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Abstract 

Respiratory triggered four dimensional cone-beam computed tomography (RT 4D CBCT) is a novel 

technique that uses a patient’s respiratory signal to drive the image acquisition with the goal of imaging 

dose reduction without degrading image quality. This work investigates image quality and dose using 

patient-measured respiratory signals for RT 4D CBCT simulations. Studies were performed that simulate 

a 4D CBCT image acquisition using both the novel RT 4D CBCT  technique  and  a  conventional  4D  

CBCT  technique. A set containing 111 free breathing lung cancer patient respiratory signal  files was 

used to create 111 pairs of RT 4D CBCT and conventional 4D CBCT image sets from realistic 

simulations of a 4D CBCT system using a Rando phantom and the digital phantom,  XCAT.  Each  of  

these  image sets were compared to a ground truth dataset from which a mean absolute pixel difference 

(MAPD) metric was calculated to quantify the degradation  of image quality. The number of projections 

used in each simulation was counted and was assumed as a surrogate for imaging dose. Based on 111 

breathing traces, when comparing RT 4D CBCT with conventional 4D CBCT, the average image quality 

was reduced by 7.6% (Rando study) and 11.1% (XCAT study). However, the average imaging dose 

reduction was 53% based on needing fewer projections (617 on average) than conventional 4D CBCT 

(1320 projections). The simulation studies have demonstrated that the RT 4D CBCT method can 

potentially offer a 53% saving in imaging dose on average compared to conventional 4D CBCT in 

simulation studies using a wide range of patient-measured breathing traces with a minimal impact on 

image qualit
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1. Introduction 

 

Four dimensional cone beam computed tomography (4D CBCT) is growing as a tool for assessing organ 

and target motion due to respiration on the day of treatment. Numerous reports have been published on 

the use of 4D CBCT to evaluate and reduce setup error and to monitor the tumour trajectory (Sonke et al 

2008, Qi and Chen 2011, Sweeney et al 2012, Takahashi et al 2013). Unfortunately, in general there are 

problems that hinder the practical implementation of 4D CBCT imaging into routine clinical treatment 

which several authors summarize as: (i) increased acquisition time; (ii) increased imaging dose; and (iii) 

uneven projection distributions leading to view-aliasing and streaking in the reconstruction images (Leng 

et al 2008b, Rosu and Hugo 2012, Fast et al 2013). Furthermore, Fast et al point out that making an 

improvement in one of these problems tends to come at the cost of degrading one of the others (Fast et al 

2013). 

There has been a good deal of research to try and improve on these problems and a variety of strategies 

have been pursued. Earlier work has shown that a slow-gantry technique can improve image quality (Li 

and Xing 2007, Lu et al 2007) and accordingly acquisition time lengthens. Leveraging improvements in 

computational power, especially exploiting the capability of GPUs, has led to the exploration and 

development of iterative based algorithms with the goal of obtaining high quality CBCT images from 

under-sampled and noisy projection data as a consequence of reducing applied imaging dose (Jia et al 

2010, 2011). Streak free, high temporal resolution image volumes from vastly undersampled cone-beam 

projections  in conjunction with a fully sampled prior image have been reported using a custom PICCS 

algorithm (Leng et al 2008a). Ahmad et al showed that the most influential object parameter for 4D-

CBCT performance is the period of motion of the object and published recommendations for minimum 

scan times according to object size and period of motion (Ahmad and Pan 2012). Brehm et al propose a 

motion-compensated reconstruction technique that does not use a prior planning CT image but instead 

applies a deformation based on estimated motion vector fields from all respiratory phases from the same 

imaging session thus removing any influence of anatomical changes between planning and treatment 

(Brehm et al 2011). Frustratingly, the problem of building a motion model from CBCT projection data is 

ill-posed (Rit et al 2009) as the motion models are generally sensitive to streak artifacts from 

undersampling. To help address this, Brehm et al model a patient specific undersampling artifact and then 

use this information to compensate for its effects on the motion vector field leading to imaging volumes 

of high quality (Brehm et al 2013). Zhang et al simulated a lung patient with anatomical changes between 

planning 4D-CT to onboard imaging. The prior 4D-CT scans were used in conjunction with limited angle 

onboard cone-beam projections to develop a motion modelled free-form deformation technique leading to 

improved accuracy in estimating target volume and centre of mass changes (Zhang et al 2013). Wang and 

Gu used the projections collected from on-treatment CBCT in a ‘warm start’, two step optimization 

process that deforms the planning CT without the need for a prior motion model of the patient, aiming to 

produce high quality 4D-CBCT (Wang and Gu 2013). 

Another approach to improving 4D CBCT involves incorporating a breathing signal as a feedback into the 

control systems responsible for acquiring projections. Fast et al demonstrated an experimental 4D CBCT 

acquisition technique that takes a breathing signal, either external motion sensor or electromagnetic 

transponder based, and actively triggers desirable projections to efficiently utilize dose and eliminate 



 

 

motion blurring from sinusoidal trajectories in anthropomorphic lung phantom studies (Fast et al 2013). 

Kincaid et al have developed a gated CBCT technique that focusses on acquiring narrowly spaced 

projections for up to a 30% ‘on’ gated window using a programmed gantry motion that ‘rewinds’ the 

gantry position to continue acquisition where it left off at the end of the last ‘on’ gated window (Kincaid 

Jr et al 2013). O’Brien et al presented an optimization algorithm that responds to a respiratory signal with 

the aim of obtaining evenly spaced projections for all respiratory bins by allowing a constrained variation 

on gantry velocity and variation on projection frequency (O’Brien et al 2013, 2014). 

In this space, we introduced a method, ‘Respiratory Triggered’ 4D CBCT (RT 4D CBCT). In RT 4D 

CBCT, a single projection is triggered once per respiratory bin per breathing period. Using this method, 

imaging dose can be reduced and image quality maintained using synthetic, regular sinusoidal breathing 

signals (Cooper et al 2013). The effects of breathing irregularities can impact on the performance of 4D 

CBCT (Lu et al 2007). This is why we make the crucial step towards clinical implementation of RT 4D 

CBCT in this work by investigating RT 4D CBCT’s performance using real patient-measured breathing 

traces with the accompanying irregularities and unpredictable behaviour of the breathing signals. We 

compare image quality and estimated imaging dose using the RT 4D CBCT acquisition method and a 

conventional 4D CBCT acquisition method using the same patient-measured breathing trace in each case. 



 

 

 

 
2. Methods 

 

2.1. Theory of RT 4D CBCT and conventional 4D CBCT simulations 

A brief explanation for RT 4D CBCT and its main difference from conventional 4D CBCT is presented 

for completeness but a detailed description of the RT 4D CBCT method can be found in a previously 

reported study with sinusoidal motion (Cooper et al 2013). 

Trajectories for a kV source during an RT 4D CBCT (A) and a conventional (B) acquisition session are 

represented (figure 1). Just the projections collected for phase-bin 1 are shown. 

 

   

 

 

Figure 1. Projection schedule, phase-bin 1 for RT 4D CBCT (A) and conventional 4D CBCT (B). 

We see the central idea of RT 4D CBCT (figure 1(A)) is that only one projection is allowed to be triggered 

per phase bin per breath. In contrast, during a conventional 4D CBCT acquisition (figure 1(B)) the 

projections are triggered at a constant rate with no feedback from the patient’s respiratory signal resulting 

in tightly grouped clusters of projections. 

There are two arms to this study: the RT 4D CBCT arm and the conventional 4D CBCT arm. The work 

flow for the simulation experiments in this study is illustrated (figure 2). The overview here is expanded 

upon in the following sections. In the current study, each of 111 lung cancer patient breathing traces are 

used to drive 111 pairs of separate simulations of an image acquisition session using the RT 4D CBCT 

method (figure 2, left) and another image acquisition session using the conventional 4D CBCT method 

(figure 2, right). Each simulation set of projection images is sent to a commercial FDK (Feldkamp et al 

1984) reconstructor program, Cobra. The resulting images from each method are compared against a 

ground truth dataset from which the mean absolute pixel difference error (MAPD) and the imaging doses 

are reported. 



 

 

 

 

 

Figure 2. Flow chart of the RT 4D CBCT and conventional 4D CBCT simulation arms. 

 

 

2.2 Patient-measured breathing data 

Breathing data in the form of external marker position data from 111 RPM files from 24 lung cancer 

patients measured under free breathing conditions in a previous study were utilized (George et al 2006). 

The data were used as an input driver for the RT 4D CBCT algorithm and used to break down the 

conventional 4D CBCT acquisition into 10 bins in the simulation experiments (figure 2). 

 

2.3 RT 4D CBCT and conventional simulation software 

The first box (figure 2, top, left), is expanded upon here to describe how the RT 4D CBCT module works. 

Simulation software has been built in-house which allows the study and simulation of 4D CBCT imaging 

techniques. This software platform was built for flexibility to allow different software implementations of 

image acquisition optimization modules. This allows the experimenter to enable or disable various 

combinations of algorithms for a given set of simulations. The RT 4D CBCT software module was built to 

accept a respiratory signal, specifically RPM data (version 1.4) as an input data stream. The studies use 

the recorded *. dat RPM files which contain the real-time phase estimates, not the *.vxp files which have 

phase re-calculated. The *.dat files represent phase estimations that are commercially achievable in a real-

time system. The data is formatted as a comma separated list with the first three positions in a single line 

being: (i) detected displacement of marker block; (ii) respiratory phase (range 0–2π); (iii) time stamp. The 

marker block is an external surrogate for tumour motion which can lead to small time shifts and 



 

 

amplitude mismatches; however, Ionascu  et al have shown that the superior-inferior internal-external 

motion is well correlated in a small 10 patient study (Ionascu et al 2007). Numerous other works have 

investigated the correlation between tumour/organ motion and various surrogates (table 3, Keall et al 

(2006). Never the less, it is expected that there will be some patients amongst the cohort of 111 where 

marker correlation is poor potentially degrading image quality. The RT 4D CBCT algorithm takes an 

incoming respiratory signal and triggers based on the conditions outlined (figure 3). The RPM data is 

‘read in’ in close to real-time to model as closely as possible the data stream that would be present in a 

real world clinical situation. As the respiratory signal data frames arrive (approximately every 33 ms), the 

software determines to which phase-bin the current signal frame belongs (bnow, figure 3) by reading the 

respiratory phase from the data frame. If bnow has changed from the previous signal frame, and we do not 

already have a projection in this bin for this breath, we trigger a projection, otherwise wait for the next 

signal frame. This continues until the end of the simulation run for this breathing trace. This is now 

repeated for each of 111 breathing traces (the outer loop, figure 2). One purpose for using the phase data 

directly ‘as-is’ from the RPM data stream without any post processing is for simplicity of implementation 

with the RPM system in widespread clinical use. Abdelnour et al describe some of the behaviours and 

limitations of the RPM system in detail (Abdelnour et al 2007). 

The conventional 4D CBCT simulation runs (figure 2, right) are simulated using the same software 

platform but with the RT 4D CBCT module switched off. Referring to figure 3, switching off the RT 4D 

CBCT module is equivalent to skipping the numbered sections 2–4. The respiratory signal is now simply 

used to divide the projections into respiratory phase-bins for each of the 111 breathing traces. 



 

 

 

 

Figure 3. Algorithm controlling projection acquisition for RT 4D CBCT. 
 

 

 



 

 

 

 

2.4 Experiments: ground truth, RT 4D CBCT and conventional acquisition simulations with 

RANDO phantom 

Rando phantom studies were carried out to investigate the behaviour of the RT 4D CBCT acquisition 

technique driven by an irregular breathing signal. The benefit in using the static Rando phantom is that 

the effect of the irregular breathing signal on the projection triggering can be determined in isolation from 

the confounding effects of a moving tumour on image quality. See Shrimpton et al (1981) for details 

regarding the tissue equivalence of the Rando phantom for kilovoltage x-rays. 

 

 

2.4.1 Ground truth data. A CBCT projection dataset from the thorax region of a static Rando 

phantom was collected using a very fine angular spacing (0.056°). This is the ground truth image dataset. 

It contains roughly 3600 projections over a 200 degree gantry sweep. 

2.4.2 RT 4D CBCT and conventional 4D CBCT simulations. The RT 4D CBCT and conven- tional 

4D CBCT simulations are ‘synthetic’ as they select projections according to the input respiratory signal 

from the static projections collected in section 2.4.1. All conventional 4D CBCT simulations are based 

on the acquisition parameters used from a commercially available 4D CBCT system as listed by Giaddui 

et al (2013): 

• 200° span of gantry sweep; 

• 240 s acquisition time; 

• Imaging frequency of 5.5 Hz. 

For the RT 4D CBCT simulations, only the imaging frequency is varied in accordance with the input 

respiratory signals; the acquisition time and gantry speed are the same as for the conventional simulations. 

For each simulation we collect data for the following properties: (i) how many projections were used; (ii) 

the angle of each projection (range: 0–200°); (iii) the respiratory bin of each projection (range: 1–10). For 

each of the simulated projections we find the closest matching ‘real’ projection from the Rando CBCT 

projection set (section 2.4.1) based on the simulation projection angles, and send those projections via a 

batch file to the Cobra CBCT reconstruction platform to reconstruct the simulation CBCT images. 

 

2.5 Experiments: RT 4D CBCT and conventional acquisition simulations with XCAT phantom 

The behaviour of the RT 4D CBCT acquisition technique and effect on image quality in the presence of 

irregular breathing and tumour motion was investigated using the XCAT digital phantom. 

 

2.5.1 XCAT phantom set up. The XCAT digital phantom (Segars et al 2010) was configured to 

model a breathing patient. Existing RPM breathing signal data files were used as a data source for a 

representative spherical tumour motion and diaphragm motion within the capabilities of the XCAT tool kit. 



 

 

The XCAT studies are included to determine the performance of the RT 4D CBCT method under 

conditions that attempt to represent a breathing patient in silico. The XCAT phantom has been used in 

these experiments to investigate these effects on image quality for both RT 4D CBCT and conventional 

4D CBCT. It is necessary to use the XCAT phantom to understand the variations in tumour motion that 

comes from breathing patients. 

During the course of a clinical 4D CBCT acquisition, projections are acquired as the patient breathes and 

the RPM system records displacement of the marker block. As a model for breathing, the displacement 

parameter from the RPM signal has been translated and normalized into a thoracic ‘breathing’ motion 

with a 2 cm superior-inferior range and 0.5 cm anterior-posterior range using the XCAT software. The 

minimum and maximum RPM displacement signal has been re-scaled to 0 cm and 2 cm tumour 

displacement respectively giving a 2 cm superior-inferior tumour excursion which is synchronised with 

the diphragm motion. 

To illustrate this, the marker block displacement is plotted (figure 4). The dots represent where projections 

are acquired for a selected mid-inhale phase. The spread of dots is reflective of the difficulties in 

calculating real-time phase which leads to intermittent assignment of the gating phase interval to an 

incorrect portion of the respiratory trace (Santoro et al 2009). The simulations incorporate these 

difficulties associated with real-time phase calculation and the accompanying inconsistencies of tumour 

motion by directly using the real-time RPM data. We have used the real-time phase signal from the RPM 

system because it is in current use for clinical gating systems. The real-time phase from the RPM system 

is known to contain significant errors (Santoro et al 2009); however, the work of Ruan et al (2009) on 

real-time phase calculation methods demonstrate improvements that would help address these issues. 
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Figure 4. RPM marker displacement with dots representing where projections are taken for a selected 
mid-inhale phase. 

A set of 50 ‘snapshot’ 3D XCAT digital phantoms with the moving tumour embedded was created. If 

end-exhale is snapshot 1 with tumour displacement = 0.0 cm and end-inhale is snapshot 50 with tumour 

displacment = 2.0 cm, then each of the 50 snapshots steps up the tumour in 0.4 mm gradations from end-

exhale to end-inhale giving a finely spaced set of tumour positions in the XCAT phantoms to sample the 

tumour motion. The normalized displacement values from each of the 111 breathing traces were used to 

select the appropriate XCAT ‘snapshot’ from the set of 50 XCAT phantoms thus giving the modelled 

instantaneous diaphragm and tumour position. The resulting series of XCAT snapshots effectively 

provide a model of diaphragm and tumour motion for a given RPM file. The ‘ground truth’ image for the 

XCAT simulations is taken to be the tumour in the middle of its trajectory between inhale and exhale and 

is taken from the middle of the range of the set of 50 XCAT phantoms. It is a deliberate choice not to 

include intra-phase blur in the XCAT ground truth to try and highlight the expected intra-phase blur 

resulting from both the conventional and RT 4D CBCT simulations. 

 

RT 4D CBCT and conventional 4D CBCT XCAT simulations. A forward projection of each snapshot 

XCAT phantom for a given phase bin was generated to simulate the collection of an on-board imaging 

system projection frame using the RTK software suite (Rit et al 2014). Consider a single x-ray beamlet 

from the kV source: an upper limit intensity value is set to 65 535 (216 − 1) representing no attenuation at 

all. As the beamlet passes through the XCAT phantom, the linear attenuation is determined and the 

resulting intensity value is registered as a pixel on the projection image. Image noise is modelled as 

Poisson noise via the Matlab function imnoise. In this manner, a complete set of x-ray projections is 

collected simulating the acquisition that occurs during a 4D CBCT imaging session of a breathing patient. 

Photon scatter from the kV source traversing through the phantom has not been considered. In an effort to 

capture the time snap, or phase-bin where the image reconstructions are likely to be the blurriest due to 

maximal instantaneous tumour motion, the phase-bin that sits half way between inhale and exhale was 

chosen for projection collection. These projections were then fed in to the Cobra reconstruction engine to 

produce the CBCT image reconstructions. 
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2.5.2 RT 4D CBCT and equivalent dose conventional 4D CBCT XCAT simulations. The con- 

ventional 4D CBCT simulations were repeated but using the same number of projections as the 

corresponding RT 4D CBCT simulations. This is referred to as equivalent dose conventional 4D CBCT 

(EqD Conventional). These simulations could only be run retrospectively once the number of projections 

(imaging dose) was known for each of the 111 RT 4D CBCT simulations. Then for a given simulation, 

the EqD Conventional fixed triggering frequency is calculated by: 

Triggering Frequency = 
𝑁𝑝𝑟𝑜𝑗

240
 

(1) 

Triggering Frequency is given in Hz where Nproj is the number of projections from the RT 4D CBCT 

simulation and 240 is the number of seconds for the acquisition. 

 

2.6. Image metrics: mean absolute pixel difference from ground truth (MAPD), image gradient and dose 

All images were reconstructed using Cobra which outputs CT images with default, un-calibrated 

Hounsfield Unit (HU) gray scale, referred to as raw pixel gray level in this study. The mean absolute 

pixel difference (MAPD) is defined as the mean scalar pixel value difference between the ground truth CT 

image dataset and the RT 4D CBCT or conventional reconstructed CT image dataset. It is defined as 

follows: 

𝑀𝐴𝑃𝐷 =
∑ |𝐺𝑇𝑖−𝑋𝑖|
𝑁
𝑖=1

𝑁
  (2) 

where N is the total number of pixels in a CT dataset, GTi is the intensity of pixel i in a ground truth image 

dataset and Xi is the intensity of pixel i from either an RT 4D CBCT or conventional 4D CBCT 

reconstructed image dataset. Henceforth, MAPD always means the mean absolute pixel difference as 

defined here and it is always with respect to the ground truth CBCT image dataset. It has units of raw 

pixel gray level. 

For the XCAT simulations, the change in pixel value in the superior-inferior (y) direction in a vertical line 

through the centre of the spherical tumour on a coronal image (f) was calculated. We define this as the 

superior-inferior image gradient and represent it simply as SupInf: 

SupInf = 
∂f                                                   

(3) 

                                   ∂y 

The SupInf image gradient metric is chosen to focus on the tumour motion induced blurring of the image 

reconstructions. It is interpreted to describe the image sharpness of the tumour in the direction of the 

tumour motion. A sharper image of the tumour corresponds to a well defined peak-and-trough in the 

image gradient plot as is expected in a ground truth image with no tumour motion; a less sharp image will 

have a less well defined peak-and-trough gradient plot. 

The total number of projections was counted for each simulation and it is assumed that one projection 

equals one arbitrary unit of imaging dose. As an indication of dose, Kim et al (2010) report that a low 

dose thorax imaging CBCT protocol with 677 projections gave a measured dose of 7.68 mGy.
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Figure 5. Angular distribution of adjacent projections for all bins over all paired 111 RT 4D CBCT and 

conventional simulations. 

 

 

 

 

 

 

Figure 6. Comparison of RT 4D CBCT and conventional image quality (MAPD from ground truth) for 

Rando studies.
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Figure 7. Comparison of RT 4DCBCT and conventional image quality (MAPD from ground truth) for 
XCAT studies. 



 

 

 
 

3 Results 

 

3.1  Angular separation of adjacent projections: distributions for RT 4D CBCT and conventional 

4D CBCT 

The distributions of angular separation between adjacent projections for all bins and all 111 breathing 

traces are shown for RT 4D CBCT and conventional 4D CBCT simulations (figure 5). The static Rando 

thorax phantom data is used here to study the effects on projection angular distribution and image quality 

from irregular breathing traces without the confounding effect of tumour motion. The striking feature of 

the conventional distribution is that it shows a large peak of adjacent projections in the first histogram 

bin with a small angular spacing. It represents projection ‘doubling up’ whereby two projections are 

acquired in the same bin with only a very small angular spacing (≤0.2°). In this scenario, the second 

projection within that bin is redundant and gives rise to extra imaging dose without 

much benefit. In contrast, the RT 4D CBCT method ensures that this doubling up of projections is 

avoided. 

 

3.2 Mean absolute pixel difference from reference ground truth (MAPD) 

The distributions of the MAPD for the RT 4D CBCT and conventional simulations from the 111 breathing 

traces are represented with boxplots for the Rando phantom data (figure 6) and the XCAT phantom data 

(figure 7). 

The median values of the MAPD in units of raw pixel gray level value for RT 4D CBCT and conventional 

are 113.9 and 101.5 (Rando studies), 59.2 and 53.5 (XCAT studies) respectively; the corresponding mean 

values of MAPD are 119.2 and 110.8 (Rando studies), 65.1 and 58.6 (XCAT studies). Wilcoxon signed 

rank tests on the RT 4D CBCT and conventional MAPD distributions from the Rando and XCAT studies 

give a p-value p < 0.001 for both meaning that there are significant differences in the median values from 

the RT 4D CBCT and conventional datasets. Although statistically significant, the mean MAPD for RT 4D 

CBCT is only 7.6% worse than conventional for the Rando studies and 11.1% worse than conventional 

for the XCAT studies, taking conventional as the reference in both cases. 

 

3.3 Image quality (MAPD from ground truth) versus dose 

The image quality (MAPD from ground truth) versus imaging dose (or number of projections) for the 111 
breathing traces used in the Rando and XCAT simulation studies are plotted respectively (figures 8–10). 
The open circles and squares represent the RT 4D CBCT and conventional acquisition methods 
respectively. For the RT 4D CBCT dataset, the number of projections (imaging dose) corresponding to 
the 25th, 50th and 75th percentile of MAPD are 486, 616, and 761 for the Rando studies (figure 8) and 
492, 620, 770 for the XCAT studies (figure 9) respectively. The conventional simulations give an imaging 
dose that is fixed at 1320 projections for both the Rando and XCAT studies (figures 8 and 9). The 
equivalent dose conventional simulations have the same dose as the RT 4D CBCT simulations, by design 
(figure 10). 

There are clear savings in imaging dose using the RT 4D CBCT method with only a 7.6% and 11.1% 



 

 

reduction in image quality on average for the Rando and XCAT studies respectively (figures 8 and 9). 

Interestingly, when conventional XCAT simulations are repeated and ‘clamped’ to the same dose as the 

RT 4D CBCT simulations, the relationship between imaging quality and imaging dose takes on the same 

1/x like shape as that for RT 4D CBCT (figure 10). Curve fitting was performed using a Matlab power2 

curve fitting model7. R-square values for RT 4D CBCT and EqD Conventional are 0.964 and 0.627 

respectively, indicating a greater spread for the EqD Conventional data. 

To try and visualize what a 7.6% reduction in image quality means qualitatively, CBCT reconstructions 

for RT 4D CBCT and conventional are shown (figure 11, top and bottom row respectively). Left to right 

shows representative images from the 25th, 50th, and 75th percentile of MAPD. It is apparent that there is 

very little difference comparing the top row (RT 4D CBCT) to the bottom row (conventional). 
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Figure 8. Image quality (MAPD) versus dose for RT 4D CBCT and conventional for Rando studies. 
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Figure 9. Image quality (MAPD) versus dose for RT 4D CBCT and conventional for XCAT studies. 
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Figure 10. Image quality (MAPD) versus dose for RT 4D CBCT and EqD conventional for XCAT studies. 
The EqD conventional simulations use equivalent dose to RT 4D CBCT. Inset: fitted curves for RT 4D 
CBCT (solid) and EqD conventional (dashed) simulations shown without data tick marks for clarity. 
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Figure 11. RT 4D CBCT (top row) and conventional (bottom row) showing images from the 25th, 50th, 
and 75th percentile of mean absolute pixel difference (MAPD from ground truth) between the 
reconstructed image and the ground truth. 
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3.4 Representative coronal reconstructions from XCAT phantom simulations 

A subset of XCAT phantoms studies representing the 25th, 50th, and 75th percentile of MAPD from 

ground truth gives a visualization of the image quality and spatial resolve of the tumour. Single coronal 

image slices through the moving tumour from the RT 4D CBCT and conventional simulations and each 

of the 25th, 50th, and 75th percentile MAPD distributions are shown (figures 12–14). The ‘ground truth’ 

image in the XCAT simulations is the tumour in the middle of its trajectory between inhale and exhale 

(described in section 2.5.1). The respiratory bin ‘capturing’ the tumour midway through its trajectory is 

shown for simulations using RT 4D CBCT and conventional acquisition methods (figures 12–14, top and 

bottom rows, respectively). Using equation (2) the defined MAPD for the displayed coronal slice is 

calculated for RT 4D CBCT and conventional reconstruction techniques denoted as ‘Av = ...’ in the figures. 

The number of required projections are reported for each simulation and is denoted as ‘n’ (figures 12–14). 

The vertical line over the tumour in figure 15 represents the pixels along which the previously defined 

SupInf image gradient is calculated (see equation (3)). figures 16–18 show the resulting calculations for 

the SupInf image gradient: the thick solid black line is the gradient for the ground truth and is repeated in 

each plot for reference. The dashed lines represent the gradient for RT 4D CBCT and the dotted lines 

represent the gradient for conventional simulations. 



 

   

 
 

 
 

  
 

 

Figure 12.  Coronal slices from XCAT  simulation corresponding to 25th percentile   of MAPD. Ground 
truth image (left), RT 4D CBCT (top) and conventional (bottom), difference maps (right). ‘n’ is number 
of projections required, ‘Av’ is average pixel difference from ground truth image. 
 
 

 
 

  
 

 



 

   

Figure 13.  Coronal slices from XCAT  simulation corresponding to 50th percentile   of MAPD. Ground 
truth image (left), RT 4D CBCT (top) and conventional (bottom), difference maps (right). ‘n’ is number 
of projections required, ‘Av’ is average pixel difference from ground truth image. 

 

 

 

 

 

 
 

                                                                                    
 

 

Figure 14.  Coronal slices from XCAT  simulation corresponding to 75th percentile   of MAPD. Ground 
truth image (left), RT 4D CBCT (top) and conventional (bottom), difference maps (right). ‘n’ is number 
of projections required, ‘Av’ is average pixel difference from ground truth image. 
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Figure 15. Arrow showing pixel gradient calculation direction (superior to inferior). 
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Figure 16. Image gradient calculated in superior to inferior direction for 25th percentile of MAPD 
simulation. ‘n’ is the number of projections. 
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Figure 17. Image gradient calculated in superior to inferior direction for 50th percentile of MAPD 
simulation. ‘n’ is the number of projections. 
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Figure 18. Image gradient calculated in superior to inferior direction for 75th percentile of MAPD 
simulation. ‘n’ is the number of projections  

 

4 Discussion 

 

It is likely that 4D CBCT will continue to grow as a clinical tool along with an accompanying increase in 

imaging dose for the patient. It is imperative that any extra imaging dose burden on the patient is utilized in 

the most efficient way possible. We have demonstrated through simulation studies that the RT 4D CBCT 

method can offer a substantial saving in imaging dose compared to conventional 4D CBCT. Simulations 

of RT 4D CBCT and conventional acquisition techniques have been performed for 111 patient-measured 

breathing traces. Taking the ground truth dataset as a reference, comparisons are presented between the 

RT 4D CBCT and conventional acquisition methods of the following items: 

(i) Adjacent projection angular spacing distributions; 

(ii) Distributions of MAPD from reference ground truth; 

(iii) Distributions of MAPD from reference ground truth versus imaging dose; 

(iv) Representative reconstructed images for 25th, 50th, and 75th percentile of MAPD. 

 

 

4.1. Adjacent projection angular spacing distribution 

The stand out feature of the two distributions in figure 5 is that the conventional method exhibits an isolated 

peak in the first histogram bin (≤0.2°) meaning that a large number of adjacent projections are clustered 

within a respiratory bin and have a small angular separation. This means we have extraneous projections 

that cost imaging dose but do not add much ‘new’ anatomical information because the separation is so 

small. This clustering is a result of the imager triggering at a fixed frequency of roughly 5.5 Hz for the 

conventional simulations based on Elekta’s Symmetry 4D CBCT parameters. In contrast, the RT 4D 
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CBCT method gives rise to a distribution whose mode is somewhere between 2° and 3° owing to the RT 

4D CBCT method triggering once per bin per respiratory cycle. This makes sense as the gantry speed is 

0.83 deg. s−1and multiplying this by a population average respiration period of 3.8 s (George et al 2005) 

gives roughly 3° degrees which is similar to the RT 4D CBCT modal angular separation of 2–3°. The 

other noteworthy feature is the difference in the average number of projections over the 111 breathing 

traces between conventional (1320) and RT 4D CBCT (617) with the RT 4D CBCT average being about 

53% lower than the conventional. 

 

4.2. Mean absolute pixel difference from reference ground truth, imaging dose and reconstruction 

images 

Quantitatively, for the 111 breathing traces used in the Rando studies, the RT 4D CBCT method’s average 

MAPD value of 119.2 raw pixel value units is worse than the conventional method’s average value of 

110.8 raw pixel value units (figure 6); however, qualitatively there is not much difference. Similarly for the 

XCAT studies the average MAPD values are 65.1 and 58.6 for the RT 4D CBCT and conventional 

methods respectively (figure 7). Representative images from the 25th, 50th and 75th percentiles of MAPD 

from figure 6 are shown in figure 11 and there is little difference between the image progression in the top 

row (RT 4D CBCT) and the bottom row (conventional). If we now consider the imaging dose for both RT 

4D CBCT and conventional simulations there is a stark difference in behaviour. Irrespective of an 

individual’s breathing period, the conventional method will always use about 1320 projections. Figure 

8 demonstrates the fixed nature of the conventional method and a sub-optimal use of imaging dose. For 

the Rando studies, the interquartile range of MAPD is 34.55 (89.36–123.91) and for the XCAT studies, the 

interquartile range is 15.73 (47.83–63.56) but always for a fixed imaging dose. In contrast, for the Rando 

studies the RT 4D CBCT method gives an interquartile range of MAPD of 32.36 (97.85–130.21) and a 

corresponding spread in dose (486.25–761.25). For the XCAT studies we have an interquartile range of 

MAPD of 19.94 (52.28–72.22) and dose spread of (492.5–770.0). The MAPD metric provides a single 

distilled figure of image difference. One of the limitations of this metric is that it does not give detailed 

information about the nature of the differences between two images. In this work, both image noise and 

streaking artifacts contribute to a higher (worse) MAPD value; however, the reconstructed images suggest 

that the streaking artifacts could be the dominant factor in determining the MAPD. Suppose we can choose 

an MAPD value of 100. Referring to figure 8 we see that the RT 4D CBCT method requires slightly less 

than 800 units of imaging dose whereas the conventional method is a flat rate of 1320, representing 

roughly a 40% saving in imaging dose for the same MAPD value. The reason this occurs is because for 

slower breathers in a fixed 240 s acquisition, there will be fewer breathing cycles compared to a faster 

breather. Using the RT 4D CBCT method, there is only one projection per bin per breathing cycle and so 

slower breathers will have fewer projections and thus use less dose compared to a faster breather. In its 

current form, the RT 4D CBCT algorithm is ‘tied’ to the respiratory rate of the patient and so slow 

breathers will always result in fewer projections (and worse images) for a given fixed acquisition time 

(240 s), in these studies. It is remarkable that the RT 4D CBCT yields a comparable image quality metric 

(MAPD) to conventional 4D CBCT for the very slow breathing outliers (open circles between about 200 

and 300 projections in figure 8). This is a ‘worst case’ for conventional 4D CBCT as it will still use 1320 

projections for slow breathers but results in images of similar quality to RT 4D CBCT using 200 to 300 



 

 

projections. To overcome this problem for slow breathers, an extension to the RT 4D CBCT algorithm 

could incorporate two projections per phase bin per breath: one at the beginning and one at the end of a 

phase bin. The goal of such an approach would be to strive for as wide an angular separation as possible 

within a given phase bin. This would certainly increase projections, but we would see the return to a more 

‘bunched’ pattern of projection acquisitions, although not as bad as conventional 4D CBCT bunching 

(figure 1). The implication is that if one would like to control the image quality using RT 4D CBCT, then 

both the gantry velocity and the imaging frequency should be ‘tuned’ to the respiration rate of the patient, 

a similar finding to other investigators (Lu et al 2007, Ahmad and Pan 2012, Fast et al 2013, O’Brien et 

al 2013, 2014). 

 

4.3. Tumour motion in XCAT studies 

The XCAT studies have shown that the RT 4D CBCT method can produce reconstructed images of a 

moving target that are of comparable quality to conventional 4D CBCT but with fewer projections. 

Figures 12–14 illustrate no remarkable qualitative or quantitative difference comparing the RT 4D CBCT 

and conventional 4D CBCT reconstructed images. There are some discernible patterns of brightness in 

the difference maps about the liver / lung boundary boundaries. The overall noise and graininess is worst 

for the 75th percentile (figure 14). The crucial feature to note is that conventional 4D CBCT 

reconstruction effectively ‘wastes’ projections (and thus dose) because of the ‘bunched’ projection pattern 

that forms (see figure 1(B)). Mauer et al have described a step-and-shoot approach whereby fixed 

stationary gantry positions are chosen and a set of projections are acquired over at least one respiratory 

period, potentially removing the bunched projection problem; however, this does increase the acquisition 

time by a few minutes (Maurer et al 2010). Similarly to the Rando phantom experiments, the number of 

projections for a given phase bin (n) used for the RT 4D CBCT simulations is directly proportional to the 

rate of respiration in the patient (n = 49–76), unlike conventional 4D CBCT which uses roughly the same 

number of projections regardless of the patient’s respiration rate (n = 131–132) (figures 12–14). Referring 

to figures 16–18, the ground truth image gradient plot (solid line) compared to both the RT 4D CBCT and 

conventional plots follow the same general shape; however the maxima and minima are quite variable and 

the‘0’ gradient regions become noisier going from figures 12–14 for both RT 4D CBCT and conventional 

simulations. The gradient data is taken to represent tumour detectability by eye. The plots in figures 16–18 

suggest that there is little difference between the RT 4D CBCT and conventional lesion detectability 

although there is evidence of a minor positional shift in both the RT 4D CBCT and conventional plots. 

The maxima and minima appear to be shifted by roughly 1 pixel (1.2 mm is the CBCT slice thickness in 

the z-direction) in the superior- inferior direction suggesting a lag between the where the tumour actually 

is (according to the ground truth gradient plot) and the detected tumour location (RT 4D CBCT and 

conventional plots). The positional error in tumour location detection in these studies implies a targeting 

accuracy no better than 1.2 mm. There is a substantially higher cost in dose to achieve this level of 

accuracy (number of projections ‘n’) for conventional 4D CBCT compared to RT 4D CBCT. 

 

 

 



 

 

 

5 Conclusion 

 

The simulation studies have demonstrated that the RT 4D CBCT method can potentially offer a 

substantial saving of imaging dose in the order of about 53% on average compared to conventional 4D 

CBCT using a wide range of patient breathing traces with a minimal impact on image quality. 
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