in sunlight in Figure 5.17) and
occlusions (e.g. Figure 5.21 and the improved performance for the classes in shadow
in Figure 5.17). Despite this, in Figure 5.14, there was still some sporadic misclas-
sification of pixels in the shadow. It is suspected that this is potentially because
of increased prevalence of indirect illumination from nearby parts of the wall. For
simplicity, indirect illumination was not incorporated into the outdoor model (Eind
in equation 2.1 was set to zero) and hence the spectra has not been augmented to ac-
count for this type of variability. However, the impact of the indirect illumination on
the image was minimal in comparison to the impact of the shadows. Also, despite the
diffuse assumption made in the model (2.2), the results show that this is not a par-
ticularly strong constraint on the data, with each dataset possessing non-Lambertian
materials.

The consistent performance of the CNNs as the number of training samples varied
was expected (Figure 5.13). This is because the training examples were being sampled
from such a small region of the image such that increasing them allowed the CNN to
capture very little extra variability. Since the augmented CNN simulated the missing
variability there was little dependence of the classifier’s performance on the number
of training examples.

The SAM classifiers poor performance on the Great Hall dataset (Figure 5.13a) sug-
gests that its use may be limited to scenarios with very spectrally distinguishable
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classes (such as those in the Gualtar steps dataset). Although SAM is insensitive to
brightness, it failed to correctly match shadowed spectra to their sunlit equivalents in
the reference library (comprised of the limited training set). This is due to the change
in shape that a shadowed spectra undergoes, resulting in large angles between shad-
owed and sunlit spectra from the same class. This may not have been the case for the
Gualtar steps and Mining timelapse datasets, because even though there were large
angles between the shadowed and sunlit spectra, they were spectrally distinguishable
enough that corresponding classes maintained the smallest angle of separation. The
proposed CNN was trained to be invariant to shadows and is able to learn more com-
plex mappings due to its highly non-linear architecture, and hence could be trained
to encompass the very subtle differences in spectra that are not easily distinguishable.

The method for extracting points in order to obtain the ratio between sunlit spectra
and shaded spectra required for estimating the terrestrial sunlight-diffuse skylight
ratio (Section 5.3.2), was compared against a gold-standard ratio in Figure 5.20 ac-
quired by manually selecting points along shadow boundaries. Whilst the curve shape
of the automatically extracted ratio matched the manually selected one, the overall
mean was slightly lower. This could be because of the outlier pairs of points that
contain materials under the same lighting conditions (rather than one under shadow
and one in sunlight). The mean ratio of these pairs across all wavelengths is closer
to unity and hence the overall ratio was pulled down. However, this did not have a
significant impact on the performance of the augmented CNN because the actual ter-
restrial sunlight-diffuse skylight ratio is a scalar multiple of the extracted ratio, and
so the extracted ratio gets multiplied by a wavelength-independent constant in the
relighting process anyway, reducing the importance of the overall mean. Hence, the
most important thing is that the shape of the curve is accurate, which in Figure 5.20
it is.

The image based method ratio extraction method relies on pixels from a pseudo RGB
image projected into an illumination invariant space in order to determine which pairs
contain pixels from the same material. It is possible that certain materials that are
distinguishable in the hyperspectral space may look similar in the pseudo RGB image
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and hence will be mistaken as belonging to the same class. Thus, there would be
some invalid pairs left over after the refinement process. Hence, it is important that
the majority of pairs are valid so that the impact of these invalid pairs is smoothed
when the average is taken. If there are too many invalid pairs, it is possible to project
points from the entire spectrum instead of the pseudo RGB image onto the invariant
axis. This would ensure better class discrimination and fewer invalid pairs.

The image based approach for estimating the terrestrial sunlight-diffuse skylight ratio
was compared against an atmospheric modeller approach (Figure 5.26 and Table 5.6).
The better performance of the CNN with the image based approach indicates that it
was able to model the appearance of the spectra in shadow better than if the param-
eters of the atmospheric modeller were randomly sampled. This result was expected
given that the modeller requires many parameters to be sampled, generating many
possible ratios with the hope that the correct one appears, whereas the image based
approach only requires the sampling of a geometric-based scaling parameter. Whilst
the atmospheric modeller approach was not effective for use with the spectral relight-
ing augmentation for the CNN classifier, it was effective in Section 4.2 for augmenting
the input layer of the RSA-SAE. This is because, unlike the CNN approach, it did not
rely on the correct ratio being generated. It is possible to also use the image based
approach to do the relighting in Section 4.2 as well, however, this would limit the
invariance of the RSA-SAE to scenarios with the terrestrial sunlight-diffuse skylight
ratio that was used for training. It is more beneficial to use the atmospheric modeller
for the simulating many possible ratios for relighting, as this makes the RSA-SAE
work for many different scenarios, including a temporally variable dataset where the
atmospheric conditions change.

Figure 5.18 shows that the CNNs learnt are not only invariant to illumination vari-
ability across the image, but can also be invariant across different capture times. The
images in figure 5.15a and 5.15b undergo a change in the illumination conditions due
to shadows moving in the image as the day progressed. The relighting augmentation
simulated how the pixels would appear in shadow with many different possible ge-
ometries, thus maintaining invariance even when the shadows moved in the image.
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However, if the temporal change in the illumination was related to a change in the
atmospheric conditions, then the CNN would not be invariant and would have to be
re-trained. This is because the relighting augmentation is done using the terrestrial
sunlight-diffuse skylight ratio extracted from the training image - the consequence
being that the classifier does not work for fundamentally different ratios. If the at-
mospheric conditions change, then so do the illuminants themselves, and hence there
is a new ratio. It is highly likely that across multiple days the atmospheric conditions
will change and hence a new terrestrial sunlight-diffuse skylight ratio will have to be
estimated in order to do the relighting and train the CNN. As mentioned before, this
is not a problem for the RSA-SAE.

The results show the generality of the approach in terms of reflectance normalisation
(Figure 5.22), architecture (Figures 5.23, 5.25) and classifier (Figure 5.24). This is
quite intuitive, as it is expected that whatever pre-processing, classifier or architecture
is being used, expanding the variability of the training data will always improve the
results.

5.5.3 Analysis of the Learnt Filters

Figure 5.28 reveals what features of each class spectrum are activating the filters in
Figure 5.27. In the first layer, very simple characteristics like positive and negative
gradients are activating the filters. The convolving filters are not wavelength depen-
dent, which can be seen by the way that some of them are active for gradients at
the beginning of the spectrum of some classes and those same filters are active for
gradients occurring in the latter of the spectrum of other classes. An example of
this is filter 7, which is activated by features occurring at the shorter wavelengths
of the tree spectrum and the longer wavelengths of the sky spectrum. This shows
that the weight sharing that occurs in convolutional neural networks is justified for
hyperspectral data, as many of the absorption features that the network attempts to
capture are not wavelength dependent. The filters in the third layer (Figure 5.29) are
activated by more complex shapes in the spectrum and are more class specific than
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the first layer filters. This is expected as they are actually non-linear combinations
of filters from the first two convolutional layers. These filters are also detecting much
finer features in the spectrum. For example, despite the spectrum of grass and tree
being very similar, the activation response of applying the third filter in the third
layer to both spectra is different. The small peak that occurs at around 550 nm is
marginally more prominent in the grass spectrum, and this causes filter 3 to activate
at this region. However, filter 3 does not activate at the peak in the tree spectrum.
Hence, this filter has learnt to differentiate these two very similar classes.

5.6 Summary

CNNs are achieving state-of-the-art classification results on many benchmark com-
puter vision datasets. They require a significant amount of labelled training data,
which is not as readily available when they are being used for hyperspectral applica-
tions due to the difficulties in annotating the data.

In this chapter, a method was proposed to train CNNs for hyperspectral applications
where there is a limited amount of training data available. The method utilised data
augmentation based on spectral relighting to expand the variability that the labelled
data captured, and transfer learning to leverage knowledge from a composite of other
well-labelled datasets. These approaches made it possible to significantly improve
the performance of CNN classifiers and also reduce the time required to train them.
Links were also made between the physical spectra and the filters learnt in the layers
of the CNN to get a more intuitive understanding of what the CNN is learning.

In Chapter 6, the methods proposed in Chapter 4 and Chapter 5 are utilised in a
single pipeline to show how a scene can be mapped with reasonable accuracy given a
hyperspectral image with no initial annotated data.



Chapter 6

Case Study: A Unified Pipeline

This chapter presents an example of how to practically use several of the elements
proposed in this thesis in a unified pipeline. The problem scenario addressed is the
clustering of a hyperspectral image without any prior annotations. Usually labelled
data is available to train a classifier, and Chapter 5 proposed techniques for dealing
with scenarios where the amount of labelled data is limited. However, in some cases, it
is desirable to map a scene when there is no training data available. This could be an
initial undertaking that preludes the collection of data and a supervised classification
process.

This pipeline will demonstrate how some of the contributions proposed in this thesis
can be used together to solve a difficult task. It will utilise techniques from Chapter 4
and Chapter 5. The problem scenario is described in more detail in Section 6.1,
followed by the pipeline in Section 6.2 and some experimental results in Section 6.3.

6.1 Problem Definition

A pipeline is constructed in order to cluster each pixel of a hyperspectral image of
an open-cut mine when there is no labelled training data or knowledge of classes
available. In this problem, the only prior knowledge available is the number of classes
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in the scene. Everything else, including the names and whereabouts of the classes
in the image, is unknown. Hence, if using a spectral library-based approach, many
classes will have to be searched through in order to estimate which ones are in the
scene, and even then, it is highly unlikely that the reference data in the library exhibits
the variability of the spectra in the image.

The mining timelapse data (Section 3.1) is used as the label-less hyperspectral image.
Labelled data for this image does exist, however, it will only be used to evaluate
the results. The VNIR image has 220 channels in the range 401− 970 nm, with the
geological classes of Martite and Shale and some sky in the background (Figure 6.1).
Hence, there are three predominant classes in the image. As evidenced in the spectra
of Figure 6.1, separating the sky from the geological classes is a trivial task, although,
separating the two geological classes is difficult due to their similarity coupled with
illumination variability across the scene. Usually these classes are separated using
their reflectance in the SWIR (Murphy et al., 2012), but it is shown that this pipeline
is capable of separating them in the VNIR.

In real-world applications for autonomous mining, hyperspectral images of open-cut
mines can reveal the material distribution on the surface. Due to the rocks uniformity
of colour and texture, it can be difficult to label data from these images via visual
inspection for training learning algorithms. Experts would be required to analyse
spectrometer data samples in order to confidently assign class labels. In autonomous
mineral exploration, it is highly desirable to bypass this entire process. For example,
a robot exploring Mars might be looking for minerals, and because there is no one on-
site to analyse the samples it is difficult to annotate the data. Similarly, when sensing
in inaccessible or dangerous locations such as unpredictable volcanic terrain, it is
hazardous to annotate data or collect samples to be later studied. Thus, it is beneficial
to be able to estimate the spatial distributions of materials in a hyperspectral image
without requiring labelled data.

The spectral data in the image of the mining scene has variability due to the inter-
action of incident light with its complex topology. There are many shaded regions
throughout the image. Classifying or clustering spectra with significant variability is
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Figure 6.1 – The mining 11:30 timelapse image with ground truth areas highlighted.
An example spectra from each class is shown. The similarity of the shale and
martite classes coupled with the within-class variability of the spectra across the
scene makes this is a difficult clustering problem.

difficult. Even if there was prior knowledge of which classes were in the scene, the
variability would still make it difficult to accurately classify the hyperspectral image
(e.g. using SAM with a reference library).

Note that in the mining timelapse dataset there are two similar variants of shale.
However, for the experiments in this chapter, these two classes are merged together
to make one shale class, due to the lack of ground truth data for validation.

6.2 Pipeline

There are two main parts to this pipeline. Firstly, an unsupervised process is used
to categorise the data and extract some class representative points. This process
only extracts points of high confidence, and hence does not capture the variability
of the class. But it removes the need for any spectral libraries or reference data,
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and doesn’t require knowledge of the labels of the classes in the scene. Once high
confidence class representatives have been extracted from the scene, a self-supervised
process is used to predict the class association of all pixels in the image. Within
this process, the variability in the data, due to illumination and the scene’s complex
topology, is accounted for. This is essentially clustering the data a second time, but
this time, more accurately. Note that whilst supervised algorithms are used, the
entire process requires no labelled data. The data to train the supervised algorithm
comes from the unsupervised process (hence self-supervised).

The result of the pipeline is a function which can produce a per-pixel thematic map of
the distribution of the classes in a hyperspectral image. The pipeline is summarised
in Figure 6.2.

6.2.1 Unsupervised Process

There are two DN images in the hyperspectral mining timelapse dataset, one captured
at 11:30 and one captured at 13:30. An RSA-SAE network (Section 4.2) is trained
on the hyperspectral data from the 11:30 image. Note that it could be trained on the
13:30 image, or data from both images, but the 11:30 image is selected to show that
the pipeline generalises to new images captured with different illumination conditions.
In doing this, a mapping is learnt from the high dimensional hyperspectral reflectance
image to a low dimensional, illumination invariant image. For the mining dataset,
the same process was used as in Section 4.3 to train the RSA-SAE, with the same
network architecture and parameters used. Hence, a 30 dimensional illumination
invariant representation is learnt.

The data in the illumination invariant feature space is clustered using k-means, search-
ing for three clusters (it is assumed that prior knowledge is available that there are
three classes in the image). Then, the dataset of high confidence class representatives
for training the classifier is built by automatically extracting the 200 points closest
to each of the three cluster centroids. The distance is measured using the Euclidean
distance. These 200 points have the highest confidence of belonging to each of the
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Figure 6.2 – A flowchart summarising the pipeline for clustering the pixels of a hy-
perspectral image without any prior labelled data.

classes in the scene. Hence, the dataset has 600 points in total.

6.2.2 Self-Supervised Process

The pre-trained composite VNIR network used in Section 5.4.2 is used to initialise
the parameters of a hyperspectral CNN. The hyperspectral CNN has an architecture
with the same general structure as those used in previous experiments (Section 5.1).
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This particular network has three convolutional and three fully connected layers.

The dataset automatically extracted from the high confidence points via the unsu-
pervised process is divided into training and validation data, with 180 training points
per class and 20 validation points per class. To train the CNN, data in DN format
is extracted in batches. Each batch is then augmented using spectral relighting as
described in Section 5.3, which expands the size of the batch by many times. The
augmented batch is then normalised to reflectance using flat-field correction, interpo-
lated to the spectral wavelengths used by the pre-trained network, and pre-processed
using the zero-wavelength approach (Section 5.2.2), before being input into the CNN.
Note that all of the parameters used in the spectral relighting augmentation are the
same as those used in the experiments in Section 5.4.3. Once the CNN is trained, it
can be applied to the remaining pixels in the image and to all of the other images in
the mining timelapse to produce thematic classification maps.

6.3 Results and Discussion

This section presents the results of using the pipeline in Section 6.2 to cluster the
mining timelapse images. An analysis of the results is also provided.

6.3.1 Implementation Specifications

The pipeline was implemented in MATLAB 2015b on a 64-bit computer with an Intel
Core i7-4770 CPU @ 3.40GHz × 8 processor and GeForce GTX 760/PCIe/SSE2
graphics card. All CNNs were trained and implemented with the matconvnet-1.0-
beta20 software package (Vedaldi and Lenc, 2015).

6.3.2 Results

The results at different stages of the pipeline for the unsupervised process are shown
in Figure 6.3. The invariant image (Figure 6.3b) visualises the representation of the
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(a) Pseudo RGB image.

(b) The image represented with one of the illumination invariant RSA-SAE features.

(c) The image after clustering in the RSA-SAE space.

(d) The points of highest confidence automatically extracted and used to train the CNN, chosen
due to their proximity from cluster centroids in the RSA-SAE space.

Figure 6.3 – Results from the different steps of the unsupervised process, in the
extraction of the annotated dataset for training the CNN. The results are from the
11:30 mining timelapse dataset.

hyperspectral image with one of the RSA-SAE features. It was easier to see the how
the materials are distributed across the mine face in the invariant image in comparison
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Figure 6.4 – The result of clustering in the original reflectance space.

to the pseudo RGB image, where everything is uniform in colour and texture. The
shadows in the invariant image were also far less prominent. The clustered image
(Figure 6.3c) aligned well with the ground truth information (Figure 6.1). The result
was far less affected by the illumination than if the data was clustered in the original
reflectance space (Figure 6.4). The high-confidence points that were automatically
identified by being closest to the cluster centroids (Figure 6.3d) appeared to belong to
the correct class (according to the boundary identified by geologists). These points,
which were used to train the self-supervised CNN, did not represent the different
classes under shadow.

The training dataset that was extracted using the unsupervised process was then used
to train a CNN in the self-supervised component of the pipeline. A visualisation of
applying the trained classifiers to the 11:30 and 13:30 images is shown in Figure 6.5
and the progression in classification score during optimisation is shown in Figure 6.6
for four different training strategies, using a test set of about 120,000 labelled sam-
ples from the 11:30 image. The four training strategies included a transfer learning
approach where the network was pre-trained from the VNIR composite network from
Section 5.4.2 (with no augmentation), an augmentation strategy where the parame-
ters were trained from scratch with spectral relighting augmentation, and a combined
approach of spectral relighting augmentation and pre-training the network from the
VNIR composite. A baseline approach with no pre-training or data augmentation
was also compared against for benchmarking.

The visualisation of the mining timelapse images with the CNN clustering result over-
laid showed good correspondence to the ground truth information and the geological
boundary. There was also insignificant change in the clustered pixels across the two
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(a) Clustered 11:30 image.

(b) Clustered 13:30 image.

Figure 6.5 – Images of the mineface captured at different times of the day but as-
signed categories with the same CNN, thus showing the generality of the pipeline.
Green represents martite prediction, purple represents shale prediction, and pink
represents sky prediction.

times. Most of the regions which had a significant change in the illumination condi-
tions between 11:30 and 13:30 remained in the same predicted cluster (Figure 6.5).

The result in Figure 6.6 compares the individual significance of each of the key el-
ements of the self-supervised process, that is, the transfer learning and spectral re-
lighting augmentation. When used on its own, in comparison to the baseline CNN,
the transfer learning via initialisation with a pre-trained network reduced the num-
ber of epochs required to reach convergence, and the F1 score at convergence was
also better. When the spectral relighting augmentation was used on its own, it took
more epochs for the optimisation to converge than the baseline, but the F1 score it
converged at was nearly perfect, significantly higher than the baseline. When using
both transfer learning and spectral relighting augmentation, the CNN converged to
a very good result with relatively few epochs. The F1 score was higher than both
the baseline and transfer learning only approaches, and was just under the spectral



6.3 Results and Discussion 183

0 200 400 600 800 1000

num epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
1 

cl
as

si
fic

at
io

n 
sc

or
e

baseline
transfer learning
augmentation
transfer learning + augmentation

Figure 6.6 – A comparison of the change in the F1 score as the optimisation progresses
for the different elements of the self-supervised process.

relighting augmentation-only result. The number of epochs required for convergence
was comparable to the transfer learning-only approach, and far fewer than the number
of epochs required for the spectral relighting augmentation-only result.

Table 6.1 – Runtime of the different stages of the pipeline.

Stage Processor Time

pre-train RSA-SAE CPU 60m 31s
train RSA-SAE CPU 14m 51s
apply RSA-SAE CPU <1s

clustering CPU 1s
train CNN GPU 23m 43s
apply CNN GPU 10s

6.3.3 Discussion

Converting the hyperspectral image into the illumination invariant RSA-SAE space
(Figure 6.3b) was critical for the success of the pipeline. When the data was clustered
in the original reflectance space (Figure 6.4), the shadows had a negative effect on
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the clusters, making them inaccurate representations of the class distributions on
the mine face. This is demonstrated by the correlation between the shape of the
clusters and the distribution of shadow on the image. It is possible to search for extra
clusters, such that the shadows effects become confined to dedicated clusters. The
problem with this is that it is essentially creating extra classes. If the self-supervised
learning were to be conducted using these extra clusters, it would be very hard to
automatically determine which clusters belonged to the same class or which clusters
were from shadows. However, by clustering in the illumination invariant space, the
number of clusters can be set to the number of classes in the scene, and the shadows
have almost no impact on the clustering accuracy, with shadowed and sunlit data
from corresponding classes being correctly clustered together (Figure 6.3c). The lack
of correlation between the image clustered in the illumination invariant space and the
distribution of shadows demonstrates the effectiveness of the RSA-SAE for finding
illumination invariant feature representations.

The points of high confidence that were close to the cluster centroids were all in sunlit
regions (Figure 6.3d), which is to be expected, as they were most similar to the mean
spectra of that cluster. This means that they do not capture the variability needed
to train a robust classifier. At this stage of the pipeline, the scenario was very similar
to those explored in Chapter 5, because there was a small amount of labelled training
data available that captured a limited amount of the variability in the scene. This
justified the importance of using the methods developed in Chapter 5 to classify the
entire scene correctly.

The results (Figure 6.5) show that when spectral relighting augmentation and trans-
fer learning were used with the CNN, the pixels were correctly grouped despite the
training data not capturing the variability. By transferring knowledge from the air-
borne VNIR datasets, the classification accuracy on the mining data was improved
and the convergence time was reduced (Figure 6.6). The F1 classification score at
convergence for the network using purely transfer learning was better than the base-
line approach. This is impressive, because in order to do the transfer learning, the
data had to be reduced in spectral range from 401−970 nm to 430−860 nm, which is
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the spectral range of the VNIR pre-trained network. This means that despite having
less information from the mining dataset, the network was able to produce better
classification accuracies by leveraging information from other datasets, highlighting
the advantage of the transfer learning. Although convergence was significantly faster,
the purely transfer learning CNNs F1 score at convergence was not as high as the
purely augmented CNNs score. This was expected, because it was only trained on
the high confidence points extracted from the image via the unsupervised process.
The dataset did not capture the variability, and the spectral relighting augmenta-
tion added the missing variability needed to train the classifier. The best result was
achieved by combining the two techniques (transfer learning and spectral relighting
augmentation) together. By doing this, the merits of both approaches were achieved
(fast convergence and high accuracy). The F1 classification score at convergence was
slightly lower for the combined approach than when the augmentation was used on
its own. This is expected to be because the combined approach also required that the
wavelength range be reduced to 430− 860 nm, as it used the pre-trained VNIR net-
work for initialisation. This could be changed by training a new pre-trained network
which uses the full VNIR spectrum, and transferring knowledge from that dataset
instead.

The F1 score fluctuated more for the methods that used spectral relighting augmen-
tation (Figure 6.5). This is because in each batch that was used to train the CNN,
the parameters for the relighting were being randomly sampled, meaning the same
batch of data from two different epochs could be very different. But as the CNN
came closer to converging, the fluctuations reduced in size.

The runtimes in Table 6.1 were measured using 1000 epochs for training the autoen-
coder and CNN. The time to train the CNN with transfer learning and spectral
relighting augmentation was 1.42 seconds per epoch (about 24 minutes to train it
for 1000 epochs), but, due to the transfer learning, at about 250 epochs, the conver-
gence reached within one percent of its final value. Thus, a good classifier could be
trained in about six minutes. Once trained, to forward propagate every pixel in the
image through the CNN only took 10 seconds, which was significantly shorter than
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the training time. Additionally, running new images of this size through the network
would take a similarly shorter amount of time. The longest stage of the pipeline was
the pre-training of the RSA-SAE. In this process, each layer was trained individually
for 1000 epochs. It could be possible to skip this step all together if a generic network
was trained on lots of data and used to pre-train RSA-SAE networks for any new
image (similar to how the CNNs are pre-trained in Section 5.2). It is also possible to
speed up the training of the RSA-SAE by using a GPU instead of the CPU.

6.4 Summary

New environments are often encountered which have little prior knowledge. It is
valuable to be able to make predictions in these environment at the early stages of
an investigation. Hence, this chapter has presented a method, comprising of some
of the algorithms proposed in this thesis, to cluster the pixels in an image given no
labelled data, for a mining application. This process comprised both an unsupervised
and supervised component (requiring no human annotations).

The predictions this method makes about the semantic association of the pixels could
be part of a higher-level autonomous process for a mining operation. However, the
methods value is not constrained to mining applications as it could be applied to any
scenario where a hyperspectral sensor is used to collect data from the environment
(e.g. on-board a robot) and a human is not on-hand to annotate the data.



Chapter 7

Conclusions

The purpose of this thesis was to develop approaches to learning illumination invari-
ant representations and classification models for hyperspectral data under natural
illumination, using limited or no labelled training samples. This chapter provides
a summary of the content in the thesis, a list of contributions to the field, and a
discussion of potential future work.

7.1 Summary

In Chapter 2, the relevant background theory was presented and current work in the
field was reviewed. The datasets and evaluation metrics were described inChapter 3.
In Chapter 4, unsupervised approaches to learning illumination invariant represen-
tations were proposed and evaluated. In Chapter 5, classification models trained
with limited data that were robust to the illumination of the scene, were proposed
and evaluated. Finally, Chapter 6 developed a unified pipeline for implementing the
algorithms proposed in Chapter 4 and Chapter 5 in a special case study.
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7.2 Contributions

There is a significant amount of variability in hyperspectral data attributed to illumi-
nation. This problem has been approached by different communities of researchers.
Computer vision techniques derive illumination invariant feature spaces but rely on
assumptions that are not as justified for hyperspectral images because they were
developed for RGB imagery. Remote sensing techniques often use atmospheric mod-
ellers which require a priori knowledge of the atmospheric composition. They also
will often disregard the geometry of the scene. Multi-modal approaches can account
for the scene geometry but require additional sensors which are often not available.
Finally, learning-based approaches require enough labelled data to capture all of the
variability in the scene. Due to the difficulty in labelling hyperspectral data and the
small amount of publicly available annotated datasets (in comparison to more widely
used sensors like RGB cameras), there are often limited amounts of labelled sam-
ples available for learning. This thesis proposes approaches which integrate domain
knowledge into learning algorithms in order to learn illumination invariance without
needing large amounts of labelled data.

The proposed approach for learning low-dimensional illumination invariant feature
representations of hyperspectral images is unsupervised, so it is trained entirely on
unlabelled data. It requires no additional sensors, no a priori knowledge about the
atmospheric conditions and does not make all of the assumptions that computer
vision approaches make. In such a feature space, a material retains the highly dis-
criminative information relating to its underlying properties from the hyperspectral
representation, and is less influenced by the effects of illumination relating to geomet-
ric orientation, sun position and occlusions which cause shadows in the scene. The
approaches developed were shown to robustly represent the materials in a number
of images with a high-degree of discrimination compared to other techniques. The
shadow invariant approach was shown to represent a static scene very similarly when
captured at different times of the day, despite shadows moving across the image. The
illumination invariant representation was also shown to produce robust results when
used as a feature space for a classifier.
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An approach to learning a classification model with a limited amount of labelled data
was also proposed. Transfer learning was investigated as a means of using knowledge
from other labelled datasets to improve classification performance for problems with
limited knowledge. When knowledge was transferred from data acquired from air-
borne platforms to data acquired from field-based platforms, the training time in the
latter decreased and the classification accuracy improved when field-based training
sets had a limited number of labelled samples. An image-based method was also pro-
posed for extracting the terrestrial sunlight-diffuse skylight ratio from a hyperspectral
image. This could be used in the proposed spectral relighting-based classifier for pre-
dicting the labels of pixels in hyperspectral images using limited amounts of labelled
data. The performance of a classifier trained with spectral relighting augmentation
on just a limited, localised set of sunlit samples closely rivalled the performance of
a classifier trained on samples collected from the entire image. In the experiments
evaluating both transfer learning and spectral relighting, the results showed that the
methods worked well even when the training datasets had fewer than 200 labelled
samples per class.

The specific contributions of this thesis are:

• An unsupervised approach to learning low-dimensional feature representations
designed for hyperspectral data (Chapter 4). By incorporating spectral similar-
ity measures into the learning process, these approaches learn a more discrimi-
native feature representation of spectra. The representations are also insensitive
to brightness, and less effected by geometric orientation with respect to sun po-
sition than other approaches. They can be used for dimensionality reduction or
as an unsupervised feature extraction technique, where the features are useful
for classification clustering, or other high-level tasks.

• An extension to the above unsupervised low-dimensional feature learning ap-
proach which makes the representation invariant to shadows (Chapter 4). This
approach integrates physics-based relighting into the learning algorithm. The
method produced superior results to a number of similar techniques on multiple
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datasets.

• A transfer learning scheme to reduce training time and improve classification
performance on field-based datasets by leveraging information from data cap-
tured from airborne platforms (Chapter 5).

• An image-based approach for determining the terrestrial sunlight-diffuse sky-
light ratio (Chapter 5).

• An approach to training classification models to be robust to illumination ef-
fects using spectral relighting augmentation (Chapter 5). This allowed for ac-
curate pixel-wise classification of hyperspectral imagery using limited amounts
of training data, and had superior performance to several other approaches.

• A pipeline for clustering hyperspectral data in the presence of illumination
variability that uses no annotated samples (Chapter 6).

These methods exploit domain knowledge as well as powerful learning algorithms to
achieve illumination invariance, which allows them to work with no labelled data in
the unsupervised cases and limited labelled data in the supervised cases. They also do
not exhibit the limitations of many of the techniques from the literature. The model
accounts for the scene geometry and how it interacts with the multiple sources of
illumination arising from direct sunlight and light reflecting off the sky dome. When
the model is coupled with state-of-the-art learning algorithms, the unknown variables
required to obtain robust feature representations and classification models can be
solved for using considerably less annotated data. As the use of hyperspectral sensors
increases in many fields of research and application, including robotics and ground-
based sensing, the work presented in this thesis provides a framework for feature
learning for the scenarios where there are limited amounts of labelled data available.
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7.3 Future Work

As has been outlined in Chapter 2, there is a need to further improve and propose
new illumination invariant algorithms for the limited scenario, which was done in
Chapter 4 and Chapter 5 within the scope of this thesis. Some specific directions of
work which have been highlighted by the analyses in this thesis as areas for further
improvement are:

Investigating the temporal invariance of the RSA-SAE. The extent of the
temporal invariance of the low-dimensional, illumination invariant feature represen-
tation has not yet been determined. Because the feature space is learnt from many
different randomly sampled atmospheric compositions, there is nothing constraining
it to only working with the conditions of the current atmosphere, at least in the
shadow. Whilst this was tested to some degree with temporal datasets, this should
be rigorously investigated with more temporal hyperspectral datasets, particularly
those captured over different days and even different seasons.

Indirect illumination extension. Light reflecting off different regions in the scene
can also act as a source of illumination. Although far weaker than the dominant sun-
light and skylight sources, indirect sources of illumination can still have an influence
on the spectra returned to the camera. Indirect illumination can be incorporated into
the model, and hence it is possible to derive relighting equations that can simulate
its effect. Thus, it can be integrated into the learning algorithm.

Adding spatial information. In some applications the texture in the image pro-
vides useful semantic information. Although this was touched upon, the results for
these scenarios would improve if the spatial dimension was to be incorporated into
the algorithms presented in this thesis. It would also be useful to know which kinds
of scenarios would see a significant gain in performance when the spatial information
is included.

Investigations into overcast conditions. It is unknown whether the outdoor
model can accurately depict an overcast scenario. Experiments should be conducted
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to determine how similar images of the same scene represented with the proposed
approaches are when captured under sunny conditions and overcast conditions.
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Appendix A

Derivation of the CSA-SAE

This section includes a derivation for the content in Section 4.1.1.

For a single observation is, the reconstruction cost that uses the cosine of the spectral
angle is:

ECSA(f(z(L)),y) = 1−
∑K
k=1 f(z(L)

k )yk
|f(z(L))||y| , (A.1)

where:
z(l) = W(l−1)a(l−1) + b(l−1), (A.2)

a(l) = f(z(l)), (A.3)

a(1) = x (A.4)

for l = L,L− 1, L− 2, L− 3, ..., 2, with learnable parameters W and b.

The reconstruction cost function for all observations, including a regularization term
is:

E(W,b) = 1
M

M∑
m=1

ECSA(W,b; y(m)) + λ

2

I,J,L−1∑
i,j,l=1

(W (l)
ji )2, (A.5)

and give that:
∂

∂W
(l)
ji

λ

2

I,J,L−1∑
i,j,l=1

(W (l)
ji )2 = λW

(l)
ji , (A.6)
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∂

∂b
(l)
j

λ

2

I,J,L−1∑
i,j,l=1

(W (l)
ji )2 = 0, (A.7)

the partial derivatives for backpropagation are:

∂

∂W
(l)
ji

E(W,b) = 1
M

M∑
m=1

∂

∂W
(l)
ji

ECSA(W,b; y(m)) + λW
(l)
ji , (A.8)

∂

∂b
(l)
j

E(W,b) = 1
M

M∑
m=1

∂

∂b
(l)
j

ECSA(W,b; y(m)). (A.9)

For a single observation m, for l = 1, 2, ..., L− 1:

∂

∂W
(l)
ji

ECSA(W,b) = ∂

∂z
(l+1)
j

ECSA(W,b)
∂z

(l+1)
j

∂W
(l)
ji

, (A.10)

∂

∂b
(l)
j

ECSA(W,b) = ∂

∂z
(l+1)
j

ECSA(W,b)
∂z

(l+1)
j

∂b
(l)
j

. (A.11)

For l = L− 1, equations A.10 and A.11 become:

∂

∂W
(L−1)
ki

ECSA(W,b) = ∂

∂z
(L)
k

ECSA(W,b) ∂z
(L)
k

∂W
(L−1)
ki

, (A.12)

∂

∂b
(L−1)
k

ECSA(W,b) = ∂

∂z
(L)
k

ECSA(W,b) ∂z
(L)
k

∂b
(L−1)
k

, (A.13)

where, from A.1:

∂

∂z
(L)
k

ECSA(W,b) = ∂

∂z
(L)
k

[
1−

∑K
k=1 f(z(L)

k )yk
|f(z(L))||y|

]

= − 1
|y|

∂

∂z
(L)
k

∑K
k=1 f(z(L)

k )yk
|f(z(L))|

= f ′(z(L)
k )

|f(z(L))||y|

[
(f(z(L)) · y)f(z(L)

k )
|f(z(L))|2 − yk

]

= δ
(L)
k , (A.14)
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and:

∂z
(L)
k

∂W
(L−1)
ki

= ∂

∂W
(L−1)
ki

I∑
i=1

W
(L−1)
ki f(z(L−1)

i ) + b
(L−1)
k

= f(z(L−1)
i ). (A.15)

∂z
(L)
k

∂b
(L−1)
k

= ∂

∂b
(L−1)
k

I∑
i=1

W
(L−1)
ki f(z(L−1)

i ) + b
(L−1)
k

= 1. (A.16)

Substitute A.14 and A.15 into A.12:

∂

∂W
(L−1)
ki

ECSA(W,b) = δ
(L)
k f(z(L−1)

i ), (A.17)

and substitute A.14 and A.16 into A.13:

∂

∂b
(L−1)
k

ECSA(W,b) = δ
(L)
k . (A.18)

For l = L− 2, equations A.10 and A.11 become:

∂

∂W
(L−2)
ji

ECSA(W,b) = ∂

∂z
(L−1)
j

ECSA(W,b)
∂z
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j
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(L−2)
ji

, (A.19)
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, (A.20)

where:

∂

∂z
(L−1)
j

ECSA(W,b) = ∂

∂z
(L)
k

ECSA(W,b) ∂z
(L)
k

∂z
(L−1)
j

. (A.21)
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Substituting A.14 into A.21:

∂

∂z
(L−1)
j

ECSA(W,b) = δ
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k

∂z
(L)
k

∂z
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j

, (A.22)

where:
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j
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Substituting into A.23 gives A.22:

∂
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j
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δ
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k W
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Given:
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and:
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= 1, (A.26)

substituting A.24 and A.25 into A.19:

∂

∂W
(L−2)
ji

ECSA(W,b) = δ
(L−1)
j f(z(L−2)

i ), (A.27)

and substituting A.24 and A.26 into A.20:
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j
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j . (A.28)

For l = L− 3, L− 4, ..., 2:
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where:
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and:
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j
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= W
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ji

∂
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i
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i )

= W
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ji f ′(z(l+1)

i ). (A.31)

Substituting A.30 and A.31 into A.29:
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∂

∂z
(l+1)
i

ECSA(W,b) =
J∑
j=1

δ
(l+2)
j W

(l+1)
ji f ′(z(l+1)

i )

= δ
(l+1)
i . (A.32)

Given:

∂z
(l+1)
j

∂W
(l)
ji

= ∂

∂W
(l)
ji

I∑
i=1

W
(l)
ji f(z(l)

i ) + b
(l)
j

= f(z(l)
i ), (A.33)

and:

∂z
(l+1)
j

∂b
(l)
j

= ∂

∂b
(l)
j

I∑
i=1

W
(l)
ji f(z(l)

i ) + b
(l)
j

= 1, (A.34)

substituting A.33 and A.32 into A.10:

∂

∂W
(l)
ji

ECSA(W,b) = δ
(l+1)
j f(z(l)

i ), (A.35)

and substituting A.34 and A.32 into A.11:

∂

∂b
(l)
j

ECSA(W,b) = δ
(l+1)
j . (A.36)

For l = 1, equations A.10 and A.11 become:
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∂

∂W
(1)
ji

ECSA(W,b) = ∂

∂z
(2)
j

ECSA(W,b)
∂z

(2)
j

∂W
(1)
ji

, (A.37)

∂

∂b
(1)
j

ECSA(W,b) = ∂

∂z
(2)
j

ECSA(W,b)
∂z

(2)
j

∂b
(1)
j

, (A.38)

where:

∂

∂z
(2)
i

ECSA(W,b) = ∂

∂z
(3)
j

ECSA(W,b)
∂z

(3)
j

∂z
(2)
i

. (A.39)

Given:

∂

∂z
(3)
j

ECSA(W,b) = δ
(3)
j , (A.40)

and:

∂z
(3)
j

∂z
(2)
i

= ∂

∂z
(2)
i

I∑
i=1

W
(2)
ji f(z(2)

i ) + b
(2)
j

= W
(2)
ji

∂

∂z
(2)
i

f(z(2)
i )

= W
(2)
ji f

′(z(2)
i ), (A.41)

substituting A.40 and A.41 into A.39:

∂

∂z
(2)
i

ECSA(W,b) =
J∑
j=1

δ
(3)
j W

(2)
ji f

′(z(2)
i )

= δ
(2)
i . (A.42)

Given:
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∂z
(2)
j

∂W
(1)
ji

= ∂

∂W
(1)
ji

I∑
i=1

W
(1)
ji xi + b

(1)
j

= xi, (A.43)

and:

∂z
(2)
j

∂b
(1)
j

= ∂

∂b
(1)
j

I∑
i=1

W
(1)
ji f(z(1)

i ) + b
(1)
j

= 1, (A.44)

substituting A.42 and A.43 into A.37:

∂

∂W
(1)
ji

ECSA(W,b) = δ
(2)
j xi, (A.45)

and substituting A.42 and A.44 into A.38:

∂

∂b
(1)
j

ECSA(W,b) = δ
(2)
j . (A.46)

The parameter update equations for gradient descent optimisation are:

W
(l)
ji := W

(l)
ji − α

∂

∂W
(l)
ji

E(W,b), (A.47)

b
(l)
j := b

(l)
j − α

∂

∂b
(l)
j

E(W,b), (A.48)

These derivatives were validated numerically using the technique described in Ng
(2011).
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A.1 Derivative of the Sigmoid Activation Function

The above derivation for the parameter update equations is independent of the ac-
tivation function f(·). Thus, different activation functions can be used as long as
∂

∂z
f(z), referred to as f ′(z) in this thesis, can be computed.

The implementation of the CSA-SAE in this thesis used the sigmoid activation func-
tion, given by:

f(z) = 1
1 + exp−z . (A.49)

The derivative of this function is given by:

∂

∂z
f(z) = ∂

∂z

1
1 + exp−z

= − 1
(1 + exp−z)2

∂

∂z
(1 + exp−z)

= exp−z
(1 + exp−z)2

= 1 + exp−z − 1
(1 + exp−z)2

= 1 + exp−z
(1 + exp−z)2 −

1
(1 + exp−z)2

= 1
1 + exp−z −

(
1

1 + exp−z

)2

(A.50)

Substitute A.49 into A.50:

∂

∂z
f(z) = f(z)− f(z)2

= f(z)(1− f(z)) (A.51)



Appendix B

Derivation of the SA-SAE

This section includes a derivation for the content in Section 4.1.2.

For a single observation is, the reconstruction cost that uses the spectral angle is:

ESA(f(z(L)),y) = cos−1
∑K
k=1 f(z(L)

k )yk
|f(z(L))||y| , (B.1)

where:
z(l) = W(l−1)a(l−1) + b(l−1), (B.2)

a(l) = f(z(l)), (B.3)

a(1) = x (B.4)

for l = L,L− 1, L− 2, L− 3, ..., 2, with learnable parameters W and b.

The reconstruction cost function for all observations, including a regularization term
is:

E(W,b) = 1
M

M∑
m=1

ESA(W,b; y(m)) + λ

2

I,J,L−1∑
i,j,l=1

(W (l)
ji )2, (B.5)

and give that:
∂

∂W
(l)
ji

λ

2

I,J,L−1∑
i,j,l=1

(W (l)
ji )2 = λW

(l)
ji , (B.6)
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∂

∂b
(l)
j

λ

2

I,J,L−1∑
i,j,l=1

(W (l)
ji )2 = 0, (B.7)

the partial derivatives for backpropagation are:

∂

∂W
(l)
ji

E(W,b) = 1
M

M∑
m=1

∂

∂W
(l)
ji

ESA(W,b; y(m)) + λW
(l)
ji , (B.8)

∂

∂b
(l)
j

E(W,b) = 1
M

M∑
m=1

∂

∂b
(l)
j

ESA(W,b; y(m)). (B.9)

For a single observation m, for l = 1, 2, ..., L− 1:

∂

∂W
(l)
ji

ESA(W,b) = ∂

∂z
(l+1)
j

ESA(W,b)
∂z

(l+1)
j

∂W
(l)
ji

, (B.10)

∂

∂b
(l)
j

ESA(W,b) = ∂

∂z
(l+1)
j

ESA(W,b)
∂z

(l+1)
j

∂b
(l)
j

. (B.11)

For l = L− 1, equations B.10 and B.11 become:

∂

∂W
(L−1)
ki

ESA(W,b) = ∂

∂z
(L)
k

ESA(W,b) ∂z
(L)
k

∂W
(L−1)
ki

, (B.12)

∂

∂b
(L−1)
k

ESA(W,b) = ∂

∂z
(L)
k

ESA(W,b) ∂z
(L)
k

∂b
(L−1)
k

, (B.13)

where, from B.1:

∂

∂z
(L)
k

ESA(W,b) = ∂

∂z
(L)
k

[
cos−1

∑K
k=1 f(z(L)

k )yk
|f(z(L))||y|

]

= − 1√√√√1−
[∑K

k=1 f(z(L)
k )yk

|f(z(L))||y|

]2

1
|y|

∂

∂z
(L)
k

∑K
k=1 f(z(L)

k )yk
|f(z(L))|
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= f ′(z(L)
k )

|f(z(L))||y|

√√√√1−
[∑K

k=1 f(z(L)
k )yk

|f(z(L))||y|

]2

[
(f(z(L)) · y)f(z(L)

k )
|f(z(L))|2 − yk

]

= δ
(L)
k , (B.14)

and:

∂z
(L)
k

∂W
(L−1)
ki

= ∂

∂W
(L−1)
ki

I∑
i=1

W
(L−1)
ki f(z(L−1)

i ) + b
(L−1)
k

= f(z(L−1)
i ). (B.15)

∂z
(L)
k

∂b
(L−1)
k

= ∂

∂b
(L−1)
k

I∑
i=1

W
(L−1)
ki f(z(L−1)

i ) + b
(L−1)
k

= 1. (B.16)

Substitute B.14 and B.15 into B.12:

∂

∂W
(L−1)
ki

ESA(W,b) = δ
(L)
k f(z(L−1)

i ), (B.17)

and substitute B.14 and B.16 into B.13:

∂

∂b
(L−1)
k

ESA(W,b) = δ
(L)
k . (B.18)

The partial derivatives with respect to the parameters in layers l = L− 2, ..., 2, 1 are
the same as in Appendix A. The parameter update equations for gradient descent
optimisation are:

W
(l)
ji := W

(l)
ji − α

∂

∂W
(l)
ji

E(W,b), (B.19)
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b
(l)
j := b

(l)
j − α

∂

∂b
(l)
j

E(W,b), (B.20)

These derivatives were validated numerically using the technique described in Ng
(2011).



Appendix C

Derivation of the SID-SAE

This section includes a derivation for the content in Section 4.1.3.

For a single observation is, the reconstruction cost that uses the spectral information
divergence is:

ESID(f(z(L)),y) =
K∑
k=1

[
f(z(L)

k )∑K
d=1 f(z(L)

d )
− yk∑K

d=1 yd

]
[logf(z(L)

k )

− log
K∑
d=1

f(z(L)
d )− log(yk) + log

K∑
d=1

yd]. (C.1)

where:
z(l) = W(l−1)a(l−1) + b(l−1), (C.2)

a(l) = f(z(l)), (C.3)

a(1) = x (C.4)

for l = L,L− 1, L− 2, L− 3, ..., 2, with learnable parameters W and b.

The reconstruction cost function for all observations, including a regularization term
is:

E(W,b) = 1
M

M∑
m=1

ESID(W,b; y(m)) + λ

2

I,J,L−1∑
i,j,l=1

(W (l)
ji )2, (C.5)
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and give that:
∂

∂W
(l)
ji

λ

2

I,J,L−1∑
i,j,l=1

(W (l)
ji )2 = λW

(l)
ji , (C.6)

∂

∂b
(l)
j

λ

2

I,J,L−1∑
i,j,l=1

(W (l)
ji )2 = 0, (C.7)

the partial derivatives for backpropagation are:

∂

∂W
(l)
ji

E(W,b) = 1
M

M∑
m=1

∂

∂W
(l)
ji

ESID(W,b; y(m)) + λW
(l)
ji , (C.8)

∂

∂b
(l)
j

E(W,b) = 1
M

M∑
m=1

∂

∂b
(l)
j

ESID(W,b; y(m)). (C.9)

For a single observation m, for l = 1, 2, ..., L− 1:

∂

∂W
(l)
ji

ESID(W,b) = ∂

∂z
(l+1)
j

ESID(W,b)
∂z

(l+1)
j

∂W
(l)
ji

, (C.10)

∂

∂b
(l)
j

ESID(W,b) = ∂

∂z
(l+1)
j

ESID(W,b)
∂z

(l+1)
j

∂b
(l)
j

. (C.11)

For l = L− 1, equations C.10 and C.11 become:

∂

∂W
(L−1)
ki

ESID(W,b) = ∂

∂z
(L)
k

ESID(W,b) ∂z
(L)
k

∂W
(L−1)
ki

, (C.12)

∂

∂b
(L−1)
k

ESID(W,b) = ∂

∂z
(L)
k

ESID(W,b) ∂z
(L)
k

∂b
(L−1)
k

, (C.13)

where, from C.1:

∂

∂z
(L)
k

ESID(W,b) = ∂

∂z
(L)
k

{
K∑
k=1

[
f(z(L)

k )∑K
d=1 f(z(L)

d )
− yk∑K

d=1 yd

][
logf(z(L)

k )

− log
K∑
d=1

f(z(L)
d )− log(yk) + log

K∑
d=1

yd

]}
(C.14)
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= − f ′(z(L)
k )∑K

d=1 f(z(L)
d )

[
qk
pk
− logpk

qk
− 1 +

K∑
d=1

(pd − qd + pdlog
pd
qd

)
]

= δ
(L)
k , (C.15)

where
p = f(z(L))∑K

c=1 f(z(L)
c )

, (C.16)

q = y∑K
c=1 yc

, (C.17)

and:

∂z
(L)
k

∂W
(L−1)
ki

= ∂

∂W
(L−1)
ki

I∑
i=1

W
(L−1)
ki f(z(L−1)

i ) + b
(L−1)
k

= f(z(L−1)
i ). (C.18)

∂z
(L)
k

∂b
(L−1)
k

= ∂

∂b
(L−1)
k

I∑
i=1

W
(L−1)
ki f(z(L−1)

i ) + b
(L−1)
k

= 1. (C.19)

Substitute C.15 and C.18 into C.12:

∂

∂W
(L−1)
ki

ESID(W,b) = δ
(L)
k f(z(L−1)

i ), (C.20)

and substitute C.15 and C.19 into C.13:

∂

∂b
(L−1)
k

ESID(W,b) = δ
(L)
k . (C.21)
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The partial derivatives with respect to the parameters in layers l = L− 2, ..., 2, 1 are
the same as in Appendix A. The parameter update equations for gradient descent
optimisation are:

W
(l)
ji := W

(l)
ji − α

∂

∂W
(l)
ji

E(W,b), (C.22)

b
(l)
j := b

(l)
j − α

∂

∂b
(l)
j

E(W,b), (C.23)

These derivatives were validated numerically using the technique described in Ng
(2011).



Appendix D

Derivation of the relighting

equations

This appendix includes derivations for the relighting equations used throughout this
thesis.

D.1 Relighting with respect to diffuse skylight

This section derives the scaling factor for relighting the radiance L of a region i in
sunlight with respect to diffuse skylight (occluded from the sun). This relighting
equation is used in Section 4.2. The derivation comes from Ramakrishnan (2016).

From the model (2.2), a region j, which is the same as the region i, but is only
illuminated by diffuse skylight, is given by:

Lj(λ) = ρ(λ)
π

[
Esky(λ)

]
= ρ(λ)

π

[
Esky(λ)

][ Esun(λ)τ(λ)cosθi + ΓiEsky(λ)
Esun(λ)τ(λ) cos θi + ΓiEsky(λ)

]



D.2 Relighting with respect to full terrestrial sunlight and diffuse skylight 232

= ρ(λ)
π

[
Esun(λ)τ(λ) cos θi + ΓiEsky(λ)

][ Esky(λ)
Esun(λ)τ(λ) cos θi + ΓiEsky(λ)

]
.

(D.1)

From the model (2.2), the same region in sunlight is given by:

Li(λ) = ρ(λ)
π

[
Esun(λ)τ(λ) cos θi + ΓiEsky(λ)

]
. (D.2)

Substituting D.2 into D.1:

Lj(λ) = Li(λ)
[

Esky(λ)
Esun(λ)τ(λ) cos θi + ΓiEsky(λ)

]

= Li(λ) 1
Esun(λ)τ(λ)
Esky(λ) cos θi + Γi

(D.3)

D.2 Relighting with respect to full terrestrial sun-

light and diffuse skylight

This section derives the scaling factor for relighting the radiance L of a region i in
sunlight with respect to full terrestrial sunlight and diffuse skylight exposure. The
derivation comes from Ramakrishnan (2016).

From the model (2.2), a region j, which is the same as the region i, but illuminated
by full terrestrial sunlight and diffuse skylight exposure (cos θ = 1, Γ = 1), is given
by:

Lj(λ) = ρ(λ)
π

[
Esun(λ)τ(λ) + Esky(λ)

]
= ρ(λ)

π

[
Esun(λ)τ(λ) + Esky(λ)

][Esun(λ)τ(λ) cos θi + ΓiEsky(λ)
Esun(λ)τ(λ) cos θi + ΓiEsky(λ)

]
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= ρ(λ)
π

[
Esun(λ)τ(λ) cos θi + ΓiEsky(λ)

][ Esun(λ)τ(λ) + Esky(λ)
Esun(λ)τ(λ) cos θi + ΓiEsky(λ)

]
(D.4)

Substituting D.2 into D.4:

Lj(λ) = Li(λ)
[

Esun(λ)τ(λ) + Esky(λ)
Esun(λ)τ(λ) cos θi + ΓiEsky(λ)

]

= Li(λ)

Esun(λ)τ(λ)
Esky(λ) + 1

Esun(λ)τ(λ)
Esky(λ) cos θi + Γi

(D.5)

D.3 Relighting with respect to a generalised illu-

minant

This section derives the scaling factor for relighting the radiance L of a region i in
sunlight with respect to either diffuse skylight only (occluded from the sun) or a
combination of terrestrial sunlight and diffuse skylight with arbitrary exposure. This
relighting equation is used in Section 5.3.

From the model (2.2), a region j, which is the same as the region i, but illuminated
by either diffuse skylight only (Vi = 0) or a combination of terrestrial sunlight and
diffuse skylight (Vi = 1), is given by:

Lj(λ) = ρ(λ)
π

[
ViEsun(λ)τ(λ) cos θj + ΓjEsky(λ)

]
= ρ(λ)

π

[
ViEsun(λ)τ(λ) cos θj + ΓjEsky(λ)

][Esun(λ)τ(λ) cos θi + ΓiEsky(λ)
Esun(λ)τ(λ) cos θi + ΓiEsky(λ)

]

= ρ(λ)
π

[
Esun(λ)τ(λ) cos θi + ΓiEsky(λ)

][ViEsun(λ)τ(λ) cos θj + ΓjEsky(λ)
Esun(λ)τ(λ) cos θi + ΓiEsky(λ)

]
(D.6)
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Substituting D.2 into D.6:

Lj(λ) = Li(λ)
[
ViEsun(λ)τ(λ) cos θj + ΓjEsky(λ)
Esun(λ)τ(λ) cos θi + ΓiEsky(λ)

]

= Li(λ)
Vi
Esun(λ)τ(λ)
Esky(λ) cos θj + Γj

Esun(λ)τ(λ)
Esky(λ) cos θi + Γi

(D.7)
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