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ABSTRACT
The Generalized Beam Theory (GBT) is a reliable and efficient tool for the linear and non-
linear analysis of thin-walled members (TWMs). The theory is based on a semi-variational
(Kantorovich-Vlasov) approach in which the displacement field is expressed as a linear com-
bination of assumed deformation fields (i.e., trial functions) related to the cross-section, and
unknown amplitude functions (i.e., linear coordinates) defined on the sole beam longitudinal
abscissa. The use of the GBT relies on two fundamental steps to be performed: (a) selection of
the deformation fields for the cross-section (usually referred to as cross-section analysis); and
(b) solution of the obtained equivalent 1D problem (named member analysis).

This thesis proposes new approaches for the elastic linear and nonlinear analysis of TWMs
within the framework of the GBT. The main contributions are represented by: (a) a novel
straightforward dynamic approach for the cross-section analysis, (b) a GBT formulation for
the partial interaction analysis of multi-component TWMs, (c) a displacement - based GBT for-
mulation for the linear elastic analysis of composite TWMs with large web penetrations, and
(d) a nonlinear GBT approach for the analysis of arbitrary open, closed and partially-closed
TWMs.

The novel and straightforward approach for the cross-section analysis is based on the so-
called dynamic approach (GBT-D), where the GBT trial functions are identified from the dy-
namic analysis of a linear elastic planar frame representing the cross-section. The method relies
on the solution of a very limited number of constrained eigenvalue problems. It is much simpler
to use than the classic static approach for the cross-section analysis, in addition to provide even
better results from the point of view of accuracy and symmetry of obtained displacement fields.

The proposed cross-section analysis is suited for developing a GBT-based formulation for
the study of the linear-elastic behavior of multi-component TWMs. The novelty of the approach
consists on its ability to accurately model the partial interaction between the different compo-
nents forming the cross-section in both longitudinal and transverse directions. The ease of use
of the model is outlined by two application performed on multi-component members subjected
to eccentric loads. Values calculated with ABAQUS finite element models are used to validate
the proposed method.

A displacement-based GBT formulation for the partial interaction analysis of composite
TWMs with large web penetrations is then proposed. It is based on the definition of a variable
transform which allows to express the unknown linear coordinates in terms of cross-section
nodal degrees-of-freedom (DOFs). The proposed approach leads to a beam-like finite element
that is equivalent to an assembly of flat quadrilateral shell elements, making possible to deal
straightforwardly with penetrations, local constraints and localized longitudinal stiffeners. A
numerical example is presented to highlight the capabilities and accuracy of the proposed ap-
proach.

Finally, a nonlinear GBT approach is developed according to the nonlinear Galerkin method,
which calls for the evaluation of nonlinear (passive) trial functions, to be used in conjunction
with linear (active) ones, in describing the displacement field. Since nonlinear trial functions do
not increase the number of the unknowns, the GBT spirit, as a reduction method, is preserved.
Two promising examples are discussed, showing how equilibrium paths can be determined by
using few linear trial functions in conjunction with the corresponding nonlinear trial functions,
supplying good results when compared with burdensome finite-element solutions.





SOMMARIO

La “Teoria di Trave Generalizzata” (GBT) è uno strumento affidabile ed efficiente per l’analisi
lineare e nonlineare di travi a parete sottili (TWMs). La teoria si basa su un approccio semi-
variazionale alla Kantorovich-Vlasov, in cui il campo di spostamenti é espresso come com-
binazione lineare di campi deformativi noti (i.e., funzioni di forma) dipendenti dalla sezione
trasversale, e ampiezze incognite (i.e., coordinate lineari) definite sul solo asse longitudinale.
GBT richiede le seguenti due analisi: (a) selezione dei campi deformativi per la sezione trasver-
sale (comunemente chiamata analisi sezionale); e (b) soluzione del risultante problema 1D
equivalente (denominata analisi dell’elemento).

Questa tesi propone nuovi approcci per l’analisi elastica lineare e nonlineare di TWMs
nell’ambito della GBT. I principali contributi riguardano: (a) una nuova procedura dinamica
diretta per l’analisi sezionale, (b) una formulazione GBT per l’analisi della interazione parziale
di TWMs multi-componenti, (c) una GBT formulata in termini di spostamenti per l’analisi
elastica lineare di TWMs composite con grandi perforazioni d’anima, e (d) un approccio GBT
nonlineare per l’analisi di TWMs arbitrariamente aperte, chiuse o parzialmente chiuse.

La nuova procedura diretta per l’analisi sezionale è basata sul cosiddetto approccio dinamico
(GBT-D), in cui le funzioni di forma GBT sono identificate a partire dall’analisi dinamica di
un telaio piano elastico lineare rappresentante la sezione trasversale. Il metodo si basa sulla
soluzione di un numero molto limitato di problemi agli autovalori vincolati. Il metodo è molto
più semplice del corrispondente statico ed è in grado di fornire risultati migliori da un punto di
vista di accuratezza e rispetto delle simmetrie dei campi deformativi ottenuti.

L’analisi sezionale proposta è utilizzata per lo sviluppo di una formulazione GBT per lo
studio elastico lineare di TWMs multi-componenti. La novità dell’approccio risiede nella sua
capacità di modellare la interazione parziale fra le differenti componenti sia in direzione longi-
tudinale che trasversale. La facilità di utilizzo del metodo proposto è evidenziata attraverso due
applicazioni su travi multi-componenti caricate eccentricamente. I risultati ottenuti con modelli
agli elementi finiti sviluppati con ABAQUS sono stati usati a fini validativi.

Viene in seguito proposta una GBT formulata in termini di spostamenti per l’analisi della
interazione parziale di TWMs composite con grandi perforazioni d’anima. Essa si fonda su un
cambio di variabili che consente di esprimere le coordinate lineari incognite in termini di gradi
di libertà nodali della sezione. Questo conduce a elementi finiti di tipo trave equivalenti ad un
assemblaggio di elementi finiti di tipo piastra, consentendo un approccio diretto per l’analisi
di elementi con fori, vincoli puntuali e irrigidenti longitudinali locali. Le capacità e facilità di
utilizzo del metodo sono illustrate per mezzo di un esempio numerico.

Infine, viene sviluppato un approccio GBT nonlineare basato sul metodo di Galerkin non-
lineare, che richiede la valutazione di funzioni di forma nonlineari (passive) da utilizzarsi con-
giuntamente a quelle lineari (attive). Poichè le funzioni di forma nonlineari non incrementano il
numero di gradi di libertà, lo spirito GBT quale metodo di riduzione è preservato. Due promet-
tenti applicazioni vengono proposte, che evidenziano come i percorsi di equilibrio possano
essere ottenuti usando poche funzioni di forma lineari di concerto con le corrispondenti nonlin-
eari, ottenendo buoni risultati rispetto a soluzioni ottenute con laboriosi modelli agli elementi
finiti.
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Chapter 1

Introduction

1.1 Formulations for the analysis of thin-walled members: general
overview

Thin-walled members (TWMs) are locally deformable beams behaving in a substantially
different way from compact ones, since their response is strongly influenced by changes in
shape of the cross-section, both in-plane (i.e., distortion) and out-of-plane (i.e., warping). These
deformations, commonly negligible for beams with compact cross-sections, represent instead
the characteristic feature of TWMs and remarkably affect their mechanical behavior. Well-
known examples of such mechanisms are the following: (a) warping induced by non-uniform
torsion on open TWMs, leading to a greater torsional stiffness than the one associated to the
de Saint-Venant theory; (b) flattening in bent tubular members, leading to a progressive decay
of the bending stiffness with increasing deflection; and (c) local/distorsional buckling, which
strongly reduce the load-bearing capacity of the member, in addition to cause dangerous effects
in case of interaction with global (Eulerian or flexural-torsional) modes.

The first mathematical model for the analysis of TWMs was developed by the Russian math-
ematician V.Z. Vlasov (Vlasov, 1961). The theory, developed for open cross-sections under the
hypothesis of small displacements (i.e., linearized kinematics), is founded on the following two
basic hypothesis: (i) the beam cross-section is not deformable in its own plane, and (b) shear
deformation on the middle surface is negligible. As a consequence of the first hypothesis, the
in-plane motion is described according to the rigid-body kinematic laws. The second hypothesis
allows to express the warping as function of the in-plane motion, to within a rigid longitudinal
displacement. Therefore, the generic configuration of the system is identified by the position
of points belonging to the beam longitudinal axis as well as by the (rigid) rotation of the cross-
section around the same axis.

Since then, several beam models have been developed in the Literature to investigate the
behavior of TWMs. They can be classified according to the following two philosophies:

(a) direct formulations as a one-dimensional (1D) continuum;

(b) derivations from a three-dimensional (3D) Cauchy continuum.

Direct formulations are based on the so called polar continuum (also known as Cosserat’s con-
tinuum or structured continuum). It is richer than the classic Cauchy’s one, since material
particles composing it are endowed with orientation (i.e., they can translate and, in addition,
can rotate). In this context, the beam is considered as a 1D object, geometrically described by
its axis made up of orientable body-points, each of them possessing six degrees of freedom (i.e.,
as in the 3D beam made of rigid cross-sections). It is noteworthy that cross-sections disappear
in direct models. However, their attitude is described by points’ orientation, thus regaining the
information lost. When dealing with TWMs, the key point is how to include the cross-section
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distortions, in order to keep the model one-dimensional. Warping is commonly introduced by
means of suitable internal constraints among the kinematic descriptors (e.g., Rizzi and Tatone,
1996; Ruta et al., 2006), while additional kinematic descriptors, usually referred to as distor-
sional variables, may be included in the structured continuum to describe in-plane distortions
(e.g., Luongo and Zulli, 2013, 2014).

Formulations derived from the 3D Cauchy continuum consist in “approximate” models that
exploit the geometric peculiarity of the beam, in particular its slenderness, in order to obtain
equivalent 1D descriptions, where all variables involved depend on only one coordinate, com-
monly the beam axis. The main aim is to obtain reduced models which are simpler and compu-
tationally more efficient to solve than the 3D elasticity problem. As a matter of fact, while the
latter may in principle be solved for TWMs, e.g. by means of a numerical shell-based Finite
Element (FE) approximation, such an approach is burdensome and very time consuming, due to
the difficulty in solving governing (partial differential) equations, as well as to the large number
of degrees of freedom involved in the analysis. Contrariwise, reduced approaches derived from
the 3D Cauchy continuum are elegant and powerful tool for the linear and nonlinear analysis of
TWMs. Among the others, semi-variational approaches, such as the Finite Strip Method (FSM)
and the Generalized Beam Theory (GBT), have attracted the attention of several researchers
(e.g., Silvestre and Camotim, 2002a,b; Ádány and Schafer, 2006a,b).

1.2 Generalized Beam Theory (GBT)

The present thesis is focused on the GBT. Within its framework, the TWM is considered
as an assembly of (generally, but not necessarily) flat thin plates, free to bend in the plane or-
thogonal to the member axis according to the Kirchhoff model. The original proposal extends
the Vlasov theory (Vlasov, 1961) accounting for deformable cross-sections. The basic idea
of the method consists in representing the displacement field as a linear combination of as-
sumed cross-section deformation fields (commonly referred to in the Literature as deformation
modes) and unknown amplitude functions. While the former are relied on the sole curvilinear
abscissa lying on the TWM mid-line profile, the latter depend on the single beam abscissa. A
variational principle, as the Principle of Virtual Works, provides the weak formulation of the
problem, leading to a system of (coupled) ordinary differential equations, commonly referred
to as GBT equations, in the unknown amplitude functions, with the relevant boundary condi-
tions. These equations, equal in number to the the deformation fields considered, generalize the
classical Vlasov beam theory, the latter accounting for rigid cross-sections and thus described
by four amplitude functions, each one associated to a rigid motion of the cross-section, namely
three translations (two bendings and one axial extension) and one rotation (torsion) around
the shear center. The GBT approach falls within Kantorovich’s semi-variational method (e.g.,
Kantorovich and Krylov, 1958), where the dimensionality of a problem is reduced through a
technique of partially-assumed modes. In the case of the GBT, the three-dimensional continu-
ous problem is transformed into a vector-valued one-dimensional one. In particular, the GBT
consists of two phases: (i) the choice of the deformation modes, referred to as cross-sectional
analysis, and (ii) the solution of the amplitude equations, denoted as member analysis.

In the last decades, GBT has had a large diffusion in the scientific community thanks to the
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strong impulse given to it by Camotim and co-workers. They generalized the method to include
new aspects, not present in the original formulation, and combined it with a FE approach, so
that GBT is now applicable to a wide range of fields, from orthotropic TWMs (e.g., Silva et al.,
2006) to thin-walled frames (e.g., Camotim et al., 2010), from buckling interaction phenomena
(e.g., Gonçalves and Camotim, 2004; Dinis and Camotim, 2011) to the elasto-plastic analysis
of TWMs (e.g., Abambres, Camotim and Silvestre, 2014), from linear dynamic problems (e.g.,
Bebiano, Camotim and Silvestre, 2013) to TWMs with curved circular axis (e.g., Peres et al.,
2016). The key feature of the GBT approach relies on its modal nature. In fact, the use of known
deformation fields allows to give a clear physical interpretation to the mechanical behavior
experienced by the TWM, particularly referred to the buckling nature (i.e., flexural-torsional,
local, distorsional). Moreover, providing a suitable choice of known of deformation fields,
the TWM behavior can be accurately described by using a very limited number of degrees of
freedoms, increasing considerably the numeric efficiency of the approach.

In spite of advantages previously outlined, however, some aspects of the GBT framework
are still involved and time-consuming, in particular: (a) cross-section analysis, (b) analysis
of structural systems, and (c) geometrically nonlinear analysis. The classic procedure for the
cross-section analysis (e.g., Bebiano et al., 2015) is based on the preliminary identification
of a set of elementary (physically meaningless) deformation fields, defined as the solution of
as many linear static structural analyses as the number of fields themselves. The final set of
(physically meaningful) functions is then achieved by means of a sequence of eigenproblems,
defined through stiffness matrices arising from the member analysis. Therefore, the procedure
is not based on pure kinematic concepts, but it is, in some sense, mixed and recursive. Very
recently, a different approach for the GBT cross-section analysis has been proposed, namely
GBT-D, with the aim to provide a suitable set of fields for arbitrary simple and composite
TWMs by means of a very limited number of eigenproblems (e.g., Piccardo et al., 2014a; Taig
and Ranzi, 2015). The procedure is based on the dynamic analysis of an equivalent frame having
the shape of the cross-section. Despite the procedure is less involved than the corresponding
static one, obtained fields seems to be slightly imprecise. The GBT-based analysis of structural
systems, such as thin-walled frames or locally stiffened and perforated elements, which can
be treated as an assembly of TWMs with constant cross-section, is also quite involved. As
a matter of facts, due to the modal nature of the approach, continuity of displacement fields
on interfaces between composing members can’t be enforced automatically (as it would be
possible using a FE method), but must be enforced through constraint equations depending on
deformation fields. Finally, the GBT-based geometrically nonlinear analysis (e.g., Silvestre and
Camotim, 2003b) is based on the use of (linear) deformation fields stemming from the classic
cross-section analysis. The latter may not be entirely suitable to capture nonlinear effects, such
as the approaching of cross-section natural nodes as a consequence of large in-plane inflection.
As a consequence, it may take a large number of linear fields to approximate a typical nonlinear
effect, losing the spirit of the GBT as reduction method and, not at least, leading to a very time
consuming procedure.
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1.3 Aims and scope of the thesis

The scope of the Thesis is to provide new approaches to improve the reliability and numer-
ical efficiency of the GBT framework in dealing with linear and nonlinear analysis of TWMs.
The main aims can be summarized as follows:

• to develop a novel straightforward dynamic approach for the GBT cross-section analysis,
able to provide very clean and precise deformation fields for arbitrary open, closed and
partially-closed cross-sections by using a very limited number of (non recursive) analyses;

• to provide a GBT-based approach for the analysis of composite and multi-component
TWMs, which includes the shear deformability of connections placed at interfaces be-
tween components in a rational and automatic fashion;

• to develop a direct and efficient displacement-based GBT formulation which allows the
analysis of composite TWMs with large penetrations as a structural system. The approach
should benefit of assembly procedures commonly adopted in standard FE models, which
allows to avoid the use of constraint equations to enforce continuity between elements
forming the structural system;

• to introduce an innovative nonlinear GBT formulation where linear deformation fields
stemming from cross-section analysis are supplied, according to the nonlinear Galerkin
method, with nonlinear fields, accounting from nonlinear effects. The formulation should
be able to capture the essence of the TWM nonlinear behavior by using a very reduced
number of fields, thus constituting a very reliable and computationally efficient approach.

1.4 General layout of the thesis

This Thesis is organized in seven chapters, with the first and final ones being the introduction
and conclusions, respectively.

Chapter 2 is aimed to provide a general overview on the GBT. A detailed Literature review
of the research work related to the thesis topic is first presented. The linear elastic (first-order)
GBT formulation is then illustrated to clarify the procedure and to describe the main hypotheses
and assumptions.

The novel straightforward dynamic approach for the GBT cross-section analysis illustrated
in Chapter 3. The procedure is based on the formulation of a very limited number of constrained
eigenvalue problems which allow to obtain the full set of displacement fields in a straightfor-
ward and non-recursive way. The Chapter is structured in order to highlight differences and
similarities with others GBT-D based approaches available in the Literature. For this reason,
the latter are first presented, while the new formulation is introduced subsequently. An illustra-
tive example follows each step of the illustrated procedures, in order to highlight criticisms and
improvements provided by the novel approach, while three additional examples present its ver-
satility and ease-to-use. The set of deformation fields obtained by using the dynamic approach
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are then summarized, while the influence of polynomial order of shape functions adopted in a
FE-based cross-section analysis is finally discussed.

Chapter 4 presents a GBT-based approach for the longitudinal and transverse partial in-
teraction analysis of multi-component TWMs. The model generalizes the GBT approach for
the partial interaction analysis of composite steel-concrete members recently proposed in Taig
et al. (2016). The partial interaction is included in the analysis by means of shear deformable
linear elastic springs placed at the interface between adjacent components and assumed to be
uniformly distributed along the member length. Two dynamic procedures for the cross-section
analysis are then proposed. The first stems from the so-called unconstrained approach available
in the Literature (e.g., Taig et al., 2016), while the second constitutes the generalization of the
novel dynamic procedure presented in Chapter 3. An illustrative example of multi-component
TWM taken from the Literature is presented in order to highlight the differences, in terms of
obtained trial functions, between the two proposals. Finally, the proposed GBT approach is
validated using the numerical results determined with a refined finite element model developed
in ABAQUS/Standard (Simulia, 2010) as reference. To this end, the linear elastic analysis of
two real multi-component TWMs taken from the Literature is presented.

The displacement-based GBT formulation for the analysis of composite TWMs with large
web penetrations is proposed in Chapter 5. The method is based on a variable transformation
which allows to express unknown coordinates in terms of unknown nodal displacements and
rotations. In this way, the GBT-based beam-like FE is transformed into an assembly of GBT-
based shell-like FEs, which benefit of assembly procedures commonly adopted in standard FE
models. Therefore, structural systems can be obtained by simply assembling the contribution
of each member, with no need to resort to constraint equations to restore compatibility con-
ditions between adjacent elements. In the Chapter, the basis of the displacement-based GBT
formulation are first outlined, based on as very recently formalized in Gonçalves and Camo-
tim (2017a,b). The model for composite steel-concrete members is then proposed, based on
the GBT formulation for the partial interaction analysis of multi-component TWM proposed
in Chapter 4. An application on a large-span composite beam with multiple web-perforations
taken from Mills (2001) is then proposed, and results are compared with the ones obtained by
means of a refined shell-based FE model developed with ABAQUS/Standard (Simulia, 2010)
for validation purposes.

The nonlinear GBT approach is illustrated in Chapter 6. The methodology is valid for
arbitrary open, closed and partially-closed cross-sections. The core of the formulation is repre-
sented by a nonlinear cross-section analysis, which is outlined at first in the Chapter. It allows
to identify a set of passive fields, resulting slave of linear ones and able to describe the nonlinear
geometrical effects induced on the cross-section by linear fields themselves. A formal analogy
with a thermal problem is then suited to develop a direct and computationally efficient approach
for the evaluation of passive fields within a FE-based (discrete) description. Finally, the (non-
linear) member analysis is briefly addressed, while the accuracy and efficiency of the proposed
NGBT is pointed out by means of two examples, whose results are validated against the ones
obtained with traditional finite-element solutions obtained with ABAQUS/Standard (Simulia,
2010).

Finally, Chapter 7 discusses the main results and draws conclusions from the thesis. Some
perspectives for future researches are suggested as well. Four Appendices provides details and
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general purpose procedures which make proposed approaches fully operational.



Chapter 2

Overview on the Generalized Beam Theory

2.1 Introduction

In this Chapter, an extended Literature review on the GBT is provided. A very short de-
scription concerning reduced approaches for the linear and nonlinear analysis of TWMs which
are alternative to GBT is here proposed. They all assume the thin-walled beam as an assembly
of folded plates. One of the most reliable and efficient approaches for the TWM analysis is
the shell-based Finite Element Analysis (FEA - e.g., Reddy, 2005; Bathe, 2014). Although the
approach has been established as one of the most powerful and versatile tool, it is generally very
demanding, from a computational viewpoint, and may not be suitable for design purposes, due
to the large number of degrees-of-freedom (DOF) required.

A very efficient alternative is represented by the so-called Finite Strip Method (FSM). First
introduced by Professor Cheung (Cheung, 1976), it belongs to the family of semi-variational
approaches. It is based on subdividing plates forming the TWM into longitudinal strips by
means of fictitious lines. The ends of such strips always constitute a part of the boundary.
Strips are reciprocally connected along a discrete number of nodal lines, with coincide with the
longitudinal boundaries of strips themselves. The displacement field is assumed, in the spirit of
semi-variational (Kantorovich) method, as a linear combinations of simple polynomials within
the cross-section and continuously differentiable smooth series in the longitudinal direction,
whose functions should satisfy a priori the end boundary conditions. Thus for a strip, the two-
dimensional problem is reduced to a one-dimensional one. Different choices can be made as
regards longitudinal shape functions. The original proposal calls for trigonometric functions
or exponentials, however different families of functions have been introduced later on, leading
to different variants of the method. Among the others, the so-called spline fine strip method
(sFSM), making use of spline longitudinal series functions, is worth of mentioning due to its
large diffusion in the scientific community (e.g., Lau and Hancock, 1986; Vrcelj and Bradford,
2008; Eccher et al., 2009; Pham, 2017).

When compared to other alternative approaches, the modal nature of the GBT approach
presents two many advantages, related to its capability to give a clear and straightforward phys-
ical interpretation of the TWM behavior:

1. GBT allows to clarify the distinction between local and global buckling as well as in
identifying and analyzing buckling interaction phenomena.

2. The TWM behavior can generally be fully described within the GBT by a subset of
modes, whose selection is made based on their mechanical interpretation, allowing to
significantly reduce the number of DOF.

The capability in distinguishing between local and global buckling has been recently included
in both FSM and FEA. The goal has been achieved by suitably introducing internal constraints
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to be applied on displacement fields, leading to the so-called constrained finite strip method
(cFSM, e.g. Ádány and Schafer, 2008; Ádány et al., 2009) and constrained finite element
method (e.g., Ádány, 2017; Ádány et al., 2017). On the other hand, the modal selection al-
lowed by the GBT approach and is related efficiency in reducing the problem dimension are
unique and constitute, in some sense, a GBT privilege.

2.2 Literature review

The development of the GBT has been pioneered by Professor R. Schardt and co-workers
at the University of Darmstadt, Germany. The definitive reference of their work is a book by
Schardt (1989), written in German. The work has extended over more than 30 years, but only
little has been published in English (e.g., Schardt, 1983, 1994). The dissemination in English
is mainly due to Davies and co-workers. Their first contribution is mainly descriptive and
illustrates the use of the GBT approach for the first- and second-order analysis by means of
realistic examples (Davies and Leach, 1992). The theory has been then fully detailed in Davies
and Leach (1994); Davies et al. (1994); Leach (1994), while further extensions have been later
proposed in terms of validation with experimental results (Leach and Davies, 1996) and design
of perforated cold-formed steel sections and thin-walled purlins (Davies et al., 1997; Jiang and
Davies, 1997).

The large diffusion in the scientific community of the GBT approach is due to the strong
impulse given to it in the last two decades by Professor D. Camotim and co-workers at the Uni-
versity of Lisbon, Portugal. Their first contributions (Silvestre and Camotim, 2002a,b) deals
with first-order and second-order GBT for orthotropic materials. Nevertheless these contribu-
tions represent an extension of previous works by Schardt and Davies, they are considered as
main references since they detail and formalize the cross-section analysis and buckling analysis
in the framework of GBT. The procedure for the cross-section analysis is presented in Silvestre
and Camotim (2002a). The formulation is limited to open cross-sections and is based on the
fundamental Vlasov hypothesis of (V1) in-plane (tangential) inextensibility, and (V2) mem-
brane zero-shear deformation. Deformation modes are classified into (a) rigid-body modes, (b)
distorsional modes, and (c) local (bending) modes. Rigid-body modes are those referred to
the Vlasov beam theory (i.e., three translations and one rotation around the shear center). Dis-
torsional modes involve in- and out-of-plane displacements of natural nodes (i.e., the ends of
plate segments composing the cross-section) together with transverse bending of plates them-
selves, and are based on the so-called elementary warping functions. They are achieved by first
discretizing the cross-section in plate segments by means of nodes inserted at their ends, then
unitary warping displacements are applied at one natural node at time, while keeping all the
remaining ones at rest. A set of linearly independent warping modes is obtained, in number
equal to the number of natural nodes, consisting on piece-wise linear warping fields. The cor-
responding in-plane tangential displacement is sought, for each one of those modes, based on
the zero-shear Vlasov condition and leading to step-wise constant distributions. The in-plane
transverse displacement is finally achieved by restoring the compatibility of displacement and
rotations at natural nodes: the force method is adopted for this purpose. Local modes depict
transverse bending of plates composing the cross-section and negligible displacements of the
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natural nodes. They are obtained as the solution of the elastic problem where unit displace-
ments are assigned, orthogonal to the plate segment, at intermediate nodes (i.e., not at corners).
Except for rigid-body modes, the set of obtained fields is local-type in nature, since they involve
nontrivial displacement only in a few adjacent nodes. The use of such modes leads to highly
coupled differential equations and complicates the task of finding a solution. Additionally, the
physical meaning of the various modes is by no means obvious, even in the case of the most
trivial and well known phenomena, such as plate bending. Therefore, a change of basis is per-
formed to obtain global-type deformation modes. The latter are obtained as the eigenvectors
of a properly defined eigenvalue problem aimed to simultaneous diagonalize the warping (ax-
ial) and transverse bending stiffness matrices. Deformation modes obtained in Silvestre and
Camotim (2002a) are used for the second-order (buckling) analysis in Silvestre and Camotim
(2002b). Since obtained deformation modes obey the Vlasov hypothesis, the relevant geometric
nonlinear effects can be included by modifying the sole membrane longitudinal strain expres-
sion. In particular, only nonlinear terms relevant to the cross-section displacement in its own
plane are considered in the analysis. The paper alco include a comparison between GBT and the
theory proposed by Bauld and Tzeng (1984), while the physical meaning of cross-section stiff-
ness terms obtained using GBT is pointed out. The approach for the buckling analysis proposed
in Silvestre and Camotim (2002b) is valid limited to open cross-section and has been adopted
for the analysis of poltruded FRP lipped channels in Silvestre and Camotim (2003a). Analytical
formulas have been obtained for the distorsional buckling of steel C and Z-section members in
Silvestre and Camotim (2004a), and validation with experimental results has been proposed in
Silvestre and Camotim (2004b). The proposed cross-section and buckling analyses have been
then extended in Dinis et al. (2006) for TWMs with arbitrary branched open cross-sections and
then applied for the buckling analysis of members subjected to non-uniform bending in Bebiano
et al. (2007). Nonlinear membrane shear strains terms inherent to the in-plane bending of cross-
section plates have been considered in the latter work, pointing out the effect on the final results
of shear stresses induced by bending moment gradients.

The set of deformation modes provided by Silvestre and Camotim (2002a) obeys the Vlasov
hypothesis. As previously illustrated, such a set can be suited in a wide range of problems
dealing with open cross-section TWMs, nevertheless it is not exhaustive in describing all defor-
mations configurations the cross-section can depict. The need of additional deformation modes
violating the Vlasov hypothesis has been firstly pointed out in Silvestre and Camotim (2003b).
In this contribution, a set of so called shear modes (i.e., in-plane transverse extension modes
and out-of-plane shear-deformable modes) have been introduced in addition to the fundamental
ones (i.e., modes obeying Vlasov hypothesis) to account for geometric non-linearities. Simão
and Simões da Silva (2004) proposed a unified energy formulation for the stability analysis of
open and closed thin-walled members within the GBT, discussing the importance of including
the effect of shear flow on closed cross-sections and membrane shear distortions. A shear-
deformable mode accounting for the classic Bredt torsion (e.g., Oden and Ripperger, 1981) has
been included in Gonçalves and Camotim (2004) for the analysis of closed sections, while the
importance in including the (Bredt-like) torsion mode and the axisymmetric (in-plane radial-
extension) mode for the buckling analysis of circular shells and tubes has been evidenced in
Silvestre (2007). Shear modes were included in Silva et al. (2006) for the analysis of FRP
composite beams with open branched cross-section, pointing out their fundamental role in case
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of orthotropic behavior. Finally, the need of in-plane extensible non-warpable modes has been
shown in Silvestre (2008) for the analysis of elliptical cylindrical TWMs. In order to general-
ize the capabilities of GBT in modeling arbitrary TWMs, the cross-section analysis has been
extended. A unified procedure for the cross-section analysis for arbitrary cross-section, includ-
ing shear modes, was first proposed in Gonçalves et al. (2009). The formulation proposed in
Gonçalves et al. (2010) represents a fundamental reference concerning the cross-section anal-
ysis since it constitutes a general approach, valid for arbitrary polygonal cross-section (with
open and closed branches), for the calculation of a complete set of deformation modes to be
used within the GBT framework. The classification of deformation modes based on kinematic
consideration represents a fundamental contribution of the work. In particular, three classes of
deformation modes have been identified: (i) conventional modes are the ones obtained with the
procedure originally proposed by Schardt (Schardt, 1989; Silvestre and Camotim, 2002a) and
include: (i-a) rigid-body modes, (i-b) distorsional modes, (i-c) local (bending) modes and, in
case of closed branches, (i-d) the pure torsion shear mode stemming from the Bredt theory; (ii)
shear modes violate the Vlasov hypothesis V2 and are characterized by nil in-plane deforma-
tion and non-nil warping distribution; (iii) transverse extension modes are in-plane deformation
fields violating the hypothesis V1 and associated with nil warping. Extension and shear modes
are commonly referred to as non-conventional modes. A different classification was proposed
in Silvestre et al. (2011), aimed to provide a physical characterization of deformation modes
more suitable for comparison between GBT and cFSM. An improved procedure for determin-
ing shear modes for complex multi-cell cross-sections has been proposed in Gonçalves et al.
(2014). It is worth to be noted that shear modes described above involve non-nil warping dis-
tributions on the plate mid-line. Thus, they introduce membrane shear deformations on the
sole mid-plane of the beam, while plates forming the cross-section remain unshearable within
their thickness. de Miranda et al. (2013) introduced for the first time an additional set of (non-
conventional) shear-deformable fields involving variability of the warping displacement along
the plate thickness beside that along the plate mid-line. In this way, the full set of shear fields is
able to completely recover the classical Timoshenko beam theory. The contribution in Bebiano
et al. (2015) represent a general unified approach for the cross-section analysis, developed with
the aim to rationalize and automate the GBT-based analyses. It relies on the definition of eleven
eigenvalue problems involving proper-defined stiffness matrices to obtain the final set of GBT
(global-type) deformation modes from the (local-type) elementary ones. Finally, a cross-section
analysis for curved thin-walled cross-sections has been proposed in Gonçalves and Camotim
(2016), where the use of a polygonal approximation of the cross-section mid-line improves the
efficiency of the method and allows to handle polygonal sections with rounded corners.

The procedure for the cross-section analysis described so far stems, from a conceptual view-
point, from the original proposal advanced by Schardt (1989) and consists on two phases. At
first, a set of local-type elementary modes is obtained by solving a series of static analyses, one
for each mode, on an elastic frame having the shape of the cross-section mid-line. Secondarily,
the final set of global-type deformation modes is achieved by solving a series of eigenproblems,
aimed to simultaneously diagonalize some proper defined stiffness matrices. This procedure is
usually referred to as static approach for the cross-section analysis, due to the static nature of
analyses adopted for calculating elementary modes. Recently, a completely different methodol-
ogy has been proposed in Ranzi and Luongo (2011) limited to conventional modes. In the work,
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the set of deformation modes is directly achieved as the eigenvectors of a positive semi-definite
eigenvalue problem. The approach is referred to as dynamic approach for the cross-section
analysis (GBT-D) since the free dynamics of the unconstrained planar frame, represented by
the mid-lines of plate segments forming the cross-section, is chosen as the eigenvalue problem.
The approach completely reverses the classic procedure for the cross-section analysis. As a
matter of fact, the static approach first calls for elementary warping functions, while the in-
plane distributions are subsequently evaluated by enforcing the Vlasov V2 hypothesis. On the
contrary, the in-plane deformation modes are evaluated at first in the dynamic approach through
a planar eigenvalue problem and the warping distributions are achieved afterwards by enforcing
the unshearability condition V2. Moreover, transverse inextensibility condition V1 is automat-
ically enforced in the static approach by choosing step-wise linear warping functions, inducing
step-vise constant transverse displacements (i.e., plates composing the cross-section are inex-
tensible). Instead, the hypothesis V1 is incorporated in the dynamic approach by means of
internal inextensibility constraints to be enforced within the planar eigenvalue problem on each
plate element composing the cross-section. The dynamic approach has been then condensed in
a one-step procedure in Piccardo et al. (2014b) thanks to the definition of a quadratic functional,
whose steady conditions leads to an eigenvalue problem generating the full set of conventional
modes. A further extension of the dynamic approach for the calculation of non-conventional
fields is available in Piccardo et al. (2014a). In particular, the set of extension modes is chosen
as the orthogonal supplement of the in-plane conventional distributions, while shear modes stem
from a warping eigenvalue problem. A slightly different procedure has been identified in Taig
et al. (2015), where the dynamic analysis of an unconstrained planar frame has been chosen
as reference eigenvalue problem. Conventional and extension modes are further separated by
means of an orthogonalization procedure very similar to as proposed in Silvestre and Camotim
(2002a). The dynamic approach for the cross-section analysis has been first applied for buck-
ling analysis in Taig et al. (2016), where a detailed analysis of the effect, in terms of critical
load, of including the cross-section deformability in both pre-buckling and buckling analyses
has been proposed.

The introduction of non-conventional modes allowed to further extend the GBT capabili-
ties in modeling TWMs. An important contribution is available in Natário et al. (2012), where
the localized web buckling analysis of beams subjected to concentrate loads has been ana-
lyzed. The essential contribution of transverse and shear pre-stresses, described by transverse
extension and shear modes, respectively, has been pointed out. Similar results have been ob-
tained in Basaglia and Camotim (2013) in analyzing the effect of transverse load application
on buckling analysis. In this sense, authors developed a simplified procedure, where the exter-
nal work of applied transverse load has been assumed as internal work of pre-buckling stresses
(i.e., the exact procedure). It has been shown that the simplified formulation, which is much
more computationally efficient than its exact counterpart, is able to provide very good results if
the relevant buckling mode does not involve heavy local deformations in the transverse loaded
cross-section. Non-conventional modes, in particular shear distributions, also play an important
role in describing the behavior of regular polygonal tubes. Significant contributions have been
proposed in Gonçalves and Camotim (2013a,b,c), where the cross-section and buckling anal-
yses of members subjected to compression, bending or torsion have been completely detailed.
Analytical expression were provided for some cross-section modal properties, and compari-
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son in terms of critical load with some closed-form solutions available in the Literature were
proposed. Non-conventional modes, in particular out-of-plane shear-deformable fields, play a
fundamental role in the analysis of composite orthotropic TWMs. The first model for the buck-
ling analysis of FRP composite beams with open branched cross-section was proposed by Silva
et al. (2006) and then extended in Silva, Silvestre and Camotim (2010) for the analysis of FRP
composite open-section thin-walled columns. The effect of shear modes in critical loads and
buckling modes has been analyzed in the contribution. In particular, shear modes are essential
to capture the correct critical load in case of orthotropic behavior. In case of isotropic material,
no significant difference can be seen in considering the shear deformability as regards the criti-
cal load, providing that conventional local modes are included in the analysis. However, shear
modes always influence buckling modal shapes. A complete and extended analysis on the in-
teraction between (transverse) extension, shear and (conventional) local deformation modes in
the static bifurcation of thin-walled composite members is presented in Silvestre and Camotim
(2013b).

The capability to include non-standard support conditions in GBT formulation has repre-
sented a fundamental improvement. The first model was proposed in Camotim et al. (2008) and
includes full and partial (i.e., elastically deformable) local constraints. The need of expressing
constraints as function of the assumed deformation modes through a modal description has been
pointed out. The capability to include local restraints allowed the development of a GBT for
linear and buckling analysis of thin-walled frames. The first proposal is available in Basaglia
et al. (2008), where the sole (conventional) rigid-body modes have been included in the anal-
ysis. Thus, each TWM composing the frame behaves according with the classic Vlasov beam
theory, limiting the formulation to the sole global buckling analysis. The connection between
the various beams composing the frame is realized by means of a (nodal) joint element, placed at
the (idealized) point where the connection is deemed to take place, where the modal degrees-of-
freedoms (i.e., the amplitude functions) are transformed into generalized nodal displacements.
In this way and within a Finite Element (FE)-based procedure, the obtained total stiffness ma-
trix includes the effects of ensuring degree of freedom compatibility in the joints connecting
adjacent members. A total warping transmission is enforced at each frame joint by means of
kinematic relations, thus assuming that web stiffening plates are included at joint locations to
prevent the occurrence of distortions. A full GBT formulation for thin-walled frames, including
cross-section distortions and therefore suitable for the local, distorsional and global buckling
analysis has been proposed in Basaglia et al. (2009). The formulation extends the concept of
joint element to arbitrary constraint conditions taking place at the frame joints, thus removing
the hypothesis of perfectly-rigid joints (i.e. total warping transmission) introduced in the pre-
vious contribution. Formulations outlined so far are suitable for open cross-section TWMs and
rely on the sole set of conventional modes provided in Silvestre and Camotim (2002a). Non-
conventional fields are included in the buckling analysis of thin-walled frames in Basaglia et al.
(2010), thus extending the model for the analysis of arbitrary loading conditions. A complete
state-of-the-art report on the buckling analysis of steel thin-walled frames is available in Camo-
tim et al. (2010). Formulations here described have been suited for the analysis of thin-walled
structural systems. Cold-formed steel purlins restrained by sheetings are analyzed in Basaglia,
Camotim, Gonçalves and Graça (2013), where the latter are simulated by means of elastic rota-
tional and translational supports (springs) located at the purlin upper flange mid-width. A more
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general approach suitable for thin-walled systems, such as rack systems, pitched-roof industrial
frames, portal frames made with cold-formed hollow section (RHS) profiles and roof-supporting
trusses has been proposed in Basaglia and Camotim (2015).

GBT has successfully applied for the analysis of composite steel-concrete beams. The first
model is reported in Gonçalves and Camotim (2010), based on the static approach for the cross-
section analysis described in Gonçalves et al. (2009). The shear deformability in the longitudi-
nal direction of the interface connections between steel and concrete component was included
by means of a subsequent set of deformation fields, obtained by imposing unitary relative dis-
placement (i.e., slip) at each connection interface. This cause a non-zero cross-section warping,
inducing non-zero in plane displacement because of the Vlasov unshearability hypothesis (V2).
The set of deformation modes including the connection deformability therefore belongs to con-
ventional modes. The proposed model has recently been adopted in Gonçalves et al. (2016);
Henriques et al. (2016) for the formulation of a GBT-based beam finite element suitable for
the buckling analysis of steel-concrete composite beams. A slightly different approach was
introduced in Taig and Ranzi (2015), based on the dynamic approach for the cross-section anal-
ysis. The shear deformability of the interface, commonly referred to as partial interaction, has
been taken into account in the longitudinal direction by means of linear elastic springs uni-
formly distributed along the beam length and placed at the interface connections, according to
the Newmark model (Newmark et al., 1951). The approach has been recently extended, for the
first time in GBT, to the transverse partial interaction behavior of composite beams in Taig and
Ranzi (2016). It is worth to be noted that, while proper-defined conventional modes need to be
further included when using the static approach to account for the partial interaction analysis,
the latter is automatically included in the obtained set of deformation modes provided by the dy-
namic approach. Some other successful applications of the GBT framework have been recently
proposed. A GBT-based model for the analysis of TWMs with variable (open) cross-section
have been outlined in Nedelcu (2010). The model has been obtained under the approximation
of warping displacements still perpendicular to the cross-section plane. The effect of shear
stress has been neglected in the pre-buckling analysis. It has been shown that the proposed
model provides good results for members with small tapering slopes. The model was then ex-
tended to the analysis of isotropic (closed cross-section) conical shells under compression in
Nedelcu (2011). A GBT approach for the linear analysis of TWMs with locally stiffened sec-
tions has been proposed in Taig and Ranzi (2014). The contribution is based on the dynamic
approach for the cross-section analysis. In particular, the sole set of conventional modes has
been used in the analysis. Two approaches have been formulated to include the plate stiffeners,
both providing good results. The first approach relies on elastic springs placed on the stiffened
cross-section elements, thus providing two different sets of modes (i.e., for the unstiffened and
stiffened sections, respectively) requiring a high level of care in their combination. The second
approach introduces a set of internal constraints to be enforced in the member analysis. A first-
order GBT has been developed in Peres et al. (2016) for curved TWMs with circular axis. An
original method for analysis of TWMs with squared holes using GBT has been first presented
in Nedelcu (2014). The approach is based on the analysis of a full (i.e., unperforated) TWMs
from which the contribution, in terms of global stiffness matrix, of the missing (i.e., perforated)
region has been subtracted. A different approach has been proposed in Cai and Moen (2015);
Casafont et al. (2015); Cai and Moen (2016); Casafont et al. (2018). The latter contributions
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treat the TWM as an assembly of prismatic sub-members having constant cross-section. A set
of compatibility constraints on the GBT modal amplitudes have been introduced according to
the procedure outlined in Camotim et al. (2008) to connect the mentioned sub-members at their
interfaces.

The development of material and geometrical nonlinear GBT formulations has represented
a fundamental advancement, extending the approach to the plastic bifurcation and post-buckling
analyses of TWMs. The first geometrically nonlinear GBT formulation was presented in Sil-
vestre and Camotim (2003b) for the analysis of cold-formed steel members with open cross-
section. The proposal constitute a fundamental reference in the field since it outlines a GBT-
based methodology for the geometrically nonlinear analysis which has never been substantially
modified in further contributions. It is based on the use of the linear GBT kinematic commonly
adopted for first- (i.e., linear) and second-order (i.e., buckling) analyses (e.g., Silvestre and
Camotim, 2002a,b) together with an incomplete expression of the Green-Lagrange strain ten-
sor. In particular, the sole membrane nonlinear strain components related to the cross-section
displacement in its own plane are considered in the analysis, similarly to as done in Silvestre
and Camotim (2002b). A fundamental contribution is represented by the introduction of a set
of so called shear modes, as mentioned so far, to be added to the fundamental ones to account
of effects associated to large displacements, such as the approaching of cross-section natural
nodes (i.e., shortening effect) induced by the in-plane deflection of plates. In this sense, the pa-
per represents the first contribution in which non-conventional modes, definitively formalized in
Gonçalves et al. (2010), have been presented ad used in the analysis. A FE procedure has been
also proposed to solve the GBT (nonlinear) equations, where Hermitian cubic polynomial shape
functions have been used to interpolate the modal amplitudes. The proposed FE procedure has
had a great diffusion in the GBT framework and constitutes the approach commonly adopted
for the solution of GBT equations in both linear, buckling and nonlinear analyses. The geo-
metrically nonlinear GBT has been adopted for the post-buckling analysis of stiffened lipped
channel columns in Silvestre and Camotim (2006b), pointing out the significant role played by
stiffeners in distorsional post-critical behavior. The model has been extended to account for
arbitrary support conditions in Basaglia et al. (2011), and thus adopted for the post-buckling
analysis of thin-walled steel frames in Basaglia, Camotim and Silvestre (2013). It is worth to
be noted that, since the model benefits of a linear GBT kinematics, arbitrary restraints condi-
tions developed for linear and buckling analyses (e.g., Camotim et al., 2008; Basaglia et al.,
2009; Camotim et al., 2010) can be included in the nonlinear model in a very straightforward
manner. The proposed nonlinear approach has been then used for the post-buckling analysis of
laminated CFRP stiffened panels in Silva, Camotim and Silvestre (2010) and GFRP poltruded
beams in Silva et al. (2011). Once again, the use of linear GBT kinematics allows the or-
thotropic model previously proposed (e.g., Silvestre and Camotim, 2002a; Silva et al., 2006)
to be included in the nonlinear analysis in a natural way. Very recently, a corotational based
geometrically nonlinear GBT formulation has been presented in de Miranda et al. (2017). The
approach follows the main idea first proposed in Silvestre and Camotim (2003b), adopting a
linear GBT kinematics and including the sole nonlinear membrane strains, however the full set
of deformation fields, including the non-conventional ones involving shear deformation within
the plate thickness (de Miranda et al., 2013), have been considered in the analysis. The first
material nonlinear GBT formulation has been presented in Gonçalves and Camotim (2004) for
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the analysis of aluminum and stainless steel columns subjected to uniform compression. Both
J2-flow and J2-deformation theories of plasticity, suitable for a small strain (i.e. geometrically
linear) analysis, have been considered in order to include the so-called plate buckling paradox
(e.g., Hutchinson, 1974). The sole conventional modes have been included in the analysis. The
contribution is remarkable since it allows to deal with closed cross-section, thanks to the in-
clusion of the torsion (Bredt-like) shear mode, which will be later classified as conventional
according to Gonçalves et al. (2010). The approach has been extended to include general load
conditions in Gonçalves and Camotim (2007). A GBT-based FE formulation for the elasto-
plastic analysis of TWMs has been proposed in Gonçalves and Camotim (2011), based on the
sole set of conventional modes, and then extended including non-conventional fields for the
first time in Abambres et al. (2013). The proposed GBT-based formulation has been used very
recently in Silvestre et al. (2017) to study the influence of the mode nature (local, distorsional,
global) on the load carrying capacity of TWMs beyond the yield load. It was shown that, under
the hypothesis of small strain regime, a significant post-yielding strength is available in case
of local/distorsional failure modes, while the opposite occurs when failure modes are global
in nature. The material nonlinear GBT-based FE formulation has been extended to the inclu-
sion of geometrically nonlinear effects in Gonçalves and Camotim (2012). Consistently with
the original proposal for geometrically nonlinear analysis (Silvestre and Camotim, 2003b), an
incomplete Green-Lagrange strain tensor expression has been adopted, accounting for the sole
nonlinear membrane strain terms, while material non-linearities are included according to as
proposed in Gonçalves and Camotim (2011), thus limiting the analysis to conventional modes.
The model is suitable for small-to-moderate displacement range, since nonlinear curvature have
been neglected. A full material and geometric nonlinear GBT approach, suitable for large dis-
placement regime, has been proposed in Abambres, Camotim and Silvestre (2014), where both
nonlinear curvatures and non-conventional fields have been included in the analysis. Based on
the latter contribution, a nonlinear GBT-based FE formulation have been developed in Abam-
bres, Camotim, Silvestre and Rasmussen (2014) and then adopted for modeling steel-concrete
composite beams in Henriques et al. (2014), limited to material non-linearities, and Henriques
et al. (2015) for full material and geometrical nonlinear analysis. The interaction between steel
and concrete components is included in the analysis according to as presented in Gonçalves and
Camotim (2010).

The GBT approach have been suited for dynamic analyses of TWMs. The first model is
available in Silvestre and Camotim (2006c). The formulation is based on demanding the time-
dependency to the unknown amplitude functions and describing the latter with the classic free
vibration mode superposition (e.g., Inman, 2013) widely adopted in structural dynamic. In this
way, a member modal analysis is performed, thus identifying a set of member vibration modes
(to not be confused with the cross-section GBT deformation modes). A set of uncoupled ordi-
nary differential equations is then obtained in the unknown time functions describing the time
variation of vibration (member) modes previously identified. The modal nature of the GBT ap-
proach, given by the introduction of cross-section deformation fields, allows to understand the
contribution of each cross-section (GBT) mode on the configuration of each (member) vibration
mode. In this sense, one can intend the dynamic analysis performed within the GBT framework
as a double modal analysis. The approach for the GBT dynamic analysis initially proposed in
Silvestre and Camotim (2006c) has kept substantially unchanged in further contributions, anal-
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ogously to what had happened for the geometrically nonlinear GBT formulation. The original
proposal deals with the dynamic analysis of axially compressed open section cold-formed steel
members and includes the sole set of conventional GBT modes, similarly to as proposed, e.g., in
Silvestre and Camotim (2002a); Basaglia et al. (2009). Its extension to composite orthotropic
materials is proposed in Silvestre and Camotim (2006a) and calls for both conventional and
shear-deformable GBT modes, thus adopting the GBT kinematics and cross-section analysis
proposed in Silva et al. (2006). Bebiano et al. (2008b) extended the formulation to include non-
uniform bending by adopting a very similar procedure to as done in Bebiano et al. (2007). A
general GBT-based approach for the dynamic analysis of TWMs subjected to arbitrary dynamic
loads was proposed in Bebiano, Camotim and Silvestre (2013) for steel members and in Sil-
vestre and Camotim (2013a) for composite open cross-section beams, while the contribution in
Gonçalves et al. (2014) for the analysis of complex multi-cell cross-sections has been suited in
the dynamic analysis in Gonçalves et al. (2015). Very recently, the GBT-based dynamic analy-
sis has been adopted for investigating the dynamic response of high-speed railway bridge decks
in Bebiano et al. (2017).

The intense research on the GBT allowed the method to become a reliable approach for
the analysis of TWMs, very competitive indeed with respect to more refined shell-based Finite
Element analyses (FEAs) as regards the linear and buckling analyses. The computer code GB-
TUL has been developed by Camotim and co-workers for the GBT-based analysis of arbitrary
TWMs with various load and support conditions (e.g., Bebiano et al., 2008a; Bebiano, Camo-
tim and Gonçalves, 2013). Thanks to the modal nature of the approach, GBT is particularly
suitable in understanding the behavior of TWMs, in particular as regard interactions between
local/distorsional/global buckling modes. Analysis in this sense has been proposed in Dinis
et al. (2010) regarding angle, T-section and cruciform TWMs. Mode interaction in equal-leg
angle columns has been investigated in Dinis et al. (2012); Mesacasa et al. (2014). An interest-
ing contribution is represented by Dinis and Camotim (2011), where the buckling mode inter-
actions of cold-formed steel lipped channel columns have been investigated. Columns analyzed
had cross-sections dimensions and length ensuring equal local, distorsional and global critical
loads, thus maximizing the mode interaction phenomenon. The local/distorsional interaction in
lipped channels beams has been very recently analyzed in Martins, Camotim, Gonçalves and
Dinis (2016). The modal nature of GBT has been very recently suited through the GBTUL code
for developing a “trial-and error” procedure aimed to the geometry optimization of TWMs with
various support conditions, in order to enforce particular buckling behaviors, both pure (i.e., lo-
cal or distorsional or global) and with interaction. Such TWMs were further investigate through
a full material- and geometrical- nonlinear FEA, to predispose DSM-based design procedures.
Several recent contributions can be found in this sense for lipped channel columns (e.g., Mar-
tins et al., 2015; Cava et al., 2016; Martins, Camotim and Dinis, 2017c), web/flange stiffened
channel columns (e.g., Martins, Dinis and Camotim, 2016; Landesmann et al., 2016; Martins,
Camotim and Dinis, 2017a) and beams (e.g., Martins, Landesmann, Camotim and Dinis, 2017;
Martins, Camotim and Dinis, 2017b). An alternative and reliable approach is represented by
the so-called constrained Finite Strip Method (cFSM), developed by Schafer and co-workers
(e.g., Ádány and Schafer, 2006b, 2008) and implemented in the open source software CUFSM
(e.g., Schafer and Ádány, 2006; Li and Schafer, 2010). The approach make use of internal
constraints to direct the TWM behavior, thus identifying local, distorsional and global buckling
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modes very similarly to what GBT naturally provides. Some interesting comparisons between
GBT and cFSM are available in the Literature. The first comparison is reported in Ádány and
Schafer (2006a), while an extended comparison between the two approaches, in terms of crit-
ical loads and buckling modes on open (unbranched) TWMs, have been proposed in Ádány
et al. (2009). The latter contribution lead to a revisited GBT (Silvestre et al., 2011), where the
kinematic assumptions and procedures adopted by GBT to identify and characterize the cross-
section deformation modes have been revisited in order to make the GBT framework more
suitable for a true comparison with the displacement fields constraints employed in cFSM. A
full comparison between FEA, cFSM and GBT is available in Casafont et al. (2009) in terms
of pure distorsional elastic buckling loads and limited to open TWMs. It is worth to be men-
tioned that the GBT distorsional (conventional) modes have been used in the latter contribution
as internal constraints, in order to limit the FEA to pure distorsional behavior. A very similar
procedure has been proposed in Casafont et al. (2011) and thus extended in Nedelcu (2012);
Nedelcu and Cucu (2014) to account for global, distorsional and local buckling loads. A similar
procedure has been proposed in Ádány (2017); Ádány et al. (2017) for developing a constrained
shell-FEA, making use of the displacement fields constraints employed in cFSM. Very recently,
a new approach, namely the method of Generalized Eigenvectors (GE), has been proposed for
the analysis of beams (e.g., Genoese et al., 2014a,b). The method is valid for both compact
and thin-walled beams and is based on a semi-analytic finite element formulation for the anal-
ysis of the cross-section. A generalized eigenproblem is obtained, in particular eigenvectors
associated with zero eigenvalues denotes cross-section displacements according to the classic
de Saint-Venant solution, while eigenvectors with positive real-part eigenvalues denotes gener-
alized warping modes describing cross-section distortions. An interesting comparison between
GE and GBT approaches is available in Garcea et al. (2016), where both cross-section deforma-
tion modes and critical loads and modes stemming from a static bifurcation (bucking) analysis
are analyzed and compared for different cross-section shapes.

2.3 Linear GBT formulation

A brief overview on the GBT approach for linear elastic analysis of TWMs is presented
in this Section. A generic TWM is considered, with arbitrary open, closed or partially-closed
cross-section, made of flat plates connected along edges. The displacement field of the mid-
surface S of the plates (i.e., at y = 0) can be expressed as (Fig. 2.1):

u(s, z) = u(s, z)es(s) + v(s, z)ey(s) + w(s, z)ez(s) (2.1)

where s is the curvilinear abscissa along the mid-line of the cross-section profile C, z is the
abscissa along the beam axis, es(s) (ey(s)) is a unit versor tangent (normal) to C , ez(s) is a
unit versor parallel to the TWM axis, respectively, and u(s, z), v(s, z), w(s, z) are the relevant
scalar displacement components in the same triad. In the framework of GBT, these latter are
expressed as linear combination of assumed (known) deformation fieldsUk(s),Vk(s) andWk(s),
commonly referred to as deformation modes and defined on C, and corresponding (unknown)
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Figure 2.1: GBT displacement field.

amplitude functions ϕk(z), defined along the beam abscissa, as (e.g., Ranzi and Luongo, 2011):

u(s, z) =
K∑
k=1

Uk(s)ϕk(z) (2.2a)

v(s, z) =
K∑
k=1

Vk(s)ϕk(z) (2.2b)

w(s, z) =
K∑
k=1

Wk(s)ϕ
′
k(z) (2.2c)

where the prime symbol denotes differentiation with respect to the corresponding function vari-
able. The displacement field d(s, y, z) = ds(s, y, z)es(s)+dy(s, y, z)ey(s)+dz(s, y, z)ez(s) at
a point P (s, y, z) located within the plate thickness (i.e., external to S) is evaluated according
to the Kirchhoff model as (e.g., Ranzi and Luongo, 2011):

ds(s, y, z) =
K∑
k=1

[Uk(s)− yV ′k(s)]ϕk(z) (2.3a)

dy(s, y, z) =
K∑
k=1

Vk(s)ϕk(z) (2.3b)

dz(s, y, z) =
K∑
k=1

[Wk(s)− yVk(s)]ϕ′k(z) (2.3c)
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With the adopted formulation, the (linear) strain field ε(s, y, z) =
{
εms , ε

m
z , γ

m
sz, ε

f
s , ε

f
z , γ

f
sz

}T

can be written as:

εms =
∑K

k=1
U ′k(s)ϕk(z) (2.4a)

εmz =
∑K

k=1
Wk(s)ϕ

′′
k(z) (2.4b)

γmsz =
∑K

k=1
[Uk(s) +W ′

k(s)]ϕ
′
k(z) (2.4c)

εfs =
∑K

k=1
−yV ′′k (s)ϕk(z) (2.4d)

εfz =
∑K

k=1
−yVk(s)ϕ′′k(z) (2.4e)

γfsz =
∑K

k=1
−2yV ′k(s)ϕ

′
k(z) (2.4f)

where membrane strain components, relevant to y = 0 and denoted with superscript m, have
been distinguished from flexural components, relevant to y 6= 0 and denoted with superscript
f . A linear elastic law is commonly adopted, thus expressing membrane and flexural stresses
as σ = Eε, where the elastic matrix E is defined as:

E =



E
1−ν2

νE
1−ν2 0 0 0 0

νE
1−ν2

E
1−ν2 0 0 0 0

0 0 G 0 0 0
0 0 0 E

1−ν2
νE

1−ν2 0

0 0 0 νE
1−ν2

E
1−ν2 0

0 0 0 0 0 G

 (2.5)

where E, G and ν are the longitudinal, tangential and Poisson moduli, respectively. Corre-
sponding (linear) stress field σ(s, y, z) =

{
σms , σ

m
z , τ

m
sz , σ

f
s , σ

f
z , τ

f
sz

}T can be written as:

σms =
∑K

k=1

E

1− ν2
[U ′k(s)ϕk(z) + νWk(s)ϕ

′′
k(z)] (2.6a)

σmz =
∑K

k=1

E

1− ν2
[νU ′k(s)ϕk(z) +Wk(s)ϕ

′′
k(z)] (2.6b)

τmsz =
∑K

k=1
G [Uk(s) +W ′

k(s)]ϕ
′
k(z) (2.6c)

σfs =
∑K

k=1
− yE

1− ν2
[V ′′k (s)ϕk(z) + νVk(s)ϕ

′′
k(z)] (2.6d)

σfz =
∑K

k=1
− yE

1− ν2
[νV ′′k (s)ϕk(z) + Vk(s)ϕ

′′
k(z)] (2.6e)

τ fsz =
∑K

k=1
−2yGV ′k(s)ϕ

′
k(z) (2.6f)

The weak formulation of the elasticity problem can be derived through the Principle of
Virtual Works. This can be expressed, assuming external forces to be constant (or averaged)
over the plate thickness, as (e.g., Piccardo et al., 2014a):ˆ

V

εTE δε dV −
ˆ

S

fTδu dS −
ˆ

C

∑
B

FT
BδuB ds = 0 (2.7)
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where V is the volume of the TWM, f(s, z) = fs(s, z)es(s) + fy(s, z)ey(s) + fz(s, z)ez(s) are
forces per unit area acting on the middle surface S , FB(s) = FBs(s)es(s) + FBy(s)ey(s) +
FBz(s)ez(s) are forces per unit length applied on the boundaries B : z = 0,L (i.e , on the mid-
line C of the end cross-sections at z = 0,L, respectively, L being the TWM length), and the
δ-operator denotes virtual quantities. By making use of Eqs. (2.2), (2.4) and (2.5), the following
field equations can be obtained from Eq. (2.7) by performing the standard steps of variational
calculus (e.g., Berdichevsky, 2009):

CϕIV −
(
D− F− FT

)
ϕ′′ + Bϕ− p = 0 (2.8)

with corresponding boundary conditions terms to be applied at z = 0,L:

δϕ′T
(
Cϕ′′ + FTϕ−PW

)
= 0 (2.9a)

δϕT
[
Cϕ′′′ −

(
D− FT

)
ϕ′ −PM

]
= 0 (2.9b)

where the vector ϕ = {ϕ1(z), . . . , ϕk(z), . . . , ϕK(z)}T collects the K unknown amplitude
functions. Eq. (2.8) are commonly referred to as GBT equations. They consist on a set of K
coupled ordinary differential equations in the amplitude functions ϕk(z). Eq. (2.9) generate the
mechanical boundary conditions (i.e., the natural conditions) to be applied to the end cross-
sections once the geometric constraints (i.e., the essential conditions) have been prescribed. In
Eqs. (2.8) and (2.9), the following positions hold for structural matrices:

Bhk = Be
hk +Bf

hk =
Et

1− ν2

ˆ

C

U ′h(s)U
′
k(s)ds+

Et3

12(1− ν2)

ˆ

C

V ′′h (s)V ′′k (s)ds (2.10a)

Chk = Ca
hk + Cf

hk =
Et

1− ν2

ˆ

C

Wh(s)Wk(s)ds+
Et3

12(1− ν2)

ˆ

C

Vh(s)Vk(s)ds (2.10b)

Dhk = Ds
hk +Dt

hk =

= Gt

ˆ

C

[Uh(s) +W ′
h(s)] [Uk(s) +W ′

k(s)] ds+
Gt3

3

ˆ

C

V ′h(s)V
′
k(s)ds (2.10c)

Fhk = F s
hk + F f

hk =
νEt

1− ν2

ˆ

C

U ′h(s)Wk(s)ds+
νEt3

12(1− ν2)

ˆ

C

V ′′h (s)Vk(s)d (2.10d)

where superscripts f , t, e, a and s refer to the flexural, torsional, (transverse) extensional,
axial (longitudinal) and shear nature of the underlying energy terms, respectively. The relevant
loading vectors included in both Eqs. (2.8) and (2.9) are defined as:

pk =

ˆ

C

[fs(s, z)Uk(s) + fy(s, z)Vk(s)− fz,z(s, z)Wk(s)] ds (2.11a)

PW
k =

ˆ

C

[∑
B

FBz(s)Wk(s)

]
ds (2.11b)

PM
k =

ˆ

C

{∑
B

[FBs(s)Uk(s) + FByVk(s)] + fz(s, z)Wk(s)

}
ds (2.11c)
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where the comma denotes differentiation with respect to the following variable.
GBT equations are commonly solved numerically by means of a Finite Element (FE) pro-

cedure (e.g., Bathe, 2014). The beam is discretized along its longitudinal axis by means of
NE finite elements and the unknown amplitude functions are approximated, in the spirit of the
displacement-based FE formulations, by means of Hermite cubic polynomial shape functions.
This approximation can be described by:

ϕk(z) ∼=
2∑
i=1

[
H2i−1(z)ϕ

(i)
k +H2i(z)ϕ

′(i)
k

]
(2.12)

where ϕ(i)
k , ϕ

′(i)
k are the (unknown) nodal values of the amplitude functions, while Hi(z) are

polynomials shape functions that can be expressed in non-dimensional form as:

H1(z) = 1− 3

(
z

lE

)2

+ 2

(
z

lE

)3

; H2(z) = lE

[
z

lE
− 2

(
z

lE

)2

+

(
z

lE

)3
]

(2.13a,b)

H3(z) = 3

(
z

lE

)2

− 2

(
z

lE

)3

; H4(z) = lE

[
−
(
z

lE

)2

+

(
z

lE

)3
]

(2.13c,d)

with lE being the length of the E-th FE. By making use of Eq. (2.12) and performing the
standard steps of the FE procedure, the following stiffness relationship can be obtained for each
GBT-based FE:

KE dE = qE (2.14)

where dE is a 4K × 1 vector collecting the unknown nodal values of the amplitude functions,
while KE and qE are 4K × 4K stiffness matrix and 4K × 1 load vector, respectively, defined
as follows:

KE =

ˆ

lE

[
HT

(
B H + FTH′′

)
+ H′TD H′ + H′′T (C H′′ + F H)

]
dz (2.15a)

qE =

ˆ

lE

[
HTq1 + H′Tq2

]
dz (2.15b)

being:

q1k =

ˆ

C

[fs(s, z)Uk(s) + fy(s, z)Vk(s)] ds; q2k =

ˆ

C

fz(s, z)Wk(s)ds (2.16a,b)

and:
H(z) =

[
H1(z)I H2(z)I H3(z)I H4(z)I

]
(2.17)

with I being a K ×K identity matrix.
From a mathematical viewpoint, GBT can be classified as a semi-variational approach,

where a linear Galerkin method is used to reduce the original elastic three-dimensional prob-
lem described by partial differential equations to an equivalent one-dimensional problem deal-
ing with ordinary differential equations. Semi-variational approaches stem from the so called
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Kantorovich-Vlasov method (e.g., Prokopov et al., 1982), which originates from the work done
by Kantorovich on the use of Galerkin method for reducing complex problems to ordinary dif-
ferential equations (Kantorovich, 1933, 1942; Kantorovich and Krylov, 1958). Nevertheless
a similar procedure was earlier proposed by Vlasov for the analysis of shells (Vlasov, 1932).
In the context of the Kantorovich-Vlasov method, GBT involves the use of a linear Galerkin
methods (Kantorovich and Krylov, 1958; Fletcher, 1984), in which the displacement field is
expressed by means of linear trial functions Uk(s),Vk(s) and Wk(s) affected by linear coordi-
nates ϕk(z). GBT presents lots of similarities with the procedure commonly adopted in elastic
buckling and bifurcation analysis (e.g., Budiansky, 1974; Luongo and Pignataro, 1988 for appli-
cations in the context of thin-walled beams), however a fundamental difference exists between
the two approaches. In fact, while the set of trial functions of the latter is made of critical
(i.e., buckling) modes, the former relies on generic functions Uk(s),Vk(s) and Wk(s) describing
congruent deformed configurations of the beam cross-section. Therefore, the use of the nomen-
clature modes for functions Uk(s),Vk(s) and Wk(s) seems to be ambiguous, since it might lead
to consider the GBT trial functions as the critical modes depicted by the TWM. For this reasons
and in spite of the wide diffusion in the Literature of the nomenclature “deformation modes”,
functions Uk(s),Vk(s) and Wk(s) will be referred in this work to as “trial functions”, or alter-
natively “functions” or “fields”.

The GBT approach requires two steps to be carried out, in particular: (a) cross-section anal-
ysis, where a suitable set of trial functions Uk(s),Vk(s) and Wk(s) is identified; (b) member
analysis, where matrices and vectors in Eqs. (2.10) and (2.11) are first evaluated, then GBT
equations and corresponding boundary conditions, Eqs. (2.8) and (2.9), are solved, either ana-
lytically or numerically, in terms of unknowns coordinates ϕk(z). The choice of the set of trial
functions is a fundamental step for the numerical efficiency of a Galerkin approach. As a matter
of facts, despite the convergence of the method is guaranteed providing that the set of trial func-
tions is (i) complete in energy, and (ii) made of linearly independent functions, it is well known
(e.g., Fletcher, 1984) that the use of local-type functions strongly reduces the accuracy of the
method. Therefore, the use of fields Uk(s),Vk(s) and Wk(s) involving nontrivial displacement
in a limited portion of the cross-section requires, in order to obtain accurate results, the use of
a large number of functions. On the contrary, fields that are global in nature and hierarchically
ordered allow to well model the TWM behavior by using a very limited number of trial func-
tions, making the GBT very efficient. The cross-section analysis is therefore the leading step in
the GBT approach, since it is strictly related to the accuracy and efficiency of the methodology.



Chapter 3

Novel straightforward dynamic approach for the GBT
cross-section analysis

The classic cross-section analysis (e.g., Davies and Leach, 1994; Silvestre and Camotim,
2002a) is based on the two fundamental Vlasov hypotheses: (V1) all the members composing
the cross-section are in-plane inextensible, and (V2) they are unshearable. Due to V2 hypoth-
esis, tangential in-plane displacements and warping are mutually linked so that, once one is
known, the other can be consequently evaluated. The set of in-plane and warping deformation
fields that identically satisfy Vlasov hypotheses refers to as conventional trial functions. In
some case however, these latter may not be sufficient to accurately describe the TWM behavior,
and other deformation fields, referred to as non-conventional trial functions, were introduced
(e.g., Silvestre and Camotim, 2003b; Gonçalves et al., 2010; Piccardo et al., 2014a). Non-
conventional trial functions include extension and shear fields; they are obtained by releasing
the V1 and V2 assumptions and, together with conventional ones, they constitute a complete
set of linear trial functions, able to span the whole space of the admissible configurations of the
problem. The importance of non-conventional fields in the GBT-based analysis has been re-
peatedly pointed out in the Literature. They play a fundamental role in the buckling analysis of
TWMs subjected to concentrated and transverse loads (e.g., Natário et al., 2012; Basaglia and
Camotim, 2013), regular polygonal tubes (e.g., Gonçalves and Camotim, 2013a,c) and compos-
ite orthotropic TWMs (e.g., Silva et al., 2006; Silva, Camotim and Silvestre, 2010), while they
are essential to include geometrically non-linear effects in GBT-based non-linear analyses (e.g.,
Silvestre and Camotim, 2003b; Silva et al., 2011).

The classic static approach that allows to evaluate both conventional and non-conventional
functions (e.g., Silvestre and Camotim, 2002a, 2003b; Gonçalves et al., 2010) arises from a
discretization of the cross-section in a finite number of plate segments by introducing “natural”
nodes (corresponding to wall mid-line intersections or free edges) and “intermediate” nodes
(arbitrarily located between the natural nodes of each wall). Each trial function is defined as
the static solution (by classic methods of structural mechanics) of a linear elastic planar frame,
representing the cross-section, subjected to unitary generalized displacement at each node. In
this way, obtained displacement fields are generally local-type in nature since they involve non-
trivial displacements only in a few adjacent segments. It is then introduced an orthogonalization
procedure (e.g., Silvestre and Camotim, 2002a; Gonçalves et al., 2010) which serves the pur-
pose of hierarchizing trial functions in a well-defined way, with the aim to obtain global type
deformation fields and a partial decoupling of the GBT equations. Very recently, a step for-
ward has been proposed within the static approach to the cross-section analysis in Bebiano
et al. (2015), in order to obtain a “rational” and “automate” procedure, according to the defini-
tion of the authors. Although this procedure is undeniably more direct and less involved than
those previously cited, it maintains complexity and problems intrinsic to the static approach.
In particular, the procedure still requires, as a first step, the determination of an exhaustive set
of node-based elementary deformation fields as solutions of static problems, arising from the
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individual imposition of four unit generalized displacements at each (natural and intermediate)
node. Then, the obtained elementary trial functions must be combined through a number of
eigenvalue problems (greater than 10; see Figure 13 in Bebiano et al., 2015), in order to provide
the final set of GBT (global) trial functions. Moreover, the whole procedure is not based on
purely kinematic concepts (as it would be definitely possible at least for isotropic material) but
it is, in some sense, mixed and recursive: the physical characterization of GBT functions is ob-
tained by the mentioned eigenvalue problems that are defined through stiffness matrices arising
from the member analysis and then depending on the trial functions themselves. Nevertheless,
this action is necessary to give physical meaning to static elementary deformation fields initially
determined, in addition to make less coupled the GBT equations (without reaching a complete
decoupling anyway). A completely innovative dynamic approach for the cross-section analy-
sis was first proposed in Ranzi and Luongo (2011), limited to conventional trial functions, and
later extended to non-conventional ones in Piccardo et al. (2014a). In this new context, referred
to as GBT-D, the set of trial functions is directly achieved from the eigenvectors of a positive
semi-definite eigenvalue problem. The free dynamics of the unconstrained planar frame, repre-
sented by the mid-lines of plate segments forming the cross-section, is chosen as the eigenvalue
problem. In this way, deformation fields arise naturally from the solution of a small number
of eigenvalue problems (only 3) without any preliminary static evaluation and without the need
for further orthogonalization involving stiffness matrices. The complete procedure consists of
three steps (Piccardo et al., 2014a): (1) a first constrained planar eigenvalue problem (PEP) is
performed for a linear elastic planar frame having the shape of the TWM mid-line, whose mem-
bers are assumed to be inextensible; obtained fields are then supplied by warping components
ensuring (a) zero membrane shear-strains in open branches, and (b) constant shear-stress flow
along closed loops (conventional trial functions); (2) a second constrained PEP is solved for
an extensional planar frame of the same shape, where obtained fields are the orthogonal sup-
plement to the inextensional ones (extension trial functions); (3) a warping eigenvalue problem
(WEP) is performed for a pure shear beam, supplying purely warping fields for the TWM (shear
trial functions). Thanks to the intrinsic characteristics of the dynamic approach, the obtained
conventional and shear fields are directly global in nature and hierarchically ordered. Moreover,
the approach results very simple from a mathematical viewpoint and easy to be implemented in
a computer code. Despite the many advantages provided, the original GBT-D approach some-
times leads to localized extension fields (i.e., having displacements localized in few natural
nodes of the profile). This aspect does not imply any problem in the solution, but it seems in
contrast with the GBT spirit as reduced method, that should try to find a well approximated
solution of structural behavior using the smallest possible number of trial functions. To avoid
this problem, an unconstrained dynamic approach for the cross-section analysis was introduced
in Taig et al. (2015). In the contribution, a set of mixed in-plane flexure-extension fields is ob-
tained at first, then conventional and extension functions are separated through properly defined
eigenvalue problems that are very similar to those present in the static procedure. The proposed
methodology allows to overcome the localized nature of extension fields shown by the original
GBT-D approach. However, resulting conventional and extension trial functions seem to be
slightly imprecise, especially as regards higher ones that sometimes lose their symmetry. Due
to this fact, the whole set of trial functions have to be considered in the analysis in order to cor-
rectly describe the structural behavior, as happened for the GBT-D procedure and in contrast to
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the original spirit of GBT earlier mentioned. Moreover, as in the static procedure, this method
is partially mixed since member stiffness matrices depending on trial function themselves are
necessary to perform the whole procedure. In this chapter, a new procedure is developed within
the GBT-D approach originally proposed in Piccardo et al. (2014a), in order to overcome the
possible localized character of extension trial functions. To this end, a new constrained PEP
is formulated, where members are assumed to be unshearable and unflexurable (i.e., they can
only show purely in-plane elongations) in order to obtain a subset of planar, non-conventional,
purely extension fields which arise naturally of global type for both mono-connected (i.e. open)
and multiply-connected (i.e. closed or partially closed) TWM cross-sections. Regarding these
latter, the need of hybrid trial functions (i.e., mixed in-plane flexure-extension fields) is pointed
out. They include flexural deformation involving frame elasticity associated to the effect of
non-simultaneous elongations on elements belonging to closed branches. A further constrained
PEP is presented, where hybrid functions are asked to be energetically orthogonal to remain-
ing in-plane (conventional and pure extension) deformation fields. The chapter is organized
as follows. An exhaustive overview on the available approaches for the cross-section analysis
within the GBT-D approach (Piccardo et al., 2014a; Taig et al., 2015) is first presented in Sec-
tion 3.1. The continuous formulations for both PEP and WEP are briefly presented, then the
corresponding discrete FE-based versions, commonly preferred in the Literature, are illustrated
in detail. The new procedure for (pure and mixed) extension trial functions is then introduced in
Section 3.2, pointing out a couple of alternative and equivalent procedures for the determination
of the constraint matrix required in the new PEP. An illustrative example of a generic partially
closed cross-section taken from Bebiano et al. (2015) is presented throughout Sections 3.1 and
3.2, in order to highlight the differences, in terms of obtained trial functions, between the three
approaches, while three additional examples are presented in Section 3.2, illustrating the ver-
satility of the new procedure. The set of trial functions obtained from the dynamic approach
are summarized in Section 3.3. Finally, a brief discussion on the influence in adopting different
interpolating polynomial functions for the discrete FE-based cross-section analysis is addressed
in Section 3.4.

3.1 Overview on the GBT-D approach

A segment of TWM with length dz is considered to be free in space (i.e., unconstrained),
weightless, with mass proportional to the local thickness (see Fig. 3.1a, where a channel section
is considered as example). The segment is susceptible of two types of motion: (a) in-plane
oscillations, in which all points move transversely to the beam axis z (i.e., the segment behaves
as an unconstrained planar extensible frame, see Fig. 3.1b), and (b) out-of-plane (warping)
oscillations, in which all points move parallel to the beam axis (i.e., the segment behaves as
an unconstrained pure shear beam, see Fig. 3.1c). Since dz is infinitesimal, it can be assumed
that both in-plane and out-of-plane motions are not dependent on z; therefore, the previous two
problems are governed by two independent sets of uncoupled differential equations, referred
to as Planar Eigenvalue Problem (PEP) and Warping Eigenvalue Problem (WEP), respectively,
which are now outlined in separate sections.
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Figure 3.1: Free oscillations of a segment of TWM: (a) undeformed configuration, (b) in-plane oscilla-
tions, (c) out-of-plane (warping) oscillations.

3.1.1 Planar Eigenvalue Problem (PEP)

The PEP is governed by the well-known equations for axial and transverse vibrations of a
beam, which are expressed as (Piccardo et al., 2014a):

U ′′(s) + λ
m

EA
U(s) = 0 (3.1a)

V IV (s) + λ
m

EJ
V (s) = 0 (3.1b)

wherem,A, J ,E are the mass per unit length, area, second moment of area and elastic modulus,
respectively, of each beam element used in discretizing the cross-section as a planar frame,
while λ depicts the unknown eigenvalue, defined as the square of the frame natural circular
frequency (i.e., λ = ω2). Eq. (3.1) are the fields equations applicable to each beam element,
providing that parameters m, A, J , E remain constant along each segment. By following the
standard steps of structural dynamics (e.g., Inman, 2013), a transcendent characteristic equation
of the type f(λ) = 0 can be obtained, which admits an infinite number of eigenvalues λk and
associated eigenfunctions Uk(s), Vk(s), k = 1, 2, . . . .

Although the continuous problem is in principle simple and suitable for matrix formula-
tion (e.g., Ranzi and Luongo, 2014), its discrete version is preferred in the Literature. The
planar frame representative of the TWM cross-section is subdivided into M finite elements by
interposing possible additional nodes between the natural ones (i.e., the corners of the profile).
By using the classic six degree-of-freedom (DOF) FE illustrated in Fig. 3.2a, being n the to-
tal number of nodes (both natural and intermediate) adopted for the frame discretization, the
problem is reduced to N = 3n DOF. Following standard steps of the FE procedure (e.g., Ranzi
and Gilbert, 2015) and assuming Hermite cubic and Lagrangian linear polynomial interpolating
functions for the transverse and axial displacements, respectively, the local stiffness and mass
matrices Ke

p and Me
p (with e = 1, 2, . . . ,M and subscript p identifying the planar problem)

are evaluated for each element (see Appendix A), and then suitably assembled. The following
algebraic eigenvalue problem is thus obtained:

(Kp − λpMp)qp = 0 (3.2)

where Kp and Mp are theN×N global stiffness and mass matrices and qp is aN -vector collect-
ing nodal displacements. Since the matrices Kp and Mp are real symmetric, their eigenvectors
qpk (k = 1, ..., N) constitutes a complete set that spans the whole space of the admissible con-
figurations of the system. It is here highlighted the fact that eigenvectors are normalized in
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the present work, unless otherwise specified, in such a way the maximum nodal displacement
they describe is unitary in magnitude. Corresponding trial functions describe mixed flexure-
extension deformation fields. Any non-singular change of basis leads to a set of deformation
fields that still represent a complete basis for the considered space. Thus, consistently to as
commonly done in the GBT framework (e.g., Gonçalves et al., 2010) and to facilitate the phys-
ical interpretation of the problem, it is convenient to divide the whole space into supplementary
subspaces leading to a mechanical characterization of deformation fields. The first subspace
concerns the conventional fields, in which the planar frame undergoes flexure without exten-
sion, satisfying the Vlasov’s V1 hypothesis. The second subspace includes the non-conventional
(transverse) extension fields, in which elements composing the cross-section are free to depict
in-plane elongations, thus violating the inextensibility (V1) condition. Two distinct procedures
have been proposed in the context of the GBT-D approach, in order to identify the aforemen-
tioned subspaces. The first one is based on introducing suitable sets of internal constraints in
the PEP depicted in Eq. (3.2). The procedure can be thus referred to as constrained approach
and has been first introduced in Ranzi and Luongo (2011), limited to conventional fields, and
then extended in Piccardo et al. (2014a) to account for extension trial functions. The second
procedure was first proposed in Taig et al. (2015) and, on the contrary, it does not involve any
internal constraints, since conventional and extension fields are separated by performing subse-
quent changes of basis very similar to those present in the static procedure. For this reasons, it
is referred to as unconstrained approach. For the seek of clarity, the two methodologies will be
illustrated separately in the following.
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Figure 3.2: In-plane 6 DOF FE for the cross-section analysis: nodal displacements in (a) local, and (b)
global coordinates.

Constrained approach for conventional and extension trial functions

The first procedure for conventional fields in the context of the constrained (GBT-D) approach
has been proposed in Ranzi and Luongo (2011). It is based on the introduction of suitable inter-
nal constraints in Eq. (3.2), equal in number to the M elements used in the FE discretization of
the planar frame. Referring to the generic element e in the plane of the cross-section (Fig. 3.2a)
and interpreting it as a generalized elastic spring as provided by Luongo and Paolone (1997)
(see Appendix B), its global axial deformation is defined in local coordinates as:

εe = U e
2 − U e

1 (3.3)

The inextensibility constraint εe = 0 can be rewritten in global coordinates as:

(Uj − Ui) cosαe + (Vj − Vi) sinαe = 0 (3.4)
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obtaining M linearly independent equations representative of a purely-extensional internal con-
straint; they can be collected in a linear system of the type (subscript i being referred to inex-
tensible trial functions):

Aiqp = 0 (3.5)

where Ai is a M × N matrix. Eq. (3.5) can be solved with respect to Ni = N −M master
variables qiM , as provided in Appendix C. Based on this technique, a constrained PEP is
obtained:

(Ki − λiMi)qiM = 0 (3.6)

where:
Ki = RT

i KpRi ; Mi = RT
i MpRi (3.7a,b)

are Ni × Ni reduced-order stiffness and mass matrices, respectively, and Ri is a N × Ni con-
straint matrix (see Appendix C). Eq. (3.6) provides Ni eigenvectors qik = RiqiMk that can be
collected in the N ×Ni matrix Qi = [qi1,qi2, . . . ,qiNi]: they span a Ni-dimensional subspace
of the original N -dimensional one. From them the conventional (inextensional) planar trial
functions U i

k(s), V
i
k (s) (k = 1, 2, . . . , Ni) are determined, based on the adopted interpolating

functions. Since the frame is unconstrained (i.e., Kp is positive semi-definite) and the constraint
matrix Ri is a full-rank matrix, the problem admits the triple eigenvalue λi = 0, to which three
eigenvectors, describing rigid motions of the cross-section, are associated. These can be freely
and conveniently chosen as two translations along the principal inertia axes of the cross-section,
and a rotation around its shear center.

Conventional planar trial functions can be conveniently supplemented by warping distribu-
tions W i

k(s) whose associate membrane shear strain γmsz is required to be either (a) nil along
open branches of C (i.e., satisfying the Vlasov unshearability condition), or (b) constant on each
closed branch of C (i.e., satisfying the Bredt’s condition). Recalling Eq. (2.4c) and considering
that U i

k(s) are piecewise constant functions (i.e., U i
k(s) = U e

k , e = 1, 2, . . . ,M ) due to the
Vlasov inextensibility condition V1 enforced in Eq. (3.5), it follows that warping distributions
are piecewise linear function and can be expressed as function of their (unknown) nodal values
as:

W i
k(s) =

W e
2k −W e

1k

le
s+W e

1k e = 1, 2, . . . ,M (3.8)

whereW e
1k andW e

2k depict the values of warping distribution associated to the k-th trial function
at the first node (i.e., s = 0) and end node (i.e., s = le), respectively, of element e possessing
length le. The Vlasov unshearability (V2) condition can thus be expressed as:

U e
k +

W e
2k −W e

1k

le
= 0 (3.9)

to be applied on elements belonging to open branches of C, while the following relationship
holds on closed branches:

Gte

(
U e
k +

W e
2k −W e

1k

le

)
=

L∑
l=1

(±)Ql
k (3.10)

where te is the thickness of the e-th element and Ql
k is the (unknown) tangential stress flow

associated with the k-th trial function and acting of the l-th closed loop (being L the total
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number of closed loops composing the cross-section). An arbitrary positive rotation is assigned
to each loop and a positive (negative) sign is used in the summation for Ql

k in the right-hand
side of Eq. (3.10) when the direction identified by the local coordinate s and the one consequent
to the rotation previously introduced coincide (differ). Eqs. (3.9) and (3.10) represent a linear
system ofM equations and n+L unknowns. Since the number of cross-section elements can be
expressed as M = n−1+L, one of these unknowns remains arbitrary. It describes the uniform
(longitudinal) extension of the member. To make the warping orthogonal to the extension, it
is convenient to choose the remaining arbitrary unknown in such a way that the average k-th
warping function is zero, i.e.:

ˆ
C
W i
k(s)ds =

M∑
e=1

le
2

(W e
1k +W e

2k) = 0 (3.11)

An illustrative example of a generic partially closed cross-section taken from Bebiano et al.
(2015) and shown in Fig. 3.3a is proposed to illustrate the GBT-D procedure. In perfect
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Figure 3.3: Illustrative example of dynamic cross-section analysis: (a) geometry, (b) cross-section dis-
cretization.

analogy with Bebiano et al. (2015), the cross-section is discretized with n = 10 nodes, then
N = 30 and M = 10 elements (Fig. 3.3b). Conventional trial functions U i

k(s), V
i
k (s), W i

k(s)
(k = 1, 2, . . . , Ni) for the illustrative example are shown in Fig. 3.4; they are in number
Ni = N −M = 20. The first three functions describe rigid-body motions corresponding to
null eigenvalues. Other fields involve in-plane flexure without elongation of the cross-section
elements, in accordance with Vlasov’s V1 hypothesis. Corresponding warping distributions en-
force the unshearability V2 hypothesis on open branches, and the Bredt’s conditions on closed
cells.

Extension fields are assumed, accordingly to Piccardo et al. (2014a), as the orthogonal sup-
plement to the conventional subset Qi previously identified. Any vector qe orthogonal to the
latter subspace must satisfy Ni orthogonality conditions which can be expressed in matrix form
as QT

i Gqp = 0, being G any definite positive matrix. In the following, the identity matrix (i.e.,
G = I) is adopted. The set of Ni orthogonality conditions are used as internal constraints in
the dynamic problem of Eq. (3.2). They can be solved in terms of Ne = N − Ni = M master
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Figure 3.4: Illustrative example of dynamic cross-section analysis: conventional planar and warping trial
functions obtained with the GBT-D approach (Piccardo et al., 2014a).

variable qeM , as provided in Appendix C, thus obtaining the following constrained PEP:

(Ke − λeMe)qeM = 0 (3.12)

where:
Ke = RT

e KpRe ; Me = RT
e MpRe (3.13a,b)

are M ×M reduced-order stiffness and mass matrices, respectively, and Re is a N ×M con-
straint matrix (see Appendix C). Eq. (3.12) providesM eigenvectors qek = ReqeMk orthogonal
to the inextensional eigenvectors qik, thus completing the basis sought. Transverse extension
planar trial functions U e

k(s), V e
k (s) (k = 1, 2, . . . , M ) are determined, based on the adopted

interpolating functions. They are associated to nil warping components (i.e., W e
k (s) = 0).

Extension planar trial functions for the illustrative example are shown in Fig. 3.5, where both
the full in-plane cross-section displacement UV and the sole transverse displacement U have
been reported, the latter using the y-axis convention (i.e., they are plotted as a diagram with
positive values in the local y-axis direction). Obtained axial displacements U e

k(s) are global
in type since they involve non-trivial displacements in sufficiently wide portions of the cross-
section (i.e., more than one node adopted in the discretization). On the contrary, transverse
displacements V e

k (s) are localized nearby one single node in almost all obtained extension trial
functions. This might be due to internal constraints enforcing orthogonality with conventional
fields, which seems to prevent rigid translations of elements not depicting axial displacements.
The phenomenon may influence the computational efficiency of the GBT approach, since a
large number of local-type trial functions may be required to obtain accurate results. Moreover,
such localized bending behavior is not related to any physical evidence.

Unconstrained approach for conventional and extension trial functions

An alternative procedure was developed in Taig et al. (2015) for the identification of conven-
tional and extension planar trial functions. The procedure is referred to unconstrained approach
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Figure 3.5: Illustrative example of dynamic cross-section analysis: non-conventional extension (planar)
trial functions obtained with the GBT-D approach (Piccardo et al., 2014a).

since it does not employ any internal constraint, differently to as done in Ranzi and Luongo
(2011); Piccardo et al. (2014a). A first set of planar trial function is evaluated, in terms of
nodal values, through the dynamic analysis of the unconstrained frame representing the cross-
section, Eq. (3.2), thus obtaining mixed flexure-extensional deformation fields. They are col-
lected in the N ×N matrix Qp = [qp1,qp2, . . . ,qpN ], where the first three eigenvectors depict
rigid-body motions: they are associated to the triple multiplicity nil eigenvalue stemming from
Eq. (3.2) and due to the fact that matrix Kp is positive semi-definite (i.e., the frame is un-
constrained). Subsets of conventional and extension fields are then obtained by performing a
change of basis to the original set after removing the three rigid-body deformation fields, i.e.
Q∗p = [qp4,qp5, . . . ,qpN ], by solving the following eigenproblem:(

Be − µBf
)

u = 0 (3.14)

where µ and u depict an eigenpair, while matrices Be and Bf are defined in Eq. (2.10a)
and account for the axial and flexural deformation, respectively, of plate elements compos-
ing the cross-section. Eq. (3.14) admits Nc (= Ni − 3) zero eigenvalues that are related to
planar inextensible fields (i.e., the subset of conventional functions without the three describing
rigid-body motions), while the remaining M non-zero eigenvalues identify planar deformation
fields involving transverse extension (i.e., the subset of extension functions). By collecting the
eigenvectors uj corresponding to zero eigenvalues (j = 1, 2, . . . , Nc) in the transformation ma-
trix T∗c = [u1,u2, . . . ,uNc] and the remaining ones uk corresponding to non-zero eigenvalues
(k = Nc + 1, . . . , N − 3) in the transformation matrix T∗e = [uNc+1, . . . ,uk, . . . ,uN−3], con-
ventional and extension subsets can be separated through the following linear transformations:[

Q∗Tc
Q∗Te

]
=

[
T∗Tc
T∗Te

]
Q∗Tp (3.15)

where Q∗c and Q∗e are (N × Nc) and (N × M ) matrices, respectively, whose columns iden-
tify eigenvectors describing planar inextensible and extensible configurations, respectively. Al-
though corresponding trial functions could already be used in the member analysis, a further
post-processing is performed to ensure that all identified fields reflect the response of the en-
tire cross-section, rather than just displacements of localized parts of it. This is achieved by
performing two further change of basis defined by the following eigenproblems:(

T∗Tc Bf T∗c − µiI
)
uc = 0 (3.16a)(

T∗Te Be T∗e − µeI
)
ue = 0 (3.16b)
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from which the following transformation matrices are obtained:

Tc = [uc1,uc2, . . . ,uNc ] ; Te = [ue1,ue2, . . . ,uM ] (3.17a,b)

The final subsets of conventional and extension trial functions can be finally achieved, in terms
of nodal values, through the following linear transformations:

QT
c = TcQ

∗T
c ; QT

e = TeQ
∗T
e (3.18a,b)

The subset of conventional planar trial functions must be finally completed by adding the three
rigid-body motions removed at the beginning of the procedure, i.e. Qi = [qp1,qp2,qp3,Qc],
and by supplying warping distributions W i

k(s) able to satisfy the Vlasov’s unshearability (V2)
condition on open branches and the Bredt’s conditions on closed cells (Eqs. (3.9) to (3.11)).

The complete subsets of conventional trial functionsU i
k(s), V

i
k (s), W i

k(s) (k = 1, 2, . . . , Ni)
and transverse extension trial functions U e

k(s), V e
k (s) (k = 1, 2, . . . , Ne) for the illustrative ex-

ample obtained with the unconstrained approach are shown in Figs. 3.6a and 3.6b, respectively.
Obtained extension fields seems to overcome the localized character affecting the ones illus-
trated in Fig. 3.5. Pure elongations of cross-section elements can be observed on open branches,
while mixed extensional-flexure deformations can be observed on closed branches (see fields 3
and 4). The latter phenomenon is meaningful since the problem governing in-plane extension
of elements belonging to closed branches is hyperstatic and, thus, profile elements may exhibit
flexural deformation involving frame elasticity. In contrast, both conventional and extension
fields seems to be imprecise, since they lose their symmetry properties, especially in higher
functions. This phenomenon lead to the fact the whole set of deformation modes have to be
considered in order to correctly describe the structural behavior, in contrast with the spirit of
the GBT approach as a reduction method.

3.1.2 Warping Eigenvalue Problem

The WEP governs the free oscillations of a pure shear beam in the s − z plane. This is an
internally constrained Timoshenko beam, in which cross-section rotations are prevented, so that
elements are only permitted to slide orthogonally to the axis. Therefore, the shear γ is the only
strain, and the shear force T the only active stress. The vibration of the beam in the out-of-plane
(warping) direction is governed by the following differential equation (Piccardo et al., 2014a):

W ′′(s) + λ
m

GA
U(s) = 0 (3.19)

which is formally identical to Eq. (3.1a). Providing that parameters m, A, G, the latter be-
ing the tangential modulus, remain constant along each segment composing the cross-section,
Eq. (3.19) is the field equation of the problem, applicable to each beam element. Similarly to
as done in the PEP, a transcendent characteristic equation of the type f(λ) = 0 can be obtained,
whose roots λk, which are infinite in number, represent the warping eigenvalues, with associated
eigenfunctions Wk(s), k = 1, 2, . . . .

The discrete version of the WEP is obtained by using the same discretization adopted for
the previous PEP. By using the 2 DOF FE shown in Fig. 3.7, the system is reduced, in the WEP
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(a)

(b)

Figure 3.6: Illustrative example of dynamic cross-section analysis:(a) conventional planar and warping
trial functions, (b) non-conventional extension (planar) trial functions, obtained with the unconstrained
approach (Taig et al., 2015).

context, to n DOF. By assuming linear Lagrangian polynomials as interpolating functions, the
local stiffness and mass matrices Ke

w and Me
w (with e = 1, 2, . . . ,M and subscriptw identifying

the warping problem) are evaluated for each element (see Appendix A), and then assembled.
The following WEP is obtained:

(Kw − λwMw)qw = 0 (3.20)

where Kw and Mw are the n × n global (real symmetric) stiffness and mass matrices, respec-
tively, and qw is a n-vector collecting nodal displacements. Eq. (3.20) provides n eigenvectors
qwk which can be collected in the n×nmatrix Qw = [qw1,qw2, . . . ,qwn]. Since the frame is un-
constrained (i.e., Kw is positive semi-definite), the problem admits the nil eigenvalue λw = 0,
whose corresponding eigenvector describes the rigid out-of-plane displacement of the TWM
profile (i.e., a global longitudinal shortening effect). Corresponding warping (out-of-plane)
trial functions, determined based on the adopted interpolating functions, describe pure warp-
ing displacement fields and violate the Vlasov unshearability hypothesis V2. Accordingly to
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Figure 3.7: Out-of-plane 2 DOF FE for the cross-section analysis: nodal displacements in (a) local, and
(b) global coordinates.

Figure 3.8: Illustrative example of dynamic cross-section analysis: non-conventional shear (warping)
trial functions

Gonçalves et al. (2010), they constitute the set of non-conventional shear trial functions W s
k (s)

(k = 1, 2, . . . , n) and are associated with nil in-plane displacements (i.e., U s
k(s) = V s

k (s) = 0).
Shear functions for the illustrative example are shown in Fig. 3.8: they are in number of n = 10.
It is worth to be noted that the first function, which corresponds to null eigenvalue and describ-
ing the global longitudinal shortening effect, satisfies both V1 and V2 Vlasov’s hypothesis. For
these reasons, it is usually classified as a conventional warping field, associated to the trivial
in-plane trial functions Uk(s) = Vk(s) = 0 (Gonçalves et al., 2010). All the other (n − 1)
warping fields obtained by the WEP are, instead, non-conventional shear trial functions in the
proper meaning of the term and describe a pure-shear behavior.

3.2 Novel straightforward dynamic approach for the evaluation of ex-
tension trial functions

The original GBT-D procedure (Piccardo et al., 2014a) defines extension planar trial func-
tions as the orthogonal supplement to the conventional subset Qi calculated in Eq. (3.6). Al-
though this definition is perfectly suited to determine a planar subset of functions able to com-
plete the conventional ones, it sometimes leads to localized displacement fields, as previously
discussed. The unconstrained procedure (Taig et al., 2015) allows to overcome this aspect,
however resulting conventional and extension fields seems to be slightly imprecise, especially
as regards higher functions that sometimes lose their symmetry. This may be due to the fact
that eigenvalue problems used to separate conventional and extension trial functions introduce
and/or magnify numerical errors that are intrinsic to a discrete (FE-based) procedure such as
the cross-section analysis. For this reasons, a new improved approach for the calculation of
extension (non-conventional) trial functions within GBT-D is here proposed. Extension trial
functions are here defined as those planar deformation fields where plates forming the cross-
section depict pure elongation in the s direction (i.e., they cannot depict bending within the
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cross-section plane and they possess nil warping). Such a behavior can be modeled by re-
quiring the beam elements composing the frame used in the PEP to be globally undeformable
against shear and flexure, as it will be better clarified in the following. As a result, obtained
trial function are purely-extensional deformation fields.

Referring to the generic element e in the plane of the cross-section (Fig. 3.2), by interpreting
it as a generalized elastic spring (Luongo and Paolone (1997); see Appendix B), its global shear
γe and bending κe deformations can be expressed in local coordinates:

γe = V e
2 − V e

1 − θe1 le (3.21a)
κe = θe2 − θe1 (3.21b)

The M planar unshearability conditions, γe = 0, can be rewritten in global coordinates as:

−(Uj − Ui) sinαe + (Vj − Vi) cosαe − θi le = 0 (3.22)

whereas the M conditions describing indeformability under flexure, κe = 0, simply become:

θj − θi = 0 (3.23)

Eqs. (3.22) and (3.23), representative of shear and flexural internal constraints, can be collected
in a new linear system (subscript e being referred to extensible deformation modes):

Aeqp = 0 (3.24)

where Ae is a 2M × N matrix. Whereas the M equations described in Eq. (3.22) deriving
from unshearability conditions are always linearly independent, only M −L among conditions
of indeformability under flexure, depicted in Eq. (3.23), are linearly independent, L being the
number of cross-section closed branches. As a consequence, in case of L > 0 (i.e., multiply-
connected cross-section, that is closed or partially-closed section), Ae is not a full-rank matrix
and must be further reduced. In particular, Eq. (3.24) can be solved with respect to Ne =
N − 2M + L master variables qeM . Details on implementation of a constrained algebraic
eigenvalue problem are provided in Appendix C. Based on this technique, a new constrained
PEP is obtained:

(Ke − λeMe)qeM = 0 (3.25)

where:
Ke = RT

e KpRe ; Me = RT
e MpRe (3.26a,b)

are Ne × Ne reduced-order stiffness and mass matrices, respectively, and Re is a N × Ne

constraint matrix (see Appendix C). The problem still admits the triple eigenvalue λe = 0,
to which the usual three rigid-body planar motions are associated. The latter can be disre-
garded indeed since they are already included in the subset of conventional planar functions.
Therefore, Eq. (3.25) actually provides only Ne− 3 new linearly independent eigenvectors cor-
responding to non-zero distinct eigenvalues. They can be collected in the N × (Ne − 3) matrix
Qe = [qe4,qe5, . . . ,qeNe]. This set of planar orthogonal (linearly independent) eigenvectors
Qe spans a (Ne − 3)-dimensional subspace of the original N -dimensional one. Corresponding
non-conventional, planar, extension trial functions U e

k(s), V e
k (s) (k = 1, 2, . . . , Ne − 3) are
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determined based on the adopted interpolating polynomial functions, to be associated to null
warping components, W e

k (s) = 01.
Extension trial functions obtained with the new proposed procedure are shown for the illus-

trative example in Fig. 3.9; they are in number Ne − 3 = 8. Pure elongations of cross-section
elements, together with rigid-body motions (that do not make global elastic shear and flexu-
ral work) are present. These latter arise from the dynamic nature of the equilibrium imposed
by Eq. (3.25), that includes inertial terms. Because of the symmetry of the cross-section, a
rigid rotation is involved to restore the dynamic equilibrium when the diagonal branches of the
closed triangular cell admit skew-symmetric U displacements, whereas rigid motion does not
occur for symmetric extensions. Moreover, the single elements of the closed triangular cell can
not be deformed individually. Since a closed cell is an internally hyperstatic system, an axial
deformation of a unique element would cause flexure of all the other elements: this behavior
may not occur because of the constraints prescribing indeformability under flexure, Eq. (3.23).
Extension trial functions obtained from this new procedure are naturally global in type, without
the need for any further operation.

Figure 3.9: Illustrative example of dynamic cross-section analysis: non-conventional extension (planar)
trial functions obtained with the proposed GBT-D approach.

Conventional and non-conventional (i.e. extension) planar trial functions form a basis of
Ni+Ne−3 = 2N−3(M+1)+L eigenvectors. It is easy to prove that this basis is not sufficient
to span a N -dimensional space in case of multiply-connected cross-section. As a matter of fact,
since the numberM of cross-section elements can be expressed asM = n−1+L, conventional
and non-conventional planar fields are in number of (N−2L) on the whole. Therefore, they are
able to span a N -dimensional space if and only if L = 0, i.e. the TWM cross-section is made
of open branches. In case of closed or partially-closed cross-section there should exist further
2L trial functions able to complete the previous two subsets. In these cases, it is clear that the
problem governing in-plane extension of elements is hyperstatic and, thus, profile elements may
exhibit flexural deformation involving frame elasticity. Then, purely-extensible functions are
no longer sufficient to describe all the extensional deformation fields that the cross-section may
experience. Additional mixed extensional-flexural functions may occur, referred to as hybrid
fields. They are necessarily non-conventional since they involve extension, in violation of the

1The assumptionW e
k (s) = 0 violates in principle the V2 hypothesis; therefore, extension trial functions are not

associate to pure in-plane axial membrane elongations εms , but they induce also non-nil membrane shear strains
γmsz . This fact could be avoided by introducing the V2 hypothesis of membrane unshearability, thus providing a
warping supplement W e

k (s) 6= 0 to be associated to in-plane trial functions, similarly to as done for conventional
fields. This case, however, has not been analyzed in the present Thesis.
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Vlasov’s V1 hypothesis.
Hybrid trial functions are defined as those deformation fields able to make null mutual (elas-

tic) work with others planar (conventional and purely-extension) functions. Referring to the
generic element e (Fig. 3.2) interpreted as a generalized elastic spring by its global axial, shear
and flexural deformations εe, γe, κe, defined by Eqs. (3.4), (3.22) and (3.23), the elastic poten-
tial energy U of the planar frame representative of the TWM cross-section can be expressed
as:

U =
1

2

M∑
e=1

(
Ca
e ε

2
e + Cs

eγ
2
e + Cf

e κ
2
e − γeκeCs

e le
)

(3.27)

where Ca
e , C

s
e , C

f
e are the axial, shear and flexure stiffness of the element e, respectively. De-

tails about these expressions are provided in Luongo and Paolone (1997) and in Appendix B.
Based on the GBT displacement field, Eq. (2.2), the energy U , Eq. (3.27), can be rewritten in
the following form:

U =
1

2

K∑
h=1

K∑
k=1

Uhk (3.28)

Uhk being the mutual elastic work, defined as:

Uhk =
M∑
e=1

[
Ca
e εehεek + Cs

eγehγek + Cf
e κehκek − Cs

e

le
2

(
γehκek + κehγek

)]
(3.29)

where εej, γej, κej are the global deformations of the generic element e expressed by the j-th
GBT-D trial function. Eq. (3.29) can be suitably simplified by accounting the fact that conven-
tional planar fields have null axial deformation by definition (i.e., εej = 0). By denoting with
the subscript h the generic h-th hybrid field and with subscript j the generic j-th conventional
planar field, the constraint condition of null mutual hybrid-conventional work is:

Uhj =
M∑
e=1

[
Cs
eγehγej + Cf

e κehκej − Cs
e

le
2

(
γehκej + κehγej

)]
= 0 (3.30)

with j = 4, ...Ni, since the rigid-body motions involve null deformations. In a similar fashion,
the following constraint condition of null mutual hybrid-extensional work can be obtained by
denoting with the subscript k the generic k-th planar extension trial function and remembering
that these latter can only exhibit elongation by definition (i.e., γek = κek = 0):

Uhk =
M∑
e=1

Ca
e εehεek = 0 (3.31)

with k = 1, ...Ne−3. Eqs. (3.30) and (3.31) constitute a linear system of (Ni+Ne−6) linearly
independent equations that can be expressed in matrix form through the global coordinates as
(subscript h being referred to hybrid trial functions):

Ahqp = 0 (3.32)

where Ah is a (Ni +Ne − 6)× N matrix.
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In alternative, a completely equivalent and even more direct procedure for the determina-
tion of the matrix Ah consists in imposing the same orthogonality conditions in terms of dis-
placements. By collecting nodal values of both conventional (except for rigid-body motions)
and non-conventional trial functions in the N × (Ni + Ne − 6) matrix Qh =

[
qi4,qi5, . . . ,

qiNi ,qe4,qe5, . . . , qe(Ne−3)

]
, the orthogonality condition in terms of displacements between the

h-th hybrid function and the k-th conventional or extensional field becomes:

fT
k qh = 0 k = 1, 2, . . . , Ni +Ne − 6 (3.33)

where fk is the N -vector of the nodal forces induced by the general conventional or extensional
k-th displacement field, given by fk = Kpqk. Eq. (3.33) provide a linear system of Ni +Ne− 6
linearly independent equations, that can be rewritten in the form (3.32) by assuming Ah =
QT
hKp.

The system (3.32) can be solved with respect to Nh = N − (Ni + Ne − 6) = 2L + 3
master variables qhM ; the implementation of the constrained algebraic eigenvalue problem is
exactly equivalent to the previous problems (see Appendix C). Through this classic technique,
the following constrained PEP is obtained:

(Kh − λhMh)qhM = 0 (3.34)

where:
Kh = RT

hKpRh ; Mh = RT
hMpRh (3.35a,b)

are Nh ×Nh reduced-order stiffness and mass matrices, respectively, and Rh is a N ×Nh con-
straint matrix (see Appendix C). Since the frame is always unconstrained and Rh is a full-rank
matrix, the problem still admits the triple nil eigenvalue λh = 0, whose associated eigenvectors
describe rigid-body planar displacements of the cross-section. Since they are already included
in the conventional subset of trial functions, only Nh − 3 eigensolutions are acceptable, lead-
ing to 2L eigenvectors spanning a 2L-dimensional subspace of the original N -dimensional one.
Hybrid (non-conventional) trial function Uh

k (s), V h
k (s) (k = 1, 2, . . . , 2L) are determined based

on the adopted interpolating polynomial functions and associated to null warping components,
W h
k (s) = 0. It is worth to be noted that, differently to what happens to conventional, exten-

sion and shear trial functions whose number is directly related to the number of nodes adopted
in discretizing the cross-section, the number of hybrid fields is independent from the adopted
discretization, being related only to the cross-section geometry, in particular to the number of
closed branches possessed.

Hybrid non-conventional functions for the illustrative example are shown in Fig. 3.10, re-
porting both the in-plane and the tangential displacement (the latter as a diagram). They are, as
expected, in number Nh − 3 = 2L = 2, and involve mixed flexure-extensional deformations of
the closed branches and consistent rigid-body motions of the remaining open branches. As in
the previous PEPs, rigid-body motions are present to ensure the dynamic equilibrium to inertial
terms. These motions, however, don’t affect the energetic orthogonality constraints since they
make null elastic work. Also the hybrid trial functions are of global-type naturally, without the
need of any further manipulation. A comparison with the results obtained by the classic static
approach for the cross-section analysis points out some differences. In particular, the first hy-
brid field in Fig. 3.10 looks much better compared to the corresponding static one (see mode
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Figure 3.10: Illustrative example of dynamic cross-section analysis: non-conventional hybrid (planar)
trial functions obtained with the proposed GBT-D approach.

25, Figure 12 in Bebiano et al., 2015), which also involves flexure in the vertical open branch,
thus not respecting the vertical symmetry axis of the section.

In order to illustrate the capabilities and the versatility of the novel method, three additional
illustrative applications are presented. The first two are classic TWM examples: (i) an open
cross-section, having lipped channel profile with an intermediate node in the web in addition
to natural nodes (Fig. 3.11a); and (ii) a closed cross-section, having rectangular profile and
schematized with the natural nodes only (Fig. 3.11b). In the following figures, in-plane con-
ventional fields are shown together with their warping supplement, while both the full in-plane
cross-section displacement UV and the sole transverse displacement U , the latter using the y-
axis convention, have been reported for extension trial functions. The first three conventional
trial functions (corresponding to nil eigenvalues) describes the planar rigid-body motions; the
first shear trial function is related to the out-of-plane rigid-body motion (i.e., global longitudinal
shortening).
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Figure 3.11: Additional examples of dynamic cross-section analysis: (a) lipped channel and (b) boxed
cross-sections

Conventional trial functions of the lipped-channel section are shown in Fig. 3.12; non-
conventional extension and shear fields are reported in Figs. 3.13a and 3.13b, respectively.
Since n = 7, M = 6 and L = 0 (i.e., open cross-section), therefore Ni = 15, Ne = 6.
As expected for an isostatic system, extension fields experience only purely elongations of the
plate elements and rigid translations and rotations; no hybrid functions have been obtained and
purely extension fields are sufficient to complete, together with conventional ones, the basis de-
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Figure 3.12: Lipped-channel profile: conventional planar and warping trial functions obtained with the
proposed GBT-D approach.

scribing all the possible planar deformations of the TWM cross-section. Concerning extension
trial functions, as previously discussed, rigid-body rotations are required to restore the global
dynamic equilibrium when the tangential displacements are in phase opposition as regards the
symmetry axis of the cross-section. Obtained functions appear very clean, in a natural way from
the solution of two constrained PEP and one WEP only.

Concerning the rectangular boxed section, n = 4, M = 4 and L = 1 (i.e., closed cross-
section with a unique cell), therefore Ni = 8, Ne = 2, Nh = 2. Conventional trial functions
are shown in Fig. 3.14; extension, hybrid and shear fields are reported in Figs. 3.15a to 3.15c,
respectively. The hyperstatic nature of this closed boxed section leads to hybrid functions in-
volving both extension and flexure, that appear when pure, in phase opposition elongations of
two opposite elements occur. On the contrary, due to the double symmetry of the cross-section,
extension trial functions does not involve rigid rotations. All obtained deformation fields are
very precise and clean and derive from the simple solution of three constrained PEP and one
WEP without further orthogonalization procedures.

The last application concerns the two-cell bridge-deck section depicted in Fig. 3.16. The
proposed cross-section combines closed cells with open branches, and represents a summary
example on the capabilities of the new method. Conventional trial functions are shown in
Fig. 3.17; extension and hybrid functions are detailed in Figs. 3.18a and 3.18b; shear fields
are depicted in Fig. 3.19. Since n = 8 (i.e., only the natural nodes are taken into account, as
in Bebiano et al., 2015), M = 9 and L = 2 (i.e., closed cross-section with two cells), there-
fore Ni = 15, Ne = 5, Nh = 4. As in the previous examples, the dynamic approach lead
in its simplicity to very precise and clean trial functions. In hybrid trial functions, the sym-
metry of tangential displacements is fully respected leading to perfect flexure-extension mixed
deformations, as it does not seem to be fully respected in an analogous example presented in
Bebiano et al. (2015). In fact, subsequent operations of manipulation, such as those required
for the static approach, necessarily lead to higher numerical approximations with respect to the



Chapter 3. Novel straightforward GBT-D for cross-section analysis 41

(a)

(b)

Figure 3.13: Lipped channel profile: (a) extension and (b) shear (warping) trial functions obtained with
the proposed GBT-D approach.

Figure 3.14: Boxed rectangular profile: conventional planar and warping trial functions obtained with
the proposed GBT-D approach.

(a) (b)

(c)

Figure 3.15: Boxed rectangular profile: (a) extension, (b) hybrid and (c) shear (warping) trial functions
obtained with the proposed GBT-D approach.
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single eigenvalue problem required by the dynamic approach, besides being most costly from
an operational point of view.
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Figure 3.16: Bridge deck cross-section: (a) geometry and (b) discretization.

Figure 3.17: Bridge-deck cross section: conventional planar and warping trial functions obtained with
the proposed GBT-D approach.
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(a)

(b)

Figure 3.18: Bridge-deck cross section: (a) extension and (b) hybrid trial functions obtained with the
proposed GBT-D approach.

Figure 3.19: Bridge-deck cross section: shear (warping) trial functions obtained with the proposed
GBT-D approach.

3.3 Conventional and non-conventional trial functions within the GBT-
D approach

The improved GBT-D approach can be summarized in the following four steps leading to
linear trial functions to be used within the GBT framework with straightforward mechanical
characteristics directly deriving from their dynamic nature:

1. derivation of a subset ofNi = (3n−M) conventional trial functions, U i
k(s), V

i
k (s),W i

k(s),
k = 1, 2, . . . , Ni, whose in-plane and out-of-plane components are obtained by a first
constrained planar PEP and by the imposition of Vlasov’s V2 hypothesis and Bredt’s
conditions (once planar values are known), respectively, with M = n− 1 + L;

2. obtaining a subset of (Ne−3) = (3n−2M+L−3) extension trial functions, U e
k(s), V e

k (s),
k = 1, 2, . . . , (Ne − 3), through a second constrained planar PEP, L being the number of
possible cross-section closed branches;

3. in case of multiply-connected (i.e., closed or partially closed) cross-section, determination
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of an additional subset of 2L hybrid (flexure-extensional) trial functions, Uh
k (s), V h

k (s),
k = 1, 2, . . . , 2L, by a supplementary third constrained planar PEP, whose expression can
be equivalently obtained in terms of mutual works or displacement fields;

4. derivation of a subset of n shear (or purely warping) trial functions,W s
k (s), k = 1, 2, . . . , n,

through a global out-of-plane WEP. The first warping field (i.e., the longitudinal short-
ening one) is often considered to belong rightfully to the subset of conventional trial
functions.

The union of the first three subsets forms a basis that is able to completely span the original
3n-dimensional space composed by all planar deformation fields that a TWM cross-section
can experience. This basis combined with the subset of the shear fields allows to obtain 4n
trial functions, that represents the totality of the possible configurations for a discretized cross-
section. The last three subsets (extension, hybrid and shear fields) constitutes the set of the
non-conventional trial functions (Gonçalves et al., 2010). Often, under the heading of “conven-
tional”, it includes the first shear (rigid) trial functions implying global longitudinal shortening,
bringing the number of conventional fields to (Ni + 1). All these results are obtained with
only three eigenvalue problems for open sections and four eigenvalue problems for multiply-
connected sections, without the need of additional orthogonalization operations.

3.4 On the influence of the polynomial order in the FE-based GBT
cross-section analysis

In this Section, the influence of the order of polynomial adopted as interpolating functions in
a FE-based GBT cross-section analysis is discussed. The illustrative example shown in Fig. 3.20
is proposed for the seek of clarity. It consists on a steel lipped channel beam having the cross-
section shown in Fig. 3.11a. The beam is 2 m long and is assumed to be simply-supported and
free to warp at the end supports, while it is restrained from warping at mid-span (Fig. 3.20).
Elastic modulus of 200 GPa and Poisson’s ration of 0.3 are specified for the beam. A uniform
pressure of 10 kPa is applied to the upper flange, as shown in Fig. 3.20. The simplest choice,

= =
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Figure 3.20: Lipped channel member: load arrangement and restraints conditions.
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in terms of FEs to be employed in the discrete cross-section analysis, consists in using the 6
DOF FE shown in Fig. 3.2 and the 2 DOF FE in Fig. 3.7 for PEP and WEP, respectively. The
choice is denoted in the following as FE1 and calls for linear Lagrangian, cubic Hermite and
linear Lagrangian polynomial shape functions for Uk(s), Vk(s) and Wk(s), respectively. Re-
sults obtained for the illustrative example are shown in Fig. 3.21 in terms of displacements and
stresses. They have been obtained by using the same cross-section discretization reported in
Fig. 3.11a, while the member have been subdivided into 20 GBT-based FEs. All variables have
been plotted at the member coordinate in which they reach their maximum values, which oc-
cur at mid-span (i.e., z = L/2) for the in-plane displacement uv and transverse and normal
membrane and flexural stresses (i.e., σms , σfs , σmz , σfz ), and at the end sections (i.e., z = 0,L)
for warping displacement w and shear stress components (i.e., τmsz , τ fsz). For clarity, the plot-
ted variables have been suitably scaled, and scale coefficient is reported for each plot. Results
obtained with the GBT approach have been compared with the ones obtained with a shell el-
ement model developed in ABAQUS/Standard (Simulia, 2010) for validation purposes. The
whole beam is discretized through quadrangular shell elements S4R5 available in the software
library and suitable for first-order (linear) analysis, having 5 mm width, altogether 20, 000 finite
elements.

Comparison between results provided by the GBT approach and the ABAQUS solution
shows a very good agreement as regards displacements (i.e., u, v and w) and membrane longi-
tudinal stress σmz , with differences between the two models lesser than the 2% considering the
results obtained via ABAQUS for reference in the following. Concerning flexural stresses (i.e.,
σfs ,σfz and τ fsz), a less accurate agreement can be noticed, especially as regard the loaded plate,
where differences between GBT and ABAQUS up to the 20%. This can be attributed to the poor
discretization adopted for the cross-section analysis, where no intermediate nodes have been in-
troduced on the loaded element. Different results are obtained when considering the membrane
transverse stress σms and membrane shear stress τmsz , where significant discontinuities can be
observed between adjacent elements. This fact is a direct consequence of the polynomial order
adopted in the cross-section analysis to approximate non-conventional trial functions, whilst
conventional functions have limited influence on the considered stresses since they obey the
Vlasov hypothesis. More in detail, membrane transverse stress σms , Eq. (2.6a), depends on
U ′k(s), Wk(s), which are described by piece-wise constant and linear polynomial interpolat-
ing functions, respectively, while membrane tangential stress τmsz , Eq. (2.6c), is described by
Uk(s), W ′

k(s), interpolated by linear and piece-wise constant functions, respectively. Step-wise
variations for U ′k(s) and W ′

k(s) are responsible for the discontinuous patterns depicted by the
aforementioned stresses.

The simplest way to address the problem consists in enhancing the polynomial order of
interpolating functions, by adopting quadratic Lagrange polynomials for non-conventional trial
functions Uk(s) and Wk(s), thus obtaining continuous distributions of their first derivative.
Corresponding FE to be adopted in the PEP is the 7 DOF element illustrated in Fig. 3.22a, while
the WEP calls for the 3 DOF element depicted in Fig. 3.22b.They are referred in the following
as FE2, while stiffness and mass matrices to be used in the discrete PEP and WEP are reported
in Appendix A. Results for the illustrative example obtained by adopting FE2 are reported
in Fig. 3.23. Membrane transverse stress σms and membrane shear stress τmsz match very well
with the reference solutions obtained with ABAQUS, with differences within the 5%, and their



46 Chapter 3. Novel straightforward GBT-D for cross-section analysis

ABAQUS GBT

Figure 3.21: Lipped channel member: displacements and stress fields obtained with FE1.
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Figure 3.22: FE2: (a) In-plane seven DOF FE and (b) out-of-plane three DOF FE elements for the
cross-section analysis (local coordinates).

patterns are continuous. It has to be noted that the use of FE2 does not provide any improvement
as regard flexural stresses provided by GBT, which still manifest some small differences with
respect to the reference solutions. This is due to the polynomial order of interpolating functions
for Vk(s) adopted in FE2, on which flexural stresses are relied to (Eqs. (2.6d) to (2.6f)), which
has not been changed. More refined solutions can be obtained by increasing the cross-section
discretization or, alternatively, by using more refined FEs as the ones described in Fig. 3.24.They

ABAQUS GBT

Figure 3.23: Lipped channel member: displacements and stress fields obtained with FE2.

are referred to in the following as FE3 and consists on an 11 DOF FE to be used in the PEP
and calling for 4th order Lagrangian and 5th order Hermite polynomial interpolating functions
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Figure 3.24: FE3: (a) In-plane eleven DOF FE and (b) out-of-plane five DOF FE elements for the
cross-section analysis (local coordinates).

for Uk(s) and Vk(s), respectively, while a 5 DOF FE is adopted in the WEP calling for 4th

order Lagrangian polynomial interpolating functions for Wk(s). Corresponding stiffness and
mass matrices to be used in the discrete PEP and WEP are reported in Appendix A. Results
for the illustrative example obtained by adopting FE3 are reported in Fig. 3.25, showing an
excellent correspondence between GBT and ABAQUS solutions for all stresses, with maximum
differences lesser than 2% .

ABAQUS GBT

Figure 3.25: Lipped channel member: displacements and stress fields obtained with FE3.



Chapter 4

Partial interaction analysis of multi-component TWMs
within the GBT framework

Multi-component Thin-Walled Members (TWMs) represent an efficient form of construc-
tion increasingly used for both bridge and building applications. Their main advantage relies
in their capability to combine the contribution of different components, eventually made of
different materials, by means of mechanical devices, commonly shear-deformable connectors,
installed at their interface. This leads to high flexibility in assembling the member as well as
in a greater structural performance of the multi-component member than the one exhibited by
the combined contribution of the structural elements considered in isolation. The behavior of a
multi-component member is strongly influenced by the deformability of the interface connec-
tions, leading the various elements to depict relative displacements taking place at the interface
locations. This kinematic behavior is usually referred as partial interaction, and the first model
dealing with such a response for two-layered composite members was due to Newmark et al.
(1951). The model was based on the coupling of two Euler-Bernoulli beams by means of a shear
connection uniformly distributed along the interface and able to deform in the longitudinal di-
rection. Since then, the model has been widely extended in the field of composite constructions,
accounting for transverse partial interaction (e.g., Nguyen et al., 2001; Ranzi et al., 2006), ma-
terial and geometric non-linearities (e.g., Ranzi and Bradford, 2009; Ranzi et al., 2010; Zona
and Ranzi, 2011), the use of Timoshenko beam model for one or both components (e.g., Xu and
Wang, 2013) and shear lag effects (e.g., Dezi et al., 2001, 2003; Gara et al., 2010).

The first GBT model in the field of composite structures was proposed in Gonçalves and
Camotim (2010) for composite steel-concrete members. It was based on the classic static pro-
cedure for the cross-section analysis (e.g., Silvestre and Camotim, 2002a; Gonçalves et al.,
2010). The proposed model takes into account the partial interaction behavior in the longitudi-
nal direction of the member by introducing appropriate trial functions, in addition to the ones
obtained for the whole cross-section assumed as single component, to account for the longi-
tudinal slip. The proposed formulation have been adopted for developing a GBT-based beam
nonlinear FE suitable for modeling steel-concrete composite beams in Henriques et al. (2014),
limited to material non-linearities, and Henriques et al. (2015) for full material and geometrical
nonlinear analysis. Recently, the same model has been extended for the buckling analysis of
steel-concrete composite beams in Gonçalves et al. (2016); Henriques et al. (2016). A complete
different approach was proposed in Taig and Ranzi (2015) for the partial interaction analysis of
composite TWMs accounting for longitudinal partial interaction and recently extended in Taig
and Ranzi (2016) to account, for the first time within the GBT approach, for both transverse
and longitudinal partial interaction. Proposed models are based on the unconstrained (dynamic)
approach for the cross-section analysis (Taig et al., 2015) previously outlined in Section 3.1.1.

In this Chapter, a GBT approach for the longitudinal and transverse partial interaction anal-
ysis of multi-component TWMs is developed. The main contribution consists on a dynamic
procedure for the GBT cross-section analysis used to determine the set of conventional and
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non-conventional (i.e., extension and shear) trial functions. The proposed approach relies on
the formulation of two distinct eigenvalue problems describing the free oscillation of a unitary
segment of TWM, namely: (i) Planar Eigenvalue Problem (PEP), governing the in-plane mo-
tion of the segment, and (ii) Warping Eigenvalue Problem (WEP), governing the out-of-plane
(warping) motion of the segment. The partial interaction is included in the analysis by means of
shear deformable linear elastic springs placed at the interface between adjacent components and
assumed to be uniformly distributed along the member length. While the complete set of shear
trial functions can be directly identified from the eigenvectors of the WEP, deformation fields
described by the PEP depict a mixed flexure-extension behavior and need to be “separated” into
conventional and extension trial functions. To this end, two procedures are developed in the
context of the dynamic approach for the cross-section analysis. The first one stems from the
unconstrained approach proposed in Taig et al. (2015) and extended in Taig and Ranzi (2016)
for the partial interaction analysis of composite steel-concrete beams. The approach relies on
three eigenvalue problems involving the in-plane extension and bending stiffness matrices. The
unconstrained approach presents the great advantage of providing a complete set of GBT trial
functions with a very limited number of analysis. Therefore, it is undeniably more direct and
less involved than the static approach, which requires a large number of eigenvalue problems to
be performed in addition to as many static analysis as GBT trial functions (e.g., Bebiano et al.,
2015). Nevertheless, analogously to as occurs for single-component cross-sections, obtained
planar conventional and extension fields seems to be slightly imprecise, with higher functions
that sometimes lose their symmetry. Although obtained fields are perfectly suitable for the
analysis, a large number of trial functions has to be considered to properly describe the struc-
tural behavior, in contrast with the original spirit of GBT as reduction method. The second
dynamic procedure for the cross-section analysis of multi-component TWMs is based on the
novel GBT-D procedure outlined in Section 3.2, which has been shown to provide very precise
and clean trial functions by adopting a simple straightforward and not recursive procedure. The
full set of in-plane (conventional and non-conventional) trial functions is obtained through a
very limited number of PEPs (from two to three). In particular, a first PEP is solved, where
members composing the cross-section are forced to be inextensible, according to the Vlasov
hypothesis V1, thus leading to the set of planar conventional functions. A second PEP is then
formulated, where members are assumed to be unshearable and unflexurable (i.e., they can
only show purely in-plane elongations) in order to obtain a subset of planar, non-conventional,
purely extension fields. Finally, a third PEP is presented in case of multi-connected (i.e. closed
or partially closed) TWM cross-sections, supplying the set of hybrid trial functions (i.e., mixed
in-plane flexure-extension fields). The Chapter is organized as follows: a brief overview on
the GBT framework for the partial interaction analysis of multi-component TWMs is presented
in Section 4.1. The new dynamic procedures for the cross-section analysis are then presented
in Section 4.2, where an illustrative example of multi-component TWM taken from the Lit-
erature (Georgieva et al., 2012) is presented in order to highlight the differences, in terms of
obtained trial functions, between the two proposals. Finally, the proposed GBT approach is val-
idated using the numerical results determined with a refined finite element model developed in
ABAQUS/Standard (Simulia, 2010) as reference. To this end, the linear elastic analysis of two
real multi-component TWMs taken from the Literature (Hanaor, 2000; Georgieva et al., 2012)
are presented.
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4.1 Basis of the GBT approach for the partial interaction analysis of
multi-component TWMs

A prismatic multi-component TWM is considered as assembly of Nm components having
arbitrary open, closed or partially-closed cross-section. Each component is assumed as a set
of flat plates connected along edges and free to bend in their own plane. The triad {es, ey, ez}
is identified for any arbitrary point P (s, z) lying on the mid-surface Sα of the α-th component
(α = 1, . . . , Nm) composing the TWM (i.e., at y = 0) (Fig. 4.1), being ez the versor parallel
to the beam axis z, es the versor tangent to the curvilinear abscissa s lying along the mid-line
of the transverse profile Cα and ey = ez × es defined accordingly to the right-hand rule. The
displacement field can thus be expressed as:

u(s, z) = u(s, z)es + v(s, z)ey + w(s, z)ez (4.1)

where u(s, z), v(s, z) and w(s, z) are the relevant displacement components in the direction
identified by the corresponding versors (Fig. 4.1). Within the GBT formulation and accord-
ing to the Kantorovich semi-variational approach, a linear Galerkin approach is used to ex-
press the displacement field in Eq. (4.1) by means of linear trial functions Uk(s),Vk(s) and
Wk(s) affected by linear coordinates ϕk(z), as described in Eq. (2.2). The Kirchhoff plate
model is adopted to evaluate the displacement field d(s, y, z) = ds(s, y, z)es + dy(s, y, z)ey +
dz(s, y, z)ez in an arbitrary point located within the plate thickness (e.g., Piccardo et al., 2014a).
The infinitesimal strains ε(s, y, z) are calculated by distinguishing membrane strains compo-
nents, related to the mid-surfaces Sα, from the flexural components (Eq. (2.4)). Corresponding
membrane and flexural stress collected in vector fields σ(s, y, z) are then calculated adopting a
linear elastic constitutive law (Eq. (2.6)).
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Figure 4.1: Multi-component TWM: displacement field.

The interaction between adjacent members composing the cross-section is introduced by
placing Nsc connectors along rectilinear lines Λn (n = 1, . . . , Nsc) at the interface location
(Taig and Ranzi, 2016, Fig. 4.2a). They are assumed to prevent separation between connected
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elements, while relative displacement (i.e., slips) in longitudinal (i.e., along z) and transverse
directions (i.e., along s) are permitted. For the n-th connector, linking the i-th and the j-th
components of the cross-section, longitudinal slip δnL(z) and transverse slips δnT (z) (Fig. 4.2b)
can be expressed as function of GBT trial functions as follows (Taig and Ranzi, 2016):

δnT (z) =
K∑
k=1

V̄ n
k ϕk(z) (4.2a)

δnL(z) =
K∑
k=1

W̄ n
k ϕk,z(z) (4.2b)

where V̄ n
k is the transverse slip induced by the k-th planar trial functions, while W̄ n

k is the
longitudinal slips induced by the k-th warping field, respectively. They can be expressed as
(Taig and Ranzi, 2016):

V̄ n
k =

[
Uk(s

j
n)− yjnVk,s(sjn)

]
−
[
Uk(s

i
n)− yinVk,s(sin)

]
(4.3a)

W̄ n
k =

[
Wk(s

j
n)− yjnVk(sjn)

]
−
[
Wk(s

i
n)− yinVk(sin)

]
(4.3b)

being sjn (sin) the location of the n-th connector on the cross-section mid-line Cj (Ci) of the
j-th (i-th) component, yjn (yin) the perpendicular distance of the extreme fiber of the j-th (i-
th) component from the mid-surface Sj (Si) (Fig. 4.2c). The partial interaction behavior is
considered by placing linear elastic springs uniformly distributed along Λn. A linear elastic
uncoupled constitutive law is adopted to express the composite action, in particular:

fnT (z) = knT

K∑
k=1

V̄ n
k ϕk(z) (4.4a)

fnL(z) = knL

K∑
k=1

W̄ n
k ϕk,z(z) (4.4b)

being fnL and fnT the longitudinal and transverse forces shear per unit length, respectively, in-
duced in the spring, while knL and knT are the longitudinal and transverse shear connection rigidi-
ties, respectively.

The weak formulation of the elasticity problem can be derived through the Principle of Vir-
tual Works. This can be expressed, including the work done by the (longitudinal and transverse)
shear forces along interfaces between components and assuming external forces to be constant
(or averaged) over the plate thickness, as (Piccardo et al., 2014b; Taig and Ranzi, 2016):

Nm∑
α=1


ˆ

Vα

εTEα δε dV −
ˆ

Sα

fTδu dS −
ˆ

Cα

∑
B

FT
BδuB ds

+
Nsc∑
n=1

ˆ

Λn

fn δδ
T
n dz = 0 (4.5)

where Vα and Eα are the volume and the elastic tensor, respectively, of the α-th component
of the multi-component TWM, f(s, z) and FB(s) are forces per unit area acting on the middle
surfaces Sα and forces per unit length applied on the mid-lines Cα of the end cross-sections,
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Figure 4.2: Multi-component TWM: interface connection details. (a) Cross-section with shear connec-
tors. (b) Longitudinal and transverse slips. (c) Location of shear connectors.

respectively (see Section 2.3), the δ-operator denotes virtual quantities, while δn and fn are
2× 1 vectors collecting slips and shear forces associated to the n-th connector. By making use
of Eqs. (2.4), (2.5), (4.2) and (4.4) and performing the standard steps of variational calculus
(e.g., Berdichevsky, 2009), the following system of K coupled ordinary differential equations,
commonly referred to as GBT equations, can be obtained from Eq. (4.5):

CϕIV −
(
D− F− FT

)
ϕ′′ + Bϕ− p = 0 (4.6)

with corresponding boundary conditions terms to be applied at z = 0, L:

δϕ′T
(
Cϕ′′ + FTϕ−PW

)
= 0 (4.7a)

δϕT
[
Cϕ′′′ −

(
D− FT

)
ϕ′ −PM

]
= 0 (4.7b)

where the vector ϕ = {ϕ1(z), . . . , ϕk(z), . . . , ϕK(z)}T collects the K unknown amplitude
functions. In Eqs. (4.6) and (4.7), the following positions hold for loading vectors:

pk =
Nm∑
α=1

ˆ

Cα

[fs(s, z)Uk(s) + fy(s, z)Vk(s)− fz,z(s, z)Wk(s)] ds (4.8a)

PW
k =

Nm∑
α=1

ˆ

Cα

∑
B

[FBz(s)Wk(s)] ds (4.8b)

PM
k =

Nm∑
α=1

ˆ

Cα

{∑
B

[FBs(s)Uk(s) + FByVk(s)] + fz(s, z)Wk(s)

}
ds (4.8c)
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and structural matrices:

Bhk = Be
hk +Bf

hk; Be
hk =

Nm∑
α=1

Eαtα
1− ν2

α

ˆ

Cα

U ′h(s)U
′
k(s)ds+

Nsc∑
n=1

knT V̄
n
h V̄

n
k (4.9a,b)

Bf
hk =

Nm∑
α=1

Eαt
3
α

12(1− ν2
α)

ˆ

Cα

V ′′h (s)V ′′k (s)ds (4.9c)

Chk = Ca
hk + Cf

hk; Ca
hk =

Nm∑
α=1

Eαtα
1− ν2

α

ˆ

Cα

Wh(s)Wk(s)ds (4.9d,e)

Cf
hk =

Nm∑
α=1

Eαt
3
α

12(1− ν2
α)

ˆ

Cα

Vh(s)Vk(s)ds (4.9f)

Dhk = Ds
hk +Dt

hk; Dt
hk =

Nm∑
α=1

Gαt
3
α

3

ˆ

Cα

V ′h(s)V
′
k(s)ds (4.9g,h)

Ds
hk =

Nm∑
α=1

Gαtα

ˆ

Cα

[Uh(s) +W ′
h(s)] [Uk(s) +W ′

k(s)] ds+

+
Nsc∑
n=1

knLW̄
n
h W̄

n
k (4.9i)

Fhk = F s
hk + F f

hk; F s
hk =

Nm∑
α=1

ναEαtα
1− ν2

α

ˆ

Cα

U ′h(s)Wk(s)ds (4.9j,k)

F f
hk =

Nm∑
α=1

ναEαt
3
α

12(1− ν2
α)

ˆ

Cα

V ′′h (s)Vk(s)ds (4.9l)

where superscripts f , t, e, a and s refer to the flexural, torsional, (transverse) extensional, axial
(longitudinal) and shear nature of the underlying energy terms, respectively, the comma de-
notes differentiation with respect to the following variable, while Eα, Gα, να and tα are the
longitudinal, tangential, Poisson moduli and thickness, respectively, of the α-th component
(α = 1, . . . , Nm). GBT equations are commonly solved numerically by means of a FE proce-
dure (e.g., Bathe, 2014), as outlined in Section 2.3 and leading to the following representation:

KE dE = qE (4.10)

where dE is a 4K × 1 vector collecting the unknown nodal values of linear coordinates ϕk(z),
while KE and qE are 4K × 4K stiffness matrix and 4K × 1 load vectors, respectively (see
Section 2.3).
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4.2 GBT-D cross-section analysis for multi-component TWMs

This Section presents the procedure to evaluate the basis of GBT trial functions suitable to
describe the behavior of multi-component members. According to the dynamic approach for
the GBT cross-section analysis (GBT-D), trial functions are obtained from the dynamic anal-
ysis of an infinitesimal segment of multi-component TWM assumed to be free in space (i.e.,
unconstrained), weightless, with mass proportional to the local thickness. Two independent
eigenvalue problems are obtained, referred to as Planar Eigenvalue Problem (PEP), governing
the in-plane oscillations of the beam segment, and Warping Eigenvalue Problem (WEP), gov-
erning its out-of-plane (i.e., warping) oscillations. Their discrete version, commonly preferred
in the Literature, calls for the discretization of the planar frame representative of the TWM
cross-section into M finite elements by interposing possible additional nodes between the nat-
ural ones (i.e., the corners of the profile). The 7 DOF FE and the 3 DOF FE illustrated in
Figs. 3.22a and 3.22b, respectively, are adopted for the PEP and WEP, respectively, in order to
avoid locking problems outlined in Section 3.4. Within this arrangement and being n the total
number of nodes (both natural and intermediate) adopted for the frame discretization, the PEP is
reduced toN = 3n+M DOF, while the WEP possessesNs = n+M DOF. Following standard
steps of the FE procedure (e.g., Ranzi and Gilbert, 2015) and assuming Hermite cubic for the
transverse displacement V (s) and Lagrangian parabolic polynomial interpolating functions for
the axial displacements U(s) and warping displacement W (s), the (local) planar stiffness and
mass matrices Ke

p and Me
p (e = 1, 2, . . . ,M and subscript p identifying the planar problem) and

warping stiffness and mass matrices Ke
w and Me

w (e = 1, 2, . . . ,M and subscript w identifying
the warping problem) are evaluated for each element (see Appendix A). To account for the
partial interaction in both (in-plane) transverse and (out-of-plane) longitudinal directions, linear
elastic springs with negligible masses are specified at the location of the shear connections to
account for their flexibility present between adjacent components. This is carried out in the PEP
by using a 6 DOF spring element (Fig. 3.2), whose stiffness matrix Kn

p (n = 1, 2, . . . , Nsc) can
be expressed, assuming the order [U e

1 V
e

1 θ
e
1 U

e
2 V

e
2 θ

e
2]T as regards the element DOF, as follows:

Kn
p = knT ·


0 0 0 0 0 0

1 0 0 −1 0
0 0 0 0

0 0 0
sym 1 0

0

 (4.11)

A 2 DOF spring element (Fig. 3.7) is used in the WEP, whose stiffness matrix Kn
w (n =

1, 2, . . . , Nsc) is:

Kn
w = knL ·

[
1 −1
−1 1

]
(4.12)

After assembling the contribution of each (beam and connector) element, the following WEP is
obtained:

(Kw − λwMw)qw = 0 (4.13)

where Kw and Mw are theNs×Ns global (real symmetric) stiffness and mass matrices, respec-
tively. Since the frame is unconstrained (i.e., Kw is positive semi-definite), the problem admits
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the nil eigenvalue λw = 0, whose corresponding eigenvector describes the rigid out-of-plane
displacement of the TWM profile (i.e., a global longitudinal shortening effect). Corresponding
warping (out-of-plane) trial functions, determined based on the adopted interpolating functions,
describe pure warping displacement fields and violate the Vlasov unshearability hypothesis V2.
Accordingly to Gonçalves et al. (2010), they constitute the set of non-conventional shear trial
functions W s

k (s) (k = 1, 2, . . . , Ns) and are associated with nil in-plane displacements (i.e.,
U s
k(s) = V s

k (s) = 0). Obtained non-conventional shear functions include the partial interaction
behavior in the longitudinal direction.

To clarify the procedure, all steps involved in the proposed GBT will be followed by an
illustrative example of the built-up cross-section taken from Georgieva et al. (2012) shown in
Fig. 4.3a. It is composed by four components (i.e., Nm = 4), in particular two “Σ” profiles and
two lipped channel profiles, whose dimensions are shown in Figs. 4.3b and 4.3c, respectively.
Four shear connectors are placed at the interface locations (i.e., Nsc = 4) to include interac-
tions between adjacent members (Fig. 4.3a). Resulting multi-component cross-section is then
multi-connected and possesses one closed loops (i.e., L = 1, being L the number of closed
branches). For ease of notations, shear connectors rigidities have been considered by means of
the dimensionless parameters αL and αT , according to as commonly provided in the Literature
for two-layered composite beams (e.g., Girhammar and Gopu, 1993). In particular, the case of
medium shear connection (αLL = 5, αTL = 5, L being the member length) has been con-
sidered to highlight the partial interaction between components. The normalized longitudinal
and transverse slips, Eq. (4.3), will be presented for each trial function; they are defined as the
ratio between the slip itself and the maximum displacement of the corresponding function, as
follows:

Ṽ n
k =

∣∣V̄ n
k

∣∣
max(|Uk| , |Vk|)

; W̃ n
k =

∣∣W̄ n
k

∣∣
max(|Wk|)

(4.14a,b)

The first 18 shear functions for the illustrative example are shown in Fig. 4.4. The first function,
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Figure 4.3: Illustrative example of dynamic cross-section analysis of a multi-component cross-section
(Georgieva et al., 2012). (a) Built-up box girder cross-section and adopted cross-section discretization,
(b) "Σ" profile dimensions, (c) lipped Channel profile dimensions.

which corresponds to null eigenvalue and describing the global longitudinal shortening effect,
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satisfies both V1 and V2 Vlasov’s hypothesis. For these reasons, it is usually classified as a
conventional warping field, associated to the trivial in-plane trial functions Uk(s) = Vk(s) = 0
(Gonçalves et al., 2010). All the other warping fields obtained by the WEP are, instead, non-
conventional shear trial functions in the proper meaning of the term and describe a pure-shear
behavior. They describe warping fields where component motions are paired up in twos, with
each component alternatively in phase or in opposition with the adjacent ones. Corresponding
jumps in the warping functions localized at shear connection locations describe the partial shear
interaction behavior in the longitudinal direction. Obtained shear trial functions are naturally
global in shape and their warping distributions are in agreement with the cross-section sym-
metries. Moreover, deformation fields are, as expected, automatically hierarchically ordered.

Figure 4.4: Illustrative example of dynamic cross-section analysis of a multi-component cross-section
(Georgieva et al., 2012): non-conventional shear (warping) trial functions.

Concerning the planar analysis, the following PEP is obtained after assembling the contri-
bution of each (beam and connector) element:

(Kp − λpMp)qp = 0 (4.15)

where Kp and Mp are theN×N global stiffness and mass matrices obtained by assembling the
contribution of each (beam and connector) cross-section element, and qp is a N -vector collect-
ing nodal displacements. However, separation or penetration between adjacent components at
their interface has to be prevented by enforcing an internal axial restraint to the 6 DOF link ele-
ments representing the shear connection (Fig. 3.2), therefore ensuring that the element remains
inextensible along its length. In local coordinates, this can be written for the n-th link element
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by requiring its global elongation to be zero:

εn = Un
2 − Un

1 = 0 (4.16)

A further internal constraint prescribing indeformability under flexure is applied to each link
element, to satisfy the in-plane rotations’ compatibility. This can be written in local coordinates
as:

κn = θn2 − θn1 = 0 (4.17)

The Nsc inextensibility constraints, εn = 0, can be rewritten in global coordinates as:

(Uj − Ui) cosαn + (Vj − Vi) sinαn = 0 (4.18)

whereas the Nsc conditions describing indeformability under flexure, κn = 0, simply become:

θj − θi = 0 (4.19)

Eqs. (4.18) and (4.19) can be collected in a linear system:

Ascqp = 0 (4.20)

By applying the procedure illustrated in Appendix C and widely employed in the previous
Chapter, Eq. (4.20) can be solved in terms of Np = N − 2Nsc master variables qscM , thus
leading to the following (constrained) PEP:

(Ksc − λscMsc)qscM = 0 (4.21)

where:
Ksc = RT

scKpRsc ; Msc = RT
scMpRsc (4.22a,b)

are Np × Np reduced-order stiffness and mass matrices, respectively, and Rsc is a N × Np

constraint matrix (see Appendix C). Eigenvectors qsck = RscqscMk (k = 1, ..., Np) constitutes
a complete set that spans the whole space of the admissible in-plane configuration of the system.
Corresponding trial functions describe mixed flexure-extensional deformation fields and include
the partial interaction behavior in the transverse direction. Consistently to as commonly done
in the GBT framework (e.g., Gonçalves et al., 2010) and to facilitate the physical interpretation
of the problem, the whole configuration space is subdivided into conventional and extension
subspaces. Two procedures are presented to this end. The first one stems for the unconstrained
approach proposed in Taig et al. (2015) and recently extended in Taig and Ranzi (2015, 2016)
for the partial interaction analysis of composite steel-concrete beams. The second proposal is
based on the novel GBT-D procedure outlined in Section 3.2. For clarity, the two procedures
will be outlined separately in the following.

4.2.1 Conventional and extensional trial functions for multi-component members: an un-
constrained approach

A first set of planar trial function is evaluated, in terms of nodal values, by solving the
PEP outlined in Eq. (4.21), thus obtaining mixed flexure-extensional deformation fields. Their
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nodal values are collected in the N × Np matrix Qsc = [qsc1,qsc2, . . . ,qscNp]. Similarly to
as illustrated in Section 3.1.1, subsets of conventional and extension fields are obtained by
performing a change of basis to the original set after removing the three rigid-body deformation
fields, i.e. Q∗sc = [qsc4,qsc5, . . . ,qscNp], by solving the following eigenproblem:(

Be − µBf
)
u = 0 (4.23)

where µ and u depict an eigenpair, while matrices Be and Bf are defined in Eq. (4.9) and
account for the axial and flexural deformation, respectively, of plate elements composing the
cross-section. The influence of the connection deformability in the transverse direction is ac-
counted in the analysis. Due to the use of the 7 DOF planar FE (Fig. 3.22a), Eq. (4.23) admits
Nc = Np−2M−3 zero eigenvalues that are related to planar inextensible fields (i.e., the subset
of conventional functions without the three describing rigid-body motions), while the remaining
Ne = 2M non-zero eigenvalues identify planar deformation fields involving transverse exten-
sion (i.e., the subset of extension functions). By collecting the eigenvectors uj corresponding
to zero eigenvalues (j = 1, 2, . . . , Nc) in the transformation matrix T∗c = [u1,u2, . . . ,uNc] and
the remaining ones uk corresponding to non-zero eigenvalues (k = Nc + 1, . . . , Np − 3) in the
transformation matrix T∗e = [uNc+1, . . . ,uk, . . . ,uNp−3] , conventional and extension subsets
can be separated through the following linear transformations:[

Q∗Tc
Q∗Te

]
=

[
T∗Tc
T∗Te

]
Q∗Tp (4.24)

where Q∗c and Q∗e are N × Nc and N × Ne matrices, respectively, whose columns identify
eigenvectors describing planar inextensible and extensible, respectively, configurations. Al-
though corresponding trial functions could already be used in the member analysis, a further
post-processing is performed to ensure that all identified fields reflect the response of the en-
tire cross-section, rather than just displacements of localized parts of it. This is achieved by
performing two further change of basis defined in Eqs. (3.16) to (3.18). The subset of conven-
tional planar trial functions must be finally completed by adding the three rigid-body motions
removed at the beginning of the procedure.

Conventional planar trial functions can be conveniently supplemented by warping distribu-
tions W i

k(s) satisfying the Vlasov’s unshearability (V2) condition on open branches of C and
the Bredt’s condition on closed cells, as outlined in Section 3.1.1. A key step in the definition
of the warping profiles of the conventional modes is the inclusion of the longitudinal slip at the
locations of the shear connections. For those belonging to open branches, the unshearability
condition (V2) can be enforced by requiring link elements to depict nil longitudinal slip, i.e.
W̄ n

k = 0. Since, due to the Vlasov’s hypothesis and regardless from interpolating functions
adopted in the PEP, trial functions U i

k(s) and W i
k(s) are piece-wise constant and piece-wise

linear functions, respectively, longitudinal slips W̄ n
k can be conveniently rewritten as:

W̄ n
k = W n

2k −W n
1k + hnU

n
k (4.25)

whereW n
1k andW n

2k depict the values of warping distribution associated to the k-th trial function
at the first node (i.e., s = 0) and end node (i.e., s = hn), respectively, of the n-th connector
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possessing length hn, while Un
k is the value of function Uk(s) on the n-th connector. The zero

shear strain (V1) condition for can thus be rewritten as:

W2k −W1k + hnU
n
k = 0 (4.26)

Regarding connectors belonging to closed branches, the Bredt’s condition can be enforced by
relating the longitudinal distributed shear force fnkL = knLW̄

n
k acting on the n-th connection

induced by the k-th trial function to the unknown tangential stress flow Ql
k acting of the l-th

closed loop, as follows:

knL (W2k −W1k + hnU
n
k ) =

L∑
l=1

(±)Ql
k (4.27)

where a positive (negative) sign is used in the summation for Ql
k in the right-hand side of

Eq. (4.27) when the direction identified by the local coordinate s and the one consequent to an
arbitrary positive rotation assigned to the l-th loop coincide (differ). The remaining arbitrary
unknown describing the uniform (longitudinal) extension of the member can be determined by
requiring that the average k-th warping function is zero, thus making the warping orthogonal to
the extension, i.e.:

Nm∑
α=1

ˆ
Cα
W i
k(s)ds =

M∑
e=1

le
2

(W e
1k +W e

2k) +
Nsc∑
n=1

hn
2

(W n
1k +W n

2k) = 0 (4.28)

The first 15 conventional trial function for the illustrative example are shown in Fig. 4.5.
First three functions are associated to nil eigenvalues of Eq. (4.21) and describe in-plane rigid-
body motions. They do not depict transverse slips at shear connectors locations. Following
conventional fields depict pure in-plane flexural behavior with no axial elongations of plates
composing the cross-section, according to Vlasov’s hypothesis V1. Slips in the transverse di-
rection may occur at shear connection locations, describing the partial interaction behavior in
the transverse direction. Analogously, conventional warping complements may include longitu-
dinal slips at shear connection locations. Conventional warping fields describe, in conjunction
with corresponding in-plane distribution, displacement configurations that possess nil mem-
brane shear strain (or constant shear stress flow) along the beam axis, according to the Vlasov’s
hypothesis V2 (Bredt’s condition). In this sense, longitudinal slips occurring at shear connec-
tion location participate in restoring the beam unshearability. The first 15 non-conventional
extension trial function for the illustrative example are shown in Fig. 4.6, where both the full
in-plane cross-section displacement UV and the sole transverse displacement U have been re-
ported, the latter using the y-axis convention. They contribute in describing the partial shear
interaction thanks to slips depicted at shear connection locations.

Analogously to what occurs for single-component cross-section, the unconstrained approach
leads to slightly imprecise fields, where symmetry properties possessed by the cross-section
seems to be lost, especially in higher functions. In case of multi-component TWMs, this phe-
nomenon appears particularly evident as regards extension fields. Referring to as depicted in
Fig. 4.6, it is evident that all obtained displacement fields violate the cross-section double-
symmetry. The same can be concluded as regards transverse slips, resulting non symmetric
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in both conventional and extension planar trial functions. This phenomenon might be due to
the fact that the subsequent operations of manipulation required to separate conventional fields
from extension ones lead to higher numerical approximations with respect to a single eigenvalue
problem procedure such as the one adopted in the GBT-D procedure introduced in Section 3.2.
Obtained set of functions can still be adopted in the analysis, however, as already pointed out in
previous Sections, they would reduce the numerical efficiency of the GBT approach, since the
entire set of trial functions must be employed in the analysis to obtain accurate results.

4.2.2 Enhanced GBT-D approach to evaluate conventional and extension trial functions
for multi-component members

The proposed approach for the cross-section analysis is based on the GBT-D approach
introduced in Section 3.2. Planar conventional and non-conventional (i.e., extension and, in
case of multi-connected cross-section, hybrid) trial functions are evaluated by means of three
constrained PEP where suitable sets of internal constrained equations expressed in the form
Aqp = 0 are introduced in the unconstrained PEP described in Eq. (4.15). Based on the pro-
cedure outlined in Appendix C and widely used in previous Sections, the following constrained
problem can be obtained by solving the system of internal constraints in terms of a reduced
number of master variables qpM :

(K∗p − λ∗pM∗
p)qpM = 0 (4.29)

where:
K∗p = RTKpR ; M∗

p = RTMpRc (4.30a,b)

are reduced-order stiffness and mass matrices, respectively, and R is a constraint matrix (see
Appendix C).

Conventional trial functions are defined as the in-plane and warping displacement fields
obeying the Vlasov’s hypothesis of (V1) in-plane inextensibility, and (V2) out-of-plane un-
shearability, the latter substituted by the Bredt’s condition of constant shear stress flow on closed
branches. According to as proposed in Ranzi and Luongo (2011), their in-plane component can
be obtained by introducing suitable internal constraints requiring each element axial deforma-
tion to vanish. Referring to the 7 DOF beam FE (Fig. 3.22a), this condition can be expressed in
local coordinates as:

U e
3 − U e

2 = 0 ; U e
2 − U e

1 = 0 e = 1, . . . ,M (4.31a,b)

The inextensibility conditions can be enforced on each link element (Fig. 3.2a) as:

Un
2 − Un

1 = 0 n = 1, . . . , Nsc (4.32)

Further internal constraints prescribing indeformability under flexure are applied to each link
element, to satisfy the in-plane rotations’ compatibility (e.g., Taig and Ranzi, 2016). They can
be written in local coordinates as:

θn2 − θn1 = 0 n = 1, . . . , Nsc (4.33)
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Eqs. (4.31) to (4.33) constitute the full set of internal constraints for obtaining conventional
planar trial functions. They can be written in compact form as Aiqp = 0, where Ai is a
2(M + Nsc)×N full-rank matrix (subscript i being referred to inextensible trial functions). It
can be solved with respect to Ni = Np− 2M master variables qiM . Corresponding constrained
PEP (Eq. (3.6)) provides Ni independent eigenvectors qik = RiqiMk (k = 1, . . . , Ni), being
Ri a N × Ni constraint matrix (see Appendix C). They can be collected in the N × Ni ma-
trix Qi = [qi1,qi2, . . . ,qiNi]. From them the conventional (inextensional) planar trial functions
U i
k(s), V

i
k (s) (k = 1, 2, . . . , Ni) are determined, based on the adopted interpolating functions.

Corresponding (piece-wise linear) conventional warping distributions W i
k(s), k = 1, . . . , Ni,

can be obtained based on the procedure outlined in previous Sections. The first 15 conventional
functions for the illustrative example are depicted in Fig. 4.7. As for single component cross-
sections, first three fields describe rigid in-plane rigid-body motions and they are associated to
nil eigenvalues of Eq. (4.29). They do not depict transverse slips at shear connector locations.
Following conventional functions depict pure in-plane flexural behavior with no axial elonga-
tions of plates composing the cross-section. Slips in the transverse direction may occur at shear
connection locations, thus including the partial shear interaction in the transverse direction.
Transverse slips are not visible in trial functions proposed in Fig. 4.7 since they occur on higher
functions. The first one involving significant transverse slips is the 29th trial function, depicting
Ṽ n

29
∼= 0.11 at all shear connections (i.e., n = 1, ..., 4). Obtained conventional fields are very

clean and naturally global in shape. Moreover, according to the cross-section symmetry, they
are always symmetric (or anti-symmetric) with respect to the vertical and horizontal barycentric
directions. Longitudinal slips may occur at shear connection location, participating in restoring
the beam unshearability condition. As expected, conventional warping distributions are linear.

Extension trial functions are defined as those deformation fields where the plate elements
composing the TWM cross-section are supposed to be in-plane globally unshearable and un-
deformable under flexure. The latter conditions can be expressed in local coordinates, for the
seven DOF FE adopted in the discrete planar analysis (Fig. 3.22a), as:

V e
3 − V e

1 − θe1 le = 0 e = 1, . . . ,M (4.34a)
θe3 − θe1 = 0 e = 1, . . . ,M (4.34b)

while the same conditions can be enforced on each 6 DOF link element (Fig. 3.2a), as: }

V n
2 − V n

1 − θn1 hn = 0 n = 1, . . . , Nsc (4.35a)
θn2 − θn1 = 0 n = 1, . . . , Nsc (4.35b)

Additional internal constraints must be applied on each link element prescribing its axial defor-
mation to vanish (i.e., in-plane inextensibility, Eq. (4.32)), to prevent interpenetration between
adjacent components. The 2M + 3Nsc internal constraints identified by Eqs. (4.32), (4.34)
and (4.35) constitute the full set of internal constraints to be enforced in the PEP for obtaining
extension planar trial functions. They can be written in compact form as Aeqp = 0, where Ae is
a (2M + 3Nsc)×N matrix (subscript e being referred to extension trial functions). Analogously
to what happens for single-component cross-sections, only (M+Nsc−L) among unflexural con-
ditions, Eqs. (4.34b) and (4.35b), are linearly independent, L being the number of cross-section
closed branches. As a consequence, in case of L > 0 (i.e., multiply-connected cross-section),
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Ae is not a full-rank matrix and it must be further reduced. In particular, the set of internal
constraints can be solved with respect to Ne = Np− 2M −Nsc +L master variables qeM . Cor-
responding constrained PEP (Eq. (3.25)) provides Ne independent eigenvectors qek = ReqeMk

(k = 1, . . . , Ne), being Re aN×Ne constraint matrix (see Appendix C). They include the three
rigid-body motions corresponding to the triple multiplicity nil eigenvalue of the constrained
PEP, which have to be disregarded. Relevant eigenvectors can be collected in the N × (Ne− 3)
matrix Qe = [qe4,qe5, . . . ,qeNe]. From them, extension planar trial functions U e

k(s), V e
k (s)

(k = 1, 2, . . . , Ne − 3) are determined, based on the adopted interpolating functions, and as-
sociated to null warping components, W e

k (s) = 0. Extension trial functions obtained with the
new proposed procedure are shown for the illustrative example in Fig. 4.8. Analogously to
single-component cross-sections, obtained fields depict pure elongations of cross-section ele-
ments, together with rigid-body motions. Because of internal constraints, each single element
belonging on closed cell can not be deformed individually, since it would cause bending of all
other elements belonging to the same loop. It is noteworthy the fact that, within extension trial
functions, link elements modeling shear deformable connectors are prevented to deform within
the cross-section plane. As a matter of facts, they are asked to be (i) axially undeformable,
(ii) in-plane unshearable, and (iii) in-plane unflexurable. While the assumption (i) serves the
purpose to prevent separation between adjacent components, conditions (ii) and (iii) are a direct
consequence of the kinematic assumptions used in defining extension fields within the GBT-D
approach. As a consequence and differently to what happened in the unconstrained approach,
shear connectors act as a perfectly in-plane rigid connection. Therefore, obtained (pure) exten-
sion fields do not include the transverse partial interaction. Obtained fields appear to be very
clean and naturally global in shape, and they respect the cross-section double symmetry.

In case of multi-connected cross-section (i.e., L > 0), subsets of conventional and extension
planar fields are not sufficient to span the entire Np-dimensional space of admissible planar
configurations the multi-component cross-section may describe. As a matter of fact, since the
numberM of cross-section elements can be expressed asM = n−1−Nsc+L, conventional and
non-conventional planar fields are in number of (Np−2L) on the whole. Then, in case of closed
or partially-closed cross-section there should exist further 2L trial functions able to complete
the previous two subsets. They are referred to as hybrid fields and, analogously to single-
component cross-sections, they describe mixed extensional-flexural deformations induced by
non-simultaneous elongations of elements belonging to closed loops. Hybrid trial functions are
defined as those deformation fields able to make null mutual (elastic) work with others planar
(conventional and purely-extension) functions. This condition can be easily enforced in terms
of displacements, as provided in Section 3.2, by enforcing:

[Qi Qe]
T Kp qp = 0 (4.36)

The set of Ni+Ne−3 internal constraints described in Eq. (4.36) must be supplied by the 2Nsc

nil elongation and nil flexural deformation conditions on link elements (Eqs. (4.32) and (4.33),
respectively) to restore the in-plane displacement compatibility, i.e. avoiding interpenetration
between adjacent components. The full set of constraints to be enforced to obtain hybrid func-
tions can be written in compact form as Ahqp = 0, where Ah is a (Np − 2L + 2Nsc)×N
matrix (subscript h being referred to hybrid trial functions). It has to be noted that rigid-body
motions do not spend elastic work, since they do not depict any non-rigid deformation. There-
fore, Ah is not a full-rank matrix, and the set of internal constraints can be solved with respect
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to Nh = 2L + 3 master variables qhM . Corresponding constrained PEP, Eq. (3.34), provides
Nh independent eigenvectors qhk = RhqhMk (k = 1, . . . , Nh), being Rh a N × Nh constraint
matrix (see Appendix C). They include the three rigid-body motions corresponding to the triple
multiplicity nil eigenvalue of the constrained PEP, which have to be disregarded. Relevant
eigenvectors can be collected in the N × 2L matrix Qh = [qh4,qh5, . . . ,qhNh]. From them,
hybrid planar trial functions Uh

k (s), V h
k (s) (k = 1, 2, . . . , 2L) are determined, based on the

adopted interpolating functions, and associated to null warping components, W h
k (s) = 0. Hy-

brid non-conventional functions for the illustrative example are shown in Fig. 4.9, reporting both
the in-plane and the tangential displacement (the latter as a diagram). They are, as expected, in
number Nh − 3 = 2L = 2, and involve mixed flexure-extensional deformations of the closed
branches and consistent rigid-body motions of the remaining open branches. As in the previ-
ous PEPs, rigid-body motions are present to ensure the dynamic equilibrium to inertial terms.
Also the hybrid trial functions are global-type in a natural way, without the need of any further
manipulation. Hybrid modes may depict slips in the transverse direction, thus contributing in
modeling the transverse partial shear interaction. As regard the illustrative example, however,
slips at shear connections are negligible.

4.3 Applications

Two applications are considered in the following to outline the ease of use of the GBT
formulation proposed and to validate its accuracy. The first application considers the built-up
multi-component box girder presented in Georgieva et al. (2012) and already used as illustra-
tive example in previous Sections (Fig. 4.3). The beam is 3.0 m long and it is subjected to an
eccentric pressure distributed along the member (Fig. 4.10). The beam is assumed to be sim-
ply supported, with boundary conditions allowing free warping at end supports and restraining
warping at mid-span (Fig. 4.10b). The material properties for the steel components are de-
scribed by an elastic modulus of 200 GPa and a Poisson’s ratio of 0.3. Different levels of shear
connection rigidities are considered in the following to highlight their influence on the partial
interaction behavior of the multi-component member. The former are expressed in term of di-
mensionless parameters αLL and αTL (L being the member length) as regards the interaction in
the longitudinal and transverse directions, respectively, as commonly provided in the Literature
for two-layered composite beams (e.g., Girhammar and Gopu, 1993). In particular, results are
provided in the following for weak shear connection (i.e., αLL = 1, αTL = 1) , medium shear
connection (i.e., αLL = 5, αTL = 5) and strong shear connection (i.e., αLL = 20, αTL = 20).
Results calculated with the proposed GBT approach have been compared with those determined
with a shell element model developed in the software ABAQUS/Standard (Simulia, 2010),
where the general purpose shell element S4 has been adopted for plate segments. All materials
have been modeled as linear-elastic isotropic. The shear connection is implemented through
the ABAQUS planar connection type, which is able to allow relative displacement on the se-
lected plane and avoid relative displacement along the direction normal to that plane. In order to
describe the continuous interface connection model formulated in the GBT approach, closely-
spaced wires spread along the rectilinear lines of the shear connection have been specified.
The planar connection type has been assigned to each wire with the constitutive relationship
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described by: [
fT
fL

]
=

[
KT 0
0 KL

] [
∆uT
∆uL

]
(4.37)

where fT (fL) are the induced forces in transverse (longitudinal) direction of the member, ∆uT
(∆uL) are the relative displacement of the two connected components at wire’s location in
the transverse (longitudinal) direction and KT (KL) are the associated spring stiffness in the
two directions. These latter rigidities are obtained by multiplying the distributed spring stiff-
ness knT (knL) adopted in the GBT model by the wire (longitudinal) spacing. Concerning the
adopted member discretization, the GBT model has been subdivided into 30 GBT-based FEs,
while quadrilateral elements with almost 5 mm width have been used in ABAQUS, altogether
168, 000 finite elements. Comparisons between the GBT and ABAQUS results are presented
in Figs. 4.11 to 4.13. The former have been obtained by using the trial functions calculated by
adopting the enhanced GBT-D approach described in Section 4.2.2. All variables have been
plotted at the member coordinate in which they reach their maximum values, which occur at
mid-span (i.e., z = L/2) for the in-plane displacement uv and transverse and normal membrane
and flexural stresses (i.e., σms , σfs , σmz , σfz ), and at the end sections (i.e., z = 0,L) for warping
displacement w and shear stress components (i.e., τmsz , τ fsz). For clarity, proposed results have
been scaled based on their maximum (absolute) value observed along the member length and
the adopted scale coefficient is plotted on each graph. Moreover, the response of each com-
ponent is outlined by using different colors. Excellent match is obtained in these comparisons
for all the three levels of shear connection stiffness adopted for the longitudinal and transverse
shear connector stiffness. Differences between GBT and ABAQUS solutions are lesser than
4%, having considered the results obtained via ABAQUS for reference. The influence of the
partial shear interaction on the overall behavior of the multi-component TWM is noteworthy.
As expected, member with lower shear connection rigidities undergoes larger deflections that
the member with stiffer interface properties. In case of weak shear connection, the interaction
between components is negligible, and the structural response is given by the sum of the contri-
bution of the individual components considered in isolation. As a matter of fact, the structural
response for the considered load condition is almost entirely resisted by the loaded “Σ” profile,
as well depicted by the shape of the warping distribution w and membrane longitudinal stress
σmz (Fig. 4.11). For medium shear connection, components forming the cross-section start to in-
teract, as highlighted by warping profile and relevant stress distribution (i.e., σmz ). In this case,
significant stress levels are induced throughout the cross-section, in particular on the lipped
channel adjacent to the loaded profile. Same considerations can be made for the case of strong
shear connection rigidities.

The second application consists on the linear elastic analysis of a multi-component member
taken from Hanaor (2000), whose geometry is described in Fig. 4.14. It consists of a partially-
closed built-up TWM formed by a concrete slab and three thin-walled cold-formed steel ele-
ments (i.e., two “Z” profiles and one thin plate element), subjected to an eccentric uniformly
distributed pressure of 5 kPa applied to the right-hand third of the beam (Fig. 4.14a). The beam
is 5.0 m long, the concrete slab is 50 mm thick, while all steel elements possess thickness of 2
mm. Material properties include an elastic modulus of 200 GPa and 35 GPa for steel and con-
crete, respectively, and a Poisson’ ratio of 0.2 and 0.3 for concrete and steel, respectively. The
beam is simply supported, in particular it is assumed in-plane fully restrained and warping free
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at z = 0, L, while a global warping restraint is imposed ad mid-span. Similarly to the previous
application, different levels in terms of shear connectors rigidities have been considered in the
following, in order to outline the influence of the partial shear behavior in the multi-component
member. In particular, cases of weak (αLL = 1, αTL = 1), intermediate (αLL = 5, αTL = 5)
and strong (αLL = 20, αTL = 20) shear connection have been taken into account. The FE
GBT model has been obtained by discretizing the member into 30 GBT-based FEs. Concerning
the shell-based FE model, steel elements have been subdivided by means of quadrilateral ele-
ments having almost 5 mm width, while the ones composing the concrete slab possess 200 mm
width. The ABAQUS model possesses about 240, 000 shell FEs. The cross-section analysis
is performed with the proposed enhanced GBT-D approach (Section 4.2.2), and subsets of the
obtained conventional and non-conventional trial functions are shown for illustrative purposes
in Figs. 4.15 to 4.18. They have been obtained for the case of weak shear connectors rigidi-
ties (i.e., αLL = 1, αTL = 1). All trial functions are very precise and clean and derive from
the simple solution of three constrained PEP and one WEP without further orthogonalizations.
Partial shear interaction in the transverse direction is included in conventional in-plane and
non-conventional hybrid fields, as depicted by transverse slips occurring at shear connection lo-
cations, while in-plane extension include a perfect (i.e., rigid) interaction between components.
Longitudinal partial shear interaction is included in both conventional and non-conventional
shear warping fields.

Calculated results with the proposed approach are reported in Figs. 4.19a to 4.19c, respec-
tively, in terms of in-plane displacement uv and out-of-plane displacement w, while results in
terms of membrane normal longitudinal stress σmz and shear distribution τmsz have been plotted
in Figs. 4.20a to 4.20c. Plots are referred to the member coordinate in which they reach their
maximum values and they have been suitably scaled for clarity, with the scale coefficient re-
ported in each plot. Numerical results obtained with ABAQUS have been plotted to show the
accuracy of the proposed model. The agreement of the two solutions is excellent for all shear
connection levels, with differences between the GBT and ABAQUS solution within 5%. The
influence of shear connection levels can easily be evidenced by the global deformation of the
member, which diminishes with increasing the shear connection rigidity (Fig. 4.19). It is also
evident that, in case of weak shear connection, components forming the cross-section behaves
independently. Considering that the horizontal slab and bottom thin plate possess low flexural
(and shear) rigidity in the plane of the cross-section, the structural response is mainly resisted by
the relatively stiffer rigidities of the two Z sections. This behavior is well depicted by observing
that high stress levels are induced in the Z profiles, e.g. for the membrane stresses σmz and mem-
brane shear stresses τmsz , and that the remaining two cross-sectional components (i.e. concrete
slab and bottom thin plate) exhibit negligible stresses (Fig. 4.20a). On the contrary, the shape
of warping and stress fields for the case of strong shear connection, Figs. 4.19c and 4.20c, indi-
cate that all components forming the cross-section are participating in resisting external loads.
The case of intermediate shear connections is collocated between the previous two (Figs. 4.19b
and 4.20b).
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Figure 4.5: Illustrative example of dynamic cross-section analysis of a multi-component cross-section
(Georgieva et al., 2012): conventional in-plane and out-of-plane (warping) trial functions obtained with
the unconstrained approach.
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Figure 4.6: Illustrative example of dynamic cross-section analysis of a multi-component cross-section
(Georgieva et al., 2012): non-conventional extension trial functions obtained with the unconstrained
approach.
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Figure 4.7: Illustrative example of dynamic cross-section analysis of a multi-component cross-section
(Georgieva et al., 2012): conventional in-plane and out-of-plane (warping) trial functions obtained with
the enhanced GBT-D approach.
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Figure 4.8: Illustrative example of dynamic cross-section analysis of a multi-component cross-section
(Georgieva et al., 2012): non-conventional extension trial functions obtained with the enhanced GBT-D
approach.

Figure 4.9: Illustrative example of dynamic cross-section analysis of a multi-component cross-section
(Georgieva et al., 2012): non-conventional hybrid trial functions obtained with the enhanced GBT-D
approach.
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Figure 4.10: Box girder built-up multi-component member (Georgieva et al., 2012): member geometry
and load arrangement.

ABAQUS GBT

Figure 4.11: Box girder built-up multi-component member (Georgieva et al., 2012): displacements and
stress fields with weak shear connection (αLL = 1, αTL = 1).
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ABAQUS GBT

Figure 4.12: Box girder built-up multi-component member (Georgieva et al., 2012): displacements and
stress fields with medium shear connection (αLL = 5, αTL = 5).
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ABAQUS GBT

Figure 4.13: Box girder built-up multi-component member (Georgieva et al., 2012): displacements and
stress fields with weak shear connection (αLL = 20, αTL = 20).
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Figure 4.14: Partially-closed multi-component member (Hanaor, 2000): (a) built-up cross-section and
load arrangement; (b) geometry of the cold-formed “Z” profile.
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Figure 4.15: Partially-closed multi-component member (Hanaor, 2000): conventional in-plane and out-
of-plane (warping) trial functions obtained with the enhanced GBT-D approach.
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Figure 4.16: Partially-closed multi-component member (Hanaor, 2000): non-conventional extension trial
functions obtained with the enhanced GBT-D approach.

Figure 4.17: Partially-closed multi-component member (Hanaor, 2000): non-conventional hybrid trial
functions obtained with the enhanced GBT-D approach.



76 Chapter 4. Partial interaction analysis of multi-component TWMs

Figure 4.18: Partially-closed multi-component member (Hanaor, 2000): non-conventional shear (warp-
ing) trial functions.
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(a)

(b)

(c)

ABAQUS GBT

Figure 4.19: Partially-closed multi-component member (Hanaor, 2000): displacement fields uv and
w in case of: (a) weak shear connection (αLL = 1, αTL = 1), (b) intermediate shear connection
(αLL = 5, αTL = 5) and (c) strong shear connection (αLL = 20, αTL = 20).
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(a)

(b)

(c)

ABAQUS GBT

Figure 4.20: Partially-closed multi-component member (Hanaor, 2000): significative stress fields σmz
and τmsz : (a) weak shear connection (αLL = 1, αTL = 1), (b) intermediate shear connection (αLL =
5, αTL = 5) and (c) strong shear connection (αLL = 20, αTL = 20).



Chapter 5

Displacement-based GBT for composite TWMs with
large web penetrations

Composite steel-concrete members represent a very efficient structural solution for simply-
supported elements undergoing bending, thanks to their capability in combining concrete slabs
with steel thin-walled profiles. In particular, their resisting capacity is optimized by confining
compression stresses in the concrete components, thus limiting steel members to withstand pure
tensile stresses. For these reasons, they are increasingly used throughout the world, especially
for bridges and large span building floors. Regarding these latter, it is common practice to
perform large penetrations in webs of steel members (Fig. 5.1a,b), in order to accommodate
building services such as plumbing, electrical and heating systems. Penetrations may be re-
inforced with localized longitudinal stiffeners (Fig. 5.1c,d), in order to limit the beam overall
deflection. The behavior of composite members is strongly influenced by the shear deformabil-
ity of mechanical devices placed at the interfaces between concrete and steel members, which
leads to a relative displacement developing between components, that is, slip. This behavior is
commonly referred to as partial shear interaction. When dealing with thin-walled profiles, the
deformability of steel cross-section in both in-plane and out-of-plane directions must be taken
into account to obtain accurate results. Finally, the presence of penetrations and stiffeners may
significantly influence the beam overall deformability, in addition to cause stress concentration
phenomena in their neighborhoods.

Figure 5.1: Types of large web penetrations (from Mills, 2001)

Composite TWMs with large web penetrations can be accurately modeled by using refined
shell-based FE procedures. However, resulting models are usually burdensome and very time
consuming and may not be suitable for design purposes. For these reasons, reduced approaches
for the analysis of TWMs have been developed in recent years, including the Finite Strip
Methods (FSM; e.g., Cheung, 1976; Ádány and Schafer, 2006b) and Generalized Beam The-
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ory (GBT; e.g., Schardt, 1989; Silvestre and Camotim, 2002a). Concerning single-component
TWMs, a FSM-based approach for linear and non-linear analysis of members with arbitrary
shaped perforations is available in Eccher et al. (2009); Pham (2017), while a GBT-based ap-
proach is available limited to squared holes in Cai and Moen (2015, 2016); Casafont et al.
(2015, 2018). To the knowledge of the author, reduced approaches for composite TWMs with
large web penetrations are not yet available in the Literature. Within the GBT, a TWM with
perforations, taperings and localized stiffeners (Fig. 5.2a) can be modeled as a structural sys-
tem composed by sub-members possessing uniform cross-section along their length (Fig. 5.2b).
Trial functions are first evaluated for each cross-section, then independent sets of GBT equations
are written in terms of the unknown linear coordinates for each sub-member. The global model
is finally obtained by coupling the aforementioned sets by means of compatibility conditions,
enforcing displacement and strain fields to be continuous on interfaces between sub-members.
Due to the nature of the GBT approach, displacements and strains must be expressed in terms
of trial functions. Since the latter are related to the cross-section properties and are in general
different for each sub-member, required compatibility constraints may be large in number and
quite involved, leading to burdensome and computationally inefficient GBT models.

(a) (b)

Figure 5.2: (a) TWM with tapered end and stiffened squared web perforation. (b) Decomposition into
sub-members.

The first attempt to overcome a very similar problem was presented in Basaglia et al. (2008);
Camotim et al. (2010) concerning the analysis of thin-walled frames. In order to facilitate the
assembly between various sub-members composing the structural system, joint elements were
added at end nodes of each beam, where unknown linear coordinates were expressed in terms of
(unknown) cross-section nodal displacements and rotations through a variable transformation.
Although this strategy does not allow to completely avoid the use of constraint equation in mod-
eling connections between sub-members, required restraints were reduced in number and signif-
icantly simplified. This technique constitutes the basis of the so-called displacement-based GBT
approach. It is based on the use of linear trial functions to perform a variable transformation
and express the (unknown) linear coordinates in terms of (unknown) displacements and rota-
tions at nodes adopted for the cross-section discretization. In this way, each GBT-based beam
FE is transformed into an assembly of M flat quadrilateral GBT-based shell elements (M being
the number of elements used for discretizing the cross-section), whose kinematic description
corresponds to an enhancement of the standard GBT one with cross-section in-plane nodal ro-
tations. The displacement-based GBT approach has been formalized very recently in Gonçalves
and Camotim (2017a,b) and it has been successfully adopted in developing a corotational based
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approach for geometrically nonlinear analysis in de Miranda et al. (2017). Since obtained GBT-
based shell FE can benefit of assembly procedures commonly adopted in standard FE models,
the displacement-based GBT approach constitutes a systematic and straightforward fashion for
modeling structural systems. The approach combines the capability of the original GBT in re-
ducing the problem dimensionality with the flexibility of standard shell-based FE procedures
in dealing with complex geometries. Referring in particular to perforated, tapered and locally
stiffened members, the displacement-based GBT allows to completely avoid the aforementioned
constraint equation, thus obtaining very simple and numerically efficient models.

In this Chapter, the original displacement-based GBT approach is extended to the analysis of
composite steel-concrete TWMs depicting large web penetration. The proposed approach is de-
veloped starting to the GBT formulation for the partial interaction analysis of multi-component
TWM proposed in Chapter 4. The set of trial functions, which include the shear deformability
of connectors placed at the interface between steel and concrete components, is first evaluated
with the enhanced GBT-D approach proposed in Section 4.2.2 and then suited to perform a
variable transformation and express unknown coordinates in terms of unknown nodal displace-
ments and rotations. Since connectors were asked to be inextensible and undeformable against
flexure to prevent detachment and/or interpenetration between components, they introduce a
set of internal constraints in the cross-section analysis. As a consequence, planar trial function
are lesser in number than planar nodal DOF possessed by the composite (multi-component)
cross-section. The variable transformation is therefore performed by relating (unknown) lin-
ear coordinates to a reduced number of planar nodal DOF, referred to as “master” DOF (to be
distinguished from “slave” ones) and equal in number to the planar trial functions. The set of
internal constraints mentioned above is suited to identify the required set of master variables
and expressing slave DOF as function of master ones. The present Chapter is structured as
follows: the displacement-based GBT formulation for single-component TWM is first outlined
in detail in Section 5.1. An application on a I-shaped steel beam with mid-span stiffened perfo-
ration and tapered ends provided with bolted connection is presented for illustrative purposes.
The new displacement-based GBT approach for composite TWM is then developed in Section
5.2. An application on a large-span composite beam with multiple web-perforations taken from
Mills (2001) is then proposed to outline the capabilities and ease-to-use of the approach. Ob-
tained results are compared with the ones obtained by means of a refined shell-based FE model
developed with ABAQUS/Standard (Simulia, 2010) for validation purposes.

5.1 Displacement-based GBT: formulation

Linear trial functions obtained with the discrete FE-based dynamic approach for the cross-
section analysis illustrated in Chapter 3 are identified starting from their (discrete) nodal values
by means of the adopted interpolating functions. As shown in Section 3.4, the simplest choice,
in terms of polynomial orders for interpolating functions, to avoid discontinuous stress paths
induced by different order contributions of non-conventional trial functions in the expression of
strain fields, consists on a 7 DOF FE (Fig. 3.22a) and a 3 DOF FE (Fig. 3.22b) to be adopted
in the PEP and WEP, respectively. Corresponding obtained nodal values are illustrated in
Figs. 5.3a and 5.3b, respectively, where superscript i refers to the i-th node adopted in the cross-
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Figure 5.3: (a) Nodal values of in-plane trial functions; (b) nodal values of out-of-plane (warping) trial
functions; (c) in-plane nodal DOF; (d) out-of-plane (warping) nodal DOF.

section discretization (i.e., i = 1, . . . , n, n being the the total number of nodes, both natural and
intermediate), superscript e refers to the e-th beam finite element (i.e., e = 1, . . . ,M , M being
the number of elements), while subscript k identifies the k-th trial function (i.e., k = 1, . . . , K,
K = 4n+2M being the total number of DOF, including planar and warping ones, possessed by
the discrete cross-section). By making use of the linear GBT kinematics (Eq. (2.2)), nodal DOF
corresponding to nodal values of the obtained trial functions (i.e., displacements and in-plane
rotation evaluated in correspondence of known values of trial functions) can be expressed as
follows (Figs. 5.3c and 5.3d):

ui(z) =
K∑
k=1

U i
kϕk(z) i = 1, . . . , n+M (5.1a)

vi(z) =
K∑
k=1

V i
kϕk(z) i = 1, . . . , n (5.1b)

θi(z) =
K∑
k=1

Θi
kϕk(z) i = 1, . . . , n (5.1c)

wi(z) =
K∑
k=1

W i
kϕ
′
k(z) i = 1, . . . , n+M (5.1d)

Starting from Eq. (5.1) and collecting the Kp(= 3n+M) in-plane DOF ui(z), vi(z), θi(z) and
ue(z) in the vector u(z), the Kw(= n+M) warping DOF wi(z) and we(z) in the vector w(z),
then assembling the K linear coordinates ϕk(z) in the vector ϕ(z), the following two linear
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systems can be written:

Uϕ(z) = u(z) (5.2)

[
U
W

]
ϕ′(z) =

[
u′(z)
w(z)

]
(5.3)

The following positions hold for matrices involved in Eqs. (5.2) and (5.3):

U =
[
Qp 0KwKp

]
(5.4a)

W = [QΩ Qw] ; QΩ =
[
Ω 0

Kp−Nc
Kw

]
(5.4b,c)

where Qp and Qw are Kp ×Kp and Kw ×Kw matrix, respectively, collecting nodal values of
planar and shear trial functions, respectively (Figs. 5.3a and 5.3b, respectively), arranged by
column (i.e., their generic k-th column collects nodal values of the k-th trial function), Ω is a
Kw × Nc matrix (Nc being the number of conventional functions) collecting nodal values of
conventional warping distributions W i

k(s) (Fig. 5.3b) arranged by columns, while 0ba is a a× b
nil matrix. The presence of 0-submatrices is due to shear trial functions having nil in-plane
displacements (Eq. (5.4a)) and to extension and hybrid (non-conventional) in-plane functions
depicting nil warping displacement (Eq. (5.4)c). Systems (5.2) and (5.3) can in principle be
suited to express linear coordinates ϕ(z) (and corresponding first derivative ϕ′(z)) as function
of nodal DOF u(z), u′(z), w(z), thus defining a variable transformation. However, while a
unique solution can be obtained for ϕ′(z) by solving Eq. (5.3), system (5.2) is indeterminate,
since it possess Kp(< K) equations in front of K unknowns. It is easy to prove that redundant
unknowns are represented by linear coordinates ϕk(z) related to non-conventional shear func-
tions. As a matter of fact, the latter depict trivial in-plane distributions, therefore corresponding
linear coordinates ϕk(z) are irrelevant and can assume arbitrary distributions. The simplest way
to address the problem is to adopt a slightly modified GBT linear kinematics, where an inde-
pendent set of linear coordinates ψk(z) is introduced for non-conventional shear trial functions,
as follows:

u(s, z) =

Kp∑
k=1

Uk(s)ϕk(z) (5.5a)

v(s, z) =

Kp∑
k=1

Vk(s)ϕk(z) (5.5b)

w(s, z) =

Kp∑
k=1

Ωk(s)ϕ
′
k(z) +

Kw∑
k=1

Wk(s)ψk(z) (5.5c)

whereWk(s) represent the k-th non-conventional shear functions, while Ωk(s) depict the warp-
ing distribution associated to the k-th planar trial function: they are nil in case of non-conventional
(i.e., extension and hybrid) fields, while they coincide with conventional warping complement
W i
k(s) in case of conventional planar functions. Within the new arrangement, (linear) strain field
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ε(s, y, z) =
{
εms , ε

m
z , γ
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sz, ε
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}T and stress field σ(s, y, z) =
{
σms , σ

m
z , τ

m
sz , σ

f
s , σ

f
z , τ

f
sz

}T

can be written as:

εms =
∑Kp

k=1
U ′k(s)ϕk(z) (5.6a)

εmz =
∑Kp

k=1
Ωk(s)ϕ

′′
k(z) +

∑Kw

k=1
Wk(s)ψ

′
k(z) (5.6b)

γmsz =
∑Kp

k=1
[Uk(s) + Ω′k(s)]ϕ

′
k(z) +

∑Kw

k=1
W ′
k(s)ψk(z) (5.6c)

εfs =
∑Kp

k=1
−yV ′′k (s)ϕk(z) (5.6d)

εfz =
∑Kp

k=1
−yVk(s)ϕ′′k(z) (5.6e)

γfsz =
∑Kp

k=1
−2yV ′k(s)ϕ

′
k(z) (5.6f)

and

σms =
∑Kp

k=1

E

1− ν2
[U ′k(s)ϕk(z) + νΩk(s)ϕ

′′
k(z)] +

∑Kw

k=1

νE

1− ν2
Wk(s)ψ

′
k(z) (5.7a)

σmz =
∑Kp

k=1

E

1− ν2
[νU ′k(s)ϕk(z) + Ωk(s)ϕ

′′
k(z)] +

∑Kw

k=1

E

1− ν2
Wk(s)ψ

′
k(z) (5.7b)

τmsz =
∑Kp

k=1
G [Uk(s) + Ω′k(s)]ϕ

′
k(z) +

∑Kw

k=1
GW ′

k(s)ψk(z) (5.7c)

σfs =
∑Kp

k=1
− yE

1− ν2
[V ′′k (s)ϕk(z) + νVk(s)ϕ

′′
k(z)] (5.7d)

σfz =
∑Kp

k=1
− yE

1− ν2
[νV ′′k (s)ϕk(z) + Vk(s)ϕ

′′
k(z)] (5.7e)

τ fsz =
∑Kp

k=1
−2yGV ′k(s)ϕ

′
k(z) (5.7f)

By making use of Eq. (5.5), Eqs. (5.2) and (5.3) can be rewritten as:

Qpϕ(z) = u(z) (5.8)

[
Qp 0KwKp
QΩ Qw

] [
ϕ′(z)
ψ(z)

]
=

[
u′(z)
w(z)

]
(5.9)

where ϕ(z) and ψ(z) are Kp × 1 and Kw × 1 vectors, respectively, collecting the (unknown)
linear coordinates ϕk(z) and ψk(z), respectively. Eqs. (5.8) and (5.9) can now be solved in-
dependently in terms of linear coordinates. Since matrices Qp and Qw are non-singular (i.e.,
planar and shear warping trial functions constitutes complete basis), the following can be ob-
tained (e.g., Bernstein, 2005):

ϕ(z) = Tp u(z) (5.10a)
ϕ′(z) = Tp u′(z) (5.10b)
ψ(z) = Tww(z) + Twpu

′(z) (5.10c)
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where:
Tp = Q−1

p ; Tw = Q−1
w ; Twp = −TwQΩTp (5.11a-c)

Eq. (5.10) represents a variable transformation which allows to express unknown linear coor-
dinates as function of nodal DOF (i.e., nodal displacements, rotations and curvatures at nodes
used in the cross-section discretization (Figs. 5.3c and 5.3d).

The weak formulation of the elasticity problem can be derived through the Principle of
Virtual Works, as illustrated in Section 2.3. By making use of Eqs. (5.5) to (5.7), Eq. (2.7) can
be rewritten in compact form as follows:
ˆ

L

{
δϕT

(
Bϕ+ FTφ′ − q1

)
+ δφ′T (Fϕ+ Cφ′) + δφT (Dφ− q2)

}
dz+

−
∑
B

(
δϕTP1 + δφTP2

)
= 0 (5.12)

where the δ-operator denotes virtual quantities, structural matrices B,C,D,F and load vectors
q1,q2,P1,P2 are detailed in Appendix D, and:

φ(z) =

[
ϕ′(z)
ψ(z)

]
(5.13)

By making use of the variable transformation defined in Eq. (5.10), Eq. (5.12) can be rewrit-
ten as follows:
ˆ

L

{
δuTTT

p

(
B Tp u + FTT d′ − q1

)
+ δd′TTT (F Tp u + C T d′) +

+ δdTTT (D T d− q2)

}
dz −

∑
B

(
δuTTT

p P1 + δdTTTP2

)
= 0 (5.14)

where:

d(z) =

[
u′(z)
w(z)

]
; T =

[
Tp 0KwKp
Twp Tw

]
(5.15a,b)

The set of K displacement-based GBT equations and relevant boundary conditions can be
derived from Eq. (5.14) by performing standard steps of calculus of variations (e.g., Berdichevsky,
2009). They are reported in Appendix D. Their solution is achieved numerically, as commonly
done in the Literature, by means of a Finite Element (FE) procedure (e.g., Bathe, 2014). The
member is discretized into NE finite elements and following descriptions are adopted for ap-
proximating the unknowns:

u(z) ∼= H(z) uE ; w(z) ∼= L(z) wE (5.16a,b)

where uE (wE) are 4Kp × 1 (3Kw × 1) vectors collecting values of unknown functions at
nodes of the member FE, H(z) is a Kp × 4Kp matrix collecting Hermite cubic polynomial
interpolating functions and defined in Eq. (2.17), while:

L(z) =
[
L1(z)I L2(z)I L3(z)I

]
(5.17)
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is a Kw × 3Kw matrix (I being a Kw × Kw identity matrix) collecting Lagrange parabolic
polynomial interpolating functions defined as:

L1(z) = 1− 3
z

lE
+ 2

(
z

lE

)2

; L2(z) = 4
z

lE
− 4

(
z

lE

)2

(5.18a,b)

L3(z) = − z

lE
+ 2

(
z

lE

)2

(5.18c)

with lE being the length of theE-th FE. It is pointed out that the choice of parabolic polynomials
for warping DOF w(z) allows to avoid the so called shear locking (e.g., Ranzi and Gilbert,
2015), occurring when terms participating in the shear strain term γsz contribute with different
order. The same choice is commonly performed in the definition of the Timoshenko beam
FE, where in fact the axial (i.e., along z) displacement needs to be interpolated by means of
parabolic shape functions. This allows to avoid locking phenomena induced by the linear shape
functions commonly used in defining the standard Euler-Bernoulli beam FE (e.g., Ranzi and
Gilbert, 2015). After performing the standard steps of the FE procedure, the following stiffness
relationship can be obtained for each GBT-based FE:

KExE = qE (5.19)

where xE is a (4Kp + 3Kw) × 1 vector collecting values of unknown functions at nodes of
the member FE, while KE and qE are (4Kp + 3Kw) × (4Kp + 3Kw) stiffness matrix and
(4Kp + 3Kw)× 1 load vector, respectively, defined as follows:
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ˆ

lE

NT

 TT
p B Tp 0KKp TT

p FTT

0
Kp
K TTD T 0KK

TTF Tp 0KK TTC T

Ndz ; N =


H 03Kw

Kp

H′ 03Kw
Kp

0
4Kp
Kw

L
H′′ 03Kw

Kp

0
4Kp
Kw

L′

 (5.20a,b)

qE =

ˆ

lE

[
HT H′T 0Kw4Kp

0
Kp
3Kw

0
Kp
3Kw

LT

] [
TT
p q1

TTq2

]
dz (5.20c)

The displacement-based GBT approach allows to transform each GBT-based beam FE into
an assembly of M GBT-based shell FE, M being the number of elements used to discretize the
cross-sections. Nodal DOF possessed by each shell FE are outlined in Table 5.1. According to
Gonçalves and Camotim (2017b), obtained shell elements are equivalent to the classic Bogner-
Fox-Schmit plate element with added (Lagrangian) quadratic membrane displacements, except
for the longitudinal interpolation of the in-plane axial displacement u, in which case Hermite
cubic functions are employed.

The main advantage of the proposed approach consists on the possibility to assembly ob-
tained shell elements by following procedures commonly adopted in standard shell-based FE
models. This allows to significantly reduce and, in many cases such as TWMs with squared
perforations, taperings and longitudinal stiffeners, to avoid the use of constraint equations in
modeling the structural systems. GBT-based models can thus be obtained with a systematic and
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Nodal DOF for the GBT-based shell element
Displacements Rotations Curvatures

uA, vA, wA
ξA(= vA,z), ηA(= uA,z),

ζA(= vA,s)
κA(= vA,sz)

uB, wB ηB(= uB,z)

uC , vC , wC
ξC(= vC,z), ηC(= uC,z),

ζC(= vC,s)
κC(= vC,sz)

wD
wE
wF

uG, vG, wG
ξG(= vG,z), ηG(= uG,z),

ζG(= vG,s)
κG(= vG,sz)

uH , wH ηH(= uH,z)

uI , vI , wI
ξI(= vI,z), ηI(= uI,z),

ζI(= vI,s)
κI(= vI,sz)

Table 5.1: GBT-based shell FE: coordinate system and nodal DOF.

straightforward fashion. Similar advantages can be obtained also when dealing with localized
support conditions. As a matter of fact, they can be directly enforced by removing restrained
DOF from the discrete system, Eq. (5.19), thus avoiding the use of constraint equations express-
ing them as function of the unknown coordinates, as otherwise required by the standard GBT
approach.

An illustrative example is proposed to illustrate the ease-to-use of the displacement-based
GBT approach. It concerns the linear elastic analysis of the steel I-shaped beam illustrated in
Fig. 5.4. The beam is 1.50 m long and specifies elastic modulus of 200 GPa and Poisson’s ratio
of 0.3. It depicts tapered ends and a stiffened mid-span squared web perforation. In particular,
web perforation possesses dimension 400 mm×220 mm, while local longitudinal stiffeners are
realized means of plates depicting 60 mm width; they are placed on only one side of the web and
they are longitudinally extended both forward and backward with respect to web penetration for
a length equal to 200 mm. All steel members are 5 mm thick and the gross cross-section dimen-
sions are depicted in Fig. 5.4b. The beam is supposed to be locally restrained by mean of bolted
connections on tapered end regions. Restrained DOF are reported in Fig. 5.4a, while bolts ge-
ometry is illustrated in Fig. 5.4c. The beam is subjected to a vertical pressure equal to 0.1 MPa
applied on the top flange (Fig. 5.4a). The displacement-based GBT approach is used to model
the TWM. In particular, the beam is subdivided into eight sub-members possessing uniform
cross-section along their length, as depicted in Fig. 5.5. For each sub-member, the cross-section
analysis is first performed, then stiffness relation depicted in Eq. (5.19) is written. The global
GBT-based model is then obtained by assembling the contribution of each sub-members by fol-
lowing the common procedures adopted for shell-based FE models. To this scope, no constraint
equations have been used. Local constraint conditions represented by bolted connections are
finally included by removing constrained nodal DOF from the analysis.

Results obtained with the displacement-based GBT formulation are compared with the so-
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(a)

(b) (c)

Figure 5.4: I-shaped TWM with tapered ends and central stiffened squared hole. (a) Member dimensions,
load arrangement and boundary conditions. (b) Gross cross-section dimensions. (c) Bolted connection
geometry.

Figure 5.5: I-shaped TWM with tapered ends and central stiffened squared hole: sub-members decom-
position.
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lution calculated through a three-dimensional finite element analysis (FEA) performed with
the commercial software ABAQUS/Standard (Simulia, 2010). Reduced-integration S4R shell
finite elements available in the software library have been used for this purpose. Quadrangu-
lar shell FE adopted in the ABAQUS member discretization possess width equal about to 10
mm; they are altogether 8900 shell finite elements. Corresponding discretization adopted in the
GBT-based model is made with spacing equal to 20 mm as regard the cross-section, which cor-
responds in discretizing the gross cross-section (Fig. 5.4b) into 37 segments, and about 50 mm
concerning the one along the member length. Representative comparison in terms of displace-
ments fields are reported in Fig. 5.6. In particular, Fig. 5.6a reports the in-plane displacement
at mid-span, while warping fields at the interface between sub-members 1-2 and 6-7 are rep-
resented in Figs. 5.6b and 5.6c, respectively. For clarity, plotted variables have been properly
scaled, with the adopted scale coefficient reported on each plot. The agreement between the cal-
culated GBT solution and the FEA results is excellent. Comparisons in terms of stress fields are
reported in Fig. 5.7. Stress distributions are in general well predicted by the displacement-based
GBT model, particularly near local restraints, penetration, stiffeners and any other geometrical
and mechanical discontinuity.

(a) (b) (c)

(d)

Figure 5.6: I-shaped TWM with tapered ends and central stiffened squared hole: (a) in-plane displace-
ment at mid-span. (b) warping at interface between sub-members 1-2. (c) warping at interface between
sub-members 6-7.

5.2 Displacement-based GBT for composite TWMs

Composite TWMs can be analyzed within the GBT framework by following the procedure
proposed in Chapter 4. The interaction between steel and concrete members composing the
cross-section is introduced by placing Nsc connectors along rectilinear lines at the interface lo-
cation. They allows relative displacement (i.e., slips) in both longitudinal (i.e., along z) and
transverse directions (i.e., along s), while separation between components is prevented. The
composite action is included by means of linear elastic spring placed in correspondence of



90 Chapter 5. Displacement-based GBT for composite TWMs with large web penetrations

Figure 5.7: I-shaped TWM with tapered ends and central stiffened squared hole: stress distributions.

shear connectors. Within this arrangement, obtained trial functions automatically include the
longitudinal and transverse partial interaction behavior. To prevent separation and interpene-
tration between adjacent components, internal constraints specified in Eqs. (4.32) and (4.33)
are included in the PEP. They are in number 2Nsc and they prescribe shear connectors to be (i)
axially inextensible, and (ii) undeformable under flexure. As a consequence, obtained planar
trial functions ϕk(z) are in number Np = Kp − 2Nsc (i.e., ϕ(z) is a Np × 1 vector).

As a result of the inclusion of internal constraints into the PEP, planar nodal DOF belonging
to the n-th shear connector (n = 1, . . . , Nsc) and linking the i-th and j-th components obey the
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Figure 5.8: Shear connector element. (a) in-plane nodal DOF; (b) out-of-plane (warping) nodal DOF.

following constraint conditions (Fig. 5.8):

uj − ui = 0 (5.21a)
θj − θi = 0 (5.21b)

Eq. (5.21) can be re-written in compact form as follows:

Ascu(z) = 0 (5.22)

being Asc a 2Nsc ×Kp coefficient matrix. As a consequence, variable transformation defined
in Eqs. (5.8) and (5.9) must be solved with respect to a reduced number of planar nodal DOF.
This can be achieved by suiting Eq. (5.22) in order to identify 2Nsc “slave” planar nodal DOF
uS(z) to be expressed in terms of the Np “master” planar nodal DOF uM(z). After the latter
have been isolated, Eqs. (5.8) and (5.9) are rewritten as:

QpM ϕ(z) = uM(z) (5.23)

[
QpM 0KwNp
QΩ Qw

] [
ϕ′(z)
ψ(z)

]
=

[
u′M(z)
w(z)

]
(5.24)

where QpM is aNp×Np matrix collecting the nodal values of planar trial functions correspond-
ing to master planar nodal DOF. Analogously to as described in previous Section, a variable
transformation can be defined by means of Eqs. (5.23) and (5.24), in particular:

ϕ(z) = TpM uM(z) (5.25a)
ϕ′(z) = TpM u′M(z) (5.25b)
ψ(z) = Tww(z) + TwpMu′M(z) (5.25c)

where:
TpM = Q−1

pM ; Tw = Q−1
w ; TwpM = −TwQΩTpM (5.26a-c)

By making use of Eq. (5.25), the weak form of the elasticity problem can be rewritten as
follows:
ˆ
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where:

dM(z) =

[
u′M(z)
w(z)

]
; TM =

[
TpM 0KwNp
TwpM Tw

]
(5.28a,b)

In Eq. (5.27), relevant structural matrices B,C,D and F include the work done by the (lon-
gitudinal and transverse) shear forces along interfaces between components and are detailed in
Appendix D. Starting from Eq. (5.27), the set of K∗ = Np + Kw displacement-based GBT
equations is solved numerically, as commonly due in the Literature, by means of a Finite El-
ement (FE) procedure (e.g., Bathe, 2014). The member is discretized into NE finite elements
and following descriptions are adopted for approximating the unknowns:

uM(z) ∼= H(z) uEM ; w(z) ∼= L(z) wE (5.29)

where uEM and wE are 4Np×1 and 3Kw×1 vectors, respectively, collecting values of unknown
functions at nodes of the member FE, while H(z) and L(z) are Np × 4Np and Kw × 3Kw ma-
trices, respectively, collecting Hermite cubic and Lagrange parabolic polynomial interpolating
functions, respectively. After performing the standard steps of the FE procedure, the following
stiffness relationship can be obtained for each GBT-based FE:

KExEM = qE (5.30)

where xEM is a (4Np + 3Kw) × 1 vector collecting values of unknown functions at nodes
of the member FE, while KE and qE are (4Np + 3Kw) × (4Np + 3Kw) stiffness matrix and
(4Np+3Kw)×1 load vector, respectively, defined in Eq. (5.20). Slave planar nodal DOF uS(z),
which have been removed at the beginning of the procedure, can be finally calculated starting
from master ones. In fact, after partitioning Eq. (5.22) as:

[AscM AscS]

[
uM
uS

]
= 0 (5.31)

and assuming AscS to be a non-singular matrix, the following holds:

uS(s) = −A−1
scSAscM uM(s) (5.32)

The capabilities and ease-to-use of the proposed displacement-based GBT approach for
composite TWM with large web perforations are outlined by means of an illustrative exam-
ple. It consists on the linear elastic analysis of a composite member taken from Mills (2001).
It is composed by a concrete slab with thickness 120 mm and an I-shaped steel member type
410UB53.7 (Fig. 5.9a), whose dimensions are shown in Fig. 5.9b. The interaction between
steel and concrete members is included by means of one shear connector in the cross-section,
as shown in Fig. 5.9b. The beam is 10.5 m long and it is assumed to be simply supported, with
boundary conditions restraining the warping of the composite section at the member mid-span
and the in-plane displacements at the end supports (Fig. 5.9c). The external load consists of a
30 kPa uniform pressure load applied to the right-hand half of the concrete slab as illustrated
in Fig. 5.9a. The beam possesses four web penetrations with dimensions 225 mm×440 mm,
equally spaced along the member length. Regarding these latter, two configurations have been
considered, namely: (i) Set 01, where web penetrations are unstiffened, as shown in Fig. 5.10a,
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(a) (b)

(c)

Figure 5.9: Composite TWB with web penetrations (from Mills, 2001). (a) Cross-section geometry and
load arrangement; (b) cross-section idealization and shear connectors definition; (c) member geometry
and constraints.
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(a)

(b)

Figure 5.10: Geometry of web penetrations. (a) Set 01: unstiffened penetrations. (b) Set 02: stiffened
penetrations.

and (ii) Set 02, where web penetrations are reinforced by means of longitudinal stiffeners placed
on both sides of the web, as illustrated in Fig. 5.10b. The material properties adopted in the
simulation specify an elastic modulus of 35 GPa and 200 GPa for the concrete and steel, re-
spectively, and corresponding Poisson’s ratios of 0.2 and 0.3, respectively. Different levels of
shear connection rigidities are considered in the following to highlight their influence on of the
partial interaction behavior of the composite member. Similarly to as done in Chapter 4, the
former are expressed in term of dimensionless parameters αLL and αTL (L being the member
length) as regards the interaction in the longitudinal and transverse directions, respectively, as
commonly provided in the Literature for two-layered composite beams (e.g., Girhammar and
Gopu, 1993). In particular, results are provided in the following for weak shear connection
(i.e., αLL = 1, αTL = 1), medium shear connection (i.e., αLL = 5, αTL = 5) and strong
shear connection (i.e., αLL = 20, αTL = 20). Results calculated with the proposed GBT ap-
proach have been compared with those determined with a shell element model developed in the
software ABAQUS/Standard (Simulia, 2010), where the general purpose shell element S4 has
been adopted for plate segments. All materials have been modeled as linear-elastic isotropic.
The shear connection is implemented through the ABAQUS planar connection type, which is
able to allow relative displacement on the selected plane and avoid relative displacement along
the direction normal to that plane. In order to describe the continuous interface connection
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model formulated in the GBT approach, closely-spaced wires spread along the rectilinear lines
of the shear connection have been specified. The planar connection type has been assigned to
each wire with the uncoupled constitutive relationship described in Eq. (4.37), where involved
rigidities are obtained by multiplying the distributed spring stiffness knT (knL) adopted in the GBT
model by the wire (longitudinal) spacing.

The global displacement-based GBT FE model is obtained by assembling the contribution
of each sub-member composing the composite TWM. Differently to as required in standard
GBT approaches, no constraint equations have been adopted in the proposed procedure. The
solution is first obtained in terms of warping and planar master nodal variables, then planar
slave DOF are calculated by post-processing the planar master ones. The case of TWM with
unstiffened web penetrations (i.e., Set 01) is first analyzed. Comparisons between the GBT
and ABAQUS results are presented in Figs. 5.11 and 5.12 in terms of membrane and flexu-
ral stresses, respectively. They have been obtained for the case of medium shear connection
(i.e., αLL = 5, αTL = 5) and they are representative of all shear connection levels. Flexural
stresses shown in Fig. 5.12 refer to surfaces characterized by y = +t/2, being t the plate thick-
ness of walls composing the cross-section. The accuracy of results obtained with the proposed
displacement-based GBT approach is remarkable. It is worth to be pointed out that membrane
and flexural stresses depict different behavior in the neighborhood of web penetration. In par-
ticular, the membrane stresses significantly increase close to the edges and the corners of the
holes, while the membrane stresses in the steel flanges and the concrete slab do not seem to be
affected by the holes. On the contrary, flexural stresses depict strong variations on steel flanges
and concrete slabs; they are, as expected, moderately influenced by holes on steel web since
this latter is not subject to bending. This particular phenomenon seems to be confirmed by the
longitudinal trend of membrane and flexural stresses illustrated in Figs. 5.13 and 5.14, respec-
tively. In those diagrams, stresses in two representative points of the composite cross-section
have been plotted in terms of their variation along the beam length. To show the accuracy
of the obtained GBT results, stress distributions on the cross-section have been illustrated in
correspondence of two member coordinates, referred to as sections A-A and B-B, whose po-
sitions along the beam length are highlighted on corresponding longitudinal plots. Reported
results have been obtained for the case of medium shear connection (i.e., αLL = 5, αTL = 5),
however their trend is representative of all shear connection levels. Results obtained with the
proposed displacement-based GBT approach are in very good agreement with the ones obtained
with ABAQUS. Large web penetrations induce significant stress concentrations in their neigh-
borhoods. In particular, membrane stresses are mostly influenced on the web of steel member,
that is very close to web penetrations (see, e.g., black curves in Fig. 5.13), while the influence
of holes is negligible on the steel flange (see, e.g., blue curves in Fig. 5.13). On the contrary,
flexural stresses significantly raises on the steel flange as consequence of web penetration (see,
e.g., blue curves in Fig. 5.13), while their variation on the steel web (i.e., very close to web
penetration) is less significant (see, e.g., black curves in Fig. 5.14).

Results for the case with stiffened web penetrations (i.e., Set 02) are reported in Fig. 5.15,
where stress distributions in the neighborhood of the first web penetration have been shown
for illustrative purposes. Similarly to the case of the unstiffened penetrations, the membrane
stresses in the concrete slab and the steel flanges seem unaffected by the holes. On the contrary,
they depict strong concentrations in correspondence of holes and stiffeners. Flexural stresses
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are instead strongly influenced by penetrations almost everywhere on the cross-section. Similar
considerations can be deduced from Figs. 5.16 and 5.17, where trends along the beam axis of
stresses have been reported in two representative points of the composite cross-section. Ob-
tained results concerns the case of medium shear connection (i.e., αLL = 5, αTL = 5) and
are representative of all shear connection levels. The agreement between ABAQUS and the
proposed GBT approach is excellent.

The influence of shear connection levels is outlined in Figs. 5.18 and 5.19, as regards the
case of unstiffened web penetrations (i.e., Set 01), and Figs. 5.20 and 5.21, as regards the case of
stiffened web penetrations (i.e., Set 02). In particular, the trend along z of the vertical deflection
v is shown in Figs. 5.18 and 5.20 as regards Set 01 and Set 02, respectively, while distributions
along the member axis of the longitudinal slip depicted at the interface connection are reported
in Figs. 5.19 and 5.21 concerning Set 01 and Set 02, respectively. The in-plane displacements
uv and longitudinal membrane stress σmz are plotted in Figs. 5.18 and 5.20 for Set 01 and Set
02, respectively, in correspondence of two member coordinates, referred to as sections A-A and
B-B and corresponding to the mid coordinate of the second web penetration and the beam mid-
span, respectively. Warping distribution w and membrane tangential stress τmsz are illustrated in
Figs. 5.19 and 5.21 for Set 01 and Set 02, respectively, in correspondence of the left support
(i.e., section A-A) and the mid-coordinate of the first web penetration (i.e., section B-B). It is
specified that warping displacement w, longitudinal membrane stress σmz and membrane tan-
gential stress τmsz are plotted in Figs. 5.18 to 5.21 as a diagram, with values directed along the
y-axis (i.e., my using the y−axis convention). As expected, the composite TWM with lower
shear connection rigidities undergoes larger deflections that the member with stiffer interface
properties, as well depicted in Figs. 5.18 and 5.20. In case of weak shear connection, the inter-
action between components is negligible and strong slips take place at the interface connection.
Steel and concrete components behave therefore independently. Considering that the concrete
slab possesses low flexural (and shear) rigidity in the plane of bending, the structural response
is mainly resisted by the relatively stiffer I-shaped steel profile. This behavior is well depicted
by observing the shape of membrane stresses σmz (Figs. 5.18 and 5.20), warping and mem-
brane shear stresses τmsz (Figs. 5.19 and 5.21). In particular, it is evident that the cross-section
neutral axis almost coincides with the major bending axis of the steel I-shaped component. For
medium shear connection, components forming the cross-section start to interact, as highlighted
by warping profile and relevant stress distributions (i.e., σmz and τmsz ), evidencing that the neutral
axes has moved closer to the concrete slab. Similar considerations can be made for the case of
strong shear connection rigidities.

Finally, the influence of large web penetrations is shown in Figs. 5.22 and 5.23, where trends
along the member axis of vertical deflection and longitudinal membrane strains, respectively,
are reported in one significant point within the cross-section for the cases of unperfored beam,
unstiffened (i.e., Set 01) and stiffened (i.e., Set 02) penetrations considering different levels
of shear connection rigidities. As expected, TWM with unstiffened web penetrations depict
larger deflections than the unperforated ones (Fig. 5.22). This phenomenon seems to become
more significant whit increasing the shear rigidity of connections placed at the interface. On
the contrary, TWM with stiffened web penetrations (i.e., Set 02) depict the same deflection of
unperforated TWM for all shear connection rigidities (Fig. 5.22). Therefore, the use of longitu-
dinal stiffeners for reinforcing large web penetrations seems to be a very efficient way to limit



Chapter 5. Displacement-based GBT for composite TWMs with large web penetrations 97

the lost in terms of flexural and shear rigidities in the plane of the cross-section caused by web
holes. Similar considerations can be made by analyzing the trend of longitudinal membrane
strain depicted in Fig. 5.23. As a consequence of web penetrations, longitudinal membrane
strain manifest a significant increase with respect to the case of unperforated member in corre-
spondence of holes in case the latter are unstiffened (i.e., Set 01). Contrariwise, longitudinal
strains remains equal or even lesser than the ones depicted by the unperforated TWM when web
perforations are stiffened (i.e., Set 02). As shown in Fig. 5.23, this behavior is independent from
the shear rigidity level depicted by connectors. It points out the fact that longitudinal stiffeners
are efficient in limiting the strain concentration phenomenon in the neighborhood of web holes.
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Figure 5.11: Composite TWB with unstiffened penetrations (Set 01). Global distributions of membrane
stress fields for the case of medium shear connection (αLL = 5, αTL = 5).
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Figure 5.12: Composite TWB with unstiffened penetrations (Set 01). Global distributions of flexural
stress fields for the case of medium shear connection (αLL = 5, αTL = 5).
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Figure 5.13: Composite TWB with unstiffened penetrations (Set 01). Representative trends along z and
cross-section distributions of membrane stress fields for the case of medium shear connection (αLL =
5, αTL = 5).
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Figure 5.14: Composite TWB with unstiffened penetrations (Set 01). Representative trends along z
and cross-section distributions of flexural stress fields for the case of medium shear connection (αLL =
5, αTL = 5).
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Figure 5.15: Composite TWB with stiffened penetrations (Set 02): stress fields in correspondence of the
first penetration for the case of medium shear connection (αLL = 5, αTL = 5).
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Figure 5.16: Composite TWB with stiffened penetrations (Set 02): trends along z of membrane stress
fields in correspondence of the first penetration for the case of medium shear connection (αLL =
5, αTL = 5).
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Figure 5.17: Composite TWB with stiffened penetrations (Set 02): trends along z of flexural stress fields
in correspondence of the first penetration for the case of medium shear connection (αLL = 5, αTL = 5).
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Figure 5.18: Composite TWB with unstiffened penetrations (Set 01). Trend along z of the overall
deflection v for different levels of shear connection, in-plane displacement fields uv and membrane
longitudinal stress distribution σmz at specified locations along the beam axis. Note: σmz displayed as a
diagram, with values directed along the local y-axis.
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Figure 5.19: Composite TWB with unstiffened penetrations (Set 01). Trend along z of the longitudinal
slip δL for different levels of shear connection, warping displacement fields w and membrane tangential
stress distribution τmsz at specified locations along the beam axis. Note: w and τmsz displayed as a diagram,
with values directed along the local y-axis.
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Figure 5.20: Composite TWB with stiffened penetrations (Set 02). Trend along z of the overall deflection
v for different levels of shear connection, in-plane displacement fields uv and membrane longitudinal
stress distribution σmz at specified locations along the beam axis. Note: σmz displayed as a diagram, with
values directed along the local y-axis.
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Figure 5.21: Composite TWB with stiffened penetrations (Set 02). Trend along z of the longitudinal
slip δL for different levels of shear connection, warping displacement fields w and membrane tangential
stress distribution τmsz at specified locations along the beam axis. Note: w and τmsz displayed as a diagram,
with values directed along the local y-axis.
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(a)

(b)

(c)

Figure 5.22: Comparison in terms of vertical deflection v between (i) unperforated TWB, (ii) TWB with
unstiffened penetrations (Set 01) and (iii) TWB with stiffened penetrations (Set 02): (a) weak shear
connection rigidity (αLL = 1, αTL = 1), (b) medium shear connection rigidity (αLL = 5, αTL = 5),
(c) strong shear connection rigidity (αLL = 20, αTL = 20).
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(a)

(b)

(c)

Figure 5.23: Comparison in terms of longitudinal membrane strain εmz between (i) unperforated TWB,
(ii) TWB with unstiffened penetrations (Set 01) and (iii) TWB with stiffened penetrations (Set 02): (a)
weak shear connection rigidity (αLL = 1, αTL = 1), (b) medium shear connection rigidity (αLL =
5, αTL = 5), (c) strong shear connection rigidity (αLL = 20, αTL = 20).



Chapter 6

Nonlinear Generalized Beam Theory for arbitrary
open and closed TWMs

The study of the geometrical nonlinear behavior of TWMs is of great interest for the anal-
ysis of elements potentially subject to large deformations (e.g. large deflections in cantilever
beams) and of pre- and post-buckling equilibrium paths. In addition, the use of GBT models
allows the study of local and global instabilities as a reliable and computationally efficient al-
ternative to full numerical analysis through shell FE models or FSMs. The first geometrically
nonlinear isotropic GBT formulation has been proposed in Silvestre and Camotim (2003b), lim-
ited to open-section TWMs. In the contribution, a nonlinear theory is formulated, leading to a
system of equations valid for a large deformation range but retaining advantage of the GBT
field decomposition feature. In more detail, the first step of the GBT procedure (i.e., the classic
cross-section analysis - e.g., Silvestre and Camotim, 2002a; Gonçalves et al., 2010; Bebiano
et al., 2015) is maintained unchanged compared with the linear case. Nonlinear GBT equations
are obtained by adopting a not complete expression of the nonlinear Green-Lagrange strain-
displacement relationships in the member strain energy, where in particular the sole membrane
nonlinear strain components related to the cross-section displacement in its own plane are con-
sidered in the analysis, similarly to as done in Silvestre and Camotim (2002b). The proposed
GBT-based methodology has been kept substantially unchanged in recent works addressed on
both geometric and material non-linearities (see Section 2.2 for an extended review).

Geometric non-linearities produce, indeed, an alteration of beam deflection, both in trans-
verse and longitudinal direction. Concerning the cross-section, distances between natural nodes,
which are not modified in linear regime by the in-plane inflection of plates, change instead in
the nonlinear regime (nodes usually approach each other, originating a transverse shortening
effect). Regarding longitudinal deformations, beam deflection under transverse loading may
involve an approach of end sections in the nonlinear field whereas their reciprocal distance is
not modified in the linear regime. In the original nonlinear GBT (e.g., Silvestre and Camotim,
2003b), non-conventional trial functions play a key role in including those effects typical of a
nonlinear regime. Fields obtained from a linear procedure (i.e., the usual cross-section analy-
sis), although extended through the non-conventional set, may however not be entirely suitable
to capture these effects typical of a nonlinear regime. It may take a large number of linear
fields to approximate a typical nonlinear effect, losing the spirit of reduction method inherent
in the GBT approach. This fact may also lead to a computationally inefficient formulation (see,
e.g., Martins, Camotim, Gonçalves and Dinis, 2016). Moreover, the direct use of the GBT dis-
placement field in the nonlinear expression of deformations can lead to locking problems due
to different-order discrete description of involved displacements.

In this Chapter, a new GBT nonlinear formulation, namely NGBT, is proposed. The main
contribution consists in the introduction of a set of nonlinear trial functions, resulting slave of
linear ones and able to describe the nonlinear geometrical effects induced on the cross-section
by linear trial functions themselves. The core of the NGBT formulation is represented by a
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nonlinear cross-section analysis. It is based on the nonlinear Galerkin method (NGM) idea
(e.g., Steindl and Troger, 2001), according to which the displacement field of the classic (linear)
method, which calls for choosing linear trial functions (viz Uk(s)) affected by linear coordinates
(viz ϕk(z)), is enriched by a nonlinear part, consisting of nonlinear trial functions (viz Uhk(s),
Ujhk(s), . . . ) affected by quadratic, cubic, . . . , combinations of the same linear coordinates,
e.g.:

u(s, z) =
K∑
k=1

Uk(s)ϕk(z) +
K∑
h=1

K∑
k=1

Uhk(s)ϕh(z)ϕk(z) + . . . (6.1)

The nonlinear fields are able to describe changes of the sole transverse shapes, leaving to the
weak formulation the task of describing longitudinal changes of shape. In this perspective, non-
conventional (extensional and shear) linear fields do not offer a substantial advantage, since this
kind of deformation is appropriately described by the passive fields.

It is worth noting that the dimensions of the resulting nonlinear and linear Galerkin equa-
tions are identical. The nonlinear Galerkin approach is usually adopted in bifurcation theory
(Troger and Steindl, 1991) when the Center Manifold Method (CMM) is adopted. This ap-
proach is usually followed in elastic post-buckling theory (see, e.g., Budiansky, 1974; Luongo
and Pignataro, 1988 for applications in the context of TWB). However, some differences be-
tween CMM and the procedure followed here exist, namely:

• in the CMM, the basis of linear trial functions Uk(s) is made of critical modes (in the
proper meaning of the word), whereas here Uk(s) are taken as generic functions, with no
special properties;

• in the CMM, the nonlinear trial functions Uhk(s), Ujhk(s), . . . are determined by solving
balance (equilibrium) equations, while here they are determined by kinematic conditions;
in both cases, they are slave of the linear trial functions.

The present Chapter is structured as follows. The nonlinear cross-section analysis is first for-
mulated in Section 6.1, where passive fields are determined. A formal analogy with a thermal
problem is then suited in Section 6.2 to develop a direct and computationally efficient approach
for the calculation of nonlinear trial functions within a FE-based (discrete) description. The
nonlinear GBT equations are shortly described in Section 6.3, while the accuracy and efficiency
of the proposed NGBT is pointed out in Section 6.4 by means of two examples, whose re-
sults are compared with traditional finite-element solutions obtained with ABAQUS/Standard
(Simulia, 2010) for validation purposes.

6.1 Nonlinear cross-section analysis

A generic TWM is considered, with arbitrary open, closed or partially-closed cross-section,
made of flat plates connected along edges (see Section 2.3). The displacement field of the
mid-surface S of the plates (i.e., at y = 0) can be expressed as:

u(s, z) = u(s, z)es(s) + v(s, z)ey(s) + w(s, z)ez(s) (6.2)
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where s is the curvilinear abscissa along the mid-line of the cross-section profile C, z is the
abscissa along the beam axis, es(s), ey(s), ez(s) constitute a right-handed triad of unit vectors
in the tangential (i.e., along s), normal (i.e., along y) and longitudinal (i.e., along z) directions,
respectively, and u(s, z), v(s, z), w(s, z) are the relevant scalar displacement components in
the same triad. The following series representation is adopted to rewrite the relevant scalar
displacement components:

u(s, z, ε) = εu̇(s, z) + ε2ü (s, z) + . . . (6.3a)
v(s, z, ε) = εv̇(s, z) + ε2v̈ (s, z) + . . . (6.3b)
w(s, z, ε) = εẇ(s, z) + ε2ẅ (s, z) + . . . (6.3c)

where ε is an arbitrary small perturbation parameter and the dot symbols denotes differentiation
with respect to ε. In the series (6.3), (u̇, v̇, ẇ) are first-order fields, (ü, v̈, ẅ) are second-order
fields, etc. By taking into account terms up to ε2-order, first-order fields are defined as active or
master fields, and second-order fields as passive or slave fields.

Active and passive fields are selected in order to fulfill the Vlasov’s conditions in the non-
linear field. Therefore, in case of open cross-section or open-branches of multi-connected ones,
it is required that both the nonlinear transverse elongation εNLs and the nonlinear shear strain
γNLzs are identically nil for each z along the beam axis. In case of closed or partially closed
cross-section, the condition on shear strains is substituted with the Bredt’s condition in the non-
linear field (i.e., of constant shear stress flow on closed branches). By adopting the complete
Green-Lagrange strain expression, the following is obtained:

εNLs = u,s +
1

2

(
u2
,s + v2

,s + w2
,s

)
= 0 ∀z (6.4a)

γNLzs = w,s + u,z + u,su,z + v,sv,z + w,sw,z = c0 ∀z (6.4b)

where c0 = 0 for open cross-sections and open branches on multi-connected cross-sections,
while c0 =

∑L
l=1 Γl(z)/Gt(s) on closed loops, G and t(s) being the tangential modulus and

the thickness of cross-section plates, respectively, while Γl(z) being the shear stress flow on the
l-th closed loop possessed by the multi-component cross-section (being L the total number of
closed loops). Shear stress flows are constant along s, according to the Bredt’s condition, while
they are in principle variable along z. By substituting Eq. (6.3) into Eq. (6.4) and separately
equating to zero all terms with the same order of ε, the following perturbation equations are
obtained:

Order ε : u̇,s = 0 (6.5a)
ẇ,s + u̇,z = c0 (6.5b)

Order ε2 : ü,s +
1

2

(
u̇2
,s + v̇2

,s + ẇ2
,s

)
= 0 (6.6a)

ẅ,s + ü,z − u̇,su̇,z − v̇,sv̇,z − ẇ,sẇ,z = 0 (6.6b)

that can be sequentially solved up to the desired order to evaluate the u−(tangential) and
w−(warping) components. It should be noted that Eqs. (6.5) and (6.6) allow an arbitrary choice
of the v−(transverse) components. However, the latter should be selected in order to satisfy
compatibility conditions at the cross-section nodes, as better explained hereinafter.
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6.1.1 First-order (active) fields

First order conditions, Eq. (6.5), define the two fundamental Vlasov hypotheses (supplied by
the Bredt’s condition on closed loops) in a geometrically linear context. Therefore, first-order
fields coincide with the classic conventional fields. Indeed, Eq. (6.5a) admits the separable
variable solution:

u̇(s, z) =
K∑
k=1

Uk (s)ϕk (z) (6.7)

where Uk (s) = const are piece-wise constant functions, and ϕk (z) are arbitrary functions. In
order to ensure compatibility conditions at the cross-section nodes (for any z along the beam
axis), transverse and tangential displacements must have the same dependence on z, so that:

v̇(s, z) =
K∑
k=1

Vk (s)ϕk (z) (6.8)

where Vk (s) are arbitrary functions, which must comply with Uk (s) at nodes. In order to satisfy
continuity of rotation at nodes, V ′k (s) must be there continuous.

Once the Uk (s) have been determined, Eq. (6.5b) is solved in chain. By substituting
Eq. (6.7) in it, the following general expression can be obtained:

ẇ,s (s, z) = −
K∑
k=1

[
Uk (s)−

L∑
l=1

(±)
Ql
k

t(s)G

]
ϕ′k (z) (6.9)

with Ql
k being the (unknown) tangential stress flow associated with the k-th trial function and

acting of the l-th closed loop (Ql
k = 0 on open branches). An arbitrary positive rotation is

assigned to each loop and a positive (negative) sign is used in the summation for Ql
k in the

right-hand side of Eq. (6.9) when the direction identified by the local coordinate s and the one
consequent to the rotation previously introduced coincide (differ). Eq. (6.9) admit the separable-
variable solution:

ẇ(s, z) =
K∑
k=1

Wk (s)ϕ′k (z) (6.10)

in which:

Wk(s) =

ˆ

C

[
−Uk (s) +

L∑
l=1

(±)
Ql
k

t(s)G

]
ds+ W̄k (6.11)

are piece-wise linear functions which can be determined by following the procedure outlined in
Section 3.1.1. The first-order field U(s) = V (s) = 0, W (s) = const, which identically satisfies
the Vlasov’s conditions, is worthy of attention. It models the longitudinal global shortening
behavior, so that it could play an important role in geometric nonlinear analysis.

In conclusion, the solution of the first-order conditions, Eq. (6.5), leads to a complete set of
first-order fields that are identical to the conventional fields of the classic linear GBT. They can
be deduced using the proposed GBT-D approach as illustrated in Section 3.1.1.
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6.1.2 Second-order (passive) fields

Second-order fields are conveniently derived in two successive steps: first, by enforcing
nonlinear inextensibility, Eq. (6.6a), and then, nonlinear unshearability, Eq. (6.6b). The afore-
mentioned conditions are treated in the following in separate Sections for clarity.

Inextensibility condition

The second-order inextensibility condition, Eq. (6.6a), is rewritten by taking into account the
expression of the first-order fields. By remembering that Uk(s) is piece-wise constant, i.e.
U ′k(s) = 0, it reads:

ü,s (s, z) = −1

2

K∑
h=1

K∑
k=1

[V ′h (s)V ′k (s)ϕh (z)ϕk (z) +W ′
h (s)W ′

k (s)ϕ′h (z)ϕ′k (z)] (6.12)

The solution of Eq. (6.12) can be placed in the following form:

ü(s, z) =
K∑
h=1

K∑
k=1

[
Uhk (s)ϕh (z)ϕk (z) +Xhk (s)ϕ′h (z)ϕ′k (z)

]
(6.13)

which entails:

U ′hk(s) = −1

2
V ′h (s)V ′k (s) (6.14a)

X ′hk(s) = −1

2
W ′
h (s)W ′

k (s) (6.14b)

By integration, it follows:

Uhk(s) = −1

2

ˆ

C

V ′h (s)V ′k (s) ds+ Ūhk (6.15a)

Xhk(s) = −1

2

ˆ

C

W ′
h (s)W ′

k (s) ds+ X̄hk (6.15b)

The integration constants Ūhk, X̄hk are selected in order to enforce continuity of displacement
and rotation on the cross-section. Among all constants, those that still remain arbitrary are
chosen by normalizing the second-order fields in order they have a zero-mean over C. It should
be noted that Uhk (s) , Xhk (s) are symmetric with respect to subscript indices; moreover, since
Wk (s) is a piece-wise linear function on the cross-section mid-line, then also Xhk(s) are piece-
wise linear functions.

As regards the transverse component v̈(s, z), the same dependence on z is assumed:

v̈(s, z) =
K∑
h=1

K∑
k=1

[
Vhk (s)ϕh (z)ϕk (z) + Yhk (s)ϕ′h (z)ϕ′k (z)

]
(6.16)

in which functions Vhk (s) , Yhk (s) should be selected in order to satisfy compatibility condi-
tions at nodes.
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Passive fields Uhk(s), Vhk(s) and Xhk(s), Yhk(s) are extensional fields, having, however, a
different meaning with respect to the non-conventional fields of the linear approach. Here, they
describe innovative deformation fields which induce non-constant tangential displacement fields
on each cross-section element, ensuring their inextensibility up to the second order. In other
words, they describe in-plane shortening fields, able to compensate the second-order effects
caused by the linear conventional fields.

Unshearability condition

The second-order unshearability condition, Eq. (6.6b), after substituting the expression of the
first- and second-order fields so far determined in Eqs. (6.13) and (6.16), becomes:

ẅ,s (s, z) = −
K∑
h=1

K∑
k=1

{[
2Uhk (s) + V ′h (s)Vk (s)

]
ϕh (z)ϕ′k (z) +

+
[
2Xhk (s) +W ′

h (s)Wk (s)
]
ϕ′h (z)ϕ′′k (z)

}
(6.17)

where it has been accounted that U ′h (s) = 0, and Uhk (s) , Xhk (s) are symmetric with respect
to subscripts. Solution of Eq. (6.17) can be placed in the following form:

ẅ(s, z) =
K∑
h=1

K∑
k=1

[
Whk (s)ϕh (z)ϕ′k (z) + Zhk (s)ϕ′h (z)ϕ′′k (z)

]
(6.18)

in which it must hold:

W ′
hk(s) = −2Uhk(s)− V ′h(s)Vk(s) (6.19a)

Z ′hk(s) = −2Xhk(s)−W ′
h(s)Wk(s) (6.19b)

with functions Uhk(s), Xhk(s) known from Eq. (6.15). Then, by integrating Eq. (6.19), it fol-
lows:

Whk(s) = −
ˆ

C

[
2Uhk(s) + V ′h(s)Vk(s)

]
ds+ W̄hk (6.20a)

Zhk(s) = −
ˆ

C

[
2Xhk(s) +W ′

h(s)Wk(s)
]

ds+ Z̄hk (6.20b)

Arbitrary integration constants W̄hk, Z̄hk may be selected by enforcing continuity and normal-
izing out-of-plane displacements to have zero-mean over the cross-section C. It should be noted
that passive fields Whk(s), Zhk(s) are in general not symmetric whit respect to subscript in-
dices (i.e., Zhk(s) 6= Zkh(s), Whk(s) 6= Wkh(s)). Moreover, it can be easily proved that Zhk(s)
is piece-wise linear on the cross-section mid-line. As a matter of fact, by differentiation of
Eq. (6.19b), Z ′′hk(s) = −2X ′hk(s) + W ′

h(s)W
′
k(s) + W ′′

h (s)Wk(s) is obtained. Then, by tak-
ing into account that (i) 2X ′hk(s) + W ′

h(s)W
′
k(s) = 0 from Eq. (6.14b), and (ii) Wh (s) is a

piece-wise linear function (i.e., W ′′
h (s) = 0), Z ′′hk(s) = 0 follows, from which the statement.

Similarly to planar components, passive fields Whk(s), Zhk(s) are shear fields in a different
meaning from what is meant in the linear approach. They induce non-constant out-of-plane
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displacement which ensure unshearability up to the second-order. In other words, they produce
second-order shear strain able to compensate the second-order effects caused by the conven-
tional linear fields.

Second-order displacement field
In conclusion, the NGBT (second-order) displacement field is given by:

u(s, z) =

K∑
k=1

Uk (s)ϕk (z) +

K∑
h=1

K∑
k=1

[
Uhk (s)ϕh (z)ϕk (z) +Xhk (s)ϕ′h (z)ϕ′k (z)

]
(6.21a)

v(s, z) =
K∑
k=1

Vk (s)ϕk (z) +
K∑
h=1

K∑
k=1

[
Vhk (s)ϕh (z)ϕk (z) + Yhk (s)ϕ′h (z)ϕ′k (z)

]
(6.21b)

w(s, z) =
K∑
k=1

Wk (s)ϕ′k (z) +
K∑
h=1

K∑
k=1

[
Whk (s)ϕh (z)ϕ′k (z) + Zhk (s)ϕ′h (z)ϕ′′k (z)

]
(6.21c)

Once linear conventional (active) fields are obtained (Section 6.1.1), Eqs. (6.15) and (6.20)
allow to determine nonlinear passive fields that are slaves of the linear ones. In particular, two
sets of passive fields (with both in-plane and out-of-plane components) are derived from both
planar conventional displacements, Uk, Vk, and warping functions Wk: from the former the set
of second-order fields Uhk, Vhk,Whk arises whereas from the latter the setXhk, Yhk, Zhk follows.
Therefore, from K conventional first-order fields, 2 sets of K ×K second-order fields derive;
overall they are in number of 2K2.

Nonlinear (passive) trial functions include nonlinear effects induced by corresponding linear
ones. As a consequence, if the linear response is governed by a subset of linear fields (as it usu-
ally is), the corresponding nonlinear response can be completely described by the same set of
linear fields together with all passive ones generated by the linear subset itself. Therefore, once
relevant linear fields have been identified, nonlinear analysis can be performed by just supply-
ing nonlinear trial functions corresponding to relevant linear ones, without the need to include
further linear fields, as conversely required by the classic nonlinear GBT approaches (e.g., Sil-
vestre and Camotim, 2003b). For these reasons, the proposed NGBT approach complies with
the spirit of GBT as a reduction method, since it allows to fully describe the TWM behavior
by using the smallest number of trial functions. Moreover, it is also computationally efficient,
since nonlinear fields are associated with linear coordinates (i.e., the problem dimension does
not increase).

6.2 A formal analogy for the calculation of nonlinear fields

Passive fields can in principle be deduced via integration (Eqs. (6.15) and (6.20)). The
procedure, which is in principle simple, may however become quite laborious as regards the
planar problem, due to the need to enforce compatibility conditions at cross-section nodes.
This is, in particular, the case of multi-connected cross-sections. As a matter of facts, in case of
closed cells, the problem governing in-plane extension of cross-section elements and related to
nonlinear fields Uhk, Vhk and Xhk, Yhk is hyperstatic, thus profile elements may exhibit flexural
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deformation involving their own elasticity. A simple and automated procedure can be obtained
by noting the following analogy. Differential equations (6.14), leading to the evaluation of
passive transverse shortening fields Uhk(s), Xhk(s), are formally analogous to:

U ′(s) = ε̄(s) (6.22)

Similarly, differential equations (6.19), related to the evaluation of passive warping fieldsWhk(s),
Zhk(s), are formally analogous to:

W ′(s) = γ̄(s) (6.23)

where U(s),W (s) are unknown in-plane tangential and out-of-plane (warping) displacements,
respectively, while ε̄(s), γ̄(s) are known terms. Consequently, Eqs. (6.22) and (6.23) are for-
mally equivalent to those of a planar frame subjected to nonuniform thermal variations. In
particular, these thermal loads are producing in-plane elongation ε̄(s) (i.e., planar problem, see
Fig. 6.1a) and out-of-plane elongation γ̄(s) (i.e., warping problem, see Fig. 6.1b). Nonlinear
trial functions can therefore be deduced as the linear solution of an equivalent thermal prob-
lem involving a planar frame having the shape of the cross-section. This approach is simple
and straightforward and can be applied to TWMs with arbitrary open, closed or partially-closed
cross-section. Moreover, it is also computationally efficient; in fact, since the solution of inter-
est is the linear one, the equivalent thermal problem always has the same operator for any h, k,
with the only known term to be updated.

s
y

z

s

y

(a)

s

y
z

(b)

Figure 6.1: Equivalent thermal problem: (a) planar problem, and (b) warping problem.

6.2.1 Equivalent thermal problem for arbitrary TWM cross-sections

An infinitesimal segment of TWM with length dz is considered to be free in space (i.e.,
unconstrained), weightless (see Section 3.1) and subject to in-plane and out-of-plane thermal
elongations ε̄(s), γ̄(s) uniformly distributed along the beam axis z. Since dz is infinitesimal, in-
plane and out-of-plane (warping) displacements are not dependent on z and they are governed
by two independent sets of uncoupled differential equations, which will be referred to in the
following as Planar Thermal Problem (PTP) and Warping Thermal Problem (WTP).
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Planar Thermal Problem (PTP)

The PTP is governed by the well-known equations for the behavior of an Euler-Bernoulli beam
subjected to nonuniform thermal elongations along its axis:

U ′(s)− ε̄(s) = 0 (6.24a)

V IV (s) = 0 (6.24b)

The continuous problem can be solved analytically by integrating Eq. (6.24) and enforcing
compatibility conditions at connections between elements forming the frame. However, this
procedure may become burdensome in case of closed cross-sections, where the problem gov-
erning the in-plane extension is hyperstatic. For these reason and coherently to as commonly
performed in the Literature for the GBT cross-section analysis, the discrete version of the PTP
is adopted. After discretizing the planar frame representative of the TWM cross-section into M
finite elements by interposing possible additional nodes between the natural ones, the problem
is reduced to N DOF. Following standard steps of the FE procedure (e.g., Ranzi and Gilbert,
2015), polynomial shape functions are adopted to approximate fields U(s), V (s). The local
stiffness matrix and load vector Ke

p and f ep (with e = 1, 2, . . . ,M and subscript p identifying
the planar problem) are evaluated for each element and then suitably assembled. The following
algebraic problem is thus obtained:

Kpqp = fp (6.25)

where qp is a N × 1 vector collecting nodal values of fields U(s), V (s). A set of constraint
conditions must be introduced to solve Eq. (6.25). They can be conveniently chosen in order
to make fields U(s), V (s) orthogonal to the three in-plane rigid-body motions (i.e., two trans-
lations and one rotation around the shear center). This can be achieved by prescribing fields
U(s), V (s) and V ′(s) to have nil average on the cross-section mid-line C.

The choice of polynomial shape functions to be adopted in PTP is worth of discussion. In
fact, while classic cubic Hermite polynomials are perfectly suitable in approximating V (s) (i.e.,
Vhk(s) and Yhk(s)), the approximation of tangential fields U(s) must be consistent with the one
adopted for active (linear) trial functions, as a direct consequence of the nonlinear Galerkin
approach. Passive fields Xhk(s), stemming from conventional active warping fields Wk(s), are
piece-wise linear functions as a consequence of the Vlasov hypothesis V2 (Bredt’s condition).
Therefore, they can be suitably approximate with linear Lagrangian polynomials. The classic
six DOF FE can then be suited for the discrete description of the PTP. Corresponding stiffness
matrix Ke

p is reported in Appendix A.1.1, while the (equivalent thermic) load vector f ep is defined
as:

f ep = E A

leˆ

0

[L1(s, le) 0 0 L2(s, le) 0 0]T ε̄(s)ds (6.26)

where L1(s, le), L2(s, le) are linear Lagrange polynomial shape functions defined in Appendix
A.1.1, E and A are the longitudinal elastic modulus and transverse area, while le being the
length of the e-th cross-section FE (e = 1, . . . ,M ). Conversely, approximation of passive fields
Uhk(s) must be related to the one adopted for active functions Vk(s). In case the latter have
been described by cubic Hermite polynomials (see, e.g., elements FE1 and FE2 in Appendix
A), U ′hk(s) must be 4th order continuous, which implies Uhk(s) to be interpolated by 5th order
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continuous polynomials with continuous first derivative. Corresponding FE to be adopted in the
PTP, referred to in the following as FE4, is the ten DOF element illustrated in Fig. 6.2. Adopted
interpolating functions, stiffness matrix and load vector are reported in Appendix A.2.1.
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Figure 6.2: In-plane 10 DOF FE: nodal displacements in (a) local, and (b) global coordinates.

An illustrative example is proposed to clarify the procedure. It consists on a rectangular
cross-section whose dimensions are illustrated in Fig. 6.3a. The cross-section is discretized
with n = 12 nodes, then M=12 elements, as depicted in Fig. 6.3b. Conventional linear trial
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Figure 6.3: Illustrative example of nonlinear cross-section analysis: (a) geometry, (b) cross-section dis-
cretization.

functions Uk(s), Vk(s),Wk(s) are obtained with the dynamic procedure (GBT-D) proposed in
Section 3.1.1. Fig. 6.4 shows the first 8 fields, with the first three ones describing in-plane
rigid-body motions and the fourth function depicting the global longitudinal shortening effect.
Corresponding in-plane passive fields Uhk(s), Vhk(s) are illustrated in Fig. 6.5, while functions

Figure 6.4: Illustrative example of nonlinear cross-section analysis: active conventional planar and warp-
ing trial functions.

Xhk(s), Yhk(s) are shown in Fig. 6.6, where both the full in-plane cross-section displacement
UV and the sole transverse displacement U have been reported, the latter using the y-axis
convention. Passive fields are obtained by solving a sequence of 2K2 PTP (6.25), being K
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the number of active conventional fields. Despite the procedure might appear very demanding
computationally and time consuming, it is in reality very efficient and straightforward. As a
matter of facts, the PTP is a linear problem, thus the stiffness operator is always the same for
any couple h, k, with the sole known terms to be updated at each step. The inverse of the
stiffness operator, which is the most time consuming operation, needs to be performed only
two times: the first for the problem governing fields Uhk(s), Vhk(s) and described adopting
elements FE4, the second for the one governing fields Xhk(s), Yhk(s) described by 6 DOF
FE. As expected, nonlinear trial functions are extension fields, describing in-plane elongation
of cross-section elements. Due to the presence of closed loops, elements forming the cross-
section depict bending in case of non-symmetric elongations. Planar passive tangential fields
Uhk(s), Xhk(s) are, as expected, symmetric with respect to index permutation. Some of them
are nil, since generating active fields (i.e., Vk(s),Wk(s) for Uhk(s), Xhk(s), respectively) depict
constant distributions on the cross-section. Finally, fields Xhk(s) are, as expected, step-wise
linear on plates forming the cross-section.

Warping Thermal Problem (WTP)

In perfect analogy to the WEP (Section 3.1.2), the infinitesimal segment is assumed to behave in
the WTP as a pure shear beam in the s− z plane. This is an internally constrained Timoshenko
beam, in which cross-section rotations are prevented, so that elements are only permitted to
slide orthogonally to the axis. Therefore, the shear γ is the only strain, and the shear force T
the only active stress. Equation governing its behavior under nonuniform thermal elongations
along its longitudinal axis is:

W ′(s)− γ̄(s) = 0 (6.27)

The WTP problem can easily be solved by integration along the cross-section mid-line C , be-
cause of the continuity of the W (s) function. Arbitrary integration constant stemming from the
integration and describing the uniform (longitudinal) extension of the member can be suitably
determined in order to make the warping orthogonal to the extension. This can be achieved
by requiring the average warping function to be zero. The discrete version of the WTP is ob-
tained by using the same discretization adopted for the previous PTP. Following standard steps
of the FE procedure (e.g., Ranzi and Gilbert, 2015), polynomial shape functions are adopted
to approximate fields W (s), and the local stiffness matrix and load vector Ke

w and f ew (with
e = 1, 2, . . . ,M and subscript w identifying the warping problem) are evaluated for each ele-
ment and then suitably assembled. The following algebraic problem is thus obtained:

Kwqw = fw (6.28)

where qw is a vector collecting nodal values of fields W (s).
Analogously to the PTP, the choice of shape functions for approximating fields W (s) must

be consistent with the one adopted for active (linear) trial functions. As previously demon-
strated, passive fields Zhk(s) are piece-wise linear functions on the cross-section mid-line.
Therefore, they can be approximated using the two DOF FE which calls for linear Lagrange
polynomial shape functions L1(s, le), L2(s, le) (see Appendix A.1.1). Corresponding stiffness
matrix Ke

w is reported in Appendix A.1.1, while the (equivalent thermic) load vector f ew is de-
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Figure 6.5: Illustrative example of nonlinear cross-section analysis: passive in-plane trial functions
Uhk(s), Vhk(s).
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Figure 6.6: Illustrative example of nonlinear cross-section analysis: passive in-plane trial functions
Xhk(s), Yhk(s).
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fined as:

f ew = Gt

leˆ

0

[L1(s, le) L2(s, le)]
T γ̄(s)ds (6.29)

where G and t are, respectively, the tangential elastic modulus and thickness of the e-th cross-
section FE (e = 1, . . . ,M ). Regarding fields Whk(s), a different choice must be performed. In
case, in fact, active functions Vk(s) have been described by cubic Hermite polynomials (see,
e.g., elements FE1 and FE2 in Appendix A), W ′

hk(s) must be 5th order continuous, which
implies Whk(s) to be interpolated by 6th order continuous polynomials with continuous first
derivative. Corresponding FE to be adopted in the WTP, referred to in the following as FE4, is
the seven DOF element illustrated in Fig. 6.7. Adopted interpolating functions and correspond-
ing stiffness matrix and equivalent thermal load vector are reported in Appendix A.2.1. Passive
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Figure 6.7: Out-of-plane 7 DOF FE: nodal displacements in (a) local, and (b) global coordinates.

fields Whk(s), Zhk(s) for the illustrative example are shown in Figs. 6.8 and 6.9, respectively.
Analogously to planar passive fields, some of the warping ones are nil, depending on the val-
ues of generating active and passive trial functions. As expected, they are not symmetric with
respect to index permutations, while fields Zhk(s) are piece-wise linear on plates forming the
cross-section. Finally, same conclusion of PTP can be established regarding the computational
efficiency of the procedure. Indeed, despite 2K2 problems need to be solved, i.e. one for each
passive warping fields, the stiffness operator of Eq. (6.28) needs to be inverted only two time,
one for the problem governing fields Whk(s) and described adopting elements FE4, the second
for the one governing fields Zhk(s) described by 2 DOF FE.

6.2.2 Kinematic procedure for open TWM cross-sections

Differently from the case of multi-connected cross-sections, the problem governing the in-
plane extension is, in case of open cross-sections, isostatic. The elongation of one cross-section
element causes in fact pure rigid-body translation of adjacent elements, in order to satisfy com-
patibility conditions on displacement and rotations. Consequently, transverse displacements
V (s) are piece-wise linear, while all elements composing the cross-section depict the same rota-
tion. Therefore, the PTP can be suitably solved by means of the following kinematic procedure.
A generic open cross-section is considered, formed by ne flat elements delimited by nn = ne+1
natural nodes (Fig. 6.10a). Local displacements U e

i , V
e
i of natural nodes (Fig. 6.10b) are as-

sumed as free parameters, while nil rotations are assumed for all cross-section elements (i.e.,
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Figure 6.8: Illustrative example of nonlinear cross-section analysis: passive warping trial functions
Whk(s).

θei = θi = 0, i = 1, . . . , nn). Conditions prescribing (i) global elongation, and (ii) nil rotation,
are imposed on each element. They can be rewritten in local coordinates as (Fig. 6.10b):

U e
i+1 − U e

i =

i+1ˆ

i

ε̄(s)ds (6.30a)

V e
i+1 − V e

i = 0 (6.30b)

or in global coordinates as (Fig. 6.10c):

(Ui+1 − Ui) cosαe + (Vi+1 − Vi) sinαe =

i+1ˆ

i

ε̄(s)ds (6.31a)

(Ui+1 − Ui) sinαe − (Vi+1 − Vi) cosαe = 0 (6.31b)

Eqs. (6.31) are in number 2ne in front of 2(ne+ 1) = 2nn unknowns. Remaining arbitrary ones
are related to rigid-body translations in both tangential and transverse in-plane directions. They
can be suitably chosen in such a way U(s) and V (s) depict nil average on the mid-line profile
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Figure 6.9: Illustrative example of nonlinear cross-section analysis: passive warping trial functions
Zhk(s).
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Figure 6.10: (a) TWM open cross-section, natural nodes and element nomenclature; natural nodes DOF
in (b) local coordinates, and (c) global coordinates.



Chapter 6. Nonlinear Generalized Beam Theory for arbitrary open and closed TWMs 127

C, i.e.:

nn∑
i=1

Ui = 0 (6.32a)

nn∑
i=1

Vi = 0 (6.32b)

Eqs. (6.31) and (6.32) can be rewritten in compact form as (subscript p identifying the planar
problem):

Apqp = ε̄ (6.33)

where Ap is a 2nn×2nn non-singular matrix, qp is a 2nn×1 vector collecting the unknown in-
plane displacements of natural nodes, while ε̄ is a 2nn×1 vector collecting known terms. Once
Ui, Vi are identified from Eq. (6.33), the distribution of the tangential in-plane displacement can
be obtained for each element composing the cross-section as:

U(s̄) = U e
i +

s̄ˆ

i

ε̄(s)ds ; s̄ ∈ (i, i+ 1), i = 1, . . . , ne (6.34)

The proposed kinematic procedure is illustrated by means of its application on the open
cross-section shown in Fig. 6.11a. In order to identify linear conventional fields, the cross-
section is discretized with n = 11 nodes, then M=10 elements, as depicted in Fig. 6.11b.
The standard 6 DOF Euler-Bernoulli FE is adopted for this purpose. The first 8 conventional
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Figure 6.11: Illustrative example of nonlinear cross-section analysis on open cross-section: (a) geometry,
(b) cross-section discretization.

trial functions Uk(s), Vk(s), Wk(s) are reported in Fig. 6.12, where the first four fields de-
scribe rigid-body motions, including the global longitudinal shortening effect. Corresponding
in-plane passive fields Uhk(s), Vhk(s) and Xhk(s), Yhk(s) are illustrated in Figs. 6.13 and 6.14,
respectively, where both the full in-plane cross-section displacement UV and the sole transverse
displacement U have been reported, the latter using the y-axis convention. Nodal values of pas-
sive fields are first evaluated by solving a sequence of 2K2 linear systems (6.33). From them,
functions Vhk(s), Xhk(s) and Yhk(s) can be immediately identified, since they are piece-wise
linear between two consecutive natural nodes. Conversely, distributions Uhk(s), which are 5th

polynomials in case the 6 DOF FE is adopted in linear cross-section analysis, need to be further
evaluated by means of Eq. (6.34). The procedure is even more efficient then the corresponding
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Figure 6.12: Illustrative example of nonlinear cross-section analysis on open cross-section: active con-
ventional planar and warping trial functions.

thermal problem. In fact, the kinematic operator Ap is the same for any couple h, k for both
fields Uhk(s) and Xhk(s), and needs to be inverted only one time. The sole known term must be
updated at each step. As expected, nonlinear trial functions describe pure in-plane elongation of
cross-section elements, without bending. Planar passive tangential fields Uhk(s), Xhk(s) are, as
expected, symmetric with respect to index permutation, while fields Xhk(s) are step-wise linear
on plates forming the cross-section.

In perfect analogy, a kinematic procedure can be developed in order to solve the WTP.
After assuming local displacements W e

i = Wi of natural nodes (Figs. 6.10b and 6.10c) as free
parameters, conditions on the global longitudinal elongations can be expressed as:

W e
i+1 −W e

i = Wi+1 −Wi =

i+1ˆ

i

γ̄(s)ds (6.35)

while condition prescribing orthogonality of warping field with respect to uniform longitudinal
elongation can be written as:

nn∑
i=1

W e
i =

nn∑
i=1

Wi = 0 (6.36)

The nn Eqs. (6.35) and (6.36) constitute a linear system which can be expressed in compact
form as (subscript w identifying the warping problem):

Awqw = γ̄ (6.37)

where Aw is a nn × nn non-singular matrix, qw is a nn × 1 vector collecting the unknown
warping displacements of natural nodes, while γ̄ is a nn×1 vector collecting known terms. After
identifying Wi from Eq. (6.37), the distribution of the warping displacement can be obtained
for each element composing the cross-section as:

W (s̄) = W e
i +

s̄ˆ

i

γ̄(s)ds ; s̄ ∈ (i, i+ 1), i = 1, . . . , ne (6.38)

Warping passive fields Whk(s), Zhk(s) for the proposed open cross-section example are il-
lustrate in Figs. 6.15 and 6.16, respectively. They have been obtained by solving a sequence
of 2K2 linear system (6.37) where, analogously to the planar problem, the kinematic operator
Aw is the same for any couple h, k and needs to be inverted only one time. From the afore-
mentioned systems, functions Zhk(s) can be immediately identified, since they are piece-wise
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Figure 6.13: Illustrative example of nonlinear cross-section analysis on open cross-section: passive in-
plane trial functions Uhk(s), Vhk(s).
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Figure 6.14: Illustrative example of nonlinear cross-section analysis on open cross-section: passive in-
plane trial functions Xhk(s), Yhk(s).
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linear between two consecutive natural nodes. Conversely, distributions Whk(s), which are 6th

polynomials in case the 6 DOF FE is adopted in linear cross-section analysis, need to be further
evaluated by means of Eq. (6.38). As expected, passive warping fields are not symmetric with
respect to index permutations, while fields Zhk(s) are piece-wise linear on plates forming the
cross-section.

Figure 6.15: Illustrative example of nonlinear cross-section analysis on open cross-section: passive warp-
ing trial functions Whk(s).

6.3 Member analysis

The total potential energy principle is used to obtain the weak formulation of the elastic-
ity problem. To this end, the Kirchhoff model is adopted to express the displacement field
within the plate thickness, and a linear elastic constitutive law is assumed. By adopting the
complete Green-Lagrange strain expression and neglecting nonlinear terms inherent to flexural
strain terms, then considering that the NGBT (second-order) displacement field in Eq. (6.21)
identically satisfies the Vlasov (Bredt) hypothesis depicted in Eq. (6.4), the following is ob-
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Figure 6.16: Illustrative example of nonlinear cross-section analysis on open cross-section: passive warp-
ing trial functions Zhk(s).

tained:

ˆ

L

ˆ

C

{
Et

1− ν2

[
w,z +

1

2

(
u2
,z + v2

,z + w2
,z

)]
[u,zδu,z + v,zδv,z + (1 + w,z) δw,z)] +

+
Et3

12(1− ν2)
[(v,ss + νv,zz) δv,ss + (νv,ss + v,zz) δv,zz] +

Gt3

3
v,szδv,sz

}
dsdz =

= µ

ˆ

L

ˆ

C

(fsδu+ fyδv + fzδw) dsdz (6.39)

where L and C are the beam length and the cross-section mid-line, respectively; E, G and
ν are the longitudinal, tangential and Poisson moduli, respectively; fs, fy and fz are surface
loads applied at the middle surface of the member S, respectively, µ is a load multiplier; the
“comma” denotes differentiation with respect to the following variable, while the δ-operator
denotes virtual quantities. By making use of the NGBT displacement field, Eq. (6.21), the
variational equation is recast in the form:

ˆ

L

K∑
i=1

K∑
j=1

K∑
h=1

K∑
k=1

{
F (ϕh, δϕk;µ) +N2 (ϕj , ϕh, δϕk;µ) +

+N3 (ϕi, ϕj , ϕh, δϕk)
}

dz = 0 ∀δϕk(z) (6.40)
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where F , N2 and N3 are differential operators which are linear, bi- and three-linear, respec-
tively, in the coordinates ϕk(z). In particular, the linear operator F describe the elastic behavior
of the TWM in the geometrically linear regime and can be expressed as:

F (ϕh, δϕk;µ) =

(
Bf
hkϕh + F f

khϕ
′′
h − µ

ˆ
C
q1kds

)
δϕk+

+

(
Dt
hkϕ

′
h − µ

ˆ
C
q2kds

)
δϕ′k +

[
F f
hkϕh +

(
Ca
hk + Cf

hk

)
ϕ′′h

]
δϕ′′k (6.41)

where relevant structural matrices and load vectors are defined in Section 2.3. Concerning
multi-linear operators N2 and N3, they are related to nonlinear effects and can be expressed in
the following form:

N2 (ϕj , ϕh, δϕk;µ) =
3∑

β=0

3∑
η=0

3∑
ζ=0

Cβηζjhk ∂β (ϕj) ∂η (ϕh) ∂ζ (δϕk) +

− µ
3∑

η=0

3∑
ζ=0

P ηζhk∂η (ϕh) ∂ζ (δϕk) (6.42a)

N3 (ϕi, ϕj , ϕh, δϕk) =

3∑
α=0

3∑
β=0

3∑
η=0

3∑
ζ=0

Cαβηζijhk ∂α (ϕi) ∂β (ϕj) ∂η (ϕh) ∂ζ (δϕk) (6.42b)

where notation ∂λ (·) denotes the λ-th derivative with respect to z, while constants Cβηζ
jhk , Cαβηζ

ijhk

and functions P ηζ
hk (z) are known terms related linear and passive trial functions and external

surface loads. Since their formulation is burdensome, they won’t be reported in full in the
present thesis, and only one of them for each typology is briefly illustrated in the following as
example:

C220
jhk =

Et

(1− ν2)

ˆ

C

[
t2

6
Vj(s)Vhk(s) +

νt2

3
Yjh(s)V

′′
k (s) +Wj(s)Wkh(s)

]
ds (6.43a)

C1313
ijhk =

Et

(1− ν2)

ˆ

C

[
Zij(s)Zhk(s) +

t2

3
Yij(s)Yhk(s)

]
ds (6.43b)

P 10
hk(z) =

ˆ

C

fz(s, z)Wkh(s) ds (6.43c)

Starting from Eq. (6.41) and consistently with the spirit of GBT, a set of coupled nonlinear ordi-
nary differential equations, referred to as nonlinear GBT (NGBT) equations, and corresponding
boundary conditions could be obtained by performing the standard steps of variational calculus
(e.g., Berdichevsky, 2009). Some outlines on this topic will be briefly addressed in the follow-
ing. It is worth to be noted that GBT equations are in number K, i.e. the size of the nonlinear
problem remains the same as the linear one. Nonlinear GBT equations are solved numerically
by means of a FE procedure (e.g., Bathe, 2014). When linear coordinates ϕk(z) are interpolated
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in the domain z ∈ [0,L], usually by means of cubic Hermite polynomial shape functions (see
Section 2.3), a nonlinear algebraic system in the nodal value vectors q is derived in the form:

Kq + n2 (q,q;µ) + n3 (q,q,q;µ) = µ(p + Pq) (6.44)

where the column vectors ni are quadratic and cubic homogeneous forms of displacements,
and P is the second-order effect loading matrix. It is stressed, once again, that the size of
the nonlinear problem remains the same as the linear one. Its solution can be addressed by
standard incremental-iterative techniques such as those described in Silvestre and Camotim
(2003b) using the tangent stiffness matrix that can be deduced from the depicted multi-linear
forms.

Nonlinear GBT equations and boundary conditions

It is easy to prove that nonlinear GBT equations are 6th order in ϕk(z), due in particular to
terms related to passive modes Yhk(s) and Zhk(s) (see, e.g., Eq. (6.43b)) participating into the
definition of v,zz and w,z, respectively, in Eq. (6.39). Referring in particular to Eq. (6.43b), its
associated factor is ϕ′iϕ

′′′
j ϕ
′
hδϕ

′′′
k . After integration by parts, it leads to terms proportional to

ϕ′iϕ
′′′
j ϕ

IV
h , ϕ′iϕ

V
j ϕ
′′
h and ϕ′iϕ

′
jϕ

V I
h .

Boundary conditions, of course, determine the values of the Lagrangian parameters q at the
ends z = 0,L of a single-span beam. Their imposition, however, is not a trivial task, since they
should be consistently formulated in a nonlinear kinematic context. Indeed, Eq. (6.21) point out
that it is impossible to impose arbitrary boundary conditions. For instance, the classic constraint
of “simply-supported beam with free warping” requires the geometric conditions u = 0, v = 0
at z = 0,L, as well as the mechanical conditions εz = 0 ⇒ w,z = 0 (free warping) and
v,zz = 0 (i.e., plate bending moment equal to zero). In the linear field they are all fulfilled by
ϕk = 0, ϕ′′k = 0, for any k, but in the nonlinear regime it is no longer valid. This depends on
the fact that this constraint is incompatible with the hypothesis of transverse inextensibility. If,
in fact, it was w 6= 0 and u = 0, with v = 0 to the beam edge, the center line of the profile
would lengthen of εs = w2

,z/2, in violation of the inextensibility constraint. Therefore, it needs
to release some conditions. If u is left free, allowing the shortening of the mid-line to the edge,
it can still impose ϕk = 0, ϕ′′k = 0 that, however, cancel only the linear part of u and εz.
Non-linearities will produce u 6= 0, consistently with the internal constraint, but they involve
an error on the mechanical condition εz = 0. In the spirit of FE technique, however, this will be
satisfied “on average” thanks to the weak formulation.

From these arguments, it can be argued that the most non-linear effect occurs when the end
sections of the beam can not approach, i.e. when the warping is zero at both the extremes. These
conditions, indeed, produce axial elongation, generally negligible at the first order. To constrain
warping ϕk = 0, ϕ′k = 0 have to be imposed at the edges. These conditions imply that plates
are also clamped at the edges.

6.4 Applications

Two examples are presented in order to validate and illustrate the application and capabili-
ties of the proposed method. The first application concerns a beam of length L = 1 m having
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the C-lipped cross-section illustrated in Fig. 6.11a. The material properties adopted in the cal-
culation specify an elastic modulus E = 200 GPa and Poisson’s ratio ν = 0.3. The beam is
not pre-stressed, and it is assumed to be fully clamped and fully warping restrained at both end
sections (ϕk(0) = ϕ′k(0) = 0 and ϕk(L) = ϕ′k(L) = 0, k = 1, . . . , K), while the external
load consists of a vertical uniform pressure load psy(s, z) applied to the upper side of the en-
tire web panel (Fig. 6.17). The discretization adopted in the cross-section analysis is shown by
Fig. 6.11b. The one adopted in the member analysis (i.e., along the beam axis z) involves 10
finite elements. In order to validate and verify the numerical accuracy of the proposed method,

psy(s,z)

1000

u,v,w = 0u,v,w = 0

psy(s,z)

Figure 6.17: Illustrative application on lipped channel member: load arrangement and restraints condi-
tions.

the FE software ABAQUS/Standard (Simulia, 2010) has been used. The beam is modeled by
the S4 shell finite element available in the standard ABAQUS library. This general-purpose con-
ventional shell element in based on the general plate theory which automatically turns into the
Kirchhoff model as the thickness decreases. Moreover, this elements account for finite mem-
brane strains and arbitrary large rotations; therefore, it is suitable for large-strain (geometrically
nonlinear) analysis. The whole beam is discretized through quadrangular shell elements with
about 5 mm width, altogether 10, 000 finite elements. Together with the non-linear numerical
analysis, a standard linear buckling analysis has been performed. The first linear buckling mode
(corresponding to the first positive eigenvalue) showed by the beam subjected to the load de-
scribed above is a local-plate buckling mode (see Fig. 6.18) that mainly involves the web of
the C-lipped section at the mid-span of the beam. The associated linear buckling critical load
is equal to psy,cr = 0.114 MPa. A subset of active and passive trial functions for the C-lipped
cross-section has been shown in Figs. 6.12 to 6.16. Figs. 6.20 and 6.21 show a comparison be-
tween the solution obtained using the proposed approach and the ABAQUS solution at specific
locations of the structure, which will be specified hereinafter. In the following, the term “L”
refers to the solution of the linear problem obtained by using the subset of conventional linear
fields listed in brackets. Label “NL” refers to the solution obtained by the proposed model us-
ing the specified subset of conventional linear fields together with all the corresponding passive
fields provided by the nonlinear cross-section analysis methodology. The importance of each
linear field in describing the overall response of the beam may be represented by the so-called
participation factors (e.g., Taig et al., 2016) defined based on the contribution of each field to
the total (internal) work done to deform the TWM, as:

pk =
Wk∑K

k=1 |Wk|
(6.45)
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Figure 6.18: Illustrative application on lipped channel member: first mode of buckling.

being Wk the elastic work done by the k-th linear trial function. Participation factors for the
considered applications are reported in Fig. 6.19. Because of the geometry properties and load
arrangement, significant linear fields are the only ones that are symmetrical with respect to the
vertical axis of cross-section symmetry. In particular, the first four symmetric fields (2,5,7,9) are
the most participating in describing the response of thee TWM. Furthermore, the conventional
longitudinal shortening field (4) can be completely neglected in the linear analysis because of
the orthogonality between the load direction and the z axis.

Figure 6.19: Illustrative application on lipped channel member: participation factor.

Fig. 6.20 shows the vertical displacement of the mid-web node 9 (Fig. 6.11b) at mid-span
of the beam, for the specified subsets of linear fields. From a qualitative point of view, the
proposed NL solution provides a good approximation of the numerical solution using the first 3
(linear) fields only (2,5,7-Fig. 6.20a). The non-linear curve shows an initial softening behavior,
then it becomes progressively hardening when the first critical linear buckling load is exceeded
(i.e., psy approximately greater than 0.114 MPa). The NL solution is able to catch the initial
softening behavior and it shows an inflection point just in the neighborhood of the first critical
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linear buckling load. From a quantitative point of view, differences between the 3-field GBT
and ABAQUS solution is about 10% in both linear and nonlinear results. By the addition of
the the longitudinal shortening field (4 - Fig. 6.20a), which allows to include the uniform axial
(longitudinal) elongation of the TWM, an improvement of the NL solution is obtained. When
increasing the load, in fact, the catenary action provided by external restraints becomes pro-
gressively more important. Therefore, the inclusion of the beam capability to extend uniformly
along its axis plays an important role in getting accurate results. In order to reach a global
refinement, other vertical symmetrical conventional fields may be added. Fig. 6.20b shows the
same graph with the supplement of conventional field 9 (i.e., the fourth vertical symmetric con-
ventional field). The global behavior of the proposed solution is maintained but quantitative
differences with respect to the ABAQUS solution are now limited and reduced to about half.

(a) (b)

Figure 6.20: Illustrative application on lipped channel member. Vertical displacement of the mid-web
node ad mid-span of the beam: comparison between proposed NGBT solution obtained using (a) 3 or
(b) 4 linear fields and ABAQUS solution.

Fig. 6.21 shows the horizontal displacement of the top-edge node 3 (Fig. 6.11b) at mid-span
of the beam. Similarly to the previous case, the qualitative non-linear behavior is fully reached
by the proposed NL approach using the first 3 significant conventional (linear) fields only (2,5,7
- Fig. 6.21a). Quantitatively, differences between the 3-field NL model and the ABAQUS so-
lution is still about 10%. The addition of the the conventional longitudinal shortening field 4
(Fig. 6.21a) allows to further improve the NL solution (similarly to first, differences with re-
spect to the ABAQUS solution are reduced to about half). The addition of one conventional
vertical symmetric (linear) field (9) makes the solution obtained by the proposed NL approach
practically coincident with the ABAQUS solution (Fig. 6.21b). In this case linear solutions are
not relevant since they do not allow the transverse displacement of the cross-section nodes.

The second application concerns a TWM having the closed rectangular cross-section illus-
trated in Fig. 6.3a. The material properties adopted in the calculation specify an elastic modulus
E = 200 GPa and Poisson’s ratio ν = 0.3. The beam possess length L = 1 m and it is as-
sumed to be simply supported (i.e. warping free) at both end sections, while it is restrained
from warping at mid-span (Fig. 6.22). The external load consists of a vertical uniform pressure
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(a) (b)

Figure 6.21: Illustrative application on lipped channel member. Horizontal displacement of the top-edge
node ad mid-span of the beam: comparison between proposed NGBT solution obtained using (a) 3 or
(b) 4 linear fields and ABAQUS solution.

load psy(s, z) applied to the upper side of the entire web panel (Fig. 6.22). The discretization
adopted in the cross-section analysis is shown by Fig. 6.3b. The one adopted in the member
analysis (i.e., along the beam axis z) involves 10 finite elements.

psy(s,z)

1000

u,v = 0u,v = 0

psy(s,z)

w = 0

= =

Figure 6.22: Illustrative application on closed TWM: load arrangement and restraints conditions.

A refined shell-FE model has been developed for validation purposes using the software
ABAQUS/Standard (Simulia, 2010). Similarly to as done for the previous application, the
whole beam is discretized through quadrangular shell elements of type S4 with about 2 mm
width, altogether 75, 000 finite elements. Together with the non-linear numerical analysis, a
standard linear buckling analysis has been performed. The first linear buckling mode (corre-
sponding to the first positive eigenvalue) showed by the beam subjected to the load described
above is a local-plate buckling mode (see Fig. 6.23) that mainly involves the superior flange at
the mid-span of the beam. The associated linear buckling critical load is equal to psy,cr = 0.052
MPa.

A subset of active and passive trial functions has been shown in Figs. 6.4 to 6.6, 6.8 and 6.9.
The linear analysis has been first performed, in order to evaluate participation factors. They are
shown in Fig. 6.24. As expected and analogously to the previous application, significant linear



Chapter 6. Nonlinear Generalized Beam Theory for arbitrary open and closed TWMs 139

Figure 6.23: Illustrative application on closed TWM: first mode of buckling.

fields are the only ones that are symmetrical with respect to the vertical axis of cross-section
symmetry, with in particular the first three symmetric fields (2,6,7) describing almost the en-
tire response of the beam in the geometrically linear regime. The conventional longitudinal
shortening field (4) can be completely neglected in the linear analysis because of the orthogo-
nality between the load direction and the z axis. Nevertheless, it plays a fundamental role when
modeling the nonlinear regime, modeling approaching of the beam end-sections induced by the
beam transverse deflection. This effect would not be described by passive fields since the latter
are able to model nonlinear effects limited to as regard the cross-section.

Figure 6.24: Illustrative application on closed TWM: participation factor.

Fig. 6.25 depict displacements u, v, w at selected points of the cross-section. In particular,
displacements are plotted in correspondence of the beam coordinate z in which they reach their
maximum value, that is mid-span (i.e., z = L/2) as regards tangential and transverse in-plane
displacements u, v and the beam end-section (i.e., z = 0,L) concerning warping displacements
w. As regards the proposed NGBT model, the solution obtained by including the subset of the
sole relevant fields (2,4,6,7), together with all the corresponding passive fields provided by the
nonlinear cross-section analysis methodology, is compared with both the reference FE solution
and the corresponding NGBT solution obtained by using the whole set of (linear and nonlinear)
fields, the latter referred to as in figures with the nomenclature full . From a qualitative point of
view, the proposed NL solution provides an excellent approximation of the numerical solution
using the sole relevant fields (2,4,6,7). The non-linear curve describes a softening behavior,
becoming progressively more evident when the first critical linear buckling load is exceeded
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(i.e., psy approximately greater than 0.052 MPa). From a quantitative point of view, the 4-field
GBT and ABAQUS solution are practically coincident up to a load equal to about psy = 0.20
MPa. When the latter is exceeded, some difference between the two models begin to appear.
They are however very limited (about 10% when psy = 0.30 MPa). As expected, the addition
of further trial functions does not improve the NGBT result. In fact, the 4-field NGBT solution
is coincident with the corresponding one obtained by using the full set of linear and nonlinear
fields. This aspect is the key-feature of the proposed NGBT approach, where nonlinear effects
are fully described by passive fields associated to the subset of relevant linear functions. As a
consequence, the proposed approach is very efficient from a computational viewpoint, since the
use of a (commonly very limited) subset of trial functions reduces exponentially the required
computational effort with respect to the case where the full set of functions is adopted.

Finally, displacements of the whole cross-section are shown in Fig. 6.26 for a reference load
of 0.25 MPa. In particular, Fig. 6.26a shows the in-plane displacements at the beam mid-spam,
while Fig. 6.26b depicts warping distribution at the beam end section. For clarity, the plotted
variables have been suitably scaled, and scale coefficient is reported for each plot. The evident
softening behavior depicted by the analyzed TWM can be explained thanks to the significant
inward deflection of both superior and inferior flanges, which is responsible for the progressive
reduction of the beam stiffness with respect to vertical loads. The proposed NGBT approach
appears able to perfectly reproduce the numerical non-linear response of the beam. Transverse
shortening of the superior flange points out the fundamental role of passive (transverse shorten-
ing) fields in the nonlinear analysis. Once again, it is stressed the fact that the 4-fields (reduced)
NGBT solution is perfectly coincident with the NGBT ones obtained by using the full set of
trial functions.
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(a)

(b)

(c)
(a) (b)

(c)

Figure 6.25: Illustrative application on closed TWM: Horizontal, vertical and warping displacement at
selected points of the TWM.
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(a) (b)

Figure 6.26: Illustrative application on closed TWM: (a) in-plane displacement at mid-span, (b) warping
displacement at end-section.



Chapter 7

Conclusions and perspectives

7.1 Conclusions

The Generalized Beam Theory (GBT) is a very efficient and reliable tool for the linear and
nonlinear analysis of thin-walled members TWMs. Its characteristic feature is the capability
to give a clear physical interpretation to the mechanical behavior experienced by the TWM,
as well as to reduce the the three-dimensional continuous elasticity problem to a vector-valued
one-dimensional one.

In this Thesis, new approaches have been proposed for the linear and nonlinear analyses
of TWMs in the framework of the GBT, aimed to improve its reliability and numerical effi-
ciency. A novel straightforward dynamic procedure has been proposed for the cross-section
analysis (Chapter 3), able to provide the full set of trial functions, included conventional and
non-conventional ones, by means of a very limited number of eigenvalue problems, in particular
three for mono-connected (i.e., open) cross-section and four for multi-connected (i.e. closed and
partially closed) ones. Regarding the latter, they involve hybrid (i.e., mixed extension-flexural)
fields for their intrinsic (hyperstatic) characteristics. The procedure maintains its simplicity in
all conditions, in addition to provide very clean and precise deformation fields, having a clear
physical interpretation without the need of further manipulation operations. The importance of
selecting a consistent set of polynomial shape functions for the finite element representation
specified for the cross-section analysis has also been discussed. Locking problems have been
shown to occur when this consistency is not satisfied.

A GBT-based approach has been developed for the partial analysis of multi-component
TWMs (Chapter 4). The approach relies on the identification of a suitable set of linear trial
functions capable of describing both longitudinal and transverse partial interaction taking place
at the interface plane between adjacent components. To this end, two dynamic procedures
for the cross-section analysis have been proposed. The first one stems from the so-called un-
constrained approach available in the Literature, while the second one is the generalization of
the novel dynamic procedure previously introduced to multi-component TWMs. The latter is
noteworthy for its capability in combining precision and cleanliness, in terms of obtained defor-
mation fields, with a simple and straightforward (i.e., not recursive, conversely than the uncon-
strained approach) procedure. The proposed approach has been validated against the numerical
values obtained by means of a shell finite element model developed in ABAQUS/Standard.

A displacement-based GBT formulation has been developed for the analysis of composite
TWMs with large web penetrations (Chapter 5). The approach benefits of the partial interaction
model described above, and allows to model composite TWMs with large squared web pene-
trations and localized longitudinal stiffeners with a systematic and straightforward fashion. In
particular, it allows to transform GBT-based beam FEs into an assembly of flat quadrilateral
GBT-based shell elements that benefits of assembly procedures commonly adopted in standard
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FE models. As a consequence, continuity of displacement fields between adjacent members
composing the structural system can be automatically enforced, with no need to introduce bur-
densome constraint equations. The accuracy and ease-to-use of the proposed approach has
been shown by means of an application on a large-span composite beam with multiple web-
perforations taken from the Literature, and results are compared with the ones obtained by
means of a refined shell-based FE model for validation purposes.

Finally, a nonlinear GBT approach (NGBT) has been formulated, based on the nonlinear
Galerkin method. The key feature is represented by a nonlinear cross-section analysis, able
to provide a set of (passive) nonlinear trial functions, which are slave of conventional (active)
linear ones and able to include geometrically nonlinear effects. To this end, the Vlasov hypoth-
esis of (i) in-plane inextensibility, and (ii) undeformability against shear (the latter substituted
by the Bredt’s condition of constant shear stress flow on closed loops) have been enforced on
the full (nonlinear) Green-Lagrange strain expressions. A direct and computationally efficient
procedure for the evaluation of nonlinear fields has been proposed, based on a formal thermal
analogy. The proposed model can be applied to general (i.e., open, closed and partially-closed)
cross-sections and is able to well describe the TWM nonlinear behavior by means of a very lim-
ited number of (linear and nonlinear) fields. Moreover, since passive fields are slave of linear
ones, the number of unknowns of the nonlinear problem (i.e., its dimension) remains the same
as the linear one. Therefore, the approach complies the spirit of GBT as a reduction method,
in addition to be very efficient from a computational viewpoint. Comparison between results
obtained with the proposed approach and the ones obtained by means of refined shell-based FE
analyses are very promising.

7.2 Further research

Concerning the GBT-based approaches proposed in this Thesis, the following suggestions
for further researches can be addressed:

• the capability to model TWMs with arbitrary curved cross-section and longitudinal axis
should be included in the GBT framework. To this end, the spline interpolation may be
used for describing the TWM geometry;

• the model describing the linear-elastic behavior of multi-components members should
be further developed to include contact and separation between the various components
forming the TWM;

• a geometrically nonlinear GBT approach should be addressed for the buckling and post-
buckling analysis of multi-components members; to this end, the capability to include
contact and separation at various interfaces constitutes a fundamental feature;

• the displacement-based GBT approach should be extended to include arbitrary-shaped
perforations; moreover, the inclusion of transverse stiffeners as well as the capability to
model girders with discrete diaphragms may represent an interesting development which
would make the proposed GBT formulation suitable for composite steel-concrete bridges
analysis;
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• the study of the influence of in-plane and membrane shear strains on the geometrically
nonlinear behavior of TWMs (i.e., the validity of the Vlasov theory in the nonlinear field)
is also of great interest. In this sense, the proposed NGBT approach should be extended
to account, through passive fields, of small (i.e., second-order) in-plane and membrane
shear strains;

• based on the Koiter approach, passive fields should be suited for the introduction of pas-
sive buckling modes, to be adopted for the post-critical analysis of TWMs.
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Appendix A

Stiffness and Mass Element Matrices for cross-section
Finite Elements

A.1 Beam Finite Elements for linear cross-section analysis

A.1.1 In-plane 6 DOF, out-of-plane 2 DOF finite element (FE1)

A classic six DOF (Euler-Bernoulli) beam FE is considered (Fig. A.1a), based on which dis-
placement fields U, V are interpolated through linear Lagrangian and cubic Hermite polynomial
functions, respectively, as follows:
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Referring to the consistent mass approach (e.g., Inman, 2013), the stiffness Ke
p and the mass

Me
p matrices for the generic e-th element in PEPs are defined as:
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where E and ρ are the longitudinal elastic modulus and mass density, respectively, A and J are
the transverse area and the moment of inertia, respectively, referred to a unitary-length beam
segment, and le is the length of the FE.

Based on a two DOF beam FE (Fig. A.1b), linear Lagrangian interpolating polynomial
functions (Eq. (A.2)) have been adopted for out-of-plane displacements, i.e.,

W (s)
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Ln(s, le)W
e
n (A.5)

Referring to the consistent mass approach, the stiffness Ke
w and the mass Me

w matrices for the
generic e-th element in WEP are defined as:
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where G and t are, respectively, the tangential elastic modulus and thickness.

A.1.2 In-plane 7 DOF, out-of-plane 3 DOF finite element (FE2)

The seven DOF (Euler-Bernoulli) beam FE is considered (Fig. A.1c), based on which displace-
ment fields U, V are interpolated through parabolic Lagrangian and cubic Hermite polynomial
functions, respectively, as follows:
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and Hermite polynomials Hn(s, le) are defined in Eq. (A.3). Referring to the consistent mass
approach (e.g., Inman, 2013), the stiffness Ke

p and the mass Me
p matrices for the generic e-th
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element in PEPs are defined as:
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where E and ρ are the longitudinal elastic modulus and mass density, respectively, A and J are
the transverse area and the moment of inertia, respectively, referred to a unitary-length beam
segment, and le is the length of the FE.

Based on a three DOF beam FE (Fig. A.1d), parabolic Lagrangian interpolating polynomial
functions (Eq. (A.8)) have been adopted for out-of-plane displacements, i.e.,
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where G and t are, respectively, the tangential elastic modulus and thickness.

A.1.3 In-plane 11 DOF, out-of-plane 5 DOF finite element (FE3)

The eleven DOF (Euler-Bernoulli) beam FE is considered (Fig. A.1e), based on which dis-
placement fields U, V are interpolated through 4th order Lagrangian and 5th order Hermite
polynomial functions, respectively, as follows:
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Referring to the consistent mass approach (e.g., Inman, 2013), the stiffness Ke
p and the mass

Me
p matrices for the generic e-th element in PEPs are defined as:
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1232 0 0 5632 −8448 0 0 39424 6512 0 0
−638 0 0 1232 −3828 0 0 6512 6424 0 0

0 2358 261 le 0 0 7920 1440 le 0 0 18828 −1026 le
0 −261 le −27 l2e 0 0 −792 le −108 l2e 0 0 −1026 le 72 l2e


(A.15b)
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where E and ρ are the longitudinal elastic modulus and mass density, respectively, A and J are
the transverse area and the moment of inertia, respectively, referred to a unitary-length beam
segment, and le is the length of the FE.

Based on the five DOF beam FE (Fig. A.1f), 4th order Lagrangian interpolating polynomial
functions (Eq. (A.19)) have been adopted for out-of-plane displacements, i.e.,

W (s)
∣∣∣le
s=0

=
5∑

n=1

Ln(s, le)W
e
n (A.16)

Referring to the consistent mass approach, the stiffness Ke
w and the mass Me

w matrices for the
generic e-th element in WEP are defined as:

Ke
w =

Gt

1890 le


9850 −13696 6069 −2944 694
−13696 33280 −28416 11776 −2944

6069 −28416 44640 −28416 6069
−2944 11776 −28416 33280 −13696

694 −2944 6069 −13696 9850

 (A.17a)

Me
w =

ρle
5670


6424 6512 −3828 1232 −638
6512 39424 −8448 5632 1232
−3828 −8448 41184 −8448 −3828
1232 5632 −8448 39424 6512
−638 1232 −3828 6512 6424

 (A.17b)

where G and t are, respectively, the tangential elastic modulus and thickness.
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Figure A.1: Beam Finite Elements for linear cross-section analysis: (a) in-plane 6 DOF FE, (b) out-
of-plane 2 DOF FE, (c) in-plane 11 DOF FE, (d) out-of-plane 3 DOF FE, (e) in-plane 11 DOF FE, (f)
out-of-plane 5 DOF FE.
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A.2 Beam Finite Elements for nonlinear cross-section analysis

A.2.1 In-plane 10 DOF, out-of-plane 7 DOF finite element (FE4)

The ten DOF (Euler-Bernoulli) beam FE is considered (Fig. A.2a), based on which displace-
ment fields U, V are interpolated through 5th order and 3rd order Hermite polynomial functions,
respectively, as follows:

U(s)
∣∣∣le
s=0

=
4∑

n=1

Fn(s, le)U
e
n + F5(s)U ′e1 + F6(s)U ′e4 (A.18a)

V (s)
∣∣∣le
s=0

=
3∑

n=1

H2n−1(s, le)V
e
n +H2n(s, le)θ

e
n (A.18b)

where:

F1(s, le) =
(3s− 2le) (s− le) 2 (3s− le) (2le + 13s)

4l5e
(A.19a)

F2(s, le) = −81s2 (3s− 2le) (s− le) 2

4l5e
(A.19b)

F3(s, le) =
81s2 (s− le) 2 (3s− le)

4l5e
(A.19c)

F4(s, le) = −s
2 (13s− 15le) (3s− 2le) (3s− le)

4l5e
(A.19d)

F5(s, le) =
s (s− le) 2 (−9sle + 2l2e + 9s2)

2l4e
(A.19e)

F6(s, le) =
s2 (3s− 2le) (s− le) (3s− le)

2l4e
(A.19f)

while Hermite polynomials Hn(s, le) are defined in Eq. (A.3).
The seven DOF beam FE is considered (Fig. A.2b), based on which 6th order Hermite in-

terpolating polynomial functions have been adopted for out-of-plane displacements, as folows:

W (s)
∣∣∣le
s=0

=
5∑

n=1

Nn(s, le)W
e
n +N6(s, le)W

′e
1 +N7(s, le)W

′e
5 (A.20)
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where:

N1(s, le) = −(4s− 3le) (s− le) 2 (2s− le) (4s− le) (3le + 28s)

9l6e
(A.21a)

N2(s, le) =
256s2 (4s− 3le) (s− le) 2 (2s− le)

9l6e
(A.21b)

N3(s, le) = −16s2 (4s− 3le) (s− le) 2 (4s− le)
l6e

(A.21c)

N4(s, le) =
256s2 (s− le) 2 (−6sle + l2e + 8s2)

9l6e
(A.21d)

N5(s, le) = −s
2 (28s− 31le) (4s− 3le) (2s− le) (4s− le)

9l6e
(A.21e)

N6(s, le) = −s (4s− 3le) (s− le) 2 (2s− le) (4s− le)
3l5e

(A.21f)

N7(s, le) =
s2 (4s− 3le) (s− le) (2s− le) (4s− le)

3l5e
(A.21g)
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Figure A.2: Beam Finite Elements for nonlinear cross-section analysis: (a) in-plane 10 DOF FE, (b)
out-of-plane 7 DOF FE.

Being E and G the longitudinal and transverse elastic modulus, respectively, A and J the
transverse area and the moment of inertia, respectively, referred to a unitary-length beam seg-
ment, t the thickness and le the length of the FE, the stiffness matrix and equivalent load vector
to be used in the PTP, Ke

p and f ep , respectively, and the stiffness matrix and load vector to be
used in the WTP, Ke

w and f ew, respectively, are defined for the generic e-th element as:
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Finite
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ents

Ke
p =



147AE
40le
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0 0 −2187AE
560le

0 129AE
560le

−17AE
280

0 0
37AE
280

AEle
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(A.22a)

f ep = AE

leˆ

0

[F1(s, le) F5(s, le) 0 0 F2(s, le) F3(s, le) F4(s, le) F6(s, le) 0 0]T ε̄(s)ds (A.22b)

Ke
w =

Gt

le



4.8023 0.110048le −5.17081 0.320154 0.267251 −0.218902 0.04104le
0.110048le 0.0320667l2e −0.0670408le −0.0854257le 0.0834589le −0.04104le 0.00585217l2e
−5.17081 −0.0670408le 10.7411 −6.30457 0.467005 0.267251 −0.0834589le
0.320154 −0.0854257le −6.30457 11.9688 −6.30457 0.320154 0.0854257le
0.267251 0.0834589le 0.467005 −6.30457 10.7411 −5.17081 0.0670408le
−0.218902 −0.04104le 0.267251 0.320154 −5.17081 4.8023 −0.110048le
0.04104le 0.00585217l2e −0.0834589le 0.0854257le 0.0670408le −0.110048le 0.0320667l2e


(A.22c)

f ew = Gt

leˆ

0

[N1(s, le) N6(s, le) N2(s, le) N3(s, le) N4(s, le) N5(s, le) N7(s, le)]
T γ̄(s)ds (A.22d)



Appendix B

The planar Euler-Bernoulli beam as an equivalent
Generalized Spring

A mono-dimensional deformable member is considered, whose configuration can be uniquely
identified through the position field of its two orientated end-nodes (Fig. B.1a). It is assumed
that the member can be subjected to forces and couples applied at the end-nodes only (Fig. B.1b).
In this context, the local strain-displacement relationships can be expressed as Luongo and
Paolone (1997):

ε = uB − uA − θA ×AB (B.1a)
κ = θB − θA (B.1b)

where ε and κ are referred to as linear deformation and curvature vectors, respectively. The

Figure B.1: Mono-dimensional deformable member: (a) displacements, and (b) internal forces.

local equilibrium equations can be obtained by resorting to the balance principles:

tA + tB = 0 (B.2a)
mA + mB + AB× tB = 0 (B.2b)

in which the vertex A has been chosen as pole. Since internal forces have to satisfy Eqs. (B.2),
they are not independent. By assuming, tB = σ and mB = µ, where σ and µ are arbitrary
vector, it is obtained:

tA = −σ ; mA = −µ−AB× σ ; tB = σ, mB = µ (B.3a-c)

where σ and µ are referred to as force-stress and couple-stress vectors.
Since the member can only exhibit in-plane deformations (e.g., plane strain regime), then

uA and uB are parallel to the plane x − y, while θA and θB are orthogonal to the same plane.
The only non-null deformations are εx, εy and κz. By naming:

εx = ε ; εy = γ ; κz = κ (B.4a-c)
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Figure B.2: Mono-dimensional deformable member under plane strain/stress regime: (a) geometrical
interpretation of strains and (b) stresses

the local strain-displacement relationships (Eq. (B.1)) can be rewritten as follows:

ε = uB − uA (B.5a)
γ = vB − vA − θAl (B.5b)
κ = θB − θA (B.5c)

in which ε, γ and κ are referred to as axial deformation, shear deformation and bending, respec-
tively. By interpreting the mono-dimensional deformable member as a planar Euler-Bernoulli
beam, Eqs. (B.5) can be viewed as global deformations of the beam, whose geometrical mean-
ing is clearly shown by Fig. B.2a. The corresponding plane stress regime is characterized by
tA and tB vectors parallel to the plane x − y, whereas µA and µB are orthogonal to the same
plane. The non-zero stresses are σx, σy and µz, which are referred to as:

σx = σ ; σy = τ ; µz = µ (B.6a-c)

whose components in the balanced conditions are shown in Fig. B.2b.
Constitutive equations are given by Luongo and Paolone (1997):

σ
τ
µ

 =

 Ca 0 0
0 Cs −Csl

2

0 −Csl
2

Cf


ε
γ
κ

 (B.7)

where l is the length of the member, and Ca, Cs and Cf are the axial, shear and flexural stiff-
ness, respectively. They can be interpreted as the global stiffness of a generalized spring, whose
global behavior is identical to an (homogeneous) planar Euler-Bernoulli beam in terms of both
global deformations and internal forces. They can be determined by solving the classic elas-
tic problem relating to a conventional Euler-Bernoulli beam. The following stiffness are then
obtained:

Ca =
EA

l
; Cs =

12EI

l3
; Cf =

4EJ

l
(B.8a-c)

where E, A and J are, respectively, the elastic module, the transverse area and the moment
of inertia of the beam. Finally, the elastic potential energy U of the planar Euler-Bernoulli
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interpreted as an equivalent generalized spring can be expressed as:

U =
1

2

(
Caε2 + Csγ2 + Cfκ2 − l Csγκ

)
(B.9)
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Appendix C

Constrained algebraic eigenvalue problems

A constrained dynamic eigenvalue problem can be expressed as:

δqT
(
K− λM

)
q = 0 (C.1a)

A q = 0 (C.1b)

where the first equations represents the Virtual Work Principle for a N -DOF free undamped
system, while the latter expresses a system of M linear constraints for the nodal displacements
collected in the vector q. The system (C.1) admits non-trivial solutions q 6= 0 if, and only if,
matrices K and M are Hermitian (i.e. symmetric in case of real matrices) and at least one of
them is positive definite. Constraint conditions can be used to reduce the problem by expressing
the M slave DOF qs in terms of the (N −M ) master DOF qm. By partitioning Eq. (C.1b)) as:

[
Am As

] [ qm
qs

]
= 0 (C.2)

and assuming As to be a non-singular matrix, the vector q can be expressed as a function of the
sole master DOF qm based on

q = Rqm (C.3)

where:

q =

[
qm
qs

]
; R =

[
I

−A−1
s Am

]
(C.4a,b)

By substituting Eq. (C.3)) and δq = Rδqm into Eq. (C.1a), the following constrained algebraic
eigenvalue problem is then obtained:(

KR − λMR

)
qm = 0 (C.5)

where :
KR = RTK R ; MR = RTM R (C.6a,b)
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Appendix D

Displacement-based GBT equations and relevant bound-
ary conditions

Based on the following variable change outlined in Section 5.1, the weak formulation of the
elasticity problem can be rewritten as follows:

ˆ

L

{
δu′′T

[
TT
p TT

wp

](
FTTp u + C

[
Tp

Twp

]
u′′ +

[
CΩW

CWW

]
Tw w′

)
+

+ δu′T
[
TT
p TT

wp

](
D

[
Tp

Twp

]
u′ +

[
DΩW

DWW

]
Tw w − q2

)
+

+ δuTTT
p

(
B Tp u + F

[
Tp

Twp

]
u′′ + FWTw w′ − q1

)
+

+ δw′TTT
w

(
FWTTw u +

[
CWΩ CWW

] [ Tp

Twp

]
u′′ + CWWTw w′

)
+ δwTTT

w

([
DWΩ DWW

] [ Tp

Twp

]
u′ + DWWTw w − qW

)}
dz+

−
∑
B

{
δuTTT

p P1 + δu′T
[
TT
p TT

wp

]
P2 + δwTTT

wPW

}
= 0 (D.1)

Relevant structural matrices B,C,D,F in Eq. (D.1) are defined as follows:

B = Be + Bf ; C =

[ (
CΩΩ + Cf

)
CΩW

CWΩ CWW

]
(D.2a,b)

F =
[(

FΩ + Ff
)

FW
]

; D =

[ (
DΩΩ + Dt

)
DΩW

DWΩ DWW

]
(D.2c,d)
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being:

Be
hk =

Et

1− ν2

ˆ

C

U ′h(s)U
′
k(s)ds ; Bf

hk =
Et3

12(1− ν2)

ˆ

C

V ′′h (s)V ′′k (s)ds (D.3a,b)

CΩΩ
hk =

Et

1− ν2

ˆ

C

Ωh(s)Ωk(s)ds ; CΩW
hk =

Et

1− ν2

ˆ

C

Ωh(s)Wk(s)ds (D.3c,d)

CWW
hk =

Et

1− ν2

ˆ

C

Wh(s)Wk(s)ds ; Cf
hk =

Et3

12(1− ν2)

ˆ

C

Vh(s)Vk(s)ds (D.3e,f)

FΩ
hk =

νEt

1− ν2

ˆ

C

U ′h(s)Ωk(s)ds ; FW
hk =

νEt

1− ν2

ˆ

C

U ′h(s)Wk(s)ds (D.3g,h)

F f
hk =

νEt3

12(1− ν2)

ˆ

C

V ′′h (s)Vk(s)ds ; CWΩ
hk = CΩW

kh (D.3i,j)

DΩΩ
hk = Gt

ˆ

C

[Uh(s) + Ω′h(s)] [Uk(s) + Ω′k(s)] ds (D.3k)

DΩW
hk = Gt

ˆ

C

[Uh(s) + Ω′h(s)]W
′
k(s)ds ; DWΩ

hk = DΩW
kh (D.3l,m)

DWW
hk = Gt

ˆ

C

W ′
h(s)W

′
k(s)ds ; Df

hk =
Gt3

3

ˆ

C

V ′h(s)V
′
k(s)ds (D.3n,o)

where superscripts f , t, and e refer to the flexural, torsional and (transverse) extensional nature
of the underlying energy terms, respectively, superscripts Ω and W identifies axial (longitu-
dinal) terms and refer on the typology of warping distributions involved, while while E, G,
ν and t are the longitudinal, tangential, Poisson moduli and thickness, respectively, of each
cross-section element. The relevant loading vectors included in Eq. (D.1) can be expressed as:

q1k =

ˆ

C

[fs(s, z)Uk(s) + fy(s, z)Vk(s)] ds

P1k =

ˆ

C

∑
B

[FBs(s)Uk(s) + FByVk(s)] d

and

q2 =

[
qΩ

qW

]
; P2 =

[
PΩ

PW

]
(D.5a,b)
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being

qΩk =

ˆ

C

fz(s, z)Ωk(s)ds ; qWk =

ˆ

C

fz(s, z)Wk(s)ds (D.6a,b)

PΩk =

ˆ

C

FBz(s, z)Ωk(s)ds ; PWk =

ˆ

C

FBz(s, z)Wk(s)ds (D.6c,d)

with f(s, z) = fs(s, z)es(s) + fy(s, z)ey(s) + fz(s, z)ez(s) being forces per unit area acting on
the middle surface S and FB(s) = FBs(s)es(s) + FBy(s)ey(s) + FBz(s)ez(s) being forces per
unit length applied on the boundaries B = 0, L (i.e., on the mid-line C of the end cross-sections
at z = 0, L, respectively). Based on Eq. (D.1), the displacement-based GBT equations can be
obtained by performing the standard steps of calculus of variations (e.g., Berdichevsky, 2009),
obtaining:

[
TT
p TT

wp

] {
C

[
Tp

Twp

]
uIV +

[
CΩW

CWW

]
Tw w′′′+

+

(
FT Tp −D

[
Tp

Twp

])
u′′ −

[
DΩW

DWW

]
Tw w′ + q′2

}
+

+ TT
p

{
F

[
Tp

Twp

]
u′′ − Fw Tw w′ + B Tpu− q1

}
= 0 (D.7a)

−TT
w

{[
CWΩ CWW

] [ Tp

Twp

]
u′′′ + CWW Tw w′′+

+

(
FT Tp −

[
DWΩ DWW

] [ Tp

Twp

])
u′ −DWW Tw w + qW

}
= 0 (D.7b)

with corresponding boundary conditions terms to be applied at z = 0, L:

δu′T

([
TT
p TT

wp

] {
C

[
Tp

Twp

]
u′′ +

[
CΩW

CWW

]
Tw w′ + FT Tp u−P2

})
= 0 (D.8a)

δuT

(
−
[
TT
p TT

wp

] {
C

[
Tp

Twp

]
u′′′ +

[
CΩW

CWW

]
Tw w′′+

+

(
FT Tp −D

[
Tp

Twp

])
u′ −

[
DΩW

DWW

]
Tw w

}
−TT

p P1

)
= 0 (D.8b)

δwT

(
TT
w

{[
CWΩ CWW

] [ Tp

Twp

]
u′′ + CWW Tw w′ + FT Tp u−PW

})
= 0 (D.8c)
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In case of multi-component TWM, the partial shear interaction in both longitudinal and
transverse directions can be included by adopting the procedure outlined in Section 5.2. The
multi-component cross-section is assumed to be formed by Nm components linked together
by means of Nsc shear-deformable connectors. By denoting with Eα, Gα, να and tα the
longitudinal, tangential, Poisson moduli and thickness, respectively, of the α-th component
(α = 1, . . . , Nm) and being knL and knT the longitudinal and transverse shear elastic stiffens
of the n-th connector (n = 1, . . . , Nsc), structural matrices defined in Eq. Eq. (D.2) can be
rewritten as:

Be
hk =

Nm∑
α=1

Eαtα
1− ν2

α

ˆ

Cα

U ′h(s)U
′
k(s)ds+

Nsc∑
n=1

knT V̄
n
h V̄

n
k (D.9a)

Bf
hk =

Nm∑
α=1

Eαt
3
α

12(1− ν2
α)

ˆ

Cα

V ′′h (s)V ′′k (s)ds (D.9b)

DΩΩ
hk =

Nm∑
α=1

Gαtα

ˆ

Cα

[Uh(s) + Ω′h(s)] [Uk(s) + Ω′k(s)] ds+
Nsc∑
n=1

knLW̄
n
h W̄

n
k (D.9c)

DΩW
hk =

Nm∑
α=1

Gαtα

ˆ

Cα

[Uh(s) + Ω′h(s)]Wk(s)ds (D.9d)

CΩΩ
hk =

Nm∑
α=1

Eαtα
1− ν2

α

ˆ

Cα

Ωh(s)Ωk(s)ds ; CΩW
hk =

Nm∑
α=1

Eαtα
1− ν2

α

ˆ

Cα

Ωh(s)Wk(s)ds (D.9e,f)

CWW
hk =

Nm∑
α=1

Eαtα
1− ν2

α

ˆ

Cα

Wh(s)Wk(s)ds ; CWΩ
hk = CΩW

kh (D.9g,h)

Cf
hk =

Nm∑
α=1

Eαt
3
α

12(1− ν2
α)

ˆ

Cα

Vh(s)Vk(s)ds ; DWΩ
hk = DΩW

kh (D.9i,j)

DWW
hk =

Nm∑
α=1

Gαtα

ˆ

Cα

Wh(s)Wk(s)ds ; Dt
hk =

Nm∑
α=1

Gαt
3
α

3

ˆ

Cα

V ′h(s)V
′
k(s)ds (D.9k,l)

FΩ
hk =

Nm∑
α=1

ναEαtα
1− ν2

α

ˆ

Cα

U ′h(s)Ωk(s)ds ; FW
hk =

Nm∑
α=1

ναEαtα
1− ν2

α

ˆ

Cα

U ′h(s)Wk(s)ds (D.9m,n)

F f
hk =

Nm∑
α=1

ναEαtα
12 (1− ν2

α)

ˆ

Cα

V ′′h (s)Vk(s)ds (D.9o)



Appendix D. Displacement-based GBT equations and relevant boundary conditions 167

while load vectors can be expressed as:

q1k =
Nm∑
α=1

ˆ

Cα

[fs(s, z)Uk(s) + fy(s, z)Vk(s)] ds (D.10a)

qΩk =
Nm∑
α=1

ˆ

Cα

fz(s, z)Ωk(s)ds (D.10b)

qWk =
Nm∑
α=1

ˆ

Cα

fz(s, z)Wk(s)ds (D.10c)

P1k =
Nm∑
α=1

ˆ

Cα

∑
B

[FBs(s)Uk(s) + FByVk(s)] ds (D.10d)

PΩk =
Nm∑
α=1

ˆ

Cα

∑
B

[FBz(s, z)Ωk(s)] ds (D.10e)

PWk =
Nm∑
α=1

ˆ

Cα

∑
B

[FBz(s, z)Wk(s)] ds (D.10f)
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