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ABSTRACT 

 Chronic lymphocytic leukaemia (CLL) is a common adult leukaemia, characterised by 

the accumulation of clonal B lymphocytes in peripheral blood, bone marrow and lymphoid 

tissues. CLL accounts for approximately 16 to 30% of leukaemia cases in western countries, 

which contrasts with a low incidence of CLL in Asian countries and in Asian immigrants to 

western countries.  

 An inherited risk for developing chronic lymphocytic leukaemia (CLL) is well 

documented in genetic studies, and familial aggregation of CLL cases has consistently been 

demonstrated in large registry-based studies. However, genetic linkage studies of families 

segregating CLL have not detected any high-risk susceptibility genes against a background of 

numerous low-risk genes. To detect patterns of multiple low-risk loci, genome-wide 

association studies (GWAS) have used large numbers of cases and controls and dense-

coverage single nucleotide polymorphism (SNP) arrays. These studies have identified risk loci 

that account for ≈19% of the heritability of CLL, suggesting that some of the remaining CLL risk 

may be associated with non-DNA sequence modifications, including inherited epigenetic 

changes, which regulate oncogenes and tumour suppressor genes.  

 In order to identify potential inherited changes in gene expression, high-resolution 

DNA microarrays and mass spectrometry (MS) were used to identify differentially abundant 

mRNA and proteins in cases of familial CLL (F-CLL) and monoclonal B lymphocytosis (F-MBL), 

and compared to unaffected relatives, sporadic CLL (S-CLL) and controls. In addition, mRNA 

and protein levels were studied in familial and sporadic CLL patients with mutated and 

unmutated immunoglobulin heavy chain variable genes (IGH). An advantage of family studies 

compared to association studies of unrelated subjects is that background genetic variation is 
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to some extent controlled as a function of the degree of relationship, increasing the 

contribution of epigenetic and/or environmental modifiers to variation in phenotype. 

 Key findings were that mRNA and protein profiles clearly segregated clonal B 

lymphocytes in S-CLL from clonal B lymphocytes in F-MBL and F-CLL (combined as familial-

lymphoproliferative disease; F-LPD). These profiles were distinct from those found in normal 

B lymphocytes in unaffected family members and unrelated controls. Furthermore, increasing 

upregulation or downregulation of both F-LPD specific genes and genes common to S-CLL 

occurred in association with progression from normal familial B lymphocytes through F-MBL 

to F-CLL. 

 Using the GeneChip® Human Transcriptome 2.0 Array, 1893 mRNAs were identified 

that segregated F-LPD from S-CLL and healthy controls. Based on false discovery rate (FDR) p-

values, the highest ranked upregulated genes in F-LPD were LEF1 (p=9.69E-09), ROR1 

(p=2.54E-08), ABCA6 (p=2.54E-08), and MIR4524A (p=4.80E-07); and downregulated genes, 

SH3RF1 (p<0.0001), PLD4 (p<0.0001), FAM135A (p<0.0001) and SNX22 (p<0.0001).  

 Analysis of protein levels using a combination of quadrupole, ion trap and Orbitrap 

mass spectrometer analysis identified 4672 proteins, that after normalisation to 6 control 

samples, segregated F-LPD and S-CLL using unsupervised hierarchical clustering based on 

protein level patterns. Differential abundance analysis of grouped data for F-LPD and S-CLL 

proteins was used to select proteins for further analysis by semi-supervised hierarchical 

clustering. Thirty proteins were differentially expressed between F-LPD and S-CLL, with the 

highest significance for upregulation, HACD3 (fold change 2.64; t-test p=0.001) and MIF (fold 

change 3.9; p=0.003), and downregulation, SERPINH1 (fold change -2.6; p=0.0003). CYBB 

protein expression (fold change 3.2; p=0.04) correlated with upregulated gene expression 
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(FDR p=0.02).  

 The progression from normal B lymphocytes to MBL and CLL, showed progressive 

upregulation of the mRNAs LEF1, C11orf80, ROR1, METTL8, PARP3, INPP5F and DFNB31; while 

SMAD3, GRASP and RASGEF1B were progressively downregulated. The mRNA for TBC1D10C 

was downregulated in F-MBL before becoming upregulated in F-CLL. Of particular interest 

were 3 genes (LEF1, ROR1 and GRASP) that were differentially expressed in both the F-LPD 

versus S-CLL comparison, and in association with progression from normal B cells to F-MBL 

and F-CLL. These results are consistent with the proposal that inherited dysregulation of these 

genes contributes to driving malignant progression of F-LPD. These differential profiles of 

mRNAs and proteins between categories of F-LPD should be useful for rapid diagnosis, and 

provide a basis for understanding the mechanisms that drive F-MBL and F-CLL. 

 In addition to predicting prognosis in UM-CLL compared to M-CLL, studying biological 

differences between the 2 subtypes may provide insights into the pathogenesis of CLL, and 

identify genes and proteins for targeted therapies. Using unsupervised hierarchical clustering, 

582 mRNAs were differentially expressed between controls, and M-CLL and UM-CLL cases 

containing F-CLL and S-CLL. Although controls and M-CLL cases clustered, UM-CLL did not 

completely segregate. To identify mRNAs that were differentially expressed based on IGH 

mutation status and normalise for genes differentially expressed as a result of inter-individual 

B lymphocyte variation, mRNAs in M-CLL and UM-CLL cases were compared after both groups 

were normalised to controls (t-test p-value < 0.05). Nineteen genes were differentially 

expressed between M-CLL and UM-CLL and some of these genes have been functionally 

characterized. The majority of the identified genes in this study were upregulated in UM-CLL 

versus M-CLL. Of these mRNAs, NRIP1 and CERS6 segregated individual M-CLL, UM-CLL cases 

and controls (FDR p < 0.05) 
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  To identify mRNAs differentially expressed based on IGH mutation status in family 

cases only and control for mRNAs that were differentially expressed as a result of inter-

individual variation, mRNAs were compared between (A) controls and M-LPD, and (B) M-LPD 

and UM-CLL. There were 84 mRNAs differentially expressed between M-LPD and UM-CLL (t-

test p < 0.05; fold change > 2), that did not differentiate both groups from controls. Semi-

supervised hierarchical clustering using these genes segregated controls, M-LPD and UM-CLL. 

 Compared to mRNA studies, protein expression studies have found higher percentages 

of differentially expressed proteins in M-CLL and UM-CLL, however these studies have not 

normalised protein abundance in CLL cases to control samples or used datasets enriched with 

familial cases. Mass spectrometer analysis in the current study, identified 5100 proteins which 

were normalised to the 6 control samples. Twelve proteins were differentially expressed 

between M-CLL and UM-CLL cases normalised to controls, however at an individual case level, 

these proteins did not completely segregate M-CLL from UM-CLL, with one UM-CLL case 

segregating with M-CLL cases. 

 Although family studies of mRNA and protein levels in M-CLL and UM-CLL reported in 

Chapter 6 were limited by small sample sizes, the results have validated findings from previous 

studies and identified a number of new genes and proteins that may be used for 

prognostication or as targets for novel therapies. 
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THESIS STRUCTURE 

This thesis consists of seven chapters: Chapter 1 reviews the evidence for familial 

predisposition to CLL, the genetic risk factors for neoplastic transformation, mutations 

associated with CLL using genome-wide association studies, and proteomic studies; Chapter 2 

details the materials and methods used in this thesis; Chapter 3 reports the results of a study 

to determine if F-LPD B lymphocytes contained unique mRNA signatures compared to B 

lymphocytes from unaffected family members and sporadic CLL (S-CLL) cases; Chapter 4 

reports the results of a study to determine if F-LPD B lymphocytes contained unique protein 

signatures compared to B lymphocytes from unaffected family members and S-CLL cases; 

Chapter 5 reports the results of a study to identify changes in mRNAs associated with 

progression of normal B lymphocytes through pre-malignant MBL cells to malignant CLL; 

Chapter 6 reports the results of a study to determine whether UM-CLL B lymphocytes contain 

unique mRNA and/or protein signatures compared to M-CLL, and the results of a study to 

identify mRNAs differentially expressed based on IGH mutation status and partially controlled 

for germline genetic factors, between controls, M-LPD, and UM-CLL in familial cases; Chapter 

7 concludes the thesis by summarising the main results and discussing future directions for 

identifying additional candidate genes and proteins associated with the development and 

progression of F-CLL and S-CLL using a combination of mRNA and protein profiling. 
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CHAPTER-1:  INTRODUCTION 

1.1. Leukaemia 

 Leukaemias are a heterogenous group of haematologicial neoplasms, classified as 

either lymphoid or myeloid based on the origin of the malignant cell clone. Lymphoid 

leukaemias are subclassified into T-cell, B-cell and natural killer- (NK) cell leukaemias. Myeloid 

leukaemias, which originate in a single myeloid lineage or a pluripotent progenitor cell, can 

affect single or multiple granulocyte cell types, including neutrophil, basophil and eosinophil, 

monocyte/ macrophage, mast cell, erythrocyte, and megakaryocytic lines (Vardiman et al., 

2009). In addition to cell of origin, leukaemias are classified according to rate of disease 

progression, broadly divided into acute and chronic. In acute leukaemia, the bone marrow 

fails to produce mature blood cells due to a combination of failure of cell differentiation, and 

rapid accumulation of neoplastic cells. Chronic leukaemias progress over a longer period, 

leading to increased numbers of differentiated cells in the peripheral blood. Chronic 

leukaemia is the most prevalent form of adult leukaemia, however, treatment is commonly 

delayed and cure remains challenging (Mughal et al., 2006). 

1.2. Lymphoid Neoplasms 

 There is significant overlap between the malignant cell of origin in each of the 

lymphoid neoplasms, which are broadly classified as lymphoma and leukaemia (Swerdlow et 

al., 2016), however, the two conditions are distinguished clinically by the principle site/s 

where malignant cells accumulate. Leukaemia is characterised by accumulation of malignant 

cells in the peripheral blood and bone marrow, whereas in lymphomas, malignant lymphoid 

cells accumulate in lymph nodes and other lymphoid tissues. The mature lymphoid neoplasms 

are a heterogeneous group of neoplasms, which are subdivided into mature B-cell neoplasms, 
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mature T-cell and NK-cell neoplasms, Hodgkin lymphoma and post-transplant 

lymphoproliferative disorders (Swerdlow et al., 2016) (Swerdlow et al., 2017).The aggressive 

B-cell lymphoma group contains precursor B-cell lymphoblastic leukaemia/lymphoma, and 

lymphomas categorized as mature B cell neoplasms, including diffuse large B-cell lymphoma, 

blastic (blastoid/pleomorphic) mantle cell lymphoma, Burkitt lymphoma, and high-grade B cell 

lymphoma (Arber et al., 2016, Ott, 2017). The distinction between B-cell acute lymphoblastic 

leukaemia and lymphoblastic lymphoma is based on the presence of ≥ 20% blasts in the bone 

marrow or peripheral blood (Mughal et al., 2006) (Vardiman et al., 2009).  

 Chronic lymphocytic leukaemia is classified as a mature B-cell lymphoid neoplasm 

(Swerdlow et al., 2016). The diagnosis of CLL requires an absolute malignant B lymphocyte 

count of ≥ 5 x 109/L which co-express CD5 and CD23 on immunophenotyping (Hallek et al., 

2008). Patients who present with lymphadenopathy and malignant B lymphocytes 

immunophenotypically identical to CLL, but with a peripheral blood lymphocyte count < 5 x 

109/L, had been considered by the National Cancer Institute (NCI) criteria to have small 

lymphocytic lymphoma (SLL) (Hallek et al., 2008) . However, the World Health Organization 

classifies CLL together with small lymphocytic lymphoma (SLL) as CLL/SLL (Swerdlow et al., 

2016). Patients with CLL and SLL share similar genetics, history and complications, and the 

clinical management of both are similar. Virtually all CLL cases are preceded by a monoclonal 

B-cell lymphocytosis (MBL) in the peripheral blood of < 5 x 109/L with the phenotype of CLL or 

atypical CLL B cells in the absence of other features of lymphoma (Swerdlow et al., 2016). 

 Together, B-cell lymphomas and CLL/SLL are the most common haematological 

malignancies in western countries (Siegel et al., 2015), and are considered to have a significant 

inherited component distinct from syndromes such as Fanconi anaemia, which have well-

defined predisposition genes (Segel and Lichtman, 2004). There are likely to be similarities and 
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differences in genetic risk factors between lymphoma subtypes and CLL/SLL, and the 

frequency of familial CLL has generated focus on this subtype to identify susceptibility genes. 

1.3. Chronic Lymphocytic Leukaemia 

Epidemiology 

 Chronic lymphocytic leukaemia is the most common leukaemia in western countries, 

representing ≈ 16 to 30% of all cases (Howlader N, 2017). A disease of older adults, CLL has a 

median age at diagnosis of 72 years and is more common in males (Inamdar and Bueso-Ramos, 

2007) (Ruchlemer and Polliack, 2013). A genetic predisposition to the disease is further 

suggested by a low incidence of CLL in Asian countries, and in Asian immigrants to western 

countries (Dighiero and Hamblin, 2008) (Crowther-Swanepoel and Houlston, 2010). In a 

comparison population study of leukaemia incidence rates among Asian-American 

immigrants, particularly from Japan and China, compared to US white residents, Asian-

Americans had lower incidence rates of CLL (Pang et al., 2002). Lower incidence has also been 

reported among African-American, Hispanic and Middle Eastern countries, except Israel, 

which has a high incidence rate of CLL, similar to North America and Europe. The highest 

incidence of B-CLL has been reported in Russian populations, specifically Latvian (Ruchlemer 

and Polliack, 2013).  

Evidence for Familial Predisposition 

 Several lines of evidence suggest that a family history of CLL is associated with an 

increased risk that is not confounded by non-genetic risk factors. Studies that have found a 

familial predisposition to CLL are summarized below. 
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1.3.2.1. Twin Studies 

 Comparisons between monozygotic (MZ) twins and dizygotic (DZ) twins are used to 

determine the degree of genetic and environmental influence on a specific trait, and the 

concordance of CLL between MZ and DZ pairs of twins provides information on whether a 

familial pattern is due to hereditary or environmental influences. Although there have been 

case reports of only 5 MZ twins (Brok-Simoni et al., 1987, Cuttner, 1992, Eriksson and 

Bergstrom, 1987, Guasch, 1954, Lynch et al., 2002), in a study of 44 788 pairs of twins listed in 

the Swedish, Danish, and Finnish twin registries there was an excess of concordant MZ twins 

compared with DZ twins for leukaemia, and heritability was estimated to be 21% (Lichtenstein 

et al., 2000). Although this study had not examined the risk of leukaemia by specific subtype, 

it is likely that the familial risk of leukaemia reflected an increased risk of CLL since acute 

lymphoblastic and myeloid leukaemias are the primary potential confounding diagnoses, but 

do not display increased sibling risks (Albright et al., 2012). 

1.3.2.2. Familial Aggregation 

 Multiple-case CLL families provide some of the strongest evidence for inherited 

susceptibility. The majority of reported families have been nuclear clusters with inherited 

disease compatible with the full range of genetic models of predisposition (Goldin et al., 2003, 

Sellick et al., 2005b, Ng et al., 2006), and large multi-generational families, such as the family 

studied in this current study, can potentially provide insight into the most likely model of 

inherited predisposition (Fuller et al., 2008).  

 CLL families are defined as having ≥ 2 related family members with CLL, and a familial 

CLL case is an affected subject who has ≥ 1 relative/s with CLL (Slager and Zent, 2014). The 

designs used to study these families have included case-control, cohort, and registry-based 
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studies. Although these studies cannot separate the roles of shared genetics from a shared 

environment; there is a lack of a clear relationship between CLL and exposure to 

environmental factors (Hatch and Cardis, 2017, Chang et al., 2005). 

1.3.2.3. Case-Control Studies 

 The largest case-control study to date was a pooled analysis of 17 471 NHL cases, which 

included 2 440 CLL/SLL, and 23 096 controls from 20 studies in the International Lymphoma 

Epidemiology Consortium (Morton et al., 2014). Among family history variables, the greatest 

heterogeneity among NHL subtypes was observed for a family history of CLL/SLL, which 

increased risk 2.41-fold. 

 A large population-based case–control study of NHL, which linked the Swedish Multi-

Generation Register and the Swedish Cancer Register, found an elevated risk of CLL with a 

family history of CLL [odds ratio (OR) = 6.3] (Chang et al., 2005). This study used validated, 

registry-based family data, and identified no associations between NHL risk and 

environmental exposures.  

 These studies support a familial predisposition to CLL; however, the case-control study 

design is susceptible to several types of bias (Guyatt et al., 2011), including under- or over-

matching of participants, and recall bias; in particular, that cases and controls may 

differentially report a family history of CLL. 

1.3.2.4. Cohort Studies 

 Cohort studies overcome some of the limitations of a case-control design (Grimes and 

Schulz, 2002). The 3 cohort studies identified for CLL were all retrospective in design. In 1975 

Gunz et al. first reported a familial relative risk of 2.4 for CLL in an Australia population, which 

was based on a survey of 909 families ascertained through leukaemia cases (Gunz et al., 1975). 
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A second study in a Tasmanian population analysed the family histories of cases diagnosed 

over a 9 year period, however LPD was not subclassified into CLL (Giles et al., 1984). In a third 

study, the familial relative risk of CLL was studied using the Utah Population Database by 

identifying all cases of CLL in first-degree relatives (Goldgar et al., 1994). Observed values were 

compared with expected based on cohort-specific internal rates calculated from 399 786 

relatives of all individuals in the database known to have died in Utah. The relative risk of CLL 

in first-degree relatives reported in this study was 5.7 (Goldgar et al., 1994). 

1.3.2.5. Registry Studies of Familial Risk 

 The most comprehensive registry statistics available for familial aggregation is from a 

study of 9,717 CLL cases and 38,159 controls ascertained through the Swedish Cancer Registry 

(Goldin et al., 2009b). This study compared CLL risk in first-degree relatives of lymphoma 

patients with risk in relatives of matched population controls. In this study, first degree 

relatives of affected individuals showed an 8.5-fold increased relative risk of CLL (Goldin et al., 

2009a). 

Monoclonal B-Cell Lymphocytosis (MBL) in S-CLL and F-CLL 

 Following the introduction of sensitive monoclonal antibody panels for use in flow 

cytometry, small populations of B cells expressing the same immunophenotype as B-CLL cells 

were found in a proportion of normal subjects (Rawstron, 2002). Furthermore, monoclonality 

was demonstrated using immunoglobulin light chain restriction and, in a proportion of cases, 

IGH restriction could be established by gene rearrangement studies (Rawstron, 2002). A 

monoclonal B lymphocytosis (MBL) was found in 3.5% of 910 normal individuals > 40 years of 

age using 4 colour flow cytometry analysis of CD19/CD5/CD79b/CD20 expression followed by 

analysis of kappa and light chain expression. IGH PCR performed on 20 of 32 cases detected a 
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monoclonal rearrangement in 8 of 12 amplifiable samples, which was similar to the detection 

rate in CLL (Rawstron, 2002). 

 Monoclonal B lymphocytosis precedes almost all cases of CLL/ SLL (Landgren et al., 

2009), and is subclassified into “low-count” MBL, defined as a peripheral blood monoclonal 

population < 0.5 × 109/L, and “high-count” MBL (Swerdlow et al., 2016). Low count MBL has a 

low risk of progression to CLL and, based on current evidence, does not require routine follow-

up outside of standard medical care (Vardi et al., 2013). However, high count MBL has similar 

phenotypic and molecular features to early stage CLL and requires yearly follow-up (Vardi et 

al., 2013). 

 Monoclonal B lymphocytosis is reported in 13-18% of first degree relatives of F-CLL 

patients compared to 3-5% in the general population (Marti et al., 2003, Rawstron, 2002, 

Rawstron et al., 2002). These findings suggest that MBL is a marker of inherited predisposition 

to CLL. In this present study, it is proposed that germ line variation in genes or gene expression 

are acting early in neoplastic transformation of B lymphocytes, resulting in an MBL, and 

subsequent somatic oncogenic events are required before overt CLL develops. 

Genetic Risk Factors 

 Molecular studies have shown that multiple genetic mutations are required for 

neoplastic transformation. Genetic mutations can either be inherited in the germline or arise 

somatically. A mutation within a gene that confers a selective growth advantage, promoting 

carcinogenesis, is termed a “driver mutation”, while those that do not provide a growth 

advantage are “passenger mutations” (Vogelstein et al., 2013). Driver mutations are often 

somatic in origin, however, there are clear examples of germline driver mutations, including 

BRCA1 and BRCA2 in familial breast and ovarian cancer and TP53 mutations in Li-Fraumeni 
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syndrome (Berchuck et al., 1998, Malkin et al., 1990). Driver mutations often occur in protein-

coding regions of genes however it is increasingly recognised that non-coding mutations, such 

as splice-site or promoter mutations, can function as driver mutations (Sveen et al., 2016). 

 The development of CLL is likely to be similar to other cancers, in that a subset of cases 

occurs in individuals with germline mutations required for neoplastic transformation. In the 

majority of cancers, these genes are altered at the cellular level by random mutations and 

malignant transformation depends upon multiple genetic alterations (Knudson, 1971). This 

present study explores the proposal that alterations involved in the transformation of normal 

B lymphocytes to malignant CLL cells affect mRNA and protein expression, which in addition 

to DNA sequence variation, may result from epigenetic imprinting transmitted from 

generation to generation, or mutated transcription factors or promoters. The genetic 

contribution of DNA sequence variation to CLL risk has been studied using genetic linkage 

studies and genetic association studies, which includes candidate gene studies and GWAS, and 

it is increasingly recognised that mutations affecting gene regulation, including transcription 

factor binding and epigenetic modification, are involved in acquired and inherited 

susceptibility to neoplastic transformation of cells (Gazzoli et al., 2002, Esteller et al., 2001, 

Hedenfalk et al., 2001).  

1.3.4.1. Genetic Linkage Studies 

 Clusters of cases in families have provided an indication of the inherited basis of CLL, 

and genetic linkage-based analyses have been performed to identify susceptibility genes for 

further study (Table 1-1). However, genetic linkage studies have been unable to detect any 

significant loci (Fuller et al., 2008, Raval et al., 2007), and the presence of many collaborating, 

low risk genes is likely to have limited the usefulness of this approach.  
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 To address the rarity of very large multigenerational families, researchers have 

combined data from 2-4 affected subjects in multiple families (Goldin et al., 2003, Sellick et 

al., 2005b, Sellick et al., 2007, Ng et al., 2006, Ng et al., 2007b). However, since it is unlikely 

that each family have had the same group of susceptibility genes which map to the same 

disease loci, linkage signals are likely to have conflicted, resulting in an overall reduction in 

LOD scores. Consequently, most studies have been limited by weak evidence for linkage, and 

the identification of many loci has not shown concordance between studies (Table 1-1). Two 

loci at chromosome bands 11p11 and 13q21 have been supported by significant linkage 

scores; however no genes at either position have been implicated in the pathogenesis of CLL 

(Sellick et al., 2005b). (Table 1-1) 
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Table 1-1 Loci of maximum linkage in CLL genetic linkage studies 

No. 

Families 

NHL 

(n) 

CLL  

(n) 

Control 

(n) 

Max. 

LOD 

Chromosome/ 

Gene 

Max. 

NPL 

Chromosome/ 

Gene 
Reference 

 

28 0 63 92 1.32 1p22 - - (Ng et al., 2006)  

206 44 304 0 - - 2.84 2q22 (Sellick et al., 2007)  

28 0 63 0 - - 1.63 3q22 (Ng et al., 2006)  

206 44 304 0 - - 2.37 5q21 (Sellick et al., 2007)  

206 44 304 0 - - 2.44 6p22 (Sellick et al., 2007)  

206 44 304 0 - - 2.00 7q32 (Sellick et al., 2007)  

1 0 6 0 - - - 9q21 (Raval et al., 2007)  

115 16 228 0 2.78 11p11 3.14 11p11 (Sellick et al., 

2005b) 

 

28 0 63 92 - - 2.81 12q24 (Ng et al., 2006)  

28 0 63 92 - - 1.78 13q21 (Ng et al., 2006)  

6 0 19 44 1 13q22 - - (Ng et al., 2007b)  

28 0 63 92 - - 2.78 17p13 (Ng et al., 2006)  

206 44 304 0 - - 2.21 18q21 (Sellick et al., 2007)  

1 0 4 18 0.8 2q37 2.24 14q24-31 (Fuller et al., 2008)  

NHL; non-Hodgkin lymphoma, CLL; chronic lymphocytic leukaemia, LOD; logarithm of odds scores, NPL; 
nonparametric linkage  
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1.3.4.2. Genetic Association Studies 

 Following the development of high-throughput and relatively inexpensive genotyping 

technologies, case-control studies became the most widely used form of genetic association 

study, comparing sequence variation between germline DNA in a healthy control group and a 

CLL group. 

 The two methods used in genetic association are candidate gene studies and GWAS. 

Candidate-gene studies focus on a gene or set of genes that have biological plausibility in the 

pathophysiology of the CLL. In contrast, GWAS have no a priori assumptions and investigate 

for associations across the entire genome. 

1.3.4.2.1. Candidate Gene Studies 

 Candidate genes for association studies have predominantly been selected for 

evaluation in association studies based on B lymphocyte and CLL biology, or because of roles 

in immune function, cell cycle, apoptosis, or DNA repair (Table 9-1). The majority of studies 

have used a limited number of genetic markers in a small number of genes and few 

associations have been replicated. TNF was one of the first genes to be studied following 

identification of an association between CLL and the TNF-α –308 promoter SNP, which was 

associated with increased TNF-α levels (Demeter et al., 1997). However, this association was 

not replicated in subsequent studies. A number of other candidate genes have similarly failed 

to show significant associations in replication studies, including P2RX7, MTHFR, ARLTS1, BAX 

and xenobiotic-metabolizing phenotypes. (Table 9-1) 

 SNPs in the co-stimulatory molecules CTLA-4, CD28 and ICOS have been found to be 

associated with CLL (Suwalska et al., 2008). An increased frequency of the CTLA-4 promoter 

SNP, –319C>T, which upregulates the expression of CTLA-4, was reported however not 
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replicated. Similarly, an association has been demonstrated but not replicated between CLL 

risk and CD28 17+3 T>C (Suwalska et al., 2008). A significant association between CLL and CD38 

SNPs that increase B cell CD38 mRNA and percentage of CD38 positive B cells has been found, 

however requires validation (Jamroziak et al., 2009). Moreover, it should be noted that the 

majority of CLL candidate gene studies listed in (Table 9-1) have not been validated in 

independent studies. 

 Low sample sizes have limited the power to reliably identify genes that confer small 

risks for development of CLL. Sample sizes in the majority of CLL candidate gene association 

studies have usually not included greater than one to two hundred cases and controls, with 

the exception of Rudd et al.,(Rudd et al., 2006) Broderick et al.,(Broderick et al., 2008) 

Crowther et al.,(Crowther-Swanepoel et al., 2009) and Sellick et al.,(Sellick et al., 2008c).  

 As genotyping technologies increased in throughput and decreased in cost, disease 

pathway and multiple gene association studies were performed (De Roos et al., 2006, Hill et 

al., 2006, Shen et al., 2006, Nieters et al., 2006, Wang et al., 2006c, Wang et al., 2006b, Wang 

et al., 2006a, Lan et al., 2007, Lim et al., 2007, Cerhan et al., 2007, Enjuanes et al., 2008, Ennas 

et al., 2008, Gra et al., 2008, Ganster et al., 2009, Liang et al., 2009, Rudd et al., 2006) (Table 

9-2), and promising candidate genes were identified in several pathways including apoptosis, 

DNA repair, immune response, oxidative stress and xenobiotic-metabolizing enzyme 

pathways. This focused genome-wide approach was used in an analysis of 865 candidate 

genes in 992 patients and 2707 controls to identify associations between susceptibility to CLL 

and DNA damage-response and cell-cycle pathway genes including ATM, CHEK2, BRCA2 and 

BUB1B (Rudd et al., 2006). The most significant finding was an OR of 2.28 using a dominant 

model of inheritance for variants in ATM (Rudd et al., 2006). In another large study using SNPs 

selected from genes involved in cancer biology, associations were found for gene variants in 
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CCNH, APAF1, IL16, CASP8, NOS2A, and CCR7 (Enjuanes et al., 2008). 

1.3.4.3. Genome Wide Association Studies 

 Common genetic variations are estimated to comprise 46 - 59% of CLL heritability 

(Berndt et al., 2013, Di Bernardo et al., 2013). To detect low-risk loci located across the 

genome, genome-wide association studies (GWAS) of CLL have used large numbers of cases 

and controls and a dense coverage of SNPs (Di Bernardo et al., 2008, Speedy et al., 2014, Slager 

et al., 2010, Slager et al., 2011, Berndt et al., 2013, Law et al., 2017, Crowther-Swanepoel et 

al., 2010). (Table 1-2). 

 The first CLL GWAS was conducted in 505 CLL cases, 155 of which were F-CLL cases, 

potentially enriching the dataset for genetic susceptibility, and 1438 controls from the British 

1958 Birth Cohort (Di Bernardo et al., 2008). This study provided the first evidence that 

multiple low-risk variants predisposed to developing CLL. Six loci were identified and validated 

on chromosomal bands 6p25.3, 11q24.1, 15q23, 2q37.1, 2q13, and 19q13.32 (Di Bernardo et 

al., 2008). Five of these loci, excluding the locus on 19q13.32, were subsequently validated in 

an independent study (Slager et al., 2010). A number of candidate genes are located at or 

close to these regions, including the interferon regulatory factor 4 (IRF4), GRAM domain 

containing 1B (GRAMD1B), the nuclear body protein SP140 (SP140), and acyl-coenzyme A 

oxidase-like (ACOXL) (Slager et al., 2010). IRF4 is a key regulator of lymphocyte development 

and proliferation, and changes in its expression have been previously linked to the 

development of CLL (Shukla et al., 2013). Furthermore, a dose relationship was found between 

IRF4 mRNA in EBV-transformed lymphocytes and its SNP genotype, consistent with a model 

in which the causal variant contributes to risk by preventing transition of memory B cells 

through decreased IRF4 expression (Di Bernardo et al., 2008). 
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 A second GWAS, with validation in 4 additional series totalling 2,503 cases and 5,789 

controls, identified 4 additional risk loci at 2q37.3 (FARP2), 8q24.21, 15q21.3, and 16q24.1 

(Crowther-Swanepoel et al., 2011). In addition to these 4 loci, there was suggestive evidence 

for disease loci at 15q25.2 and 18q21.1, and a validation study using 1428 cases and 1920 

controls found an association between these 2 loci and CLL risk (Crowther-Swanepoel et al., 

2011). 

 To identify risk loci specific to familial CLL, a third GWAS used a case group enriched 

with F-CLL and F-MBL cases (Slager et al., 2011). This study of 407 CLL cases, included 102 with 

a family history of CLL, and 296 controls. Four SNPs were identified that met genome-wide 

statistical significance within the IRF8 (interferon regulatory factor 8) gene, located at the 

previously identified 16q24.1 locus. Within F-CLL cases, a susceptibility locus was identified at 

6p21.3 (Slager et al., 2011), which includes the HLA-DQA1 and HLA-DRB5 genes. Within the 

CLL families, 60 F-MBL cases were evaluated for associations with the initially reported loci, 

and significant associations were found for 2q37.1 and 6p21.3 (Slager et al., 2011). 

 Following 3 GWAS and 1 case control study (Crowther-Swanepoel et al., 2010, 

Crowther-Swanepoel et al., 2011, Di Bernardo et al., 2008, Slager et al., 2011), 13 loci 

associated with risk of CLL had been identified. Using genotyping data from these studies and 

a 4th GWAS of CLL using cases and controls from 22 studies of non-Hodgkin lymphoma, a meta-

analysis was performed on 3100 CLL cases and 7667 controls (Berndt et al., 2013). This study 

found associations with 9 loci located at 10q23.31 (ACTA2/FAS), 18q21.33 (BCL2), 11p15.5 

(C11orf21), 4q25 (LEF1), 2q33.1 (CASP10/CASP8), 9p21.3 (CDKN2B-AS1), 18q21.32 (PMAIP1), 

15q15.1 (BMF), 2p22.2 (QPCT), and one independent SNP in an established locus at 2q13 

(ACOXL/BCL2L11). Several of these loci are located in or near genes involved in regulating 

apoptosis including FAS, BCL2, and phorbol-12-myristate-13-acetate-induced protein 1 
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(PMAIP1 or NOXA). NOXA has been identified as a critical factor for B cell expansion after 

antigen triggering and suppression in lymph node environments has been associated with 

persistence of B-CLL (Wensveen et al., 2012) (Berndt et al., 2013). The B-cell lymphoma-2 

modifying factor (BMF) at 15q15.1 has also been implicated in apoptosis, binding BCL-2 

protein, and to have a role in regulating growth and survival in normal B cells and B-CLL cells 

(Morales et al., 2004). 

 The most recently published GWAS and meta-analysis, comprised 1,739 CLL cases and 

5,199 controls with validation in 1,144 CLL cases and 3,151 controls (Speedy et al., 2014). 

Associations were found for 3q26.2 (MYNN), 4q26 (CAMK2D), 6q25.2 (IPCEF1) and 7q31.33 

(POT1), and two previously established loci within 5p15.33 (CLPTM1L and TERT) and 8q22.3 

(ODF1) (Speedy et al., 2014). Telomerase (TERT1), which synthesises the telomere ends of 

linear chromosomes (Morin, 1989), has been implicated in cancer cell pathogenesis (Hahn et 

al., 1999), and the protection of telomeres protein 1 (POT1) functions to maintain telomeres, 

regulate telomere lengths and stabilize chromosome ends. POT1 somatic point mutations 

have been demonstrated in 3.5% of CLL cases and 9% of UM-CLL (Ramsay et al., 2013). 

 To date, GWAS have identified 30 risk variants at 26 different regions of the genome, 

however these account for only an estimated 19% of CLL heritability (Speedy et al., 2014). This 

suggests that a proportion of the remaining inherited CLL risk may be associated with non-

DNA sequence-linked heritable information, including epigenetic modifications, which have 

been found to regulate oncogenes and tumour suppressor genes in a number of hereditary 

cancers (Gazzoli et al., 2002, Esteller et al., 2001). 
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Table 1-2. Summary of genome wide association studies (GWAS) in CLL 

CLL (n) 
Controls 

(n) 
Markers Loci Gene/Notes Reference 

1529 3115 299 983 2q13 (p=2.36x10-10) 

2q37.1(p=5.40x10-10) 

6p25.3 (p=1.91x10-20) 

11q24.1 (p=3.78x10-12) 

15q23 (p=4.54x10-12) 

19q13.32 (p=3.96x10-9) 

ACOXL 

SP140 

IRF4 

50kb telomeric to 

GRAMD1B 

PRKD2 

(Di 

Bernardo 

et al., 

2008) 

2503 5789 299 983 2q37.3 (OR=1.39; p=2.11x10-9) 

8q24.21 (OR=1.26 ; p=7.84x10-10) 

15q21.3 (0R=1.36 ; p=4.74x10-7) 

16q24.1 (OR=1.22 ; p=3.60x10-7) 

FARP2 

Locus with no genes 

NEDD4 and RFX7 

IRF8 

(Crowther

-

Swanepoe

l et al.)  

407 296 934 968 16q24.1 (OR= 1.3-1.8, combined P values < 

3.37 x 10-8) 

6p21.3 (OR= 1.6, combined P value= 6.92 x 10-

9). 

IRF8 

 

HLA-DQA1 and HLA-

DRB5 

(Slager et 

al., 2011) 

1,739 

1,144 

(validati

on) 

5,199 

3,151 

(valida

tion) 

450,000 3q26.2 (P = 1.74 × 10−9) 

4q26 (P = 3.07 × 10−9) 

6q25.2 (= 1.50 × 10−10) 

7q31.33 (P = 3.40 × 10−8) 

5p15.33 (P = 1.72 × 10−7) 

8q22.3 (P = 2.90 × 10−9). 

MYNN 

CAMK2D 

IPCEF1 

POT1 

 

CLPTM1L and TERT 

ODF1 

(Speedy et 

al., 2014) 
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1.3.4.4. Combined Molecular Studies 

 Another strategy used to identify susceptibility loci in CLL families has been to combine 

epigenetic, genetic and proteomic studies. This approach identified downregulation of death-

associated protein kinase 1 (DAPK1), as a susceptibility gene in a CLL family and in sporadic 

CLL patients (Raval et al., 2007).  

 DAPK1 was initially identified as an inducer of apoptosis after activation by IFN-γ (Deiss 

et al., 1995). Using a quantitative high-throughput analysis, DNA methylation levels of DAPK1 

in sporadic CLL samples were found to be significantly different to normal B lymphocytes. In 

parallel, a genetic linkage study in a family with 7 F-CLL cases found the highest nonparametric 

linkage (NPL) score of 0.96 at a locus on chromosome 9 and identified a common haplotype 

in all affected family members that included DAPK1 (Raval et al., 2007, Lynch et al., 2002). RT-

PCR analysis showed DAPK1 mRNA levels were lower in F-CLL family members compared to 

unaffected, and lymphoblastoid cells from 1 F-CLL case were used to generate monoallelic 

clones in which DAPK1 gene and protein expression were reduced. Germline DNA variants 

were detected in DAPK1; however, none were unique for the CLL phenotype or identified in 

additional families. Nevertheless, these DAPK1 variants showed reduced gene and protein 

expression in mono-chromosomal hybrid clones and DAPK1 was found to be epigenetically 

silenced in most (89%) sporadic CLL cases suggesting a role in CLL pathogenesis, and 

highlighting a putative pathway for development of targeted therapies (Raval et al., 2007).  

Cytogenetic Abnormalities 

 For many years, chromosome breakage syndromes have been known to be associated 

with an increased risk of leukemia (German, 1980). Acquired chromosomal abnormalities are 

found in over 80% of CLL cases and are independent predictors of disease progression and 
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survival (Dohner et al., 2000). The commonest somatic alteration is an interstitial deletion in 

13q14.3, which is found in over 50% of CLL cases and is associated with a favourable prognosis. 

The next most common chromosomal aberration, found in 20% of cases and associated with 

a progressive course, is deletion 11q22-q23 with consequent loss of the ATM tumour 

suppressor gene. In frequency, these chromosomal aberrations are followed by trisomy 12 

(15%) and deletion 17p13.1 [del (17p13.1)] (5-10%), with deletion of TP53 predicting a very 

poor outcome (Dohner et al., 2000). The genes affected by, and associated with, these 

chromosomal aberrations are summarized in (Table 1-3), and described in the following 

sections. In addition to somatic mutations, in the last several years, population and family 

studies have identified a number of germ-line genetic mutations that increase the risk of 

leukaemia in carriers. Leukaemia susceptibility had been primarily associated with Li Fraumeni 

syndrome, Fanconi anaemia, dyskeratosis congenita, and trisomy 21 (Garriga and Crosby, 

1959, Li and Fraumeni, 1969), however an increasing number of germ-line mutations have 

been shown to be associated with leukaemia predisposition (Porter, 2016). CLL has been 

reported in families with ataxia- telangiectasia (A-T) (Swift et al., 1987), suggesting that 

heterozygotes for mutations in the ATM gene may be at an increased risk.  
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Table 1-3 A summary of the most frequent mutations in CLL 

Gene 

Mutation 

Association 

with 

Functional Role Type of 

mutation 

References 

IGH  Mutated IGH (M-CLL) typically has longer 

survival and better prognosis compared 

to unmutated (UM-CLL). 

 (Sagatys and Zhang, 2012) 

TP53 Del (17p13) Critical role in the cell cycle regulatory 

networks including DNA repair and 

apoptosis 

inactivation   

(Shahjahani et al., 2015) 

ATM Del (11q23) Activates cell cycle checkpoints, and 

initiates apoptosis in response to DNA 

double-strand breaks 

inactivation (Inamdar and Bueso-Ramos, 

2007) 

(Austen et al., 2005) 

(Austen et al., 2007) 

NOTCH1 Trisomy 12 

and UM- IGHV 

Regulates target genes, such as MYC, 

TP53 and other molecules that are 

involved in the nuclear factor-kappa B 

(NF-kB) pathway 

activation (Puente et al., 2011) 

(Rosati et al., 2009) 

 Plays an essential role in cell 

differentiation, proliferation, and 

apoptosis. 

 (Del Giudice et al., 2012) 

FBXW7 Trisomy 12 Acts as a tumour suppressor gene, 

targeting NOTCH1 and other onco-

proteins such as MYC and cyclin-E1 

activation (Wang et al., 2011)  

(Falisi et al., 2014)  

 

SF3B1 Del (11q22-

q23), ATM 

mutations, 

UM- IGHV,  

A core component of the spliceosome. inactivation (Matera and Wang, 2014) 

(Wan and Wu, 2013)  

(Rodriguez-Vicente et al., 

2013) 

BIRC3 Del (11q22-

q23) 

Has a negative regulatory function for 

the nuclear factor-kappa B (NF-kappa-B) 

signalling cascades through its inhibition 

of mitogen-activated protein kinase-

kinase 14 (MAP3K14). 

inactivation (Campregher and 
Hamerschlak, 2014). 
(Rossi et al., 2012).  
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1.3.5.1. Deletion 11q22-q23 in S-CLL and F-CLL 

Deletion 11q [del (11q22-23)] can be detected in ≈20% of S-CLL cases (Dohner et al., 

2000). Del (11q22-23) has been associated with advanced CLL patients, B-symptoms, 

extensive lymphadenopathy, rapid lymphocyte doubling times and shorter survival 

(Rodriguez-Vicente et al., 2013). There are 2 genes, ATM and BIRC3, at this locus which are 

involved in the pathogenesis of CLL (Schaffner et al., 1999, Chiaretti et al., 2014).  

1.3.5.1.1. Ataxia-Telangiectasia Mutated Gene (ATM) 

 ATM gene mutations are a frequent event in CLL and occur as a monoallelic loss in del 

(11q22-23), with and without mutations in the remaining ATM allele. Inactivation of ATM 

prevents B-CLL from responding to DNA double-strand breaks, causing genomic instability 

(Schaffner et al., 1999). CLL with del (11q22-23) can be divided into two subgroups based on 

the presence or absence of mutations in the residual ATM allele. The residual ATM allele is 

mutated in 36% of CLLs with del(11q22-23) and these leukemias demonstrate impaired 

cellular responses to genotoxic damage in vitro (Austen et al., 2007). CLL patients with del 

(11q22-23) are at risk of developing a mutation in the remaining ATM allele, which leads to 

rapid clonal expansion and reduced survival (Austen et al., 2007). In these patients, use of 

treatments that bypass the ATM/p53 apoptotic pathway, has been proposed as an alternative 

to fludarabine, cyclophosphamide and rituximab (FCR) therapy (Kojima et al., 2006, Lozanski 

et al., 2004) 

There is an association between deletion of ATM and p53 dysfunction (Carter et al., 

2006), and inactivation of ATM has been reported in one-third of CLL patients with mutated 

TP53 (Stankovic et al., 2002) (Pettitt et al., 2001). The frequency of p53 dysfunction observed 

among del(11q22-23) cases is ≈60% (Carter et al., 2006).  
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Del (11q22-23) has been associated with unmutated IGH, and newly diagnosed 

untreated CLL can exhibit variable clinical outcomes (Marasca et al., 2013). To evaluate the 

correlation between percentages of cells displaying del (11q22-23) and clinical outcome, a cut-

off point of 25% positive nuclei was defined for CLL patients at risk of short time to first 

treatment (TTFT) (Marasca et al., 2013). CLL cases with ≥ 25% positive cells had a median TTFT 

of 14 months (Marasca et al., 2013). A study of mutated and deleted ATM cases, in the absence 

of 11q22-23 deletion, showed differences in gene expression profiles, and mutations in this 

gene were associated with an unfavourable clinical course and shorter-treatment intervals 

(Guarini et al., 2012).  

 ATM mutations occur at different stages of CLL development and can be present in the 

germline (Austen et al., 2005, Bullrich et al., 1995, Austen et al., 2007). Ataxia telangiectasia 

(A-T) patients have an increased risk of lymphoma and leukemia, and A-T heterozygotes may 

have an increased risk of breast cancer (Athma et al., 1996, Taylor et al., 1996). In a 

retrospective study of cancer incidence in 110 A-T families, the risk of hematological and 

lymphoid malignancies was increased in relatives of A-T patients and CLL accounted for 5 of 

13 cases (Swift et al., 1987), although this did not attain statistical significance.  

 It has been demonstrated that some CLL patients have heterozygous ATM germline 

mutations (Schaffner et al., 1999, Stankovic et al., 1999, Starostik et al., 1998). In a series of 

32 cases of B-CLL, two germline ATM mutations were found in 6.3% of the cases (Stankovic et 

al., 1999). In a linkage analysis of 28 families, the observed distribution of ATM shared 

haplotypes between affected individuals supported the proposal that ATM is involved in F-

CLL. However, assuming ≈6.3% of CLL is caused by ATM (Stankovic et al., 1999), mutations in 

this gene should confer a sibling relative risk of 1.1 (Bevan et al., 1999). On this basis, it was 

concluded that the study numbers gave insufficient power to detect linkage between ATM 
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and CLL (Bevan et al., 1999). 

 More recently, ATM germ-line mutations have been found to be associated with later 

events in CLL pathogenesis rather than clonal initiation (Skowronska et al., 2012). To explore 

the presence of clonal and sub-clonal mutations of ATM, and mutations carrying a negative 

prognosis in TP53, SF3B1, NOTCH1, and BIRC3 in 406 untreated CLL cases, a study was 

performed using next generation sequencing (NGS) to define the evolution of sub-clones at 

different time points, and determine their influence on outcome (Nadeu et al., 2016). In ATM, 

126 variants were found in 95 patients, with 53 mutations classified as somatic and 73 as 

germ-line. The germ-line variants were classified as definitely (n = 8) or likely (n = 2) 

pathogenic, rare missense (n = 33), variants of unknown significance (n = 12), and 

polymorphisms (n = 18). Relevant to F-CLL, 4/9 cases (44%) had germ line pathogenic 

mutations, but only 3/53 (6%) with non-pathogenic variants had acquired 11q deletions (P < 

0.01), which suggested a role of the germline variants in disease progression via deletion of 

the remaining allele (Nadeu et al., 2016). 

 In conclusion, ATM is a credible candidate predisposition locus for CLL, although there 

is currently insufficient evidence to unambiguously show that ATM mutations are involved in 

the development or progression of CLL. 

1.3.5.1.2. Baculoviral IAP Repeat-Containing Protein 3 (BIRC3) 

 The baculoviral IAP repeat-containing protein 3 (BIRC3) gene, located at 11q22.2, is 

affected by del (11q22-23). BIRC3 belongs to a family of proteins that inhibit apoptosis by 

binding tumour necrosis factor (TNF) receptor-associated factors TRAF1 and TRAF2 (Uren et 

al., 1996). It has been shown that BIRC3 has a negative regulatory function for the nuclear 

factor kappa-light chain enhancer of activated B cells (NF-kappa-B) signalling cascades through 
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inhibition of mitogen-activated protein kinase-kinase-kinase 14 (MAP3K14) (Matsuzawa et al., 

2008). Therefore any abnormality affecting the BIRC3 pathway increases NF-kappa-B activity, 

leading to increased cell survival (Campregher and Hamerschlak, 2014). 

 BIRC3 mutations have been reported in UM-CLL patients (Chiaretti et al., 2014). 

Although BIRC3 mutations are rare in CLL patients at diagnosis (≈4%), mutations are associated 

with 24% of fludarabine-refractory CLL (Rossi et al., 2012). Similar to ATM, a subset of 

missense variants detected using NGS in tumour samples are present in the germ-line (Nadeu 

et al., 2016). 

1.3.5.1.3. Mutations Associated with del (11q22-23)  

 Mutations in SF3B1, which is located at 2q33.1, have been correlated with del (11q22-

23) (Wang et al., 2011), although this correlation has not been consistently replicated (Oscier 

et al., 2013, Rossi et al., 2011). In a large study of 1160 patients without prior treatment, SF3B1 

mutations were associated with del (11q22-23) (20.3%), ≥ 30% CD38 expression (14.6%), 

unmutated IGH (15.3%), shorter time to treatment (median 3.8 years), and reduced 5 years 

overall survival (Jeromin et al., 2014).  

 Splicing factor 3B, subunit 1 is an essential component of the spliceosome machinery, 

which consists of uridine-rich small nuclear RNAs (snRNAs) and a large number of associated 

protein factors that are assembled to form ribonucleic-proteins (snRNPs) (Isono et al., 2005). 

The spliceosomal complex has a critical role in many cellular functions, including gene 

expression and regulation, and post-transcriptional processing of mRNA (Wahl et al., 2009). 

 Although SF3B1 has been implicated in the pathogenesis of CLL (Quesada et al., 2012), 

its precise role remains unclear. SF3B1 is mutated in ≈5% of CLL patients at initial diagnosis 

and increases to 17% in patients with fludarabine-refractory disease (Rossi et al., 2011). The 
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majority of somatic SF3B1 mutations in CLL cases have been in the C-terminal regions of the 

gene. Mutations are predominantly missense or rarely frame-shift mutations causing 

insertions or deletions (Wang et al., 2011) (Rossi et al., 2011). There is also evidence of 

abnormal RNA splicing in CLL patients with mutated SF3B1 when compared with wild-type 

SF3B1 (Rossi et al., 2011) (Wang et al., 2011). All SF3B1 mutations detected to date have been 

confirmed as somatic, and it is unlikely that there are inherited mutations in SF3B1 

predisposing to F-CLL (Nadeu et al., 2016). 

1.3.5.2. Deletions at 13q14 and microRNAs 

 Deletion 13q14 [del (13q14)] is the most common genomic aberration in CLL (Dohner 

et al., 2000), and is often associated with M-CLL. Patients with del (13q14) have a better 

prognosis and longer survival compared to those with other cytogenetic abnormalities 

(Inamdar and Bueso-Ramos, 2007).  

 Improvements in DNA sequencing technologies have defined the minimal deleted 

region (MDR) at the 13q14 locus, which contains 8 genes: retinoblastoma (RB1), deleted in 

lymphocytic leukaemia 1 (DLEU1), 2 (DLEU2) and 5 (DLEU5) genes, CLL deletion 6 (CLLD6), 7 

(CLLD7), and 8(CLLD8) genes, karyopherin α-3 (KPNA3), and microRNA (miR-15 and miR-16-1) 

genes (Lia et al., 2012). Mono-allelic losses of RB1 are seen in > 30% of B-CLL (Liu et al., 1992), 

however germline mutations in RB1, seen in the heritable genetic form of retinoblastoma, 

have not been reported to be associated with F-CLL.  

 miR-15a and miR-16-1 are deleted or down-regulated in > 50% B CLL patients 

(Humplikova et al., 2013). Both are located at a cluster within intron 4 of DLEU2 (Klein and 

Dalla-Favera, 2010). In mice studies, deleting the MDR, which encodes DLEU2 and miR-

15a/16-1, induced more aggressive disease compared to mice with deleted microRNA-15a/16-
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1 cluster alone (Klein et al., 2010). In addition, targeted deletions are associated with the 

development of clonal B cell lymphoproliferative disorders including MBL, CLL/SLL, and NHL 

(Klein et al., 2010). The presence of germline mutations in miR-16-1 and miR-15a, or DLEU2, 

and potential role in F-CLL have not been studied. 

 Another candidate gene found in the MDR at 13q14 is ARLTS1. A nonsense SNP in this 

gene was associated with a family history of cancer and/or multiple personal cancers, and the 

SNP was subsequently found in 2/17 F-CLL cases (Calin et al., 2005). However, a replication 

study failed to find an association between CLL and this ARLTS SNP or 5 other nonsynonymous 

SNPs in a cohort with 413 familial cases (Sellick et al., 2006b). A second replication study found 

this SNP in 2/31 F-CLL cases but failed to segregate with other cases in these families, and was 

not over-represented in LPD families compared with controls (Summersgill et al., 2002). 

Therefore, there is limited evidence for the involvement of inherited mutations in ARLTS1 in 

the development of F-CLL. 

1.3.5.3. Deletion 17p13.1 

 Loss of genetic material on chromosome 17p in CLL generally includes band 13.1, 

where the tumour suppressor gene TP53 is located. Del (17p13) is found in ≈3-8% of treatment 

naïve CLL cases, but the prevalence increases to 50% in relapsed and/or refractory CLL (Wang 

and Wang, 2013). The presence of del (17p13) is associated with a more aggressive course and 

resistance to chemotherapeutic agents compared to patients with other cytogenetic 

mutations (Shahjahani et al., 2015). However, not all de novo patients with del (17p13) 

progress rapidly, with some having an indolent course which progresses in association with 

secondary acquired mutations (Tam et al., 2009). Untreated del (17p13)with low-risk factors, 

such as mutated IGH and Rai stage 0, have a significantly longer overall survival (4-5 years) 
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compared to those with high-risk factors, including unmutated IGH and Rai stage 1 or higher 

(median survival 1 to 1.5 years) (Tam et al., 2009). 

1.3.5.3.1. TP53 

 The tumour suppressor protein p53, which is encoded by TP53, has a critical role in cell 

cycle regulation networks including DNA repair and apoptosis (Unger et al., 1992, Artandi and 

Attardi, 2005). Under normal conditions, p53 is tightly regulated and functionally inactivated 

by interaction with mouse double minute homologue 2 (MDM2), which transfers p53 from 

the nucleus to the cytoplasm where it undergoes ubiquitination and degradation in the 

proteasome (Fuchs et al., 1998). Disruption of these pathways increase and activate p53 (Yin 

et al., 2002).  

 The p53 activation process is complex and involves directly, or indirectly, multiple 

mechanisms that are essential for cell cycle arrest, DNA repair and inducing apoptosis if DNA 

repair fails (Vousden and Lane, 2007). Signalling to p53 occurs via separate pathways in 

response to genetic damage or activation of oncogenes (Efeyan and Serrano, 2007). In 

response to expression of oncogenes, p53 is stimulated via the p53- stabilising protein, cyclin-

dependent kinase inhibitor 2A (CDKN2) locus alternative reading frame (p14ARF), which in 

turn, interacts with MDM2, inhibiting the E3 ubiquitin ligase interaction, which protects p53 

from degradation. This results in accumulation of p53 in tumour cells, however, p53 activity is 

lost through the disruption of p53/MDM2 interactions (Efeyan and Serrano, 2007). 

 In response to cellular stress signals, such as double-strand DNA damage induced by 

radiation, cytotoxic agents, or radiotherapy, ATM/CHK2 pathways are activated. This leads to 

an increase in the downstream activities of p53 (Joerger and Fersht, 2008). If DNA repair fails, 

p53 initiates the intrinsic apoptotic cell death mechanisms via the B-cell leukemia lymphoma 
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2 (Bcl-2) family and the caspase cascade.  

 Del (17p13) and TP53 mutations correlate with poor outcomes in most CLL patients 

(Strati et al., 2014). Rossi et al., (Rossi et al., 2013) mentioned that the majority (≈60%) of CLL 

cases show mono-allelic del (17p13) and a point mutation of the second TP53 allele, while the 

remaining cases have either del (17p13) with no TP53 mutation (≈10%) or TP53 mutations 

without del (17p13) (≈30%). Some studies report that CLL cases that have mutations in TP53 

without del (17p13) showed clinical, pathological and prognostic features similar to del 

(17p13) patients (Zenz et al., 2010a). However, other studies found that although the 

subgroup with isolated TP53 mutations was small, it remains an independent predictor of 

rapid disease progression (Zenz et al., 2008) (Rossi et al., 2009).  

 Chromosomal aberrations can be defined by fluorescence in situ hybridization (FISH) 

and chromosome banding analyses. The FISH assay utilises DNA specific probes for the 

detection of TP53 at 17p13.1 and ATM at 11q22. FISH studies increasingly provide clinically 

relevant prognostic information to identify patients who may be targeted for earlier treatment 

(Delgado et al., 2012). To predict overall survival (OS), initial studies defined the cut-off level 

for TP53 deletion at 3% positive cells (Dohner et al., 1995), and 20% (Catovsky et al., 2007). 

However, a cut-off level of 25% positive cells was found to accurately predict rapid disease 

progression and guide initiation of therapy (Tam et al., 2009) (Delgado et al., 2012).  

 The development of dense-coverage SNP arrays and next-generation sequencing 

(NGS) techniques have provided the potential to understand the molecular basis of CLL, 

including the role of TP53 (Chiorazzi, 2012) (Foa et al., 2013). Using NGS, TP53 mutations in 

CLL have been found to be mostly missense mutations that result in amino acid substitutions 

in the sequence-specific DNA binding domain (DBD) of p53 (Foa et al., 2013). The majority 
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(74%) of these mutations are located in exons 5,6,7 and 8 (Chiorazzi, 2012). However, other 

less common genetics events affecting TP53 have also been demonstrated in CLL including 

nonsense mutations (4%), frame-shift mutations (20%) and splice site mutations (2%) (Zenz et 

al., 2010b) (Lin et al., 2013).  

 All TP53 mutations detected to date in CLL have been confirmed as somatic, and it is 

unlikely that there are inherited mutations in TP53 that predispose to F-CLL (Nadeu et al., 

2016). Leukemia accounts for 3 - 6% of Li Fraumeni syndrome (LFS) tumours (McBride et al., 

2014) (Malkin et al., 1990). Leukaemias associated with LFS include acute lymphoblastic 

leukaemia, acute myeloid leukaemia, and therapy-related acute myeloid leukaemia (Hof et 

al., 2011, Salmoiraghi et al., 2016, Schulz et al., 2012). However, germ-line mutations in TP53 

have not been reported in association with CLL. 

1.3.5.4. Trisomy Chromosome 12 

 Trisomy 12 is the third most common chromosomal aberration found in CLL, occurring 

in ≈10-20% of cases (Dohner et al., 2000) (Chiorazzi, 2012). In earlier studies, trisomy 12 was 

found to be associated with atypical lymphocyte morphology and immunophenotypic 

features including high CD38, CD20, and FMC7 expression (Inamdar and Bueso-Ramos, 2007). 

Additionally, trisomy 12 was associated with UM-CLL and an aggressive clinical course 

(Inamdar and Bueso-Ramos, 2007). However, recent studies have considered trisomy 12 as an 

intermediate risk or even low risk marker (Del Giudice et al., 2012) (Puiggros et al., 2014).  

 A minimal common gained region in chromosome 12 has been identified that spans 

bands 12q13 to 12q15 (Jimenez-Zepeda et al., 2013). This region contains MDM2, which plays 

an essential role in the regulation of cell growth and death, and has been reported to be 

overexpressed in B-CLL (Watanabe et al., 1996). Another band on chromosome 12q22 
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contains chronic lymphocytic leukemia up-regulated, 1 (CLLU1), which is overexpressed in 

patients <70 years of age at diagnosis and is associated with a poor prognosis (Rodriguez-

Vicente et al., 2013). This gene may be involved in the pathogenesis of CLL, however the 

underlying biology of this association is unknown (Rodriguez-Vicente et al., 2013) (Inamdar 

and Bueso-Ramos, 2007). 

 Trisomy 12 can occur in isolation in ≈70% of cases, or in combination with other 

chromosomal abnormalities, including trisomy 18 and trisomy 19, and deletions of 

chromosomes 13q, 14q, 11q or 17p (Puiggros et al., 2014) (Del Giudice et al., 2012) (Nguyen-

Khac et al., 2013).  

1.3.5.4.1. Mutations Associated with Trisomy 12 

1.3.5.4.1.1. F-box/WD Repeat Containing Protein 7  

  F-box and WD40 domain protein 7 (FBXW7) gene mutations have been 

identified in patients with CLL and trisomy 12. Fbw7, the protein product of FBXW7, is a 

member of the E3 ubiquitin ligase complex and functions as a tumour suppressor gene, 

targeting Notch1 and other oncoproteins such as Myc and cyclin-E1 (Welcker et al., 2004). 

Fbw7 has a negative regulatory role in the Notch signalling pathway by binding the PEST 

domain, leading to rapid degradation of the Notch intracellular domain. Mutations in FBXW7, 

are associated with T-ALL development, and have been reported in ≈4% of CLL patient samples 

with trisomy 12 (Falisi et al., 2014). These observations suggest that mutations in FBXW7 are 

associated with NOTCH1 mutations and may play an important role in the disruption of NOTCH 

signalling in patients with trisomy 12 (Falisi et al., 2014). However, the precise role of these 

mutations in CLL patients carrying trisomy 12 requires further investigation (Wang et al., 2011) 

(Falisi et al., 2014).  
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1.3.5.4.1.2. NOTCH1 

  The NOTCH1 gene is located on chromosome 9q34.3 and encodes a single-pass 

transmembrane receptor that regulates cellular differentiation, proliferation, and apoptotic 

programs (Das et al., 2004). The Notch family includes 4 receptors, NOTCH1, NOTCH2, 

NOTCH3, and NOTCH4. The Notch1 signalling pathway is activated following binding of its 

ligands, from the Jagged or Delta families, on the extracellular membrane of the target cell 

(Artavanis-Tsakonas et al., 1995). Binding activates multiple proteolytic cleavages and release 

of the Notch1 intracellular domain (NICD), which translocates to the nucleus where it interacts 

with multiple transcription factors (Artavanis-Tsakonas et al., 1995). Once these interactions 

become active, the transcription process of Notch is stimulated in different target genes, 

including MYC, TP53 and other molecules involved in the nuclear factor kappa B (NF-kB) 

pathway (Arruga et al., 2014) (Rossi et al., 2013). 

 Deregulation of the Notch pathway has been associated with T cell acute lymphoblastic 

leukaemia (T-ALL) and CLL (Rodriguez-Vicente et al., 2013). In CLL, constitutive activation of 

Notch1 prevents apoptosis and facilitates prolonged cell survival (Rosati et al., 2009). 

Mutations in NOTCH1 mainly occur in the PEST domain, which is rich in proline (P), glutamic 

acid (E), serine (S), and threonine (T) amino acids. This leads to the accumulation of stable, 

active Notch1 isoforms in CLL cells and constitutive activation of the Notch1 signalling cascade 

(Puente et al., 2011) (Rosati et al., 2009). In a study of 391 B-CLL patients, 104 NOTCH1 

mutations were found in 86 (22%), and most occurred in UM-CLL (82%) (Nadeu et al., 2016). 

Similar to BIRC3, NOTCH1 missense variants detected in tumour samples were present in the 

germline, raising the possibility that inheritance of germline NOTCH1 variants may contribute 

to F-CLL. 
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1.3.5.5. Chromosome 6 and Other Rare Chromosomal Abnormalities 

 Other recurrent chromosomal abnormalities have been described in CLL including 

deletion 6q and trisomy 8 (Dohner et al., 2000) (Cuneo et al., 2004). Deletion 6q has been 

reported in ≈ 6% of CLL patients (Dohner et al., 2000), and has been categorized as an 

intermediate risk-group, with high WBC count, classical immunophenotype, positive CD38 and 

no association with IGH mutation status (Cuneo et al., 2004). 

1.3.5.6. Chromosome 14 

 A small number of studies have implicated Chromosome 14 in B-CLL, and a linkage scan 

performed on a family with multiple cases of F-CLL by Fuller et al. found  maximum linkage to 

a 200kb region of chromosome 14 between 14q24.1 and 14q31.2 which contains 175 genes 

with open reading frames encoding known and hypothetical proteins (Fuller et al., 2008). A 

candidate gene at this locus, ZFP36L1, has been linked to the apoptotic response to rituximab 

in CLL (Jackson et al., 2006, Baou et al., 2009), however no germ line variant was detected in 

the family. This family will be the subject of the gene and protein expression study reported 

in this thesis (Figure 1-1).  
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Figure 1-1. Pedigree of the family in abbreviated form 

Pedigree of the family in abbreviated form showing segregation of chronic lymphocytic leukemia (CLL). Shaded 
symbols represent CLL cases, half-shaded MBL, and symbols with shaded pink circles, individuals from whom 
DNA was collected for the genetic linkage study reported by Fuller et al., (Fuller et al., 2008).  

 

 Chromosome 14 abnormalities are found in 6 - 14% of CLL cases. The most common 

region is located at band 14q32, which is the locus for the immunoglobulin heavy chain (IGH) 

gene, and rearrangements of this locus have been identified in mature B cell lymphomas. A 

translocation between the cyclin D1 (CCND1) gene at 11q13 and IGH at 14q32, 

t(11;14)(q13;q32), is the most common translocation in mantle cell lymphoma (Inamdar and 

Bueso-Ramos, 2007). A translocation involving IGH with the BCL3 gene at 19q13, 

t(14;19)(q32;q13), has been associated with atypical CLL, which has 10% or less 

prolymphocytes, a younger age at onset and a progressive disease course (Inamdar and 

Bueso-Ramos, 2007) (Huh et al., 2011). Other translocations involving IGH have been reported 

with BCL2 at 18q21, t(14;18)(q32;q21), in most cases of follicular lymphomas, and MYC at 

chromosome 8 in Burkitt’s lymphoma patients (Martin-Subero et al., 2007). 

 The presence of chromosomal abnormalities involving 14q32 and IGH has been studied 

in 252 chronic lymphocytic leukaemia cases (Cavazzini et al., 2008). Translocations involving 



 

34 
 

CHAPTER-1:  INTRODUCTION 

14q32/IGH were identified as the sole aberration in 8/18 patients. Of these, 5 had a BCL2/IGH 

rearrangement while the remaining 3 cases had fusions of IGH with BCL11A, CCND3 and CDK6 

(Cavazzini et al., 2008). This study also compared isolated 14q32/IGH translocation with the 

remaining cytogenetic risk groups: favourable risk [del (13q) and non-detectable chromosome 

abnormalities]; intermediate risk [trisomy 12, del (6q) or 1-2 detectable abnormalities]; and 

unfavourable risk [del (11q), del (17p) and complex abnormalities]. The results showed that 

CLL patients carrying the 14q32/IGH translocation have a shorter treatment-free survival (TFS 

= 2 months) compared to those with intermediate risk (TFS = 12months) or favourable risk 

(TFS = 20 months). A shorter overall survival was also observed for 14q32/IGH (OS = 18 

months) compared to intermediate (OS = 50 months) and favourable risk groups (OS > 60 

months). This study found that the 14q32/IGH predicted an unfavourable outcome, which was 

improved compared to del (11q), del (17p) and complex abnormalities, but worse compared 

to patients with del (13q), no detectable chromosome abnormalities, trisomy 12, del (6q) or 

1-2 detectable abnormalities (Cavazzini et al., 2008). 

 Proteomic Profiling in B-CLL 

The protein expression profiles of B-CLL compared to controls have been studied using 

a number of different proteomic methods (Alsagaby et al., 2014, Huang et al., 2016, Eagle et 

al., 2015, Perrot et al., 2011). However, most studies have aimed to identify protein markers 

which predict prognosis rather than identify proteins associated with neoplastic 

transformation, and only one proteomic study, which identified an association with 

downregulation of DAPK1, has been reported in F-CLL (Raval et al., 2007).  

An indication that gene expression plays a role in the development of B-CLL has been 

the identification of differential expression of histones compared to normal B lymphocytes. A 
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proteolytic product of histone H2A (cH2A) has been found to be differentially abundant in B-

CLL samples (Glibert et al., 2014), and histone profiles in B-CLL compared to control B 

lymphocytes has identified increased expression of a specific histone H2A isoform (H2A 1C) 

(Singh et al., 2015). 

Protein profiles associated with prognosis have been studied in primary B-CLL samples 

and identified associations between increased expression of T-cell leukaemia/lymphoma 

protein 1A (TCL-1), thyroid hormone receptor-associated protein 3 (TR150), and S100A8 with 

high-risk CLL, and myosin-9 with low-risk disease (Alsagaby et al., 2014). A similar study 

identified 84 differentially abundant proteins, which have roles in cell proliferation, apoptosis, 

and DNA repair, between stable and progressive CLL (Huang et al., 2016). CLL proteomics is 

further reviewed in Chapter 6 of this thesis. 

IGH Gene Usage and Mutation Status in F-CLL  

 Following T lymphocyte-dependent activation, B lymphocytes undergo a rapid 

proliferative phase in the germinal centre which is accompanied by immunoglobulin class 

switching, and affinity maturation is directed by the introduction of mutations into the 

immunoglobulin variable region genes. B lymphocytes are then selected according to the 

affinity of the encoded immunoglobulin for antigen, generating high-affinity memory B 

lymphocytes and plasma cells. CLL can be divided into a benign group, with a high load of 

mutations, and a progressive group, with a low load of mutations, by sequencing IGH genes 

and comparing with germline sequences. B-CLL cases with unmutated IGH genes (UM-CLL), or 

≥ 98% sequence homology with germline, have a median survival of 8 years and those with 

mutated genes (M-CLL), or < 98% sequence homology with germline, have a median survival 

of 25 years (Damle et al., 1999, Hamblin et al., 1999). 
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 In addition to providing prognostic information, distinguishing between these 2 groups 

is important to understanding the pathogenesis of CLL (Herve et al., 2005) (Klein and Dalla-

Favera, 2010). Although it had been postulated that UM-CLL originates from a pre-germinal 

centre precursor with IGH genes lacking somatic mutations and M-CLL arises from a post-

germinal centre B cell that expresses somatically hypermutated IGH (Stevenson and Caligaris-

Cappio, 2004), UM-CLL and M-CLL both show similar gene expression profiles (Klein et al., 

2001, Rosenwald et al., 2001). This similarity in gene expression profiles suggested a common 

cell of origin. Cloning and expressing in vitro recombinant antibodies from M-CLL and UM-CLL 

B lymphocytes and testing their specificity indicated that both M-CLLs and UM-CLL may 

originate from self-reactive B cell precursors (Herve et al., 2005). Somatic hypermutation is 

proposed to alter the original B cell receptor autoreactivity and disease progression (Herve et 

al., 2005). 

 Initial reports in small numbers of families had provided evidence of a restriction in 

IGH usage amongst CLL, compatible with selection by a common antigen (Shen et al., 1987). 

However, subsequent studies failed to provide confirmatory data (Sakai et al., 2000, Crowther-

Swanepoel et al., 2008). The largest of these studies was of IGH usage in 327 F-CLL cases which 

were compared with 724 sporadic CLL cases (Crowther-Swanepoel et al., 2008). The frequency 

of M-CLL was higher in F-CLL and there was evidence of concordance in mutation status, 

however IGH usage was not different between F-CLL and S-CLL. Furthermore, IGH usage was 

not correlated between affected members within the same families (Crowther-Swanepoel et 

al., 2008). The failure of these studies to show a more restricted intra-familial phenotype with 

respect to IGH usage may be explained by an oncogenic event in the malignant cell of origin 

occurring before affinity maturation. The present study of mRNA and protein profiles in F-CLL 

patients, who share a similar genetic background, subclassified into M-CLL and UM-CLL may 
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provide further insight into the CLL cell of origin. 

1.4. SUMMARY 

 In several reported families, CLL appears to be transmitted as an autosomal dominant 

disorder (Brown et al., 2012, Sellick et al., 2006a). However, genetic linkage studies have been 

unable to detect driver mutations due to the simultaneous presence of many low-penetrance 

associated genes. To address the rarity of large multigenerational B-CLL families, linkage 

studies have combined multiple families using data from affected subjects in each family 

(Goldin et al., 2003, Sellick et al., 2005b, Sellick et al., 2007, Ng et al., 2006, Ng et al., 2007b). 

However, since it is unlikely that each family will have identical susceptibility genes which map 

to the same disease loci, it is likely that linkage signals have conflicted. Consequently, most 

studies have been limited by weak evidence for linkage, and susceptibility loci have not shown 

concordance between studies (Sellick et al., 2005b). 

 To detect multiple low-risk loci, genome-wide association studies (GWAS) have used 

large numbers of cases and controls and dense-coverage SNP arrays (Di Bernardo et al., 2008, 

Speedy et al., 2014, Crowther-Swanepoel et al., 2010). To date, 30 risk variants have been 

identified, however these account for only ≈19% of CLL heritability (Speedy et al., 2014), 

suggesting that a large number of heritable factors remain undetectable by GWAS. A 

proportion of the remaining inherited CLL risk may be associated with non-DNA sequence-

linked heritable information, including epigenetic modifications, which have been found to 

regulate oncogenes and tumour suppressor genes in a number of other hereditary cancers 

(Gazzoli et al., 2002, Esteller et al., 2001). Accordingly, identification of differentially expressed 

genes and proteins in CLL families may identify key targets of epigenetic modification, in 

addition to variations in transcription factor binding sites which affect gene regulation. 
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 This present study will use high-resolution expression profiling microarrays and MS to 

identify differentially expressed genes and proteins in purified normal, premalignant and 

malignant B lymphocytes from a family with multiple cases of CLL and MBL (Nazarov et al., 

2017, Meghann Palermo, 2014). For this family, my supervisor, A/Professor Fuller, has 

previously reported a genetic linkage scan which showed weak linkage to 14q24.1 and 

14q31.2 (non-parametric linkage statistic = 2.24; p = 0.03) (Fuller et al., 2008). 

 

 

 

AIMS 

1. Determine if familial CLL/MBL (familial lymphoproliferative disease; F-LPD) B 

lymphocytes contain unique mRNA profiles compared to B lymphocytes from sporadic CLL 

(S-CLL) cases and control subjects.  

2. Determine if F-LPD B lymphocytes contain unique protein profiles compared to B 

lymphocytes from S-CLL cases. 

3. Use mRNA profiles to identify changes associated with progression of non-malignant 

normal B lymphocytes through premalignant MBL cells to malignant CLL cells. 

4. Compare mRNA and protein profiles in IGH mutated and unmutated F-LPD and S-CLL. 

 

An overview of the experimental design used in this thesis is shown in (Figure 1-2).
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Figure 1-2. The overview of the experimental design used in this thesis
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CHAPTER-2: MATERIALS AND METHODS
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2.1. SAMPLE SETS 

Subjects were recruited from the Nepean Hospital, Penrith, New South Wales, 

Australia after obtaining informed consent. The experimental protocol was approved by the 

Nepean and Blue Mountains Local Health District Human Research Ethics Committee (01/70) 

and the University of Sydney Human Research Ethics Committee. 

Healthy Control Subjects 

 Peripheral blood samples were obtained from healthy volunteers after informed 

consent as approved by the Nepean and Blue Mountains Local Health District Human Research 

Ethics Committee (01/70) and the University of Sydney Human Ethics Committee.  

Sporadic Chronic Lymphocytic Leukaemia (S-CLL) Subjects 

 Blood samples were obtained for analysis from >50 subjects with sporadic chronic 

lymphocytic leukaemia (S-CLL). The diagnosis of B cell CLL was made according to the current 

world health organisation (WHO) guidelines for the diagnosis and treatment of B-CLL (Hallek 

et al., 2008, Swerdlow et al., 2016). B-CLL subjects had a peripheral blood B lymphocyte count 

≥ 5x109/L for > 6 months with the presence of small to medium sized lymphocytes with 

condensed chromatin and smudge cells. The circulating B-CLL cells expressed immune-

phenotypic markers: CD5 (T-cell antigen), CD10 (pre B-cell), CD19 (pan B-cell), CD20 (mature 

B-cell), CD22 (B-cell), CD23 (B-cell subset), CD79b (mature B-cell),CD38, FMC7, and surface 

immunoglobulin kappa or lambda light chains. Monoclonal B-cell lymphocytosis (MBL) was 

defined as the presence of monoclonal B-lymphocytes in the peripheral blood of < 5x109/L 

either with the phenotype of CLL, atypical CLL, or non-CLL (CD52) B cells (Swerdlow et al., 

2016). 
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Familial Chronic Lymphocytic Leukaemia (F-CLL) subjects  

 Our group previously studied a large family from which 11 members over three 

generations had been diagnosed with B-CLL (Fuller et al., 2008). For the present study, 

samples were collected from 21 family members for analysis. Two subjects had been 

diagnosed with CLL (IV-02 & IV-05) and 4 with MBL (III-10, IV-13, IV-17 & IV-18) according to 

the criteria described in 2.1.2. The remaining 15 subjects were unaffected. The pedigree of 

the family members studied in this thesis is shown in (Figure 3-1). 

2.2. CELL PURIFICATION 

MATERIALS  

Table 2-1 List of materials used for cell purification 

 

METHOD 

 Peripheral blood samples from S-CLL patients and healthy volunteers were collected 

MATERIALS COMPANY 
1 Lithium heparin Vacutainer tubes BD,Plymouth, UK Cat 367526 
2 Ficoll-Paque PLUS  GE Healthcare Life sciences, Australia 
3 15ml and 50ml conical Falcon centrifuge tubes BD 
4 0.2 µm syringe filter, PVDF Merck Millipore Cat. SLGV033RS 
5 Serological Pipettes Greiner Bio One 
6 Centrifuge Heraeus Megafuge 1.0 
7 Neubauer-improved bright line-counting chamber Hirschmann, EM-techcolor 
8 IX50 Inverted microscope Olympus  
9 RosetteSep™ Human B Cell Enrichment Cocktail  STEMCELL Technologies 
10 Phosphate-Buffered Solution (PBS) Amresco Inc. 
11 Fetal calf serum (FCS)   
12 RNAlater® Ambion®, USA, Cat. AM7020 
13 Lysis buffer (RLY) from Isolate II RNA Mini Kit Bioline, Taunton, MA, Cat. BIO-52072 
14 2-Mercaptoethanol (β-ME)  Promega, Australia, Cat. Z523A-C 
15 Urea  Sigma-Aldrich (St. Louis, MO, USA), Cat. No. U5378 
16 Tris (hydroxymethyl) aminomethane Amresco (Ohio, USA), Cat. No.  97061-794 
17 Sodium Dodecyl Sulfate (SDS) Amresco (Ohio, USA) Cat. No. 97064-470 
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in lithium heparin tubes at the Nepean Cancer Care Centre, Nepean Hospital, Penrith, New 

South Wales, Australia.  

 B lymphocytes were purified from peripheral blood using RosetteSep™ Human B Cell 

Enrichment Cocktail (StemCell Technologies, Australia). Briefly, 3 ml or 50 ml of a whole blood 

sample from CLL or healthy subjects, respectively, was incubated with RosetteSep antibody 

cocktail at a concentration of 70 µL cocktail/ml of blood in the dark at room temperature (RT) 

for 20 min. After incubation, the blood was diluted with one volume of 2% FCS in PBS. The 

diluted samples were then layered on top of one volume of Ficoll-Paque PLUS TM density 

medium and centrifuged at 1200 g with brake off for 20 min. After centrifugation, three 

separating layers formed and the enriched B cells were harvested from the middle interface 

layer. The enriched cells were washed twice with 2% FCS in PBS and centrifuged for 10 min at 

300 g. After washing, the enriched cells were counted using a Neubauer-improved bright line 

counting chamber and aliquoted for further analysis.  

 To check the efficiency of the separation and the purity of the enriched B cells by flow 

cytometry, a minimum concentration of 2 x 105 cells was set aside. (See sections 

2.3.2.1.22.3.2.1.2 below). 

 For gene expression studies, a minimum of 1x106 of enriched B cells were pelleted and 

immediately lysed with 350 µL RLY + 3.5 µL 2-mercaptoethanol (β-ME) before being placed 

directly in a −80°C freezer until RNA isolation was performed (See section 2.4.2.2). 

 For protein analysis, a minimum of 1x106 enriched B cells were washed 4 times with 

1ml PBS by centrifuging for 5 minutes at 2000 g, to remove FCS proteins. The washed pellet 

was homogenised by vigorous mixing in ≈200 µL of protein lysis buffer containing 8 M urea in 

50 mM Tris-HCL with 0.1% (w/v) SDS, at pH 7.5, before storing at -80°C. 
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 Unpurified PBMCs were isolated from whole blood at the same time by the same 

procedure described above except that the RossetteSep antibody cocktail was not used.  

2.3. FLOW CYTOMETRY     

MATERIALS  

Table 2-2 List of materials used for Flow cytometry 

 

MATERIALS COMPANY 
1 BD FACS Round-Bottom Tubes BD Biosciences, product. No. 352054 
2 5% of fetal calf serum (FCS) in phosphate buffered 

saline (PBS) 
 

3 ethylene diamine tetra-acetic acid disodium salts 
dehydrate (EDTA) 

Sigma-Aldrich (St. Louis, MO, USA), Product No: 
E5134-100G 

4 5% FCS in PBS with 1mM EDTA) (FACS buffer)   
5 90-100% Paraformaldehyde  ProSciTech, Australia, Product No:C007 
6 10X concentrate BD pharm lyseTM lysing buffer  BD Biosciences, Cat. No. 555899 
7 The BD FACSuite™ CS&T research beads BD Biosciences, Cat. No. 650621 
ANTIBODIES FOR PURITY CHECK 
1 Anti-CD14-FITC BD Biosciences, Cat. No. 347493 
2 Anti-CD3-PE BD Biosciences, Cat. No. 347347 
3 Anti-CD5-PerCPCy5  BD Biosciences, Cat. No. 341089 
4 Anti-CD20-APC  BD Biosciences, Cat. No. 340941 
5 Anti-kappa-FITC & Anti-lambda-PE BD Biosciences, Cat. No. 349516 
ANTIBODIES FOR MBL SCREENING 
1 Anti-CD4-FITC BD Pharmingen, Cat. No. 561005 
2 Anti-CD19-FITC  BD Pharmingen, Cat. No. 560994 
3 Anti-CD8-PE  BD Pharmingen, Cat. No. 561949 
4 Anti-CD16-PE  BD Pharmingen, Cat. No. 560995 
5 Anti-CD45-PerCPCy5.5  BD Pharmingen, Cat. No. 564106 
6 Anti-CD3-APC  BD Pharmingen, Cat. No. 561810 
7 Anti-IgM-FITC  BD Pharmingen, Cat. No. 562029 
8 Anti-CD23-PE  BD Pharmingen, Cat. No. 561774 
9 Anti-CD22-FITC  BD Pharmingen, Cat. No. 561771 
10 Anti-CD79b-PE  BD Pharmingen, Cat. No. 561943 
11 Anti-CD10-FITC  BD Pharmingen, Cat. No. 340925 
12 Anti-CD38-PE  BD Pharmingen, Cat. No. 560981 
13 Anti-CD20-APC  BD Pharmingen, Cat. No. 559776 
14 Anti-CD5-PerCPCy5  BD Biosciences, Cat. No. 341089 
15 Anti-kappa-FITC & Anti-lambda-PE  BD Biosciences, Cat. No. 349516 
INSTRUMENTS 
1 BD FACSVerse flow cytometer Becton Dickinson, Franklin Lakes, USA 
2 BD FACSuite software Becton Dickinson, Franklin Lakes, USA 
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METHODS FOR FLOW CYTOMETRIC ANALYSIS 

2.3.2.1. Cell Staining 

2.3.2.1.1. Cell Staining for Detecting MBL 

 Peripheral blood samples were collected from affected and unaffected family 

members into EDTA vacutainer tubes. Five antibodies cocktails were prepared as listed in 

(Table 2-3) by mixing equal volumes of each antibody.  

Table 2-3 Antibody cocktails for MBL screening 

 Cocktail 1 Cocktail 2 Cocktail 3 Cocktail 4 Cocktail 5 Unstained 
Tube 

FITC  CD4/CD19 anti-Kappa IgM CD22 CD10 - 
 

PE  CD8 /CD16 anti-Lambda CD23 79b CD38 - 
 

PerCPCy5  CD45  CD5 CD5 CD5 CD5 - 
 

APC CD3 CD20 CD20 CD20 CD20 - 

  

 Antibody combinations (20 µL) were used to stain whole blood (100 µL) in 5 ml FACS 

tubes by incubation at 4°C for 30 minutes in the dark. Whole blood (100 µL) was used as an 

unstained control. After incubation, 2 mL of freshly prepared 1 X BD Pharm LyseTM was added 

to each FACS tube, followed by gentle vortexing and further incubation for 15 min, at RT, in 

the dark. Cells were pelleted by centrifugation at 300 g for 5 min, at RT, and washed with 2 

mL of FACS Buffer and centrifuged again at 300 g for 5 min. The washed cell pellet was re-

suspended in 300 µL PFA before acquiring data by flow cytometry.  

2.3.2.1.2. Cell Staining for Assessing B cell Enrichment 

 Fluorochrome-labelled antibodies were used to check the efficiency of the separation 

and purity of the enriched B cells isolated in section 2.2.2. Cells (2 x 105) were re-suspended 



 

46 
 

CHAPTER-2:  MATERIALS AND METHODS 

in 100 µl FACS buffer and antibodies were added according to (Table 2-4); 

Table 2-4 Cell staining for assessing B cell enrichment 

 Tube 1 Tube 2 Tube 3 Tube 4 

Cell type PBMCs PBMCs PBMCs Enriched B cells 

Total volume of 
cell suspension 

100 µL 100 µL 100 µL 100 µL 

Antibodies  - (10 µL) CD14-FITC 
- (7.5 µL) CD3-PE 
- (10 µL) CD5-PerCPCy5 
- (5 µL) CD20-APC 

- (10 µL) CD5-PerCPCy5 
- (5 µL) CD20-APC 
- (5 µL) kappa-FITC & 
lambda-PE 

- (10 µL) CD14-FITC 
- (7.5 µL) CD3-PE 
- (10 µL) CD5-PerCPCy5 
- (5 µL) CD20-APC 

  

 All tubes were mixed with the appropriate amounts of monoclonal antibodies and 

incubated on ice for 30 min in the dark. After incubation, stained cells were washed twice with 

2 mL PBS by centrifuging for 5 min at 300 g. The supernatant was carefully discarded and the 

pellet was resuspended in 300 μL of 4% paraformaldehyde (PFA) in PBS for fixation. 

2.3.2.2. Flow Cytometry 

2.3.2.2.1. Quality Control 

 Each day, the performance of the BD FACSVerse™ flow cytometer was checked using 

BD FACSuite™ CS&T research beads as described by the manufacturer. 

2.3.2.2.2. Gating Strategy for Detecting MBL 

 Flow cytometry gating was conducted using a Becton Dickinson FACSVerse and for 

each test 50,000 cells were analysed using BD FACSuite software to identify B-CLL and MBL 

populations. A lymphocyte region for subset analysis was first established using forward light 

scatter (FSC) versus side scatter (SSC). Lymphocyte populations were first analysed using CD45 

vs. SSC to distinguish lymphocytes from other cells. Lymphocyte were defined as CD45 bright 

with low SSC, and further gating on this population was performed to identify B- and T-
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lymphocytes and NK cells. In the first cocktail, T-lymphocytes were evaluated by gating CD45 

versus CD3 and further gating on CD3 populations to determine T cells subsets, T-helper (CD4) 

and T-cytotoxic (CD8), by analysing CD4 and CD8 against CD3. The inclusion of T cell markers 

in the first cocktail allowed evaluation and screening of lymphoid subsets. B-lymphocytes 

were identified in the 2nd cocktail tube by analysing CD19 against CD45, CD19 vs CD3 and 

CD19 vs CD16. NK cells were identified by CD16 vs CD45, CD16 vs CD19 and vs CD3.  

 B-lymphocyte populations were studied in other cocktail tubes by gating the 

lymphocyte region using forward light scatter FSC versus the side scatter SSC, then B-CLL and 

MBL populations were identified using CD20 vs.CD5 and in these populations the expression 

of CD10, CD22, CD23, CD38, CD79b, IgM and kappa and lambda light chains were evaluated. 

The use of kappa and lambda light chain antibodies is to determine monoclonality. The use of 

CD10, a marker of GC B-cells can be useful for identifying reactive B cell populations and 

differentiation from lymphoma. CD38, a marker for plasma cells, was included to assess B cell 

maturation and to identify abnormal populations within B cell populations. These 

combinations are required for diagnosis of monoclonal B-cell lymphocytosis which expressed 

CD19, CD5 and CD23 with weak or no expression of CD20, CD79b, CD22 and surface IgM. 

2.3.2.2.3. Gating Strategy for Assessing B cell Enrichment 

 Each tube was analysed using a BD FACSVerse™ cytometer. Data from 10,000 events 

were collected using BD FACSuite™ software. A gate around all leukocytes was first 

established using FSC versus SSC. To determine the percentage of pure B-CLL cells, purified B-

lymphocytes were analysed using CD5, CD3, CD14 and CD20. A high percentage of CD20 and 

CD5 with negative expression of CD3 and CD14 indicated high purity B cells. Un-purified 

PBMCs with the same panel were also included in a separate tube as a control sample. 
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2.4. RNA EXTRACTION 

 High quality RNA was required for gene expression studies. Many different kits are 

used to extract RNA from blood cells, but an effective and efficient one must be selected to 

prevent failure of downstream analysis, avoid contamination and reduce reagents costs. Since 

limited numbers of cells were available from some samples it was necessary to establish an 

optimal RNA extraction procedure. Two extraction methods; TRI reagent (Sigma-Aldrich, 

Australia, Cat No.T9424) and Isolate II RNA mini kit (Bioline, Taunton, MA, Cat No.BIO-52072) 

were compared in order to determine the best method to obtain high yield and quality RNA. 

MATERIALS 

Table 2-5 List of materials used for RNA Extraction 

METHODS 

2.4.2.1. TRI Reagent  

RNA was extracted from 5 x 106 PBMCs cells preserved in RNAlater®, as described in 

section 2.2.2, with TRI Reagent (Sigma-Aldrich, USA, Catalog No.T9424) according to the 

manufacturer’s instructions. Briefly, 0.5 mL of TRI reagent was added to cells and mixed gently 

by repeated pipetting to form a homogenous lysate. Samples were left for 5 min at room 

MATERIALS COMPANY 
1 1-Bromo-3-chloropropane  Sigma-Aldrich, Cat. No. B9673 
2 2-Propanol  Sigma-Aldrich, Cat. No. I-9516 
3 Ethyl alcohol, Pure  Sigma-Aldrich, Cat. No. E7023 
4 Water, molecular biology grade Sigma-Aldrich, Cat. No. W4502 
5 2-Mercaptoethanol β-ME  Promega, Product code Z523A-C 
KITS 
1 TRI reagent Sigma-Aldrich, Cat No.T9424 
2 Isolate II RNA mini kit  Bioline, Taunton, MA, Cat No.BIO-52072 
INSTRUMENTS 
1 Varian Cary 1 Bio UV spectrophotometer  
2 Sigma Microcentrifuge  
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temperature and then 1-Bromo-3-chloropropane (0.05 mL) was added and shaken vigorously 

for 15 s. Samples were incubated for 10 min at room temperature and the resulting mixture 

was centrifuged at 12,000 g for 15 min at 4°C, separating the mixture into three phases. The 

colourless, upper-aqueous phase containing RNA was transferred into a new 1.5 ml micro-

tube and 2-propanol (250 µL) was added, mixed and allowed to stand for 5–10 minutes at RT. 

After incubation, samples were centrifuged at 12,000 g for 10 min at 4°C so that the RNA 

precipitate formed a pellet on the side and bottom of the micro-tube. The supernatant was 

carefully discarded and the RNA pellet was washed by adding a minimum of 1 ml of 75% 

ethanol. This was followed by centrifuging at 10,000 g for 5 min at 4°C, the supernatant was 

carefully decanted and the RNA pellet was dried for 5-10 min using air-drying. RNA was 

dissolved in water (50 µL) and the quality and quantity of purified RNA was assessed by 

spectrophotometry at A260 and A280 nm. 

2.4.2.2. Isolate II RNA Mini Kit (Bioline)  

 RNA was extracted from 5 x 106 PBMCs cells preserved in RNAlater®, as previously 

referred to in section 2.2.2, using the Isolate II mini RNA kit according to the manufacturer’s 

protocol. Lysis buffer (RLY) (350 µL) and β-ME (3.5 µL) were added to the cell pellet and mixed 

several times vigorously by pipetting to form a homogenous lysate. This was passed through 

a filter to reduce viscosity and clear the lysate by centrifugation at 11,000 g for 1 min at RT. 

Ethanol (70%, 350 µL) was added to the filter and mixed by pipetting up and down 5 times and 

loaded onto the RNA isolation column, followed by centrifuging at 11,000 g for 30 s, trapping 

the RNA on the column. The column was then washed with 350 µL membrane desalting buffer 

and centrifuged at 11,000 g for 1 min. The column was then treated with DNase I to eliminate 

any genomic DNA contamination as described by the manufacturer. After further washing, 

RNA was eluted from the column with RNase-free water (60 µL) supplied with the kit, 
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centrifuged at 11,000 g for 2 min, and the quality and quantity of purified RNA was assessed 

by spectrophotometry at A260 and A280nm. 

2.5. INTERPHASE FLUORESCENCE IN SITU HYBRIDIZATION (FISH) 

 Interphase Fluorescence in Situ Hybridization (FISH) was adapted from the Cytogenetic 

Laboratory, the Children’s Hospital at Westmead, Sydney, NSW, Australia.  

MATERIALS AND SOLUTIONS 

Table 2-6 List of materials used for FISH Analysis 

 

MATERIALS COMPANY 
1 Centrifuge Heraeus Megafuge 1.0 
2 Diamond-tipped pencil  
3 Water-bath Thermoline Scientific 
4 Dry block heater Thermoline Scientific 
5 Inverted microscope Olympus IX50 Inverted Microscope 
6 Microscope Slides  
7 15mm round coverglass ProSciTech Pty Ltd 
8 24x60mm coverglass  ProSciTech Pty Ltd 
9 Coplin jars  
10 Potassium chloride (KCl) Sigma-Aldrich, Product No. P 5405  
11 Methanol Sigma-Aldrich, Product No. P 34860 
12 Acetic acid (glacial) 100% Merck Millipore, Cat. No. 1000632500 
13 Sodium chloride (NaCl) Sigma-Aldrich, Cat No. 32038 
14 Trisodium citrate dehydrate Sigma-Aldrich, Cat No. S1804 
15 Nonidet P-40 (NP40) Roche, Cat No. 11754599001 
16 4,6-Diamidino-2-phenylindole (DAPI) Sigma-Aldrich, Cat No. D9542 
17 Tween 20 Sigma-Aldrich, Cat No. P1379 
18 XL CLL probe kit  MetaSystems, (D-5044-100-TC) 
19 ECLIPSE 80i epi-fluorescence microscope  Nikon, Tokyo, Japan 
20 Bottle Top Vacuum Filters, 0.22µm Pore 

33.2cm² PES Membrane  
500mL, Corning, Cat. No. 431118  

21 1.15g DABCO (1,4-diazabicyclo-[2.2.2]octane 
(Triethylenediamine))) 

Sigma-Aldrich, Australia, Cat No. D27802 

22 Glycerol   
23 Art cement  
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Table 2-7 List of solutions used for FISH Analysis 

METHOD 

2.5.2.1. Slide Preparation 

 Briefly, peripheral blood (6 mL) was collected in lithium heparin tubes from each CLL 

patient and 0.5 mL patient blood was diluted with 10 mL hypotonic solution (0.075 M KCL, 

37°C) incubated in a 37°C water-bath for 10 min, followed by centrifugation at 300 g for 6 min, 

at RT. The supernatant was discarded and re-suspended, cells were washed with 10 mL of 

freshly prepared 5% acetic acid and centrifuged as before. The supernatant was removed and 

pellets were fixed by washing 3 times with freshly prepared Carnoy’s fixative (10 mL), and 

centrifuged as before, to obtain a clear white pellet. After the last wash, 3 drops of Carnoy’s 

fixative were added to re-suspend the pellet. For each probe, one slide was prepared, cleaned 

with fixative and labelled with patient details and probe name. One or two drops (≈10 µL) of 

cell suspension were dropped from a minimum height of 20 cm onto the centre of the slide 

SOLUTIONS 
1 0.075M KCl 5.592g KCL dissolved in 1L MilliQ H2O 
2 Carnoy's fixative 3 parts of Methanol to 1 part of acetic acid 
3 The XL CLL Probes MetaSystems, D-5044-100-TC 
4 20X saline sodium citrate 

(SSC) 
87.66g NaCI was dissolved in 450mL Milli-Q water then 44.115g Trisodium 
citrate dehydrate was added to the NaCl solution. The volume was adjusted 
to 500mL and sterilised by filtration and stored protected from light.  

5 Wash buffer 1: 0.4xSSC / 
0.3% NP40 

20mL of 20XSSC was transferred into a new sterile 500mL bottle and then 
up to 500mL Milli-Q water was added, mixed before adding 1.5mL NP40. 
Stored at RT 

6 Wash buffer 2:  2xSSC / 
0.1% NP40. 

100mL of 20XSSC, 400mL Milli-Q water and 0.5mL NP-40 in 500mL sterile 
bottle.  Stored at RT 

7 DAPI Stock in 5mL 
volume 

To 1mg DAPI, 0.5mL methanol was added and swirled to mix and then 

4.5mL distilled water was added and mixed by inversion.  Stored at -20°C.   
8 4xSSC / 0.2% Tween 20 100mL of 20XSSC, 400mL Milli-Q water and 1mL Tween 20 in 500mL sterile 

bottle. Stored at RT. 

9 Antifade Solution 1.15g DABCO was first dissolved in 1mL 1M TRIS-HCL pH 9.0, and 4mL Milli-

Q water and then made up to 50mL with Glycerol. Stored at 4°C.  
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and the position of drops were marked by circling the underside of slide with a diamond pencil. 

A test slide was dried on the bench and the density of cellular dispersion was checked under 

phase contrast on a IX50 inverted microscope (Olympus). The quality assessment of the cell 

spreading on the slide is an essential step to avoid cells being too dense which could introduce 

background signals and lead to incorrect FISH results. A satisfactory preparation should have 

≈20 interphase nuclei/field of view using a low power lens. The prepared slides were then 

used immediately or stored at -20°C. Unused cell suspension in Carnoy’s fixative was stored 

at 4°C for future analyses. 

2.5.2.2. Probe Preparation and Denaturation 

 The XL CLL probe kit (MetaSystems, D-5044-100-TC) was used to determine the most 

frequent recurrent genomic copy number aberrations in CLL. According to the manufacturer’s 

instructions, this kit contains 2 vials: 1. vial contains the XL DLEU/LAMP/12cen that is a 3-

colour probe-mix containing the DLEU gene region at 13q14 (including the D13S319 marker) 

in red, the LAMP gene region at 13q34, and a chromosome 12 centromeric probe labelled in 

green and; 2. vial contains the XL ATM/TP53 locus-specific probe that detects a deletion in the 

long arm of chromosome 11 and the short arm of chromosome 17. The green labelled probe 

hybridises to a specific region at 11q22 covering ATM and the red labelled probe hybridises 

specifically to TP53 and flanking regions at 17p13. The vials were thawed at room temperature 

for 15 min and gently vortexed before applying them on the prepared slides. From the 

appropriate vials, 5 µL were dispensed onto the corresponding slides as guided by the 

diamond pencil mark and covered with 15 mm round coverslips. Air bubbles were removed 

with forceps before sealing the coverslips with art cement. The slides were denatured by 

placing on a hotplate at 75°C for 4 min. The hotplate was turned off and the slides were left 

on the hotplate until the temperature had returned to 37°C. 
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2.5.2.3. Hybridisation 

 For hybridization, the slides were transferred into the humidified chamber at 37°C for 

overnight incubation. The art cement and coverslips were then carefully removed before 

applying a series of stringency washes.   

2.5.2.4. Post-Hybridisation Washes 

 After overnight hybridization, slides were placed into a Coplin jar containing wash 

buffer 1 at 75°C for 2 min with gentle agitation every 10 s.  Slides were transferred into another 

Coplin jar containing wash 2 buffer at room temperature for a minimum of 1 minute. The 

buffer was discarded and the Coplin jar containing the slides was left in a dark place to dry 

before applying DAPI counterstain solution.  

2.5.2.5. Counter Staining 

 A freshly prepared working stock of DAPI counterstain solution was made by diluting 

DAPI Stock 1/1500 in 4XSSC / 0.2% Tween 20 (30 µL in 45 mL) and stored in the cupboard to 

protect from light until required. For the counterstaining process, DAPI working stock solution 

was decanted into the Coplin jar containing the slides and stained for 5 min in the dark place 

to protect from light. After staining, DAPI solution was discarded and the slides rinsed four 

times in Milli-Q water. The slides were then removed and left to air dry in the dark before 

mounting as described below. 

2.5.2.6. Mounting 

 To prepare slides for mounting, three small drops of antifade were evenly spaced onto 

24 x 60 mm coverslips. The slides were placed on top of the coverslips and left to spread. The 

excess antifade solution and bubbles were removed with tissues and forceps. The slides were 
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stored at 4°C in a cardboard rack labelled with the date and covered to protect from light for 

analysis. 

2.5.2.7. Visualisation 

 Slides were analysed in a darkened room using an ECLIPSE 80i epi-fluorescence 

microscope equipped with a charge-coupled device camera and appropriate filters. A total of 

two-hundred images of interphase nuclei were captured for every probe set according to the 

manufacturer’s instructions.  

 For the XL DLEU/LAMP/12cen probe set, an appropriate filter to detect LAMP was not 

available therefore a normal signal pattern was indicated by 2 Red/2 Green dots. A signal 

pattern of 2 Red/3 Green dots indicated trisomy 12 while a signal pattern of 1 Red/2 Green 

dots indicated deletion of DLEU (13q14). 

 The normal signal patterns for the XL ATM/TP53 probe set is 2 x Green/2 x Red dots. A 

signal pattern of 1 x Green/2 x Red indicated ATM deletion (11q22) and a signal pattern of 2 x 

Green/1 x Red indicated a deletion of the TP53 locus (17p13). 

 Results were considered to be abnormal when the percentage of cells with any given 

abnormality was > 5% in 200 interphase nuclei for Trisomy 12 and > 8% for deletions of 13q, 

11q and 17p, as noted in Wawrzyniak et al. (Wawrzyniak et al., 2014) study. A case was 

considered to have a poor prognosis if the nuclei carried an 11q or 17p aberration, an 

intermediate prognosis if trisomy 12 was detected and a good prognosis if a 13q deletion was 

detected (Wawrzyniak et al., 2014) (Wolff et al., 2007).  

2.6. IGH GENE CLONALITY ASSAY 

 This assay was carried out in collaboration with Maryam Hassanvand, an MD student 
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at the University of Sydney Nepean Clinical School. 

MATERIALS 

Table 2-8 List of materials used for IGH gene clonality assay 

METHOD  

2.6.2.1. Isolation of DNA from peripheral blood 

 DNA was isolated from peripheral blood using the Wizard Genomic DNA purification 

kit (Promega), according to the manufacturer’s protocol. Briefly, blood samples were collected 

in lithium heparin vacutainer tubes. Whole blood (300 µL) was added to a sterile 1.5 mL micro-

centrifuge tube containing Cell Lysis Solution (900 µL) and mixed by inverting the tube 5-6 

times. The tube was left at room temperature for 10 min to lyse the red blood cells. The 

sample was centrifuged at 13,000 g for 30 s at room temperature and the supernatant was 

carefully removed. The white cell pellet was re-suspended and Nuclei Lysis Solution (300 µL) 

was added to the tube and pipetted up and down gently 5 times to lyse the white blood cells 

MATERIALS COMPANY 
1 Wizard Genomic DNA purification kit Promega, Cat No. A1120 
2 Isopropanol  Sigma-Aldrich, Cat. No. I-9516 
3 Pure, ethyl alcohol Sigma-Aldrich, Cat. No. E7023 
4 Water, molecular biology  Sigma-Aldrich, Cat. No. W4502 
5 Thermo Scientific Nanodrop 2000 

Spectrophotometer  
Thermo Fisher Scientific, Wilmington, U.S.A. 

6 IGH Gene Clonality Assay Invivoscribe Technologies Inc., San Diego, USA 
7 Thermo-cycler  PTC-225 Tetrad DNA Engine PCR System, MJ Research 
8 The Mini-Sub cell GT agarose gel 

electrophoresis system  
Bio-Rad Laboratory Pty., Ltd, NSW, Australia 

9 Ultra-pure grade 25X Tris-acetate-EDTA (TAE) 
concentrate ready pack  

Amresco, Cat No 0912-2PK, Australia 

10  Grade Agarose 1  Amresco, Cat No 0710-500G, Australia 
11 Safe DNA gel stain in 1 X TAE  Invitrogen, Cat No S33111 
12 EZ Load 100 bp molecular ruler  Bio-Rad, Cat No170-8352 
13 Safe imager blue light trans-illuminator  Invitrogen, S37102 
14 Wizard SV Gel and PCR Clean-Up System  Promega, Cat No. A9282 
15 25X Tris-acetate-EDTA (TAE) concentrate One foil pouch containing 25X TAE powder was 

dissolved in 1L Milli-Q water.  
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until the solution became very viscous. Protein Precipitation Solution (100 µL) was added to 

the nuclear lysate and vortexed vigorously for 20 s. The tube was centrifuged at 13,000g for 3 

min at RT, and the supernatant containing the DNA was carefully transferred to a new sterile 

1.5 mL micro-centrifuge tube containing isopropanol (300 µL). The solution was inverted 

gently until the white thread-like strands of DNA formed a visible mass, and then centrifuged 

at 13,000 g for 3 min at RT. After centrifugation, the DNA formed a small white pellet on the 

side and bottom of the microcentrifuge tube. The supernatant was carefully aspirated and 

then 70% ethanol (300 µL) at RT was added to the DNA pellet. The tube was inverted several 

times gently to wash the DNA pellet and the sides of the tube before centrifuging at 13,000 g 

for 3 min at RT. The supernatant was carefully aspirated leaving a small white pellet of DNA 

and the tube was inverted onto a clean absorbent paper to air-dry for 60 min. Afterward, DNA 

Rehydration Solution (100 µL) was added to the DNA pellet and incubated at 65°C for 1 hour 

or overnight at 4°C. Finally, the rehydrated DNA was quantified using a Thermo Scientific 

Nanodrop 2000 Spectrophotometer and its software (Thermo Fisher Scientific, Wilmington, 

U.S.A.).  

2.6.2.2. IGH Gene Clonality Assay 

 Clonal immunoglobulin heavy chain gene (IGH) rearrangements were detected using 

the IGH Gene Clonality Assay (Invivoscribe Technologies Inc., San Diego, USA). The kit contains 

six primer master mixes; IGH tube A catalogue no. 2-101-0011, IGH tube B catalogue no. 2-

101-0101, and IGH tube C catalogue no. 2-101-0031, for targeting the framework regions 

within the variable and the joining regions of IGH, while IGH tube D catalogue no. 2-101-0041 

and IGH tube E catalogue no. 2-101-0051, targeted the diversity and joining regions. The last 

master mix tube is the specimen control size ladder (Catalogue no. 2-096-0021), which 

targeted multiple genes and generated a serious of amplicons to ensure that the quality and 
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quantity of input DNA was sufficient to yield valid results. Positive clonal controls DNA (IVS-

0030, IVS-0019, IVS-0024, and IVS-0008) and negative polyclonal controls DNA (IVS-0000) 

were also included. Reactions were set up according to the manufacturer's instructions using 

AmpliTaq Gold DNA polymerase and amplification was performed on a thermo-cycler using 

the following PCR program,  

 1 x cycle   - Initial incubation at 95°C for 7 min. 

 35 x cycle   - Denaturation at 95°C for 45 s. 

     - Annealing at 60°C for 45 s. 

     - Extension at 72°C for 90 s. 

 1 x cycle   - Extension at 72°C for 10 min. 

The PCR products were stored at 4°C before analysing them on a 2.5% agarose gel. 

2.6.2.3. Agarose Gel Electrophoresis 

 Agarose gel electrophoresis was performed using the Mini-Sub cell GT agarose gel 

electrophoresis system, to separate and visualise DNA of various size. For a final concentration 

of 2.5% agarose gel, agarose (2.5 g) was dissolved in 1X TAE (100 mL) by heating in a 

microwave oven until the agarose was completely dissolved. SYBR safe DNA gel stain (5 µL) 

was added to the agarose solution and gently swirled before pouring the gel into a 7 x 10 cm 

Bio-Rad Mini-Sub cell gel-casting tray. An eight-tooth well-forming comb was inserted, and 

the gel was allowed to solidify for at least 45 min at RT. The casting tray containing the gel on 

it was inserted into the electrophoresis box with the sample wells near to the negative black 

cathode. The box was gradually filled with 1X TAE running buffer until the gel was submerged 

and the comb was then carefully removed from the solidified gel. EZ Load 100 bp molecular 
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ruler (5 µL) was loaded in the first well as a DNA size standard. 6X nucleic acid sample loading 

buffer (5 µL) was added to 25 µL of amplified DNA sample, and then 20 µL of sample mixture 

was carefully loaded into agarose well. Electrophoresis was carried out at room temperature 

at a constant voltage of 110V for 60 min. After electrophoresis, the gel was placed on the Safe 

Imager blue light trans-illuminator for nucleic acid visualisation and analysis. An image of the 

gel was collected, and stained agarose gel bands within the valid size range were excised using 

sterile surgical scalpels and transferred directly into a new sterile 1.5 micro-centrifuge tube 

for DNA purification. 

2.6.2.4. Gel Slice DNA Purification 

 DNA was purified from gel slices using the Wizard SV Gel and PCR Clean-Up System, 

according to manufacturer’s instructions. Briefly, membrane binding solution (500 µL) was 

added to a 1.5 mL micro-centrifuge tube containing the DNA gel slice, vortexed vigorously and 

incubated at 60°C for 5-10 min until the gel was completely dissolved. The dissolved DNA gel 

mixture was transferred to a SV mini-column in a collection tube and incubated for 1 min at 

room temperature. After that, the SV mini-column assembly was centrifuged at high speed 

(16,000 g) for 1 min, then the flow was discarded and the SV mini-column was washed with 

membrane wash solution (700 µL) and centrifuged again for 1 min at 16,000 g. Another 

washing step was performed by adding membrane wash solution (500 µL) followed by 

centrifugation for 5 min at 16,000 g. After centrifugation, the flow-through was carefully 

removed, and the SV mini-column in the collection tube was then re-centrifuged for 1 min 

with the micro-centrifuge lid open to completely evaporate any residual ethanol. The SV mini-

column was transferred into a nuclease-free 1.5 mL micro-centrifuge tube and nuclease-free 

water (30 µL) supplied with the kit was added directly to the centre of the SV mini-column 

silica membrane without touching the membrane with the pipette tip. The tube was incubated 
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at RT for 1 min, followed by centrifuging at 16,000 g for 1 min. The quantity of purified DNA 

was measured using a Thermo Scientific Nanodrop 2000 Spectrophotometer and its software 

(Thermo Fisher Scientific, Wilmington, U.S.A.).  

2.6.2.5. Sequencing Reaction 

Sequencing of the purified fragments was performed at the Australian Genome Research 

Facility (AGRF) (Westmead Millennium Institute, Westmead, Australia) by high throughput 

Sanger sequencing using applied bio-systems 3730 and 3730xl capillary sequencer with big 

dye terminator (BDT) chemistry version 3.1 and standard sequencing protocols 

(https://www.agrf.org.au/docs/sanger-sequencing-sample-preparation-guide.pdf ).  

 Nucleotide sequences were compared with the international ImMunoGeneTics 

information system (IMGT) (http://www.imgt.org/) and IgBLAST 

(https://www.ncbi.nlm.nih.gov/igblast/) databases and gene-usage and mutational status 

determined based on the recommended threshold of 2% to distinguish mutated from non-

mutated B-CLL cases (Tobin et al., 2005) (Ghia et al., 2007).  

2.7. Quantitative reverse-transcriptase PCR (qRT-PCR) 

MATERIALS 

Table 2-9 List of primers used for qRT-PCR validation of gene expression 

 GENE PRIMERS 
1 GRASP1 F: GCTCAGGATTCCGCTGGAAGAA 

R: AGGTCACCATTTCCACACGCTG 
2 TBC1D10C1 F: GCTCAGGATTCCGCTGGAAGAA 

R: AGGTCACCATTTCCACACGCTG 
3 RASGEF1B2 F: CTGGATCCCTGGAAGCACTC 

R: TTGGCCATTAGCTCATACGGA 
4 DFNB312 F: TCTACGCTCTCCCAGCTCTC 

R: CCGCACTTTTCTTCACACGG 
5 INPP5F1 F: TGGCACATCCTTAGAGGCTCTG 

https://www.agrf.org.au/docs/sanger-sequencing-sample-preparation-guide.pdf
http://www.imgt.org/
https://www.ncbi.nlm.nih.gov/igblast/
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1 Sequences sourced from OriGene (https://www.origene.com) 

2Sequences determined using Primer-Blast (https://www.ncbi.nlm.nih.gov/tools/primer-blast) 

METHOD 

 To validate primers for use in qRT-PCR, primer pairs were checked for specificity, 

appropriate amplicon size, and for the absence of SNPs, using Primer-blast 

(www.ncbi.nlm.nih.gov/tools/primer-blast) and SNPCheck3 

(https://secure.ngrl.org.uk/SNPCheck), respectively. Total RNA was isolated from purified B 

cells using Isolate II RNA mini kit (Bioline, Taunton, MA) as mentioned earlier. cDNA synthesis 

of up to 1 µg RNA was performed using a Tetro cDNA synthesis kit (Bioline, Taunton, MA.) 

according to the manufacturers’ protocol using a 1:1 ratio of random hexamers and oligo dT 

for priming. qRT-PCR was performed using a Rotor-Gene 2000 (Corbett Research, Sydney, 

Australia) as described previously (Skarratt and Fuller, 2014) except that the annealing 

conditions were optimized to 58°C for 15 s , and the extension conditions to 72°C  for 10 s over 

35 cycles. Amplified products were verified by sequencing of gel purified amplicons as 

described in sections 2.6.2.4 2.6.2.5. 

R: CACTGGCACCTTCATCCAAAGG 
6 SMAD31 F: TGAGGCTGTCTACCAGTTGACC 

R: GTGAGGACCTTGTCAAGCCACT 
7 GADPH2 F: CGAGATCCCTCCAAAATCAA 

R: TTCACACCCATGACGAACAT 

https://www.origene.com/
https://www.ncbi.nlm.nih.gov/tools/primer-blast
http://www.ncbi.nlm.nih.gov/tools/primer-blast
https://secure.ngrl.org.uk/SNPCheck
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3.1. INTRODUCTION 

 CLL is the commonest subtype of leukaemia in western countries, accounting for ≈25% 

of all cases (Howlader N, 2017). However, the incidence is very low in eastern countries and 

in immigrants from eastern to western countries, suggesting the presence of a genetic 

predisposition. Furthermore, there is no clear relationship between the development of CLL 

and environmental factors, including exposure to radiation (Hatch and Cardis, 2017).  

 Using GWAS data, the heritability of CLL has been estimated to be 46–59% (Di 

Bernardo et al., 2013, Berndt et al., 2013). Di Bernardo et al., used SNP genotyping data from 

a GWAS of 517 CLL cases and 2,930 CLL controls (Di Bernardo et al., 2013) and estimated 

heritability using the methods of Yang et al. and Lee et al. (Yang et al., 2010, Lee et al., 2011). 

In case-control studies the proportion of cases is usually larger than the prevalence in the 

population, therefore the data were transformed to account for disease prevalence, 

incomplete linkage-disequilibrium (LD) and ascertainment (Lee et al., 2011), and the 

heritability of CLL was estimated to be 0.59, where heritability ranges from 0 (no genetic 

contribution) to 1 (all trait differences reflect genetic variation) (Di Bernardo et al., 2013). 

Berndt et al. used genotyping data from 4 GWAS and 1 case control study (Crowther-

Swanepoel et al., 2010b, Crowther-Swanepoel et al., 2011, Di Bernardo et al., 2008, Slager et 

al., 2011) to perform a meta-analysis of 3100 CLL cases and 7667 controls (Berndt et al., 2013). 

In this study, the contribution of all common variants to the genetic heritability of CLL was 

investigated using the same methods as Di Bernardo et al. (Yang et al., 2010, Lee et al., 2011, 

Di Bernardo et al., 2013), and common SNPs were estimated to explain up to ≈46% of the 

familial risk of CLL (Berndt et al., 2013).  

 The heritability of CLL is amongst the highest of any cancer (Sellick et al., 2006a), and 
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heritability studies of GWAS data are compatible with susceptibility to CLL mediated through 

many common SNPs. A family history of CLL or a related B-cell lymphoproliferative disorder is 

present in ≈ 10% of cases, and an inherited risk for developing CLL has been supported by twin 

studies, case control studies, and cohort studies (Bevan et al., 2000, Sellick et al., 2006a, Di 

Bernardo et al., 2013). Registry-based studies of related subjects have consistently 

demonstrated familial aggregation of CLL, with the two largest studies, based on the Swedish 

Family-Cancer Database and the Utah Population and Cancer Registry Database, showing an 

8.5 and 6.1 fold first-degree familial relative risk of CLL, respectively (Czene et al., 2002, 

Goldgar et al., 1994, Kerber and O'Brien, 2005). Furthermore, identification of a higher 

frequency of MBL in families with multiple affected cases provides further evidence of 

inheritance in a subset of CLL patients (Rawstron et al., 2004, Rawstron, 2002). 

To date, GWAS have identified 30 risk variants, however these account for only ≈19% 

of the familial risk of CLL and no definite predisposition genes have been identified (Speedy et 

al., 2014). It is likely that further advances will be made using GWAS- and WGS-based 

association studies, however genetic studies of large multigenerational families continue to 

provide opportunities to identify the remaining ≈80% of susceptibility genes. 

 Several families have been reported in which CLL appears to be transmitted as an 

autosomal dominant disorder (Sellick et al., 2006a). However, genetic linkage studies have 

been unable to detect any driver mutations, and the presence of numerous collaborating, 

genes has likely limited the usefulness of this approach. The largest family studied to date 

comprised 11 x F-CLL cases and 4 x F-MBL over 5 generations (Fuller et al., 2008). A genetic 

linkage scan of this family using a Genechip® Mapping 10K 2.0 Xba Array containing ≈10 200 

SNPs in F-CLL cases and controls showed a maximal logarithm of odds (LOD) score of 1.01 

(p=0.06) at 2q37.2, which contains a number of potential CLL candidate genes that could be 
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further studied for the presence of variants including INPP5D, which interacts with KRAS and 

NRAS in the B-cell receptor signalling pathway (Isnardi et al., 2006), and SP140, the lymphoid-

restricted homologue of SP100 which has a role in EBV-mediated B cell immortalization (Bloch 

et al., 1996), and was identified in the Di Bernardo et al. GWAS (Di Bernardo et al., 2008). The 

maximal NPL statistic of 2.24 (P=0.03) in the family was obtained between 14q24.1 and 

14q31.2 (Fuller et al., 2008), containing ZFP36L1 which has been associated with the apoptotic 

response to rituximab (Jackson et al., 2006, Baou et al., 2009). However, germline mutations 

that segregated with affected family members were not found in ZFP36L1. 

 It is likely that a proportion of genetic susceptibility to CLL results from mutations that 

affect gene regulation, including transcription factor binding sites (Law et al., 2017), and 

epigenetic modifications, rather than changes in DNA sequences that affect protein function. 

Mutations or epimutations, pathogenic alterations in DNA methylation or chromatin structure 

that do not alter DNA sequence, affect the function of the expressed imprinted gene allele 

and can result in imprinting disorders. Mechanisms that give rise to an imprinting disorder 

include uniparental disomy, intragenic mutations or copy number alterations that alter the 

function of a gene, and mutations or epimutations in imprinting control centres that alter 

imprinting or expression of genes (Abu-Amero et al., 2008, Bullman et al., 2008, Scott et al., 

2008a, Scott et al., 2008b). A number of human imprinting syndromes are associated with 

cancer risk, including the Beckwith–Wiedemann syndrome imprinted domain at 11p15.5 

which is associated with Wilms tumour, hepatoblastoma, and rhabdomyosarcoma 

(Kamikihara et al., 2005, Kaneda and Feinberg, 2005, Yuan et al., 2005); and the Prader–Willi 

syndrome imprinted domain at 15q11-q13 which is associated with myeloid leukemias (Davies 

et al., 2003).  
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HYPOTHESIS 

 It is proposed that inherited mutations or epimutations affecting the expression of 

imprinted genes can be inferred by differences in mRNA levels in controls, F-CLL cases, F-MBL, 

and S-CLL. 

 

AIMS 

 1. Determine if family CLL/MBL (combined as familial lymphoproliferative disease; F-

LPD) B lymphocytes contain unique mRNA profiles compared to B lymphocytes from 

unaffected family subjects and sporadic CLL (S-CLL) cases. Differences in gene expression 

between F-MBL, F-CLL, S-CLL and controls were assessed using analysis of variance (ANOVA), 

and false discovery rate (FDR) p-values for unsupervised hierarchical clustering (Pounds, 2006, 

Reiner et al., 2003). 

 

 2. Compare mRNA profiles between F-LPD and S-CLL groups, after removing genes that 

were differentially expressed as a result of genetic relatedness within the F-LPD group. To 

remove these genes, the F-LPD group was compared to the S-CLL group, and differentially 

abundant mRNAs were then compared to related family controls. Only mRNAs differentially 

abundant between F-LPD and S-CLL, and F-LPD and family controls, were used for semi-

supervised hierarchical clustering (Bair, 2013, Bair and Tibshirani, 2004). 
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3.2. MATERIALS 

Table 3-1 List of materials used for Affymetrix GeneChip Human Transcriptome Array 2.0 

 

3.3. METHODS 

Patients and Samples 

 The experimental protocol was approved by the Nepean and Blue Mountains Local 

Health District Human Research Ethics Committee (01/70). Subjects were recruited from the 

Nepean Hospital, (Penrith, New South Wales, Australia) after obtaining informed consent. 

Peripheral blood samples were collected from 6 surviving patients (two with F-CLL, and 4 with 

F-MBL), and 3 controls from a family with multiple cases of F-LPD, (Figure 3-1) (Fuller et al., 

2008). Blood samples were collected from a further 3 unrelated controls, and 6 S-CLL cases. 

All B-CLL subjects were treatment naïve. 

 The diagnosis of B-CLL was based on the presence of a monoclonal B lymphocyte count 

≥5 X 109/L for ≥ 3 months, expression of CD19, CD5 and CD23, and weak or no expression of 

MATERIALS COMPANY 
1 Affymetrix GeneChip Human Transcriptome 

Array 2.0  
Affymetrix Inc, Santa Clara, California, USA 

2 RNA Pico 6000 chip Agilent Technologies 
3 Agilent Bioanalyser Agilent Technologies 
4 GeneChip® WT Pico Kit Affymetrix Inc, Santa Clara, California, USA, P/N 703262 

Rev.5 
5 GeneChip® Whole Transcript (WT) Expression 

Arrays 
Affymetrix Inc, Santa Clara, California, USA 

6 GeneChip® Expression wash, stain and scan 
for Cartridge arrays kit 

Affymetrix Inc, Santa Clara, California, USA 

7 Gene chip scanner 3000 7G Affymetrix Inc, Santa Clara, California, USA 
8 Affymetrix Expression Console software, 

version 1.4 
Affymetrix Inc, Santa Clara, California, USA 

9 Transcriptome analysis console (TAC) 3.0 
software 

Affymetrix Inc, Santa Clara, California, USA 
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CD20, CD79b, CD22 and surface IgM. The diagnosis of MBL was based on the same 

immunophenotypic profile, however clonal B cells were <5 × 109/L (Hallek et al., 2008). 

 B lymphocytes were enriched using a RosetteSep™ B-Cell isolation cocktail (StemCell 

Technologies Inc., Vancouver, BC, Canada) to provide >95% B lymphocyte purity, confirmed 

using flow cytometry (Essakali et al., 2008). PCR was used to confirm a clonal B-lymphocyte 

population by the presence of identical rearrangements of immunoglobulin heavy chain 

variable genes (IGH) in CLL/MBL cases and the presence of a polyclonal population in controls. 

IGH Usage and Mutation Analysis  

Analysis of IGH usage and mutation status was performed in collaboration with Ms. 

Maryam Hassanvand, Sydney Medical School Nepean, University of Sydney. Genomic DNA 

was extracted from peripheral blood using the Wizard genomic DNA purification kit according 

to the manufacturer’s instructions and quantified using a Nanodrop 2000 Spectrophotometer 

(Thermo Fisher Scientific, Waltham, MA, USA). Amplification by polymerase chain reaction 

(PCR) and sequence analysis of IGH rearrangements were conducted according to BIOMED-2 

protocols using commercially available IGH gene clonality master mixes (InVivoScribe 

Technologies, San Diego, CA, USA) (van Dongen et al., 2003, van Krieken et al., 2007). Agarose 

gel electrophoresis was performed and the PCR products were visualized using SYBR Safe 

staining (Thermo Fisher Scientific, Waltham, MA, USA). The Wizard® SV Gel and PCR Clean-Up 

System was used to purify PCR products excised from the gel. The purified DNA was sequenced 

using a 3’ JH consensus primer at the Australian Genome Research Facility, Brisbane, Australia. 

The percent mutated IGH was determined by comparing the VH region sequence to 

the Ig blast database (US National Library of Medicine, National Center for Biotechnology 

Information). To ensure accuracy of the results, Ig blast GenBank and the IMGT/V-QUEST 
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portal for immunoglobulin and T cell receptor sequences (the International ImMunoGeneTics 

Information System) were used to analyse and align IGH sequences (Ghia et al., 2007). In 

accordance with published criteria, sequences with a germline homology ≥98% were 

considered as unmutated, and those displaying homology <98% were designated as mutated 

(Ghia et al., 2007). 

Interphase Fluorescence in Situ Hybridization (FISH) 

 Interphase Fluorescence in Situ Hybridization (FISH) analyses for common 

abnormalities associated with B-CLL were performed in affected individuals [n=5, S-CLL 87, S-

CLL 88, F-MBL (III-10), F-CLL (IV-5), and F-CLL (IV-2)] using the following probes: DLEU/LAMP 

at 13q14, chromosome 12 centromere, ATM at 11q22, and TP53 at 17p13. Interphase FISH 

studies were performed based on techniques adapted from the Cytogenetics and the 

Molecular Genetics Laboratory, the Children’s Hospital at Westmead, Sydney, NSW, Australia, 

as described in 2.5. A total of two-hundred images of interphase nuclei were captured for 

every probe set according to the manufacturer’s instructions. Results were considered to be 

abnormal when the percentage of cells with any given abnormality was > 5% in 200 interphase 

nuclei for trisomy 12 and > 8% for deletions of 13q, 11q and 17p. A case was considered to 

have a poor prognosis if the nuclei carried an 11q or 17p aberration, an intermediate prognosis 

if trisomy 12 was detected and a good prognosis if a 13q deletion was detected (Wawrzyniak 

et al., 2014) (Wolff et al., 2007).  

RNA Extraction 

 Purified cells from all selected samples (n=21) were extracted from heparinised blood 

by adding RossetteSep cocktail and centrifugation on Ficoll-Histopaque as described in 2.2.2. 

A minimum of 1 x 106 B-cells/aliquot were collected for gene expression profiles. Lysis buffer 
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(RLY) (350 µL) (Bioline, Taunton, MA, Cat No.BIO-52072) and 2-mercaptoethanol (β-ME) (3.5 

µL) (Promega, Australia, Product code Z523A-C) were immediately added to the purified B 

cells and placed directly into the −80 °C freezer until RNA isolation was performed. Total RNA 

isolation from purified B cells was performed according to the manufacturer’s protocol as 

described in 2.4.2.2.  

 Since limited numbers of cells were available from MBL and control samples it was 

necessary to optimise the RNA extraction procedure. Two extraction methods: TRI reagent 

(Sigma-Aldrich, Australia, Cat No. T9424) and Isolate II RNA mini kit (Bioline, Taunton, MA, Cat 

No.BIO-52072) were compared to determine the best method to obtain high yield and quality 

RNA.  

 RNA was extracted from PBMCs cells (5 x 106) preserved in RNAlater®, as described in 

section 2.4, using TRI Reagent and an Isolate II mini RNA kit according to the manufacturer’s 

protocol. The quality and quantity of purified RNA was assessed by spectrophotometry at 

A260 and A280 nm.  

 The yield and quality of RNA isolated using the isolate II RNA mini spin column kit 

(Bioline, Taunton, MA, Cat No.BIO-52072) was higher compared to the TRI kit. Ultraviolet (UV) 

spectrophotometer analysis showed that the purity of RNA was greater with the isolate II RNA 

mini kit (average A260/280 ratio =1.88 for isolate II RNA mini spin column isolation kit versus 

1.22 for TRI isolation kit (Figure 9-4). The RNA yields/µg isolated using the spin column method 

were > 2.4/µg, compare to 2/µg using TRI reagent. Similarly, the concentration of RNA was 

higher in samples using the spin column compared to those obtained with the TRI protocol. 

Therefore, for gene expression profiles the Isolate II RNA mini spin column kit (Bioline, 

Taunton, MA, Cat No.BIO-52072) was used in this study to extract RNA from the purified B 
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lymphocytes. 

 Before gene expression microarray analysis, the quantity and purity of total RNA was 

checked. Samples were quantified and purity determined using a Thermo Scientific Nanodrop 

2000 Spectrophotometer (Thermo Fisher Scientific, Wilmington, U.S.A.). The concentration of 

total RNA (ng/µL) was determined at 260 nm and was used to calculate the total RNA yield 

(µg) (Figure 9-5). The RNA purity was assessed by measuring absorbance at 260 nm and at 280 

nm. Samples > 1.8 at A260/A280 ratio were used for Affymetrix gene expression microarray 

analyses. All samples had A260/280 ratios above 2.0 as reported in (Figure 9-6). 

 Additional RNA quality assessments were performed using the Agilent 2200 

TapeStation and 2100 Bioanalyser to determine ribosomal RNA ratio (28S/18S) and RNA 

integrity Number (RIN). High quality RNA samples were identified by measuring the fraction 

of the area under the 28S and 18S rRNA peaks of the electropherogram. This fraction should 

show well-defined 28S and 18S peaks with a 2:1 ratio, indicating that the RNA is completely 

intact. The RNA integrity number (RIN) provides a numerical quality value for RNA and a score 

from 1 to 10, with 1 representing the most degraded RNA profile and 10 being most intact. An 

RIN > 7 is recommended for microarray analysis or qRT-PCR (Affymetrix). All analysed RNA 

samples had a 28S/18S rRNA ratio > 2 and RIN > 7 (Figure 9-7; Figure 9-8). 

Transcriptome Profiling 

Total RNA (10 ng) from each sample was prepared as described for the GeneChip® WT 

Pico Reagent Kit (Affymetrix Inc, Santa Clara, CA, USA) and analysed using Affymetrix 

GeneChip® Human Transcriptome 2.0 Arrays. The arrays were washed, hybridized and 

scanned using Cartridge array kits (Affymetrix Inc, Santa Clara, CA, USA). 

 The quality of each Affymetrix HTA microarray was determined using Affymetrix spike-
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in controls, perfect match expression and relative log expression (RLE) during data 

summarization and normalization in the Affymetrix expression console (EC) software, version 

1.4.1. The Affymetrix transcriptome analysis console (TAC 3.0) software was used to perform 

statistical analysis and generate a list of differentially expressed mRNA. 

Affymetrix Expression Console (EC) Software 

 Quality control checks for evaluating hybridisation on all files (.CEL) were performed 

using the expression console software, version 1.4.1, and the data were normalized using 

default settings to remove non-biological variants. Graphs of the QC metrics were generated 

to identify any potential outliers that might indicate problems with sample quality, 

hybridisation, labelling reactions or technical errors across all arrays (Figure 9-9; Figure 9-10; 

Figure 9-11; Figure 9-12). 

Monitoring Sample Quality: 

 Sample quality metrics pos_ vs_ neg_auc, were monitored as a first pass metric for 

overall data quality. This metric compares signal values for positive controls to the negative 

controls, a value < 0.8 indicates poor-quality data (Affymetrix). All arrays were > 0.9 (Figure 

9-9).  

 Absolute Relative log expression (RLE) mean was also used to detect outlier arrays. 

This metric calculates the differences between the signals of one array against the median 

signal value of all arrays. RLE mean should be consistently low for biological replicates and 

arrays with a significantly higher signal value indicate outlier samples (Affymetrix). 

Monitoring Hybridisation and Labelling Quality: 

 Hybridisation controls were used as an additional quality metric to ensure 
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hybridisation had correctly occurred on the arrays. Hybridization metrics showed the bacterial 

spike positive controls were displayed in the expected order: BioB < BioC < BioD < Cre. This 

indicated hybridisation had occurred correctly in all arrays (Figure 9-13).  

 To assess the efficiency of labelling reactions, labelling metrics were performed which 

showed the Poly-A spike controls were spiked in the correct rank order starting from Lys as 

the lowest, Phe, Thr, to Dap as the highest in most arrays. However, in one chip [F-CLL91 (IV-

2)] the poly-A spikes (Lys and Phe) did not fall within the expected order (Figure 9-14). The 

bacterial spikes and positive controls for the relevant chips were repeated and the results 

were correct, suggesting the previous problem with the poly-A spikes were specific to those 

controls and may have indicated a pipetting error in their preparation (Jaksik et al., 2015).  

Validation of Gene Microarrays Using qRT-PCR 

 To validate primers for use in qRT-PCR (Table 2-9), pairs were checked for specificity, 

appropriate amplicon size and for the absence of SNPs using Primer-blast (US National Library 

of Medicine, National Center for Biotechnology Information) and SNPCheck3 (National 

Genetics Reference Laboratory, Manchester, UK), respectively. cDNA synthesis of RNA (1 µg) 

was performed using a Tetro cDNA synthesis kit (Bioline, Taunton, MA, USA) according to the 

manufacturer’s protocol using a 1:1 ratio of random hexamers and oligo dT for priming. RTPCR 

was performed using a Rotorgene 2000 (Corbett Research, Sydney, NSW, Australia) as 

described previously (Skarratt and Fuller, 2014), except annealing conditions were optimised 

to 58°C for 15 s, and the extension conditions to 72 C for 10 s over 35 cycles. Amplified 

products were verified by sequencing of gel purified amplicons. 
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Ingenuity Pathway Analysis  

 To identify relevant biological functions and pathways, differentially expressed genes 

(n = 1678) were exported to Microsoft Excel (Microsoft Corporation, Redmond, WA) and 

uploaded into IPA software using standard settings and criteria restricted to human, immune 

cells, mononuclear cells, lymphocyte, B-lymphocytes and peripheral blood lymphocytes. Core 

analysis was run to find the most significant interactions and associations in datasets 

compared to the IPA database. To determine the association of identified genes with the 

canonical pathways, significance values were calculated using both a right tailed Fisher’s exact 

test p-value < 0.05, and the ratio of the number of genes involved in the canonical pathway, 

divided by the total number of genes in this pathway. Significance p-values were set by default 

at the -log10 (0.05) cut-off of 1.3, which indicated > 95% confidence that genes were not 

generated by chance. The score was used to rank networks and therefore the higher focus 

molecules in a network generated higher scores. 

Statistical and Bioinformatics Analyses 

 Assessments for differences in gene expression between F-MBL, F-CLL, S-CLL and 

controls were performed using analysis of variance (ANOVA), and false discovery rate (FDR) p-

values. Unsupervised hierarchical clustering was performed using Affymetrix software 

(Euclidean distance) (Pounds, 2006, Reiner et al., 2003). In the F-MBL, F-CLL, S-CLL analysis, F-

MBL subjects and F-CLL clustered together as an F-LPD group, and within this group, F-MBL 

subjects were not differentiated from F-CLL. Therefore, for subsequent analyses, F-MBL and 

F-CLL were considered a single F-LPD group. 

 In order to identify genes that separated F-LPD from S-CLL which were not due to 

genetic relatedness between family members, mRNAs differentially abundant in F-LPD 
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compared to both S-CLL and family controls were identified, and semi-supervised clustering 

was performed using these mRNAs (Bair, 2013, Bair and Tibshirani, 2004). First, a 2-sample t-

test was performed to compare F-LPD and S-CLL groups. All genes that had a log fold change 

> 2, and FDR p-value < 0.01 were checked to ensure that they were also different on a 2-

sample t-test comparison between (A) controls and S-CLL and (B) controls and F-LPD. mRNAs 

that had FDR p-values < 0.01 were considered for semi-supervised hierarchical clustering (Bair, 

2013, Bair and Tibshirani, 2004). Fourteen mRNAs and one miRNA met these criteria and were 

clustered using Affymetrix software.  

3.4. RESULTS 

Patients and Samples 

 Peripheral blood samples were collected from 6 surviving patients (two with F-CLL, and 

4 with F-MBL), and 3 unaffected family members from a family with multiple cases of F-LPD 

(Figure 3-1) (Fuller et al., 2008). Blood samples were collected from a further 3 normal 

unrelated controls, and 6 S-CLL cases. All CLL subjects were treatment naïve (Table 3-2). B 

lymphocytes were enriched to provide >95% B lymphocyte purity, confirmed using flow 

cytometry (Figure 9-1) (Essakali et al., 2008). PCR was used to confirm a clonal B lymphocyte 

population by the presence of identical rearrangements of immunoglobulin heavy chain 

variable genes (IGH) in CLL/MBL cases and the presence of a polyclonal population in controls. 

Interphase Fluorescence in Situ Hybridization (FISH) Results 

 FISH analyses were performed in 4 B-CLL cases and 1 MBL (S-CLL 87, S-CLL 88, F-MBL 

III-10, F-CLL IV-5, and F-CLL IV-2). Among these samples, two cases showed delTP53 with ≥ 

30% abnormal cells, one (S-CLL 88) was 50% delTP53 combined with del (13q14) (13%) and 
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another (S-CLL 87) was 30% delTP53. Del13q14 (30% of cells) alone was detected in 1 case (F-

CLL IV-5) and no chromosomal abnormalities were detected in the remaining 2 cases (F-MBL 

III-10 and F-CLL IV-2) (Figure 9-3).  

IGH Gene Clonality Assay Results 

 IGH gene clonality analyses were performed in 6 S-CLL cases, 2 F-CLL and 4 F-MBL 

(Table 3-2). Clonal populations of B lymphocytes were identified in all cases. Three of 6 S-CLL 

cases (S-CLL 53, S-CLL87 and S-CLL88) and 1 of 6 F-LPD cases (F-CLL IV-2) had UM-CLL. Profiles 

for mRNA and protein expression in S-CLL and F-CLL based on IGH and familial M- and UM-CLL 

will be analysed in Chapter 6.
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Table 3-2 Summary of sample characteristics 

Characteristic Unrelated 
control 
(n=3) 

Family control 
(n=3) 

S-CLL 
(n=6) 

F-LPD 
(n=6) 

F-CLL - - - 2 (33%) 
F-MBL - - - 4 (66%) 
Male gender 2 (66%) 1 (33%) 2 (33%) 3 (50%) 
Age* Mean 49, SD 5 Mean 48 SD 8 Mean 74. SD 12 Mean 60. SD 10 
Absolute lymphocyte count (x 
109/L) 

Mean 2. SD 0.4 Mean 2. SD 0.2 Mean 41. SD 35 Mean 6. SD 7 

FISH analysis 
• DelTP53 - - 2  
• Del13q14 - -  1 
• Normal - -  2 

IGHV mutational status 
• Mutated - - 3 5 
• Unmutated - - 3 1 

IGHV region containing the mutation 
• Unknown - - 2 1 
• IGH1 - - 1 - 
• IGH2 - - 1  
• IGH3 - - 2 2 
• IGH4 - - - 2 
• IGH5 - - - 1 

* The S-CLL cases were older than the F-LPD (mean 74 versus 60; Student’s t-test p=0.05), both groups were 
matched for IGHV mutation status (F-CLL: 1 mutated, I unmutated; S-CLL: 3 mutated, 3 unmutated). Ages were 
similar between the unrelated and family normal control groups (mean 48 for both groups). S-CLL; sporadic 
chronic lymphocytic leukaemia, F-CLL; familial chronic lymphocytic leukaemia, F-MBL; monoclonal B-cell 
lymphocytosis (F-MBL) family members, SD: standard deviation 

 

Figure 3-1 Pedigree of the family. 

The pedigree abbreviated from (Figure 1-1) shows segregation of CLL. Blackened symbols are individuals affected 
with CLL; ticked symbols denote individuals studied from whom mRNA and protein were collected; half-shaded 
symbols denote family members with MBL; diamonds represent grouped siblings. 
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Unsupervised Hierarchical Clustering of Gene Expression Data for Family 

Members with MBL or CLL and Sporadic CLL Cases 

 Purified B lymphocytes from F-MBL and F-CLL cases, S-CLL cases and related and 

unrelated control subjects, were compared. The control samples were from 3 family members 

and 3 unrelated controls, there were 2 F-CLL cases, 4 F-MBL, and 6 S-CLL. Comparison of all 3 

groups together identified 1893 cDNA elements, representing 1678 genes, which were 

differentially abundant (FDR < 0.05). Hierarchical clustering segregated cases of F-MBL and F-

CLL cases from S-CLL and controls (Figure 3-2). In this analysis, F-CLL and F-MBL cases did not 

segregate and were combined as “F-LPD” for subsequent comparisons. Unsupervised 

hierarchical clustering segregated related normal controls (V-16, IV-15 and IV-16) from 

unrelated normal controls (1 - 3 NC). Based on FDR, the highest ranked genes upregulated in 

S-CLL versus normal controls and further upregulated in F-LPD were LEF1 (p = 9.69E-09), ROR1 

(p = 2.54E-09). ABCA6 (p = 2.54E-08) and MIR4524A (p = 4.80E-07). The most highly ranked 

genes downregulated in S-CLL versus normal controls and further downregulated in F-LPD 

were SH3RF1 (p<0.0001), PLD4 (p<0.0001), FAM135A (p<0.0001), and SNX22 (p<0.0001). 

Consistent with previous studies, upregulation of BCL2 was found in B-lymphocytes from S-

CLL and F-LPD (p = 0.002). 

 These findings confirmed that gene expression profiles in B lymphocytes from F-CLL 

and F-MBL, combined as F-LPD cases, were unique compared to B lymphocytes from 

unaffected subjects and sporadic CLL cases. Furthermore, gene expression profiles segregated 

family normal controls and unrelated controls. 
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Figure 3-2 Unsupervised hierarchical clustering of B lymphocyte gene expression 

Unsupervised hierarchical clustering of 18 samples from familial-lymphoproliferative disease (F-LPD), sporadic 
chronic lymphocytic leukemia (S-CLL) and related and unrelated control subjects. Array elements that 
significantly varied (FDR < 0.05) were included (1893 mRNAs). Data are displayed as a heat map where rows 
represent unique cDNA elements and columns represent experimental samples. Coloured pixels capture the 
magnitude of the response for any gene, where shades of red and blue represent induction and repression, 
respectively, relative to the median for each gene. IGH genes did not cluster and were removed from the analysis. 
The cluster dendrograms at the right segregated healthy controls, F-LPD, and S-CLL. 
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Ingenuity Pathway Analysis  

 Comparing F-LPD, S-CLL and normal controls using the IPA application, the top five 

canonical pathways were identified for the datasets. These included xenobiotic metabolism 

signalling (p-value = 5.34E-04), pancreatic adenocarcinoma signalling (p-value = 6.99E-04), 

chronic myeloid leukemia signalling (p-value = 1.81E-03), 3-phosphoinositide biosynthesis 

(3.58E-03) and super-pathway of inositol phosphate compounds (3.85E-03), with the 

following top upstream regulators ordered by overlap p-value: CD44 (3.49E-02), IGHM (3.49E-

02), RELA (3.49E-02), and IL15 (4.27E-02). Molecular and cellular functions differing between 

these groups included cell signalling, molecular transport, vitamin and mineral metabolism, 

cell cycle, and gene expression. The top scoring network showed a score of 10 with 15 network 

eligible molecules involved in cancer, cell death and survival, organismal injury and 

abnormalities. A summary of the IPA results for 1893 cDNA elements differentially abundant 

(FDR < 0.05) between F-LPD, S-CLL and normal controls is shown in (Table 3-3). 
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Table 3-3 A summary of the IPA results for 1893 cDNA elements differentially abundant (FDR < 0.05) between 
F-LPD, S-CLL and normal controls 

Top Canonical Pathways p-value Overlap * Ratio ** 
Xenobiotic Metabolism Signalling  5.34E-04 33/163  0.20 

Pancreatic Adenocarcinoma Signalling 6.99E-04  21/89  0.23 
Chronic Myeloid Leukaemia Signalling  1.81E-03  19/83  0.22 
3-phosphoinositide Biosynthesis  3.58E-03  25/127  0.19 
Superpathway of Inositol Phosphate Compounds  3.85E-03  28/148  0.18 
Upstream Regulator p-value of overlap Predicted activation 
CD44 3.49E-02   
IGHM 3.49E-02   
RELA 3.49E-02   
IL15 4.27E-02  
Molecular and Cellular Functions p-value #Molecules 
Cell Signalling 7.69E-03 4 
Molecular transport 7.69E-03 4 
Vitamin and mineral metabolism 7.69E-03 4 
Cell cycle 3.51E-02 2 
Gene expression 3.51E-02 2 
Physiological System Development and Function p-value #Molecules 
Embryonic development 4.97E-03 4 
Haematological System Development and Function 4.97E-03 4 
Haematopoiesis 4.97E-03 4 
Humoral Immune Response 4.97E-03 4 
Lymphoid Tissue Structure and Development 4.97E-03 4 
Top Networks Score Focus Molecules 
1. Cancer, Cell Death and Survival, Organismal Injury and Abnormalities 10 15 

2. Cellular Development, Cellular Growth and Proliferation, Haematological 
System Development and Function 

9 19 

3. Cardiovascular Disease, Gastrointestinal Disease, Hepatic System Disease 1 2 

4. Cellular Movement, Cellular Assembly and Organization, Cellular Function and 
Maintenance 

1 1 

5. Cell-To-Cell Signalling and Interaction, Cancer, Cellular Movement1 1 1 

* Overlap column indicates the number of observed molecules from our dataset that met the filter criteria and participate in a canonical 
pathway to the total number of molecules that participate in the same canonical pathway from the Ingenuity knowledge base.  
** The Ratio column indicate by taking the number of observed molecules from our dataset that participate in a canonical pathway divided 
by the total number of molecules that participate in the same canonical pathway from the Ingenuity knowledge base.  
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Semi-Supervised Hierarchical Clustering of Gene Expression Data for S-CLL Cases 

and F-LPD 

 From 1893 differentially expressed mRNAs with FDR p < 0.05, differential expression 

analysis was used to generate a list of F-LPD mRNAs which had been corrected for genetic 

relatedness. These mRNAs were used for semi-supervised hierarchical clustering (Bair, 2013, 

Bair and Tibshirani, 2004). To exclude mRNAs that were similarly abundant as a result of being 

part of the same family, mRNAs that were differentially abundant in F-LPD versus S-CLL, and 

also differentially abundant in F-LPD versus controls were identified (Figure 3-3). 

 

Figure 3-3. Venn diagram illustrating overlap between F-LPD vs S-CLL, and F-LPD vs Controls 

Sixteen mRNAs were differentially abundant with t-test p < 0.01; >2-fold change in F-LPD versus S-CLL, and also 
differentially abundant in F-LPD versus controls. F-LPD; familial-lymphoproliferative disease, S-CLL; sporadic 
chronic lymphocytic leukaemia. Retrieved from http://bioinfogp.cnb.csic.es/tools/venny/index.html on March 
7th 2018. 

 

 For the F-LPD versus S-CLL comparison, 16 mRNAs representing 14 genes and 1 

microRNA (miRNA) were also differentially expressed in the F-LPD versus control comparison. 

Of these, 14 genes and 1 miRNA showed a 2-fold change in regulation (Figure 3-4; Table 3-4). 

http://bioinfogp.cnb.csic.es/tools/venny/index.html
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Inclusion of ITGA4 and PAG1 produced hierarchical clustering of one F-LPD patient (IV-05) with 

S-CLL patients (Figure 3-4). 

 

Figure 3-4. Semi-supervised hierarchical clustering of B lymphocyte mRNA levels following correction for 
relatedness 

Supervised hierarchical clustering of 14 genes and 1 microRNA (miRNA) which showed a >2-fold change (t-test p 
< 0.01) in regulation between normal familial, F-LPD and S-CLL. Inclusion of ITGA4 and PAG1 produced 
hierarchical clustering of one F-LPD patient (IV-05) with S-CLL. 
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 Increased ITGA4 (CD49) mRNA has been correlated with unmutated IGVH genes and 

poor prognosis (Baumann et al., 2016). The mean mRNA level of ITGA4 in the F-LPD group was 

higher compared with S-CLL, however F-CLL (IV-05), who had mutated IGVH genes, had low 

ITGA4 mRNA levels. In addition, F-CLL (IV-05) had low PAG1 expression, which has been found 

to be downregulated in MBL cells compared to memory B cells (Lanasa et al., 2011). The 

combination of low PAG1 and ITGA4 expression in F-CLL (IV-05) resulted in this patient 

clustering with S-CLL patients. On the assumption that downregulation of PAG1 was related 

to progression from normal B lymphocytes to MBL, rather than associated with F-LPD per se, 

and low ITGA4 expression in F-CLL (IV-05) was associated with mutated IGH, both PAG1 and 

ITGA4 were removed from the final semi-supervised hierarchical clustering analysis. 

 Following removal of ITGA4 and PAG1, semi-supervised hierarchical clustering using 

gene expression data for 12 genes and 1 miRNA from the control familial samples (n=3), 

unrelated control (n=3), F-CLL (n=6) and S-CLL (n=6) samples segregated healthy controls, F-

LPD, and S-CLL (Table 3-4; Figure 3-5). 
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Figure 3-5. Semi-supervised hierarchical clustering of B lymphocyte mRNA levels following removal of PAG1 
and ITGA4 

Supervised hierarchical clustering was performed using expression data for 12 genes and 1 microRNA (miRNA) 
from control family samples (n=3), unrelated controls (n=3), F-CLL (n=6) and S-CLL (n=6). Twelve genes and 1 
microRNA (miRNA) showed a >2-fold change in level. The cluster dendrogram segregated healthy controls, F-
LPD, and S-CLL. 
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Table 3-4 Differential levels of mRNAs from grouped data for F-LPD and S-CLL 

© 2000-2017 QIAGEN. All rights reserved 

 Compared to normal controls, 2 mRNAs (LEF1 and ROR1) and MIR155HG were 

upregulated in F-LPD and further upregulated in S-CLL cases. Ten genes (IGH4-61, SOX4, 

RBM20, SMAD3, PLXNC1, C12orf75, AHR, GRASP, GPR65/TDAG8 and IQSEC1) were 

downregulated in F-LPD, and further downregulated in S-CLL cases. One gene, RBM20, was 

differentially upregulated in F-LPD compared to both controls and S-CLL. Two genes (ROR1, 

and LEF1), have previously been found to be upregulated in CLL, one (GRASP) downregulated, 

and two (MIR155HG and GPR65/TDAG8) linked to CLL biology (Cui et al., 2014, Rosko et al., 

2014, Li et al., 2013, Justus et al., 2017, Cui et al., 2016, Liao et al., 2015, McCarthy et al., 2015). 

mRNA Gene name Fold 
change 

p-value Cellular 
location 

Function (Molecule 
Types) 

GRASP general receptor for 
phosphoinositides 1 associated 
scaffold protein 

10.6 0.007 Plasma 
membrane 

other  

ITGA4 integrin subunit alpha 4 10.4 0.003 Plasma 
membrane 

transmembrane receptor 

RBM20 RNA binding motif protein 20 4.1 0.0007 Nucleus Other  
GPR65 G protein-coupled receptor 65 3.4 0.006 Plasma 

membrane 
G-protein coupled 

receptor 
SOX4 SRY-box 4 3.2 0.009 Nucleus transcription regulator 
IGH4-61 immunoglobulin heavy variable 

4-61 
3.2 0.006 Other  other  

IQSEC1 IQ motif and Sec7 domain 1 2.5 0.004 Cytoplasm Other   
SMAD3 SMAD family member 3 2.3 0.006 Nucleus transcription regulator 
PLXNC1 plexin C1 2.3 0.008 Plasma 

membrane 
transmembrane receptor 

AHR aryl hydrocarbon receptor 2.3 0.006 Nucleus ligand-dependent 
nuclear receptor 

PAG1 phosphoprotein membrane 
anchor with glycosphingolipid 
microdomains 1 

2.2 0.005 Plasma 
membrane 

Other  

C12orf75 chromosome 12 open reading 
frame 75 

2.1 0.0001 Other  Other  

ROR1 receptor tyrosine kinase like 
orphan receptor 1 

-2.0 0.0006 Plasma 
membrane 

kinase 

LEF1 lymphoid enhancer binding 
factor 1 

-2.1 0.007 Nucleus transcription regulator 

ROR1 receptor tyrosine kinase like 
orphan receptor 1 

-2.2 0.001 Plasma 
membrane 

kinase 

MIR155HG MIR155 host gene -3.3 0.002 Other  Other  
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Validation of Gene Microarrays Using qRT-PCR 

 To validate genes differentially expressed between the S-CLL and the F-LPD group, qRT-

PCR was performed using a Rotor-Gene 2000 (Corbett Research, Sydney, Australia) as 

described previously in section 2.7.2. 

 Twelve genes and 1 miRNA were identified as differentially expressed between the S-

CLL group and the F-LPD group. Two of these genes, GRASP and SMAD3, were also identified 

in this thesis as differentially associated with progression from normal B-lymphocytes to pre-

malignant MBL to malignant CLL cells. (See section 5.4). In microarray analysis, these two 

genes were expressed more highly in F-LPD than in S-CLL. Therefore, GRASP and SMAD3 were 

selected to validate microarray results using qRT-PCR. To determine the relative expression of 

these two genes, qRT-PCR was performed on 3 S-CLL (CLL57, CLL87 and CLL88) samples, and 

6 F-LPD (2 F-CLL & 4 F-MBL) cases and changes in expression were determined relative to 

GAPDH (delta Ct).  

 The result showed that expression of GRASP and SMAD3 relative to GAPDH was higher 

in F-LPD compared to S-CLL, which correlated with the microarray results. The qRT-PCR results 

for these genes are shown in (Figure 3-6). 
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Figure 3-6. Validation of the expression of GRASP and SMAD3 relative to GAPDH (delta Ct) in B-lymphocytes 
from S-CLL and F-LPD subjects 

Delta Ct (cycle threshold) is defined by the number of cycles required for the fluorescent signal to cross threshold 
background fluorescence. Ct levels are inversely proportional to the amount of target mRNA, that is, the lower 
the Ct the greater the amount of target mRNA in the sample. Both GRASP and SMAD3 mRNAs were more 
abundant in F-LPD compared to S-CLL. 

 

3.5. DISCUSSION 

 Genome-wide association studies have identified a large number of mutations 

associated with B-CLL. However, these mutations account for only ≈19% of familial risk for 

developing CLL (Law et al., 2017). Of note, GWAS haplotypes are enriched in regulatory 

elements including key B-cell transcription binding factor sites (Law et al., 2017). Therefore, it 

is likely that a proportion of genetic susceptibility to B-CLL results from mutations that affect 

gene regulation, including transcription factor binding and epigenetic modification, rather 

than changes in DNA sequences that affect protein function.  

 Using unsupervised hierarchical clustering, we have shown that mRNA profiles 

segregate S-CLL from F-LPD. This profile was distinct from those found in normal B-
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lymphocytes in family and unrelated controls. 

 To identify genes differentially expressed between S-CLL and F-LPD, we removed genes 

that were similarly expressed between normal family controls and F-LPD. An advantage of this 

family study compared to association studies of unrelated subjects was that background 

genetic variation, was partially controlled as a function of the degree of relationship, 

increasing the contribution of epigenetic and/or environmental modifiers to variation in 

phenotype. 

 The resultant panel of differentially expressed genes were then studied at an individual 

level using semi-supervised hierarchical clustering to determine if they segregated normal B-

lymphocytes from F-LPD and S-CLL. Twelve genes and 1 miRNA were identified that 

segregated F-LPD from S-CLL. LEF1, ROR1 and MIR155HG were expressed at higher levels in F-

LPD and S-CLL compared to normal B-lymphocytes. The following were downregulated in F-

LPD and S-CLL: IGH4-61, SOX4, RBM20, SMAD3, PLXNC1, C12orf75, AHR, GRASP, 

GPR65/TDAG8 and IQSEC1. Three genes (ROR1, LEF1, and GRASP), have previously been found 

to be differentially expressed in CLL and are further discussed in Chapter 5 (Cui et al., 2016, 

Liao et al., 2015, McCarthy et al., 2015), and two additional genes (MIR155HG and 

GPR65/TDAG8) have been linked to CLL biology (Cui et al., 2014, Rosko et al., 2014, Li et al., 

2013, Justus et al., 2017). Of note, GPR65/TDAG8, is located on chromosome 14q31.3, close 

to the chromosomal region 14q24.1-14q31.2 identified in a previous linkage study of this CLL 

family (Fuller et al., 2008). 

 MiR-155 is a noncoding RNA that plays an essential role in the regulation of gene 

expression. It has been found to have multifunctional roles in several biological processes, and 

is implicated in several diseases (Faraoni et al., 2009). MiR-155 has been found to be 
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upregulated in leukaemia and lymphoma, suggesting a direct or indirect role of miR-155  in 

synthesising a protein with tumour-suppressor or pro-apoptotic function (Eis et al., 2005). An 

early study by (Costinean et al., 2006) reported that miR-155 was enhanced in B-cell 

precursors, which induced a pre-lymphoproliferative disease and later B-cell malignancy in Eμ-

mmu-miR155 transgenic mice. In CLL patients, miR-155 has been described as a signature 

marker of CLL in combination with the most common genomic aberrations (Rossi et al., 2010, 

Visone et al., 2009). Another study by (Cui et al., 2014), found that high expression of miR-155 

can be used as an additional independent prognostic value to segregate patients at relative 

risk for disease progression, but levels of miR-155 can vary between CLL cells in the same 

patients. In the same study, the authors found that B-CLL cells with high expression of miR-

155 were more responsive to BCR ligation compared to B-CLL cells with low expression levels 

of miR-155, suggesting a role in the regulation of the BCR signalling pathway in CLL cells and 

disease progression. 

T-cell death-associated gene 8 (TDAG8, also known as GPR65) is a member of the 

proton-sensing G-protein-coupled receptor family which can be activated by extracellular 

acidosis. It has been mapped to chromosome 14q31-32.1, where cytogenetic abnormalities in 

T cell lymphoma and leukaemia are located (Justus et al., 2017). It is also located close to the 

chromosomal region 14q24.1-14q31.2 identified in the previous linkage study of this CLL 

family (Fuller et al., 2008). The oncogenic activity of GPR65/TDAG8 was reported by Ihara et 

al., who found that overexpression of GPR65/TDAG8 on the surface of tumour cells facilitates 

tumour development by sensing the acidic environment (Ihara et al., 2010). Another report 

has focused on the role of GPR65/TDAG8 expression in CLL cells and the potential relationship 

of its expression to various anti- and pro-apoptotic Bcl-2 family members. This study found a 

correlation between GPR65/TDAG8 expression and the anti-apoptotic proteins Bcl-2, Mcl-1 
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and Bcl-xl, whereas no correlation was detected between GPR65/TDAG8 and the pro-

apoptotic proteins BIM, PUMA or NOXA. This study suggested that the expression of 

GPR65/TDAG8 can have a potential function in the survival of CLL cell in the microenvironment 

(Rosko et al., 2014). The expression of GPR65/TDAG8 has recently been identified in multiple 

forms of blood cancers including B-CLL, and GPR65/TDAG8 gene expression was reduced 2.9-

fold in B-CLL compared to normal blood cells. This work suggested that GPR65/TDAG8 acts as 

a tumour suppressor by mediating Gα13 G-protein/Rho GTPase signalling to reduce c-myc 

oncogene expression (Justus et al., 2017). 

SOX4 (SRY-related HMG-box) is another candidate gene differentially expressed in F-

LPD and S-CLL. It has been found that the SOX4 transcription factor mediates early B-cell 

differentiation and knock-out of SOX4 leads to arrested B-cell development at the pro-B cell 

stage (Wetering et al., 1993, Schilham et al., 1996). Another study suggested that SOX4 is 

required for survival of pro-B and pre-B cells but not required for the survival of later stage B 

cells. This work also suggested a functional role of SOX4 in protecting pro-B cells from 

apoptosis by interacting with c-kit and Bcl-2 (Sun et al., 2013). In addition to maintaining 

survival of B cells, SOX4 has been reported as a central mediator of oncogenic PI3K/AKT and 

MAPK signalling in acute lymphoblastic leukaemia (ALL) (Ramezani-Rad et al., 2013). Also, it 

has been shown to enhance β-catenin/T-cell factor (TCF) complex activity and modulate the 

transcription of Wnt-target genes in prostate and colon cancers (Liu et al., 2006, Sinner et al., 

2007). However, the functional role of SOX4 was reported to control the stability of β-catenin 

protein in these carcinoma cells and may act as a transforming oncogene. In a large-scale 

analysis of DNA methylation in CLL, SOX4 was discovered, along with other SOX family 

members, to function as a negative regulator of the WNT signalling pathway (Rahmatpanah 

et al., 2009). In addition, an integrated genetics approach showed SOX4 is required at multiple 
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stages of B cell development by suppressing Wnt/β-catenin signalling and activating 

immunoglobulin gene recombination (Mallampati et al., 2014). SOX4 has also been found to 

have tumour suppressor activity by inducing cell cycle arrest and apoptosis, and inhibiting 

tumorigenesis in a p53-dependent manner (Pan et al., 2009). 

In conclusion, the screening of this B-CLL family using mRNA profiling has identified a 

number of promising candidate genes associated with the pathogenesis of S-CLL and F-CLL. 

These differential profiles of mRNAs between categories of F-LPD and S-CLL should be useful 

for rapid diagnosis and provide a basis for understanding the mechanisms that drive neoplastic 

transformation. Furthermore, the methods described here could be used for other cancers 

and complex diseases that show heritability. 
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4.1. Proteomic Studies in CLL 

Proteomics aims to characterize protein structure, expression, and interactions, which 

determine the temporal and spatial functions of molecules in individual cells under specific 

conditions (Di Palma et al., 2012). Over the last decade, proteomic techniques have developed 

rapidly and are now able to characterise large protein datasets in complex mixtures. The 

protein expression profiles of B-CLL compared to controls have been studied using a number 

of relative and quantitative proteomic assays (Alsagaby et al., 2014, Huang et al., 2016, Eagle 

et al., 2015, Perrot et al., 2011). Isobaric tags for relative and absolute quantitation (iTRAQ), a 

quantitative proteomic method that uses tandem mass spectrometry (MS/MS), identified 

differential expression of a proteolytic product of histone H2A (cH2A) in B-CLL samples (Glibert 

et al., 2014). Another study used a liquid chromatography/tandem mass spectrometry (LC-

MS/MS) based approach to determine histone profiles in normal B cells and B-CLL cells (Singh 

et al., 2015). In this study, several histone isoforms were identified that have specific roles in 

tumour biology, and the presence of specific H2A isoforms were associated with poor 

prognosis and shorter time to treatment. A specific histone H2A isoform (H2A type 1C) was 

also elevated in CLL and distinguished CLL from healthy controls (Singh et al., 2015). 

In addition to comparing protein profiles between control B lymphocytes and B-CLL, 

studies have identified protein markers which predict prognosis. Protein profiles associated 

with prognosis have been identified in primary B-CLL samples using two-dimensional nano-LC 

coupled with matrix-assisted laser desorption/ionization time-of-flight tandem mass 

spectrometry (MALDI-TOF/TOF-MS) and iTRAQ reagents (Alsagaby et al., 2014) . In this study, 

T-cell leukaemia/lymphoma protein 1A (TCL-1), thyroid hormone receptor-associated protein 

3 (TR150), and S100 Calcium Binding Protein A8 (S100A8) were associated with high-risk B-
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CLL, while myosin-9 was associated with lower risk disease  

Another study identified 84 differentially abundant proteins between stable and 

progressive CLL using iTRAQ coupled to 2D-LC-MS/MS, and 32 of these proteins were 

quantified by selected reaction monitoring (SRM) analysis (Huang et al., 2016). Hierarchical 

clustering analysis showed that patients with progressive disease could be distinguished from 

those with stable disease. These proteins have roles in cell proliferation, cell death and 

survival, granzyme A signalling, and DNA repair (Huang et al., 2016).  

The proteomes of M-CLL and UM-CLL have been compared using iTRAQ-based MS 

(Eagle et al., 2015). Differentially expressed proteins between 9 M-CLL and 9 UM-CLL subjects 

were identified, and functions of the protein subsets were analysed using a system biology 

approach. This study identifed 3521 proteins, and among these proteins, 274 showed 

significant differences in abundance between M-CLL and UM-CLL. Of these 274 proteins, 127 

were expressed at higher levels and 147 at lower levels in the UM-CLL compared to M-CLL 

cases (Eagle et al., 2015). The functions of most of these proteins were associated with cell 

migration/adhesion pathways, of which 35 were expressed at significantly lower levels in the 

UM-CLL samples. These findings suggested that UM-CLL cells were less migratory and more 

adhesive than M-CLL cells, resulting in retention in lymph nodes, where the malignant cells 

are exposed to proliferative and pro-survival signals (Eagle et al., 2015). 

Using DotScan CD antibody microarrays followed by validation with LC-MS/MS 

quantification, a correlation has been identified between cytogenetic alterations and protein 

expression patterns in B-CLL (Huang et al., 2014). This approach identified downregulation in 

protein kinase C (PKC) family members, which are involved in cell signalling pathways including 

apoptosis, cell proliferation and activation (Díez et al., 2016). In enriched B-CLL samples the 
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antibody microarray identified 27 antigens that were differentially abundant in progressive 

CLL with an accuracy of 79%, a sensitivity of 84% and specificity of 73% (Huang et al., 2014). 

Electrophoresis combined with MS has been used to investigate differences in protein 

expression between UM-CLL and M-CLL, and CD38- and CD38+ status (Cochran et al., 2003). 

Principal components analysis (PCA) identified several proteins that were expressed at higher 

levels in M-CLL compared to the UM-CLL, including F-actin-capping protein β subunit and 

laminin-binding protein precursor. However, PCA of CD38- versus CD38+ did not show any 

significant change between these two groups (Cochran et al., 2003). A similar study used 

quantitative 2D-fluorescence difference gel electrophoresis (2D-DIGE) to study tumour cells 

of six CLL patients (3 M-CLL and 3 UM-CLL) selected according to their IGH mutation status 

and ZAP70 expression (Perrot et al., 2011). In this study, 2D-DIGE was used to compare 48 

proteomic profiles of 2 CLL subsets before and after sIgM stimulation, followed by mass 

spectrometry using MALDI-TOF to identify differentially expressed proteins. This showed that 

UM-CLL cells display distinct proteomic profiles after BCR stimulation compared with M-CLL 

cells (Perrot et al., 2011).  

In summary, there have been detailed proteomic analyses of cohorts of S-CLL patients 

to identify proteins which can be used to predict prognosis and guide earlier treatment, but 

only a limited number of studies which have compared protein expression profiles in control 

B lymphocytes with S-CLL, and no studies of F-CLL. A proportion of the inherited risk of CLL is 

likely to be associated with non-DNA sequence, including epigenetic modifications that 

regulate oncogenes and tumour suppressor genes, described in a number of hereditary 

cancers (Gazzoli et al., 2002, Esteller et al., 2001). Identification of differentially abundant 

proteins in B-CLL families offers an opportunity to identify candidate genes which are affected 

by epigenetic modification or variations in transcription factor binding sites. In addition, 
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recent advances in MS techniques provide further opportunities to identify differences in 

protein expression profiles between control B lymphocytes and B-CLL, and B-CLL subgroups. 

4.2. Advances in Mass Spectrometry 

Combining methods to separate proteins with mass spectrometers has minimised 

collision of ions during analysis and allowed detection of a greater number of peptides (Grebe 

and Singh, 2011). High-pressure liquid chromatography (HPLC) is used to resolve complex 

peptide mixtures and maximise peptide separation for mass spectrometry (Issaq et al., 2005). 

There are a number of different types of HPLC used, including reversed-phase liquid 

chromatography (RP-LC), normal phase liquid chromatography (NP-LC) and hydrophilic 

interaction liquid chromatography (HILIC) (Zhang et al., 2010) (Buszewski and Noga, 2012) 

(Yoshida, 2004). In comparison with other methods, HILIC retains very polar compounds and 

overcomes the poor solubility of hydrophilic compounds often observed in NP-LC. HILIC has 

also been shown to be compatible with MS coupled to LC (Buszewski and Noga, 2012). In 

summary, HILIC overcomes the limitations of both NP-LC and RP-LC techniques and was used 

as the separation protocol for the study reported in this Chapter.  

The trapping capacity and efficiency of new generation ion traps has improved 

significantly over the last decade. The Orbitrap is a new type of mass spectrometer analyser 

developed in a hybrid device which provides high mass resolution and mass accuracy (Hu et 

al., 2005) (Zubarev and Makarov, 2013). For the present study, a Thermo Scientific Orbitrap 

Fusion Tribrid mass spectrometer was used which combines three mass analysers; a 

quadrupole mass filter, an ultra-high field Orbitrap mass analyser and dual-pressure linear ion 

trap analyser. These configurations offer high scan rate speed, multiple fragmentation 

techniques, and high mass accuracy and resolution to identify more low abundance proteins 
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(Senko et al., 2013).  

In addition to peptide identification, quantitative differential proteomics can be used 

to calculate the relative amount of related protein from one sample to another or to measure 

the absolute amount of each protein. This quantification is performed by labelling samples 

with a stable isotope, and the quantity ratio of peptides is calculated and compared to other 

samples (Chen and Pramanik, 2009). Chemical or metabolic labelling has been most commonly 

used as labelling techniques for quantitative proteomics (Chen et al., 2015). Two isobaric 

tagging methods, iTRAQ and tandem mass tag (TMT), have been introduced to perform 

quantitative protein analysis and provide measurements of the relative abundances of 

proteins (Chahrour et al., 2015). TMT labelling is compatible with tandem MS and was used in 

the present study.  

4.3. Bioinformatics Tools for Database Searching and Analysis 

Two main approaches are used to perform peptide identification: 1. de novo 

sequencing and; 2. database search methods. In the first method, peptide sequencing is 

performed directly from the original spectra without using a sequence database, while the 

second approach uses a database dependent search. The database search algorithm is most 

commonly used and considered to be a more accurate method for peptide identification 

(Matthiesen, 2007). Several different algorithms are used to search sequence databases such 

as SEQUEST (Eng et al., 1994), Mascot (Perkins et al., 1999), XTandem (Craig and Beavis, 2004) 

and MS Amanda (Dorfer et al., 2014). All operate similarly by comparing experimental tandem 

mass spectra with theoretical spectra from the database, but they differ in their scoring 

systems (Tu et al., 2015) (Nesvizhskii, 2010). Other parameters have been recommended for 

improving the rate of confident peptide identifications. For example, the target-decoy false 
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positive rate search strategy is a simple method and one of the most common approaches to 

estimate the FDR. In this strategy, the experimental MS/MS spectra is searched against a 

concatenated database containing a target forward-sequences database and a match set of 

decoy sequences (reversed, or randomised, or shuffled) the same size as the target database. 

The top scoring peptide match for each spectrum is selected for further analysis and the 

application automatically counts the number of peptide-spectrum matches (PSM), and filter 

based on a given threshold to estimate the FDR (Elias and Gygi, 2007).  

Further statistical improvements have achieved optimal separation between correct 

and incorrect PSMs. PeptideProphet (Keller et al., 2002) and the percolator (Kall et al., 2007) 

are the most common post-processing tools used to distinguish PSMs. The Percolator 

algorithm uses a semi-supervised machine learning method to iteratively train a support 

vector machine (SVM) classifier, which improves the discrimination between correct “target” 

and “decoy” spectrum identifications. The algorithm automatically calculates the q-value, 

SVM score and posterior error probabilities for each spectrum and assigns more reliable 

statistical confidence in peptide measurements (Kall et al., 2007).  

In the study reported in this Chapter, bottom-up workflow and TMT labelling methods 

were used for identifying proteins differentially abundant between F-CLL and S-CLL and 

stable/progressive CLL samples (Chapter 6). In this workflow, B lymphocytes were enriched 

from all CLL-subgroups and controls, followed by protein denaturation. The experimental 

procedure for using the TMT10plex labelling approach is illustrated in (Figure 4-1).  
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Figure 4-1. Experimental procedure for quantitative differential proteomics using TMT10plex labelling 

The general workflow of the Thermo Scientific TMT10plex Isobaric Mass Tagging experiment. The protocol 
involves extracting proteins from cells, followed by reduction, alkylation, and digestion. Samples are labelled 
with TMT10plex reagents and the resulting TMT-labelled peptides are pooled at equal concentrations before 
fractionation and clean-up. The TMT-labelled samples are analysed by high-resolution Orbitrap LC-MS/MS. In the 
first MS scan, the labelled peptides are indistinguishable and appear as a single precursor. Following 
fragmentation of the precursor ion during MS/MS, the tag generates a unique reporter ion. The reporter ion 
intensity indicates the relative amount of the peptide in each sample.   
 

 

 

 

  



 

100 
 

CHAPTER-4  A Comparison of Protein Profiles In Familial MBL, Familial B-CLL and Sporadic B-CLL 

HYPOTHESES 

 Identification of differentially abundant proteins in F-LPD and S-CLL will provide 

protein profiles that can be used as disease signatures and will identify proteins that may act 

as ‘cancer drivers’ for different subtypes of CLL. 

 

AIMS 

 1. Determine if F-LPD B lymphocytes contain unique protein signatures compared to B 

lymphocytes from controls and S-CLL cases using a combination of quadrupole, ion trap and 

Orbitrap mass spectrometer analysis, and unsupervised hierarchical clustering. 

 

 2. Determine if F-LPD B lymphocytes contain unique protein signatures compared to B 

lymphocytes from controls and S-CLL cases using semi-supervised hierarchical clustering. 
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4.4. MATERIALS 

Table 4-1 List of materials used for proteomics 

Materials Supplier 
Tapered microtip sonicator (5 mm) (Branson B-250 Sonicator, Danbury, CT) 
4-(2-Hydroxyethyl)piperazine-1-
ethanesulfonic acid (HEPES) 

Sigma-Aldrich (St. Louis, MO, USA), Cat. No. H3375 

Acetone Sigma-Aldrich (St. Louis, MO, USA) Cat. No. 270725 
Dithiothreitol (DTT) DTT (Dithiothreitol, Thermo Scientific Inc.) 
Eppendorf concentrator 5301 (Eppendorf AG, Hamburg, Germany) 
Iodoacetamide (IAA) IAA (Iodoacetamide, Thermo Scientific Inc.) 
Oasis hydrophilic-hydrophobic-balanced 
(HLB) plus short cartridges 

(Waters, Milford, Massachusetts (MA), USA) 

Qubit® 2.0 Fluorometer (Life Technologies, Carlsbad, CA, USA) 
Qubit® Protein Assay Kits (Life Technologies, Carlsbad, California (CA), USA) 
Sodium Dodecyl Sulfate (SDS) Amresco (Ohio, USA) Cat. No. 97064-470 
Thiourea Sigma-Aldrich (St. Louis, MO, USA) 
TMT 10plex Mass Tag labelling kit (Thermo Scientific Inc.) 
Triethylammonium bicarbonate Sigma-Aldrich (St. Louis, MO, USA) 
Trifluoroacetic Acid (TFA) (Pierce TM Trifluoroacetic Acid, Thermo Scientific Inc.) 

Tris (hydroxymethyl) aminomethane Amresco (Ohio, USA), Cat. No.  97061-794 
Trypsin (Pierce Trypsin Protease, MS Grade, Thermo Scientific 

Inc.), Cat. No. 90057 
TSK-Amide 80 3um HILIC column (Tosoh Bioscience, Tokyo, Japan) 
Urea Sigma-Aldrich (St. Louis, MO, USA), Cat. No. U5378 
V bottom 96 well plate (Greiner, polypropylene) 

 

Table 4-2. List of materials used for western blot 

Materials Supplier 
Urea Sigma-Aldrich (St. Louis, MO, USA), Cat. No. U5378 
Tris (hydroxymethyl) aminomethane Amresco (Ohio, USA), Cat. No.  97061-794 
Acetone Sigma-Aldrich (St. Louis, MO, USA) Cat. No. 270725 
Sodium Dodecyl Sulfate (SDS) Sigma-Aldrich (St. Louis, MO, USA) Cat. No.L4390 
Protease Inhibitor Cocktail (PI) Roche Cat. No.0589279001 
1,4-dithiothreitol (DTT Thermo Scientific Cat. No. 20290 
Acrylamide Amresco Cat. No. 97064-542      
NuPageLDS sample buffer (4x) buffer Life Technologies Cat No.  NP0007 
NAP blocker  G-biosciences Cat No. 786-190 
Novex sharp prestained protein standard Invitrogen Cat No. LC5800 
Polyvinylidene fluoride (PVDF) Membrane Amersham Cat No 1060030 
Methanol Sigma-Aldrich (St. Louis, MO, USA) Cat. No. 34860 
Temed Sigma-Aldrich (St. Louis, MO, USA) Cat. No.T9281 
Ammonium persulfate (APS) Sigma-Aldrich (St. Louis, MO, USA) Cat. No. A3678 
Gentle Review Stripping Buffer VWR N552 
p-Coumaric acid Sigma-Aldrich (St. Louis, MO, USA) Cat. No. C9008 
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Luminol Sigma-Aldrich (St. Louis, MO, USA) Cat. No. A8511 
30% H202 Sigma-Aldrich (St. Louis, MO, USA) Cat. No. 216763 
Tricine Sigma-Aldrich (St. Louis, MO, USA) Cat. No. T0337 
Glycine Amresco Cat. No. 97063-736 

 

Table 4-3. List of reagents required for western blot 

Buffers Reagents 
Urea lysis Buffer  8M Urea in 50 mM Tris-HCl; pH 7.5, 0.1% SDS 
Tris-buffered saline with Tween 20 (TBST) Tris-buffered saline (TBS); pH 7.5 plus 0.05 % Tween-20  
Enhanced chemiluminiescence (ECL) detection 
buffer 

1.25mM Luminol, 0.2 mM p-coumaric acid, 0.1 H2O2 in 
0.1 M Tris pH 6.8 

Running Buffer 50mM Tricine, 50mM Tris, 0.1% SDS,pH 8.24 
Towbin Transfer Buffer 25mM Tris, 192mM Glycine, pH 8.3, 20 % Methanol 
10% APS 10g APS dissolved in 100 ml MilliQ H2O 
Blocking buffer 1:1 NAP Blocker : TBST 
Primary antibody diluting buffer 1NAP Blocker : TBST 

 

Table 4-4. Gel composition to make a 3–15% gradient gel 

Reagents 3% stacking gel 8% tris-acetate gel 15% tris-acetate gel 
15 x Tris acetate buffer 0.27 ml 0.67ml 0.4 ml 
40% acrylamide 0.30 ml 2.0 ml 2.25 ml 
Pure water 3.43 9.4  7.6 
Total 40ml 4 ml 10 ml 6 ml 
Temed 5 µL 12.5 µL 7.5 µL 
10% APS 19 µL 37.5 µL 28.5 µL 

 

Table 4-5. List of primary antibodies used for western blot 

 

4.5. METHOD 

Negative Selection of B-CLL Cells from Blood Samples 

Purified B-CLL cells were isolated and a minimum of 1x106 enriched B cells were 

Antibodies Company Dilution 

Mouse anti human CYBB Santa Cruz Biotechnology, Cat. No. sc-130543 1:200 

Mouse anti human GAPDH  Santa Cruz Biotechnology, Cat. No. sc-32233 1:500 

Goat anti-mouse IgG-HRP Santa Cruz Biotechnology, Cat. No. sc-2005 1:5000 

Goat anti-mouse IgM-HRP Thermo Fisher Scientific Cat. No. 62-6820 1:5000 



 

103 
 

CHAPTER-4  A Comparison of Protein Profiles In Familial MBL, Familial B-CLL and Sporadic B-CLL 

washed 4 times with PBS (1 ml) by centrifuging for 5 min at 2000 g, to remove FCS proteins, 

as described in section 2.2.2. The washed pellet was homogenised by vigorous mixing in 

protein lysis buffer (200 µL) containing 8 M urea in 50mM Tris-HCL with 0.1% (w/v) SDS, at pH 

7.5, before storing at -80°C.   

Preparing Samples for Protein Profiles at the MSCF 

All protein studies were performed by the candidate at the Mass Spectrometry Core 

Facility (MSCF), Charles Perkins Centre (CPC), the University of Sydney, with supervision by 

Ms. Angela Connolly. Enriched B cells, in dissolution buffer (8 M urea, 50 mM Tris-HCL with 

0.1% (w/v) SDS, at pH 7.5), were thawed and resuspended in 200 µL lysis buffer (6 M urea, 2 

M thiourea, 100 mM HEPES buffer, pH 7.5). The mixture was then tip-probe sonicated for 2 × 

20 s using a 5 mm tapered microtip sonicator (Branson B-250 Sonicator, Danbury, CT) with 1 

min on ice between each round. Samples were immersed in ice immediately before processing 

for acetone precipitation and clean-up. 

Protein Precipitation and Clean-Up 

Acetone precipitation was used to precipitate and concentrate proteins and remove 

excess salts, ionic detergents, lipids, and nucleic acids that may interfere with downstream 

studies. Samples were centrifuged at 16000 g for 5 min and the supernatant was collected in 

new Eppendorf tubes and precipitated with 1 mL ice-cold acetone (100%) before placing at -

30°C overnight. Acetone was removed from each sample by centrifugation at 1000 g for 10 

min at RT and the pellet was washed by adding ice-cold 80% acetone (1 mL). This was followed 

by centrifuging at 1000 g for 10 min at RT, the supernatant was carefully decanted and the 

protein pellet was dried for 5-10 min by air-drying. The protein pellet was resuspended in 100 

µL lysis buffer (6 M urea, 2 M thiourea, 100 mM HEPES buffer, pH 7.5) and then 2 µL from 
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each sample was taken for protein quantitation using a Qubit® 2.0 Fluorometer (Life 

Technologies, Carlsbad, CA, USA).  

Protein Assay 

Protein concentrations were assessed using Qubit® Protein Assay Kits (Invitrogen, Life 

Technologies, Carlsbad, California (CA), USA) and Qubit® 2.0 Fluorometer (Invitrogen, Life 

Technologies, Carlsbad, California (CA), USA). According to the manufacturer’s instructions, 

Qubit working solution was prepared for the samples and 3 standards, using 199 µL Qubit 

buffer (Solution B) per 1 µL Qubit Reagent (Solution A) at a ratio of 1:200 for each sample and 

standard. For each standards tube, a total of 190 µL working solution was transferred into 

thin, clear 0.5 mL optical grade qRT-PCR tubes and 10 µL of each Qubit standard added to the 

appropriate tube for a final volume of 200 µL. The assay tubes were prepared in a final volume 

of 200 µL by loading 2 µL of extracted proteins into individual assay tubes containing 198 µL. 

Tubes were gently vortexed for 3 s and incubated at RT for 15 min. Concentration 

measurements were performed in duplicate using the Qubit® 2.0 Fluorometer (Invitrogen, Life 

Technologies, Carlsbad, California (CA), USA) and protein concentrations for each sample 

calculated against standards and displayed in µg/mL, as per the manufacturer’s instructions. 

Protein Reduction and Alkylation 

 After determining the protein concentration, protein extracts in the homogenised 

buffer (6 M urea, 2 M thiourea, 100 mM HEPES buffer, pH 7.5) were reduced with 10 mM DTT 

(Dithiothreitol, Thermo Scientific Inc.) for 30 min at RT. After reduction, samples were 

alkylated with 25 mM IAA (Iodoacetamide, Thermo Scientific Inc.) in the dark for 30 min at RT. 

This step irreversibly prevents the free sulfhydryl groups on the cysteine residues from 

reforming disulphide bonds. The reaction was quenched with DDT to make a final 
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concentration of 20 mM. Samples were diluted (1 in 5) with 100 mM HEPES and proteins were 

digested with trypsin. 

Protein Digestion 

 Proteolytic digestions were performed using trypsin (Pierce Trypsin Protease, MS 

Grade, Thermo Scientific Inc.) at a ratio of 1:20, trypsin to protein in 0.1 M TEAB, and incubated 

overnight at 30°C. Trypsin (0.1 µg/µL) was prepared by dissolving 20 µg in 200 µL 0.1 M 

tetraethylammonium bicarbonate (TEAB).  

 The digested samples were acidified with 1% TFA (v/v) (Pierce TM Trifluoroacetic Acid, 

Thermo Scientific Inc.) per mL of sample to make a final concentration of 0.1% and then 

centrifuged at 16,000 g for 5 min to remove insoluble materials. After this step, the peptides 

were ready for desalting and concentrating through Oasis HLB plus short cartridges (Waters 

Corporation).  

Peptides Desalting and Concentration 

 After proteolytic digestion, Oasis hydrophilic-hydrophobic-balanced (HLB) plus short 

cartridges (Waters, Milford, Massachusetts (MA), USA) were used to remove excess salts, 

detergents and buffers that significantly influence the ionisation efficiency process and the 

quality of mass spectrum analysis. Briefly, the Oasis hydrophilic-hydrophobic-balanced plus 

short cartridge was equilibrated with 100% methanol (1 mL), followed by 1 mL 100% 

acetonitrile (ACN) before washing the cartridge with 0.1% TFA (1 mL). Samples were loaded 

and the flow-through collected into a clear new Eppendorf tube. This step was repeated once 

to ensure maximum binding and the flow-through kept at -20C for recovering. The cartridge 

was washed with 0.1% TFA (5 mL). To elute peptides, 50% ACN (1 mL) in 0.1% TFA was slowly 
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loaded, and the peptides were eluted from the cartridge after the first drop and subsequently 

collected into a new 1.5 mL Eppendorf tube. The volume of each eluted peptide sample was 

reduced overnight to ≈20 µL by speed vacuum centrifugation using an Eppendorf concentrator 

5301 (Eppendorf AG, Hamburg, Germany). The eluted peptides were resuspended in up to 

100 µL with 100mM HEPES buffer pH 8.0, sonicated for 5 min, and pH 8.0 was checked for all 

samples. The eluted peptides were measured using the Qubit® Protein Assay Kits as described 

previously in 4.5.4. After quantification, the peptide samples with ≥ 100 µg were selected and 

reconstituted in 100 mM HEPES buffer (pH 8.0) for TMT tagging. 

TMT10plex Mass Tag Labelling 

 In preparation for TMT labelling, 2 separate experiments were designed as follows: 1. 

to compare between F-CLL, S-CLL and controls; 2. to compare between M-CLL and UM-CLL. 

Three controls from a family with multiple cases of F-LPD were pooled in one sample, whereas 

a further 3 unrelated controls were pooled in another tube. For experiments 1 and 2, samples 

were labelled with TMT as shown in (Figure 4-2).  

 The labelling process using the TMT 10plex Mass Tag labelling (Thermo Scientific) was 

performed according to the manufacturer’s instructions. The TMT labelling reagents were 

prepared by adding anhydrous acetonitrile (41 µL) to each tube containing labelling reagent 

(0.8 mg). The reagent was allowed to dissolve for 5 min with occasional vortexing and brief 

spinning. TMT tag (20 µL) was added to each peptide sample (20 µg). The reaction was 

incubated at RT for one hour, followed by adding 5% hydroxylamine (8 µL) to each sample and 

then incubating for 15 min to quench the reaction. TMT-labelled samples for the 2 

experiments (10plex TMT, experiment 1; 10plex TMT, experiment 2) were combined in 2 

separate tubes (Figure 4-2). Both tubes were diluted with 0.1% TFA up to a final volume of 200 
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µL and purified using Oasis hydrophilic-hydrophobic-balanced (HLB) plus short cartridges 

(Waters, Milford, MA, USA) as described in 4.5.7, for HILIC separation. 

 

Figure 4-2 TMT10plex Mass Tag Labelling design for both experiments 

Two separate experiments of TMT-labelled peptides were prepared and performed according to the 
manufacturer’s recommendations. Each experimental set consisted of the reference control, internal control and 
8 different samples. The reference control was a pool of unrelated controls, while the internal control was a pool 
of related family controls. These controls were assigned to the same reporter ion channels (130N and 131) in 
both experimental sets. (Left) Experiment-1 contained peptides from 2 controls, 3 F-CLL and 5 S-CLL samples 
labelled with a unique TMT reagent and then combined in equal amounts for analysis. (Right) Experiment-2 
contained peptides from 2 controls, 3 UM-CLL and 5 M-CLL samples labelled with a unique TMT reagent and then 
combined in equal amounts for analysis. 

 

Offline HILIC Separation: 

 Samples were fractionated by HILIC on offline mode using an Agilent 1200 

chromatography system. Briefly, labelled peptides were resuspended in 100% HILIC buffer B 

(90% Acetonitrile, 10% Milli-Q water, 0.1% TFA) followed by HILIC fractionation using in-house 

packed TSK-Amide 80 HILIC columns (3 µm particle size, 320 µm inner diameter, 450 µm outer 

diameter, 17 cm length) (Tosoh Bioscience, Tokyo, Japan) with an attached PEEK filter 

(UpChurch Scientific, Thermo Scientific). Peptides were loaded onto the column in 100% HILIC 

buffer B for 15 min at 6 µL/min flow rate and eluted with a gradient of 100-60% HILIC buffer 
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B over 20 min at 6 µL/min, followed by a column re-equilibration step for 15 min. Fractions (8-

10) were manually collected in a V bottom 96 well plate (Greiner Bio-One Gloucestershire, UK) 

at 2 min intervals after UV detection at 210 nm and the plate dried by vacuum centrifugation 

before LC-MS/MS analysis.  

Liquid Chromatography Tandem Mass Spectrometry Analysis Using an Orbitrap 

Fusion Tribrid™ Mass Spectrometer 

 The TMT labelled HILIC fractions were resuspended in 6 µL of MS Loading buffer (3% 

acetonitrile with 0.1% formic acid) and analysed online by nano-capillary liquid 

chromatography tandem mass spectrometry (LC-MS/MS) using a Dionex Ultimate 3000 HPLC 

system and a Thermo Scientific Orbitrap Fusion Tribrid™ mass spectrometer. Peptides were 

loaded onto a Dionex Ultimate 3000 HPLC system (Thermo Scientific) and separated using an 

in-house packed 75 µm internal diameter capillary x 40 cm pulled column with 1.9 µm particle 

size, C18-AQ (Dr Maisch, Ammerbuch-Entringen, Germany). Two buffers were used: HPLC-

grade 80% v/v Acetonitrile with 0.1% v/v formic acid (buffer B) and 0.1% v/v formic acid (buffer 

A). Peptides were eluted over a 150 min gradient at a flow rate of 250 nL/min. The gradient 

used for the analysis is presented below:  

Time/ (min.) 0 0 30 30 130 133 137 137 150 

% B 5 5 5 10 35 95 95 5 5 

 

 To identify and quantify TMT-labelled peptides, the Orbitrap Fusion Tribrid MS was 

programmed in a data-dependent mode for MS2 and multi-notch synchronous precursor 

selection MS3 scans and data acquired using Thermo Scientific Xcalibur software. To increase 

the number of identified peptides and protein groups in more complex mixtures, a full MS 
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(MS1) survey scan (at 375-1575 m/z) was performed in the Orbitrap Fusion Tribrid MS with a 

high resolving power of 120,000 FWHM, full-width-at-half-maximum. The significance of using 

high resolution was to separate two mass spectral peaks that have certain small mass 

differences and reduce the number of misidentifications (Strupat et al., 2016). The automatic 

gain control (AGC) target of 4 x 105 was enabled to regulate the number of ions in the mass 

analyser; and the maximum injection time for accumulation of the desired number of ions in 

the trapping device was set at 100 ms. To identify precursor ion masses for isolation and 

fragmentation at MS2, several parameters such as monoisotopic precursor selection, peptide 

were enabled, to include only peptide precursors with a charge state of 2-7, and intensity 

threshold above 5000 counts. The dynamic exclusion duration was set to 90 s, to minimize 

repeated sequencing of peptides and allow for new precursor ions to undergo fragmentation. 

These parameters improve protein and peptide identification rates (Kalli et al., 2013). The 12 

most intense precursor ions in the MS1 survey scan were subjected to collision induced 

dissociation (CID) fragmentation. The MS2 scan was performed in the linear ion trap using the 

following settings: quadrupole isolation mode, CID activation type, AGC target 2 x 104, 

maximum injection time 70 ms, and rapid scan rate. The normalised collision energy was set 

to 35% and the activation (q) to 0.25. Following fragmentation, synchronous precursor 

selection (SPS) was used to select the 10 most abundant precursor ions in MS2 which were 

fragmented by HCD at a normalised collision energy of 55%. The MS3 scans were acquired in 

the Orbitrap Fusion Tribrid MS at a resolution of 60 000 FWHM with a 1 x 105 AGC target, and 

maximum injection time 120 ms. 

Bioinformatic Tools for Database Searching and Analyses 

 The MS data.RAW files acquired by the Orbitrap Fusion Tribrid MS and Xcalibur data 
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system (Thermo Scientific) were directly imported into proteome discoverer version 2.1.0.81 

(Thermo Scientific) and searched using SEQUEST HT with percolator validation. The database 

searches were performed using the following criteria: (i) UniProt Homo Sapiens with isoforms 

protein database (updated November – 2015.fasta) with common contaminants; (ii) enzyme 

name; trypsin; (iii) two maximum missed cleavage sites; (iv) dynamic modifications included: 

methionine (Met) Oxidation (+15.9949Da), and protein N-terminal acetylation (+42.01057); 

(v) carbamidomethylation of cysteine residues (57.02146Da) and TMT tags on peptide N-

terminus and on lysine residues (229.16293Da) set as static modifications. The precursor mass 

tolerance was set to 20 ppm and fragment mass tolerance at 0.6 Da. FDR p-value were 

determined using the Percolator algorithm (version 2.05), and p-values were set to < 0.01 (1% 

FDR) and 0.05 (5% FDR) at both peptide and protein levels. Peptides < 7 amino acids in length 

were excluded and TMT reporter ions were quantified from the MS3 scan using an integration 

tolerance of 20 ppm with the most confident centroid. The parameter settings for peptide and 

protein quantifier node were set by applying a quantification value correction to true, co-

isolation threshold to 50, and average reporter signal to noise (S/N) threshold value to 10. 

Proteome Discoverer calculates abundance ratios for each sample against the normal control 

(subject 130N).  

 Ingenuity pathway analysis (IPA) was used to determine cellular location, molecular 

functions, network signalling and associated pathways for identified proteins. The “Significant 

Proteins” datasets were uploaded separately into the IPA software using standard settings 

and criteria restricted to human, immune cells, mononuclear cells, lymphocytes, B-

lymphocytes and peripheral blood lymphocyte. Core analysis was run to find the most 

significant interactions and associations in the datasets compared to the IPA database. 

Significance values were calculated using either a right-tailed Fisher's exact test p-value of < 
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0.05, or the ratio of the number of genes from the list of the dataset that are involved in the 

canonical pathway divided by the total numbers of genes in this pathway. To display only the 

most significant Canonical Pathways, the cut-off threshold was set by default at a negative log 

(p-value) greater than 1.3, which means that pathways with a p-value ≥ 0.05 are hidden. (IPA; 

ingenuity systems, http://www.ingenuity.com).  

Statistical Analyses 

 Proteome Discoverer (Thermo Fisher Scientific, Waltham, MA, USA) was used to 

calculate abundance ratios for each sample against a normal control and protein 

quantification values were exported for further analysis to Microsoft Excel (2016). Assessment 

for the difference between normalised protein abundance between F-LPD and B-CLL patients 

were performed using independent two-sample t-tests. Proteins with log fold changes > 2 and 

t-test p-values < 0.05 were considered in further analyses. A total of 30 proteins were 

identified and a heat map using complete linkage and a Euclidean distance metric was 

constructed using the function “heatmap.2” from the gplots package in R (Warnes et al., 

2016). 

Western Blot validation of Mass Spectrometry 

 Because CYBB protein and mRNA were differentially expressed, CYBB was chosen to 

validate the MS data using western blotting. In brief, pellets of purified B cells were lysed in 

1mL Urea lysis buffer + PI. Samples were vortexed for 5 s and left in ice for 60 s. This step was 

repeated 5 times before passing the lysate through a 23-gauge needle 3 times. The solution 

was left on ice for 20 min and centrifuged for 10 min at 4°C. After centrifugation, the 

supernatant was collected and precipitated with 4 volumes of ice-cold Acetone (100%), 

vortexed and stored at -20 overnight. Precipitated protein was pelleted by centrifugation at 

http://www.ingenuity.com/
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16 000 g for 10 min at 4°C, and the pellet was washed 3 times with ice-cold 80% acetone, 

centrifuging as above. After the final wash, residual supernatant was completely removed and 

the pellet was air dried for 10 min at RT. The protein pellet was resuspended in 10 µL 1xLDS 

sample buffer + 100mM DTT and then heated at 70°C for 10 min with intermittent mixing 

before loading samples into the wells of an 8-15% Tris-acetate gel with a 3 % stacking gel. 

Nupage prestained protein standards were run alongside the samples. The proteins were 

separated by running the gel at 150 V for ~ 1hr in running buffer. The gel was soaked for 5 min 

in Towbin transfer buffer before assembling the blotting sandwich to transfer the separated 

proteins from the gel to PVDF membrane at 350mA for 1 hr at 4°C in Towbin transfer buffer. 

Subsequently, the membrane was rinsed with TBST and incubated for 1 hr in blocking buffer 

at room temperature with rocking. The primary antibody against CYBB was diluted as 

indicated in (Table 4-5) into primary antibody dilution buffer and the membrane was 

incubated with this mixture overnight at 4°C with rocking. The membrane was washed three 

times with TBST for 10 min with rocking at RT. After washing, the membrane was incubated 

with horseradish peroxidase (HRP)-conjugated secondary antibodies: goat anti-mouse IgG-

HRP and anti-IgM-HRP at 1:5000 dilution in TBST for 1 hr at RT with rocking. The membrane 

was again washed 3 times with TBST as previously. Enhanced chemiluminescence was used to 

develop the blot according to the method described by (Mruk and Cheng, 2011). Non 

saturating images were collected using a Gel Doc System (Bio-Rad). After collecting the 

images, antibodies were stripped from the blot by incubating in Gentle ReView stripping 

buffer for 30 min at RT with rocking. After washing as with TBST, the membrane was reblocked 

as before and probed with anti GAPDH and HRP secondary antibody as previously described. 

Assessment of the band intensity was performed using imageJ (https://imagej.nih.gov/ij/), 

according to the described by (http://lukemiller.org/index.php/2010/11/analyzing-gels-and-

https://imagej.nih.gov/ij/
http://lukemiller.org/index.php/2010/11/analyzing-gels-and-western-blots-with-image-j/
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western-blots-with-image-j/ ). 

 

4.6. RESULTS 

 To determine if F-LPD has a unique protein profile in addition to a unique mRNA 

profile, purified B lymphocytes from 3 F-LPD cases were compared to S-CLL cases and normal 

subjects. One F-CLL patient (IV-2) had required treatment with fludarabine, cyclophosphamide 

and rituximab (FCR) between the times of collection of mRNA and protein samples, and this 

subject was not included in the proteomic analysis. In addition, adequate amounts of protein 

could not be extracted from small B lymphocyte clones in 2 F-MBL subjects (III-10 and IV-13). 

Consequently, the proteomic analysis was limited to 3 familial LPD cases (one F-CLL and 2 F-

MBL), 3 family controls, 3 unrelated normal controls and 5 S-CLL cases.  

 Analysis of protein levels using a combination of quadrupole, ion trap and Orbitrap MS 

analysis identified 4672 proteins that after normalisation to the 6 control samples, segregated 

F-LPD, S-CLL and healthy control groups using unsupervised hierarchical clustering based on 

protein level patterns (Figure 4-3). Concordant with mRNA hierarchical clustering reported in 

3.4.4, F-CLL and F-MBL cases did not segregate: one F-MBL case segregated with the F-CLL 

case before the second F-MBL case (Figure 4-3). Consequently, F-CLL and F-MBL cases were 

combined as “F-LPD” for subsequent comparisons of protein levels. 

 For the F-LPD group, the highest levels for upregulated proteins were for ADP 

ribosylation factor interacting protein 2 (ARFIP2) (log 2-fold change = 5.8; p-value = 0.02), 

C14orf2 (log 2-fold change = 5.2; p-value = 0.008), and macrophage migration inhibitory factor 

(MIF) (log 2-fold change = 3.9; p-value = 0.003) (Table 4-6). Whereas for downregulated 

http://lukemiller.org/index.php/2010/11/analyzing-gels-and-western-blots-with-image-j/
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proteins, the lowest expression levels were for HLA-B (log 2-fold change = -3.5; p-value = 7.2E-

06), arylsulfatase family member I (ARSI) (log 2-fold change = -3.0; p-value = 0.01) and zinc 

finger protein 648 (ZNF648) (log 2-fold change = -2.9; p-value = 0.02). 

 

Figure 4-3 Unsupervised hierarchical cluster image of protein expression in S-CLL and F-LPD (combined F-MBL 
and F-CLL) 

  

 Differential abundance analysis of grouped data for F-LPD and S-CLL proteins was used 

to select proteins for further analysis by semi-supervised hierarchical clustering. A 2-fold 

difference in upregulation or downregulation of protein levels was chosen as biologically 

relevant and significance was set at p < 0.05 (Eagle et al., 2015). Following the first data 

analysis, HLA class II histocompatibility antigen, DRB1-13 beta chain and GRB2-associated-

binding protein 2 showed no difference between groups and were removed from further 
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analyses. The results of log 2-fold change plotted against -log10 p value are shown in a volcano 

plot (Figure 4-4), which identified 30 proteins to be used for individual expression analysis 

(Table 4-6). The highest significance for upregulation was for HACD (log 2-fold change = 2.6; p 

< 0.0001) and MIF (log 2-fold change = 3.9; p=0.003), and for downregulation, SERPINH1 (log 

2-fold change = -2.603; p=0.0003).  

 

Figure 4-4 Volcano plot of protein expression for F-LPD versus S-CLL 

The volcano plot shows the results of log 2-fold change plotted against -log10 p value. The green diamond 
symbols represent proteins that were differentially expressed between F-LPD and S-CLL. 
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Table 4-6. Proteins differentially expressed between F-LPD vs S-CLL with > 2-fold change and p-value < 0.05 

* t-test p-values 

Symbol Entrez Gene Name Log 2-fold 
change 

p-value * Location Type(s) 

ARFIP2 ADP ribosylation factor interacting protein 
2 

5.8 0.02 Cytoplasm other 

C14orf2 chromosome 14 open reading frame 2 5.2 0.008 Cytoplasm other 
MIF macrophage migration inhibitory factor 

(glycosylation-inhibiting factor) 
3.9 0.003 Extracellular 

Space 
cytokine 

CYBB cytochrome b-245 beta chain 3.2 0.04 Cytoplasm enzyme 
ENTPD1 ectonucleoside triphosphate 

diphosphohydrolase 1 
3.0 0.02 Plasma 

Membrane 
enzyme 

MAPK3 mitogen-activated protein kinase 3 2.9 0.004 Cytoplasm kinase 
ACTBL2 actin, beta like 2 2.9 0.006 Nucleus other 

HIST1H1C histone cluster 1 H1 family member c 2.7 0.03 Nucleus other 
TGFBRAP1 transforming growth factor beta receptor 

associated protein 1 
2.7 0.009 Cytoplasm other 

HLA-DRB4 major histocompatibility complex, class II, 
DR beta 4 

2.7 0.04 Plasma 
Membrane 

transmembrane 
receptor 

HACD3 3-hydroxyacyl-CoA dehydratase 3 2.6 <0.0001 Cytoplasm enzyme 
HIST1H1D histone cluster 1 H1 family member d 2.6 0.04 Nucleus other 

CD74 CD74 molecule 2.6 0.007 Plasma 
Membrane 

transmembrane 
receptor 

RPS19 ribosomal protein S19 2.4 0.005 Cytoplasm other 
RPL14 ribosomal protein L14 2.4 0.03 Cytoplasm other 
FIP1L1 factor interacting with PAPOLA and CPSF1 2.3 0.007 Nucleus other 
SRSF2 serine and arginine rich splicing factor 2 2.3 0.04 Nucleus transcription 

regulator 
ADAMTS1

6 
ADAM metallopeptidase with 

thrombospondin type 1 motif 16 
2.1 0.02 Extracellular 

Space 
other 

NIFK nucleolar protein interacting with the FHA 
domain of MKI67 

2.1 0.04 Nucleus other 

EIF4EBP2 eukaryotic translation initiation factor 4E 
binding protein 2 

2.0 0.03 Cytoplasm translation 
regulator 

TDRD1 tudor domain containing 1 2.0 0.03 Cytoplasm other 
LYAR Ly1 antibody reactive 2.0 0.01 Plasma 

Membrane 
other 

PEA15 phosphoprotein enriched in astrocytes 15 -2.2 0.05 Cytoplasm transporter 
MTOR mechanistic target of rapamycin -2.3 0.009 Nucleus kinase 

HNRNPD heterogeneous nuclear ribonucleoprotein 
D 

-2.5 0.005 Nucleus transcription 
regulator 

SERPINH1 serpin family H member 1 -2.6 0.0003 Extracellular 
Space 

other 

ZNF292 zinc finger protein 292 -2.7 0.03 Nucleus transcription 
regulator 

ZNF648 zinc finger protein 648 -2.9 0.02 Other other 
ARSI arylsulfatase family member I -3.0 0.01 Extracellular 

Space 
enzyme 

HLA-B major histocompatibility complex, class I, B -3.5 7.2E-06 Plasma 
Membrane 

transmembrane 
receptor 
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 Semi-supervised hierarchical clustering was performed in F-LPD (n=3) and S-CLL (n=5) 

cases using expression data for the 30 proteins differentially expressed between F-LPD and S-

CLL (Figure 4-5). The cluster dendrogram segregated F-LPD and S-CLL cases (Figure 4-5). 

Hierarchical clustering showed earlier segregation of one F-CLL case (IV-05) with an F-MBL 

case (IV-18), rather than segregation of the two F-MBL cases (Figure 4-5). 

 

Figure 4-5 Clustering analysis of proteins differentially expressed between F-LPD and S-CLL 

 

 For the 30 differentially expressed proteins, correlations with mRNA levels were 

studied using individual gene expression data. Three proteins (MIF, SERPINH1 and CYBB) 

showed differential gene expression between familial controls, F-LPD and S-CLL. However, 
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only CYBB mRNA levels showed a significant difference, being higher in familial controls versus 

F-LPD and higher compared to S-CLL (FDR < 0.05). For F-LPD compared to S-CLL, CYBB protein 

levels were also higher (log 2-fold change = 3.222; p=0.04). Because CYBB protein and mRNA 

were differentially expressed, CYBB was chosen to validate the MS data using western 

blotting. Western blotting of CYBB showed higher expression in individual F-MBL (IV-17) 

compared to S-CLL57 and normalized to GAPDH. (Figure 4-6). These data validated the 

quantitative proteomics data. 

 

Figure 4-6. Expression of CYBB protein in F-MBL (IV-17) compared to S-CLL57 

Proteins were separated by 8-15% Tris-acetate gel followed by western blotting and antibody detection using 
specific antibody to CYBB and an antibody to GAPDH. The western blot shows an increase in the expression of 
CYBB protein in F-MBL (IV-17) compared to S-CLL57.  

 

 Ingenuity pathway analysis (IPA) was used to determine cellular location, molecular 

functions, network signalling and associated pathways for identified proteins. A summary of 

the IPA results are presented in (Table 4-7 Integrated pathway analysis of proteins 
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differentially abundant between F-LPD & S-CLL. The top 5 canonical pathways include MIF-

mediated glucocorticoid regulation (p-value=2.68E-05; 3/23 molecules), MIF regulation of 

innate immunity (p-value=5.48E-05; 3/29 molecules), regulation of eIF4 and p70S6K signalling 

(p-value=2.72E-04; 4/124 molecules), Rac signaling (p-value=1.44E-03; 3/87 molecules), 

antigen presentation pathway (p-value=2.91E-03; 2/31 molecules). Molecular and cellular 

functions differing between these two groups include cell-to-cell signalling and interaction, 

cellular development, and cellular growth and proliferation. This comparison identified only 

one significant network had a score of 2 with 1 focus molecule (CD74) linked to antigen 

presentation, inflammatory response, cellular assembly and organization. 

 IPA analysis indicated that 11 proteins were localized to the cytoplasm, 10 to the 

nucleus, 5 to the plasma membrane, and 4 to the extracellular space. All identified proteins 

had a range of different functions including cytokine activity (MIF), kinase activity (MAPK3 and 

mTOR), transmembrane receptor (HLA-DRB4, CD74, and HLA-B) and regulation of 

transcription (SRSF2, HNRNPD and ZNF292). Three molecules (HLA-DRB4, CD74 and MIF) were 

predicted to be involved in B-cell proliferation and peripheral T lymphocyte responses (Figure 

4-7).  
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Figure 4-7 Proteins implicated in early and advanced CLL and B-cell proliferation. 

Ingenuity pathway analysis identified HLA-DRB4, CD74 and MIF as being implicated in early and advanced CLL 
and B-cell proliferation. Overexpression of CD74 and MIF are predicted to be indirectly involved in activation and 
proliferation of B-lymphocytes and HLA-DRB4 in peripheral T lymphocyte response (orange dashed lines). Grey 
lines indicate over-expression of CD74 is indirectly involved in early and advanced B-CLL, however the biological 
effect of CD74 on early and advanced CLL cannot be predicted. 
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Table 4-7 Integrated pathway analysis of proteins differentially abundant between F-LPD & S-CLL 

Top Canonical Pathways p-value Overlap * Ratio ** 
MIF-mediated Glucocorticoid Regulation 2.68E-05 3/23 0.13 
MIF Regulation of Innate Immunity 5.48E-05 3/29 0.103 
Regulation of eIF4 and p70S6K Signalling 2.72E-04 4/124 0.0323 
Rac Signalling 1.44E-03 3/87 0.0345 
Antigen Presentation Pathway 2.91E-03 2/31 0.0645 
Diseases and Disorders p-value #Molecules 
Cancer 2.62E-03 1 
Hematological Disease 2.62E-03 1 
Immunological Disease 2.62E-03 1 
Organismal Injury and Abnormalities 2.62E-03 1 
Molecular and Cellular Functions p-value #Molecules 
Cell-To-Cell Signalling and Interaction 7.84E-03 1 
Cellular Development 1.09E-02 2 
Cellular Growth and Proliferation 1.09E-02 2 
Physiological System Development and Function p-value #Molecules 
Hematological System Development and Function 7.84E-03 3 
Humoral Immune Response 1.09E-02 2 
Lymphoid Tissue Structure and Development 1.09E-02 2 
Top Networks Score 
1. Antigen Presentation, Inflammatory Response, Cellular Assembly and 
Organization 

2 

©2000-2017 QIAGEN. All rights reserved 

* Overlap column indicates the number of observed molecules from our dataset that met the filter criteria and participate in 
a canonical pathway to the total number of molecules that participate in the same canonical pathway from the Ingenuity 
knowledge base.  
** The Ratio column  is calculated by taking the number of observed molecules from our dataset that participate in a canonical 
pathway divided by the total number of molecules that participate in the same canonical pathway from the Ingenuity 
knowledge base.  
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4.7. DISCUSSION 

 The protein expression profiles of B-CLL have been studied using a number of different 

methods (Alsagaby et al., 2014, Huang et al., 2016, Eagle et al., 2015, Perrot et al., 2011). The 

majority of these studies have identified protein markers which predict prognosis (Alsagaby 

et al., 2014, Eagle et al., 2015, Huang et al., 2016, Perrot et al., 2011), with only a limited 

number studying mechanisms of B lymphocyte neoplastic transformation (Alsagaby et al., 

2014, Diez et al., 2017, Singh et al., 2015), and no studies comparing F-CLL/F-LPD with S-CLL. 

The aim of this study was to compare protein expression profiles between F-LPD and S-CLL. It 

was proposed that a study of a family with multiple CLL and MBL cases would provide some 

degree of control for genetic background and enhance the power to detect novel changes in 

protein expression associated with CLL development. 

 Of the 4672 identified proteins, 30 were differentially abundant between F-LPD and S-

CLL. The highest significance for upregulation was for HACD and MIF, and for downregulation, 

SERPINH1. MIF protein binds to the B lymphocyte surface receptor CD74 (Binsky et al., 2010), 

which regulates VLA-4 expression, involved with homing and survival of CLL cells (Binsky et al., 

2010).Three other proteins, ENTPD1/CD39, MTOR and SRSF2, have been associated with CLL 

biology (Abousamra et al., 2015, Decker et al., 2003, Garza et al., 2016, Pulte et al., 2007a, 

Pulte et al., 2007b, Tamburini et al., 2008). Of significance, increased levels of CYBB/gp91-

phox protein correlated with levels of mRNA. Expression of CYBB/gp91phox gene has been 

described in B lymphocytes and in association with monocytic acute myeloid leukemia (Suzuki 

et al., 1998, Aurelius et al., 2012), although the present study is the first to identify increased 

expression in B-CLL cells. 

 Of the 30 proteins, 22 were expressed at higher levels and 8 expressed at lower levels 
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in F-LPD. These proteins were localized to the cytoplasm (11), nucleus (10), plasma membrane 

(5), and extracellular space (4). Cytoplasmic proteins are essential to maintaining cell structure 

and are involved in cellular activities and intracellular signalling, while nuclear proteins are 

responsible for cellular regulation, including regulation of gene expression (Thurgood et al., 

2017). 

 Extracellular space proteins mediate extracellular signals and initiate intracellular 

signals. The 4 extracellular proteins identified in this study included MIF, ADAMTS16, 

SERPINH1 and ARSI. The pro-inflammatory cytokine, MIF, plays a critical role in immune 

regulation and inflammation and has been implicated in the pathogenesis of inflammatory 

and autoimmune diseases including rheumatoid arthritis, systemic lupus erythematosus (SLE) 

and atherosclerosis (Santos and Morand, 2009). In addition, MIF is overexpressed in skin, 

brain, breast, colon, prostate, and lung cancers and correlates with tumour aggressiveness 

and metastatic potential (Ouertatani-Sakouhi et al., 2010, Bernhagen et al., 2007, Lue et al., 

2007, Meyer-Siegler et al., 2007, Rendon et al., 2009). MIF binding to CD74 induces sustained 

activation of ERK1/2 MAPK, in addition to transient activation via a Src-type kinase, which is 

co-regulated by the cellular MIF binding protein JAB1/CSN5 (Lue et al., 2006). Both pathways, 

which involve extra- and possibly intracellular MIF, regulate a number of cell functions 

including gene expression, proliferation and apoptosis (Calandra and Roger, 2003). 

 In CLL, MIF has been reported to promote the survival of B-CLL cells through CD74 

signalling pathways (Binsky et al., 2010). MIF binds to the cell surface receptor CD74, the 

extracellularly expressed form of the MHC class II invariant chain (Leng et al., 2003). This 

interaction induces a pathway leading to the activation of NF-kB resulting in increased 

production of survival factor IL-8 (Binsky et al., 2010). Secreted IL-8 then further activates Bcl-

2, inducing resistance to apoptosis in B-CLL (Binsky et al., 2007). In addition, binding of CD74 
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by MIF leads to upregulation of TAp63, a tumour suppressor protein and member of the p53 

family (Su et al., 2010). Expression of Tap63 upregulates CLL expression of the integrin VLA-4 

(ITGA4), promoting migration of circulating CLL cells to the bone marrow (Binsky et al., 2010). 

Importantly, blocking of MIF, CD74 or IL-8 decreases Bcl-2 expression and induces apoptosis 

(Binsky et al., 2010), suggesting that these molecules may be candidates for targeted 

therapies. In a murine Eµ-TCL1 transgenic mouse model of CLL (Bichi et al., 2002), MIF protein 

is expressed at higher levels in B cells in leukaemic Eµ-TCL1 mice compared to TCL1 wild-type 

(Reinart et al., 2013). Knockout of MIF in these mice delayed the development of CLL, reduced 

splenomegaly and hepatomegaly, and prolonged survival (Reinart et al., 2013).  

 In the present study, several cytoplasmic proteins were identified to be differentially 

abundant in F-LPD including ADP ribosylation factor interacting protein 2 (ARFIP2), 

chromosome 14 open reading frame 2 (C14orf2), cytochrome b-245 beta chain (CYBB), 

mitogen-activated protein kinase 3 (MAPK3), transforming growth factor beta receptor 

associated protein 1 (TGFBRAP1), 3-hydroxyacyl-CoA dehydratase 3 (HACD3), ribosomal 

protein S19 (RPS19), ribosomal protein L14 (RPL14), eukaryotic translation initiation factor 4E 

binding protein 2 (EIF4EBP2), tudor domain containing 1 (TDRD1), and phosphoprotein 

enriched in astrocytes 15 (PEA15). 

 MAP kinases, or extracellular signal-regulated kinases (ERKs), act in a signalling cascade 

that regulates a number of cellular processes including proliferation, differentiation, and cell 

cycle progression in response to extracellular signals (Chang and Karin, 2001). The 2 MAPKs 

that play an important role in the MAPK/ERK signalling cascade are MAPK1/ERK2 and 

MAPK3/ERK1. As a result of activation, cytoplasmic MAPK3 regulates the activity of several 

transcription factors including FOS, Myc and signal transducer activation of transcription 3 

(STAT3) (Cargnello and Roux, 2011). High levels of MAPK-Erk1/2 pathway activation have been 
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found to be associated with leukaemic cell survival, including B-CLL cells (Crassini et al., 2013), 

and the ERK pathway is activated after BCR ligation in B-CLL cells (Kawauchi et al., 2002). The 

activation of ERK in response to BCR stimulation has been reported to be associated with the 

expression of the proto-oncoprotein Myc, which is an essential positive regulator of cell cycle 

progression and cell growth (Krysov et al., 2012). Overexpression of MAPK3 in F-LPD B cells in 

the present study is consistent with previous studies which show deregulation of MAPK 

signalling plays a role in the pathogenesis of CLL (Shukla et al., 2017). 

 Members of the transforming growth factor-beta (TGF-ß) family, act through type II 

membrane receptor serine-threonine kinases, including TGFBR2, which leads to 

transphosphorylation of type I receptor serine-threonine kinases, including TGFBR1 

(Wurthner et al., 2001). Downstream signalling events include embryogenesis, wound healing, 

tissue homeostasis, fibrosis, and immunomodulation (Derynck et al., 1998, Kulkarni et al., 

1993). Activated TGFBR1 phosphorylates SMAD2/SMAD3, which binds to a common 

mediator, SMAD4, to form a SMAD complex that translocates to the nucleus to regulate 

transcription of target genes (Wurthner et al., 2001). Furthermore, TGF-ß can activate other 

signalling cascades including Erk, JNK, and p38 MAPK kinase pathways to initiate 

transcriptional responses independently of SMAD activation (Derynck and Zhang, 2003).  

 Dysregulation of TGF-ß, either decreased or increased but altered signaling, has been 

reported in association with progression and metastasis of malignancies (Pasche, 2001, Tang 

et al., 1998, Kyrtsonis et al., 1998). Expression levels of the TGF-ß receptor are decreased on 

B-CLL cells, or are less sensitive to the growth-inhibitory effects of TGF-ß, compared to normal 

B-lymphocytes (Douglas et al., 1997) (Lagneaux et al., 1997). In addition, TGF-ß is released at 

higher levels in B-CLL patients than controls (Lagneaux et al., 1995). 
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 The plasma membrane proteins identified in the present study were ENTPD1, HLA-

DRB4, CD74, LYAR, and HLA-B. These proteins are involved in a number of cellular processes 

including cell-cell interactions, transport, and signalling functions. The role of HLA class I 

proteins is to present peptides from endogenous proteins to CD8+ cytotoxic T-lymphocytes, 

while HLA class II proteins present peptides derived from exogenous proteins to CD4+ helper 

T-cells (Gragert et al., 2014). CLL risk has been associated with several HLA alleles including 

HLA-DQA1 and HLA-DRB5 (Slager et al., 2011), and HLA-DRB1 has been associated with F-CLL 

(Theodorou et al., 2002). Our results identified novel upregulation of HLA-DRB4 in F-LPD 

compared to S-CLL. Upregulation of HLA-DRB4 has been demonstrated to be associated with 

CLL susceptibility (Machulla et al., 2001) (Gragert et al., 2014), but not previous associated 

with F-CLL. HLA-B class I has also been found to be associated with increased risk of CLL in a 

US white population, but more work is needed to confirm this association (Gragert et al., 

2014).  

 Our study found an increase in six, and decrease in four, nuclear proteins in F-LPD 

compared to S-CLL. These included ACTBL2, HIST1H1C, HIST1H1D, FIP1L1, SRSF2, NIFK, mTOR, 

HNRNPD, ZNF292, and ZNF648. Mechanistic (or mammalian) target of rapamycin (mTOR) is a 

protein kinase that belongs to the phosphatidylinositol 3 kinase (PI3K) family and has been 

implicated in the regulation of various cellular processes including cell cycle progression and 

cellular proliferation (Thoreen et al., 2012, Laplante and Sabatini, 2012). There are at least 2 

multi-protein complexes in which mTOR is found, mTORC1 and mTORC2, which are defined 

by partner proteins, substrate specificities and differential sensitivity to rapamycin (Chapuis 

et al., 2010). The mTORC1 pathway is activated either by extracellular growth factors or 

changes in cell metabolism (Sarbassov et al., 2005),whereas mTORC2 is usually rapamycin-

insensitive and has a role in cell survival and proliferation through activation of the 
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serine/threonine kinase Akt (Jacinto et al., 2004). 

 The activity of mTOR is deregulated in a number of haematological malignancies 

(Chapuis et al., 2010). In B-CLL, mTOR is regulated by PI3K/Akt signalling cascades which are 

involved in cell survival and proliferation (Blunt et al., 2015), and targeting mTOR in B-CLL 

induces cell cycle arrest and apoptosis (Decker et al., 2003) (Blunt et al., 2015). However, more 

studies are required to assess the safety and efficacy of therapies that target mTOR (Roohi 

and Hojjat-Farsangi, 2017).  

 Increased abundance levels of histone cluster 1, H1c (HIST1H1C) and histone cluster 1, 

H1d (HIST1H1D) were found in F-LPD compared to S-CLL cases. Histones are an integral part 

of chromatin structure and are responsible for the stability of DNA. The four core histones 

(H2A, H2B, H3 and H4) are essential for the formation of the histone octamer, while the linker 

histone, H1 and its subtypes, connect the nucleosome core particles at DNA entry and exit 

sites (Happel and Doenecke, 2009). The abundance of numerous histone post-translational 

modifications and histone variants has been widely studied in CLL (Glibert et al., 2014, Singh 

et al., 2015, Diez et al., 2017). HIST1H1C (or H1.2) and HIST1H1D (H1.3) are linker histones and 

it has been reported that the HIST1H1C is translocated from the nuclease to the cytoplasm in 

response to drug treatments in primary B-CLL cells (Gine et al., 2008) (Harshman et al., 2013). 

In addition, HIST1H1C initiates apoptotic cascades after exposure to X-ray irradiation and 

following DNA double-strand breaks in a p53-dependent manner (Gine et al., 2004) and (Gine 

et al., 2008). 
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SUMMARY 

 In this study, MS was used to identify differentially abundant proteins in B lymphocytes 

from a family with multiple cases of CLL and MBL. For this family, CLL appeared to be 

transmitted as an autosomal dominant disorder. However, a previous genetic linkage scan had 

provided no significant evidence for a single gene model of disease susceptibility (Fuller et al., 

2008). As with the mRNA study reported in Chapter 3, the advantage of this proteomic 

association study was that background genetic variation was partially controlled as a function 

of the degree of relationship between family subjects, potentially increasing the contribution 

of epigenetic and/or environmental modifiers to variation in protein expression profiles 

(Borecki and Province, 2008).  

 Analysis of protein levels using a combination of quadrupole, ion trap and Orbitrap MS 

analysis identified 4672 proteins that after normalisation to control samples, segregated F-

LPD, S-CLL and healthy control groups using unsupervised hierarchical clustering based on 

protein level patterns. Assessment for the difference between normalised protein abundance 

between F-LPD and B-CLL patients was performed using independent two-sample t-tests. 

Proteins with log fold changes > 2 and t-test p-values < 0.05 were considered in further 

analyses. A total of 30 proteins were identified and a heat map using complete linkage and a 

Euclidean distance metric was constructed (Warnes et al., 2016). Of these proteins, 22 were 

overexpressed, and 8 proteins were underexpressed in F-LPD compared to S-CLL. A number 

of proteins were identified that are involved in the regulation of a number of cellular processes 

including cell cycle progression and cellular proliferation. These proteins were localized to the 

cytoplasm, nucleus, plasma membrane, and extracellular space. All of the identified proteins 

have different molecular functions including cytokine activity (MIF), kinase activity (MAPK3 
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and mTOR), transmembrane receptors (HLA-DRB4, CD74, and HLA-B) and transcription 

regulator (SRSF2, HNRNPD and ZNF292). Using Ingenuity Pathway Analysis (IPA) analysis, 

three molecules (HLA-DRB4, CD74 and MIF) were implicated in early and advanced CLL and B-

cell proliferation (Figure 4-7). Over expression of CD74 and MIF are predicted to be indirectly 

involved in activation and proliferation of B-lymphocytes and HLA-DRB4 in peripheral T 

lymphocyte response. However, the mechanism by which CD74 is related to B-lymphocyte 

activation and proliferation cannot be predicted using the IPA knowledgebase.  
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5.1. INTRODUCTION 

 Chapter 3 reported studies which found mRNA profiles differentiated B cells from 

control subjects, F-LPD and S-CLL. This Chapter will investigate whether changes in mRNA 

profiles are associated with progression from normal B-lymphocytes through pre-malignant 

MBL cells to malignant CLL.  

 The presence of CLL and MBL in several family members allowed comparison of mRNA 

profiles associated with progression to CLL that were to some extent controlled for a common 

genetic background. In this family, CLL appeared to be transmitted as an autosomal dominant 

disorder. However, a genetic linkage scan had provided no evidence for a single gene model 

of disease susceptibility (Fuller et al., 2008). In the study reported in this Chapter, background 

genetic variation was partially controlled as a function of the degree of relationship between 

family subjects, potentially increasing the contribution of epigenetic and/or environmental 

modifiers to variations in gene expression profiles (Borecki and Province, 2008).  

 Increases in the frequency of diagnostic blood testing have led to the recognition that 

MBL is a clinical precursor to CLL (Landgren et al., 2009, Parikh et al., 2013, Rawstron, 2002). 

MBL cases have the same immunophenotypic markers as CLL, expressing CD5, CD19 and CD23, 

with low levels of CD20 and surface immunoglobulin, and either kappa or lambda light chains 

(Boehler et al., 2011). Patients are considered to have MBL if they have < 5 × 109/L monoclonal 

B cells in the peripheral blood, with no symptoms of fever, weight loss or night sweats, and no 

sign of lymphadenopathy, hepatomegaly, splenomegaly or cytopenias (Parikh et al., 2013).  

 MBL precedes almost all cases of CLL/ SLL (Landgren et al., 2009), and is subclassified 

into “low-count” MBL, defined as a peripheral blood monoclonal population < 0.5 × 109/L, and 

“high-count” MBL (Swerdlow et al., 2016). Progression to CLL is very rare in low-count MBL, 
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whereas about 1-2% high-MBL cases progress annually (Vardi et al., 2013). 

 Individuals with a family history of CLL or other LPD have a 2 - 3 fold increased relative 

risk of MBL (Parikh et al., 2013), and MBL is reported in 13-18% of first degree relatives of F-

CLL patients compared to 3-5% in the general population (Marti et al., 2003, Rawstron, 2002, 

Rawstron et al., 2002). These findings suggest that MBL is an early marker of an inherited 

predisposition to CLL that may be associated with DNA variants or non-DNA variations, 

including epigenetic modifications. In this present study, it was proposed that variations in 

gene expression are acting early in neoplastic transformation of B lymphocytes, resulting in 

an MBL, and subsequent somatic events further alter gene expression before overt CLL 

develops. The aim of this Chapter was to investigate whether changes in mRNA levels were 

associated with progression from normal B-lymphocytes through pre-malignant MBL cells to 

malignant CLL. 

HYPOTHESIS 

 Genes associated with the development of CLL can be identified by studying the 

progression of normal B lymphocytes through pre-malignant MBL cells to malignant CLL in a 

family with multiple affected members, considering that the development of disease 

phenotypes in families is partially controlled for genetic factors. 

AIM 

 - To identify changes in mRNA levels associated with progression of normal B 

lymphocytes through pre-malignant MBL cells to malignant CLL. 
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5.2. MATERIALS 

Table 5-1 List of materials used for Affymetrix GeneChip Human Transcriptome Array 2.0 

5.3. METHOD 

 Samples (n = 9) were collected from surviving family cases (two F-CLL, and 4 F-MBL), 

and unaffected family controls (n = 3) from a family with multiple cases of B-LPD (Figure 3-1). 

B lymphocytes were enriched using a RosetteSep™ B-Cell isolation cocktail (StemCell 

Technologies Inc., Vancouver, BC, Canada) as described in 2.2. Samples were amplified using 

the GeneChip® WT Pico Kit (Affymetrix Inc, Santa Clara, California, USA, P/N 703262 Rev.5) 

and processed with the Affymetrix GeneChip Human Transcriptome Array 2.0 (Affymetrix Inc, 

Santa Clara, California, USA) as described earlier in 3.3.5. 

 The expression data (.CHP format) were loaded into the Affymetrix Transcriptome 

analysis console (TAC 3.0) software and samples were classified into 3 groups. There were 2 

F-CLL (IV-02 & IV-05), 4 F-MBL (III-10, IV-13, IV-17 & IV-18) cases and 3 family controls (IV-16, 

V-16, and IV-15). 

MATERIALS COMPANY 
1 Affymetrix GeneChip Human Transcriptome 

Array 2.0  
Affymetrix Inc, Santa Clara, California, USA 

2 RNA Pico 6000 chip Agilent Technologies 
3 Agilent Bioanalyser Agilent Technologies 
4 GeneChip® WT Pico Kit Affymetrix Inc, Santa Clara, California, USA, P/N 703262 

Rev.5 
5 GeneChip® Whole Transcript (WT) Expression 

Arrays 
Affymetrix Inc, Santa Clara, California, USA 

6 GeneChip® Expression wash, stain and scan 
for Cartridge arrays kit 

Affymetrix Inc, Santa Clara, California, USA 

7 Gene chip scanner 3000 7G Affymetrix Inc, Santa Clara, California, USA 
8 Affymetrix Expression Console software, 

version 1.4 
Affymetrix Inc, Santa Clara, California, USA 

9 Transcriptome analysis console (TAC) 3.0 
software 

Affymetrix Inc, Santa Clara, California, USA 
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Statistical Analysis 

 Expression analysis was performed using Affymetrix Transcriptome analysis console 

(TAC 3.0) software. One-way (between subjects) ANOVA (unpaired) was selected and the TAC 

analysis was performed by comparing F-CLL, F-MBL and family controls. The assessment of 

differences between controls, F-MBL and F-CLL was performed similarly to the analysis for F-

LPD and S-CLL cases in Chapter 3. Firstly, unsupervised hierarchical clustering was performed 

using genes with FDR p-values < 0.05. These genes were then compared between (A) controls 

and MBL and (B) MBL and CLL using 2-sample t-tests, and genes with a p-value < 0.01 and log 

fold change > 2 were used for semi-supervised hierarchical clustering.  

5.4. RESULTS  

 After performing TAC analysis, 1926 differentially expressed mRNAs, consisting of 

1372 coding and 554 noncoding transcripts, were identified that were differentially abundant 

between subjects. To control for multiple testing, an FDR p-value < 0.05 was set, and 6 genes 

were identified that, after unsupervised hierarchical clustering, segregated normal familial 

controls from F-MBL and F-CLL (Figure 5-1; Table 5-2). Three of these genes, GRASP, LEF1, and 

ROR1, had been identified as differentially expressed between F-LPD and S-CLL (Table 3-4). 

With progression from normal familial controls through F-MBL to F-CLL, GRASP was 

downregulated, while LEF1, C11orf80, ROR1, METTL8, and PARP3 were upregulated (Table 

5-2).  
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Figure 5-1 Genes differentially expressed using unsupervised hierarchical clustering in control family subjects, 
F-MBL and F-CLL cases 
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Table 5-2 Genes differentially expressed using unsupervised hierarchical clustering in control family subjects, 
F-MBL and F-CLL cases 

Gene 
Symbol 

Control family signal intensity*  F-MBL signal intensity F-CLL signal intensity FDR p-value 

GRASP 11.1 9.7 6.7 0.03 

LEF1 5.0 10.4 11.2 0.03 

C11orf80 9.9 11.4 11.8 0.03 

ROR1 5.8 10.4 10.6 0.03 

METTL8 8.0 10.5 11.2 0.04 

PARP3 6.7 7.1 6.9 0.04 

*Signal intensity is taken as an average over the pairs of perfect match (PM) and mismatch (MM) probe spots. 
The statistical method used to summarize over the PM/MM pairs was the Tukey’s Bi-weight average algorithm 
implemented in Affymetrix software. (Bolstad et al., 2003) 

 On the assumption that the expression of some genes becomes increasingly 

dysregulated with neoplastic progression, mRNAs that were differentially abundant between 

F-CLL and F-MBL were identified, and then compared between F-MBL and family controls. 

Normal controls, F-MBL and F-CLL were grouped and mean levels for mRNAs in each group 

were compared for significance using a Student’s t-test. A 2-fold difference in up- or down-

regulation of gene expression was chosen as biologically relevant and significance was set at 

p < 0.01 (Eagle et al., 2015). 

 Six genes (SMAD3, DFNB31, TBC1D10C, INPP5F, GRASP, and RASGEF1B) were 

differentially expressed for control versus F-MBL, and for comparison of F-MBL versus F-CLL 

(Table 5-3; Figure 5-2). Semi-supervised hierarchical clustering for each patient was then 

performed (Figure 5-3). With progression from MBL to F-CLL, INPP5F and DFNB31/WHRN were 

progressively upregulated; SMAD3, GRASP and RASGEF1B were progressively downregulated; 

and TBC1D10C was downregulated in F-MBL before being upregulated in F-CLL.  
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Figure 5-2. Venn diagram illustrating overlap between F-MBL vs F-CLL, and F-MBL vs Controls 

Six genes were differentially abundant with t-test p < 0.01; >2-fold change in F-MBL versus F-CLL, and also 
differentially abundant in F-MBL versus family controls. F-CLL; familial chronic lymphocytic leukaemia, F-MBL; 
monoclonal B-cell lymphocytosis (F-MBL) family members, F-N.C; family controls. Retrieved from 
http://bioinfogp.cnb.csic.es/tools/venny/index.html on March 7th 2018. 

 

Table 5-3 Genes differentially expressed between F-MBL and F-CLL cases that were also differentially expressed 
for control versus F-MBL 

* Log2-fold change in expression between F-MBL and F-CLL 

** Student’s t-test. 

Gene symbol Gene Name Log 2-
Fold 

Change* 

p-value** Cellular 
location 

Function 

GRASP general receptor for 
phosphoinositides 1 associated 

scaffold protein 

8.0 <0.0001 Plasma 
Membrane 

Other 

RASGEF1B RasGEF domain family member 
1B 

5.3 0.005 Other Other 

SMAD3 SMAD family member 3 2.2 0.009 Nucleus transcription 
regulator 

INPP5F inositol polyphosphate-5-
phosphatase F 

-2.4 0.007 Plasma 
Membrane 

phosphatase 

TBC1D10C TBC1 domain family member 10C -2.5 0.003 Nucleus Other 

WHRN/DFNB31 whirlin -2.8 0.007 Plasma 
Membrane 

Other 

http://bioinfogp.cnb.csic.es/tools/venny/index.html%20on%20March%207th%202018
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Figure 5-3. Genes differentially expressed by semi-supervised hierarchical clustering of B lymphocyte mRNA 
levels with progression from normal B family subjects, premalignant F-MBL to malignant F-CLL cases 
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Validation of Gene Microarrays Using qRT-PCR 

 Quantitative RT-PCR (qRT-PCR) was used to validate changes in gene expression 

associated with progression from normal B-lymphocytes to pre-malignant MBL to malignant 

CLL cells. For qRT-PCR, a Rotor-Gene 2000 (Corbett Research, Sydney, Australia) was used as 

described previously in section 2.7 

 Using semi-supervised clustering, 6 genes were identified as differentially associated 

with progression from normal B-lymphocytes to pre-malignant MBL to malignant CLL cells. 

qRT-PCR analyses were performed in 3 normal controls, 4 F-MBLs and 2 F-CLL cases and 

changes in expression were determined relative to GAPDH (delta Ct). The qRT-PCR results for 

these genes are shown in (Error! Reference source not found.). 

 The results showed that the expression levels of 4 genes (GRASP, INPP5F, RASGEF1B, 

and SMAD3) were significantly decreased from normal to premalignant MBL and F-CLL 

subjects, while DFNB31/WHRN was significantly increased. There were no differences in 

TBC1D10C levels between the groups. These results correlated with expression levels in the 

microarray analysis.  
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Figure 5-4. Quantitative RT-PCR analyses for 6 mRNAs in B-lymphocytes from control, F-MBL and F-CLL subjects 

 

Delta Ct (cycle threshold) is defined by the number of cycles required for the fluorescent signal to cross threshold 
background fluorescence. Ct levels are inversely proportional to the amount of target mRNA, that is, the lower 
the Ct the greater the amount of target mRNA in the sample.
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5.5. DISCUSSION 

 This study of differential gene expression in control B-lymphocytes, F-MBL and F-CLL 

from a family with multiple affected members allowed comparison of mRNA profiles 

associated with progression to CLL that to some extent was controlled for genetic background. 

Using unsupervised hierarchical clustering, with progression from normal familial controls 

through F-MBL to F-CLL, 6 genes were found to be dysregulated. The mRNA for GRASP was 

downregulated, while LEF1, C11orf80, ROR1, METTL8, and PARP3 were upregulated. To 

further identify genes that become increasingly dysregulated with neoplastic progression, 

mRNAs that were differentially abundant between F-CLL and F-MBL were identified, and then 

compared between F-MBL and family controls. Six genes were differentially expressed in 

control versus F-MBL, and F-MBL versus F-CLL. With progression from F-MBL to F-CLL, INPP5F 

and DFNB31/WHRN were progressively upregulated and SMAD3, GRASP and RASGEF1B were 

progressively downregulated. The mRNA for TBC1D10C was downregulated in F-MBL before 

becoming upregulated in F-CLL. Of these 11 genes, LEF1, ROR1, INPP5F, and SMAD3, have 

previously been associated with either the development of B-CLL or progression of MBL to B-

CLL. 

 The transcription factor, LEF1, is involved in the development of B lymphocytes and is 

highly expressed in mouse pro-B and pre-B lymphocytes but downregulated in mature B cells 

(Reya et al., 2000) (Gutierrez et al., 2010). LEF1 functions in the Wnt/β-catenin signalling 

pathway, recruiting β-catenin to activate transcription of several target genes in response to 

constitutive Wnt pathway activation, which regulates B lymphocyte proliferation and survival 

(Gutierrez et al., 2010). B-CLL cells aberrantly express LEF1 compared to normal B cells and 

LEF1 knockdown or LEF1 inhibition by small molecules decreases CLL B-cell survival (Gutierrez 
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et al., 2010, Gandhirajan et al., 2010). In addition, high expression of LEF1 in CLL has been 

associated with UM-CLL (Wu et al., 2016). 

 Increased expression of ROR1, a type -1 tyrosine kinase-like orphan receptor, was 

associated with progression from control to F-MBL and F-CLL. ROR1 signalling is involved in 

cell proliferation and differentiation, and embryonic development (van Genderen et al., 1994), 

and over-expression of ROR1 on the surface of B-CLL has been documented in several studies 

(Baskar et al., 2008, Daneshmanesh et al., 2008). ROR1 acts as a receptor for Wnt5 signalling, 

which increases B-CLL cell survival, proliferation and migration (Yu et al., 2016). These effects 

are blocked by cirmtuzumab, a humanized anti-ROR1 monoclonal antibody (Yu et al., 

2016).Furthermore, inhibiting ROR1 in CLL cells by siRNA silencing induces apoptosis of B-CLL 

cells but not control B cells (Choudhury et al., 2010). High level expression of ROR1 has been 

associated with disease progression and may distinguish patients with aggressive from 

indolent disease (Cui et al., 2016). Consequently ROR1 has been considered as a target for 

new CLL therapies (Aghebati-Maleki et al., 2017).  

 INPP5F was upregulated in association with CLL compared to MBL and MBL compared 

to controls. INPP5F degrades PIP2 (phosphatidylinositol 4,5-bisphosphonate) and PIP3 

(phosphatidylinositol 3,4,5-trisphosphonate) regulating AKT/phosphatidylinositol 3-kinase 

(PI3K) signalling and PIP3 levels (Zhu et al., 2009). There may be an association between high 

expression of INPP5F and activated NF-κB, as INPP5F expression positively correlates with 

IKKb/IKBKB, an activator of NF-κB, and negatively with IKBa, an inhibitor of NF-κB (Inoue et al., 

2007, Karin, 2006). In CLL treated with fludarabine-based therapies, low INPP5F mRNA levels 

are associated with better outcome compared to high levels (Palermo et al., 2015), and INPP5F 

mRNA level may be a useful prognostic biomarker. 
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 SMAD3 is a member of the SMAD family which play an essential role in intracellular 

signalling of the transforming growth factor-β (TGF-β). This pathway has been shown to 

regulate cell proliferation, differentiation, migration and apoptosis in many different cell types 

(Derynck and Zhang, 2003). In this pathway, SMAD3 and SMAD2 bind together to act as a 

transcription factor and form receptor-regulated SMADs (R-SMADs) complex. This complex 

facilitates binding to a common mediator, SMAD4 protein, to form a SMAD complex, which 

then translocates to the nucleus. Once SMAD complex enters the nucleus, it regulates the 

transcription of several target genes (Derynck and Zhang, 2003). In addition to the role of 

SMAD3 as a transcription factor in the intracellular signalling pathway of TGF-β, it has been 

also reported that SMAD3 mediates upregulation of microRNA-21 to promote renal fibrosis 

(Zhong et al., 2011). In CLL, high microRNA-21 expression has been previously associated with 

poor prognosis in patients with CLL (Rossi et al., 2010). However, it is not clear how the 

expression of SMAD3 is involved in the biology of CLL cells, although it could be via TGF-β 

(Douglas et al., 1997, Matveeva et al., 2017) or microRNA-21 (Rossi et al., 2010). 

 In addition to validating associations between LEF1, ROR1, INPP5F, and SMAD3, this 

study identified 7 novel associations, including an association with PARP3, which facilitates 

the formation and maintenance of the mitotic spindle and genome integrity (Boehler et al., 

2011), and is currently being investigated as a target for cancer therapy (Oplustil O'Connor et 

al., 2016). 

 Decreased expression of GRASP was associated with progression from control to F-

MBL and F-CLL. The GRASP gene encodes the general receptor for phosphoinositides 1-

associated scaffold protein. In neurones, GRASP interacts with scaffold proteins involved in 

postsynaptic organization and protein trafficking (Kitano et al., 2003), and GRASP may be 

involved in receptor clustering, trafficking, and intracellular signalling. GRASP has been found 
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to coordinate the association of ADP ribosylation factors (ARF) activating protein with the Rac-

activating protein Dock180, to promote ARF to Rac signalling networks and cell migration 

(White et al., 2010, Attar and Santy, 2013). ARFs are members of the Ras superfamily of small 

GTPases. The 6 mammalian ARFs are divided into 3 classes based on sequence similarity, and 

regulate vesicular trafficking, cell shape, and movement (Pasqualato et al., 2002). Compared 

to control B lymphocytes, GRASP is downregulated, (Liao et al., 2015), however, whether 

GRASP plays a role in the development or progression of CLL has not been studied. 

 Of interest were 3 genes (LEF1, ROR1 and GRASP) that were also differentially 

expressed in the F-LPD versus S-CLL comparison reported in chapter 3, a result which is 

consistent with the proposal that inherited upregulation or downregulation of these genes 

contributes to driving malignant progression of F-LPD. 

5.6. CONCLUSION 

 The identification of differentially abundant mRNAs between normal B-lymphocytes, 

pre-malignant F-MBL cells and F-CLL will provide potential new biomarkers for identifying 

patients at increased risk of progression, and an understanding of the mechanisms of 

neoplastic transformation. In this chapter associations between mRNA levels and 4 genes 

known to be involved in either the development or progression of CLL were validated, and 7 

novel associations were identified for further studies.  
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6.1. INTRODUCTION 

 This Chapter will investigate whether gene and protein signature profiles in F-LPD and 

S-CLL differentiate between cases with mutated IGH genes (M-CLL) and unmutated IGH genes 

(UM-CLL). CLL cases with ≥ 98% sequence homology with germline define as UM-CLL, and 

those displaying homology of < 98% are designated as M-CLL (Ghia et al., 2007). In normal B 

cell development, antigen-activated B cells that receive appropriate T-cell help migrate into 

primary B-cell follicles, where they establish germinal centres (Chiorazzi et al., 2005). 

Proliferating germinal centre B cells, undergo IGH somatic hypermutation, where mutations 

occur specifically in IGH region genes. By comparing normal B cell development with B-CLL, it 

had been proposed that UM-CLL B cells originate from a pre-germinal centre precursor with 

IGH lacking somatic mutations, and M-CLL B cells were derived from post-germinal centre B 

cells that express B cell receptors (BCR) altered by somatic hypermutations (Fabbri and Dalla-

Favera, 2016). However, association studies of sporadic M-CLL and UM-CLL using gene 

expression profiling have not provided strong evidence of these subtypes arising from 

separate, distinct cells of origin (Klein et al., 2001, Rosenwald et al., 2001, Ferreira et al., 2014), 

and suggest a common mechanism of transformation or cell origin, which is likely to be within 

the germinal centre (Herve et al., 2005). This proposal is supported by expression of surface 

markers of activation by UM-CLL cells (Chiorazzi and Ferrarini, 2003, Stevenson and Caligaris-

Cappio, 2004), and telomere length measurements which show B-CLL cells have undergone a 

number of cell divisions prior to leukaemic transformation, most likely after exposure to 

antigen (Damle et al., 2004).  

 The membrane expression of markers of cell activation, and evidence of continued 

activation, underscores the importance of signaling via the B cell receptor (BCR) and the 
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potential presence of an unidentified foreign or self-antigen which may play a role in 

malignant transformation (Herve et al., 2005).  

 Compared to mRNA studies, protein expression studies have found higher percentages 

of differentially expressed proteins in M-CLL compared to UM-CLL (Eagle et al., 2015, Perrot 

et al., 2011, Huang et al., 2016). Isobaric tags for relative and absolute quantification (iTRAQ)-

based MS followed by system biology analysis has been used to compare proteomes in 9 M-

CLL and 9 UM-CLL subjects (Eagle et al., 2015). This study reported 274 proteins, or 8% of all 

proteins identified, were differentially abundant in the 2 subgroups, and 43 cell migration and 

adhesion pathways were found to be differentially active in M-CLL and UM-CLL. A high 

proportion of differentially under-expressed proteins in UM-CLL were involved in cell 

migration processes, suggesting UM-CLL cells have a defect in migration (Eagle et al., 2015). 

Proteins associated with cytoskeletal remodelling were also underexpressed in UM-CLL 

whereas proteins associated with transcriptional and translational activity were 

overexpressed (Eagle et al., 2015). These findings suggested that UM-CLL cells were less 

migratory and more adhesive than M-CLL cells, resulting in prolonged retention in the lymph 

nodes and exposure to proliferative and pro-survival signals (Eagle et al., 2015). In a second 

study that used iTRAQ analysis, an initial screen in 27 patients identified differentially 

abundant proteins in progressive CLL, which were then validated by elected reaction 

monitoring (SRM) analysis of purified CD19+ CLL cells in a second sample of 50 cases (Huang 

et al., 2016). Although cases were not classified according to IGH mutation status, proteins 

involved in cell proliferation, survival, DNA repair, granzyme A signalling, and apoptosis were 

found to be differentially expressed in stable, slow progressive and progressive disease. 

 Quantitative 2D-fluorescence difference Gel electrophoresis (2D-DIGE) has also been 

used to study 6 CLL patients (3 M-CLL and 3 UM-CLL) before and after BCR stimulation by anti-
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IgM stimulation (Perrot et al., 2011). This study reported that unstimulated M- and UM-CLL 

cells displayed distinct proteomic profiles, which was more pronounced in UM-CLL (Perrot et 

al., 2011). 

 Although family studies of M-CLL and UM-CLL are limited by low subject numbers, the 

advantages of these studies are that background genetic variation is to some extent 

controlled, increasing the contribution of epigenetic and environmental modifiers to variation 

in phenotype (Borecki and Province, 2008). The study reported in this Chapter is the first gene 

expression and proteomic study to analyse familial cases, and in relation to protein studies, 

the first to normalize protein abundance in CLL cases to control samples. 

HYPOTHESIS 

 Insights may be gained into whether there are differences in gene and protein 

expression in M-CLL and UM-CLL by studying F-CLL and F-MBL cases, where background 

genetic variation is partially controlled.  

AIMS 

1. Compare M-CLL and UM-CLL mRNA profiles in sporadic CLL and familial LPD cases 

using high-resolution microarrays and unsupervised hierarchical clustering. 

2. To normalise for genes differentially expressed as a result of inter-individual B 

lymphocyte variation, compare mRNAs between (A) controls and M-CLL and (B) M-

CLL and UM-CLL in sporadic CLL and familial LPD cases. 

3. To identify mRNAs differentially expressed in family cases alone, compare mRNAs 

between (A) controls and M-CLL and (B) M-CLL and UM-CLL in familial cases alone. 
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4. Compare M-CLL and UM-CLL protein profiles corrected for normal controls in 

sporadic CLL and familial LPD cases using quantitative MS. 

6.2. METHODS 

 M-CLL and UM-CLL mRNA Profiles 

 Sequence analysis of IGH was performed in 13 individuals with B-CLL (7 S-CLL and 2 F-

CLL) and in 4 F-MBL (Table 6-1), and compared to known germline encoded IGH segments as 

described previously in section 2.6.2.5. Patients with ≥ 98% sequence homology with  germline 

were classified as UM-CLL, and those displaying homology of < 98% were classified M-CLL 

(Ghia et al., 2007). 

Table 6-1. List of the selected samples applied in mRNA and Protein profiles in IGH M-CLL and UM-CLL 

* S-CLL 85 was used for protein profiles in M-CLL and UM-CLL 
+ ND: not defined 
  

Sample ID Gender Absolute lymphocyte 
count (x 109/L) 

IGH mutational 
status 

IGH region 
containing the 

mutation 

S-CLL 52 67y/M 9 Mutated IGH1 

S-CLL 53 92y/F 41 Unmutated NA 

S-CLL 57 80y/F 29 Mutated IGH3 

S-CLL 58 77y/F 41 Mutated IGH3 

S-CLL 85 * 64y/M 9 Mutated IGH1 

S-CLL 87 56y/M 17 Unmutated ND+ 

S-CLL 88 73y/F 108 Unmutated IGH2 

F-MBL (IV-13) 61y/F 1 Mutated IGH3 

F-MBL (III-10) 78y/M 1 Mutated IGH5 

F-MBL (IV-17) 54y/M 2 Mutated IGH3 

F-MBL (IV-18) 52y/M 2 Mutated IGH4 

F-CLL90 (IV-05) 54y/F 10 Mutated IGH4 

F-CLL91 (IV-02) 62y/F 17 Unmutated NA 
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 To identify differentially expressed genes, 8 CLL cases were selected and grouped into 

4 M-CLL and 4 UM-CLL, according to IGH mutational status. The groups comprised 2 F-CLL 

cases (1 mutated and 1 unmutated), 6 S-CLL (3 mutated, 3 unmutated) and 4 control samples 

(2 family members and 2 unrelated controls). Probe set analysis results (.CHP file format) for 

these 12 samples were loaded into the Affymetrix Transcriptome analysis console (TAC 3.0). 

One-way (between-subjects) ANOVA (unpaired) was selected and TAC analysis was performed 

comparing M-CLL, UM-CLL and controls.  

 To identify mRNAs that were differentially expressed based on IGH mutation status 

alone, normalised for genes differentially expressed as a result of expected interindividual B 

lymphocyte variation, mRNAs in M-CLL and UM-CLL cases were compared to controls. Semi-

supervised clustering was then performed for those mRNAs that were differentially expressed 

between all 3 groups First, a 2-sample t-test was performed to compare M-CLL and UM-CLL 

groups. All genes that had a log fold change > 2, and FDR p-value < 0.05 were checked to 

ensure that they were also different on a 2-sample t-test comparison between (A) controls 

and M-CLL and (B) controls and UM-CLL. mRNAs that had p-values < 0.05 were considered for 

semi-supervised hierarchical clustering (Bair, 2013, Bair and Tibshirani, 2004).  

 The same method was used to identify mRNAs differentially expressed based on IGH 

mutation status using familial M-CLL and UM-CLL cases and familial controls. The subjects in 

this study comprised 3 related normal controls (V-16, IV-15 and IV-16), 5 F-LPD with mutated 

IGH [4 F-MBL (III-10, IV-13, IV-17 and IV-18), and 1 F-CLL (IV-05)], and 1 F-CLL (IV-02) with 

unmutated IGH. 

Protein Profiles in M-CLL and UM-CLL 

 To determine if protein profiles were different in UM-CLL compared to M-CLL, purified 
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B-lymphocytes from UM-CLL cases (3 sporadic) were compared to 5 M-CLL cases (4 sporadic 

and 1 familial) and controls (one familial and one unrelated). One UM-CLL patient (IV-2) had 

required treatment with FCR between the times of collection of mRNA and protein samples, 

and this subject was not included in the proteomic analysis. In addition, F-MBL cases were not 

included because sufficient protein could not be extracted from low numbers of clonal B cells.  

 Proteins from purified B-CLL cells were precipitated and quantified, reduced and 

alkylated before tryptic digestion, as described in Section 4.5. Briefly, samples were purified 

using HLB plus short cartridges and reconstituted in 100mM HEPES buffer (pH 8.0) for TMT 

10plex Mass Tag labelling (Thermo Scientific), following the manufacturer’s instructions. The 

TMT labelled peptides were purified using HLB and fractionated by hydrophilic interaction 

liquid chromatography (HILIC) in offline mode using in-house packed TSK-Amide 80 HILIC 

columns. The TMT labelled HILIC fractions were re-suspended in MS Loading buffer and 

analyzed online by nano-capillary LC-MS-MS using a Dionex Ultimate 3000 HPLC system and a 

Thermos Scientific Orbitrap Fusion Tribrid™ Mass Spectrometer. The MS data. RAW files from 

each TMT experiment sample set were interrogated using the SEQUEST HT database search 

engine with percolator validation to perform protein identification. The Proteome Discoverer 

version 2.1.0.81 (Thermo Scientific) calculated abundance ratios for each sample against a 

normal control and protein quantification values were exported for further analysis to Excel 

to calculate the log fold change and p-value. Statistical significance of the difference in levels 

of expression of proteins between M-CLL and UM-CLL was determined using functions in the 

R computational environment. The heat map from protein expression data was constructed 

using the function “heatmap.2” in R that uses a Euclidean distance metric (Warnes et al., 

2016). Functional networks of differentially abundant proteins were determined using 

Ingenuity Pathway Analysis (IPA) software. (IPA; ingenuity systems, 
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http://www.ingenuity.com).  

6.3. RESULTS  

M-CLL and UM-CLL mRNA Profiles 

 After performing TAC analysis, 2160 mRNA transcripts (1533 coding and 627 

noncoding transcripts) were found to be differentially expressed between M-CLL, UM-CLL and 

controls. To minimize false positive results, an FDR p-value < 0.05 threshold was set and 582 

differentially expressed mRNAs were identified. Controls and M-CLL cases clustered, however 

the unmutated F-CLL (IV-02) case did not cluster with sporadic UM-CLL cases (Figure 6-1). 

Family controls (IV-15 and IV-16) segregated from unrelated controls (1st and 3rd NC) (Figure 

6-1). Based on FDR p value, the highest ranked genes downregulated in UM-CLL versus normal 

controls and further downregulated in M-CLL were EBF1 (p < 0.0001), OR2L1P (p = 0.0002) 

and PTPRK (p = 0.0006). The most highly ranked upregulated genes in UM-CLL versus normal 

controls and further upregulated in M-CLL were LEF1 (p < 0.0001), PITPNM2 (p = 0.0002), 

TEAD2 (p = 0.0005), and ABCA6 (p = 0.0005). 

http://www.ingenuity.com/
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Figure 6-1 Cluster image of mRNA expression in normal, M-CLL and UM-CLL  

Unsupervised hierarchical clustering of 12 M-CLL, UM-CLL and related (IV-15 and IV-16) and unrelated control 
subjects (1st NC and 3rd NC) showing 583 mRNAs representing ≈430 genes (FDR p < 0.05).  

 

 To identify mRNAs that were differentially expressed based on IGH mutation status 

alone, mRNAs in M-CLL and UM-CLL cases were compared after both groups were normalized 

to controls (t-test p-value < 0.05) (Figure 6-2).  
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Figure 6-2. Venn diagram illustrating overlap between M-CLL vs UM-CLL, and M-CLL vs Controls 

Nineteen genes were differentially abundant with t-test p < 0.05; >2-fold change in M-CLL versus UM-CLL, and 
also differentially abundant in M-CLL versus controls.  M-CLL; chronic lymphocytic leukaemia with mutated IGH, 
UM-CLL; chronic lymphocytic leukaemia with unmutated IGH. Retrieved from 
http://bioinfogp.cnb.csic.es/tools/venny/index.html on March 7th 2018. 

 

 Compared to M-CLL, 10 mRNAs were upregulated in UM-CLL (CD69, FOSB, CLEC2B, 

CERS6, SNORD3C, L3MBTL4, ME2, HIGD1C, C16orf54 and RGCC); while 9 were downregulated 

(ADAM29, SFMBT2, LINC01224, SDK2, KLF3 and NRIP1). (Figure 6-3; Table 6-2). These 19 

mRNAs represented 17 genes, with CD69 and FOSB each represented by 2 mRNAs. Of these 

mRNAs, NRIP1 and CERS6 segregated M-CLL, UM-CLL cases and controls (FDR < 0.05) using 

semi-supervised hierarchical clustering (Figure 6-4; Table 6-3). 

http://bioinfogp.cnb.csic.es/tools/venny/index.html
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Figure 6-3.Cluster image of normal, Mutated and Unmutated CLL gene expression following correction for 
relatedness. 

Semi-supervised hierarchical clustering of 19 cDNA elements which showed a significant (t-test p<0.05) 2-fold 
change in regulation between normal, M-CLL and UM-CLL groups. The cluster dendrogram linked UM-CLL cases 
with healthy control group before they linked to M-CLL cases, and one UM-CLL case (53) segregated with the M-
CLL group.  
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Figure 6-4. Cluster image of 2 mRNAs between M-CLL, UM-CLL and controls 

Semi-supervised hierarchical clustering of 2 mRNAs which showed a significant (t-test p<0.05) 2-fold change in 
regulation between normal, M-CLL and UM-CLL and also with FDR<0.05. 
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Table 6-2 Genes differentially expressed between M-CLL and UM-CLL normalised for controls groups 

Genes differentially expressed between Mutated and Un-Mutated CLL normalised for controls groups with > 2 
fold change and significance level p-value < 0.05 

+ FOSB and CD69 each represented by 2 mRNAs 

* Fold change M-CLL versus UM-CLL. 

  

Symbol Entrez Gene Name Fold 
Change * 

p-value Location Type(s) 

FOSB+ FosB proto-oncogene, AP-1 
transcription factor subunit 

54.4 0.009 Nucleus transcription 
regulator 

CLEC2B C-type lectin domain family 2 
member B 

53.6 0.028 Plasma 
Membrane 

other 

CD69+ CD69 molecule 8.5 0.0009 Plasma 
Membrane 

transmembrane 
receptor 

CERS6 ceramide synthase 6 7.3 0.0003 Nucleus transcription 
regulator 

SNORD3C small nucleolar RNA, C/D box 3C 4.8 0.03 Other other 
L3MBTL4 L3MBTL4, histone methyl-lysine 

binding protein 
2.7 0.035 Other other 

ME2 malic enzyme 2 2.5 0.023 Cytoplasm enzyme 
HIGD1C HIG1 hypoxia inducible domain 

family member 1C 
2.4 0.012 Other other 

C16orf54 chromosome 16 open reading 
frame 54 

2.3 0.012 Extracellular 
Space 

other 

RGCC regulator of cell cycle 2.3 0.025 Cytoplasm other 
LINC01857 long intergenic non-protein coding 

RNA 1857 
-2.0 0.045 Other other 

ADAM29 ADAM metallopeptidase domain 29 -2.1 0.03 Plasma 
Membrane 

peptidase 

NRIP1 nuclear receptor interacting protein 
1 

-2.5 0.037 Nucleus transcription 
regulator 

KLF3 Kruppel like factor 3 -2.6 0.036 Nucleus transcription 
regulator 

SDK2 sidekick cell adhesion molecule 2 -4.2 0.022 Plasma 
Membrane 

other 

LINC01224 long intergenic non-protein coding 
RNA 1224  

-6.3 0.04 Other other 

SFMBT2 Scm like with four mbt domains 2 -9.4 0.017 Nucleus other 
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Table 6-3. Genes differentially expressed between normal, M-CLL and UM-CLL groups (FDR < 0.05) 

*Signal intensity is taken as an average over the pairs of perfect match (PM) and mismatch (MM) probe spots. 
The statistical method used to summarize over the PM/MM pairs was the Tukey’s Bi-weight average algorithm 
implemented in Affymetrix software. (Bolstad et al., 2003) 

2 genes showed a significant (t-test p<0.05), 2-fold change and FDR<0.05 in regulation between normal, M-CLL 
and UM-CLL.  

 

mRNA Profiles in IGH Mutated and Unmutated CLL Family Cases 

 To identify mRNAs differentially expressed based on IGH mutation status using familial 

M-CLL and UM-CLL cases and familial controls, unsupervised hierarchical clustering was first 

performed using a threshold FDR p value < 0.05. There were 523 mRNAs differentially 

expressed between familial M-LPD (4 F-MBL and 1 F-CLL), UM-CLL (n=1) and controls (n=3) 

(Figure 6-5). Based on FDR p-value, the highest ranked genes upregulated in UM-CLL versus 

normal controls and further upregulated in M-CLL were HSPA1B (p < 0.0002), CD3G (p = 

0.0006), and RBMS3 (p = 0.0006). The most highly ranked downregulated genes in UM-CLL 

versus normal controls and further downregulated in M-CLL were RPL9 (p < 0.0005), RPS25 (p 

= 0.0001), UMPS (p = 0.01), and CRTC3 (p = 0.01). Unsupervised hierarchical clustering 

segregated these 3 groups, with M-LPD segregating with controls before UM-CLL (Figure 6-5). 

Gene 
symbol 

Gene Name Normal Controls  
signal  intensity * 

M-CLL signal  
intensity 

UM-CLL signal  
intensity 

FDR p-value 

CERS6 ceramide synthase 6 8.59 4.68 7.54 0.005 

NRIP1 nuclear receptor 
interacting protein 1 

8.63 7.24 5.95 0.04 
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Figure 6-5. Cluster image of gene expression in familial M-CLL, UM-CLL, and familial controls 

Unsupervised hierarchical clustering of 9 samples from familial M-CLL, UM-CLL and related (V-16, IV-15 and IV-
16) control subjects showing 523 mRNAs representing ≈470 genes (FDR p < 0.05).  

  

 To identify mRNAs differentially expressed based on IGH mutation status alone and 

control for mRNAs that were differentially expressed between controls and all F-LPD cases, 

mRNAs were compared between (A) controls and M-LPD, and (B) M-LPD and UM-CLL (Figure 

6-6).  
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Figure 6-6. Venn diagram illustrating overlap between familial M-CLL, UM-CLL, and familial controls 

Eighty-four mRNAs were differentially abundant with t-test p < 0.05 and >2-fold change in family controls and all 
F-LPD cases. F-M-LPD; familial-lymphoproliferative disease with mutated IGH, UM-CLL; familial chronic 
lymphocytic leukaemia with unmutated IGH, F-N.C; family controls. Retrieved from 
http://bioinfogp.cnb.csic.es/tools/venny/index.html on March 7th 2018. 

 

 There were 84 mRNAs differentially expressed between M-LPD and UM-CLL (t-test p < 

0.05; fold change > 2), that did not differentiate both groups from controls (Figure 6-7). Based 

on t-test p value, the highest ranked genes include CD72 (p<0.00002), KLHL14 (p=0.0002), 

SNORD14E (p=0.0003), FOSB (p=0.0003), TNF (p=0.0007) and IGHD3-22 (p=0.0008).  

 Semi-supervised hierarchical clustering using these genes segregated controls, M-LPD 

and UM-CLL, however in contrast to the unsupervised clustering results, UM-CLL segregated 

with controls before segregating with M-LPD (Figure 6-7). Genes that were more frequently 

upregulated in M-CLL cases include KLHL14 (log 2-fold change = 34.1; p-value = 0.0002), CTLA4 

(log 2-fold change = 18.4; p-value = 0.02), SESN3 (log 2-fold change = 18.1; p-value = 0.01), 

WFDC21P (log 2-fold change = 11; p-value = 0.01), and PMAIP1 (log 2-fold change = 5.8; p-

value = 0.01). Whereas for upregulated genes in UM-CLL cases, the highest expression levels 

were for IGHD3-22 (log 2-fold change = 202; p-value = 0.0008), FOSB (log 2-fold change = 181; 

http://bioinfogp.cnb.csic.es/tools/venny/index.html
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p-value = 0.0003), SNORD14E (log 2-fold change = 80; p-value = 0.0003), EGR1 (log 2-fold 

change = 18.2; p-value = 0.05) and TNF (log 2-fold change = 14.8; p-value = 0.0007). Of these 

84 mRNAs, 18 genes segregated these 3 groups (FDR < 0.05), with M-LPD segregating with 

controls before UM-CLL. (Figure 6-8; Table 6-4). 

 

Figure 6-7. Cluster image of familial M-CLL and UM-CLL cases and family controls gene expression 

Semi-supervised hierarchical clustering of 84 mRNAs which showed a 2-fold change (t-test p < 0.05) in expression 
between (A) controls and M-LPD, and (B) M-LPD and UM-CLL.  
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Figure 6-8. Cluster image of 18 genes between familial M-CLL, UM-CLL and familial controls (FDR < 0.05) 

Semi-supervised hierarchical clustering of 18 genes which showed a significant (t-test p<0.05) 2-fold change in 
regulation between familial M-CLL, UM-CLL and familial normal and also with FDR<0.05.  
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Table 6-4. Genes differentially expressed between familial M-CLL, UM-CLL and familial normal groups (FDR < 
0.05) 

Gene 
Symbol 

Gene Name Familial 
Controls 

signal 
intensity * 

Familial 
M-CLL 
signal  

intensity 

Familial 
UM-CLL 
signal 

intensity 

FDR p-
value 

CLNK cytokine-dependent hematopoietic cell 
linker 

4.64 9.48 11.25 0.004522 

CREB3L2 cAMP responsive element binding 
protein 3-like 2 

8.19 10.35 11.96 0.00926 

CD72 CD72 molecule 8.81 7.72 9.28 0.010823 
KLHL14 kelch-like family member 14 8.45 10.68 5.59 0.014027 

SNORD14E small nucleolar RNA, C/D box 14E 7.47 6.32 12.65 0.021747 
CTLA4 cytotoxic T-lymphocyte-associated 

protein 4 
4.21 12.45 8.25 0.021747 

CRIP1 cysteine-rich protein 1 (intestinal) 8.74 7.35 9.74 0.022436 
FOSB FBJ murine osteosarcoma viral 

oncogene homolog B 
8.77 6.76 14.26 0.026734 

MS4A1 membrane-spanning 4-domains, 
subfamily A, member 1 

17.48 16.33 14.62 0.027878 

MCTP2 multiple C2 domains, transmembrane 2 8.97 10.51 11.58 0.031369 
PMAIP1 phorbol-12-myristate-13-acetate-

induced protein 1 
10.3 13.39 10.84 0.031673 

IGHD3-22 immunoglobulin heavy diversity 3-22 8.51 5.7 13.36 0.033888 
ARHGAP44 Rho GTPase activating protein 44 5.97 7.2 9.16 0.038423 

TRAF1 TNF receptor-associated factor 1 6.58 7.68 9.28 0.039066 
SNORD119 small nucleolar RNA, C/D box 119 5.16 6.44 7.87 0.044313 

NEDD4L neural precursor cell expressed, 
developmentally down-regulated 4-like, 

E3 ubiquitin protein ligase 

7.2 6.07 4.78 0.04541 

CRIP1P4 cysteine-rich protein 1 (intestinal) 
pseudogene 4 

10.54 8.07 10.99 0.045846 

SNORD60 small nucleolar RNA, C/D box 60 9.95 8.74 12.6 0.046455 
*Signal intensity is taken as an average over the pairs of perfect match (PM) and mismatch (MM) probe spots. 
The statistical method used to summarize over the PM/MM pairs was the Tukey’s Bi-weight average algorithm 
implemented in Affymetrix software. (Bolstad et al., 2003).  

18 genes showed a significant (t-test p<0.05), 2-fold change and FDR<0.05 in regulation between familial M-CLL, 
UM-CLL and familial normal controls. 

 

Protein profiles in IGH mutated and unmutated CLL 

 Analysis of protein levels was performed in 5 M-CLL and 3 UM-CLL cases (n=8) using a 

combination of quadrupole, ion trap and Orbitrap mass spectrometer analysis, as described 
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in TMT10plex Mass Tag labelling 4.5.8. After normalization to 6 control samples, 5100 proteins 

were identified. There were 12 proteins differentially expressed between M-CLL and UM-CLL 

cases (log2-fold change > 2; t-test p < 0.05) (Figure 6-9; Table 6-5).  

 

Figure 6-9. Volcano plot protein expression in M-CLL versus UM-CLL 

The volcano plot shows the results of Log 2-fold change plotted against -log10 p value. The green diamond 
symbols represent 12 proteins that were differentially expressed between M-CLL and UM-CLL. 

  

 Of these 12 proteins, 7 proteins [MAGED4 (Fold change = -5.2; p-value = 0.03), ITPKC 

(Fold change = -3.0; p-value =0.004), HBD (Fold change = -2.3; p-value =0.02), PMVK (Fold 

change = -2.2; p-value =0.05), ALDH1A1 (Fold change = -2.3; p-value =0.04), EPB41 (Fold 

change = -2.2; p-value =0.02) and GYPA (Fold change = -2.04; p-value =0.03)] were under-



 

165 
 

CHAPTER-6:  A Comparison of messenger RNA and Protein Profiles in IGH Mutated and Unmutated  
  CLL 

expressed in M-CLL compared to UM-CLL. Overexpressed proteins were PRB1/PRB2 (Fold 

change = 2.8; p-value =0.02), MRPL38 (Fold change = 2.7; p-value =0.05), CRIP1 (Fold change 

= 2.4; p-value =0.001), RPS19 (Fold change = 2.4; p-value =0.02) and ARGLU1 (Fold change = 

2.1; p-value =0.02).  

Table 6-5 Proteins differentially expressed between M-CLL and UM-CLL groups 

Proteins differentially expressed between M-CLL and UM-CLL groups with > 2-fold change and significance level 
p-value < 0.05 (unadjusted for multiple comparisons). 

*Fold change M-CLL versus UM-CLL. 

 

 However, hierarchical clustering using these 12 proteins did not segregate M-CLL from 

UM-CLL, with one UM-CLL case (UM-CLL 87) segregating with M-CLL (Figure 6-10). 

Protein 
Symbol 

Protein Name Fold 
Change* 

p-value Location Type(s) 

PRB1/PRB2 proline rich protein BstNI subfamily 2 2.807 0.0163 Other other 
MRPL38 mitochondrial ribosomal protein L38 2.712 0.0468 Cytoplasm other 

CRIP1 cysteine rich protein 1 2.392 0.000665 Cytoplasm other 

RPS19 ribosomal protein S19 2.39 0.019 Cytoplasm other 
ARGLU1 arginine and glutamate-rich 1 2.141 0.0219 Other other 

GYPA glycophorin A (MNS blood group) -2.036 0.0333 Plasma 
Membrane 

other 

EPB41 erythrocyte membrane protein band 
4.1 

-2.244 0.0187 Plasma 
Membrane 

other 

ALDH1A1 aldehyde dehydrogenase 1 family 
member A1 

-2.262 0.0454 Cytoplasm enzyme 

PMVK phosphomevalonate kinase -2.281 0.0468 Cytoplasm kinase 
HBD hemoglobin subunit delta -2.319 0.0171 Other transporter 

ITPKC inositol-trisphosphate 3-kinase C -3.065 0.00364 Cytoplasm kinase 
MAGED4 
KIAA1859 
MAGED4A 
MAGEE1; 
MAGED4B 

MAGE family member D4 -5.263 0.0294 Other other 
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Figure 6-10. Clustering analysis of proteins differentially abundant between M-CLL and UM-CLL 

Hierarchical clustering analysis using 12 proteins differentially expressed between M-CLL and UM-CLL groups 
(expression > 2-fold change and significance level p-value < 0.05 unadjusted for multiple comparisons). UM-CLL 
87 clustered with M-CLL samples. 

 

6.4. DISCUSSION 

 The presence or absence of somatic mutations in IGH genes has suggested that UM-

CLL originates from a pre-germinal centre precursor and M-CLL B cells from post-germinal 

centre B cells (Damle et al., 1999, Fais et al., 1998, Hamblin et al., 1999). However, studies of 

sporadic M-CLL and UM-CLL using gene expression profiling have not found strong evidence 

of these subtypes arising from separate cells of origin (Klein et al., 2001, Rosenwald et al., 

2001, Ferreira et al., 2014). Cell surface marker and telomere length studies suggest a common 
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mechanism of transformation or cell origin, which is likely to be within the germinal centre 

(Chiorazzi and Ferrarini, 2003, Stevenson and Caligaris-Cappio, 2004, Damle et al., 2004, Herve 

et al., 2005), and membrane expression of markers of cell activation emphasizes the 

importance of BCR signalling and the possibility of a foreign or self-antigen promoting 

malignant transformation (Herve et al., 2005). In the study reported in this Chapter, gene and 

protein expression were studied in a family segregating CLL, which was proposed to partially 

control for background DNA sequence variation and increase the likelihood of identifying 

epigenetic and environmental modifiers in M-CLL versus UM-CLL. Furthermore, it was 

proposed that mRNAs differentially expressed based on IGH mutation status alone may be 

identified by normalising gene mRNA expression in familial M-CLL and UM-CLL cases to family 

controls. It was proposed that mRNAs differentially expressed in M-CLL and UM-CLL, would 

provide evidence of the cell of origin for both CLL groups. 

 Using unsupervised hierarchical clustering, 582 mRNAs were differentially expressed 

between controls, and M-CLL and UM-CLL cases containing F-CLL and S-CLL. (FDR p-value 

<0.05). Although controls and M-CLL cases clustered, one UM-CLL (F-CLL IV-02) failed to 

segregate with other cases. To identify mRNAs that were differentially expressed based on 

IGH mutation status alone, mRNAs in M-CLL and UM-CLL cases were compared after both 

groups were normalized to controls (t-test p-value < 0.05). Compared to M-CLL, 10 mRNAs 

were upregulated in UM-CLL (CD69, FOSB, CLEC2B, CERS6, SNORD3C, L3MBTL4, ME2, HIGD1C, 

C16orf54 and RGCC); while 9 were downregulated (ADAM29, SFMBT2, LINC01224, SDK2, KLF3 

and NRIP1). Of these mRNAs, NRIP1 and CERS6 segregated M-CLL, UM-CLL cases and controls 

(FDR < 0.05). 

 In agreement with previous reports, NRIP1 was differentially expressed in M-CLL 

compared to UM-CLL. NRIP1 encodes the nuclear receptor-interacting protein-1, which has 
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been shown to interact with a large number of nuclear receptors and transcription factors that 

regulate a wide range of biological process (Augereau et al., 2006). In CLL, the expression of 

NRIP1 has been associated with favourable prognosis and longer overall survival (Herold et 

al., 2011, Lapierre et al., 2015). Furthermore, NRIP1 expression has been found to be 

upregulated in M-CLL compared to UM-CLL (Oppezzo et al., 2005, Vasconcelos et al., 2005, 

Cornet et al., 2015).   

 Ceramide synthase 6 (CerS6) is a member of the ceramide synthase proteins family 

which play an important role in sphingolipid biosynthesis (Mullen et al., 2012), and have been 

implicated in the regulating cancer-cell growth, differentiation and apoptosis (Ogretmen and 

Hannun, 2004). It has been reported that CerS6 may have a role in autoimmune disease 

(Schiffmann et al., 2012), regulation of apoptosis in human head and neck squamous cell 

carcinoma (Senkal et al., 2010), and act as a potential transcriptional target of p53 (Fekry et 

al., 2016). The association of higher CERS6 expression in UM-CLL reported in this Chapter is 

novel, and suggests CerS6 may be involved in the progression of CLL via its effects on p53 

(Fekry et al., 2016) and sphingolipid metabolism-mediated resistance to apoptosis (Schwamb 

et al., 2012).   

 CD69 has previously been identified as a surrogate marker for IGH mutation status, 

with expression higher in UM-CLL patients compared to M-CLL cases (Olsson et al., 2008, Del 

Poeta et al., 2012), whereas ADAM29 expression has been associated with higher expression 

in M-CLL (Oppezzo et al., 2005, Vasconcelos et al., 2005, Cornet et al., 2015). ADAM29 encodes 

the disintegrin and metalloproteinase domain-containing protein 29, which belongs to a 

family of a membrane and secreted glycoproteins that mediate cell-cell and cell-matrix 

interactions (Zhao et al., 2016). This protein has been implicated in many physiological 

processes, and its expression has been associated with cancer development and progression 
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(Zhao et al., 2016). High ADAM29 expression has been associated with Binet stage A CLL and 

may predict a long treatment free interval in this subset of patients (Nückel et al., 2006).  

 To identify mRNAs differentially expressed based on IGH mutation status and partially 

controlled for variations in germline DNA sequence, mRNAs were compared between M-CLL 

and UM-CLL in familial cases that had been normalised to familial controls.  There were 84 

mRNAs differentially expressed between M-CLL and UM-CLL that did not differentiate both 

groups from controls. The majority of these genes were upregulated in UM-CLL versus M-CLL 

and showed statistical significance p < 0.05 and biological fold change > 2 in regulation (Figure 

6-7). Genes that were more frequently upregulated in M-CLL cases include KLHL14, CTLA4, 

SESN3, WFDC21P, and PMAIP1; whereas IGHD3-22, FOSB, SNORD14E, EGR1 and TNF were 

more frequently upregulated in UM-CLL case. 

 KLHL14 is a member of the klech-like (KLHL) gene family that encodes a group of 

proteins that generally consist of a BTB (BR-C, ttk and bab) or POZ (Pox virus and Zinc finger) 

domain, a BACK (BTB and C-terminal Kelch) domain, and several kelch motifs (Dhanoa et al., 

2013). Members of the KLHL family have previously been associated with cancer and 

mutations in KLHL6, which is involved in the formation of the germinal centre during B cell 

maturation, have been identified in B-CLL patients (Kroll et al., 2005). KLHL6 has also been 

identified as a target of somatic hypermutation in mutated CLL patients (Puente et al., 2011). 

KLHL14 is over-expressed in B lymphocytes (http://www.proteomicsdb.org), however the 

finding reported in the present study is the first report of an association between KLHL14 and 

M-CLL.  

 The cytotoxic T-lymphocyte antigen 4 (CTLA4) was also overexpressed in M-CLL cases. 

CTLA-4 acts as a negative regulator of T cell activation by interacting with B7 ligands 

http://www.proteomicsdb.org/
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(CD80/CD86) on antigen presenting cells to inhibit cell proliferation, cytokines production, and 

cell cycle progression (Ciszak et al., 2016b). It has been shown that higher expression of CTLA-

4 is associated with a good prognosis and lower expression with a shorter time to treatment 

and poor prognosis (Joshi et al., 2007, Ciszak et al., 2016a). Furthermore, downregulation of 

CTLA4 in vitro led to a significant increase in the proliferation and survival of CLL cells (Mittal 

et al., 2013). 

 In addition to IGH mutation status, IGH gene usage further refines prognosis. One of 

the most frequently used genes is IGHV4-34, which is associated with M-CLL and an indolent 

course (Murray et al., 2008, Xochelli et al., 2017). Although IGHV4-34 was not found to be 

over-represented in the M-CLL cases in this present study, in agreement with previous reports, 

IGHD3-22 was more frequent in M-CLL compared to UM-CLL (Xochelli et al., 2017). 

 The present study found tumour necrosis factor (TNF) was overexpressed in UM-CLL. 

TNF is a multifunctional cytokine that plays important roles in several cellular process 

including cell proliferation, differentiation and apoptosis (Wang and Lin, 2008). It has been 

reported that TNF has an essential role in the activation, growth and apoptosis of malignant 

lymphocytes in B-CLL cells. A higher concentration of plasma TNF in patients with B-CLL has 

been associated with more aggressive disease, suggesting a role for TNF in B-CLL progression 

(Ferrajoli et al., 2002, Bojarska-Junak et al., 2008). 

 Compared to mRNA studies, protein expression studies have found higher percentages 

of differentially expressed proteins in M-CLL and UM-CLL (Eagle et al., 2015, Perrot et al., 2011, 

Huang et al., 2016), however these studies have not normalized protein abundance in CLL 

cases to control samples, or have been enriched with familial cases. In the study reported in 

this Chapter, MS analysis identified 5100 proteins which were normalized to the 6 control 
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samples. Twelve proteins were differentially expressed between M-CLL and UM-CLL cases 

normalized to controls, however at an individual case level, these proteins did not completely 

segregate M-CLL from UM-CLL, with one UM-CLL case segregating with M-CLL cases. Of the 

12 differentially expressed proteins, 7 were under-expressed in M-CLL compared to UM-CLL 

(MAGED4, ITPKC, HBD, PMVK, ALDH1A1, EPB41 and GYPA), whilst 5 were overexpressed in M-

CLL compared to UM-CLL (PRB1/PRB2, MRPL38, CRIP1, RPS19 and ARGLU1). One of these 

proteins, HBD (hemoglobin subunit delta) have been previously reported to be differentially 

expressed between M-CLL and UM-CLL cases (Eagle et al., 2015, Barnidge et al., 2005), and 2 

proteins (MRPL38 and CRIP1) have been associated with other malignancies.  

 Mitochondrial ribosomal protein L38 (MRPL38) abundance was significantly higher in 

M-CLL compared to UM-CLL cases. Overexpression of MRPL38 gene, which is involved in 

protein synthesis, has been reported to be > 4-fold higher in precursor T-cell lymphoblastic 

leukemia/lymphoma (pre-T LBL) compared to normal thymus (Lin and Aplan, 2007), and may 

be a potential target for treatment of pre-T LBL. The MRPL38 protein, along with other 

mitochondrial ribosomal proteins, has also been detected in a human lymphoma B-cell line 

(Diez et al., 2015).  

 Cysteine-rich protein 1 (CRIP1) was also found at higher levels in M-CLL and UM-CLL. 

This protein and other family members interact with the actin-binding domain of α-actinin to 

directly bundle actin microfilaments (Tran et al., 2005). The expression of CRIP1 has been 

reported in several tumour types including breast, cervical, prostate, pancreatic, and 

colorectal cancers (Ma et al., 2003, Ludyga et al., 2013, Chen et al., 2003, Wang et al., 2007, 

Terris et al., 2002, Groene et al., 2006).  

 In conclusion, although this family study of mRNA and protein levels of M-CLL and UM-
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CLL reported in this Chapter was limited by low subject numbers, the results have validated 

findings from previous studies and identified a number of new genes and proteins that may 

be used for prognostication or as targets for novel therapies. 

 

  

 

 

 



 

173 
 

CHAPTER-7:  Discussion and final comments 

CHAPTER-7: DISCUSSION AND FINAL 
COMMENTS 



 

174 
 

CHAPTER-7:  Discussion and final comments 

 Genetic linkage, candidate gene and genome-wide association studies have identified 

a large number of mutations that may be associated with CLL. However, these mutations 

account for only ≈19% of familial risk for developing CLL (Law et al., 2017). Of note, GWAS 

haplotypes are enriched in regulatory elements including key B-cell transcription binding 

factor sites (Law et al., 2017). Therefore, it is likely that a proportion of genetic susceptibility 

to CLL results from mutations that affect gene regulation, including transcription factor 

binding and epigenetic modification, rather than changes in DNA sequences that affect 

protein function. To identify differences in gene regulation, the present study used high-

resolution expression profiling microarrays and mass spectrometry to identify differentially 

expressed genes and proteins in purified normal, premalignant and malignant B lymphocytes. 

To partially normalise for inter-individual variation in gene expression, a family with multiple 

cases of CLL and MBL was studied. For this family, my supervisor, A/Professor Fuller, had 

previously reported a genetic linkage scan, which showed weak linkage to 14q24.1 and 

14q31.2 (non-parametric linkage statistic = 2.24; p = 0.03). (Fuller et al., 2008). 

 The first aims of this study were to determine if family CLL/MBL (familial 

lymphoproliferative disease; F-LPD) B lymphocytes contain unique mRNA and protein profiles 

compared to B lymphocytes from unaffected family subjects and sporadic CLL (S-CLL) cases. 

The mRNA profiles between F-LPD and S-CLL groups were performed after removing genes 

that were differentially expressed as a result of genetic relatedness within the F-LPD group. 

The first hypothesis was that inherited mutations or epimutations affecting the expression of 

imprinted genes can be inferred by differences in mRNA levels in controls, F-CLL cases, F-MBL, 

and S-CLL. The 2nd hypothesis was that Identification of differentially abundant proteins 

extracted from CLL cells from F-LPD and S-CLL will provide protein profiles that can be used as 

disease signatures and will identify proteins that may act as ‘cancer drivers’ for different 



 

175 
 

CHAPTER-7:  Discussion and final comments 

subtypes of CLL.   

 The results reported in Chapter 3 show that gene expression profiles in B lymphocytes 

from F-CLL and F-MBL, combined as F-LPD cases, were unique compared to B lymphocytes 

from unaffected subjects and sporadic CLL cases. Furthermore, gene expression profiles 

segregated family normal controls and unrelated controls. To identify genes differentially 

expressed between S-CLL and F-LPD, we removed genes that were similarly expressed for 

normal familial and F-LPD. The resultant panel of differentially expressed genes were then 

studied at an individual level using semi-supervised hierarchical clustering to determine if they 

segregated normal B-lymphocytes from F-LPD and S-CLL. Twelve genes and 1 microRNA 

(miRNA) showed a >2-fold change in regulation. The cluster dendrogram segregated healthy 

controls, F-LPD, and S-CLL. The 2nd aim of this study was to use a combination of quadrupole, 

ion trap and Orbitrap mass spectrometer analysis, and unsupervised hierarchical clustering, 

to determine if F-LPD B lymphocytes contain unique protein signatures compared to B 

lymphocytes from controls and S-CLL cases. It was hypothesised that proteins extracted from 

CLL cells would identify protein profiles unique to F-LPD and S-CLL and identify proteins that 

may act as ‘cancer drivers’. Analysis of protein levels using advanced proteomic techniques 

identified 4672 proteins that after normalisation to 6 control samples, segregated F-LPD, S-

CLL and healthy control groups using unsupervised hierarchical clustering based on protein 

level patterns. Assessment for differences in normalised protein abundance between F-LPD 

and S-CLL patients was performed using independent two-sample t-tests. A total of 30 

proteins were identified with log fold changes > 2 and t-test p-values < 0.05. Of these proteins, 

22 were overexpressed, and 8 proteins were underexpressed in F-LPD compared to S-CLL. A 

number of proteins were identified that are involved in the regulation of various cellular 

processes such as cell cycle progression and cellular proliferation. These proteins were 
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localized to the cytoplasm, nucleus, plasma membrane, and extracellular space, and have 

different molecular functions such as cytokine and kinase activities, transmembrane receptors 

and transcription regulator. The identification of differentially abundant proteins for F-CLL 

versus S-CLL provide an understanding of the mechanism of transformation, new markers for 

early diagnosis, and potential targets for novel therapies.  

 The third aim was to investigate whether changes in mRNA profiles were associated 

with progression from normal B-lymphocytes through pre-malignant MBL cells to malignant 

CLL. Associations between mRNA levels and 4 genes known to be involved in either the 

development or progression of CLL were found, and 7 novel associations were identified for 

further studies. 

 The fourth aim was to study and compare gene and protein profiles in M-CLL and UM-

CLL cases using high-resolution DNA microarrays and MS. In M-CLL and UM-CLL cases, gene 

and protein expression did not segregate the two subgroups; a finding consistent with 

previous publications, suggesting that mutated and unmutated CLL have common patterns of 

expression. Although limited by small numbers, specifically the presence of only 1 UM-CLL 

case, the results presented in this thesis suggest that studying M-CLL and UM-CLL mRNA 

expression within families may be a useful strategy to identify novel candidate genes and 

further characterize the cell of origin for each subset. 

IN SUMMARY 

 Overall, the results presented in this PhD thesis identified significant candidate 

susceptibility genes using unbiased screening of mRNA and protein profiles in a family with 

multiple members affected by MBL or CLL. This family had previously been the subject of a 

genetic linkage study that had not found evidence for a single gene model of disease 
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susceptibility. Therefore, the presence of multiple affected family members, across numerous 

generations, suggested genes may become dysregulated as a result of inherited mutations in 

gene regulatory regions or epigenetic changes. Significantly, it was found that the same 

mRNAs and proteins were dysregulated to differing degrees in S-CLL, suggesting that studies 

of other F-CLL families may identify genes that contribute to the development of S-CLL.  

 
FUTURE DIRECTIONS 

 Identifying dysregulated genes and proteins in F-CLL, S-CLL, MBL, and M-CLL and UM-

CLL is important for further studies that will study early preventive interventions and develop 

targeted therapies. In this study it was hypothesised that family CLL/MBL (familial 

lymphoproliferative disease; F-LPD) may contain unique mRNA and/or protein profiles 

compared to B lymphocytes from unaffected family subjects and sporadic CLL (S-CLL) cases. It 

was found that mRNA and protein profiles clearly segregated clonal B lymphocytes in S-CLL 

from clonal B lymphocytes in F-MBL and F-CLL (combined as familial-lymphoproliferative 

disease; F-LPD). These profiles were distinct from those found in normal B lymphocytes in 

unaffected family members and unrelated controls. Furthermore, increasing upregulation or 

downregulation of both F-LPD specific genes and genes common to S-CLL occurred in 

association with progression from normal familial B lymphocytes through F-MBL to F-CLL. 

Thus, in the future it would be important to explore the roles of identified candidate genes 

and proteins in CLL development. Furthermore, it is planned to study the family presented in 

this study and other F-CLL families using chromatin immunoprecipitation to identify 

differential gene expression that results from transcriptional regulatory mechanisms and 

chromatin modifications. 
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 This study has developed an extensive database and understanding of F-CLL and S-CLL 

mRNA profiles and proteomes, and gene regulation associated with M-CLL and UM-CLL and 

progression of MBL to CLL. However, there were limitations in this study which should be 

considered when designing future experiments. One common limitation for familial studies is 

the small size of families with multiple MBL and CLL cases. A solution is to screen other CLL 

families using a combination of mRNA and protein profiling, which would potentially identify 

additional candidate genes associated with the pathogenesis of S-CLL and F-CLL.  Another 

limitation is that very low amounts of B cells from healthy controls and from early diagnosis B 

lymphocyte clones is a critical problem for proteomics.   

 One of our next aims is to study large numbers of well-characterized MBL and CLL cases 

using the same approaches in order to better understand the role of expressed genes and 

proteins in the pathogenesis of B-CLL. The data generated by IPA could be further analysed in 

a large number of samples to generate more information about the biological processes of 

the inherited dysregulation of these genes and how they contribute to driving malignant 

progression of F-LPD and S-CLL. 
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9.1. List of CLL candidate gene association studies 

Table 9-1. List of CLL candidate gene association studies 

Reference Genes NHL (n) CLL (n) Control (n) No. 

markers 

Notes 

Demeter et al. 

(1997)(Demeter et al., 

1997) 

TNF,LTA  73 117 2 Association: TNFA 

promoter SNP and CLL; 

p=0.006 

Wihlborg et al. 

(1999)(Wihlborg et al., 

1999) 

TNF  49 51 1 No association: TNFA 

promoter SNP and CLL 

Mainou-Fowler et al. 

(2000)(Mainou-

Fowler et al., 2000) 

TNF, LTA, LTB  76 40 9 No association: high TNF-

alpha and TNF-beta 

producing alleles and CLL 

Au et al. (2006)(Au et 

al., 2189) 

TNF  92 98 1 No association: TNFA 

promoter SNP and CLL in 

females 

Bogunia-Kubik et al. 

(2006)(Bogunia-Kubik 

et al., 2006) 

TNF  61 180 1 No association: TNFA 

promoter SNP and CLL 

Lemos et al 

(1999)(Lemos et al., 

1999) 

CYP2D6, GSTM1, 

NAT2 

71 13 128 3 Association: CYP2D6*4 

combined CLL, ALL, CML, 

AML group; p=0.008 

Auer et al (2001)(Auer 

et al., 2001) 

TNR/11q22-q23  137 97  Association: TNR CCG-

repeat length; p=0.036 

Klinkov et al 

(2004)(Klinkov et al., 

2004) 

TNR/11q22-q23  82 146  Association: TNR CCG-

repeat length; p=0.02 

Machulla et al 

(2001)(Machulla et al., 

2001) 

HLA-

DR4:DR53:DQ8 

 101 157  Association: HLA-

DR4*0103 ; p<0.0025 



 

218 
 

CHAPTER-9:  APPENDICES 

Montes-Ares et al 

(2006)(Montes-Ares 

et al., 2006) 

HLA-C  98 194  Association: HLA-Cw*16; 

P=0.0012 

Yuille et al 

(2002)(Yuille et al., 

2002) 

GSTM1, GSTT1, 

GSTP1 

 138 280 3 Association: GSTM1, 

GSTT1 null alleles, GSTP1-

Ile; p=0.04 

Wiley et al 

(2002)(Wiley et al., 

2002) 

P2RX7  36 46 1 Association: P2RX7 

A1513C SNP; p=0.08 

Thunberg et al 

(2002)(Thunberg et 

al., 2002) 

P2RX7  170 200 1 Association: P2RX7 

A1513C SNP; p=0.03 

Starczynski et al 

(2003)(Starczynski et 

al., 2003) 

P2RX7  121 95 1 No association:  P2RX7 

A1513C SNP 

Zhang et al 

(2003)(Zhang et al., 

2003) 

P2RX7  144 348 1 No association: P2RX7 

A1513C SNP 

Nuckel et al 

(2004)(Nuckel et al., 

2004) 

P2RX7  111 97 1 No association: P2RX7 

A1513C SNP 

Sellick et al 

(2004)(Sellick et al., 

2004) 

P2RX7  424 428 1 No association: P2RX7 

A1513C SNP 

Cabrini et al 

(2005)(Cabrini et al., 

2005) 

P2RX7  62 100 5 No association: P2RX7 

nsSNPs 

Rudd et al 

(2004)(Rudd et al., 

2004) 

MTHFR  832 886 2 No association: SNPs 

reducing MTHFR function 

Nuckel et al 

(2004)(Nuckel et al., 

MTHFR  111 92 2 No association: SNPs 
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1816) reducing MTHFR function 

Guzowski et al 

(2005)(Guzowski et 

al., 2005) 

IL-10  17 25 3 Association : Promoter 

SNPs increasing IL-10 

Starczynski et al 

(2005)(Starczynski et 

al., 2005) 

BAX  203 135 1 No association: 

Promoter SNP frequency 

in cases and controls. 

Association with shorter 

survival 

Skogsberg et al 

(2006)(Skogsberg et 

al., 2006) 

BAX  463 207 1 No association: 

Promoter SNP in cases and 

controls 

Nuckel et al 

(2006)(Nuckel et al., 

2006) 

BAX  112 95 1 No association: 

Promoter SNP in cases and 

controls 

Perez-Chacon et al 

(2005)(Perez-Chacon 

et al., 2005) 

CD5  134 102 1 Association : Promoter 

Microsatellite CA, p=0.005 

Zhang et al 

(2005)(Zhang et al., 

2005) 

BCL-6 461 59 535 1 Association: mRNA 

splicing SNP 

Sellick et al 

(2005)(Sellick et al., 

2005a) 

DOK1  140 140  No association: intragenic 

mutation screening 

Calin et al (2005)(Calin 

et al., 2005) 

ARLTS1  17 475 5 Association: 

Downregulation by 

truncating SNP or 

promoter 

hypermethylation 

Sellick et al 

(2005)(Sellick et al., 

ARLTS1  413 471 6 No association: 
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2006b) Truncating SNPs 

Ng et al (2007)(Ng et 

al., 2007a) 

ARLTS1  31 100 8 No association: 

Trunc. SNPs nsSNPs 

Chiu et al. (2005)(Chiu 

et al., 2005) 

NAT1 and NAT2, 

GSTM1, GSTT1, 

GSTP1 

389  535 8 NAT1 slow genotype 

associated with slightly 

increased risk in women 

[OR = 1.4; 95% confidence 

interval (CI) = 0.9-2.3], but 

not in men 

Morton et al. 

(2006)(Morton et al., 

2006) 

NAT1 and NAT2 1136  922 10 Association: 

NAT1*10*/10* (OR = 1.6, 

95% CI = 1.04-2.46) 

Frey et al. (2006)(Frey 

et al., 2006) 

GNAS  144  1 GNAS1 T393C status 

independent prognostic 

marker in B-CLL. 

Jamroziak et al. 

(2006)(Jamroziak et 

al., 2006) 

ABCB1  110 201 1 3435CT and 3435TT 

associated with B-CLL, 

(OR=1.8, 95% CI = 1.1-3.0) 

Kochethu et al. 

(2006)(Kochethu et 

al., 2006) 

TP53  200  2 Intron 6 SNP A2/A2 

genotype associated with 

early stage disease, CD38 

negativity and a longer 

time to first treatment 

Pemberton et al. 

(2006)(Pemberton et 

al., 2006) 

SDF-1      

Riemann et al. 

(2006)(Riemann et al., 

2006) 

NFKB1  72 307 1 Promoter SNP: no 

association 

Wolf et al. 

(2006)(Wolf et al., 

TNFRS10A 32 101 137 1 A683C TNFRSF10A is more 

frequent in CLL, MCL 
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2006) 

Lan et al. (2007)(Lan 

et al., 2009) 

CASP1, CASP8, 

CASP9 

1946  1808 12 CASP8 rs6736233 (OR (CG) 

= 1.21; OR(CC) = 2.13; P 

trend = .011); CASP9 

rs4661636 (OR(CT) = 0.89; 

OR(TT) = 0.77; P trend = 

.011); and CASP1 

rs1785882 (OR(AT) = 1.12; 

OR(AA) = 1.30; P trend = 

.0054) were significantly 

associated with NHL risk 

Nuckel et al. 

(2007)(Nuckel et al., 

2007) 

BCL-2  123 120 1 -938C>A: no association 

Majid et al. 

(2008)(Majid et al., 

2008) 

BCL-2  276 100 1 No association:  

-938C>A SNP 

Auer et al. 

(2007)(Auer et al., 

2007) 

HD, ATXN1, 

ATXN3, FRA11B, 

FRA16A 

 Sporadic 

140 

Familial 

68 

 

90 

 

32 

10 Association: CAG and CCG-

repeat loci in sporadic (HD, 

ATXN1, ATXN3, FRA11B) 

and familial (FRA16A, 

ATXN1) cases 

Broderick et al. 

(2008)(Broderick et 

al., 2008) 

SMAD7  1029 3923 1 No association: SNP 

rs12953717 

Sellick et al. 

(2008)(Sellick et al., 

2008a) 

RAD51, 

RAD51AP1, 

RAD51B, RAD51C, 

RAD51D, RAD52, 

RAD54L 

 75 188 Mutation 

screening 

after PCR 

and DNA 

sequencing 

No pathogenic mutations 

identified 

Sellick et al. 

(2008)(Sellick et al., 

8q24 locus  984 4831 1 No association: rs6983267 

SNP 
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2008b) 

Suwalska et al. 

(2008)(Suwalska et al., 

2008) 

CTLA-4, CD28, 

ICOS 

 173 336 5 Association: CTLA-4 –

319C>T p=0.003; CD28 

17+3T>C p=0.007; ICOS 

1554+4(GT)n p=0.009 

Begleiter et al. 

(2009)(Begleiter et al., 

2009) 

NQO1  323 299 1 No association: NQO1*2 

null genotype  

Crowther et al. 

(2009)(Crowther-

Swanepoel et al., 

2009) 

CXCR4  188 

(familial) 

1058 

(sporadic) 

213 

(familial) 

1807 

(sporadic) 

1 SNP 

Sequencing 

and 

mutation 

screening 

No association 

Jamroziak et al. 

(2009)(Jamroziak et 

al., 2009) 

CD38  252 (study 

A) 

208 (study 

B) 

249 (study 

A) 

254 (study 

B) 

2 Association: rs6449182 

(184C>G), study A, 

p=6x10-12 ;B, p=3x10-13; 

rs1800561 (418C>T), study 

A, p=0.014 ; B, p=0.03 

Novak et al. 

(2009)(Novak et al., 

2009) 

TNFSF13B 441  475  No association with 

TNFSF13B promoter SNP 
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9.2. List of Disease pathway and multiple gene association studies in CLL 

and NHL 

Table 9-2. Disease pathway and multiple gene association studies in CLL and NHL 

Reference Genes NHL (n) CLL (n) Control 

(n) 

No. markers Notes 

De Roos et al. 

(2006)(De 

Roos et al., 

2006) 

Metabolic 

gene variants 

1172 148 982 15 SNPs in 11 

genes 

PON1 L55M AA allele, associated with 

increased risk of non-Hodgkin's 

lymphoma (variant homozygote OR, 

1.36; 95% CI, 0.96-1.95) 

Hill et al. 

(2006)(Hill et 

al., 2006) 

DNA repair 

and related 

genes 

1172 148 982 34 SNPs in 19 

genes 

Association with RAG1 820 R/R (odds 

ratio [OR] = 2.7; 95% confidence interval 

[CI] = 1.4 to 5.0) c.f. Lys/Lys genotype. 

Less likely to have the LIG4 (DNA ligase 

IV) 9 Ile/Ile (OR = 0.5; 95% CI = 0.3 to 0.9) 

than T/T genotype (P trend = .03) in the 

non-homologous end joining 

(NHEJ)/V(D)J pathway. 

Shen et al. 

(2006)(Shen 

et al., 2006) 

DNA repair 

genes 

461 59 535 32 SNPs in 18 

genes 

ERCC5 Asp1104His associated with 

increased risk of NHL  (OR: 1.46; 95% CI: 

1.13-1.88; P=0.004), DLBCL (OR: 1.44; 

95% CI: 0.99-2.09; P=0.058), and also T 

cell lymphoma. WRN Cys1367Arg 

associated with decreased risk of NHL 

(OR: 0.71; 95% CI: 0.56-0.91; P=0.007) 

Nieters et al. 

(2006)(Nieter

s et al., 2006) 

Toll-like 

receptor, IL-

10, IL10RA 

710 104 710 11 SNPs in 7 

genes 

Association: TLR2 16933T>A, decreases 

risk (OR=0.61) 

Wang et al. 

(2006)(Wang 

et al., 2006b) 

Cell cycle 

genes 

1172 148 982 12 SNPs in 7 

genes 

CCND1 splice variant G870A (rs603965) 

increased NHL risk (OR(AA) = 1.4, 95% CI 

= 1.1-1.8, P-trend = 0.021) 

Wang et al. Proinflammat 1172 148 982 57 SNPs in 36 Haplotypes in TNF-α and lymphotoxin-α 



 

224 
 

CHAPTER-9:  APPENDICES 

(2006)(Wang 

et al., 2006a) 

ory and 

immunoregul

atory 

genes (rs1800629, rs361525, rs1799724, 

rs909253, and rs2239704), increased 

non-Hodgkin lymphoma risk (OR, 1.31; 

95% CI, 1.06-1.63; P = 0.01). 

Wang et al. 

(2006)(Wang 

et al., 2006c) 

Oxidative 

stress 

pathway 

1172 148 982 13 SNPs in 10 

genes 

NOS2A Ser608Leu, rs2297518) Leu/Leu 

increased 2-fold risk for NHL (OR=2.2, 

95% CI=1.1-4.4) (referent=Ser/Ser and 

Ser/Leu) 

Lan et al. 

(2007)(Lan et 

al., 2007) 

Oxidative 

stress 

pathway 

461 59 535 14 SNPs in 10 

genes 

1.7-fold (95% CI = 1.2-2.4, P = 0.0047) 

increased risk of NHL for homozygous 

AKR1A1 (IVS5 + 282T > C) SNP. 

Homozygous for the CYBA (Ex4 + 11C > 

T) SNP: 1.6-fold (95% CI = 1.1-2.4, P = 

0.019) increased risk of NHL 

Lim et al. 

(2007)(Lim et 

al., 2007) 

Folate and 1 

carbon 

metabolism 

1172 147 982 30 SNPs in 10 

genes 

Decreased risk of NHL with 

BHMTEx8+453A>T and increased risk 

with CBS Ex13+41C>T, FPGS Ex15-

263T>C, and SHMT1 Ex12+138C>T and 

Ex12+236C>T 

Cerhan et al. 

(2007)(Cerha

n et al., 2007) 

Inflammation 

and immune  

458 126 484 7670 SNPs in 

1450 genes 

ITGB3 L59P (OR = 0.66; 95% CI 0.52-

0.85), TLR6 V427A (OR = 5.20; CI 1.77-

15.3), SELPLG M264V (OR = 3.20; CI 

1.48-6.91), UNC84B G671S (OR = 1.50; 

CI 1.12-2.00), B3GNT3 H328R (OR = 

0.74; CI 0.59-0.93), and BAT2 V1883L 

(OR = 0.64; CI 0.45-0.90) 

Enjuanes et 

al. 

(2008)(Enjua

nes et al., 

2008)  

Apoptosis and 

immunoregul

ation genes 

 692 738 768 Association with variants in: CCNH, 

APAF1, IL16, CASP8, NOS2A, CCR7, 

TNFRSF13B, CASO3, LTA/TNF, BAX, 

BCL2, CXCL12, CASP10, CCL2, BAK1, 

1L1A 

Ennas et al. 

(2008)(Ennas 

Inflammatory 

cytokines 

 40 113 13 SNPs in 9 

genes 

ILIB-511T protective; IL6-174C and IL1B-

511C associated with increased risk 
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et al., 2008) 

Gra et al. 

(2008)(Gra et 

al., 2008) 

Xenobiotic-

metabolizing 

enzymes 

76 83 177 18 SNPs in 10 

genes 

Association: CYP1A1, GSTM1, CYP2C9 

Ganster et al. 

(2009(Ganste

r et al., 

2009)) 

DNA repair 

genes 

 461 461 7 SNPs in 5 

genes 

Association: 

ERCC2, XRCC1 

Liang et al. 

(2009)(Liang 

et al., 2009) 

Apoptosis, 

DNA repair, 

immune, 

oxidative 

stress 

pathways 

  107 1536 SNPs in 

152 genes 

Association: IL 10 promoter SNP 

rs1800890/-3575T>A; TNFSF10 SNPs 

Rudd et al. 

(2006)(Rudd 

et al., 2006) 

Multiple 

candidate 

cancer genes 

 992 2707 1467 nsSNPs in 

865 genes 

Associatition: ATM F858L (OR=2.28, 

P<0.0001); ATM P1054R (OR=1.68, 

P=0.006); CHEK2 I157T (OR=14.83, 

P=0.0008); BRCA2 N372H (OR=1.45, 

P=0.0032); BUB1B Q349R (OR=1.42, 

P=0.0038) 
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9.3. FLOW CYTOMETRY RESULTS     

Purity check result 

 As described early in cell purification 2.2. All purified cells were extracted from 

heparinised blood by adding RossetteSep cocktail and centrifugation on Ficoll-Histopaque. 

Unpurified PBMC’s were isolated from whole blood at the same time by the same procedure 

described above except that the RossetteSep antibody cocktail was not used.  

 To check the efficiency of the separation and the purity of the enriched B cells by flow 

cytometry, a minimum concentration of 2 x 105 cells was re-suspended in 100 µl FACS buffer 

and stained with fluorescent monoclonal antibodies (See flow cytometry section 2.3).  

 The result indicated that the purity of the enriched B-CLL cells based on CD20 and CD5 

against CD3 were increased > 95% in the RosetteSep tube compared to the PBMC tube for the 

same CLL sample. The average purity of CD20 against CD3 was raised from 83 % to 96.60%, 

while the purity percentage of CD5/CD3 reached a purity of 98%. The percentage of CD20/CD5 

was 97.27% in the RossetteSep tube, compared to 84.65% in the PBMC tube. These results 

showed the RosetteSep antibody cocktail purification kit using negative selection technique 

was an effective method to isolate B-CLL cells with high purity. An example shown in (Figure 

9-1) 

 



 

227 
 

CHAPTER-9:  APPENDICES 

 

Figure 9-1. Flow cytometer analysis showing percentage B-CLL cells following RosetteSep purification 

The analysed PBMC’s tubes of CLL patients (Top quadrants) showed an average of 84% B-CLL cells, whereas the lower quadrants exhibited an average of 97% pure B-CLL cells 
after incubating the same sample with RosetteSep antibody cocktail. In addition, the average percentage of CD3 was reduced from 9% to 0.0% after RosetteSep antibody cocktail.  
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Screening for B cell lymphocytosis 

 For B cell lymphocytosis screening, peripheral blood samples were collected from affected and unaffected family members for analysis. Five 

antibody cocktails were prepared to stain 100 µL of whole blood as described in section 2.3. 

 Flow cytometry gating was conducted as described previously in section 2.3.2.2.2, using a Becton Dickinson FACSVerse and for each test, 

50,000 cells were analysed using BD FACSuite software to identify a monoclonal B-cell lymphocytosis (MBL). Using this protocol, four subjects (III-

10, IV-13, IV-17 & IV-18) showed positive expression for surface antigens CD19, CD5, CD23 and low CD20 but not CD10, CD22, CD79b or surface 

IgM. (Figure 9-2). The expression of light chains (kappa or lambda) could not be determined in all F-MBL cases due to low surface expression.  

 To evaluate the absolute lymphocytosis, full blood counts were performed for all samples at the Haematology laboratory at Nepean Hospital, 

Penrith, New South Wales, Australia. Patients with MBL showed normal blood cell count with B cell lymphocytosis below 5.0 x109/L and did not met 

the required numerical B cell cut-off to classify them as CLL. The remaining 15 cases were negative for monoclonal B-cell population and had normal 

blood cell counts. 
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Figure 9-2.  Flow cytometry gating strategy for detection of monoclonal B lymphocytosis 

 (A)  First, the lymphocyte region for subset analysis was gated using forward light scatter (FSC) vs. side scatter (SSC). (B) Lymphocyte populations were then analysed using SSC 
vs. CD45 to distinguish lymphocytes from other cells. Lymphocytes were defined as CD45 bright with low SSC, and further gating on this population was performed to identify B- 
and T-lymphocytes and NK cells. (C) Shows B-lymphocytes were identified in the 2nd cocktail tube by analysing CD19 vs. CD45, and (D) a gate has been applied (P8) to evaluate 
CD19 vs. CD3. B-lymphocyte populations were studied in other cocktail tubes by gating the lymphocyte region using FSC vs. SSC, then B-CLL and MBL populations were identified 
using CD20 vs.CD5 and in these populations the expression of CD10, CD22, CD23, CD38, CD79b, IgM and kappa and lambda light chains were evaluated. (E) Shows the same 
patient expressed CD5/CD20 positive MBL cells within the lymphocyte population in cocktail 3. (F and G) These MBL cells show expressions of CD23.  
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9.4. FISH analysis in CLL and MBL cells 

 

Figure 9-3. FISH analysis in CLL and MBL cells 

The FISH analysis in CLL and MBL cells showing examples of normal and abnormal signal patterns for DELU (13q14), CEP12 (chromosome 12 centromere),  ATM and TP53. Red 
signals (13q14 and TP53) are indicated as R and Green signals (chromosome 12 centromere and ATM) as G. (A) shows an example of the normal signal pattern (2R2G) for the 
13q14 and centromere of chromosome 12. (B and C) show normal signal patterns (2R2G) for TP53 and ATM. (D and E) show examples of abnormal signal patterns (1R2G) for del 
(13q14). (F and G) show abnormal signal patterns 1R2G for TP53 deletion.  
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9.5. Purity of total RNA in PBMCs 

 

Figure 9-4. Purity of total RNA in PBMCs 

UV spectrophotometer analysis shows the quantity and purity of total RNA in PBMCs. (A) shows the absorbance ratio at 260/280nm of RNA extracted by spin column method 
(Bioline) vs TRI kit. (B) The average yield of total RNA by Bioline kit was higher than the obtained yield with TRI kit. (C) Indicates that the concentrations of RNA µg/µL were also 
higher in samples using the spin column (Bioline) compared to those obtained with the TRI protocol.  
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9.6. RNA concentrations (ng/µL) 

 

Figure 9-5. RNA concentrations (ng/µL) 

9.7. A260/A280 ratio Results 

 

Figure 9-6. A260/A280 ratio Results 

All samples in a range above 1.8 at A260/A280 ratio and indicated an acceptable RNA purity  
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9.8. RNA quality Assessment 

 

Figure 9-7. RNA quality Assessment 

 

All RNA samples were run on an Agilent 2100 bioanalyzer to determine the ratio of two ribosomal RNAs (28S/18S) 
and the RNA Integrity Number (RIN). The above figures display the results of all RNA samples. Gel images from 
the bioanalyzer are shown in the upper figure with the intensity of 28S and 18S rRNA bands clearly indicated. 
The bottom figure shows the Agilent 2100 bioanalyzer electropherogram on the left side and gel image on the 
right side of isolated total RNA from F-CLL91 (IV-02). The wavelength of the fluorescence unit (FU) is plotted on 
the Y-axis, while the size of fragments [nucleotide (nt)] is displayed on the X axis. The resulting electropherogram 
shows two clear peaks (18S and 28S) and the RNA gel shows two bands, representing the 28S and 18S rRNAs. 
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9.9. Electropherogram summary results of total RNA 

 

Figure 9-8. Electropherogram summary results of total RNA from all samples included in microarray assay 

The 28S and 18S RNA peaks of all submitted RNA samples, showing clearly defined 18S and 28S peaks. All analysed RNA samples had a 28S/18S rRNA ratio > 2 and RIN > 7 and 
were included in downstream applications.  
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9.10. Monitoring sample quality 

 

Figure 9-9. Monitoring sample quality 

The QC metrics can identify outlier arrays within the data set. To begin the examination, a graph of the most 
important QC metrics was generated.  The pos_vs_neg_auc (purple bars) is the area under the curve (AUC) for a 
receiver operating characteristic (ROC) plot comparing signal values for the positive controls to the negative 
controls. Typical values range between 0.8 and 0.9, with a value of 1.0 being perfect. 
all_probeset_mad_residual_mean (red bars) is the mean of the median absolute deviation of the residuals over 
the data set. Ideally, this value should be low.  all_probeset_rle_mean (grey bars) is the mean over all probesets 
analyzed of the absolute log expression value relative to all other arrays. This metric should be consistently low, 
reflecting the low biological variability of the replicates.  

All arrays passed Affymetrix recommended QC metrics; pos_vs_neg_auc > 0.8, 
all_probeset_mad_residual_mean and all_probeset_rle_mean are low. 
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9.11. Monitoring signal intensity distributions 

 

Figure 9-10. Signal intensity histogram distributions 

Signal intensity histogram distributions show a normal pattern for each of 21 samples. Signal distributions are 
tightly clustered and have the same signal distributions. 
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9.12.  The distributions of probe set signals before and after normalization 

 

Figure 9-11. Box plots for probe set signal values distributions before and after normalization 

 

Box plots for signal distributions before (upper) and after normalisation (lower) identified any outlier samples. 
The upper Log probe cell intensity box plots show the probe intensity values for each array. Minor differences in 
the distributions are expected before normalization. The lower box shows normalised Log Expression signal 
probe set signal values. Both Box plots display satisfactory signal distributions with no outlier samples identified. 
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9.13. The relative log expression values before and after normalization 

 

Figure 9-12. Box plots for the relative log expression values before and after normalization 

The relative Log Expression (RLE) signal shows the differences of the intensity signals of each probe to the median 
probe intensity across all arrays in the study. Box plots of RLE before (upper) and after normalisation (lower), for 
all samples these ratios are ≈ zero and consistently low after normalisation. Therefore, none of these arrays are 
flagged as outliers. 
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9.14. Monitoring hybridization efficiency 

 

Figure 9-13. Monitoring hybridization efficiency 

The efficiency of hybridization steps was determined by the correct rank order of the bacterial spikes positive 
controls. BioB<BioC<BioD<Cre is observed in the correct order of signal intensities in all samples. These indicate 
that the hybridization of all samples on gene expression arrays was clearly efficient.   

9.15. Monitoring labelling efficiency 

 

Figure 9-14. Monitoring labelling efficiency 

The efficiency of labelling steps was determined by the correct rank order of the Poly-A spike controls Lys < Phe 
< Thr < Dap. [F-CLL91 (IV-2)] not fall within the expected order for the poly-A spikes (Lys and Phe). 
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