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Abstract

Classical asymptotic power series methods are used for determining limiting behaviour for so-
lutions of equations under some limit. This is particularly useful when dealing with transcendental
solutions such as those of the Painlevé equations. However, asymptotic power series methods are
unable to capture terms which are exponentially small. The behaviour of such terms varies across
the complex plane and hence classical asymptotic power series expansions are only uniformly valid
within sectors of the complex plane where these terms are exponentially small. In order to obtain
improved asymptotic expansions which are valid within an extended sector we require methods
which allow us to study behaviour that are exponentially small.

The aim of this thesis is to study Stokes phenomena, which arise from exponentially small
terms present in solutions of both additive and multiplicative difference equations. Specifically,
we undertake an asymptotic study of the second discrete Painlevé equation as the independent
variable approaches infinity, and also consider the asymptotic behaviour of solutions of a q-Airy
equation and the first q-Painlevé equation in the limits |q| → 1 and n → ∞. By investigating
Stokes phenomena, we are able to obtain uniform asymptotic expansions of solutions of the second
discrete Painlevé, the q-Airy and the first q-Painlevé equations.

We first show how exponential asymptotic methods can be applied to describe Stokes phe-
nomena present in the solutions of additive difference equations by considering the second discrete
Painlevé equation (dPII). We obtain two types of asymptotic series expansions which describe
vanishing and non-vanishing type behaviour of dPII. In particular, we show that both types of
solution behaviour can be expressed as asymptotic expansions, which are given as the sum of an
optimally-truncated asymptotic series and an exponentially subdominant correction term. We de-
termine the Stokes structure and investigate Stokes behaviour present in these solutions. We then
use this information to show that the asymptotic expansions contain one free parameter hidden
beyond-all-orders and determine the regions in which these asymptotic descriptions are valid. Fur-
thermore, we deduce special asymptotic solutions which are valid in extended regions and draw
parallels between the asymptotic solutions we find to the tronquée and tri-tronquée solutions of the
second Painlevé equation.

Next we extend these methods to study Stokes phenomena present in the asymptotic solutions
of q-difference equations in the limits |q| → 1 and n → ∞. In Chapter 4 we first consider a
q-analogue of the Airy equation. By appropriately rescaling the problem, we apply the WKB
method to show that the asymptotic behaviour of the q-Airy equation is expressible as a linear

vi
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combination of two exponential contributions. By comparing the relative dominance between these
two contributions we are able to determine the Stokes structure and deduce the Stokes behaviour
present within the asymptotic solution of the q-Airy equation.

In the second part of Chapter 4 we apply these techniques to also determine Stokes behaviour
in the asymptotic solutions of the first q-Painlevé equation in the limits |q| → 1 and n→∞. As in
the case of dPII, we also obtain two classes of solution behaviour, which we call type A and type
B asymptotic solutions. Using exponential asymptotics, we show that both solution classes may
be described as a sum of an optimally-truncated asymptotic power series containing exponentially
subdominant correction terms. In our asymptotic analysis of both the q-Airy and first q-Painlevé
equations, we find that the Stokes and anti-Stokes curves are described by curves referred to as
q-spirals. As a consequence, the Stokes structure for solutions of q-difference equations separate
the complex plane into sectorial regions bounded by arcs of spirals rather than traditional rays.
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CHAPTER 1

Introduction

In this thesis, we are interested with the behaviour of solutions of difference equations under
some limit. Asymptotic analysis allows us to determine the behaviour of solutions of a given
equation as some limit is approached. These methods are useful as they provide approximations
expressible in terms of elementary or previously known functions. This is particularly useful when
the general expressions of the solutions are transcendental, which means that the solutions are not
expressible in terms of elementary or previously known functions.

The difference equations we study in this thesis are equations known as the discrete Painlevé
equations, which are the discrete analogues of the classical Painlevé equations. The reason we
investigate the discrete Painlevé equations is because they appear in various fields of study, such
as orthogonal polynomial theory, to discrete models of physical phenomena and in mathematical
physics. Although the discrete Painlevé equations commonly arise in the study of physical systems,
they are of particular interest as they are known to be integrable.

Using the discrete analogues of the Painlevé equations as a model, we will develop methods
in order to obtain asymptotic descriptions of solutions of difference equations and uncover Stokes
behaviour present in these solutions. In this chapter we introduce both the Painlevé equations and
their discrete analogues and provide an overview of their history as well as their importance.

1.1. Painlevé Equations

In the 1900s, Painlevé [125, 126], Gambier [61] and Fuchs [60] investigated a problem posed
by Picard [132]. This problem was concerned with second order differential equations of the form

y′′ = R(y, y′, t), (1.1)

where R is rational function of y = y(t) and y′ = dy/dt and is analytic with respect to t. The goal
was to classify differential equations of the form (1.1) under the condition that poles were the only
movable singularities of the solutions of (1.1). That is, the location of the poles only depend on the
initial conditions of (1.1). This particular property was later dubbed the Painlevé property.

Painlevé, Gambier and Fuchs produced a list of fifty equations which have the Painlevé prop-
erty, of which forty four of these equations could be reduced to equations solvable in terms of either
elliptic or previously known special functions such as the Airy or Bessel functions. The remain-
ing six irreducible nonlinear equations were named as the Painlevé equations. The six Painlevé
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equations are given by

PI : y′′ = 6y2 + t,

PII : y′′ = 2y3 + ty + α,

PIII : y′′ = t(y′)2 − yy′ + δt+ βy + αy3 + γty4,

PIV : y′′ =
1

2
(y′)2 + β + 2(t2 − α)y2 + 4ty3 +

3

2
y4,

PV : y′′ =

(
1

2y
+

1

y − 1

)
(y′)2 − 1

t
y′ +

(y − 1)2

t2

(
αy +

β

y

)
+ γ

y

t
+ δ

y(y + 1)

y − 1
,

PVI : y′′ =
1

2

(
1

y
+

1

y − 1
+

1

y − t

)
(y′)2 −

(
1

t
+

1

t− 1
+

1

y − t

)
y′

+
y(y − 1)(y − t)
t2(t− 1)2

(
α+ β

t

y2
+ γ

t− 1

(y − 1)2
+ δ

t(t− 1)

(y − t)2

)
,

where α, β, γ, δ are complex-valued parameters and the prime denotes derivatives with respect
to t. Since the general solutions of the Painlevé equations are not expressible in terms of previ-
ously known functions they form new transcendental functions and are therefore referred to as the
Painlevé transcendents.

Although the Painlevé equations were first considered purely as mathematical objects, they
also appear in various studies of physical systems. The second Painlevé equation is related to the
Korteweg-de Vries (KdV) equation, which models shallow water waves [35, 55, 66]. Claeys and
Grava [35] developed a uniform asymptotic expansion for the KdV equation involving the solutions
of the second Painlevé equation. In mathematical physics, the Painlevé equations also appear as
solutions of the nonlinear Schrödinger equation [22, 99].

The Painlevé equations also arise in the study of orthogonal polynomials [16, 20, 50, 54, 97].
When certain weights are chosen, the Painlevé equations can be obtained from the recurrence
relations established by orthogonal polynomials. Interestingly, the Painlevé equations have also
appeared in recent developments in quantum field theories and in the applications of random ma-
trices [39, 51, 59, 130, 144, 145, 150, 151, 151].

As the Painlevé transcendents often appear in various nonlinear models they are often regarded
as defining new nonlinear special functions [36, 75]. In this respect, the Painlevé equations are
regarded as being the nonlinear analogues of the classical linear special functions.

Interest towards the Painlevé equations is not only due to their appearance in physical appli-
cations, but also due to the fact that they are integrable. Integrable systems are those which allow
global descriptions of solutions and are therefore suitable candidates as governing equations of
models. The authors of [135] refer to the Painlevé equations as being on the borderline between
trivial integrability and non-integrability.
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1.2. Discrete Painlevé equations from the continuous Painlevé equations

Generic solutions of the Painlevé equations are known to be transcendental and hence their
solutions are not expressible in terms of previously known functions. However, for certain choices
of the parameter values appearing in the Painlevé equations it is possible to find exact solutions,
which are expressible in terms of previously known special or rational functions. These are known
as the special solutions of the Painlevé equations.

In this section, we discuss some special solutions of the Painlevé equations and show how
difference equations can be obtained from these solutions. In particular, the difference equations
obtained in this way can be identified as discrete analogues of the Painlevé as they tend to the
continuous Painlevé equations under some limit.

As the first Painlevé equation does not have any parameters it does not have any special solu-
tions. We therefore consider the second Painlevé equation. The second Painlevé equation is given
by

y′′ = 2y3 + ty + α, (1.2)

where y = y(t). It is easy to check that y(t) = 0 and y(t) = t−1 are solutions of (1.2) with
parameter values α = 0 and α = 1, respectively. As such, we let y = y(t;α) denote a solution of
(1.2) with parameter value α.

The solutions y(t; 0) and y(t; 1) are known as the rational solutions of (1.2) and can be re-
lated by a transformation known as a Bäcklund transformation. Bäcklund transformations are
expressions which relate differential equations and their solutions. In particular, Bäcklund trans-
formations which relate two distinct solutions of the same equation are known as auto-Bäcklund
transformations.

It can be shown that equation (1.2) admits the Bäcklund transformations

y(t;α+ 1) = −y(t;α)− α+ 1/2

y′(t;α) + y(t;α)2 + t/2
, (1.3)

for α 6= −1/2, and

y(t;α− 1) = −y(t;α) +
α− 1/2

y′(t;α)− y(t;α)2 − t/2 , (1.4)

for α 6= 1/2 [56,63,142]. Hence, the Bäcklund transformation (1.3) relates the solution y(t;α+1)
to y(t;α) provided that α 6= −1/2, while (1.4) relates y(t;α−1) to y(t;α) provided that α 6= 1/2.

The Bäcklund transformations (1.3) and (1.4) can be used to generate a list of rational solutions
of (1.2). In this example, the substitution of y(t; 0) = 0 into (1.3) can produce, after repeated
iterations of (1.3), a set of rational solutions for positive integer values of α. The first few rational
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solutions of (1.2) generated from (1.3) are given below

y(t; 0) = 0,

y(t; 1) = −1

t
,

y(t; 2) = −2(−2 + t3)

t(4 + t3)
,

y(t; 3) = −3t2(160 + 8t3 + t6)

−320 + 24t6 + t9
.

A similar set of rational solutions of (1.2) for negative integer values of α can be generated from
(1.4).

It is also possible to obtain difference equations from these transformations. By using equations
(1.3) and (1.4) to eliminate y′(t;α) we can obtain the difference equation

α+ 1/2

yα+1 + yα
+

α− 1/2

yα + yα−1
+ 2y2

α + t = 0, (1.5)

where yα = y(t;α). Equation (1.5) therefore describes the evolution of yα as α varies discretely for
fixed t. If we let α be parametrized by n+ c where c is an arbitrary constant and let yn := y(t;α),
then (1.5) may be rewritten as

ηn
yn+1 + yn

+
ηn−1

yn + yn−1
+ 2y2

n + t = 0, (1.6)

where ηn = n+ c+ 1/2. It can be shown that under the limit

yn = ρ(1 + ε2u(x)), ηn = ρ3(4 + ε4x), t = −6ρ2, (1.7)

with ρ3ε5 = 1, equation (1.6) produces, to leading order,

u′′ = 6u2 + x,

in the limit ε→ 0 [56,63]. The limit (1.7) is known as the continuum limit. Hence, we find that the
difference equation (1.6) tends to the first Painlevé equation under the continuum limit (1.7). We
note that (1.6) first appeared in the work of Jimbo and Miwa [77] in 1981, however the continuum
limit was not derived at the time.

Difference equations can also be obtained from the Bäcklund transformations of the other re-
maining Painlevé equations [56, 63, 149]. For example, under certain cases of parameters, the
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Bäcklund transformations of the third Painlevé equation can be used to obtain the following differ-
ence equations

wn+1 + wn−1 =
2z

w2
n

− 4ηn
wn

, (1.8)

ηn+1

wn+1wn − 1
+

ηn
wnwn−1 − 1

= κ

(
wn +

1

wn

)
− (ηn + µ), (1.9)

ηn+1

wn+1 + wn
+

ηn−1

wn + wn−1
= −κ

(
1 +

1

w2
n

)
+
ηn
wn

. (1.10)

It was shown in [56] that (1.8) also produces the first Painlevé equation under some continuum
limit, while (1.9) and (1.10) produce the second and third Painlevé equations, respectively under
some continuum limit.

Although the difference equations (1.6), (1.8), (1.9) and (1.10) all arise from Bäcklund transfor-
mations of certain Painlevé equations, it is interesting to note that each of these difference equations
produce, to leading order, a particular Painlevé equation under some continuum limit. These par-
ticular difference equations fall under a certain class of difference equations known as the discrete
Painlevé equations.

1.3. Discrete Painlevé Equations

In the previous section, we encountered difference equations which tend to the classical Painlevé
equations under some continuum limit. In this thesis, we will consider discrete Painlevé equations,
which tend to one of the six Painlevé equations under some continuum limit and are named after
the Painlevé equation they produce under this limit. For example, equations (1.8), (1.9) and (1.10)
are known as discrete versions of Painlevé I, II and III, respectively.

Surprisingly, the first known appearance of a discrete Painlevé equation predates the discovery
of their continuous counterparts. In 1885, Laguerre [97] was the first to work on integrable, discrete
nonautonomous systems in his work on orthogonal polynomials. From the recurrence relations
established by orthogonal polynomials, Laguerre was able to obtain the difference equation

xn+1 + xn + xn−1 =
n+ ρ∆n

xn
, (1.11)

where ∆n = (1−(−1)n)/2 and ρ > −1. In 1939, Shohat’s [146] work on orthogonal polynomials
also led him to discover the difference equation

xn+1 + xn + xn−1 =
zn
xn

+ 1, (1.12)

where zn = αn + β and n is an integer. However, no connection between equations (1.11) and
(1.12) to the Painlevé equations was made at the time.

In 1990, Brézin and Kazakov [28] computed the continuum limit of (1.12) in their work on a
field theoretic model of two-dimensional gravity. In particular, this limit showed that (1.12) tended
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to the first Painlevé equation and hence (1.12) was then recognized as a discrete analogue of the
first Painlevé equation.

In the same year, Periwal and Shevitz’s [131] work on a unitary matrix model of two-dimensional
string theory led them to the difference equation

αn+1 + αn−1 =
−2(n+ 1)αn
λ(1− α2

n)
, (1.13)

where λ 6= 0 and αn is related to the eigenvalues of a unitary matrix. They showed that the
continuum limit of (1.13) produces the second Painlevé equation (with parameter value zero) and
is therefore a discrete analogue of the second Painlevé equation.

These discoveries sparked a great deal of attention towards discrete analogues of the Painlevé
equations, and ultimately led to the subsequent discovery of further discrete Painlevé equations.
While discrete Painlevé equations were first identified in theoretical physics models, and arise from
reductions of partial difference equations [112] there was no systematic method of constructing
discrete integrable mappings at the time.

In 1991, Grammaticos, Ramani and Papageorgiou [64] developed the idea of singularity con-
finement with the goal of systematically deriving integrable mappings. This idea proved to be fruit-
ful as it subsequently led to the discovery of many new examples of discrete Painlevé equations.
The idea of this new approach was to directly apply an integrability detector to some functional
form and select the integrable cases.

As the Painlevé equations are integrable, this new method should produce integrable mappings
which could possibly be recognized as a discrete Painlevé equation. In a sense, singularity confine-
ment is based on the study of all possible singularities of a given mapping and how it propagates
upon repeated iteration [63, 64]. If the singularity propagates indefinitely it is considered to be an
essential singularity, otherwise it is said to be confined. In this sense, singularity confinement is
considered to be a discrete manifestation of the Painlevé property and is therefore a possible can-
didate for the discrete Painlevé property [63, 136, 138]. An example is provided in Appendix A in
order to illustrate the concept of singularity confinement.

The authors in [64] apply the singularity confinement criterion to a family of integrable map-
pings known as the QRT mappings [134]. Doing so, they were able to obtain the difference equa-
tions

xn+1 + xn + xn−1 =
zn + γ(−1)n

xn
+ δ, (1.14)

xn+1 + xn−1 =
znxn + γ

1− x2
n

, (1.15)

where zn = αn + β and α, β, γ, δ are constants. Equations (1.14) and (1.15) are known as dis-
crete Painlevé I and II, respectively. Hence, we see that the difference equations given by (1.11)



1.3. DISCRETE PAINLEVÉ EQUATIONS 7

and (1.12) are particular cases of (1.14), while the difference equation (1.13) found in [131] is a
particular case of (1.15).

Unlike their continuous counterparts, which can be written as six distinct canonical forms, there
exist different versions of each discrete Painlevé equation. For example, the difference equations
(1.6) and (1.14) are both discrete versions of the first Painlevé equation. To distinguish the various
versions, prefixes are attached to their naming. For example, equation (1.6) is known as alternate
discrete Painlevé I while (1.14) is simply referred to as discrete Painlevé I.

Sakai [141] produced a classification for discrete Painlevé equations motivated by the work
of Okamoto [116], based on the resolutions of nine singularities on a complex projective space of
dimension two. In particular, the continuous Painlevé equations appear as degenerate cases of this
construction.

Although the discrete Painlevé equations can be characterized by rational surfaces, a list of
the standard discrete Painlevé equations which arise from the singularity confinement criterion is
listed in [63] and is given by

dPI : xn+1 + xn−1 =
zn
xn
− xn + 1,

q-PI : xn+1xn−1 =
1

xn
− 1

qnx2
n

, (1.16)

dPII : xn+1 + xn−1 =
znxn + a

1− x2
n

, (1.17)

q-PIII : xn+1xn−1 =
(xn − aqn)(xn − bqn)

(1− cxn)(1− xn/c)
,

dPIV : (xn+1 + xn)(xn + xn−1) =
(x2
n − a2)(x2

n − b2)

(xn − zn)2 − c2
,

q-PV : (xn+1xn − 1)(xnxn−1 − 1) =
(xn − a)(xn − 1/a)(xn − b)(xn − 1/b)

(1− cxnqn)(1− xnqn/c)
,

dPV :
(xn+1 + xn − zn+1 − zn)(xn + xn−1 − zn − zn−1)

(xn+1 + xn)(xn + xn−1)

=
(xn − zn − a)(xn − zn + a)(xn − zn − b)(xn − zn + b)

(xn − c)(xn + c)(xn − d)(xn + d)
,

q-PVI :
(xn+1xn − qn+1qn)(xnxn−1 − qnqn−1)

(xn+1xn − 1)(xnxn−1 − 1)
,

=
(xn − aqn)(xn − qn/a)(xn − bqn)(xn − qn/b)

(xn − c)(xn − 1/c)(xn − d)(xn − 1/d)
,

where zn = αn + β, qn = q0λ
n and a, b, c, d are constants. We note that this is not a complete

list of the discrete Painlevé equations as there are many versions of discrete Painlevé I-VI. The
authoritative list can be found in [141], and in the review paper [89].
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1.3.1. Types of difference equations.

The above list includes two different types of difference equations. The first case includes
equations like (1.17) in which the independent variable takes the form zn = αn+β, which therefore
evolves as an arithmetic progression. The second case includes equations like (1.16) in which the
independent variable is of the form qn = q0λ

n, which instead evolves as a geometrical progression.

Difference equations in which the independent variable evolves additively or multiplicatively
are known as additive difference equations or multiplicative difference equations, respectively.
Chapter 3 is concerned with additive difference equations, in which the second discrete Painlevé
equation, (1.17), is the main equation of interest and Chapter 4 is concerned with multiplicative
difference equations, in which we consider the q-Airy and the first q-Painlevé equations. For the
remainder of this thesis, additive difference equations will be simply referred to as difference equa-
tions while multiplicative difference equations are referred to as q-difference equations.

1.3.2. Applications of discrete Painlevé equations.

New examples of discrete Painlevé equations obtained by the singularity confinement approach
became the subject of further study as they are also found in the study of physical systems like
their continuous counterparts. As we have mentioned earlier, discrete Painlevé equations have
appeared in mathematical physics such as in discrete models describing two-dimensional quantum
gravity [28, 57, 59, 130, 131].

The basis of these models have origins in orthogonal polynomial theory, in which discrete
Painlevé equations have been found to commonly appear [93,97,104,105,146,152,153]. Discrete
Painlevé equations have also been shown to appear as similarity reductions of integrable lattice
equations such as the differential-difference analogues of the KdV and modified KdV equations
[111, 112].

Like their continuous counterparts, the general solutions of the discrete Painlevé equations
are also transcendental. However, for specific choices of parameter values, special solutions of the
discrete Painlevé equations may also be found. As in the case of the continuous Painlevé equations,
these special solutions are also expressible in terms of rational functions and discrete analogues of
special functions [67, 87, 88, 90, 91, 137].

1.4. Some asymptotic results of the Painlevé equations

As both continuous and discrete Painlevé equations arise in the study of physical systems, the
properties of these solutions are important for such applications. Although the general solutions to
the Painlevé equations are transcendental, information regarding the behaviour of their solutions
under some limit can be obtained using asymptotic analysis.

The first major asymptotic study of Painlevé equations was investigated by Boutroux [23] in
1913. In this study, all the possible local asymptotic behaviours of the first and second Painlevé
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equation were found as the independent variable approached infinity. Boutroux discovered that the
general asymptotic behaviour of the first and second Painlevé equations are described by elliptic
functions. However, Boutroux also showed that there also exist less general asymptotic behaviour,
which are asymptotically free of poles in certain sectors of the complex plane. These particular
asymptotic solutions are known as the tronquée and tri-tronquée solutions [23].

Few asymptotic results are known for their discrete counterparts despite their appearance in
various areas of potential application. The authors in [79, 83] both find divergent asymptotic se-
ries expansions for solutions of the first discrete Painlevé equation as the independent variable
approaches infinity. In particular, it was shown that these series expansions contain exponentially
small terms. By investigating the behaviour of these exponentially small terms, both studies are
able to determine regions in which the asymptotic series expansions found are uniformally valid.

Joshi and Takei [86] extended the exact WKB analysis to the alternate discrete Painlevé I equa-
tion, (1.6). In particular, they were able to calculate explicit connection formula, which describe
Stokes behaviour in the transseries solutions of the alternative discrete Painlevé I equation.

Xu and Zhao [157] also consider the asymptotic study of the discrete Painlevé V equation using
the Riemann-Hilbert approach. By using the nonlinear steepest descent method developed by Deift
and Zhou [45], the authors in [157] find that the asymptotic behaviour of the solutions of discrete
Painlevé V can be represented in terms of solutions of the fifth Painlevé equation.

In the case of the q-Painlevé equations, not much is known concerning the asymptotic be-
haviour of their solutions. Joshi [80] identified unstable solutions of the first q-Painlevé equation,
dubbed quicksilver solutions. These quicksilver solutions are described by divergent asymptotic
series expansion as the independent variable approaches infinity and were shown to be asymptotic
to true solutions of the first q-Painlevé equation in a certain domain of the complex plane. Asymp-
totic analysis of the same equation was also considered by Joshi and Lobb [82] in the context of
algebraic geometry. To the best of our knowledge, there have been no known studies on Stokes
behaviour for the solutions of the q-Painlevé equations.

We also mention the work of Mano [106] and Joshi and Roffelson [85] who consider the
asymptotic behaviour of variants of the sixth q-Painlevé equation from an isomonodromic defor-
mation point of view. They achieve global results, which they define as solving the connection
problem. In these studies, the connection problem aims to relate the asymptotic behaviour of solu-
tions at the origin and infinity. However, the asymptotic expansions obtained in these studies are
convergent whereas this thesis is primarily concerned with divergent asymptotic series expansions.

1.5. Thesis Outline

In Chapter 2 we present an overview to the ideas and asymptotic methods used in order to
investigate the exponentially small behaviour present in the problems we study. The methods
which allow us to study exponentially small behaviour are known as exponential asymptotics. In
particular, we discuss the importance of optimal truncation and late-order terms in the development
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of asymptotic power series expansions. Once the key ideas are established we demonstrate how
to capture Stokes behaviour present in the solutions of the hyper-Airy equation. This chapter is
mainly a review of previous work and techniques of modern asymptotics, except for Section 2.5,
which contains a new example.

Chapters 3 and 4 explore how we can develop asymptotic series expansions of solutions of
the discrete Painlevé equations as some limit is approached. In Chapter 3, we demonstrate how
the exponential asymptotic methods based on the works of [33], [92] and [121] can be applied
to additive difference equations. In particular, we study the behaviour of solutions of the second
discrete Painlevé equation and consider the Stokes behaviour present in these solutions. We then
find new asymptotic solutions, which share features with the (tri)-tronquée solutions of the second
Painlevé equations.

We then extend these methods for q-difference equations in Chapter 4. We show applications
to both linear and nonlinear q-difference equations through examples of the q-Airy and the first q-
Painlevé equations. Both examples are challenging, however, the analysis for the q-Airy equation
is much less difficult than that for the first q-Painlevé equation. The reason why the q-Airy is less
difficult is because, after rescaling the problem, the leading order behaviour of the q-Airy equation
may be described by two linearly independent exponential terms.

For the first q-Painlevé equation, the hidden exponentially small behaviour must first be de-
termined by studying the divergent asymptotic series for which its solutions are asymptotic. The
interesting features we find in this chapter are that the (anti-) Stokes curves are described by curves
known as q-spirals. As a result, we find that these solutions are valid in sectorial-like regions
bounded by arcs of spirals.

We then conclude the thesis in Chapter 5 with a summary of the thesis results and provide some
potential suggestions for future research.



CHAPTER 2

Exponential Asymptotics

In order to understand the solution behaviour of the discrete Painlevé equations in some limit,
we must explore behaviour that is exponentially small. Such behaviour is beyond the reach of
classical asymptotic power series methods as they decay to zero faster than any positive power of
ε in the limit ε → 0. Exponential asymptotics refers to a set of mathematical tools, which allow
us to study behaviour that occurs on an exponentially small scale in the limit as some parameter
becomes small. That is, for behaviour which is proportional to εγ exp(−α/εβ) for 0 < ε � 1
where α, β are positive constants and constant γ.

The reason we are interested in exponentially small terms is because such terms are important
in the development of uniform asymptotic expansions of functions. In the Poincaré sense (which
we introduce in Section 2.1) a power series expansion can accurately approximate a given function
up to algebraic error in some limit within a certain sector in the complex plane. However, using
exponential asymptotics it is possible to obtain an error which is exponentially small in the limit
and therefore obtaining, what Olver terms [122], an ‘exponentially-improved’ approximation.

The calculation of the exponentially small terms hidden within asymptotic expansions can be
used to show that the original expansion is valid within an extended sector. The determination
of exponentially small terms have been used to construct uniform asymptotic expansions of spe-
cial functions such as the gamma function [129, 155], generalized exponential functions [78, 122],
Riccati equations [119, 120] and functions with integral representations [8, 123, 128, 156].

Exponentially-improved asymptotic series expansions have also been developed for linear dif-
ference equations. Olver [124] constructed exponentially-improved asymptotic expansions for so-
lutions of a particular class of second order linear difference equations in terms of inverse factorial
series with applications to Legendre functions. This was then generalized by Olde Daalhuis [118]
to a larger class of second order linear difference equations with applications to hypergeometric
functions.

Exponential asymptotic methods have also been developed for nonlinear problems [32, 33,
38, 41, 42, 92]. Costin and Kruskal [41] utilized exponential asymptotic methods to show under
certain conditions, that there is a one-to-one correspondence between true solutions and formal
power series solutions of a class of ordinary differential equations. Some examples of uniform
asymptotic expansions for solutions of nonlinear equations include the Riccati type equations [119,
120], Burgers equation [31] and the Painlevé equations [39, 40, 79, 86, 120].

11
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Joshi and Lustri [83] applied exponential asymptotic methods to describe solutions of the first
discrete Painlevé equation. They were able to determine regions in the complex plane in which
solutions of the discrete Painlevé equation had the prescribed asymptotic behaviour by investigating
Stokes behaviour exhibited by these solutions. By applying such methods, the asymptotic solutions
found in [83] were also shown to share features with the tronquée and tri-tronquée solutions of the
first Painlevé equation [23]. The methods applied in [83] were also extended to the asymptotic
study of the second discrete Painlevé equation in [84].

Not only are exponentially small terms important in the construction of uniform asymptotic
expansions, there exist a plethora of problems in which the main physics occur on an exponentially
small scale. For example, exponential asymptotic methods can be used to determine existence
conditions for solutions of physical models such as crystal growth models [96] and fluid dynamics
models [65, 100–103, 148].

These methods have also played a key role in recent developments of quantum field theories.
In particular, non-perturbative effects play an important role within these theories [5,34,51]. These
effects are precisely those which can not be described using classical asymptotic power series,
which are also known as perturbation series.

In this thesis we are primarily interested in the asymptotic study of solutions of difference
equations as some limit is approached. More specifically, we are interested in difference equations
known as the discrete Painlevé equations described in Chapter 1. We aim to find solutions of the
discrete Painlevé equations which are described by divergent asymptotic power series and there-
fore display Stokes behaviour. As Stokes phenomenon requires exponentially small terms to be
investigated, exponential asymptotic methods are required.

Although asymptotic power series methods can be used to accurately approximate functions,
they are unable to capture terms which are exponentially small. Consequently, this can lead to
misinterpretations, which we discuss in Section 2.1, in describing the function of interest. In this
chapter, we discuss the limitations of classical asymptotic power series methods and describe the
development of exponential asymptotic techniques, including super- and hyper-asymptotics.

In Section 2.1 we introduce Poincaré’s definition of asymptotic power series and discuss how
exponentially small terms are invisible to asymptotic power series methods. The failure to describe
such terms gives rise to ambiguities regarding the function’s asymptotic representation and its
behaviour. Although the Poincaré definition can provide accurate approximations of a function
under some limit, they cease to be accurate if the number of correction terms kept increases. We
will find that asymptotic series are often divergent and hence the error of these approximations can
increase without bound as the number of correction terms increases.

Section 2.2 introduces the idea of a superasymptotic approximation. Superasymptotic approx-
imations are obtained by truncating an asymptotic series such that the error is minimized. In this
sense, superasymptotic approximations are also known as optimally-truncated series. Heuristics
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are introduced, which are useful for optimally truncating an asymptotic series. Darboux’s theorem
is also introduced, which shows that the late-order terms of an asymptotic power series behave
asymptotically like a factorial-over-power. Following the ideas of Dingle [48] and Berry [11] it
can be shown, by using Borel summation methods, that the error of a superasymptotic approxima-
tion is typically exponentially small, providing the pivotal first step in investigating exponentially
small behaviour.

In Section 2.3 we introduce the idea of hyperasymptotics. These ideas allow us to study the er-
ror of superasymptotic approximations and therefore explicitly determine the exponentially small
behaviour hidden within these expansions. As this involves the analysis of exponentially small
terms, hyperasymptotics is also synonymous with the term exponential asymptotics. Hyperasymp-
totics were developed by Berry and Howls [13] in 1990 by extending the ideas of Dingle [48] and
Écalle [52].

After providing the relevant background, we discuss Stokes phenomena in Section 2.4. Expo-
nential asymptotic methods are necessary to describe Stokes phenomena as it involves the sudden
appearance or disappearance of exponentially small terms as special curves in the complex plane
are crossed. In Section 2.5 we investigate the asymptotic behaviour of solutions of the hyper-Airy
equation. This new example illustrates Stokes behaviour displayed in asymptotic series solutions
and demonstrates the exponential asymptotic methods utilized in this thesis.

2.1. Classical asymptotic power series

In this section we discuss the restrictions of Poincaré’s definition of asymptotic power series.
Before we introduce Poincaré’s definition we define some notation used in this chapter. We say
that a function f(z; ε) is of order g(z; ε) as ε→ ε0 if there exists a c > 0 such that

|f(z; ε)| ≤ c|g(z; ε)|, (2.1)

for all ε sufficiently close to ε0. We denote this using Landau’s big O notation [7, 98], by

f(z; ε) = O(g(z; ε)), (2.2)

as ε→ ε0. Similarly, we say that f(z; ε) is of order less than g(z; ε) if, for every c > 0, (2.1) holds.
We denote this using Landau’s little o notation by

f(z; ε) = o(g(z; ε)), (2.3)

as ε→ ε0. Poincaré [133] gave the following definition of an asymptotic series.

Definition 2.4 (Poincaré [24, 48]). A function, f(z; ε), is asymptotic to a power series

F (z; ε) =

∞∑
n=0

εnfn,

in some sector defined by S = {z ∈ C | α < arg(z) < β}, if for each fixed N and sufficiently
small ε, we have ∣∣∣f(z; ε)−

N−1∑
n=0

εnfn(z)
∣∣∣ = O(εN ), (2.5)
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as ε→ 0, for all z ∈ S. We denote this by

f(z; ε) ∼
∞∑
n=0

εnfn, (2.6)

as ε→ 0 and say that F (z; ε) is the asymptotic expansion of f(z; ε) in S.

Some examples of asymptotic expansions are given below.

−e−z/ε
∫ ∞
−z/ε

e−t

t
dt ∼

∞∑
n=0

εn+1 Γ(n+ 1)

(−z)n+1
, for Re(z) < 0, (2.7)

sin(εz) ∼
∞∑
n=0

(−1)n(εz)2n+1

(2n+ 1)!
, for z ∈ C, (2.8)

sin(εz) +
ze−z/ε

1 + ε
∼
∞∑
n=0

(−1)n(εz)2n+1

(2n+ 1)!
, for Re(z) > 0, (2.9)

as ε → 0 (with ε > 0). The ratio test can be used in these examples to show that the asymptotic
power series given by (2.8) and (2.9) are convergent while the series in (2.7) is divergent. This is
not surprising as the condition in Definition 2.4 involve partial sums, and is therefore not limited to
convergent series expansions. In this thesis we are primarily interested in asymptotic power series
which are divergent.

Let us consider the following functions

f1(z) = sin(εz),

f2(z) = sin(εz) +
ze−z/ε

1 + ε
.

In (2.8) and (2.9), we find that the functions f1(z) and f2(z) are described by the same asymptotic
power series expansions in the limit ε → 0. However, the functions f1 and f2 differ by a term
which is exponentially small in the limit ε → 0 (provided that Re(z) > 0). Consequently, the
functions f1 and f2 cannot be distinguished by their asymptotic series expansions.

The problem is that asymptotic power series described in Definition 2.4 are limited to approx-
imating functions up to algebraic powers of ε. Therefore functions which are exponentially small
in the limit ε → 0 are unable to be captured by classical asymptotic power series as they decay to
zero faster than any power of ε. That is,

exp(−α/εβ) = o(εn),

as ε→ 0 for all integers n and α, β > 0. Consequently, functions which are exponentially small in
the limit ε→ 0 can only be represented by the trivial power series

exp(−α/εβ) ∼ 0 + 0 · ε+ 0 · ε2 + · · · , (2.10)

as ε→ 0. The asymptotic power series (2.10) completely ‘misses’ these exponentially small terms
and hence such terms are said to be hidden beyond-all-orders in powers of ε. Consequently, the
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definition of asymptoticity due to Poincaré is unique up to the addition of functions which are
exponentially small.

Misinterpretations of asymptotic series described in Poincaré’s definition arise due to its failure
to capture exponentially small terms. In the example of (2.9) we may expand the second term as a
geometric series to obtain the expansion

f2(z) = sin(εz) +
ze−z/ε

1 + ε
∼
∞∑
n=0

(−1)n(εz)2n+1

(2n+ 1)!
+ ze−z/ε

∞∑
n=0

(−ε)n, (2.11)

as ε→ 0 which is valid in the region −π < Arg(z) ≤ π. The asymptotic power series representa-
tion of f2(z) can therefore be represented as the sum of two uniquely determined series expansions,
in which the second series is multiplied by an exponentially small prefactor in a sector containing
the positive real axis. In general, the complete asymptotic expansion of a function can be written
as a sum of multiple series expansions such as

f(z) ∼
∞∑
r=0

εrfr(z) +A(z; ε)
∞∑
r=0

εrar(z) +B(z; ε)
∞∑
r=0

εrbr(z) + · · · , (2.12)

as ε → 0, and where A(z; ε) and B(z; ε) are functions which are exponentially small as ε → 0.
In this case, the component sums which constitute a complete asymptotic expansion in (2.12) are
referred to as component asymptotic series.

Under Poincaré’s definition, the asymptotic series expansion of f2(z) is only described by the
first component asymptotic series in (2.11) and is therefore only a valid approximation of f2(z) in
the right half z-plane. In the left half z-plane, the exponential contribution switches in dominance
to become exponentially large. This change in dominance is not described by the series expansion
in Poincaré’s definition. Hence, the series expansion in Poincaré’s definition fails to represent
the function outside the prescribed sector as it fails to capture the behaviour of the exponentially
small terms. Consequently, misinterpretations of the functions asymptotic behaviour arise as the
Poincaré’s definition permits the neglect of exponentially small terms.

Dingle [48] proposes an extended definition of asymptotic power series, which is free of the
ambiguities which arise from the neglect of exponentially small terms. Dingle defines a com-
plete asymptotic expansion of a function f(z) as an expansion containing asymptotic power series,
which formally and exactly obeys all the relations satisfied by f(z) in some limit, say ε → 0,
throughout a certain sector in the complex plane [48]. Examples of these relations include

• The functional form of f(z) as ε→ 0, such as boundary conditions on f(z) and its deriva-
tives in the limit.
• The differential, difference or integral equation satisfied by f(z).
• The relations involving parameters present in the problem.

Consequently, this extended definition allows asymptotic series to be uniquely defined up to expo-
nentially small terms. Some examples demonstrating the utility of Dingle’s extended definition of
asymptotic series can be found in [48].
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2.1.1. Truncation of asymptotic series expansions.

Asymptotic series are typically divergent, and hence we can no longer expect their error (which
can be defined by (2.13)) to stay small as more terms in the series are kept. However, their error can
be minimized. Definition 2.4 is a statement regarding the error of an asymptotic series as ε→ 0 for
fixed N . We instead consider equation (2.5) as N → ∞ for fixed 0 < ε � 1. This can therefore
be interpreted as investigating the behaviour of the error of an asymptotic power series when the
number of correction terms kept increases for a given ε. Let us denote the truncation error of (2.6)
by

RN = f(z)−
N−1∑
n=0

εnfn (2.13)

where N ≥ 1. For convergent series, the truncation error in (2.13) decreases to zero, however, this
is not true for asymptotic series expansions as they are typically divergent. In order to illustrate
this, let us consider the exponential integral [2] which is defined by

Ei(z; ε) = −
∫ ∞
−z/ε

e−t

t
dt. (2.14)

Equation (2.14) has the following (Poincaré) asymptotic behaviour [1]

ez/εEi(−z; ε) ∼
∞∑
r=0

εr+1 Γ(r + 1)

(−z)r+1
=: F (z; ε), (2.15)

as ε→ 0 which is valid over the phase range −π < Arg(z) < −π/2 and π/2 < Arg(z) < π. Let

F [N ](z; ε) :=

N−1∑
r=0

εr+1 Γ(r + 1)

(−z)r+1
, (2.16)

RN (z) := ez/εEi(−z; ε)− F [N ](z; ε), (2.17)

denote the truncated asymptotic power series and truncation error of the asymptotic series (2.15),
respectively.

By truncating the asymptotic expansion F (z; ε) in (2.15) at the N th term and plotting the
truncation error, we observe in Figure 2.1 that the error decreases until some minimum is attained at
some N . The inclusion of additional terms causes the error to increase, causing the approximation
to become worse. This occurs because there is a turning point at which Γ(N + 1) ≈ εN+1 as
N → ∞ for fixed ε > 0. Hence, the term Γ(N + 1) begins to grow faster than εN+1 decays as
N →∞.

The growth of the truncation error can be understood by considering the possible balance be-
tween algebraic powers of ε and terms that are exponentially small. The term εk decays more
slowly than exp(−α/εβ) as ε→ 0 for any positive constants α, β and k. However, for fixed ε > 0,
it is possible to find a value of k such that these two terms are comparable in size. We can show
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FIGURE 2.1. This figure shows the plot of log(RN ) appearing in (2.17) of the exponential
integral for z = 1 and ε = 0.1. For this fixed value of ε, the value to RN decreases and
attains a minimal value, which occurs at approximately N ≈ 10. Additional correction
terms cause the value of RN to increase as N increases. The growth of RN occurs after
this minimum is because the term Γ(N + 1) grows faster than εN decays as N →∞.

this by considering the equation

εk = exp
(
− α
εβ

)
, (2.18)

and calculating the value of k required for this to hold true. Solving for k in (2.18) shows that

k = − α

log(ε)εβ
, (2.19)

which is large and positive as ε → 0. This suggests that it is possible to truncate an asymptotic
series such that the error is comparable to an exponentially small term. Inclusion of higher order
terms will fail to capture the exponentially small error and hence the asymptotic series representa-
tion appearing in Poincaré’s definition does not converge to the function in question.

The asymptotic series we study in this thesis are those which are divergent for all values of
ε > 0. As we have seen in Figure 2.1, the truncation error of a divergent asymptotic power
series grow without bound as the number of correction terms increase. Although these errors grow
without bound, Figure 2.1 also demonstrates that we may truncate an asymptotic series such that
the error is minimized.

2.2. Superasymptotics

In this section we discuss how asymptotic power series can be truncated such that the error is
exponentially small, providing a key step towards the investigation of exponentially small terms.
We also discuss Darboux’s theorem, which was used by Dingle [48] to demonstrate that the late
coefficient terms of an asymptotic power series behave generically as a factorial-over-power form.
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This generic form for the late coefficients are related to the singularities of the function being
approximated. This generic feature of asymptotic power series will prove to be important when we
consider nonlinear equations later in this thesis.

In the previous section, we saw that an asymptotic series may be truncated such that the error
is minimized. This observation introduces the idea of an optimally-truncated series. We say that an
asymptotic series is optimally-truncated if we truncate the series such that the approximation error
is minimized. We denote an optimally-truncated series of f(z) in (2.6) by

f(z) =

Nopt−1∑
r=0

εrfr(z) +RN (z), (2.20)

whereNopt is the optimal truncation point andRN is the optimally-truncated error. In the literature,
RN is also known as the divergent tail of an asymptotic series. Berry and Howls [13] gave the
name superasymptotics to replace the term optimally-truncated asymptotic series. Minimizing the
error of an asymptotic series by optimal truncation has been rigorously proven for a broad class of
problems which can be formulated in terms of a Borel transform with well-separated singularities
in the Borel plane (which we will encounter in Section 2.2.2) [46, 70, 118].

In order to optimally truncate an asymptotic power series, the behaviour of fr in (2.6) must
be known. A very useful heuristic which can be used to optimally truncate an asymptotic series
is given by Boyd [24]. The heuristic states that for a fixed value of ε, the minimum error of an
asymptotic series is usually obtained by truncating the series at its least term and discarding all
higher order terms. Although this is a heuristic rule, it is very useful in practice and has been
rigorously justified for some classes of asymptotic series [41, 42, 117].

It is typical that the optimally-truncated error is exponentially small in the limit ε → 0 [13,
24, 25]. In fact, we will show in Section 2.2.2 that the optimally-truncated error of a factorially
divergent asymptotic series, such as (2.15), is indeed exponentially small. These are asymptotic
power series whose coefficients behave as factorials.

Let us first calculate the optimal truncation point of (2.15). Using the heuristic given by Boyd
[24], the optimal truncation point occurs when the term

εNfN =
εNΓ(N)

(−z)N , (2.21)

is minimal with respect to N and fixed ε. One possible method to calculate the optimal truncation
point is to treatN as a continuous variable and minimize (2.21) using elementary calculus. We find
that the first derivative of the coefficients in (2.21) is equal to

d

dN

∣∣∣∣εNΓ(N)

(−z)N
∣∣∣∣ = −

∣∣∣∣εNΓ(N)

(−z)N
(

log
(
−z
ε

)
− ψ(N)

)∣∣∣∣ , (2.22)
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where ψ(z) is the digamma function [2], which is defined by

ψ(z) =
Γ′(z)

Γ(z)
.

Equation (2.22) is equal to zero when

log

( |z|
ε

)
= ψ(N). (2.23)

Now the equation ψ(z) = log(α) for α� 1 can be approximately solved by z ∼ α−1/2+O(α−1)
[24] and hence the approximate solution to (2.23) is

Nopt ∼
|z|
ε
, (2.24)

as ε → 0. We notice that Nopt → ∞ as ε → 0 for fixed z and hence the limit Nopt → ∞ is
equivalent to the limit ε→ 0 for fixed z. An equivalent method to calculate the optimal truncation
point is to consider when the ratio of any two consecutive terms in an asymptotic series is close to
unity. This amounts to finding the point N such that∣∣∣∣εn+1fn+1

εnfn

∣∣∣∣ ≈ 1, (2.25)

as N →∞. Using equation (2.25) to find the optimal truncation point of (2.15) shows that∣∣∣∣ε(N + 1)

−z

∣∣∣∣ ≈ 1, (2.26)

which implies that

Nopt ∼
|z|
ε
, (2.27)

as ε → 0 in agreement with (2.24). In general, any truncation point of a series expansion is
necessarily required to be integer-valued. In particular, we take the integer value closest to the
optimal truncation point, (2.27), for any fixed ε > 0.

As the optimal truncation point has been determined we can directly compute the size of the
optimally-truncated error of (2.15). From Definition 2.4 the optimally-truncated error is of order
O(εN+1). Hence, by substituting the value of Nopt given by (2.24) into the expression for the
optimally-truncated error we find that

|RN | =

∣∣∣∣∣∣f(z)−
Nopt−1∑
r=0

εrfr(z)

∣∣∣∣∣∣ ,
∼
∣∣∣∣εNopt+1Γ(Nopt + 1)

(−z)Nopt+1

∣∣∣∣ ,
=

∣∣∣∣εNopt+1Γ(Nopt + 1)

zNopt+1

∣∣∣∣ , (2.28)
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as ε→ 0. By using Stirlings’ formula for the leading order behaviour of the Gamma function [1,2]

Γ(an+ b) ∼
√

2πe−an(an)an+b−1/2

(
1 +O

(
1

n

))
, (2.29)

as n→∞ and substituting this into (2.28) we find that

|RN | ∼
√

2πε

|z| e
−|z|/ε, (2.30)

as ε → 0. We therefore find that the optimally-truncated error of (2.15) is indeed exponentially
small.

In the example of the exponential integral, the exact form of the coefficients in (2.15) allowed us
to determine Nopt. However, determining the exact form of the coefficients of an asymptotic series
is often difficult to compute for most problems. As we will see in Section 2.2.1, the asymptotic
behaviour of the coefficients contains all the necessary information required to compute Nopt.

The observation is that the optimal truncation point of an asymptotic series is typically large
in the limit ε→ 0. Therefore, for the purposes of optimal truncation, it is enough to determine the
asymptotic behaviour of the coefficients as the summation index is large. These coefficients are
known as the late-order terms. This is remarkably fortunate as it is much easier to determine the
asymptotic behaviour of the coefficients instead of the exact form. As Berry states in [10, 12], we
therefore study the ‘asymptotics of the asymptotics’. That is, finding the asymptotic behaviour of
the coefficients of the asymptotic series.

Dingle’s [48] investigations on asymptotic series revealed many deep and profound insights to
the subject. Using a theorem of Darboux [43, 44], Dingle was able to show that the asymptotic
behaviour of the late-order terms of an asymptotic series are related to the singularities of the func-
tion they represent. Optimal truncation of an asymptotic series is then possible once the asymptotic
behaviour of the late-order terms are determined.
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2.2.1. Darboux’s Theorem.

Dingle [48] noted the connection between a divergent asymptotic series and the function to
which it is asymptotic by applying a theorem by Darboux [43,44]. This particular theorem demon-
strates that the coefficients of a Maclaurin expansion of a function φ are determined by its singu-
larities.

Using this theorem of Darboux, Dingle [48] was able to show that the late terms of an as-
ymptotic series are generically described by a factorial-over-power form. These asymptotic series
expansions are therefore factorially divergent. Once the behaviour of the late-order terms are ob-
tained we will use Borel summation methods in order to show that the optimally-truncated error
of this class of asymptotic power series is exponentially small. The theorem of Darboux which
Dingle used is given below.

Theorem 2.31 (Theorem of Darboux).
Suppose that a function φ(s) is singular at the set of points {si}, which all lie on the same Riemann
sheet as the origin, and has a Maclaurin expansion of the form

φ(s) =

∞∑
r=0

ars
r, (2.32)

with radius of convergence R = min |si|. Under these assumptions, the coefficients of the Maclau-
rin expansion (2.32) have the following asymptotic behaviour

ar ∼
∑
i

(
r + pi − 1

r

)
1

sr+pii

∞∑
k=0

(r + pi − k − 1)!(pi − 1)!

(r + pi − 1)!(pi − k − 1)!

ski φ
(k)
i (si)

k!
, (2.33)

as r →∞, and where pi are constants.

This particular theorem of Darboux [43, 44] therefore provides a connection between the be-
haviour of the late terms of an asymptotic series and the singularities of the function they represent.
The connection between the late-order terms and asymptotic series also reveals how a series ex-
pansion of a function diverges. Boyd [24, 25] provides a list of heuristics, which although are not
theorems, but are useful indicators of divergence for asymptotic series. One heuristic which is in
close connection to Darboux’s theorem states that a power series in ε will never converge to a func-
tion containing terms which is exponentially small in ε. In this case, the exponentially small terms
contain (essential) singularities.

In order to show how Theorem 2.31 can be used to determine an asymptotic expansion for
the late-order terms we reproduce and comment on Dingle’s demonstration in [48]. We consider a
function φ(s) which can be expanded as a Taylor series about the origin

φ(s) =

∞∑
r=0

ars
r, (2.34)

which converges within a circle centered at the origin with radius R. Suppose that φ(s) is singular
at the points s = si with modulus |si| ≥ R. In the neighbourhood of these singular points, the
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function φ(s) can be written as

φ(s) =
φi(s)

(si − s)pi
, (2.35)

where pi is either a positive integer for poles or fractional for branch points and φi(s) can be
expanded as a Taylor series about si. That is,

φi(s) =
∞∑
k=0

φ
(k)
i (si)

k!
(si − s)k, (2.36)

where φ(k) denotes the kth derivative of φ with respect to s. The goal is to rewrite (2.35) in terms
of a series expansion about s = 0. By expanding φ(s) as a power series centered at the origin
outside the circle of convergence we will find that the coefficients in (2.34) can be expressed as a
factorial-over-power form.

Using binomial series we find that

(si − s)−pi =
1

spii

∞∑
r=0

(
r + pi − 1

r

)(
s

si

)r
. (2.37)

Using (2.37) in (2.35) we find that φ(s) can be rewritten as

φ(s) =
1

(si − s)pi
∞∑
k=0

φ
(k)
i (si)

k!
(si − s)k,

=
∞∑
r=0

(
r + pi − 1

r

)
sr

sr+pii

(
φi(si)−

pi − 1

r + pi − 1
siφ
′
i(si) + · · ·

)
, (2.38)

for which (2.38) is a series expansion centered at the origin. The expression in (2.38) can then be
used to show that

φ(s) =
∞∑
r=0

(
r + pi − 1

r

)
sr

sr+pii

∞∑
k=0

(r + pi − k − 1)!(pi − 1)!

(r + pi − 1)!(pi − k − 1)!

ski φ
(k)
i (si)

k!
, (2.39)

∼
∞∑
r=0

(
r + pi − 1

r

)
sr

sr+pii

(
φi(si) +O

(
1

r

))
=
∞∑
r=0

(r + pi − 1)!

r!(pi − 1)!

sr

sr+pii

φi(si). (2.40)

Equation (2.39) shows that φ(s) can be re-expanded as a power series centered at the origin outside
its radius of convergence. Of course, the price we pay to do this is that the resulting series expansion
is divergent. More importantly, for large r, the term sri in the denominator of (2.39) shows that the
dominant contributions come from the singularities with smallest |si|. That is, the singularities
closest to the origin of expansion.

Although the function φ(s) may be singular at more than one point, Dingle [48] shows that the
late-order terms behaviour of the series expansion of φ(s) can be obtained in two ways. The first
is to expand φ(s) about the singularity closest to the origin of expansion, to which the late terms
expression is given by the sum in (2.33) for this chosen singularity. Alternatively, the behaviour



2.2. SUPERASYMPTOTICS 23

of ar can be obtained by expanding φ(s) about every singularity, keeping only the first few terms
of (2.33) and adding the contribution of each singularity. While both methods reach the same
conclusion, Dingle shows that the latter option is more convenient to determine the asymptotic
form of the late-order terms [48].

From Darboux’s theorem we learn that the contribution to ar, in (2.34), from the singularity,
si, is given by

ar ∼
(r + pi − 1)!

r!(pi − 1)!

φi(si)

sr+pii

, (2.41)

as r →∞, which has the general form of

(r + constant)!
(variable)r

. (2.42)

Dingle [48] was also able to extend this fact to asymptotic series and therefore the behaviour
of the late-order terms are also predominantly governed by the singularities of the represented
function. In our notation this means that the coefficients of the asymptotic power series in (2.6) are
determined by the singularities of f(z; ε) closest to the origin. Generalizations of the factorial-over-
power formulae described by (2.42) have also been studied in detail by Berry and Howls for the
asymptotic expansion of integrals with coalescing saddles [15]. For a class of nonlinear problems,
Chapman et al. [32] applied the following factorial-over-power ansatz

fr(z) ∼
F (z)Γ(r + γ)

χ(z)r+γ
, (2.43)

as r → ∞ and where γ is a constant. This ansatz can be regarded as a generalization of (2.42),
which was deduced from Darboux’s theorem. According to Darboux’s theorem, the function χ(z)
appearing in (2.43) must encode the singularities of the function the asymptotic series represents
and is therefore known as the singulant.

We now consider the class of asymptotic series which are factorially divergent. Factorially
divergent series are asymptotic power series of the form (2.6) whose coefficients are asymptotically
described by (2.43).

2.2.2. Optimally-truncated error via Borel summation.

In this section we will obtain explicit error bounds for the optimally-truncated error of an
asymptotic power series using Borel summation methods. In particular, it will be shown that the
optimally-truncated error of an asymptotic power series is exponentially small in the asymptotic
limit.
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By utilizing the integral representation of the Gamma function, Borel [21] observed that the
sum of a divergent series could be defined as

∞∑
r=0

εrfr :=

∫ ∞
0

e−t
∞∑
r=0

fr
Γ(r + 1)

(εt)rdt, (2.44)

provided that the summation on the right hand side of (2.44) converges over some range of εt.
Outside the radius of convergence, the sum under the integral of (2.44) can be analytically extended
due to the multiplicative exponential factor in the integrand. Although the summation diverges, the
exponential factor is exponentially small everywhere outside the radius of convergence, ensuring
the convergence of the integral in (2.44). Hence, whenever this is possible, a sum may be assigned
to an asymptotic power series and is interpreted to be the function which is asymptotic to the power
series expansion. This is known as Borel’s resummation procedure.

By Darboux’s theorem, Dingle found that the coefficients terms, fr, of (2.6) are generically
proportional to a factorial of the form Γ(r+γ) for sufficiently large r. In this case, we must exclude
the early terms in (2.6) and introduce a modified version of Borel’s resummation procedure [37,48].

Definition 2.45. We define the Borel transform of a power series

F (z; ε) =

∞∑
r=0

εrfr(z),

by

B [F ] (z; t) :=
∞∑
r=0

tr
fr(z)

Γ(r + γ)
. (2.46)

The Borel sum of F (z; ε) is defined to be

S [F ] (z; ε) :=

∫ ∞
0

e−ttγ−1B(z; εt)dt. (2.47)

The Borel transform and Borel sum defined in Definition 2.45 are, by construction, formal
inverses of each other and together constitute what is referred to as Borel’s resummation method.
Both Dingle [48] and Écalle [52] applied Borel summation methods in order to resum asymptotic
series providing a sum to these series.

Recalling that the late-order terms behave as factorials, we therefore apply Borel’s resum-
mation method to the divergent tail (2.13) where the late-order terms have behaviour described
by (2.43). Dingle [48] was the first to apply this procedure in order to show that the optimally-
truncated error of a factorially divergent asymptotic series is indeed exponentially small after noting
the generic behaviour of the coefficients implied by Darboux’s theorem. As before we reproduce
and comment upon the ideas of Dingle. The Borel transform of (2.13) is given by

B [RN ] =
F

χγ

∞∑
r=N

(
t

χ

)r
, (2.48)
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where F and χ are functions of z. The Borel sum of RN is then given by

S[RN ] =
F

χγ

∫ ∞
0

e−ttγ−1
∞∑
r=N

(
εt

χ

)r
dt, (2.49)

=
FεN

χN+γ

∫ ∞
0

e−ttN+γ−1 1

1− εt/χdt, . (2.50)

The Borel summation procedure highlights a subtlety associated with asymptotic power series.
The replacement of the series in (2.49) by its geometric sum is only valid in regions where t <
|χ| /ε for fixed small ε, but the range of integration is infinite. Hence, the asymptotic series for
RN is expected to diverge. A similar observation was noted by Boyd [25] in the Fourier integral
representation of the solution in question. Nonetheless, outside the radius of convergence, the
integrand is exponentially small and hence the integral is well defined.

We aim to find an upper bound of RN in equation (2.50). We first note that

tN+γ−1

εt/χ− 1
≤ tN+γ−1

εt/χ
,

for all t ≥ 0 and fixed ε. Applying this upper bound to (2.50) we find that

S[RN ] ≤ − FεN−1

χN+γ−1

∫ ∞
0

e−ttN+γ−2dt,

= − FεN−1

χN+γ−1
Γ(N + γ − 1) = E(N), (2.51)

where we have used the integral representation of the Gamma function [2] in order to obtain (2.51).
In order to optimally truncate (2.13) we need to find the value of N such that the error bound,
E(N), in (2.51) is minimal. The optimal truncation point, Nopt, can be found by differentiating
|E(N)| with respect to N for fixed ε and finding the value of N for which the derivative is zero.
The derivative of |E(N)| is zero when

ψ(Nopt + γ − 1) = log

( |χ|
ε

)
, (2.52)

where ψ is the digamma function. Following Boyd [24], (2.52) can be solve approximately to give

Nopt ∼
|χ|
ε
, (2.53)

as ε→ 0. The explicit upper bound to the optimally-truncated error can be obtained by substituting
(2.53) into (2.51). Noting that the argument of the Gamma function is large, we apply Stirling’s
formula, which is given by (2.29), in order to show that

|RN (z; ε)| ≤
√

2π

|χ|
|F |

εγ−1/2
e−|χ|/ε. (2.54)
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Hence, the optimally-truncated error of a factorially divergent asymptotic series is exponentially
small in the limit ε → 0. We also note that this is in agreement with the calculated optimally-
truncated error for the exponential integral given by (2.30) where χ = −z, F (z) = 1 and γ =
0. Consequently, in regions where RN is exponentially small, we say that RN is exponentially
subdominant relative to the leading order behaviour of (2.6).

Alternatively, the asymptotic behaviour for the optimally-truncated error may also be obtained
from Definition 2.4. From Definition 2.4, the behaviour of the error is described by

|RN | ∼
∣∣εNfN ∣∣ , (2.55)

as ε→ 0. Replacing fN andN by the late-order terms expression (2.43) and the optimal truncation
point (2.53) in equation (2.55) we also obtain (2.54). Although these two methods come to the same
conclusion, Borel summation highlights the subtle cause of divergence of an asymptotic power
series and also produces explicit bounds on the error.

As the error of superasymptotic approximations are exponentially small, any behaviour which
is of order O(exp(−α/εβ)) is therefore contained within this error. Hence, optimal truncation
of an asymptotic series therefore provides the essential step which will enable us to compute the
exponentially small contributions hidden within these series. In the next section will explore how
mathematical techniques known as hyperasymptotics or exponential asymptotics can be used in
order to study terms hidden beyond-all-orders.

2.3. Hyperasymptotics

In Section 2.2 we showed how truncating an asymptotic series at its least term produces an
error which is exponentially small in the limit ε → 0. However, the exponentially small terms we
are interested in are not explicitly visible at the level of superasymptotics. Further analysis is still
required to explicitly determine the form and behaviour of such terms.

In this section we discuss the development and demonstrate the ideas of exponential asymptotic
methods, which allow behaviour occurring on an exponentially small scale to be explicitly investi-
gated. In general, these methods form a systematic study of exponentially small behaviour. As the
optimally-truncated error of factorially divergent asymptotic series are known to be exponentially
small in the limit ε→ 0, these methods can be applied to investigate this error.

One first notable step towards the investigation of exponentially small terms hidden within
asymptotic power series was investigated by Dingle. By resumming the truncated error of an
asymptotic power series using Borel summation, Dingle was able to express (2.50) as

RN (z) = εNfN (z)Λn+γ ,

where
ΛN+γ =

1

Γ(N + γ)

∫ ∞
0

e−ttN+γ−1 1

1− εt/χdt. (2.56)

The expression appearing in (2.56) is one of four expressions known as Dingle’s basic termi-
nants [48]. Using his theory of terminants, Dingle showed that functions represented by factorially
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divergent asymptotic power series expansions can be expressed as

‘first N terms of asymptotic expansion +N th term× terminant’.

Inspired by Dingle’s ideas, Berry applied Borel’s summation method to the optimally-truncated
error of an asymptotic series [10, 11] in order to study the apparent discontinuous change in the
asymptotic representation of the Airy function in the complex plane. This apparent change in
the asymptotic expansion of a function is generally known as the Stokes phenomenon, which we
discuss further in Section 2.4.

The innovative ideas of Berry led to the subsequent development of hyperasymptotic methods.
In 1990, Berry and Howls [13] were the first to develop a technique which improved upon su-
perasymptotic expansions of Schrödinger type differential equations. The idea was to replace the
coefficients appearing in the error of the superasymptotic approximation not by the leading order
asymptotic behaviour of the late terms, but by its complete asymptotic expansion.

Darboux’s theorem tells us the complete asymptotic expansion of the late-order terms with
leading order behaviour (2.43) can be expressed by a series expansion of the form

fr(z) ∼
F (z)

χ(z)r+γ

∞∑
k=0

ak(z)Γ(r + γ − k), (2.57)

as r →∞ where a0(z) = 1. We note that the first term of (2.57) produces (2.43) to leading order.
By using the complete expansion for the late-order terms, the optimally-truncated error in (2.20)
can be rewritten as

RN ∼
∞∑

r=Nopt

εrfr(z),

∼
∞∑

r=Nopt

εrF (z)

χ(z)r+γ

∞∑
k=0

ak(z)Γ(r + γ − k),

=
F (z)

χ(z)γ

∞∑
r=0

ar(z)
∞∑

k=Nopt

(
ε

χ(z)

)k
Γ(k + γ − r), (2.58)

as ε→ 0. Borel’s resummation procedure can then be applied to the ‘k-sum’ appearing in equation
(2.58) in order to obtain the asymptotic expansion

RN =
FεNopt

χNopt+γ

∞∑
r=0

ar(z)

∫ ∞
0

e−ttN+γ−r−1 1

1− εt/χdt, (2.59)

where Nopt is given by (2.53) as ε → 0. In this way an asymptotic series expansion for the
optimally-truncated error is obtained. The integral expression appearing in (2.59) is precisely the
expression of Dingle’s terminant with N = Nopt.

The integrand in (2.59) has a singularity at t = χ/ε. In particular, this singularity lies of the
path of integration if χ/ε ∈ R+. Since we consider ε > 0 in this thesis, the path of integration of
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(2.59) contains a singularity if Re(χ) > 0 and Im(χ) = 0. We will see in Section 2.4, that the pole
structure of RN coincides with the characterization for Stokes curves and gives rise to the Stokes
phenomenon. In fact, the contribution due to the Stokes phenomenon is given by the residue
of (2.59) at the singularity, which is proportional to F (z) exp(−χ(z)/ε)ε−γ . This is detailed in
Appendix C.

The resulting series expansion of the optimally-truncated error is also divergent and therefore
the procedure of optimal truncation and resummation can also be applied to this series expan-
sion. Repeated iterations of this procedure produces a sequence of finite series expansions, which
Berry and Howls name as hyperseries. These hyperseries were found to involve terms of the orig-
inal asymptotic series expansion and are multiplied by a multiple integral expression known as
hyperterminants. These hyperterminants are the hyperasymptotic generalizations of Dingle’s ba-
sic terminants. This method of systematically reducing the exponentially small error produces an
asymptotic series expansion, which attains accuracy greater than the superasymptotic error. The
resulting approximation obtained from this method is known as a hyperasymptotic approximation.

Subsequent papers based on the original paper by Berry and Howls [13] extended the method
of hyperasymptotics to problems with established asymptotic results and demonstrated the appli-
cability of the hyperasymptotic method. In [14], Berry and Howls considered integrals of the form∫

γ
g(z) exp(−kf(z))dz, (2.60)

where |k| is a large parameter, f, g are analytic functions and γ is a contour passing through a saddle
point of f(z). Berry and Howls apply the hyperasymptotic method in order to find approximations
which include exponentially small contributions due to other saddle points of f(z) not present
on the steepest descent contour. This study refined the method of steepest descents to include
exponentially small error.

Howls [70] extended these results to integrals of the form (2.60) with finite endpoints, and
obtained results analogous to [14]. As the Borel transform method falls under the class of integrals
considered in [14, 70], these investigations effectively established the applicability of the hyper-
asymptotic method for all systems that possess a Borel transform representation, regardless of their
original formulation.

Following the works of both [14,70], the hyperasymptotic method was then shown to be appli-
cable for multidimensional variants of (2.60) in [71] and [46].

2.3.1. Applications of Hyperasymptotics.

Hyperasymptotic or exponential asymptotic methods allow us to explicitly study the optimally-
truncated error and also determine its asymptotic series expansion. One particular application of
exponential asymptotic methods is to study behaviour known as Stokes phenomenon. Stokes phe-
nomenon or Stokes behaviour describes the sudden appearance or disappearance of an exponen-
tially small term within an asymptotic expansion as we cross a ray in the complex plane. The first
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hyperasymptotic method developed to understand Stokes phenomenon was by Berry [10, 11] who
showed the change due to Stokes phenomenon in the Airy equation is continuous by investigat-
ing (2.56) in the neighbourhood of Stokes curves. This was the first demonstration of the Stokes
smoothing technique.

Berry’s ideas in [10,11] brought new insights on the role of Stokes curves, subsequently leading
to the development of new methods to describe and calculate Stokes phenomenon. One particular
method developed by Olde Daalhuis et al. [121] utilizes the method of matched asymptotic ex-
pansions in order to describe Stokes phenomenon for a certain class of linear ordinary differential
equations. Without the need of Borel summation methods, the matched asymptotic expansions ap-
proach by Olde Daalhuis et al. [121] also shows that the variation across Stokes curves is described
by the error function in agreement with Berry [10].

The idea is to expand the solution of the differential equation as an asymptotic power series
in ε after which the solution is then expressed as the difference between the optimally-truncated
asymptotic power series and a remainder term. In this way, the exponentially small behaviour
present in the problem is isolated away from the terms which dominate it. Matched asymptotic
expansions can then be used to investigate the variation of the remainder term in the neighbourhood
of Stokes curves. The method presented in [121] is of interest when the solutions to differential
equations are not expressible in terms of integral expressions.

Chapman et al. [32] extended the methodology presented in [121] to nonlinear differential
equations. Chapman et al. exploit the generic factorial-over-power behaviour of the late-order
terms, allowing optimal truncation methods to be applied to nonlinear problems. As the problem
investigated in [121] is linear, the factorial-over-power ansatz is not necessary as the exact form for
the coefficient terms may be determined.

Exponential asymptotic methods based on the methodology developed by Chapman et al. [32]
were also extended for partial differential equations [33] and differential-difference equations [92].

2.4. Stokes Phenomenon

A function, f(z), in some sector of the complex plane can be approximated by an asymptotic
power series say

f(z) ∼
∞∑
r=0

εrfr(z), (2.61)

as ε→ 0. However, the function f(z) can have different asymptotic series expansions in different
sectors of the complex plane since any arbitrary multiple of an asymptotic power series prefactored
by an exponentially small term can be added to the asymptotic representation and such a term may
not be small in all directions. Hence, when different sectors are crossed, the asymptotic expansion
may appear to change discontinuously.
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This discontinuous change in the asymptotic representation is due to the appearance or disap-
pearance of exponentially small terms. This behaviour is known generally as Stokes phenomenon
or Stokes behaviour. The appearance or disappearance of exponentially small terms in the asymp-
totic expansion is also referred to as Stokes switching. The curves separating two adjacent sectors
in which Stokes switching occurs are known as Stokes curves. An example of Stokes curves for
the hyper-Airy equation, which we will consider in Section 2.5, is illustrated in Figure 2.2.

In Figure 2.2 the non-shaded region denotes regions in which Y (z) ∼ Y1(z) as ε → 0 where
Y (z) is a solution of the hyper-Airy equation (2.68) and where Y1(z) is given by equation (2.71).
As the Stokes curve separating the non-shaded and light blue shaded regions is crossed, the asymp-
totic expansion of Y (z) is now described by Y (z) ∼ Y1(z) + 2πY3(z) as ε → 0. The asymptotic
expansion contains a term proportional to Y3(z), which is exponentially small in this region. Con-
tinuing into the green-shaded region, another exponentially small term, Y2(z), suddenly appears,
and the behaviour is now described by Y (z) ∼ Y1(z)+2πY3(z)+2iπY2(z) as ε→ 0. This Stokes
switching behaviour will be explicitly calculated in Section 2.5.5. Similarly, Stokes behaviour is
also present in the lower half plane of Figure 2.2. In Figure 2.2, the subdominant exponential,
Y4(z), is switched on in the dark-blue shaded region while the subdominant exponential, Y1(z), is
switched on in the pink-shaded region.

Stokes curves may be characterized in the following way. Consider the function f(z) in (2.61).
Then by optimal truncation methods the asymptotic expansion of f(z) may be described by

f(z) =

Nopt−1∑
r=0

εrfr(z) +RN (z). (2.62)

Since the optimally-truncated error is exponentially small in ε we can express the remainder term
in (2.62) as

f(z) = e−χ0(z)/ε

Nopt−1∑
r=0

εrfr(z) +
∑
i

e−χi(z)/εφi(z), (2.63)

where φi(z) are formal power series in ε and we assume that Re(χj) > Re(χi) > 0 for j > i. In the
expression given by (2.63), we have multiplied the optimally-truncated series by the unit prefactor,
which we write as exp(−χ0/ε) where χ0(z) = 0. We say that the exponential contribution due to
χi, the term exp(−χi/ε), is exponentially subdominant compared to the leading order behaviour
f0 in regions where Re(χi) > 0.

Olde Daalhuis et al. [121] describes Stokes phenomenon as the change in the remainder of
an optimally-truncated asymptotic series in regions where it is comparable in size to subdominant
contributions. In this way, the Stokes curves of (2.63) may be characterized by the condition

Im(χi − χj) = 0, (2.64)

for i 6= j. If we are only interested in the leading order behaviour of subdominant exponentials
appearing in (2.63), e.g. the case when j = 1, then the Stokes curves are given by

Im(χ0 − χ1) = Im(−χ1) = 0,
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Re(s)

Im(s)

Y (z) ∼ Y1(z)

Y (z) ∼ Y1(z) + 2πY3(z)

Y (z) ∼ Y1(z) + 2iπY2(z) + 2πY3(z)

Y (z) ∼ Y1(z)− 2iπY2(z)− 2πY4(z)

Y (z) ∼ Y1(z)− 2πY4(z)

Stokes curves
Branch cut

FIGURE 2.2. This figure illustrates Stokes behaviour present in the asymptotic solutions
of the hyper-Airy equation as ε → 0. As Stokes curves (red curves) are crossed a sub-
dominant exponential is switched on due to Stokes switching. In the non-shaded regions
the asymptotic solution is described, to leading order, by the term Y1(z), which is given in
(2.71). In each colour shaded region, the asymptotic behaviour of the hyper-Airy equation
is described by different asymptotic series expansions. Each of these expansions differ by
a term proportional to Yj for j = 2, 3, 4, which is exponentially subdominant compared to
Y1.

since χ0 = 0. Hence, a Stokes curve of the leading order subdominant exponential is given by

Im (χ1) = 0. (2.65)

Another curve which plays an important role in Stokes phenomenon are curves known as anti-
Stokes curves. These are the curves across which exponential contributions exchange dominance.
That is, a subdominant exponential becomes dominant and vice versa as anti-Stokes curves are
crossed. As an example, when anti-Stokes curves are crossed the subdominant exponential, e−χ1/ε,
now dominates the term f0 in (2.63). Since f0 is no longer the dominant behaviour for f(z), anti-
Stokes curves mark the boundaries of regions in which f(z) ∼ f0(z) as ε→ 0. Anti-Stokes curves
may be characterized by the condition

Re(χi − χj) = 0, (2.66)

for i 6= j. Similarly, if we are only interested in the leading order behaviour of subdominant
exponentials appearing in (2.63), e.g. the case when j = 1, then the anti-Stokes curves are given
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by
Re(χ0 − χ1) = Re(−χ1) = 0.

Hence, an anti-Stokes curve of the leading order subdominant exponential is given by

Re (χ1) = 0. (2.67)

Historically, the first account of the Stokes phenomena was encountered by Stokes [147] in his
study of the Airy function. At the time, the change in the asymptotic series expansion of the Airy
function appeared to be discontinuous, presenting a paradox as the Airy function is entire, meaning
it is analytic and finite at all points in the complex plane. By using exponential asymptotic methods
Berry [10, 11] was able to resolve this paradox, showing that variation across Stokes curves could
be approximated by the continuous error function.

In the next section we demonstrate Stokes behaviour for the hyper-Airy equation. In particular,
we demonstrate the exponential asymptotic method developed by Olde Daalhuis [121] in order to
calculate such behaviour. Using this methodology, we will find asymptotic expansions of the form
(2.6) whose late-order terms are given by a factorial-over-power form (2.43).

2.5. Example: the hyper-Airy equation

We now apply the ideas discussed in Sections 2.2 and 2.3 in order to study Stokes behaviour in
the solutions of the hyper-Airy equation. The hyper-Airy equation is a fourth order generalization
of the Airy equation [8]. It is given by

y′′′′ = xy, (2.68)
where y = y(x) and the prime denotes differentiation with respect to x. For the purpose of this
thesis, we introduce a small parameter, ε, such that the limit |x| → ∞ is equivalent to the limit
ε→ 0. This can be done by rescaling the variables of (2.68).

2.5.1. Rescaling the hyper-Airy equation.

We introduce ε by applying the rescalings

y(x) = ε3/10Y (z), x =
z

ε4/5
. (2.69)

We note the there is no need to introduce ε in this example since z scales with ε. This is done
for pedagogical reasons as the problems considered in this thesis are formulated such that the
asymptotic limit of interest is ε→ 0. Under this choice of scalings, (2.68) can be rewritten as

ε4Y ′′′′ = zY, (2.70)

where the prime now denotes derivatives with respect to z. We wish to study the behaviour of
solutions to (2.70) as ε → 0, i.e. the far field behaviour of (2.68). It can be shown by the well-
known WKB method [8, 29, 76, 94, 154] that solutions of (2.70) have the asymptotic behaviours

Yj(z) ∼
Cj

z3/8
exp

(
4ωjz

5/4

5ε

)
, (2.71)
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as ε → 0, where Cj are arbitrary constants, ω1 = −ω2 = −1 and ω3 = −ω4 = −i. These
four behaviours describe four linearly independent solutions of the hyper-Airy equation. For this
demonstration, we will study solutions of (2.70) with behaviour

Y (z) ∼ Y1(z) =
1

z3/8
exp

(
−4z5/4

5ε

)
, (2.72)

as ε → 0 in some sector S′c, say, containing the positive real z axis. We may now calculate the
asymptotic power series expansion as the leading order behaviours of the hyper-Airy equation have
been determined.

2.5.2. Asymptotic series expansion.

In order to construct an asymptotic series expansion for Y (z), we scale out the leading order
behaviour by writing

Y (z) ∼ 1

z3/8
exp

(
−4z5/4

5ε

)
g(z), (2.73)

where g ∼ 1 +O(ε) as ε→ 0 in S′c. Substituting (2.73) into (2.70) we obtain the equation

−4z3/4εg(1) + ε2
(

6z1/2g(2) − 3

2z1/2
g(1) +

45

32z11/4
g

)
,

+ ε3
(
−4z1/4g(3) +

3

z3/4
g(2) − 69

16z7/4
g(1) +

225

64z11/4
g

)
,

+ ε4
(
g(4) − 3

2z
g(3) +

99

32z2
g(2) − 627

128z3
g(1) +

16929

4096z4
g

)
= 0, (2.74)

where the superscripts ‘(j)’ denote the j-th derivative with respect to z. We expand g(z) as an
asymptotic power series in ε by writing

g(z) =
∞∑
r=0

εrgr(z). (2.75)

By substituting (2.75) into (2.74) and equating powers of ε we find that the first few terms are given
by

g0 = 1, g1 = − 9

32z5/4
, g2 =

441

2048z5/2
, g3 = − 30303

327680z15/4
. (2.76)

We observe from (2.76) that the coefficients g1(z), g2(z) and g3(z) are singular at z = 0. In
general, the coefficients of (2.75) satisfy the following recurrence relation

4z3/4g
(1)
r−1 = 6z1/2g

(2)
r−2 −

3

2z1/2
g

(1)
r−2 +

45

32z11/4
gr−2,

− 4z1/4g
(3)
r−3 +

3

z3/4
g

(2)
r−3 −

69

16z7/4
g

(1)
r−3 +

225

64z11/4
gr−3,

+ g
(4)
r−4 −

3

2z
g

(3)
r−4 +

99

32z2
g

(2)
r−4 −

627

128z3
g

(1)
r−4 +

16929

4096z4
gr−4, (2.77)
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for integers r ≥ 4. By recursively solving (2.77) we may uniquely determine the coefficients gr(z)
with appropriate boundary conditions, and hence obtain an asymptotic power series expansion for
the solutions of the hyper-Airy equation. This is not practical since the calculation of later terms
become increasingly laborious. Instead we apply the factorial-over-power ansatz used by Chapman
et al. [32] to determine the asymptotic behaviour of the late-order terms in the limit r →∞.

2.5.3. Late-order terms analysis.

The first few coefficients in (2.76) reveal that they contain a singularity at z = 0. From (2.77)
we observe that the calculation of successive coefficients involve repeated differentiation of the
previous terms. Consequently, the strength of the singularity, that is, the order of the singularity,
increases for each derivative taken. Hence, the asymptotic behaviour of the late-order terms will
be a factorial-over-power form described in (2.43).

We therefore assume that the coefficient, gr, is described by the factorial-over-power ansatz,

gr ∼
GΓ(r + γ)

χr+γ
, (2.78)

as r → ∞, where G and χ are functions of z. The first two derivatives of (2.78) are calculated
below

g′r ∼
(−χ′)GΓ(r + γ + 1)

χr+γ+1
+
G′Γ(r + γ)

χr+γ
,

g′′r ∼
(−χ′)2GΓ(r + γ + 2)

χr+γ+2
+
(
2(−χ′)G′ + (−χ′′)G

) Γ(r + γ + 1)

χr+γ+1
+
G′′Γ(r + γ)

χr+γ
.

In general, it can be shown using induction that the jth derivative of (2.78) is given by

dj

dzj

(
GΓ(r + γ)

χr+γ

)
∼ (−χ′)jGΓ(r + γ + j)

χr+γ+j
+

(
j

1

)
(−χ′)j−1G′Γ(r + γ + j − 1)

χr+γ+j−1
,

+

(
j

2

)
(−χ′)j−2(−χ′′)GΓ(r + γ + j − 1)

χr+γ+j−1
+O(Γ(r + γ + j − 2)),

= (−χ′)jgr+j ,

+

((
j

1

)
(−χ′)j−1G

′

G
+

(
j

2

)
(−χ′)j−2(−χ′′)

)
gr+j−1 +O(gr+j−2),

(2.79)
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as r → ∞ and where we have used the notation O(gr) to be equivalent to O(Γ(r + γ)χ−r−γ) as
r →∞. Applying (2.78) into (2.77) we obtain

6z1/2

(
(χ′)2gr + (−2χ′

G′

G
− χ′′)gr−1

)
+

3

2z1/2
χ′gr−1,

− 4z1/4

(
−(χ′)3gr + (3(χ′)2G

′

G
+ 3χ′χ′′)gr−1

)
+

3

z3/4
(χ′)2gr−1,

(χ′)4gr +

(
−4(χ′)3G

′

G
− 6(χ′)2χ′′

)
gr−1 +

3

2z
(χ′)3gr−1 + · · · ,

∼ 4z3/4

(
−χ′gr +

G′

G
gr−1

)
, (2.80)

where the neglected terms are of order O(gr−2) as r → ∞. By matching orders of O(gr) as
r → ∞, we will obtain equations which allow us to determine the singulant and prefactor of the
late-order terms, (2.78).

2.5.3.1. Calculating the singulant, χ.

Matching terms of order O(gr) in (2.80) we find the leading order equation is given by

− 4z3/4(−χ′) + 6z1/2(−χ′)2 − 4z1/4(−χ′)3 + (−χ′)4 = 0, χ(0) = 0, (2.81)

where the last condition arises because χ(z) must vanish at the singularities of gr(z). Since (2.81)
is a quartic polynomial in χ′ we may solve for χ′ in order to find

χ′ = −2z1/4, χ′ = −(1 + i)z1/4, χ′ = −(1− i)z1/4 χ′ = 0,

which are all subject to the condition χ(0) = 0. From these equations, it can be shown that

χ1 = −8z5/4

5
, χ2 = −4

5
(1 + i)z5/4, χ3 = −4

5
(1− i)z5/4. (2.82)

We note that although equation (2.81) admits the solution χ = 0, we reject this solution since
(2.43) would be undefined.

2.5.3.2. Calculating the prefactor, G.

As the singulant χ has been determined in Section 2.5.3.1 we are now able to determine the
form of the prefactor, G. Matching terms of O(gr−1) in (2.80) gives the equation

4z3/4G
′

G
= −4(χ′)3G

′

G
− 6(χ′)2χ′′ +

3

2z
(χ′)3 +

3

z3/4
(χ′)2,

+ 6z1/2

(
−2χ′

G′

G
− χ′′

)
+

3

2z1/2
χ′ − 4z1/4

(
3(χ′)2G

′

G
+ 3χ′χ′′

)
, (2.83)

which can be simplified to give
G′

G
=

3(4zχ′′ − χ′)
8z(χ′ + z1/4)

. (2.84)
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As the singulant expressions were calculated in Section 2.5.3.1, we may then solve (2.84). As each
of the singulants are proportional to z5/4 we find that

4zχ′′ − χ′ = 0,

for each singulant. Therefore, the solution of (2.84) for each choice of χi is

G1 = Λ1, G2 = Λ2, G3 = Λ3, (2.85)

where Λi are constants. Hence we find that the leading order behaviour of the late-order terms is
given by

gr(z) ∼
Λ1Γ(r + γ1)

(−8z5/4/5)r+γ1
+

Λ2Γ(r + γ2)

(−4(1 + i)z5/4/5)r+γ2
+

Λ3Γ(r + γ3)

(−4(1− i)z5/4/5)r+γ3
, (2.86)

as r →∞. The expression of the late-order terms (2.86) is therefore composed of three terms. We
note that in the limit r → ∞ and for real z, the late-order terms expression are dominated by the
contributions which come from χ2 and χ3 since |χ2| = |χ3| < |χ1|. Consequently, we may write

gr(z) ∼
Λ2Γ(r + γ2)

(−4(1 + i)z5/4/5)r+γ2
+

Λ3Γ(r + γ3)

(−4(1− i)z5/4/5)r+γ3
, (2.87)

as r → ∞. In Section 2.5.5 we will discover that exponentially small contributions hidden
within (2.75) are proportional to exp(−χ/ε). Therefore the exponential contributions associated
with χ2 and χ3 are subdominant whereas the exponential contribution associated with χ1 is sub-
subdominant in regions where Re(z) > 0.

In order to completely determine the form of the late-order terms we must also determine the
values of γj and Λj . This can be done by matching the late-order expression given in (2.86) to the
leading order behaviour in the neighbourhood of the singularity.

2.5.3.3. Calculating the value of γi.

To determine the correct values of γi in (2.86) we recall that g1 has a pole at z = 0 of strength
5/4. Since the dominant behaviour of (2.77) is given by the dominant balance

4z3/4g′r−1 ∼ 6z1/2g′′r−2, (2.88)

as r → ∞, it follows that the set of singular points of gr will be the same as that of g1 for all r.
Furthermore, we deduce from (2.88) that if gr−1 has a singularity at s0 with strength ν then gr will
be singular at s0 with strength ν + 5/4.

Hence, since we know that g1 is singular at z = 0 with strength 5/4, this implies that gr will
be singular at z = 0 with strength 5r/4. For consistency in the singular behaviour of the late-order
terms expression, (2.86), we require that 5(r + γj)/4 = 5r/4 for j = 1, 2, 3 and therefore

γj = 0,

for j = 1, 2, 3.
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2.5.3.4. Calculating the value of Λ.

The value of Λ2 and Λ3 in (2.87) can be numerically determined as follows. We first multiply
(2.87) by i and rearrange the expression to obtain

i2r/2
gr(z)

Γ(r)

(
−4z5/4

5

)r
∼ iΛ2e

−iπr/4 + iΛ3e
iπr/4, (2.89)

as r → ∞. By appropriately adding (or subtracting) successive terms in (2.89) we can obtain
formulas for the constants Λj , in the limit r →∞. Doing this, we obtain

2iΛ2 = lim
r→∞

(
−4
√

2z5/4

5e−iπ/4

)r  igr(z)
Γ(r)

−
(
−4
√

2z5/4

5

)2
gr+2(z)

Γ(r + 2)

 , (2.90)

2iΛ3 = lim
r→∞

(
−4
√

2z5/4

5eiπ/4

)r  igr(z)
Γ(r)

+

(
−4
√

2z5/4

5

)2
gr+2(z)

Γ(r + 2)

 . (2.91)

By using the recurrence relation (2.77) in order to compute a sufficiently large number of terms,
gr, we can then use equations (2.90) and (2.91) to numerically determine the values of Λ2 and Λ3.
We computed the first 1000 gr terms to find that

Λ2 ≈ 0.1125 + 0.1125i, (2.92)
Λ3 ≈ 0.1125− 0.1125i. (2.93)

We note that the results from (2.90) and (2.91) are possible because the singularities of χ2 and χ3

are equidistant to the origin. In this example, the singularities are all located at the origin, z = 0.
If this is not the case, the methods outlined by Olde Daalhuis [117] can be applied to determine the
values of Λi.
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(A) Real part of Λ2.
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(B) Imaginary part of Λ2.

FIGURE 2.3. This figure illustrates the approximation for Λ2 in (2.87). We see that as r
increases, the approximation for Λ2 tends to the limiting value calculated to be approxi-
mately 0.1125 + 0.1125i.
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(A) Real part of Λ3.
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(B) Imaginary part of Λ3.

FIGURE 2.4. This figure illustrates the approximation for Λ3 in (2.87). We see that as r
increases, the approximation for Λ3 tends to the limiting value calculated to be approxi-
mately 0.1125− 0.1125i.

2.5.4. Optimal truncation.

Since the asymptotic behaviour of the late-order terms is composed of three terms, the series
(2.75) can be separated into three component asymptotic series, that is,

g(s) ∼
∞∑
r=0

εrΛ1Γ(r)

(−8z5/4/5)r
+

∞∑
r=0

εrΛ2Γ(r)

(−4(1 + i)z5/4/5)r
+

∞∑
r=0

εrΛ3Γ(r)

(−4(1− i)z5/4/5)r
, (2.94)

as ε → 0. Let us denote in (2.94) the first component series by G1(z), the second component
series by G2(z) and the third component series by G3(z). In order to optimally truncate (2.94)
we truncate one of the three component asymptotic series, Gj . The subsequent analysis will be
performed for general χ and F with the particular choice made afterwards. Using the heuristic
(2.25) we find that optimal truncation point of the component series Gj is given by

Nopt,j ∼
|χj |
ε
,

as ε→ 0. To ensure that the optimal truncation point is integer valued we set

Nopt,j =
|χj |
ε

+ κj , (2.95)

where κj ∈ [0, 1). Then, the optimal truncation of the asymptotic power series (2.75) is given by

g(z) =

Nopt−1∑
r=0

εrgr(z) +RN (z), (2.96)

where RN is the optimally-truncated error.
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2.5.5. Analysis of the remainder using exponential asymptotics.

In order to study the exponentially small contributions present in (2.96) we investigate RN .
Substituting (2.96) into (2.74) and using equation (2.77) to cancel terms we find that

− 4z3/4εR
(1)
N + ε2

(
6z1/2R

(2)
N −

3

2z1/2
R

(1)
N +

45

32z11/4
RN

)
,

+ ε3
(
−4z1/4R

(3)
N +

3

z3/4
R

(2)
N −

69

16z7/4
R

(1)
N +

225

64z11/4
RN

)
,

+ ε4
(
R

(4)
N −

3

2z
R

(3)
N +

99

32z2
R

(2)
N −

627

128z3
R

(1)
N +

16929

4096z4
RN

)
∼ −4z3/4εN+1g′N + · · · ,

(2.97)

as ε → 0. We have seen in Section 2.2 that the optimally-truncated error is proportional to the
first neglected term, that is, RN = O(εNgN ). Hence we may neglect higher order correction
terms in ε, which are of order O(εN+2gN+2) as ε → 0. We first consider the term on the right-
hand side of equation (2.97). By replacing gN by its asymptotic behaviour (2.86), we find that the
inhomogeneous term in (2.97) can be written as

−4z3/4εN+1g′N ∼ −4z3/4εN+1 d

dz

ΛΓ(N)

χN
,

= −4z3/4εN+1

(
(−χ′)ΛΓ(N + 1)

χN+1

)
,

= 4z3/4εN+1χ
′ΛΓ(N + 1)

χN+1
,

= 4z3/4εN+1χ′gN+1, (2.98)

as ε → 0. By using Stirlings formula, which is given by (2.29), and substituting the optimal
truncation point (2.95) into (2.98) we find that inhomogeneous term is asymptotically given by

−4z3/4εN+1g′N ∼ 4z3/4ε|χ|/ε+κ+1
χ′ΛΓ

(
|χ|
ε + κ+ 1

)
χ|χ|/ε+κ+1

,

∼ 4z3/4ε|χ|/ε+κ+1 χ′Λ

χ|χ|/ε+κ+1

√
2πe−|χ|/ε

( |χ|
ε

)|χ|+κ+1/2

,

= 4z3/4ε1/2
χ′Λ

χ|χ|/ε+κ+1

√
2πe−|χ|/ε |χ||χ|+κ+1/2 , (2.99)

as ε → 0. From (2.99) we find that the inhomogeneous term of (2.97) is exponentially small
everywhere except in the neighbourhood of the Stokes curve. Hence, away from Stokes curves,
equation (2.97) can be approximated by its homogeneous version in the limit ε→ 0. We therefore
seek a solution to the homogeneous version of (2.97). We apply the WKB ansatz

RN (z) = a(z)eb(z)/ε, (2.100)
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for the homogeneous solution of equation (2.97). We call a(z) and b(z) the WKB amplitude factor
and WKB phase factor of (2.100), respectively. The first few derivatives of the WKB ansatz are
calculated below

R′N =
b′

ε
RN +

a′

a
RN ,

R′′N =

(
b′

ε

)2

RN + 2

(
b′

ε

)
a′

a
RN +

(
b′′

ε

)
RN +

a′′

a
RN ,

etc. In general, it can be shown using mathematical induction that the jth derivative of the WKB
ansatz (2.100) is given by

dj

dzj
(aeb/ε) ∼

(
b′

ε

)j
RN +

((
j

1

)(
b′

ε

)j−1 a′

a
+

(
j

2

)(
b′

ε

)j−2(b′′
ε

))
RN +O

(
RN
εj−2

)
,

(2.101)
as ε→ 0. Substituting the ansatz (2.100) into the homogeneous version of (2.97) gives

0 = −4z3/4ε

(
b′

ε
+
a′

a

)
RN + 6z1/2ε2

((
b′

ε

)2

+ 2
b′

ε

a′

a
+
b′′

ε

)
RN −

3ε2

2z1/2

b′

ε
RN ,

− 4z1/4ε3

((
b′

ε

)3

+ 3

(
b′

ε

)2 a′

a
+ 3

b′

ε

b′′

ε

)
RN +

3ε3

z3/4

(
b′

ε

)2

RN ,

+ ε4

((
b′

ε

)4

+ 4

(
b′

ε

)3 a′

a
+ 6

(
b′

ε

)2 b′′

ε

)
RN −

3ε4

2z

(
b′

ε

)3

+O(ε2RN ), (2.102)

as ε → 0. By matching terms of O(RN ) as ε → 0 in equation (2.102) we find that the leading
order equation is given by

O(RN ) : −4z3/4b′ + 6z1/2(b′)2 − 4z1/2(b′)3 + (b′)4 = 0. (2.103)

Continuing to the next order, we match terms of O(εRN ) to find that

4z3/4a
′

a
= 4(b′)3a

′

a
+ 6(b′)2b′′ − 3

2z
(b′)3,

+ 6z1/2

(
2b′
a′

a
+ b′′

)
− 3

2z1/2
b′ − 4z1/4

(
3(b′)2a

′

a
+ 3b′b′′

)
+

3

z3/4
(b′)2. (2.104)

By comparing equation (2.103) to the singulant equation (2.81) we find that they coincide provided
that WKB phase factor, b(z), is equal to −χ(z). Similarly, comparison between equations (2.104)
and (2.83) show that G(s) and a(s) satisfy the same first order differential equation and hence the
WKB amplitude factor, a(s), is a constant. The homogeneous solutions of (2.97) are therefore
given by

RN,hom(s) ∼ Cje−χj(s)/ε, (2.105)

as ε → 0 for j = 1, 2, 3 and where Cj is an arbitrary constant. Hence, by truncating the jth

component series in (2.94) optimally, we obtain an error which is exponentially small in the limit
ε→ 0 in regions where Re(χj) > 0 for j = 1, 2, 3.
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2.5.5.1. Stokes smoothing.

In the following analysis we will investigate Stokes behaviour associated with the subdomi-
nant exponentials. In Section 2.5.3 we found that |χ1| > |χ2| = |χ3|. Consequently, we learn
from (2.105) that the exponential contributions associated with χ1 is exponentially smaller than
the exponential contributions associated with χ2 and χ3. Hence, the exponential contribution as-
sociated with χ2 and χ3 are subdominant while the exponential contribution associated with χ1

is sub-subdominant. Consequently, there will be a component asymptotic series multiplied by the
sub-subdominant exponential contained within (2.96). This will also display Stokes behaviour
induced by the leading order term g0.

Away from the Stokes curves, RN is described asymptotically by RN,hom in the limit ε → 0.
However in the neighbourhood of Stokes curves, RN exhibits Stokes phenomena and is therefore
no longer described by RN,hom. In order to capture the Stokes behaviour of RN we write

RN = SjΛjRN,hom, (2.106)

where we include Λj for algebraic convenience. The function Sj = Sj(z) has variations taking
place only in the neighbourhood of Stokes curves and therefore constant otherwise. The function
S is referred as the Stokes multiplier. Substitution of (2.106) into equation (2.97) gives

ε

(
− 4z3/4S ′

S − 4(χ′)3S ′
S − 6(χ′)2χ′′ +

3

2z
(χ′)3 − 6z1/2

(
2χ′
S ′
S + χ′′

)
,

+
3

2z1/2
χ′ − 4z1/4

(
3(χ′)2S ′

S + 3χ′χ′′
)

+
3

z3/4
(χ′)2

)
RN ∼ 4z3/4εN+1χ′gN+1 + · · · ,

(2.107)

as ε→∞. Simplification of (2.107) gives

S ′j ∼ −
z3/4

(z1/4 + χ′j)
3

χ′jε
NgN+1

Λj
eχj/ε,

∼ − z3/4

(z1/4 + χ′j)
3

χ′jε
NΓ(N + 1)

χN+1
j

eχj/ε, (2.108)

as ε→ 0. Since the singulants are explicitly given in equation (2.82) we find that the term

z3/4

(z1/4 + χ′j)
3

=


−1 =: K1, for j = 1,

−i =: K2, for j = 2,

i =: K3, for j = 3,

and hence we may replace this term by the constant Kj for the particular choice of χj . We first
make a change of variable to write S as a function of χ instead of s. Under this change of variables,
equation (2.108) becomes

dSj
dχj
∼ −Kjε

NΓ(N + 1)

χN+1
j

eχj/ε, (2.109)
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as ε → ∞. Noting the form of the optimal truncation point, (2.95), we then make the change
of variables χj = reiθ and restrict ourselves to curves with fixed r. The fast variations in the
remainder term of (2.96) is captured as the phase of z varies. Consequently, in order to capture the
Stokes behaviour we investigate variations with respect to θ. This transformation gives

d

dχ
=

1

ireiθ
d

dθ

and hence equation (2.109) can be rewritten as

dSj
dθ
∼ −ireiθKj

εr/ε+κj

(reiθ)r/ε+κj+1
Γ
(r
ε

+ κj + 1
)

exp

(
reiθ

ε

)
, (2.110)

as ε→ 0 where we have replaced Nopt by (2.95). Applying Stirling’s formula (2.29) to (2.110) we
obtain after simplification

dSj
dθ
∼ − iKj√

ε

√
2πr exp

(r
ε
(eiθ − 1− iθ) + iθκj

)
, (2.111)

as ε → 0. We see from equation (2.111) that the variation of Sj is exponentially small almost
everywhere except when

eiθ − 1− iθ = 0,

which occurs when θ = 0. In view of the transformation χ = reiθ, this value of θ occurs when χ is
purely real and positive. We note that this coincides with the characterization of Stokes curve given
by condition (2.64). Hence, we find that the variation of S indeed occurs in the neighbourhood of
the Stokes curves.

To investigate the variation in the neighbourhood of θ = 0, we rescale the problem by setting
θ =
√
εφ. By applying this choice of rescaling in θ we find that the variation in the neighbourhood

of θ = 0 is given by the equation

dSj
dφ
∼ −iKj

√
2πre−rφ

2/2, (2.112)

as ε→ 0. By integrating equation (2.112) we find that

Sj ∼ −iKj

√
2π

(∫ φ
√
r

−∞
e−x

2/2dx+Dj

)
,

= −iKjπ

(
erf
(
θ

√
r

2ε

)
+ D̂j

)
, (2.113)

as ε → 0 and D̂j =
√

2/πDj where Dj is an arbitrary constant. The variation of Sj , to leading
order, is described by the error function [1] and is therefore indeed continuous. Furthermore, we
find that Stokes switching occurs over an interval of sizeO(

√
ε) centered at Stokes curve described

by θ = 0. From equation (2.113) we find that the Stokes multiplier also contain a free parameter
in the form of D̂j .
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Away from the Stokes curve (θ = 0) we find that the change in S is given by

∆S := S+ − S−,

= −iKj

√
2π

∫ ∞
−∞

e−x
2/2dx,

= −2iπKj , (2.114)

and therefore

∆RN := R+
N −R−N ,

= −2iπKje
−χj/ε, (2.115)

where R+
N and R−N denote RN in regions where Im(χ) > 0 and Im(χ) < 0, respectively. We

will use the notation ∆S to denote the jump in Stokes multipliers across Stokes curves throughout
this thesis. Hence, the asymptotic power series expansion of the solution of (2.74) containing
exponentially small corrections is given by

g(z) ∼
Nopt−1∑
r=0

εrgr −
3∑
j=1

iKj

√
2π

(
erf
(
θ

√
r

2ε

)
+ D̂j

)
Λje

−χj/ε, (2.116)

as ε→ 0 andNopt the optimal truncation point. Therefore, we find an asymptotic solution to (2.70)
which is described by

Y (z) ∼ 1

z3/8
exp

(
−4z5/4

5ε

)Nopt−1∑
r=0

εrgr −
3∑
j=1

iKj

√
2π

(
erf
(
θ

√
r

2ε

)
+Dj

)
Λje

−χj/ε

 ,

= Y1(z)

Nopt−1∑
r=0

εrgr −
3∑
j=1

iKj

√
2π

(
erf
(
θ

√
r

2ε

)
+Dj

)
ΛjYj+1(z), (2.117)

as ε→ 0 and where Yj(z) is given by (2.71).

2.5.6. Stokes structure.

With the results for χ given by (2.82), we can investigate the switching behaviour of the ex-
ponentially small contributions. From Figures 2.5a and 2.6a we see that Re(χ2) and Re(χ3) are
both negative along the positive real z axis. The exponential contributions associated with χ2 and
χ3 are therefore exponentially large there. In this case, the asymptotic expansion (2.117) no longer
describes a solution to (2.70) which is asymptotic to Y1(z) as ε→ 0 in S ′c. In order for the asymp-
totic series expansion (2.117) to describe a solution asymptotic to Y1(z) we require the values of
Sj to be equal to zero on the positive real axis. As Im(χj) < 0 along the positive real axis, this is
equivalent to the condition Sj → 0 as θ → −∞, which gives Dj = 1 for j = 2, 3.

Similarly, Figure 2.7a shows that Re(χ1) < 0 in the neighbourhood of the real positive z
axis and therefore the exponential contribution due to χ1 must also be absent in these regions.
Consequently, the value of S1 is also required to be zero and therefore D1 = 1. Figures 2.5b
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and 2.6b illustrate the Stokes switching behaviour of the subdominant exponentials associated with
χ2 and χ3. In Figure 2.5b we see that the contribution exp(−χ2/ε) is switched on as the upper
Stokes curve is crossed, switching on the subdominant contribution −2iπK2 exp(−χ2/ε) in the
asymptotic expression (2.116). Similarly, in Figure 2.6b the exponential contribution due to χ3 is
switched on across the lower Stokes curve, and therefore the asymptotic series expansion contains
the subdominant contribution −2iπK3 exp(−χ3/ε) as a result of Stokes phenomenon. In Figures
2.5b and 2.5b the blue shaded regions denote regions in which there are exponentiall small terms
present in the asymptotic solution (2.117).

Since the general solution of (2.70) is composed of a linear combination of solutions described
by (2.71), the remaining sub-subdominant exponential is also present in the asymptotic expan-
sion (2.116). The sub-subdominant exponential is the exponential contribution associated with
χ1. Therefore, the composite behaviour must include Stokes switching behaviour of exp(−χ1/ε).
Figure 2.7b illustrates the Stokes switching behaviour of the sub-subdominant exponential contri-
bution due to χ1, while Figure 2.8 illustrates the composite behaviour of (2.117). In this figure,
the regions shaded in blue represent regions in which the exponentially subdominant contributions,
Y2, Y3 and Y4 are present in the asymptotic expansion (2.117).

Re(s)

Im(s)

Re(χ2) > 0
Im(χ2) > 0

Re(χ2) > 0
Im(χ2) < 0

Re(χ2) < 0
Im(χ2) < 0

Re(χ2) < 0
Im(χ2) < 0

Re(χ2) < 0
Im(χ2) > 0

Re(χ2) > 0
Im(χ2) > 0

anti-Stokes curve
Stokes curve
Branch cut

(A) Stokes and anti-Stokes curves for χ2.

Re(s)

Im(s)

Á No Exp. contributions present

Exp. Small Contributions present

χ2: exp. small

(B) Exponential terms due to χ2.

FIGURE 2.5. This figure illustrates the Stokes structure and the Stokes switching be-
haviour of the exponential contributions due to χ2, which is given by (2.71), in the com-
plex z-plane. The Stokes and anti-Stokes curves are denoted by the red and blue curves,
respectively while the branch cut is denoted by the dashed curve. The regions shaded in
blue denote those which contain the exponentially small term associated with χ2. The
exponential contribution associated with χ2 is switched across the Stokes curves denoted
by Á. This convention will be followed in subsequent figures.
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Re(s)

Im(s)

Re(χ3) > 0
Im(χ3) > 0

Re(χ3) < 0
Im(χ3) > 0

Re(χ3) < 0
Im(χ3) < 0

Re(χ3) < 0
Im(χ3) < 0

Re(χ3) > 0
Im(χ3) < 0

Re(χ3) > 0
Im(χ3) > 0

anti-Stokes curve
Stokes curve
Branch cut

(A) Stokes and anti-Stokes curves for χ3.

Re(s)

Im(s)

Â

No Exp. contributions present

Exp. Small Contributions present

χ3: exp. small

(B) Exponential terms due to χ3.

FIGURE 2.6. This figure illustrates the Stokes structure and the Stokes switching be-
haviour of exponential contributions due to χ3, which is given by (2.71), in the complex
z-plane. The red curves denote the Stokes curves, blue curves denote anti-Stokes curves
and the dashed curve represent a branch cut. The regions shaded in blue denote those
which contain the exponentially small term associated with χ3.

Re(s)

Im(s)

Re(χ1) > 0
Im(χ1) > 0

Re(χ1) > 0
Im(χ1) < 0

Re(χ1) < 0
Im(χ1) < 0

Re(χ1) < 0
Im(χ1) > 0

Re(χ1) < 0
Im(χ1) > 0

Re(χ1) > 0
Im(χ1) < 0

anti-Stokes curve
Stokes curve
Branch cut

(A) Stokes and anti-Stokes curves for χ1.

Re(s)

Im(s)

À

À

No Exp. contributions present

Exp. Small Contributions present

χ1: exp. small

χ1: exp. small

(B) Exponential terms due to χ1.

FIGURE 2.7. This figure illustrates the Stokes structure and the Stokes switching be-
haviour of exponential contributions due to χ1, which is given by (2.71), in the complex
z-plane. The red curves denote the Stokes curves, blue curves denote anti-Stokes curves
and the dashed curve represent a branch cut. The regions shaded in blue denote those
which contain the exponentially small term associated with χ1.
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Re(s)

Im(s)

À

À

Á

Â

Stokes curve
Branch cut

No Exp. contributions present

Exp. Small Contributions present

FIGURE 2.8. This figure illustrates the composite behaviour of the asymptotic solution
given by (2.117) as ε → 0. This picture is a combination of Figures 2.7b, 2.5b and 2.6b
where only the active Stokes curves are illustrated. The blue shaded regions denote regions
which contain exponentially small terms present in the asymptotic expansion (2.117).

We have therefore constructed an asymptotic power series expansion describing the behaviour
of solutions of the hyper-Airy equation (2.70) in the limit ε → 0 which contains exponentially
subdominant correction terms. This is given by (2.117). By considering Stokes behaviour present
in these solutions, we are able to obtain a uniform asymptotic expansion for (2.70) which is valid
everywhere in the complex z-plane except along the negative real axis.

2.6. Further Ideas

Stokes phenomena are generally well understood in the case of second-order linear differential
equations [26,73,127]. For nonlinear differential equations, and also higher-order linear differential
equations, extra complications may occur in addition to the typical Stokes behaviour found in the
linear case. These effects include behaviour known as higher-order Stokes phenomenon, which
was originally studied by Howls, Langman and Olde Daalhuis [72] and second-generation Stokes
phenomena [33].

Higher-order Stokes phenomenon is the behaviour in which Stokes lines themselves can switch
on or off as higher-order Stokes curves are crossed [31, 33, 72, 73]. The vanishing of usual Stokes
curves was also discovered by Aoki, et al. in [6]. This behaviour may occur whenever the as-
ymptotic series expansion of a solution is composed of at least three component asymptotic series
each multiplied by a distinct exponential prefactor with argument say, χi/ε where i = 0, 1, 2 [73].
In this case, it is possible to find a region in which there is an ordering in Re(χi/ε). This allows
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the possibility of Stokes behaviour interactions between the subdominant and sub-subdominant
exponentials. Hence, in order to capture higher-order Stokes phenomena, the behaviour of sub-
subdominant exponentials must be considered.

Higher-order Stokes phenomenon is also observable in the factorial-over-power ansatz for the
late-order terms. Such behaviour arises when the prefactor term of the late-order terms ansatz also
displays Stokes behaviour; this was found to be the case in [33]. Higher-order Stokes curves are
given by the condition

Im
(
χi − χj
χj − χk

)
= 0, (2.118)

where i 6= j 6= k [33, 73]. Furthermore, they often emerge from and terminate at the intersection
points of usual Stokes curves known as Stokes-crossing points.

Second-generation Stokes phenomenon occurs when the subdominant exponential contribu-
tion in the asymptotic expansion is responsible for the Stokes switching of further terms beyond all
orders, that is, sub-subdominant exponential terms [33]. This phenomenon occurs when the sub-
dominant exponential contribution of an optimally-truncated asymptotic series is also described by
a divergent asymptotic series expansion. For example, (2.63) may have the series expansion

f(z) = e−χ0(z)/ε

Nopt−1∑
r=0

εrfr(z) +
∑
i

e−χi(z)/ε
∞∑
r=0

εrhr(z), (2.119)

as ε → 0. The asymptotic series expansion of the subdominant exponential in (2.119) can also be
optimally-truncated by writing

f(z) = e−χ0(z)/ε

Nopt−1∑
r=0

εrfr(z) +
∑
i

e−χi(z)/ε

Nopt,i−1∑
r=0

εrhr(z) +RN,i(z)

 , (2.120)

as ε → 0. The Stokes switching behaviour of the sub-subdominant remainder terms, RN,i, may
then be studied using exponential asymptotic methods. In this way, it is possible that the asymptotic
series solution exhibits a complicated hierarchy of Stokes switching behaviour. The first known
account of this behaviour appeared in [9] in the study of nth order linear differential equations. At
the time of their investigations the second-generation Stokes curves were known as ‘new Stokes
curves’.

We will find in Chapter 3 that the leading order subdominant contribution present in the as-
ymptotic solutions of the second discrete Painlevé equation are not affected by higher-order and
second-generation Stokes behaviour. However, there is one particular case of the first q-discrete
Painlevé equation which may possibly display higher-order Stokes phenomena. This is described
in Chapter 4, although we do not consider this in detail as it lies outside the scope of this thesis.



CHAPTER 3

Additive difference equations

In this chapter we study the asymptotic behaviour of solutions satisfying a nonlinear additive
difference equation in the limit as the independent variable approaches infinity. More specifically,
we consider the second discrete Painlevé equation. We will find that the asymptotic behaviour of
solutions of the second discrete Painlevé equation can be described by asymptotic power series.
These asymptotic power series will be shown to be factorially divergent and hence contain ex-
ponentially small terms and display Stokes behaviour. The results found for the second discrete
Painlevé equation are new and have been published in [84].

In Section 3.1 we introduce and motivate the study of additive difference equations. Solutions
of difference equations are defined over a discrete domain with a fixed step size. By introducing
a small parameter, ε, difference equations can be rescaled such that the step sizes are defined by
the small parameter. This choice of rescaling allows the solutions of difference equations to be
expanded as a power series in ε where the difference equation may be treated as a differential
equation of infinite order.

In Section 3.2 we consider the second discrete Painlevé equation (dPII) and investigate its
solution behaviour as the independent variable, n, is large. We will discover in Section 3.3 that
dPII has two types of asymptotic behaviour in the limit n→∞, which we refer to as vanishing and
non-vanishing type behaviours. Vanishing type behaviour is first investigated in Section 3.4 while
non-vanishing type behaviour is considered in Section 3.5. We show that these behaviours can
be described using classical asymptotic power series methods. However, these series expansions
will be shown to be divergent and hence exponential asymptotic methods are required in order to
determine the exponentially small terms hidden within these asymptotic expansions. In particular,
we will find that these asymptotic solutions share similar features with the tronquée and tri-tronquée
solutions of the second Painlevé equation.

3.1. Introduction

In this chapter we will study the solutions of additive difference equations as the independent
variable approaches infinity. More specifically, we will study solutions of the discrete Painlevé
equations. We will find that the power series expansions of these solutions are divergent and hence
exponential asymptotic methods are required in order to understand the behaviour of the exponen-
tially small terms present within these expansions.

48
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Difference equations are ubiquitous in the study of physical systems. They can be found in
areas such as in theoretical physics applications where discrete models are used to develop quantum
field theories [59, 131, 144]. Difference equations are also used in engineering and mathematical
finance applications where large discrete data sets are involved.

Although various physical phenomena are often modelled by differential equations, in practice,
the solutions are often generated numerically for some given set of data. In this way, the numerical
evaluation of their solutions ultimately reduces to the computation of discrete sets of data. As the
data sets involved are discrete, the governing equations or models must also be discretized. A
common procedure used to discretize a given differential equation is by finite difference methods.

The finite difference method obtains an approximation of some given function say y(x), by the
functions values at a finite set of the independent variable, x. The variable, x, can be discretized by
setting xn = x0 + nh where x0 is some arbitrary starting point, n ∈ Z and h is a prescribed step
size.

In principle, the variable, x, and the step size, h, may be complex-valued. In this case, the do-
main for which the dependent variable is defined on can be thought of as a lattice defined implicitly
in two dimensional real space or equivalently, a one dimensional complex space. For clarity, we
will treat the variables and step sizes as real-valued quantities.

The forward evolution of the variable xn is therefore described by the map n 7→ n+ 1. In this
way, the value of the solution at the next time step, xn+1, can be defined by

y(xn+1) = y(xn + h).

Provided that the step size, h, is small, we may Taylor expand y(xn + h) about xn to give

y(xn+1) = y(xn + h) = y(xn) + hy′(xn) +O(h2),

as h → 0; this approximation is known as a forward difference. Under this discretization, a
differential equation of the form

y′(x) = f(x, y(x)), y(x0) = y0, (3.1)

can be approximated by
y(xn + h)− y(xn)

h
+O(h) = f(xn, y(xn)),

which can then be rewritten as

yn+1 = yn + hf(xn, yn) +O(h2), (3.2)

where yn = y(xn) and yn+1 = y(xn+1) = y(xn + h). In fact, the method of obtaining equation
(3.2) with terms of order O(h2) neglected is known as the forward Euler method.

The finite difference method can also be used to discretize partial differential equations. As an
example, let us consider the wave equation

uxx − c2uyy = 0, (3.3)
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where u = u(x, y) and c a nonzero constant. In the same way, the independent variables are
discretized by setting x = x0 +nh and y = y0 +mk where x0, y0 are arbitrary constants, n,m ∈ Z
and h and k are the prescribed step sizes of the variables x and y, respectively. The second order
partial derivatives can then be approximated by

uxx =
un+1,m − 2un,m + un−1,m

h2
+O(h3), (3.4)

uyy =
un,m+1 − 2un,m + un,m−1

k2
+O(k3). (3.5)

Noting the forms of (3.4), these difference approximations are referred to as central differences.
Using the central differences (3.4) and (3.5), the wave equation (3.3) can be rewritten as the second
order partial difference equation

un+1,m − 2un,m + un−1,m

h2
− c2un,m+1 − 2un,m + un,m−1

k2
= 0. (3.6)

Under this discretization, the (x, y)-domain becomes a two-dimensional lattice with spacings h
and k. In general, this approach can be used in order to discretize nth order (partial) differential
equations to produce nth order (partial) difference equations. Figures 3.1a and 3.1b illustrate the
domain on which the solutions of difference equations are defined. In Figure 3.1a, the solution u(x)
is defined over the set of points defined by x = x0 + nh, which lies along the continuous x-axis.
Whereas in Figure 3.1b the solution u(x, y) is defined over a two-dimensional lattice generated by
(x0 + nh, y0 + nk). We note that the step sizes h and k in Figure 3.1b are not necessarily equal.

y

x
x− 2h

x− h
x

x+ h

x+ 2h

(A) Discrete domain for u(x) with step size de-
fined by h.

x

y

(x, y) (x+ h, y)

(x, y − k)

(x, y + k)

(x− h, y)

(x+ h, y + k)

(B) Discrete domain for u(x, y) with step sizes
h and k.

FIGURE 3.1. The solutions of difference equations are defined over a discrete set of points.

Difference equations constructed in this way limit to the original differential equation as the
step sizes approach zero; this is known as the continuum limit. For example, the difference equation
(3.2) tends to the differential equation (3.1) in the limit h → 0 while the (3.6) tends to (3.3) in the
limit h→ 0 and k → 0.
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3.2. Discrete Painlevé II

In this chapter we seek to develop a methodology in order to study the asymptotic behaviour
of solutions of nonlinear difference equations, in particular, the discrete Painlevé equations.

As an asymptotic study on the first discrete Painlevé equation has been investigated by Joshi
and Lustri [83], we consider the second discrete Painlevé equation

xn+1 + xn−1 =
(αn+ β)xn + γ

1− x2
n

, (3.7)

in the asymptotic limit n→∞. This equation is of interest in mathematical physics [58, 104, 105,
130,146,153] and also appears as a reduction of the discrete modified Korteweg-de Vries (mKdV)
equation [111, 112].

Another version of (3.7) exists for which the γ term changes with n [63]. This version can be
obtained by applying the singularity confinement criterion on the McMillan map

xn+1 + xn−1 =
anxn + bn

1− x2
n

.

The authors of [63] show that the singularity confinement criterion gives bn = γ + δ(−1)n and
an = αn+ β. The odd-even dependence can be removed by choosing δ = 0, producing (3.7).

Equation (3.7) tends to the second continuous Painlevé equation (PII) in the continuum limit
xn = εw, zn = αn+ β = 2 + ε2t and γ = ε3µ as ε→ 0,

PII :
d2w

dt2
= 2w3 + tw + µ. (3.8)

Using exponential asymptotic techniques we will find solutions to (3.7), which are asymptoti-
cally free of poles within certain regions of the complex plane. We begin the analysis by finding the
formal series solutions containing exponentially small terms, then study Stokes behaviour present
within these asymptotic solutions. Finally, we use these results to determine the regions in which
these series expressions describe the dominant asymptotic behaviour. Furthermore, we will find
that these asymptotic solutions share features with the tronquée and tri-tronquée solutions of the
second continuous Painlevé equation (PII) [23].

Exponential asymptotic techniques for differential-difference equations were developed by
King and Chapman [92] in order to study a nonlinear model of atomic lattices based on the work
of [32, 121]. Joshi and Lustri [83] applied the Stokes smoothing technique described in [92] to the
first discrete Painlevé equation and obtained asymptotic approximations containing exponentially
small contributions. Motivated by their work, we extend this to dPII in order to study asymptotic
solutions with similar features.
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3.3. Scalings of discrete Painlevé II

As we are interested in studying the behaviour of solutions of (3.7) in the limit n → ∞, we
introduce the small parameter ε by setting s = εn and let X(s) = xn. Applying this choice of
scalings to (3.7) gives

(X(s+ ε) +X(s− ε))(1−X(s)2) =
(αs
ε

+ β
)
X(s) + γ, (3.9)

where we now consider the limit ε → 0. If we assume that X(s) ∼ X0 as ε → 0 then we obtain
the following asymptotic equation

2X0(1−X2
0 ) ∼

(αs
ε

+ β
)
X0 + γ, (3.10)

as ε→ 0. From equation (3.10) we may deduce the possible dominant balances. If we assume that
X0 � 1, we obtain the balance

X0 ∼ −
γε

αs
,

as ε → 0. If we instead look for solutions which are large as ε → 0, that is, X0 � 1, then the
dominant balance we find from (3.10) is given by

−2X3
0 ∼

αs

ε
X0,

as ε→ 0, and therefore find solutions that have behaviour

X0 ∼ ±
√
−αs

2ε
,

as ε → 0. Hence, we will study solutions of (3.9) which have behaviours given by X(s) = O(ε)

andX(s) = O(ε−1/2) as ε→ 0. We call the solutions which scale likeO(ε) orO(ε−1/2) vanishing
and non-vanishing type solutions, respectively.

The parameters appearing in (3.9) can also be rescaled. Following Kruskal’s principle of max-
imal balance [95] the parameter scalings are chosen to retain many terms as possible in the leading
order expression. Kruskal’s principle ensures that a wide range of solutions are represented by
the rescaled expression and that other scalings can be obtained by considering various limiting
behaviours of the solution. Applying Kruskal’s principle of maximal balance in (3.10) for the
vanishing type behaviour informs us to rescale the parameters according to

s = εn; xn = εf(s), α = εα̂, β = β̂, γ = εγ̂. (3.11)

Similarly, for non-vanishing type behaviour, the scalings we choose are

s = εn; xn =
1√
ε
g(s), α = α̂, β =

β̂

ε
, γ =

γ̂

ε3/2
. (3.12)

In the next section we first consider vanishing type asymptotics of (3.7). We begin the analysis
by finding formal asymptotic power series expansions containing exponentially small terms in
some sector containing the positive real axis. We will find that the asymptotic power series diverges
factorially and hence exponentially small terms are present within the asymptotic expansion. As
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these solutions contain exponentially small terms, we apply exponential asymptotic methods in
order to study Stokes behaviour present within these asymptotic solutions. Using these results we
determine the regions in the complex plane in which these series expression describe solutions with
the prescribed asymptotic behaviour.

The same analysis will then be applied to non-vanishing type solutions of (3.7) in Section 3.5.
Although the analysis is near identical, these solutions will be shown to display more complicated
behaviour than the solutions which vanish in the limit ε → 0. However, by carefully considering
the behaviour of the exponentially small terms present within the asymptotic series expansion of
non-vanishing type solutions, we also determine the regions in which these series expansion are
valid.

3.4. Vanishing asymptotics of discrete Painlevé II

In this section, we investigate the vanishing type asymptotic behaviour of discrete Painlevé
II. We therefore study equation (3.7) under the scalings (3.11). We will determine the asymptotic
series expansion and use exponential asymptotic methods in order to describe the Stokes behaviour
present in these solutions.

3.4.1. Asymptotic series expansions.

In order to study the asymptotic behaviour of solutions to (3.7) which vanish in the limit n→
∞ we introduce the small parameter, ε, by applying the scalings given by (3.11). We drop the hat
notation in the subsequent analysis for simplicity. Applying the scalings (3.11) into (3.7) gives us
the rescaled equation(

f(s+ ε) + f(s− ε)
)(

1− ε2f(s)2
)

= (αs+ β)f(s) + γ, (3.13)

where we consider the limit ε → 0. We assume that f(s) is an analytic function of s so that we
may expand the solutions as a Taylor series in powers of ε in (3.13) to give

∞∑
j=0

2ε2jf (2j)(s)

(2j)!

(
1− ε2f(s)2

)
= (αs+ β)f(s) + γ, (3.14)

where the superscript ‘(j)’ denotes the jth derivative with respective to s. Under this choice of
scalings the difference equation becomes an infinite order differential equation. We now expand
the solution, f(s), as an asymptotic power series in ε by writing

f(s) ∼
∞∑
r=0

εrfr(s) (3.15)

as ε→ 0. This allows us to rewrite equation (3.14) as
∞∑
j=0

2ε2j

(2j)!

∞∑
k=0

εkf
(2j)
k

(
1− ε2

∞∑
l=0

εlfl

∞∑
m=0

εmfm

)
= (αs+ β)

∞∑
j=0

εjfj + γ. (3.16)



54 3. ADDITIVE DIFFERENCE EQUATIONS

Matching orders of ε in equation (3.16) as ε→ 0, we obtain the equations

O(ε0) : 2f0 = (αs+ β)f0 + γ,

O(ε1) : 2f1 = (αs+ β)f1,

O(ε2) : 2f2 = (αs+ β)f2 + 2f3
0 − f ′′0 .

Solving these equations gives

f0 = − γ

αs+ β − 2
, f1 = 0, f2 = −2γ(α− γ)(α+ γ)

(αs+ β − 2)4
. (3.17)

We see from equation (3.17) that the leading order solution is singular when

αs+ β − 2 = 0,

which occurs at the point s = (2 − β)/α. Hence f0 has a simple pole located at s = (2 − β)/α,
which is also a pole of strength four for f2. In general, we find

O(εr) :

br/2c∑
j=0

2f
(2j)
r−2j

(2j)!
−
r−2∑
m=0

fm

r−m−2∑
l=0

fl

b(r−m−l−2)/2c∑
j=0

2f
(2j)
r−m−l−2j−2

(2j)!
= (αs+β)fr, (3.18)

for r ≥ 2. Rearranging equation (3.18) to obtain an expression for fr gives

(αs+ β − 2)fr =

br/2c∑
j=1

2f
(2j)
r−2j

(2j)!
−

r−2∑
m=0

fm

r−m−2∑
l=0

fl

b(r−m−l−2)/2c∑
j=0

2f
(2j)
r−m−l−2j−2

(2j)!
. (3.19)

From the recurrence relation in (3.19) we can show that the terms f2n+1 are identically zero as
a consequence of the fact that f1 = 0. Consequently, the asymptotic power series (3.15) only
contains even powers of ε.

Proposition 1. All the odd coefficients of the asymptotic series (3.15) are zero. That is, f2n+1 = 0
for all n ≥ 0.

Proof. We first apply r 7→ 2r + 1 to (3.19) so that we are only dealing with the odd coefficients.
The case n = 1 is easy to show; a direct calculation can easily show that f3 = 0. We then assume
that f2m+1 = 0 is true for m = 0, 1, 2, ...,K where K is arbitrary and show that it is also true for
m = K + 1. This is easy to see, because the first sum in (3.19) has subscript f2r−2j+1 which is
always odd, so there will be no contributions from this term. The remaining triple sum involves the
subscripts f2r−m−l−2j−1flfm. We will also show that this term produces no contributions.

The first subscript can be written has f2(n−j)−m−l−1 and this is always odd provided thatm+ l
is even. In this case, m+ l can be a combination of either (odd+odd) or (even+even) but for either
combination, the resulting term will always be zero, since there will always be at least one odd
subscript. In order to obtain a nonzero contribution, we require the first subscript to be even, which
means that m + l must be odd. In this case, m + l must be (odd+even), which ensures that one
subscript is odd, and therefore the whole term is zero. Thus, our proposition is proved. �

From the recurrence relation (3.19) we observe that the calculation of fr requires two differen-
tiations of fr−2. Hence, if f0 has an algebraic singularity of strength k then f2 will have the same
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singularity but with strength k + 2. The late-order terms will therefore have factorial-over-power
behaviour and hence can be described by (2.43). Consequently, the asymptotic series (3.15) is
therefore factorially divergent and will exhibit Stokes behaviour.

We have determined the leading order asymptotic solution to (3.13) and the recurrence equation
for the coefficients of (3.15). Furthermore, we discovered that the coefficients terms in (3.15) are
singular and the late-order terms are described by a factorial-over-power form due to repeated
differentiation, which causes the asymptotic series to be divergent. Optimal truncation methods are
required in order to capture and study the exponentially small terms present within these asymptotic
series expansions.

In the subsequent analysis we will optimally truncate the asymptotic series, which requires the
form of the coefficients to be known. In the next section, we will determine the general behaviour
of fr as r →∞, enabling us to optimally truncate (3.15) and investigate Stokes behaviour present
in these asymptotic solutions.

3.4.2. Late-order terms analysis.

In this section, we completely determine the leading order behaviour of the late-order terms,
enabling us to optimally truncate (3.15). As discussed in Section 2.2.1, the behaviour of the late-
order terms are related to the singularities of the function we are approximating. We find from
(3.18) that the calculation of the coefficients involve repeated differentiations of previous terms
which are singular. Consequently, the behaviour of the late-order terms will take a factorial-over-
power form described by (2.43). We therefore apply the ansatz

fr ∼
F (s)Γ(r + k)

χ(s)r+k
, (3.20)

as r →∞, where χ(s) is the singulant, F (s) is the prefactor and k is a constant. Recalling that the
singulant vanishes at the singularities of the leading order solution we deduce that the singulant is
subject to the condition

χ

(
2− β
α

)
= 0.

We apply (3.20) to equation (3.18) and match orders of r as r → ∞. The leading order equation
as r →∞ is given by

O(fr) :

br/2c∑
j=0

2(−χ′)2j

(2j)!

F Γ(r + k)

χr+k
= (αs+ β)

F Γ(r + k)

χr+k
. (3.21)

From the recurrence relation (3.19), the triple sum contains terms of sizeO(fr−2), and is therefore
negligible when matching terms of size O(fr−1) as r → ∞. Continuing to the next order as
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r →∞, we obtain the equation

O(fr−1) :

br/2c∑
j=1

2

(2j)!

((
2j

1

)
(−χ′)2j−1F ′ +

(
2j

2

)
(−χ′)2j−2(−χ′′)F

)
= 0, (3.22)

after simplification. Equations (3.21) and (3.22) can be solved to calculate χ and F , respectively.

3.4.2.1. Calculating the singulant, χ.

In order to determine the singulant, χ(s), we consider (3.21) which can be reduced to

br/2c∑
j=0

2(−χ′)2j

(2j)!
= (αs+ β). (3.23)

We replace the upper summation limit by infinity in (3.23) and in doing so we only introducing
exponentially small error to the singulant as r → ∞ [92], which may be neglected here (see
Appendix B). Replacing the upper summation limit by infinity in equation (3.23) gives

cosh(χ′) =
αs+ β

2

which has solutions

χ′ = ± cosh−1

(
αs+ β

2

)
+ 2Mπi, (3.24)

whereM ∈ Z. Noting that there are two different equations for the singulant, we name them χ1(s)
and χ2(s) with the choice of the positive and negative signs, respectively. In general, the behaviour
of fr will be the sum of expressions (3.20), with each value of M and sign of the singulant [48].
However, by Darboux’s theorem, this sum will be dominated by the two terms associated with
M = 0 as this is the value for which |χ| is smallest [32, 43, 44, 48]. Thus, we consider the M = 0
case in the subsequent analysis.

Recalling that the singulant must vanish at the singularity, s0 = (2 − β)/α, and therefore
χ(s0) = 0. In order to solve for χ, we apply a change of variables to equation (3.24) by setting
u = (αs+ β)/2, which gives

χ(s) = ± 2

α

∫ u

u(s0)
cosh−1(u)du, (3.25)

where u(s0) = 1. From the list of integrals for the inverse hyperbolic functions provided in Section
4.4 of [1], we can evaluate (3.25) to obtain

χ1 =
2

α

(αs+ β

2

)
cosh−1

(
αs+ β

2

)
−
√(

αs+ β

2

)2

− 1

 , (3.26)

χ2 =− χ1. (3.27)
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3.4.2.2. Calculating the prefactor, F .

In order to find the prefactor associated with each singulant we solve equation (3.22). As
before, we extend the upper summation limits to infinity in equation (3.22), obtaining

− 2F ′ sinh(χ′)− χ′′ cosh(χ′)F = 0. (3.28)

This equation is independent of the choice of χi due to the even and odd properties of cosh and
sinh functions, respectively. Equation (3.28) can be solved explicitly to obtain

Fi(s) =
Λi√

sinh(χ′(s))
, (3.29)

where i = 1, 2, and Λi are arbitrary constants. We also note that the parameter, γ, does not appear
in either the singulant or prefactor equations. As a consequence, γ will not play any role in the
Stokes phenomena to leading order in ε.

Substituting (3.26), (3.27) and (3.29) into (3.20) we find that the late-order terms of (3.15) are
given by

fr(s) ∼
Λ1Γ(r + k)√
sinh(χ′1)χr+k1

+
Λ2Γ(r + k)√
sinh(χ′1)χr+k2

, (3.30)

as r → ∞. In order to completely determine the form of the late-order terms, we must also
determine the values of k and Λi in (3.30). This can be done by matching the late-order expression
given in (3.30) to the leading-order behaviour in the neighbourhood of the singularity. We therefore
determine the behaviour of χ and F in the neighbourhood of the singularity.

3.4.2.3. Calculating the value of k.

In order to determine the value of k we first determine the behaviour of χ and F near the
singularity. For |α| 6= 0, the behaviour of the singulant near the singularity is given by

χ1 ∼−
2
√
α

3
(s− s0)3/2, (3.31)

χ2 ∼
2
√
α

3
(s− s0)3/2,

as s→ s0. By substituting the expressions (3.31) into equation (3.28) we find that

−
√
α(s− s0)F ′i ∼

√
α

4
√
s− s0

Fi, (3.32)

as s → s0 and i = 1, 2. Solving equation (3.32), we find that the local behaviour of the prefactor
about the singularity is given by

Fi ∼
Λi

(s− s0)1/4
(3.33)
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where i = 1, 2. Hence, by substituting (3.31) and (3.33) into (3.30) we find that local behaviour of
the late-order terms near the singularity is given by

fr ∼
Λ1Γ(r + k)

(s− s0)1/4
(
− 2

3

√
α(s− s0)3/2

)r+k +
Λ2Γ(r + k)

(s− s0)1/4
(

2
3

√
α(s− s0)3/2

)r+k , (3.34)

as s→ s0.

From the discussion after equation (3.19), we know that if the singularity of f0 is of strength
one, then the strength of the singularity of fr is equal to 3r/2 + 1. From (3.34) we find that the
strength of the singularity is equal to 3(r + k)/2 + 1/4. Hence, for consistency in the singular
behaviour of the late-order terms expression (3.34), we require that

3(r + k)

2
+

1

4
=

3r

2
+ 1,

and therefore k = 1/2.

3.4.2.4. Calculating the value of Λ.

Although the values of Λi appearing in (3.30) is not required in the subsequent analysis they
may be determined numerically for completeness. We first rewrite the expression in equation (3.30)
as

fr(s)
√

sinh(χ′1)χ
r+1/2
1

Γ(r + 1/2)
∼ Λ1 + (−1)r+1/2Λ2, (3.35)

as r →∞. Since the singularities of both χ1 and χ2 are located at s = (2−β)/α, and are therefore
equidistant to the origin, we may follow the methodology demonstrated in Section 2.5.3.4 in order
to calculate Λi. By appropriately adding (or subtracting) successive terms of (3.35), we can obtain
formulas for the constants, Λi, in the limit r →∞. Doing this, we obtain

2Λ1 = lim
r→∞

[
f2r

√
sinh(χ′1)χ

2r+1/2
1

Γ(2r + 1/2)
+
f2r−1

√
sinh(χ′1)χ

2r−1/2
1

Γ(2r − 1/2)

]
, (3.36)

−2iΛ2 = lim
r→∞

[
f2r

√
sinh(χ′1)χ

2r+1/2
1

Γ(2r + 1/2)
− f2r−1

√
sinh(χ′1)χ

2r−1/2
1

Γ(2r − 1/2)

]
. (3.37)

In Section 3.4.1, we showed that all the odd terms of the asymptotic series vanish. Thus, we observe
that the second terms of the expressions (3.36)-(3.37) is equal to zero. As a consequence, we find
that Λ1 = −iΛ2. In principle, the value of Λi may be computed using equations (3.36)-(3.37).
In order for the limits (3.36)-(3.37) to converge, a sufficiently large number of the terms fr are
required to be computed. Indeed fr may be computed using (3.19); however, this approach is an
inefficient way of calculating Λi as it requires repeatedly differentiating terms like (3.26).

An alternative and more efficient method of calculating Λi is to match the expansion (3.15)
with the inner expansion in the vicinity of the singularity, s0. This method therefore involves
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taking the inner limit of (3.34). From (3.34), we write

fr ∼
ar

(s− s0)3r/2+1
, (3.38)

as s→ s0. Substituting this form for fr into (3.19), gives

αar =

(
3r

2
− 2

)(
3r

2
− 1

)
ar−2 − 2

r−2∑
l=0

r−l−2∑
k=0

ar−l−k−2akal, (3.39)

for r ≥ 2, where a0 = −γ/α and a1 = 0. Following this method, we numerically compute the
value of Λi, using the Mathematica 10 package, with parameter values α = −2, β = 1 and γ = 1.
Using the difference equation (3.39) we may compute the coefficients ar of the inner expansion of
fr, which is given by (3.38). For sufficiently large values of fr computed, we then use the formulas
(3.36)-(3.37) to find that

Λ1 ≈ 0.0757− 0.0757 i,

Λ2 ≈ 0.0757 + 0.0757 i.

10 20 30 40 50 60
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(A) Real part of Λ1.
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−0.084

−0.082

−0.08

−0.078

−0.076

r
Im(Λ1)

(B) Imaginary part of Λ1.

FIGURE 3.2. This figure illustrates the approximation for Λ1 defined by (3.36) with α =
−2, β = 1 and γ = 1. We see that as r increases, the approximation for Λ1 tends to the
limiting value described by the black, dashed curve. The approximation for Λ2 defined by
(3.37) may be obtained from this information since Λ1 = −iΛ2.

The approximate values for Λ1 and Λ2 are illustrated in Figures 3.2a and 3.2b. Therefore, the
explicit form of the late order terms is given by

fr(z) ∼
Λ1Γ(r + 1/2)√
sinh(χ′1)χ

r+1/2
1

+
Λ2(−1)r+1/2Γ(r + 1/2)√

sinh(χ′1)χ
r+1/2
1

, (3.40)
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as r → ∞. Recalling that the odd coefficients identically vanish, (3.40) can be further simplified
to give

f2r(s) ∼
2Λ1Γ(2r + 1/2)√
sinh(χ′1)χ

2r+1/2
1

, (3.41)

as r → ∞, where χ1 is given in equation (3.26) and the values to Λ1 can be calculated from
equation (3.36).

3.4.3. Vanishing behaviour remainder analysis.

In the previous section we successfully calculated the behaviour of the late-order terms in the
asymptotic series expansion. From this calculation we noted that the late-order terms behave as
factorials and hence the asymptotic series we deal with are indeed divergent. As such, we expect
exponentially small contributions to be present within these asymptotic series and therefore expect
the Stokes phenomena to occur.

In order to determine the behaviour of the exponentially small contributions in the neighbour-
hood of the Stokes curve we need to optimally truncate (3.15). We truncate the asymptotic series
by writing

f(s) =
N−1∑
r=0

εrfr(s) +RN (s), (3.42)

where N is the optimal truncation point and RN is the optimally-truncated error. We choose N
such that the series are truncated after their smallest terms. As discussed in Section 2.2, optimal
truncation can be achieved by truncating the asymptotic series at the least term [24]. By using the
behaviour of the late-order terms provided in (3.41) and using equation (2.25) we find that∣∣∣∣ε2N+2f2N+2

ε2Nf2N

∣∣∣∣ ∼ 1 =⇒ N ∼ |χ1|
2ε

,

as ε → 0. As this quantity may not necessarily be integer valued, we therefore choose ω ∈ [0, 1)
such that

N =
|χ1|
2ε

+ ω (3.43)

is integer valued.

We substitute the optimally-truncated series (3.42) into the governing equation (3.14), and use
the recurrence relation (3.18) to eliminate terms. Doing so, we obtain the equation

∞∑
j=1

2ε2jR
(2j)
N

(2j)!
− ε2

N−1∑
r=0

ε2r
∞∑
j=0

2ε2jf
(2j)
2r

(2j)!

(
2RN

N−1∑
k=0

ε2kf2k +R2
N

)

− ε2
∞∑
j=0

2ε2jR
(2j)
N

(2j)!

((N−1∑
r=0

ε2rf2r

)2

− 2RN

N−1∑
r=0

ε2rf2r +R2
N

)
− 2ε2Nf2N + . . . ∼ (αs+ β − 2)RN , (3.44)
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where the omitted terms are smaller than those which have been retained in the limit ε→ 0.

Away from the Stokes curve, the inhomogeneous terms of equation (3.44) are negligible, and
we apply a WKB analysis to the homogeneous version of (3.44). We therefore apply the ansatz
RN = a(s)eb(s)/ε to the homogeneous version of (3.44) and match orders of ε as ε → 0. The
leading order equation as ε→ 0 can be shown to be

∞∑
j=0

2ε2j

(2j)!

(
b′(s)

ε

)2j

a(s)eb(s)/ε =
(
αs+ β

)
a(s)eb(s)/ε.

Comparing this to equation (3.21), we see that they coincide provided that b(s) = −χ(s). Contin-
uing to the next order in ε we find that a(s) satisfies the equation

O(ε) :
∞∑
j=1

2

(2j)!

((
2j

1

)
(b′)2j−1a

′

a
+

(
2j

2

)
(b′)2j−2b′′

)
= 0,

which is precisely equation (3.28) with a(s) = F (s). Hence, away from the Stokes curve, the
optimally-truncated error takes the form RN (s) ∼ F (s)e−χ/ε as ε→ 0.

3.4.3.1. Stokes smoothing.

As the exponentially small error term will experience Stokes switching, we therefore set

RN (s) = S(s)F (s)e−χ(s)/ε,

where S(s) is the Stokes multiplier that switches rapidly in the neighbourhood of the Stokes curve.
We apply this form to equation (3.44) and after some cancellation we find that

2εS ′Fe−χ/ε
∞∑
j=1

(2j)(−χ′)2j−1

(2j)!
∼ 2ε2Nf2N

as N →∞. Rearranging this equation and applying the form of fN as given by (3.20) we find that

dS
ds
∼ −2ε2N−1eχ/ε

Γ(2N + 1/2)

sinh(χ′)χ2N+1/2
. (3.45)

As in the example of the hyper-Airy equation as demonstrated in Chapter 2, we will make the
change of variables in order to write S as a function of χ instead of s. Under this change of
variables equation (3.45) becomes

dS
dχ
∼ −2ε2N−1eχ/ε

Γ(2N + 1/2)

χ′ sinh(χ′)χ2N+1/2
. (3.46)

Then, by noting the form of N , we rewrite χ in terms of polar coordinates by setting χ = ρeiθ,
where we then investigate variations with respect to the fast variable θ. The change of variables
given by χ = ρeiθ gives

d

dχ
=

1

iρeiθ
d

dθ
. (3.47)
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Under this transformation the optimal truncation point can be rewritten as N = ρ/2ε + ω, and
equation (3.45) becomes

dS
dθ
∼ −2iρeiθερ/ε+2ω−1 Γ(ρ/ε+ 2ω + 1/2)

χ′ sinh(χ′)(ρeiθ)ρ/ε+2ω+1/2
exp

(
ρeiθ

ε

)
. (3.48)

Under this change of variables, the expression χ′ sinh(χ′) is a function depending on s(θ) and
fixed parameter ρ, which we will denote by H(s(θ); ρ). We apply Stirling’s formula [2] to (3.48)
and after simplification we obtain

dS
dθ
∼ − 2i

√
2πρ

εH(s(θ); ρ)
exp

(ρ
ε

(eiθ − 1− iθ)− iθ(2ω − 1/2)
)
. (3.49)

The right hand side is exponentially small except in the neighbourhood of θ = 0, which is exactly
where the Stokes curve lies (where χ is purely real and positive). In order to study the Stokes
phenomena we now rescale about the neighbourhood of the Stokes curve in order to study the
variation in S. Applying the scaling θ =

√
εθ̂ to (3.49) gives us

1√
ε

dS
dθ̂
∼ −2i

√
2π|χ|

εH(|χ|) exp

(
−|χ|θ̂

2

2

)
, (3.50)

as ε → 0. We note that to leading order in ε, H(s(θ); ρ) will only depend on ρ = |χ| near the
Stokes curve. Integrating (3.50) we find that

S ∼ − 2i
√

2π|χ|√
εH(|χ|)

(
1√
|χ|

∫ θ̂
√
|χ|

−∞
e−s

2/2ds+ C

)
,

=− 2iπ√
εH(|χ|)

(
erf

(√
|χ|
2ε
θ

)
+ C

)
, (3.51)

where C is an arbitrary constant. Thus, as Stokes curves are crossed, the Stokes multiplier changes
in value by

∆S ∼ − 4iπ√
εH(|χ|) , (3.52)

and hence the exponential contribution, RN , which experiences Stokes switching, changes by

∆RN ∼ −
4iπ√
εH(|χ|)F (s)e−χ/ε,

as Stokes curves are crossed. We note that the error function smoothing for the Stokes multiplier
may also be obtained following the work of Berry [11]. This requires computing the Borel sum of
the divergent tail of (3.15) and is outlined in Appendix C.

Consequently, the optimally-truncated asymptotic series (3.42) can be rewritten explicitly as

f(s) ∼
N−1∑
r=0

εrfr(s) + S1F1e
−χ1/ε + S2F2e

−χ2/ε, (3.53)
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as ε → 0 where Si varies in value by (3.52) as Stokes curves are crossed, the leading orders are
given in (3.17), and the late-order behaviour is given in (3.20). This expression is therefore an
accurate asymptotic approximation up to exponentially small terms in regions where the dominant
asymptotic behaviour is described by the power series (3.15). We note that (3.53) contains one
parameter of freedom; either S1 or S2 is free. This will be further explained in Section 3.4.5.

We have successfully determined a family of asymptotic solutions to (3.13), which contain
exponentially small error. These exponentially small terms exhibit Stokes switching and therefore
the expression (3.53) describes the asymptotic behaviour in certain regions of the complex plane.
The regions of validity for (3.53) will be determined in the next section.

3.4.4. Asymptotic expansions in terms of the original variables.

In this section we will express the asymptotic solution (3.53) in terms of the original variables,
n, by reversing the scaling transformations described by (3.11). Reversing the scalings described
by (3.11), we find from (3.26) that

χ1(n) =
2ε

α

(αn+ β

2

)
cosh−1

(
αn+ β

2

)
−
√(

αn+ β

2

)2

− 1

 . (3.54)

Comparing the expressions given by (3.26) and (3.54) shows that the expression for the singulant in
terms of n is equal to expression given by (3.26) with s 7→ n,multiplied by ε. Hence, the prefactor,
F (s), is given by

Fi(n) =
Λi√

sinh(εχ′1(n))
∼ Λi√

εχ′1(n)
, (3.55)

as ε → 0. Substituting (3.54) and (3.55) into (3.41) shows that the expression for the late-order
terms in terms of n is given by

f2r(n) ∼ 2Λ1Γ(2r + 1/2)

χ′1(n)χ1(n)2r+1/2ε2r+1/2
, (3.56)

as ε→ 0. Similarly the expression of the Stokes multiplier, (3.51), in terms of n is given by

S(n) ∼ − 2iπ√
εH(|χ|)

(
erf

(√
|χ|
2
θ

)
+ C

)
, (3.57)

and hence the expression for the Stokes multiplier in terms of n is identical to (3.51) with s 7→ n.
We define the following functions of n

Ψ(n) =
2

α

(αn+ β

2

)
cosh−1

(
αn+ β

2

)
−
√(

αn+ β

2

)2

− 1

 , (3.58)

Ŝ(n) = − 2iπ

H(|χ|)

(
erf

(√
|χ|
2
θ

)
+ C

)
, (3.59)
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Hence, the expression of (3.53) in terms of n is given by

xn ∼
N−1∑
r=0

2Λ1Γ(2r + 1/2)

Ψ′(n)Ψ(n)2r+1/2
+ Ŝ1(n)

Λ1e
−Ψ(n)√

Ψ′(n)
+ Ŝ2(n)

Λ2e
Ψ(n)√

Ψ′(n)
, (3.60)

as |n| → ∞. In the next section we will determine the Stokes structure in the complex s-plane by
considering where the behaviours of the exponential terms, e−χ1(s)/ε and e−χ2(s)/ε in (3.53). In
the complex n-plane, the Stokes structure may be obtained by considering the behaviours of the
exponential terms , e±Ψ(n) in (3.60). Since we showed that the expressions for the singulants, are
identical when written in terms of either s or n, we deduce that the Stokes structure in both the
complex s- and complex n-planes will be identical.

3.4.5. Stokes structure.

With the results for χ1 and χ2 given by (3.26) and (3.27), we can investigate the switching be-
haviour of the exponentially small contributions. As demonstrated in Section 3.4.3.1, we found that
the exponential contributions present in the series expansion (3.15) are proportional to exp(−χ/ε).
These terms are exponentially small when Re(χ) > 0 and exponentially large when Re(χ) < 0. In
order to investigate how these terms behave we consider the solution’s Stokes structure. We recall
that Stokes curves follow curves where Im(χ) = 0 while anti-Stokes curves follow curves where
Re(χ) = 0. Additionally, we recall that exponentially small terms may only switch across Stokes
curves where Re(χ) > 0.

In order to illustrate the Stokes structure for the vanishing asymptotic solutions of (3.13) we
choose a representative set of parameters. In particular, we demonstrate this for the case where
α = −1 and β = −1. In the general case where α, β ∈ C, we find that complex α rotates the
Stokes structure, while complex β translates it. These effects are illustrated in Figures (3.6a) and
(3.6b).

In Figure 3.3a we see that there are three Stokes curves and two anti-Stokes curves emanating
from the singularity in the complex s-plane. The Stokes curve located on the positive real axis
switches the exponential contributions associated with χ2, while the remaining two Stokes curves
switches the exponential associated with χ1. Additionally, there is a branch cut located along the
negative real axis extending to the singularity, s0 = 1. Using this knowledge, we can determine
the switching behaviour as the Stokes curves are crossed.

Since there are six critical curves (Stokes, anti-Stokes curves and a branch cut) in total, we
see in Figure 3.3a, that the Stokes structure naturally separates the complex s-plane into separate
regions. We have the freedom to choose within which region we wish to have an asymptotic
solution described by the power series (3.15). The most natural region to choose is one containing
the positive real axis.
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Re(s)

Im(s)

Re(χ1) < 0, Im(χ1) < 0
Re(χ2) > 0, Im(χ2) > 0

Re(χ2) > 0, Im(χ2) < 0
Re(χ1) < 0, Im(χ1) > 0

Re(χ2) < 0, Im(χ2) < 0
Re(χ1) > 0, Im(χ1) > 0

Re(χ1) > 0, Im(χ1) < 0
Re(χ2) < 0, Im(χ2) > 0

Re(χ1) > 0, Im(χ1) > 0
Re(χ2) < 0, Im(χ2) < 0

Re(χ2) < 0, Im(χ2) > 0
Re(χ1) > 0, Im(χ1) < 0

Stokes Curve

Anti-Stokes Curve

Branch Cut

(A) Singulant behaviour.

Re(s)

Im(s)

χ1: Not present
χ2: Present in state 1 (exp. small)

χ1: Not present
χ2: Present in state 2 (exp. small)

χ1: Not present
χ2: Present in state 2 (exp. large)

χ2: Present in state 1 (exp. large)
χ1: Not present

χ1: Present (exp. small)
χ2: Present in state 1 (exp. large)

χ1: Present (exp. small)
χ2: Present in state 2 (exp. large)

2

1

1

(B) Exponential behaviour.

FIGURE 3.3. These figures depict the Stokes structure of the series solution (3.15) of dPII
for parameter values α = 1 and β = 1. Figure 3.3a illustrates the behaviour of the sin-
gulants as Stokes and anti-Stokes curves (denoted by red and blue curves, respectively)
are crossed. Figure 3.3b illustrates the regions of the complex s-plane in which the expo-
nential contributions associated with χ1 and χ2 are present. The exponential contribution
associated with χ1 is switched across the Stokes curves denoted by ¬, which the contri-
bution associated with χ2 is switched when crossing the Stokes curve denoted by ­. This
convention will be followed in subsequent figures.

Re(s)

Im(s)

S1 = 0

S2 = S+2

S1 = 0

S2 = S−2
S1 = 0

S2 = S−2

S1 = 0

S2 = S+2
S1 = S+1
S2 = S+2

S1 = −S+1
S2 = S−2
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1

(A) Stokes multipliers.

Re(s)

Im(s)

Valid

χ2: exp. large

χ2: exp. large

Exp. Large Contribution

Exp. Small Contribution

(B) Regions of validity.

FIGURE 3.4. These figures depict the Stokes structure of the series solution (3.15) of dPII
for parameter values α = 1 and β = 1. Figure 3.4a shows the switching behaviour of the
Stokes multiplier, Si, as Stokes curves are crossed. Figure 3.4b illustrates the regions of
validity for the general asymptotic solution (3.53) with S1 = 0 and a free parameter, S2.
The red shaded regions depict where exponentially-large terms are present, whereas the
blue shaded regions indicate the presence of exponentially small terms present. The dom-
inant asymptotic behaviour is described by the power series (3.15) in the region bounded
by the anti-Stokes curves containing the positive real axis. Elsewhere, it will be exponen-
tially dominated and the asymptotic behaviour will no longer be described by the power
series expression.
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Re(s)

Im(s)

Validχ2: exp. large

Exp. Large Contribution

Exp. Small Contribution

No Exp. Contribution

(A) First special asymptotic solution.

Re(s)

Im(s)

Valid

χ2: exp. large

(B) Second special asymptotic solution.

FIGURE 3.5. This figure illustrates special asymptotic solutions given in (3.53), for α = 1
and β = 1. Figure 3.5a demonstrates that if we demand that the exponential contribution
due to χ2 be not present in the region below the real positive axis (S−2 = 0) then the range
of validity can be extended. This is also equivalent to specifying that the dominant asymp-
totic behaviour is described by the power series (3.15) about the lower anti-Stokes curve.
Figure 3.5b demonstrates the extended region of validity if the exponential contributions
due to χ2 is not present in the region above the real positive axis (S+2 = 0). This is also
equivalent to specifying that the asymptotic behaviour is described by the power series
expression (3.15) about the upper anti-Stokes curve. Unshaded regions indicate regions in
which there are no exponential contributions.

Re(s)

Im(s)

Valid

(A) Stokes structure with complex parameters
α = eiπ/4 and β = 1.

Re(s)

Im(s)

Re(χ1) < 0, Im(χ1) > 0

Re(χ2) > 0, Im(χ2) < 0

Re(χ2) > 0, Im(χ2) > 0

Re(χ1) < 0, Im(χ1) < 0

Re(χ2) > 0, Im(χ2) < 0

Re(χ1) < 0, Im(χ1) > 0

Re(χ1) < 0, Im(χ1) < 0

Re(χ2) > 0, Im(χ2) > 0

Re(χ1) > 0, Im(χ1) < 0

Re(χ2) < 0, Im(χ2) > 0

Re(χ2) < 0, Im(χ2) < 0

Re(χ1) > 0, Im(χ1) > 0

1

2

2

(B) Stokes structure with parameters α = −1
and β = 1.

FIGURE 3.6. These figures depict the Stokes structure for complex parameters. Figure
3.6a illustrates the Stokes structure for parameters α = eiπ/4 and β = 1 with the region
of validity for a general asymptotic solution. We see that the Stokes structure has been
rotated clockwise by π/4 as a result of α being complex. We also note that the branch cut
has been chosen arbitrarily. Figure 3.6b illustrates the Stokes structure for α = −1 and
β = 1. The structure is a rotation by π, as expected.
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We now determine in which of these regions the dominant asymptotic behaviour may be de-
scribed by the power series (3.15), referred to as regions of validity. From Figure 3.3 we deduce
that the remainder term associated with χ1 must not be present in the neighbourhood of this Stokes
curve as it would exponentially dominate the leading order solution of (3.53). In order for the power
series solution (3.15) to describe the dominant asymptotic behaviour we require the remainder term
associated with χ1 be absent on the positive real axis, and therefore S1 = 0.

However, we see that the remainder term associated with χ2 is exponentially small since
Re(χ2) > 0, and therefore that the series component of (3.53) contains the dominant asymptotic
behaviour. Hence, the value of S2 about the real axis may be freely specified, and will therefore
contain a free parameter.

Since the remainder term associated with χ2 will exhibit Stokes switching, the value of S2 will
vary as it crosses a Stokes curve; say, from state one to state two. We denote this by writing S−2
and S+

2 . Consequently, we conclude that the exponentially small contributions associated with χ1

is present in the regions bounded by the Stokes curves located in the upper and lower complex
plane containing the branch cut. If we assume that S2 is nonzero on either side of the positive real
axis, then the asymptotic series (3.53) is dominated by the power series expression in the region
bounded by the anti-Stokes curves containing the positive real axis and contains exponentially
small contributions; this is illustrated in Figure 3.4b.

We may repeat the process for the remaining five critical curves in order to obtain other types
of asymptotic solutions with different ranges of validity. This results in the determination of two
types of asymptotic solution classes. Type one solutions describe those in which the dominant
asymptotic behaviour is described by the power series (3.15) within some region which contain
a free parameter hidden beyond-all-orders. However, for special choices of the free parameter of
type one solutions, we can obtain asymptotic solutions with an extended range of validity; these
are referred to as type two solutions. Type two asymptotic solutions are illustrated in Figures 3.5a
and 3.5b.

3.5. Non-vanishing asymptotics of discrete Painlevé II

We have completed the analysis for solutions with the behaviour xn � 1 as n → ∞ of
equation (3.7). In addition to these solutions, there exist those which grow in the asymptotic limit,
that is, xn � 1 as n → ∞. The analysis involved in the subsequent sections is nearly identical
to Sections 3.4.1 and 3.4.3. Hence, we will omit the details and only provide the key results. The
scaling for non-vanishing xn behaviour, and the appropriate choice of parameter sizes, is given in
equation (3.12). As before, we drop the hat notation for simplicity. Applying the non-vanishing
type scalings (3.12) into (3.7) we obtain

(g(s+ ε) + g(s− ε))(ε− g(s)2) = (αs+ β)g(s) + γ, (3.61)

as ε→ 0.
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3.5.1. Asymptotic analysis of non-vanishing solutions.

We then expand g(s) as an asymptotic power series in ε,

g(s) ∼
∞∑
r=0

εrgr(s), (3.62)

as ε → 0. Substituting (3.62) into (3.61) and by matching coefficients of ε we can show that the
leading order solution satisfies

− 2g3
0 = (αs+ β)g0 + γ. (3.63)

As (3.63) is a cubic in g0, there will be three possible leading order behaviours as ε→ 0. The three
solutions of (3.63) are

g0,1 =
Ψ

(2
√

27)2/3(
√

Φ + 108γ)1/3
− (
√

Φ + 108γ)1/3

4321/3
, (3.64)

or

g0,2 =
−(1 + i

√
3)Ψ

(2
√

216)2/3(
√

Φ + 108γ)1/3
+

(1− i
√

3)(
√

Φ + 108γ)1/3

(3456)1/3
, (3.65)

g0,3 =
−(1− i

√
3)Ψ

(2
√

216)2/3(
√

Φ + 108γ)1/3
+

(1 + i
√

3)(
√

Φ + 108γ)1/3

(3456)1/3
, (3.66)

where Ψ = 6(αs + β) and Φ = 4Ψ3 + 11664γ2. We also note that the leading order equation
(3.63) is invariant under the mapping g0 7→ ω2g0 with αs+ β 7→ ω(αs+ β). In general, we have

O(εr) : (αs+β)gr =

b(r−1)/2c∑
j=0

2g
(2j)
r−2j−1

(2j)!
−

r∑
m=0

gm

r−m∑
l=0

gl

b(r−m−l)/2c∑
j=0

2g
(2j)
r−m−l−2j

(2j)!
, (3.67)

for r ≥ 1. In order to determine the behaviour of the coefficients in (3.62) we study the singularities
of the leading order behaviour.

3.5.2. Singularities of the leading order behaviour.

In this section we determine the singularities of the leading order behaviour and deduce the
behaviour of the leading order term in the neighbourhood of these singularities. The singularities
of g0 occur when the discriminant of (3.63) is equal to zero. In fact, the discriminant of (3.63) is
precisely given by Φ and hence the singularities of g0 satisfy

Φ = 4× 63(αs+ β)3 + 11664γ2 = 0, (3.68)
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which occurs at the points

s0,1 =
−2β − (2

√
27)2/3γ2/3

2α
, (3.69)

s0,2 =
−β
α

+
3(1 + i

√
3)γ2/3

(16)1/3α
, (3.70)

s0,3 =
−β
α

+
3(1− i

√
3)γ2/3

(16)1/3α
. (3.71)

However, it can be shown by Taylor expansion that the leading order behaviours, g0,j , are only
singular at two of these three points. Taylor expanding g0,j about the points s0,j , shows that

g0,1 ∼ −(2γ)1/3 +
22/3α

9γ1/3
(s− s0,1) +O((s− s0,1)2), as s→ s0,1, (3.72)

g0,1 ∼
i(i+

√
3)γ1/3

25/3
+A

√
s− s0,2 +O(s− s0,2), as s→ s0,2, (3.73)

g0,1 ∼ −
i(−i+

√
3)γ1/3

25/3
+ Ā

√
s− s0,3 +O(s− s0,3), as s→ s0,3, (3.74)

where

A = −
(3 + i

√
3)
√
αγ4/3(−1 + i

√
3)

12γ2/3
, (3.75)

and Ā denotes the complex conjugate of A. Hence, the leading order behaviour described by g0,1

is singular at the points s0,2 and s0,3. Similarly, it can be shown that

g0,2 ∼
γ1/3

22/3
− i
√
αγ4/3

√
6γ2/3

√
s− s0,1 +O(s− s0,1), as s→ s0,1, (3.76)

g0,2 ∼
(1− i

√
3)γ1/3

22/3
− i(−i+

√
3)α

9× 21/3γ1/3
(s− s0,2) +O((s− s0,2)2), as s→ s0,2, (3.77)

g0,2 ∼ −
i(−i+

√
3)γ1/3

25/3
+B

√
s− s0,3 +O(s− s0,3), as s→ s0,3, (3.78)

g0,3 ∼
γ1/3

22/3
+
i
√
αγ4/3

√
6γ2/3

√
s− s0,1 +O(s− s0,1), as s→ s0,1, (3.79)

g0,3 ∼
i(i+

√
3)γ1/3

25/3
+ B̄

√
s− s0,2 +O(s− s0,2), as s→ s0,2, (3.80)

g0,3 ∼
(1 + i

√
3)γ1/3

22/3
+

i(i+
√

3)α

9× 21/3γ1/3
(s− s0,3) +O((s− s0,3)2), as s→ s0,3, (3.81)

where

B =
(3− i

√
3)
√
αγ4/3(−1− i

√
3)

12γ2/3
, (3.82)
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and B̄ denotes the complex conjugate of B. We therefore find that g0,2 is singular at s0,1 and s0,3

while g0,3 is singular at s0,1 and s0,2. We note that singularities of g0,j may also arise at points
where

√
Φ + 108γ = 0; however it can be shown that these singularities are present on the sheets

of (3.64)-(3.66) under the mapping
√

Φ 7→ −
√

Φ, and are hence not present on the primary sheet
containing the singularities s0,j . Hence, by Darboux’s theorem, these singularities will generate
sub-subdominant exponential terms.

3.5.3. Late-order terms analysis.

As we have determined that the leading order behaviours given by (3.64) and (3.65) are singular
in the complex s-plane we are now able to determine the behaviour of the coefficients in (3.62).
From equation (3.67) we observe that the calculation of gr requires two differentiations of gr−2.
Hence, if g0 has a singularity of strength p then f2 will have the same singularity but with strength
p+ 2. As in the analysis of the vanishing type asymptotics found in Section 3.4.3, we find that the
late-order terms for the non-vanishing type asymptotics also have factorial-over-power behaviour.
The late-order terms ansatz for gr is therefore

gr(s) ∼
G(s)Γ(r + κ)

η(s)r+κ
, (3.83)

as r → ∞. Applying (3.83) into (3.67) and matching orders of O(gr) we obtain the following
equations

O(gr) : αs+ β = −4g2
0 − 2g2

0

br/2c∑
r=0

(−η′)2j

(2j)!
, (3.84)

O(gr−1) : 0 = 2

b(r−1)/2c∑
j=0

(−η′)2j

(2j)!
− 2g0g1

b(r−1)/2c∑
j=0

(η′)2j

(2j)!
− 8g0g1 − 2g0g1

br/2c∑
j=0

(−η′)2j

(2j)!
,

− 2g2
0

br/2c∑
j=0

1

(2j)!

((
2j

1

)
(−η′)2j−1G

′

G
+

(
2j

2

)
(−η′)2j−2(−η′′)

)
, (3.85)

as → ∞. We then replace the upper summation limits of (3.86) and (3.87) by infinity, and only
introduce exponentially small error, to find that η(s) and G(s) solve the equations

cosh(η′) =
−(αs+ β + 4g2

0)

2g2
0

, (3.86)

and

2g2
0 sinh(η′)G′ + g2

0η
′′ cosh(η′)G+ (2− 4g0g1) cosh(η′)G− 8g0g1G = 0, (3.87)

respectively. Unlike f0, g0 has multiple singular points, and hence the Stokes and anti-Stokes
curves of the non-vanishing solutions of (3.61) will be more complicated than those described in
Section 3.4.5. This is illustrated in Figures 3.7a and 3.7b in Section 3.5.4.
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3.5.3.1. Calculating the singulant, η.

In this section we are only interested in computing Stokes behaviour of the leading order sub-
dominant exponentials present in (3.62). As these terms are proportional to e−η/ε, we therefore
only calculate the singulant, η, in (3.83). By using the leading order equation (3.63), we can
rewrite (3.86) as

η(s; j) = ±
∫ s

s0,j

(
cosh−1

(
αs+ β + 4g0(t)2

−2g0(t)2

)
+ 2iMπ

)
dt,

= ±
∫ s

s0,j

cosh−1

(
γ − 2g0(t)3

2g0(t)3

)
dt, (3.88)

where s0,j denotes the singularities of the leading order term, g0, and where we have chosen the
value M = 0 following Section 3.4.2 as this is the value for which |η| is smallest. The integral
expression found in (3.88) denotes the singulant, which vanishes at the singularity s0,j . As demon-
strated in Section 3.4.5, we may use the solution to (3.88) to determine the Stokes structure of the
asymptotic solution (3.62).

As there are three distinct leading order solutions for (3.62) we will proceed with the analy-
sis for one particular chosen leading order behaviour. For the purpose of this demonstration we
will consider (3.62) with leading order behaviour (3.64). The Stokes structure for the other lead-
ing order behaviours of (3.62) described by (3.65)-(3.66) may also be determined using the same
methodology. Since the leading order equation (3.63) is invariant under the mapping g0 7→ ω2g0

with αs+ β 7→ ω(αs+ β) and that the singulant expression only depends on g0, the (anti-) Stokes
curves associated with (3.65)-(3.66) may be obtained from the Stokes structure associated with
(3.64) under this mapping.

The singularities of the chosen leading order term, (3.64), were shown to occur at s0,2 and s0,3

given by (3.70) and (3.71), respectively. We will therefore observe that the Stokes and anti-Stokes
curves emerge from two singularities as opposed to one singularity when we compare the Stokes
structure to that found in Section 3.4.5. Changing the variable of integration by setting u = g0(t)
allows us to rewrite the integral (3.88) as

η(s; j) = ±
∫ g0(s)

g0(s0,j)
cosh−1

(
2u3 − γ
−2u3

)(
γ − 4u3

αu2

)
du,

= ±

 3γ

αg0

√
1− 4g3

0

γ
− 2g3

0 + γ

αg0
cosh−1

(
γ

2g3
0

− 1

) , (3.89)

where g0 = g0(s) for j = 2, 3 and 4g3
0(s0,j) = γ. From (3.89) we observe that the expressions

for η(s; 2) and η(s; 3) are the same; however, these expressions correspond to different branches
of a multivalued function. The computation of η(s; 2) requires a Riemann sheet of the integrand
in (3.89) to be chosen which contains the singularity s0,2. Similarly, computing η(s; 3) requires a
sheet of the integrand in (3.89) to be chosen which contains the singularity s0,3. In particular, for
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each of the two singularities, s0,j , there are two corresponding singulants, which differ only by a
change of sign. We denote the singulants by

η1 = η(s; 2), η2 = −η1, η3 = η(s; 3), η4 = −η3. (3.90)

We therefore have two exponential contributions present in the asymptotic expansion (3.62). The
asymptotic series expansions containing the exponentially small contributions is therefore given by

g(s) ∼
N1−1∑
r=0

εrgr(s) + S1e
−η1/ε + S2e

−η2/ε + S3e
−η3/ε + S4e

−η4/ε, (3.91)

where N1 is the optimal truncation point of (3.62) and Si are the Stokes multipliers of the expo-
nential contributions associated with ηi.

3.5.4. Stokes structure.

Once the singulant, η, is determined we may determine the Stokes structure of the asymp-
totic solution as the exponentially small contributions are proportional to exp(−η/ε). As dis-
cussed in Section 3.4.5, the exponentially small contributions present are generally proportional
to exp(−η/ε), and we may therefore obtain the Stokes structure to (3.62) by studying η. In this
section, we will describe the Stokes structure and determine the regions of validity of (3.62) with
leading order behaviour (3.64) with parameter values α = 2, β = −1 and γ = 2.

The Stokes and anti-Stokes curves emanating from the singularities, s0,j , may then be deter-
mined by the conditions

Im(ηi(s)) = 0,

and
Re(ηi(s)) = 0,

respectively. The Stokes structure of the asymptotic solution with leading order term given by
(3.64) is illustrated in Figures 3.7a and 3.7b. In Figure 3.7a we see that there are three Stokes, two
anti-Stokes curves and a branch cut emanating from the upper singularity. The two Stokes curves
located on either side of the branch cut of the upper singularity switches the exponential contri-
bution associated with η1, while the remaining Stokes curve emanating from the upper singularity
switches the exponential associated with η2.

We now determine regions in the complex plane in which the asymptotic behaviour may be
described by the power series expansion (3.62) with leading order term (3.64). From Figure 3.7a
we deduce that the remainder term associated with η2 must not be present in the neighbourhood of
the Stokes curve immediately to the right of the branch cut as it would exponentially dominate the
leading order term (3.64). In order for the power series expansion (3.62) to describe the dominant
asymptotic behaviour we require the remainder term associated with η2 to be absent in this region,
and hence S2 = 0.
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Re(s)
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Re(η1) < 0, Im(η1) < 0
Re(η2) > 0, Im(η2) > 0

Re(η1) > 0, Im(η1) < 0
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Re(η2) > 0, Im(η2) < 0

Re(η1) > 0, Im(η1) > 0
Re(η2) < 0, Im(η2) < 0

Re(η1) > 0, Im(η1) > 0
Re(η2) < 0, Im(η2) < 0

Re(η1) > 0, Im(η1) < 0
Re(η2) < 0, Im(η2) > 0

1

1

2

(A) Stokes structure emerging from upper singu-
larity.
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Im(s)

Re(η3) < 0, Im(η3) > 0
Re(η4) > 0, Im(η4) < 0

Re(η3) > 0, Im(η3) > 0
Re(η4) < 0, Im(η4) < 0

Re(η3) < 0, Im(η3) < 0
Re(η4) > 0, Im(η4) > 0

Re(η3) > 0, Im(η3) < 0
Re(η4) < 0, Im(η4) > 0

Re(η3) > 0, Im(η3) < 0
Re(η4) < 0, Im(η4) > 0

Re(η3) > 0, Im(η3) > 0
Re(η4) < 0, Im(η4) < 0

3

3

4

(B) Stokes structure emerging from lower singu-
larity.

FIGURE 3.7. This figure illustrates the Stokes structure for non-vanishing asymptotic so-
lutions of dPII described by (3.91). In this case, the Stokes and anti-Stokes curves emerge
from two singularities rather than one. We also note the Stokes structure in the upper half
plane is symmetric to the Stokes structure in the lower half plane.

However, we see that the remainder term associated with η1 is exponentially small in this region
since Re(η1) > 0. Hence, the value of S1 in this region may be freely specified and will therefore
contain a free parameter. The remainder term associated with η2 will therefore exhibit Stokes
switching behaviour as it crossed a Stokes curve, say, from state one to state two. Consequently,
we conclude that the exponentially small contribution associated with η2 is present in the region
bounded by the branch cut of the upper singularity and the lower anti-Stokes curve. If we assume
that S1 is nonzero on either side of the lower Stokes curve emerging from the upper singularity
then the asymptotic power series (3.62) is dominated by the term g0 (3.64) in the region bounded
by the branch cut of the upper singularity and the lower anti-Stokes curve. This is illustrated in
Figure 3.8a.

We obtain asymptotic solutions which exhibit similar features to those described in Section
3.4.5. Type one solutions are those in which the dominant asymptotic behaviour described by the
asymptotic power series (3.62) within some region which contain a free parameter hidden beyond-
all-orders. These asymptotic solutions have regions of validity within two adjacent regions of
the complex s-plane. However, for special choices of the within type one solutions, the range
of validity can be extended by two additional adjacent regions in the complex s-plane; type two
solutions. Type two solutions are the special solutions of (3.7) which contain no free parameters
and are therefore uniquely defined. The ranges of validity for type two solutions is illustrated in
Figure 3.8b.
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Re(s)

Im(s)

Valid

(A) General asymptotic solution.

Re(s)

Im(s)

Valid

(B) Special asymptotic solution.

FIGURE 3.8. This figure illustrates the asymptotic solutions described by the power series
(3.62) about the Stokes curve extending to the real positive direction. The blue shaded
regions show the presence of exponentially small contributions, while the contributions are
exponentially large in the red shaded regions. Unshaded regions illustrate no exponential
contributions and therefore the asymptotic behaviour is described by the leading order
solution (3.64). Figures 3.8a illustrate the regions of validity of a general asymptotic
solution about the upper singularity. This asymptotic solution contain one free parameter
hidden beyond-all-orders. The regions of validity to these asymptotic solutions may be
extended as shown in figure 3.8b. This is possible if we demand that the exponential term
be absent in the appropriate region. Due to the symmetry of the Stokes structure, the region
of validity to the contribution due to the lower singularity is symmetric with respect to the
real axis.

Re(s)

Im(s)

Valid

Valid

(A) Composite general asymptotic solution.

Re(s)

Im(s)

Valid

Valid

(B) Composite special asymptotic solution.

FIGURE 3.9. This figure illustrates the regions of validity of the composite general and
special asymptotic solutions of dPII described by (3.62). Here the shading has the meaning
described in Figure 3.4b. Due to the symmetry of the Stokes structure illustrated in Figures
3.8a and 3.8b, the composite behaviour for the general and special asymptotic solutions
can be obtained. No interaction effects occur at the intersection between Stokes curves
on the real axis, as Re(η) takes the same value for both contributions at this point, and
therefore both contributions are the same size as ε→ 0.
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The analysis for the behaviours of the exponential contributions associated with η3 and η4

emanating from the lower singularity can be similarly repeated. In particular, we may deduce from
Figure 3.7 that S3 may be free specified while we must take S4 = 0. Moreover, the symmetry
between the singularities depicted in Figures 3.7 and 3.9 suggest that the Stokes multipliers S1 and
S3 are complex conjugates of each other. Consequently, the non-vanishing asymptotic solution
(3.91) contains one free parameter hidden beyond all orders.

As the asymptotic solution is singular at both the upper and lower singularities, the general
asymptotic expression involves the combinations of the exponential contributions due to both the
lower and upper singularities. The composite behaviour of type one and type two solutions is
illustrated in Figures 3.9a and 3.9b.

Similarly in Section 3.4.5, we have the freedom to choose any of the other Stokes or anti-Stokes
curve about which the dominant asymptotic behaviour is described by the power series (3.62). As a
result, other asymptotic solutions can be obtained by rotating a known asymptotic solution through
two adjacent regions. Thus, we have determined the regions of validity for the asymptotic solutions
of dPII which grow in the limit ε → 0 and qualitatively determined the Stokes behaviour present
within these solutions.

Re(s)

Im(s)

(A) Stokes structure of g0,2.

Re(s)

Im(s)

(B) Stokes structure of g0,3.

FIGURE 3.10. Figures 3.10a and 3.10b illustrates the Stokes structure of (3.91) with
leading order behaviour given by (3.65) or (3.66), respectively. These Stokes structure
are related to the Stokes structure illustrated in figure 3.9 under the mapping αs + β 7→
ω(αs+ β), where ω3 = 1.

We have demonstrated the Stokes structure for the non-vanishing asymptotic solution (3.62)
with leading order behaviour (3.64). Recall that the leading order equation (3.63) is invariant under
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the mapping g0 7→ ω2g0 with αs + β 7→ ω(αs + β). Since the singulant expression, (3.89), only
depends on g0, the Stokes structure for the remaining two non-vanishing asymptotic solutions may
be obtained by applying the mapping g0 7→ ω2g0 and αs+ β 7→ ω(αs+ β) to (3.89). The Stokes
structure of (3.91) with leading order behaviour given by (3.65) or (3.66) are illustrated in Figures
3.10a and 3.10b, respectively.

3.6. Numerical computation for discrete Painlevé II

In this section we give a numerical example of (3.7) for the choice of α = 3/4, β = −1
and γ = 2. Given two initial conditions, x0 and x1, a sequence of solutions may be obtained by
repeatedly iterating (3.7). In general, only a certain choice of initial conditions will give a solution
of (3.7) which tends to the asymptotic behaviour of interest. We follow the numerical method
demonstrated by [83], originally based on the works of [81] to find appropriate initial conditions
which tend to the non-vanishing solution, (3.91), of (3.7).
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(A) Numerical values of Re(xn).
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FIGURE 3.11. This figure illustrates the behaviour of the solutions to (3.7) with α =
3/4, β = −1 and γ = 2. The boundary conditions are chosen such that x0 =
4.184860673 + 11.56360129i and x1 = 0.987362366 + 0.04392112i. The values of xn
are represented as blue circles, and the nonvanishing asymptotic solution, xn ∼ i

√
αn/2

as n→∞, is represented by the black cross marks. From Figures 3.11a and 3.11b we see
that the behaviour of the difference equation tends to the asymptotic expression for large
n.

Figure 3.11 illustrates a comparison between the numerical solution of (3.7) with α = 3/4, β =
−1, γ = 2 and the initial conditions x0 = 4.184860673 + 11.56360129i, x1 = 0.987362366 +
0.04392112i and the leading order term of (3.91). Figure 3.11a and 3.11b show that real part
of xn converges slower compared to the imaginary part of xn to the leading order asymptotic
approximation for large n.

We remark that the ideas of [81, 83] may also be used to find initial conditions for which the
behaviour of (3.7) tends to the vanishing asymptotic solution (3.53). However, we had very limited
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success using this approach due to the high sensitivity to numerical error. More sophisticated nu-
merical methods are required to be developed in order to capture vanishing type solution behaviour,
which is beyond the scope of this thesis.

3.7. Conclusions

In this chapter, we used exponential asymptotics methods to compute and investigate the as-
ymptotic solutions to the second discrete Painlevé equation whose leading order behaviour can be
described by rational expressions such as (3.17), (3.64), or (3.65). We then determined the Stokes
structure and used this information to deduce the regions of validity to these asymptotic solutions.
The asymptotic solutions obtained are given as the sum of a truncated asymptotic power series and
an exponentially subdominant correction term given by (3.53).

In Sections 3.4.1 and 3.4.3, we considered asymptotic solutions which vanish as n → ∞.
Using exponential asymptotics, we determined the form of subdominant exponential contributions
present in the asymptotic solutions, which are defined up to two free Stokes-switching parameters.
From this behaviour, we deduced the associated Stokes structure, illustrated in Figure 3.3. By
considering the Stokes phenomenon, we found that the dominant asymptotic behaviour is described
by a power series (3.15) in a region of the complex plane centered around the positive real axis.
Furthermore, we found that it is possible to select the Stokes parameters so that the exponential
contribution is absent in the region where it would normally become large. Consequently, the
regions of validity for these associated special asymptotic solutions are a significantly larger region
of the complex plane, as shown in Figure 3.5a.

In Section 3.5, we considered the equivalent analysis for asymptotic solutions of the second
discrete Painlevé equation which grow as n→∞, rather than vanishing. By applying exponential
asymptotic methods, we again determined the Stokes structure present in these asymptotic solu-
tions. We note that the structure of Stokes and anti-Stokes curves for this problem, illustrated in
Figures 3.7a and 3.7b, is significantly more complicated than in the vanishing case. Despite this,
careful analysis of the exponentially small asymptotic contributions in the problem is sufficient for
us to determine the regions of validity for the asymptotic series. We again find that the asymp-
totic behaviour contains free Stokes switching parameters, and that these parameters may again be
chosen such that the exponential contributions disappear in regions where they would otherwise
become exponentially large. This causes the associated asymptotic series expression to have a
larger region of validity, illustrated in Figure 3.9b, including the entire real axis.

We note that, when the scalings for the vanishing case, (3.11), and the non-vanishing case,
(3.12), are undone, we find that the leading order solutions of dPII are given by xn ∼ −γ/αn
and xn ∼ ±i

√
αn/2 as n → ∞, respectively. From this analysis, we determine two types of

asymptotic behaviours; type one solutions contain a free parameter hidden beyond-all-orders and
type two solutions are uniquely determined with an extended region of validity.

Features of these asymptotic solutions are shared with the classical tronquée and tri-tronquée
solutions of PII, (3.8). The tronquée solutions contain free parameters hidden beyond-all-orders
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while the tri-tronquée are uniquely defined, both of which are described by asymptotic power series
in certain sectors in the complex plane separated by Stokes and anti-Stokes curves. In particular,
the tronquée and tri-tronquée solutions of the second Painlevé equation are described by divergent
power series with leading order behaviours w ∼

√
−t/2 or w ∼ −µ/t, respectively as |t| → ∞.

These similarities are shared with the asymptotic behaviours we found for dPII.

The asymptotic study considered in [83] used the same ideas to investigate asymptotic solutions
for the first discrete Painlevé equation (dPI). The qualitative features of the asymptotic solutions
obtained in this study are very similar to those in [83]. Using these ideas, both [83] and the current
study were able to determine solutions which are asymptotically free of poles to nonlinear discrete
equations. An important distinction between both the Stokes structure of classic (tri-)tronquée
solutions of the Painlevé equations and the Stokes structure found in [83] is that the regions of
validity for the asymptotic behaviours found in this study are bounded by curves rather than rays.



CHAPTER 4

Multiplicative difference equations

The main goal of this chapter is to investigate Stokes behaviour in solutions of q-difference
equations. In Chapter 3 we showed how to describe such behaviour for solutions of additive dif-
ference equations by considering the second discrete Painlevé equation as the independent variable
approaches infinity. This was possible by an appropriate choice of scalings for the variables in-
volved in the problem. Following the ideas presented in Chapter 3, we show how to describe
Stokes behaviour for q-difference equations.

In this chapter we will consider the asymptotic behaviour of solutions of q-difference equations
in the limit |q| → 1. In particular we study q-analogues of the Airy and first Painlevé equation, both
of which are described by second order q-difference equations. In general, a kth order q-difference
equation is of the form

F (y(qkx), y(qk−1x), y(qk−2x), . . . , y(qx), y(x), x) = 0, (4.1)

where x is the independent variable, a parameter q ∈ C such that |q| 6= 0, 1 and y(x) is the
dependent variable. In principle, for some fixed value of x ∈ C, the value of y(qkx) may be
computed if the values of y(x) at the points {x, qx, q2x, . . . , qk−2x, qk−1x} are known.

If the independent variable is parametrized by setting x = x0q
n for some x0 ∈ C and n ∈ Z,

then (4.1) may be rewritten as

F (yn+k, yn+k−1, yn+k−2, . . . , yn+2, yn+1, yn, x0q
n) = 0, (4.2)

where yn = y(x). This parametrization therefore transforms a kth order q-difference equation into
a kth order additive difference equation. Multiplicative and additive difference equations are similar
in the sense that a sequence of solutions to both types of equations (of kth order) can be obtained
recursively from the governing equation provided there are k initial values ,i.e., if the values of
y(0), y(1), . . . , y(k − 1) are known. However, there is one distinct difference which distinguishes
these two types of equations.

The parametrization x = x0q
n where n ∈ Z, which we denote by x0q

Z, describes a discrete
set of points, which lie along the curve x = x0q

s where s ∈ R and where the principal branch
of qs is taken. Since q is a complex-valued parameter such that |q| 6= 0, 1, the curve x = x0q

s

describes a curve known as a q-spiral. Hence, the solutions of q-difference equations are iterated
along a q-spiral rather than a straight line as in the case of additive difference equations. Since the
parameter q is responsible for this geometric evolution, multiplicative difference equations are also

79
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known as q-difference equations. In particular, distinct choices of x0 produce distinct q-spirals and
hence an infinite number of distinct q-spirals are needed to cover the entire complex x-plane.

1

0
−1

−2
−3

−4

(A) Discrete domain of solutions of q-difference
equations.

1−1

i

−i

q

(B) Four continuous q-spirals.

FIGURE 4.1. This figure illustrates the discrete domain on which the solutions of q-
difference equations are iterated over for the choice of q = 1 + i. This domain takes
the form x = x0q

n for some x0 ∈ C and fixed q ∈ C. In Figure 4.1a the dots with labels
n denote the solution at the nth time step. These discrete domains lie along curves known
as q-spirals; four distinct q-spirals are illustrated in Figure 4.1b. In this figure, the blue,
orange, green and red spirals correspond to q-spirals with the choices x0 = 1,−1, i,−i,
respectively. The arrows on each spiral denote the direction of the forward iteration. As
|q| > 1, the forward iteration tends to∞ while backward iteration tends to 0.

In the spirit of Chapter 3, we apply a specific choice of scalings in order to investigate Stokes
behaviour present in solutions of q-difference equations. In Chapter 3 we demonstrated how to
apply the exponential asymptotic methods developed by King and Chapman [92], based on the
works Chapman et al. [32] and Olde Daalhuis [121], in order to study nonlinear additive difference
equations. We found that by rescaling the independent variable of an additive difference equation
we could transform a difference equation into another difference equation whose step size is small
in the chosen limit.

As discussed earlier, q-difference equations can be rewritten as an additive difference equa-
tion by setting x = x0q

n. The method demonstrated in Chapter 3 will not work for q-difference
equations as terms of the form qn appear in the rescaled equations, which cannot be expanded as a
power series in n as n → ∞. We therefore extend the methods used in Chapter 3 for q-difference
equations by choosing an appropriate choice of scalings for the parameter q.

The outline of this chapter is as follows. We first provide a brief survey of divergent series
found within the context of q-difference equations and describe analogues of the factorial growth,
Borel summation methods and behaviour known as q-Stokes phenomenon.
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In Section 4.2 we discuss the choice of scalings, which we will apply in the analysis of the
q-Airy and first q-Painlevé equation. The scalings we apply is given by x = qn where n = s/ε
and q = 1 + ε. Under this choice of scaling, the asymptotic analysis of q-difference equations are
investigated in the complex s-plane. Hence, in order to interpret the results found in the complex
s-plane in the complex x-plane, we must understand the mapping defined by this choice of scaling.
In particular, we will discover in Section 4.2 that it is sufficient to analyse the rescaled problem in
a semi-infinite domain of the complex s-plane rather than the whole complex s-plane.

In Section 4.3 of this chapter we consider a q-analogue of the Airy function, known as the
q-Airy equation. By following the scaling approach used in Chapter 3 we will determine the
asymptotic solutions of the q-Airy equation in the limit |q| → 1 and n → ∞, its associated
Stokes structure and deduce Stokes behaviour present in these solutions. In particular, we will find
that the solutions obtained from this approach share features with the asymptotic behaviour of the
continuous Airy functions.

In Section 4.4, we follow Chapter 3 and extend the analysis to study solutions of the first q-
Painlevé equation (q-PI). The solutions we find in this section are described by asymptotic power
series containing exponentially small correction terms as |q| → 1 and n → ∞. In particular,
we describe two solution behaviours of q-PI, which we call type A and type B solutions. For both
types, we determine their associated Stokes structure and the Stokes behaviour present within these
asymptotic solutions.

All results found for the q-Airy and first q-Painlevé equations in this chapter are entirely new,
unless stated otherwise.

4.1. Introduction

In this chapter we extend the methodology presented in Chapter 3 to describe Stokes behaviour
in solutions of q-difference equations. In this section we discuss the current situation regarding
divergent series solutions of q-difference equations and propose an approach to extend the methods
applied in Chapter 3 to study solutions described by divergent series.

As in the case of both differential and difference equations, solutions of q-difference equations
may also be described by divergent asymptotic series expansions. In order to draw parallels be-
tween the form of divergent series found in q-difference and continuous equations we consider the
following q-difference equation

xy(qx)− y(x) = −1, (4.3)
where x ∈ C and q ∈ C such that |q| 6= 0, 1. It can be shown that (4.3) admits a solution which is
asymptotic to the formal power series solution [159]

y(x) ∼
∞∑
n=0

qn(n−1)/2xn, (4.4)

as |x| → 0. By the ratio test, we find that (4.4) is divergent for |q| > 1. For this reason, we restrict
our attention to the case |q| > 1. The series expansion in (4.4) is considered to be a q-analogue of
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the Euler series [143, 158], which is given by the formal series

f(x) ∼
∞∑
n=0

n!(−x)n+1, (4.5)

as |x| → 0. We note that (4.5) is also divergent and is asymptotic to a solution of the differential
equation

x2f ′(x) + f(x) = −x. (4.6)

By observation we see that the coefficients in (4.4) grow as qn(n−1)/2 as n→∞. This turns out to
be a generic feature of divergent formal series solutions of q-difference equations [47,140,158,160].
Examples of series expansions whose coefficients grow like qαn

2
where α > 0 have appeared in

the study of the q-analogues of the Bessel function [161], Airy function [107, 110] and the first
Painlevé equation [80, 113, 114]. The coefficients of divergent power series expansion of solutions
to q-difference equations are generically proportional to

qαn
2
,

as n → ∞ where α > 0. As the formal series expansions of solutions of differential equations
generically diverge as a factorial [48], the term qn(n−1)/2 is considered to be a q-analogue of the
factorial function [140, 158, 160]. This is also the reason why (4.4) is regarded as a q-analogue of
the Euler series, (4.5).

In principle, optimal truncation methods can also be applied to study divergent asymptotic
series expansions of solutions of q-difference equations. Applying the idea of optimal truncation
discussed in Section 2.2, the series expansion given by (4.4) can be optimally-truncated by writing

y (x) =

Nopt−1∑
n=0

qn(n−1)/2xn +RN (x), (4.7)

where Nopt is the optimal truncation point. In order to find the value of N for which the coefficient
in (4.4) is least, we use the heuristic given by (2.25) and find that

Nopt ∼ −
log |x|
log |q| , (4.8)

as |x| → 0, which shows that Nopt � 1 in the limit |x| → 0. Furthermore, we can provide an
estimate to the optimally-truncated error of (4.4). Since the optimally-truncated error of (4.4) is
proportional to the first neglected term, we have

RN = O
(
qN(N−1)/2xN

)
, (4.9)

as |x| → 0, and hence
RN ∼ qN(N−1)/2xN , (4.10)

as |x| → 0. Then, by substituting (4.8) into (4.10) we find that

RN ∼
√
x

q1/8
exp

(
1

2

(
log |x|
log |q|

)2

log(q)− log |x|
log |q| log(x)

)
, (4.11)
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as |x| → 0. If we let x = |x| eiθ and q = |q|eiψ then (4.11) can be rewritten as

RN ∼
√
x

q1/8
exp

(
−1

2

(
log |x|
log |q|

)2

+ i

(
ψ

2

(
log |x|
log |q|

)2

− θ log |x|
log |q|

))
, (4.12)

as |x| → 0. Hence, we find that the optimally-truncated error of the q-Euler series, (4.4), is
exponentially small in the limit |x| → 0 for |q| > 1. To possibly investigate Stokes behaviour
present in (4.4), if any, we consider the optimally-truncated error, RN . The substitution of (4.7)
into (4.3) gives

xRN (qx)−RN (x) = −qN(N−1)/2xN . (4.13)
In the case of differential and additive difference equations, the WKB method would be applied in
order to determine the form of RN (x). However, there is no known analogue of the WKB method
for q-difference equations, which is a development beyond the scope of this thesis.

4.1.1. q-Borel summation methods.

In the continuous theory, Borel summation methods are also used to describe Stokes behaviour
by resumming divergent asymptotic series expansions. The q-analogues of these methods have
also been developed for linear q-difference equations [47,140,158,160,162]. We first define some
notation used in this chapter following the standard notation used in Sections 5.18, 17.2-17.4 of [1].
The q-Pochhammer symbol is defined by

(a; q)n =

n−1∏
j=0

(1− aqj), (4.14)

(a; q)0 = 1, (4.15)

and
(a; q)∞ = lim

n→∞
(a; q)n. (4.16)

Moreover, we denote

(a1, a2, · · · , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n. (4.17)

The q-factorial is defined by

[n]q! =
(q; q)n

(1− q)n , (4.18)

and the Jackson integral [62] is defined by

F (x) =

∫ x

0
f(t)dqt = (1− q)x

∞∑
n=0

f(qnx)qn. (4.19)

The function eq(x) [47, 62] is defined to be

eq(x) =(−(1− p)x; p)∞,

=
∞∑
n=0

xn

[n]q!
, (4.20)
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where p = q−1. From equation (4.14), we find that eq(x) is equal to zero at the points x =
−p−Z/(1− p). The basic hypergeometric series [62] are defined by

rϕs(a1, · · · , ar; b1, · · · , bs; q, x) =

∞∑
n=0

(a1, · · · , ar; q)n
(b1, · · · , bs; q)n(q; q)n

(
(−1)nqn(n−1)/2

)1+s−r
xn.

(4.21)
The theta function of Jacobi is defined by the following series

θq(x) =
∑
n∈Z

qn(n−1)/2xn. (4.22)

The analogues of the Borel transform and Borel sum in the theory of linear q-difference equations
are known as the q-Borel transform and q-Borel sum, respectively. Collectively, we refer to these
techniques as q-Borel summation methods. Di Vizio and Zhang [47] define the q-Borel transform
of a power series of the form

∞∑
n=0

anx
n+1, (4.23)

as

Bq :
∞∑
n=0

anx
n+1 7→

∞∑
n=0

an

qn(n−1)/2
ζn = φ(ζ). (4.24)

The q-Borel sum of (4.23) in the direction of λ ∈ C\{0,∞} is defined by

S [λ]
q φ =

q

1− p

∫
λpZ

φ( ζ
1−p)

eq(
ζ

(1−p)x)
dpζ, x /∈ (p− 1)λqZ, (4.25)

where p = q−1. In view of the Jackson integral, (4.19), the q-Borel sum given in (4.25) is a discrete
summation of (4.23) along the q-spiral defined by λpZ. This is defined everywhere in the complex
plane except at the q-spiral defined by (p − 1)λqZ. On this particular q-spiral, the denominator
of the integrand in (4.25) is equal to zero and hence describe the poles of (4.25). Furthermore,
for each choice of λ, the q-Borel sum constructs a sum of (4.23) along each distinct direction of
summation.

4.1.2. q-Stokes phenomenon.

This method of resumming divergent series for linear q-difference equations uncovers be-
haviour referred to as q-Stokes phenomenon. However, q-Stokes phenomenon is unlike the classical
Stokes phenomenon for differential equations. This is because the q-Borel sum in (4.25) constructs
a distinct meromorphic solution for each distinct choice of λ [47]. In particular, Di Vizio and Zhang
show in [47] that the difference in sums along two distinct q-spirals is proportional to a product of
q-Jacobi theta functions.

In the usual case, the Borel sum assigns a sum to a divergent series, which is interpreted as
the function asymptotic to this series. The q-Borel sum also does this, however, the resulting sum
is described by an asymptotic expansion which is valid in the whole complex plane except on the



4.1. INTRODUCTION 85

q-spiral defined in (4.25). The asymptotic expansion does not vary in the complex plane and hence
does not describe the usual Stokes behaviour; an example showing this explicitly will be given
in Section 4.3. The notion of q-Stokes phenomenon and its differences to the classical Stokes
phenomenon in differential equations are detailed in [47, 140].

One particular application of q-Borel resummation is to develop connection formula for linear
q-special functions. These q-special functions include q-analogues of the Airy, Bessel and hyper-
geometric functions. A connection formula is an expression which relates the solution behaviour of
an equation under a given asymptotic limit to the solution behaviour as another limit is approached.
Examples include formulae which relate the solution behaviour at infinity to its behaviour at the
origin or those which relate the solution between two distinct approaches toward infinity.

Morita constructed a connection formula relating solutions of a q-analogue of the Airy equation
at the origin and infinity [107, 110]. Following the work of Morita [108], Ohyama was also able
to construct connection formula for a certain class of basic hypergeometric series [115]. In both
studies, asymptotic solutions for linear q-difference equations are obtained by applying q-Borel
summation methods to formal series expansions. The resulting connection formula obtained after
applying this method is referred to as the q-Stokes phenomenon in these research papers.

These descriptions of q-Stokes phenomenon are not quite what we are seeking to capture in
this thesis. We are interested in describing solutions of q-difference equations, which contain
exponentially small behaviour and exhibits Stokes switching. In order to capture this behaviour for
q-difference equations, we apply an adaptation of the method demonstrated in Chapter 3.

4.1.3. Describing Stokes phenomena for q-difference equations.

In order to study Stokes behaviour in solutions of q-difference equations we will apply a cer-
tain choice of scalings to the problem of interest. Recall that q-difference equations can also be
regarded as additive difference equations under the parametrization x = x0q

n. If we are inter-
ested in the behaviour of their solutions as the independent variable is large, we find that under this
parametrization, the limit |x| → ∞ is equivalent to n→∞ provided that |q| > 1.

Harris and Sibuya [68] prove the existence of true solutions for a class of nonlinear additive
difference equations, which have asymptotic behaviour described by formal power series. In par-
ticular, these nonlinear difference equations are those for which the equation may be expanded as
a power series in the independent variable, n. However, the parametrization x = x0q

n applied to
nonautonomous q-difference equations introduce terms of the form qn. Terms of this form can not
be expanded as an asymptotic power series in n as n → ∞ and hence the results in [68] are not
applicable in describing the asymptotic behaviour of solutions for q-difference equations.

In Chapter 3 we introduced a small parameter, ε, by rescaling the variables of the difference
equation of interest. Under the choice of scaling, the original difference equation was rescaled into
another difference equation in which the step sizes are defined by ε.
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Hence, in hindsight this choice of rescaling can be considered as a continuum limit inspired
approach as the step sizes of the rescaled problem approach zero in the limit ε→ 0. We call this the
continuum limit-like approach in order to distinguish from the continuum limit for discrete Painlevé
equations, which yield the differential Painlevé equations.

In order to apply the continuum limit-like approach, we additionally rescale the parameter q
such that q → 1. The choice of scaling we apply is q = 1 + ε for the case |q| > 1. By applying this
additional choice of rescaling, terms of the form qn are then able to be expanded as a power series
in ε.

4.2. Riemann sheets : Reverting the transformations

In order to study Stokes behaviour present in the solutions of q-difference equations we apply
the scalings s = εn and q = 1 + ε to the independent variable x = x0q

n. We note that since we
allow s to be complex-valued, we may set x0 = 1 without loss of generality. Under this choice of
scaling, it is possible to expand the independent variable as a power series in ε. To leading order,
the rescaling transformation is given by

x =qn,

= (1 + ε)s/ε, (4.26)

∼ es +O(ε), (4.27)

as ε → 0. In this case, we find that the limit ε → 0 is equivalent to the double limit |q| → 1 and
n → ∞ rather than being equivalent to the independent variable approaching infinity, as was the
case in Chapter 3. We therefore study the solutions of q-difference equations in the limit |q| → 1
and n→∞ rather than |x| → ∞.

Furthermore, to leading order in ε, the transformation from the original variable x to the new
variable s is described by the mapping

x 7→ s : x = es. (4.28)

Hence, for any given s ∈ C we can find all x ∈ C as the exponential is an entire function.
However, problems arise when we want to determine s given any x ∈ C as logarithms are involved
in the inverse transformation. In order for this transformation to be single-valued, a logarithmic
type branch cut must be defined in the complex x-space. By taking an appropriate choice of
branch cut, the results found in the complex s-plane may be mapped to the complex x-space by the
transformation (4.28) and interpreted appropriately.

Since the function es is 2πi-periodic in s, a semi-infinite domain in the complex s-plane is
sufficient to cover the whole complex x-plane. We define the semi-infinite domain, Dbase, by

Dbase = {s ∈ C | Im (s) ∈ (a, b]},
where b − a = 2π. We call Dbase a base domain. The simplest base domain are those for which
a = −b; these are referred to as symmetric base domains. The most natural symmetric base domain
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is given by
D0 = {s ∈ C | Im(s) ∈ (−π, π]} , (4.29)

which we call the principal symmetric base domain and we define the kth-adjacent domain as

Dk = {s ∈ C | Im(s) ∈ (−π + 2kπ, π + 2kπ]} , (4.30)

for any k ∈ Z\{0}.

Re(x)

Im(x)

1

(A) Regions in the complex x-plane

Re(s)

Im(s)

π

−π
(B) Regions in the domain D0

FIGURE 4.2. This figure illustrates the correspondence between the complex-s and com-
plex x-planes. In particular, Figure 4.2b illustrates the principal domain,D0, which covers
the whole x-plane under the transformation (4.28) minus the branch cut of the logarithm.
The upper and lower boundaries of D0 are defined by Im(s) = ±π. As the transformation
is given by x ∼ es as ε → 0, the crossing of either the upper or lower boundaries of D0

into the adjacent domains described by Dk correspond to the logarithmic Riemann sheets
in the complex x-plane.

For convenience, we simply refer D0 as the principal domain. In view of the mapping of
(4.28), adjacent domains represent the various logarithmic Riemann sheets in the complex x-plane.
When we consider the first q-Painlevé equation in Section 4.4, we will find that the leading order
behaviour is 2πi-periodic in s. In particular, the Stokes behaviour of the asymptotic solutions
we find will be shown to only depend on the leading order behaviour. Consequently, the Stokes
structure is also 2πi-periodic and hence the Stokes structure in the adjacent domains, Dk, may be
obtained by translating the Stokes structure inD0 by an appropriate integer multiple of 2πi. Hence,
we restrict the subsequent analysis to the domain D0 as this corresponds to the principal Riemann
sheet in the complex x-plane.

Figures 4.2a and 4.2b illustrate correspondences between particular regions and curves under
the transformation (4.28). We see that the imaginary s axis is mapped to the unit circle in the
complex x-plane. Additionally, the mapping (4.28) sends the left-half complex s-plane to the
interior of the unit circle while the right-half complex-s plane is mapped its exterior.
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Furthermore, curves with fixed values of Re(s) are mapped to closed circles in the complex
x-plane, which when traversed anti-clockwise denote the values of increasing Im(s). Figure 4.2b
represents the domain D0 in the complex s-plane. The upper and lower boundaries of D0 define a
logarithmic branch cut along the negative real axis of the complex x-plane.

4.3. A q-analogue of the Airy equation

Before we consider nonlinear q-difference equations we first study a second order linear q-
difference equation. As the Airy equation is a typical example of Stokes behaviour for second
order linear differential equations we investigate the solutions of a q-analogue of the Airy function.

In the literature, there are two known q-analogues for the Airy equation. Their respective
solutions are known as the Ramanujan function and the q-Airy function. The Ramanujan function,
Aq(x), is defined by the series

Aq(x) =

∞∑
n=0

qn
2

(q; q)n
(−x)n = 0ϕ1(−; 0; q,−qx), (4.31)

and satisfies the equation
xu(qx)− u(x) + u(x/q) = 0. (4.32)

Another solution of (4.32) is given by

u(x) = θq(x)2ϕ0(0, 0;−; q,−x), (4.33)

where we note that the basic hypergeometric series 2ϕ0(0, 0;−; q,−x) is divergent. The Ramanu-
jan function first appeared in the works of Ramanujan [139]. In particular, Ismail [74] calculated
the result

lim
n→∞

qn
2

tn
hn(sinh (ζn) |q) = Aq

(
1

t2

)
, (4.34)

where eζn = tq−n/2 and hn(·|q) are the q-Hermite polynomials. To understand why (4.31) is
regarded as a q-analogue of the Airy function we consider the following result

lim
n→∞

e−x
2/2

31/3π−1/422/n+1/4
√
n!
Hn(x) = Ai(t), (4.35)

where x =
√

2n+ 1−21/231/3n1/6t, Hn(x) are the Hermite polynomials and Ai(x) is the contin-
uous Airy function [107]. The result given by (4.35) describes the asymptotics around the smallest
and largest zeros of the Hermite polynomials; this is known as the Plancherel-Rotach asymptotic
formula for the Hermite polynomials. The result given in (4.34) is the q-analogue of (4.35) as it
involves the product between some ratio depending on n and the q-Hermite polynomials. Due to
this, the Ramanujan function is considered to be a q-analogue of the Airy function.

The other q-analogue of the Airy function is called the q-Airy function and is defined by the
series

Aiq(x) =

∞∑
k=0

(−1)kqk(k−1)/2

(−q, q; q)k
(−x)k = 1ϕ1(0;−q; q,−x), (4.36)
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which satisfies
u(qx) +

x

q
u(x)− u(x/q) = 0. (4.37)

Another solution of (4.37) is given by

exp(iπ logq(x))Aiq(x). (4.38)

It was shown in [67] that the q-Airy function is a special solution of the second q-Painlevé equation.
Furthermore, the authors of [67] showed that under the continuum limit

q = e−δ
3/2, x = −2ie−2δ2/2 = −2iqs/δ, u(x) = eiπ logq(t)/2v(t), (4.39)

the equation (4.37) yields
v′′(s) = −sv(s),

as δ → 0. Following the naming convention of the discrete Painlevé equations, equation (4.37) is
therefore known as the q-Airy equation.

The Ramanujan function and the q-Airy function are related to each other by the so called
connection problem. By using the q-Borel summation method introduced by Zhang [160], Morita
[107] was able to obtain a connection formula relating the solutions of (4.31) at infinity to solutions
of (4.36) at the origin.

Morita [109,110] also applies the q-Borel summation method to resum the formal series given
by (4.33). More specifically, Morita shows that

θq(x)2ϕ0(0, 0;−; q,−x/q) =(q; q)∞
θq(x)θq2(−λ2/qx)

θq(−λ/q)θq(λ/x)
)1ϕ1(0; q; q2, q2/x),

+
λ(q; q)∞
x(1− q)

θq(x)θq2(−λ2/x)

θq(−λ/q)θq(λ/x)
)1ϕ1(0; q3; q2, q3/x), (4.40)

for any x ∈ C\{−λqZ} where λ ∈ C\{0,∞} [110]. This method of resummation allowed
Morita to assign a sum to (4.33), which is expressible in terms of convergent series expansions at
infinity [109,110]. Morita refers to this as the Stokes phenomenon for linear q-difference equations.
However, the formula in (4.40) is valid everywhere in the complex x-plane except along the q-
spiral defined by −λqZ. Therefore the expression in (4.40) does not vary in different regions of the
complex plane. Using q-Borel summation methods, both Morita [108] and Ohyama [115] resum
divergent series expansion for certain classes of basic hypergeometric series in order to obtain
connection formula similar to (4.40), which they refer as q-Stokes phenomenon.

The Stokes phenomenon described in [108, 110, 115] is therefore not the usual case of Stokes
phenomenon we have described in Chapters 2 and 3 in the sense that the asymptotic series ex-
pansion of a function differs by an exponentially small term in different regions of the complex
plane. In order to investigate solutions of q-difference equation which display Stokes behaviour,
we extend the techniques presented in Chapter 3.
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4.3.1. Asymptotic analysis of the q-Airy equation.

We demonstrate how to extend the scaling approach presented in Chapter 3 to linear q-difference
equations by considering the q-Airy equation given by (4.37). In particular, we will determine the
Stokes structure of the solutions of the q-Airy equation and qualitatively investigate Stokes be-
haviour present in these solutions.

First, we transform the q-difference equation (4.37) into an additive difference equation by
setting x = qn. Under this parametrization, equation (4.37) can be rewritten as

un+1 + qn−1un − un−1 = 0, (4.41)

where un = u(qn), un+1 = u(qn+1) and un−1 = u(qn−1). As we have discussed in Section 4.1,
a straightforward application of the rescalings used in Chapter 3 is not helpful because of the qn

term. These terms cannot be expanded in powers of n as n → ∞. In order to overcome this, we
apply the continuum limit-like approach by also rescaling the parameter q in addition to n. The
scalings we apply are

n =
s

ε
, q = 1 + ε, (4.42)

where we now consider the limit ε→ 0. The rescaled version of (4.41) is then given by

u(s+ ε) + (1 + ε)s/ε−1u(s)− u(s− ε) = 0, (4.43)

as ε→ 0. Under this choice of rescaling it is now possible to expand the nonautonomous term, qn,
in powers of ε. Furthermore, we assume that u(s) is an analytic function in s in order to expand
the solutions in equation (4.43) to give

2
∞∑
j=0

ε2j+1
u

(2j+1)
j (s)

(2j + 1)!
+ (1 + ε)s/ε−1u(s) = 0. (4.44)

Attempting to expand the solution, u(s), as an asymptotic power series in ε produces the trivial
power series expansion where the coefficients are identically zero. This suggests that the solution
is exponentially small. We therefore apply a WKB ansatz for u(s) and seek a solution of (4.44)
with the form

u(s) ∼ a(s)ef(s)/ε, (4.45)
as ε→ 0. Making this substitution into (4.44) we obtain

2
∞∑
j=0

(f ′)2j+1

(2j + 1)!
u+ 2ε

∞∑
j=0

1

(2j + 1)!

((
2j + 1

1

)
(f ′)2j a

′

a
+

(
2j + 1

2

)
(f ′)2j−1f ′′

)
u,

+ esu− s+ 2

2
esεu+O(ε2u) = 0 (4.46)

as ε → 0. We then proceed to match terms of O(εjef(s)/ε) as ε → 0 for j = 0, 1. The leading
order equation in (4.46) is given by

O(ef/ε) : 2

∞∑
j=0

(f ′)2j+1

(2j + 1)!
+ es = 0, (4.47)
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which can be simplified to give

2 sinh(f ′) + es = 0. (4.48)

Matching at the next subsequent order, we obtain the equation

O(εef/ε) : 2
∞∑
j=0

1

(2j + 1)!

((
2j + 1

1

)
(f ′)2j a

′

a
+

(
2j + 1

2

)
(f ′)2j−1f ′′

)
− (s+ 2)

2
es = 0,

(4.49)
which simplifies and rearranged to give

2 cosh(f ′)
a′

a
+ f ′′ sinh(f ′)− (s+ 2)

2
es = 0. (4.50)

Equation (4.48) and (4.50) can be solved to find f(s) and a(s), respectively. As in the analysis for
the hyper-Airy equation in Chapter 2, the Stokes curves may be determined by condition (2.64),
which only require the WKB phase factors to be known.

We will therefore compute the WKB phase factors in the next section, which will allow us to
determine the Stokes structure of the q-Airy function. Once the Stokes structure has been deter-
mined in the complex-s plane we may reverse the transformation in order to obtain the correspond-
ing Stokes structure in the complex x-plane. Before we move on to the analysis of the WKB phase
factors (4.48), we first discuss invariant functions of q-difference equations known as q-periodic
functions.

4.3.2. q-periodic functions.

In the theory of linear differential and difference equations, it is well known that the general
solutions of nth order linear differential or difference equations form a linear combination of n
distinct linearly independent solutions. Such solutions are known as fundamental solutions. This
is the theory of superposition in linear differential and difference equations [4, 53].

There is an analogous theory for linear q-difference equations, which has been developed by
Birkhoff [17–19], Carmichael [30] and Adams [3]. In was shown by Adams [3] that the nth order
system of first order q-difference equations of the form

Y (qx) = A(x)Y (x), |q| 6= 1, (4.51)

where A(x) is analytic or has a pole at x = ∞ and |A(x)| 6= 0, always admit n linearly inde-
pendent fundamental solutions. As in the case of linear differential and difference equations, the
general solution of linear q-difference of the form (4.51) is a linear combination of the fundamen-
tal solutions. However, the constants appearing in this linear combination are not constants in the
usual sense, but functions which are invariant under the shift x 7→ qx.
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In order to illustrate this, let Yi(x) denote a fundamental solution of (4.51). That is, Yi(x) is a
solution of (4.51), and consider the following function

G(x) =
n∑
i=1

Fi(x)Yi(x), (4.52)

where Fi(x) is an arbitrary function of x. Under the shift x 7→ qx the function (4.52) reads

G(qx) =
n∑
i=1

Fi(qx)Yi(qx),

=
n∑
i=1

Fi(qx)A(x)Yi(x),

where we have used the fact that Yi(x) is a solution of (4.51). If (4.52) is to be a solution of (4.51)
then it is required that

Fi(qx) = Fi(x),

for all i. Hence, ‘constants’ for q-difference equations are replaced by functions defined by

F (qx) = F (x). (4.53)

Functions which satisfy (4.53) are known as q-periodic functions. Consequently, Birkhoff [19]
defines any two functions which differ by a multiplicative q-periodic function to be linearly depen-
dent.

In our analysis of q-difference equations, we rescale the variables in order to study Stokes
behaviour in solutions of q-difference equations in the limit |q| → 1. It is therefore natural to ask
what these q-periodic functions correspond to under our choice of rescaling.

The first of these transformations is to parametrize the independent variable by setting x = qn.
This converts equation (4.53) into

F̂ (n+ 1) = F̂ (n), (4.54)

where F̂ (n) = F (x). We then introduce ε by setting s = εn. This transforms (4.54) into

F̃ (s+ ε) = F̃ (s), (4.55)

where F̃ (s) = F̂ (n). We therefore discover that q-periodic functions correspond to functions with
the property (4.55). That is, q-periodic functions correspond to functions which are invariant under
the shift s 7→ s+ ε. For example, the function given by

g(x) = exp

(
2iMπ

log(x)

log(q)

)
, (4.56)

where M ∈ Z is a q-periodic function, as it satisfies (4.53). Then by setting x = qn with s = εn,
the function (4.56) corresponds to the function

g(s) = exp

(
2iMπs

ε

)
. (4.57)
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The notion of q-periodic functions will be important in the following analysis of the WKB phase
factors of the q-Airy equation.

4.3.3. WKB phase factor analysis for q-Airy.

In this section we determine the WKB phase factors of the rescaled q-Airy equation by studying
equation (4.48). We will find that there are infinitely many WKB phase factor terms for (4.45),
which would suggest there are infinitely many WKB solutions. However, we show that all but two
of these contributions are determined up to multiplication of a q-periodic function. In the sense of
Birkhoff, the two distinct WKB solutions describe two linearly independent solutions of (4.43).

Solving for f ′(s) in (4.48) we obtain the equations

f ′1(s;M1) = − sinh−1

(
es

2

)
+ 2iM1π, , (4.58)

f ′2(s;M2) = sinh−1

(
es

2

)
+ iπ + 2iM2π, , (4.59)

where M1,M2 ∈ Z. We define, as in [2], the inverse sinh function by

sinh−1(z) = log(z +
√
z2 + 1).

Hence, the functions f ′j(s;Mi) have branch points whenever(
es

2

)2

+ 1 = 0.

The points at which this occurs is given by

sBP = log(2)± iπ

2
+ iπK, (4.60)

where K ∈ Z. In D0, the relevant branch points are therefore

sBP = log(2)± iπ

2
. (4.61)

From equations (4.58) and (4.59) it appears we have infinitely many phase factors as we obtain
a particular phase factor for each choice M ∈ Z. However, we will show that the phase factors
fi(s;Mi) with nonzero values of Mi yield WKB solutions of the form (4.45) multiplied by q-
periodic functions. Consequently, the phase factors, fi(s; 0), describe the two linearly independent
solutions of (4.43) in the sense of Birkhoff.

In order to show this, we integrate (4.58) in order to find that

f1(s;M1) = −
∫ s

ŝ
sinh−1

(
et

2

)
dt+ 2iM1πs,

= −χ(s) + 2iM1πs,
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where ŝ is an arbitrary point and

χ(s) =

∫ s

ŝ
sinh−1

(
et

2

)
dt.

Then under the WKB ansatz (4.45), a solution of (4.43) is therefore of the form

u1(s;M1) ∼ a1(s)e−χ(s)/ε exp

(
2iM1πs

ε

)
,

as ε→ 0.

The term exp (2iM1πs/ε) is precisely the function described by (4.57) and hence corresponds
to a q-periodic function. Therefore, the WKB solutions with nonzero values of M1 are equal to the
WKB solution with M1 = 0 multiplied by a q-periodic function. Consequently, the WKB solution
u1(s; 0) describes a linearly independent solution of (4.43) in the sense of Birkhoff [19].

A similar argument shows that the WKB phase factor, f2(s; 0), describes the second linearly
independent solution of (4.43). Therefore, we consider the cases where M1 and M2 are chosen to
be zero in equations (4.58) and (4.59) as these describe the two linearly independent solutions of
(4.43).

The solutions of equations (4.58) and (4.59) with M1 and M2 equal to zero gives

f1(s) = −
∫ s

ŝ
sinh−1

(
et

2

)
dt, (4.62)

f2(s) = −f1(s) + iπ(s− ŝ), (4.63)

where ŝ is an arbitrary point. The two linearly independent solutions of (4.43) are then given by

u1(s; 0) ∼ C1(s)a1(s)ef1(s)/ε, (4.64)

u2(s; 0) ∼ C2(s)a2(s)e(−f1(s)+iπ(s−ŝ))/ε, (4.65)

as ε → 0 where C1(s), C2(s) are two arbitrary q-periodic functions and a1(s), a2(s) are yet to be
determined.

4.3.4. WKB amplitude factor analysis for q-Airy.

In this section we determine the WKB amplitude factors, a(s). We therefore aim to solve
equation (4.50) and hence completely determine the form of the leading order behaviour of (4.43).
As there are two distinct solutions for f(s), there are therefore two corresponding solutions for
a(s).

In fact, it can be shown that a1(s) and a2(s) are related to each other. In order to show this, we
consider the equations involving the WKB phase factors. Equation (4.63) shows that

f ′2(s) = −f ′1(s) + iπ.
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Using this formula and hyperbolic identities, we find that

cosh(f ′2) = − cosh(f ′1),

sinh(f ′2) = sinh(f ′1),

f ′′2 = −f ′1.

Using this information, equation (4.50) gives

2 cosh(f ′1)
a′1
a1

+ f ′′1 sinh(f ′1)− s+ 2

2
es = 0, (4.66)

−2 cosh(f ′1)
a′2
a2
− f ′′1 sinh(f ′1)− s+ 2

2
es = 0. (4.67)

Then, by subtracting equations (4.66) and (4.67) from each other, the exponential term can be
removed in order to obtain the equation

2 cosh(f ′1)

(
a′1
a1

+
a′2
a2

)
+ 2f ′′1 sinh(f ′1) = 0. (4.68)

We may directly integrate (4.68) in order to find that

a1(s)a2(s) =
Λ

cosh(f ′1(s))
, (4.69)

where Λ is a constant of integration. Rearranging the expression in (4.69) shows that

a2(s) =
Λ

a1(s) cosh(f ′1(s))
. (4.70)

Once the explicit form of a1(s) is determined the explicit form of a2(s) can be calculated. As the
amplitude factor satisfies a first order linear differential equation, (4.66) can be integrated to give

a1(s) =
Λ1√

cosh(f ′1(s))
exp

(∫ s (t+ 2)et

4 cosh(f ′1(t))
dt

)
, (4.71)

where Λ1 is a constant of integration. Substituting (4.71) into (4.70) shows that

a2(s) =
Λ2√

cosh(f ′1(s))
exp

(
−
∫ s (t+ 2)et

4 cosh(f ′1(t))
dt

)
, (4.72)

where Λ2 = Λ/Λ1.

4.3.5. Complete asymptotic power series.

In the previous sections we determined the explicit form of the phase factors of the WKB
ansatz, (4.45). We therefore find that the solutions of the rescaled q-Airy equation, (4.43), are
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described by

u(s) ∼C1(s)
Λ1√

cosh(f ′1(s))
exp

(∫ s (t+ 2)et

4 cosh(f ′1(t))
dt

)
ef1(s)/ε

+C2(s)
Λ2√

cosh(f ′1(s))
exp

(
−
∫ s (t+ 2)et

4 cosh(f ′1(t))
dt

)
e(−f1(s)+iπ(s−ŝ))/ε, (4.73)

as ε→ 0 and where C1(s) and C2(s) are q-periodic functions. For convenience, we let

U1(s) =
Λ1√

cosh(f ′1(s))
exp

(∫ s (t+ 2)et

4 cosh(f ′1(t))
dt

)
ef1(s)/ε, (4.74)

U2(s) =
Λ2√

cosh(f ′1(s))
exp

(
−
∫ s (t+ 2)et

4 cosh(f ′1(t))
dt

)
e(−f1(s)+iπ(s−ŝ))/ε. (4.75)

The asymptotic solution given by (4.73) is therefore a linear combination of the exponential con-
tributions U1(s) and U2(s). This is similar to the result for the classical Airy function, in which its
asymptotic solution is described, to leading order, by the expression

y(z) ∼ D1
e−ζ

z1/4
+D2

eζ

z1/4
, (4.76)

as |z| → ∞ where ζ = 2z3/2/3 and D1, D2 are constants.

In the analysis of the hyper-Airy equation, which we considered in Chapter 2, the general
asymptotic series expansion was shown to be composed of a sum of component asymptotic power
series in ε, each of which are multiplied by distinct exponential terms; this is due to the fact that the
governing equation is linear. In particular, these exponential prefactors are precisely the leading
order behaviours of the hyper-Airy equation obtained by the WKB method.

In general, the full asymptotic series expansion of (4.73) may be obtained by writing u(s) =
Uj(s)gj(s) for j = 1, 2 where gj(s) is an asymptotic power series in ε. By scaling out the leading
order behaviour, Uj(s), the governing equation for gj(s) can be obtained, from which the asymp-
totic series expansion of gj(s) may be determined.

However, we do not require the full asymptotic series expansion to be known as we are only
interested in computing the Stokes structure and using this to qualitatively deduce Stokes behaviour
present in (4.73). We note that Dingle outlines a procedure on how to obtain the full asymptotic
series expansion of the WKB method for a class of second order difference equations [49].

In principle, the complete asymptotic series expansion of (4.43) is of the form

u(s) ∼ C1(s)U1(s)
∞∑
r=0

εrv1,r(s) + C2(s)U2(s)
∞∑
r=0

εrv2,r(s), (4.77)

as ε → 0. We note that when the asymptotic solution, (4.77), is written in terms of the original
variable x, the limit ε→ 0 is equivalent to the limits |q| → 1 and n→∞. From the form of (4.77),
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we may deduce Stokes behaviour present within the asymptotic solutions of the q-Airy equation in
the limits |q| → 1 and n→∞.

4.3.6. Stokes structure of q-Airy.

In order to describe the Stokes geometry of the asymptotic solutions of the q-Airy equation, we
must first determine the turning points of the WKB solutions given by (4.73). Turning points of the
WKB approximation are points at which the approximation breaks down as the amplitude factors
become singular at such points [8]. In particular, these points are also the points from which the
Stokes and anti-Stokes curves emanate.

Following Joshi and Takei [86], the turning points, s0, of the WKB solution, (4.45), may be
defined by the condition

f ′i(s0) = f ′j(s0), (4.78)

for i 6= j. Using (4.78), the turning points of (4.73) satisfy

f ′1(s0) =f ′2(s0),

=− f ′1(s0) + iπ. (4.79)

By using the expression for f1(s), which is given by (4.62), we find that the turning point, s0,
satisfies

− sinh−1

(
es0

2

)
= sinh−1

(
es0

2

)
+ iπ, (4.80)

which can be solved to give

s0,m = log(2)− iπ

2
+ 2imπ, (4.81)

where m is an integer. Hence, in the complex s-plane, there are infinitely many turning points of
the WKB solution (4.45). However, in the domain D0, the point s0 := s0,0 is the only turning
point. Furthermore, we note that equations (4.66) and (4.67) indeed become singular at the turning
point, s0,m, as the term cosh(f ′1) vanishes at these points. We recall that the phase factors, f1(s)
and f2(s) are integrated from an arbitrary point ŝ. As ŝ is arbitrary, we may replace it by the turning
point s0,m. Hence, equations (4.62) and (4.63) show that f1(s0,m) = 0 = f2(s0,m).

We are now able to determine the Stokes geometry of the asymptotic solution (4.77). We may
use conditions (2.64) and (2.66) given in Chapter 2 to determine the Stokes and anti-Stokes curves,
respectively. These conditions tell us that the Stokes and anti-Stokes curves of (4.77) are given by

Im

(
2f1(s)−

∫ s

s0,m

iπdt

)
= 0, (4.82)

Re

(
2f1(s)−

∫ s

s0,m

iπdt

)
= 0, (4.83)
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respectively and where f1 is given by (4.62). Hence, the replacement of ŝ by s0,m in equations
(4.62) and (4.63) result in the Stokes and anti-Stokes curves to emerge from the turning point. Let
us define the function

η(s; s0,m) = 2f1(s)−
∫ s

s0,m

iπdt, (4.84)

for the choice of m. In particular, the Stokes curves emanating from the turning point s0,m are
obtained when the imaginary part of (4.84) is equal to zero. We will now show that we may restrict
the analysis to the domain D0.

From equation (4.81), we see that s0,m+1 = s0,m + 2iπ, and hence these turning points are
all vertical translations of each other by some integer multiple of 2iπ. Recall that the union of the
domains Dk cover the entire complex s-plane. We will show that the Stokes structure emanating
from the singularity s0,m is identical to those which emanate from the singularity s0,m+1 under the
shift s 7→ s+ 2iπ. To show this, equation (4.84) tells us that

η(s+ 2iπ; s0,m+1) = 2

∫ s+2iπ

s0,m+1

sinh−1

(
et

2

)
dt−

∫ s+2iπ

s0,m+1

iπdt. (4.85)

Then under the change of variables, t = x+ 2iπ, the integral in (4.85) is equal to

η(s+ 2iπ; s0,m+1) =2

∫ s

s0,m

sinh−1

(
et

2

)
dt−

∫ s

s0,m

iπdt,

=η(s; s0,m). (4.86)

Hence, the Stokes structure emanating from the singularities s0,m and s0,m+1 are identical as the
difference between these two singularities is precisely equal to 2iπ. Furthermore, the domains Dk
contains the points under the condition Im(s) ∈ (−π + 2kπ, pi + 2kπ] and hence each adjacent
domain are also vertical translations of each other by some integer multiple of 2πi.

We may therefore restrict the subsequent analysis to the principal domain, D0, and hence con-
sider the Stokes structure emanating from the singularity, s0. Consequently, the Stokes structure
emanating from the remaining singularities in the domains Dk may be obtained by vertical trans-
lations of the Stokes structure in D0 by integer multiples of 2iπ.

The Stokes structure of (4.77) in the complex s-plane is illustrated in Figure 4.3. In Figure
4.3 we find that there are two Stokes curves emanating from the turning point s0, which is also a
branch point. Furthermore, we also find three anti-Stokes curves emanating from the turning point.
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Re(s)

Im(s)

Re(f1 − f2) < 0

Im(f1 − f2) < 0

Re(f1 − f2) > 0

Im(f1 − f2) < 0

Re(f1 − f2) < 0

Im(f1 − f2) > 0

Re(f1 − f2) > 0

Im(f1 − f2) > 0

Re(f1 − f2) > 0

Im(f1 − f2) < 0

π

−π

Stokes curve
anti-Stokes curve
Branch cut
Boundary of D0

(A) Behaviour of the WKB phase factors, fi(s).

Re(s)

Im(s)

U1 exp. small
U2 exp. large

U1 exp. large
U2 exp. small

U1 exp. small
U2 exp. large

U1 exp. large
U2 exp. small

π

−π

U1 exp. large
U2 exp. small

À

Á

(B) Behaviour of the exponentials, Ui(s).

FIGURE 4.3. These figures illustrate the Stokes structure for the rescaled q-Airy equation
in D0, with branch points given by (4.61). The upper and lower boundaries of D0 are
denoted by the dashed green lines and occur at Im(s) = ±π. Figure 4.3a illustrates the
behaviour of the phase factors, fi(s), as Stokes and anti-Stokes curves are crossed. Figure
4.3b illustrates the regions of D0 in which the exponential contributions associated with
f1 and f2, which we denote by U1 and U2, respectively, are exponentially large or small.
The exponential contributions associated with f1 and f2 are switched across the Stokes
curves denoted by À and Á, respectively.

Re(s)

Im(s)

FIGURE 4.4. This figure illustrates the complete Stokes structure for the rescaled q-Airy
equation in D0. There is also a turning point at the upper branch point since f ′1(s; 0) =
f ′2(s;−1). Consequently, there is also a set of (anti-) Stokes curves emerging from the
upper branch point and hence the Stokes structure is symmetric about the real s-axis.
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Re(s)

Im(s)

(A) Regions of validity for U1.

Re(s)

Im(s)

(B) Regions of validity for U2.

FIGURE 4.5. This figure illustrates the regions ofD0 in which the exponentials U1 and U2

describe the asymptotic behaviour of (4.43). In figure 4.5a, U1 describes the asymptotic
behaviour of (4.43) in the limit ε → 0 in the regions shaded in blue. However, U1 does
not describe the asymptotic behaviour in the regions shaded in red since the exponential
contribution, U2, is present and large in these regions.

We recall that Stokes switching occurs across Stokes curves where Re(fi − fj) > 0. When
these conditions are met, the dominant exponential Ui = efi/ε switches on the subdominant ex-
ponential, Uj = efj/ε. In Figure 4.3 we see that in the neighbourhood of the upper Stokes curve
(red curve), U2 is exponentially subdominant since Re(f1 − f2) > 0. Therefore the dominant
behaviour U1 switches on the subdominant exponential U2 as the upper Stokes curve is crossed.
Similarly, in the neighbourhood of the lower Stokes curve, we find that Re(f2 − f1) > 0. In this
region, the exponential contribution, U2, exponentially dominates the exponential contribution, U1.
Consequently, U2 switches on U1 as the lower Stokes curve is crossed.

The regions in D0 for which the asymptotic behaviour of (4.43) is described by either U1

or U2 is illustrated in Figure 4.5. As the asymptotic solution of (4.43) is described by (4.77),
the exponential contribution, U1, describes the asymptotic behaviour in regions where it is not
dominated by U2. From Figure 4.3b we find that U1 is not dominated by U2 in the region of D0

bounded by the upper anti-Stokes curve emanating from the lower branch point, the anti-Stokes
curve emanating from the lower branch point which extends to negative infinity and the real s-axis.
Another region of D0 where U1 is not dominated by U2 is bounded by the lower branch cut, the
lower anti-Stokes curve emanating from the lower branch point and the boundary Im(s) = −π.
Furthermore, since the Stokes structure is symmetric about the real s-axis, the regions of validity
in the upper half ofD0 are given by the vertical reflection of the previously described regions about
the real s-axis and is illustrated in Figure 4.5a. Similarly, U2 dominates U1 in the complimentary
regions as illustrated in Figure 4.5b.

As the Stokes structure and switching behaviour of the exponential contributions have been
determined in the domain D0, we may finally determine the corresponding Stokes structure in
the complex x-plane. In order to determine the corresponding Stokes structure in the x-plane we
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reverse the scaling transformations (4.42). We recall that the choice of scalings were given by

x = qn, n =
s

ε
, q = 1 + ε,

and therefore

s =
ε log(x)

log(1 + ε)
∼ log(x) +O(ε), (4.87)

as ε → 0. As the inverse transformation (4.87) has an error of order O(ε), the whole complex
x-plane is not covered. We remark that for finite values of 0 < ε � 1, using the exact expression
for the inverse transformations produces two logarithmic branch cuts rather than one. Under the
leading order approximation of the inverse transformation, D0 covers the entire complex x-plane
except for the negative real x-axis, which is a logarithmic branch cut. This branch cut is illustrated
in Figure 4.6 as the dashed green curve.

(A) Stokes structure of (4.77)

Re(x)

Im(x)

À

Á

(B) Zoomed in version of Figure 4.6a

FIGURE 4.6. Stokes structure for the q-Airy equation in the complex x-plane. The Stokes
and anti-Stokes curves are denoted by red and blue curves, respectively. The branch cuts
of fi are denoted by black curves which extend to infinity from the singularities, s =
log(2) ± iπ/2, and the dashed curves represent the logarithmic branch cut of the inverse
transformation (4.87). In Figure 4.6a we see that one anti-Stokes curve spirals out from
the turning point towards a logarithmic branch cut in the complex x-plane. The other anti-
Stokes curve spirals towards the a branch cut of phase factor, fi. In the complex x-plane,
the Stokes and anti-Stokes curves are described by q-spirals, and therefore separate the
complex plane into sectorial regions bounded by arcs of spirals.

Hence, by applying the inverse transformation given by (4.87) we may obtain the correspond-
ing Stokes structure in the complex x-plane. Without loss of generality, we demonstrate the Stokes
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structure of the q-Airy equation for q = 1 + 0.2i. By substituting s = ε logq(x) into the phase fac-
tors, fj(s), we use MATLAB to compute the Stokes structure in the complex x-plane. The Stokes
structure of the asymptotic solution (4.77) in the limit ε → 0 is illustrated in Figure 4.6. In Figure
4.6, the Stokes curves are depicted in red while the anti-Stokes are depicted in blue. The branch
cuts emanating from the branch points, s = log(2) ± iπ/2, to infinity are denoted by the dashed
curves.

In Figure 4.6 we find that the Stokes curves of (4.77) in the x-plane emanate from the turning
point, s0, and spiral towards the upper and lower logarithmic branch cuts of the inverse mapping. In
fact, these Stokes curves continue onto the adjacent Riemann sheets of the inverse transformation.
The branch cuts of the asymptotic solution (4.77) extend towards infinity in the x-plane as the
branch cuts in the s-plane extend towards infinity as Re(s)→∞.

Due to the inverse transformation (4.87), the Stokes and anti-Stokes curves are described by
spiral-like curves in the complex x-plane. Consequently, the Stokes and anti-Stokes curves there-
fore separate the complex x-plane into sectorial regions bounded by arcs of spirals as illustrated in
Figure 4.6.

4.4. The first q-Painlevé equation

In Section (4.3) we demonstrated that the Stokes geometry for linear q-difference equations
may be computed using an extension of the scaling approach presented in Chapter 3. The extension
required the parameter, q, to also be rescaled such that it approaches unity in the limit.

We now demonstrate how this method can be applied to study solutions of nonlinear q-difference
equations in the limits |q| → 1 and n → ∞. In particular, we will also determine the Stokes
switching behaviour of these solutions. As in Chapter 3, we consider the q-discrete analogues of
the Painlevé equations. More specifically, we consider a q-analogue of the first Painlevé equation
(q-PI). This is given by

ww =
1

w
− 1

xw2
, (4.88)

where q ∈ C such that |q| 6= 0, 1, w = w(x), w = w(qx),w = w(x/q) and x = x0q
n. We wish to

study the behaviour of solutions of (4.88) in the limits |q| → 1 and n→∞.

One major asymptotic study of (4.88) was investigated by Joshi in [80] in which two types of
solution behaviours of (4.88) were found. The solutions found in this study are each described by
asymptotic series expansions in inverse powers of x, one of which is divergent. In the following
section we give a brief summary of the results found by Joshi in [80].

4.4.1. Known results for q-Painlevé I.

This section is a summary of some results for the first q-Painlevé equation found by Joshi
in [80]. We first define some notation used in this study. Let w = w(x) = w(x0q

n) = wn,
w = w(qx) = w(x0q

n+1) = wn+1, w = w(x/q) = w(x0q
n−1) = wn−1 and note that the limit



4.4. THE FIRST q-PAINLEVÉ EQUATION 103

|x| → ∞ is equivalent to n → ∞ for |q| > 1. We first note that the first q-Painlevé equation,
(4.88), is invariant under the symmetry

w 7→ ωw, with x 7→ x

ω
, (4.89)

where ω3 = 1. This will be a useful property in our analysis of (4.88) in Section 4.4.3. Joshi was
able to find two types of asymptotic behaviours of (4.88) in the limit |x| → ∞, which are called
nonzero asymptotic behaviour and vanishing asymptotic behaviour.

Joshi showed that the nonzero asymptotic solutions of (4.88) are described by

w(x) =
∞∑
r=0

ar
xr
, (4.90)

as |x| → ∞ where

a3
0 = 1, (4.91)

a1 =
−1

q + 1 + q−1
, (4.92)

ar =
−1

qn + 1 + q−n

r−1∑
l=1

alar−l(q
2l−r + 1) +

r−1∑
m=1

r−m∑
j=0

r∑
l=0

ajar−m−jalam−lq
r−m−2j

 ,

(4.93)

for r ≥ 2. From (4.91) we see there are three distinct choices for the leading order behaviour,
a0, and hence there are three distinct solutions of (4.88) with nonzero asymptotic behaviour in the
limit |x| → ∞. In fact, as the leading order behaviours are cube roots of unity, the three nonzero
asymptotic solutions are related to each other by the symmetry (4.89).

The vanishing asymptotic solution of (4.88) is described by

w(x) =
∞∑
r=1

br
xr
, (4.94)

as |x| → ∞ where

b1 = 1, (4.95)
b2 = 0, (4.96)
b3 = 0, (4.97)

br =
r−2∑
j=2

j−1∑
k=1

r−j−1∑
m=1

bkbj−kbmbr−j−mq
j−2k, (4.98)

for r ≥ 4. In particular, it was shown by Joshi that the coefficients, br, in (4.94) have the behaviour

b3r+1 = O(|q|3r(r−1)/2 (−1; q−3)2
r), (4.99)

as r →∞ where (a; q)r is the q-Pochhammer symbol defined in (4.14).
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Equation (4.99) shows that the late-order terms behaviour of vanishing type asymptotics grow
as qr

2
as r → ∞, and hence the series expansion (4.94) is divergent. Furthermore, Joshi showed

there exist true solutions of (4.88), which are asymptotic to (4.94) by applying the contraction
mapping theorem. In particular, under the change of variables wn = Wn + vn where Wn is the
formal power series solution defined by (4.94), equation (4.88) becomes

vn+1 +

(
2
Wn+1

Wn
− 1

W 2
nWn−1

)
vn +

Wn+1

Wn−1
vn−1 = R2(vn, vn−1, t), (4.100)

where t = 1/x and

R2(vn, vn−1, t) =
Wn + vn − t

(Wn−1 + vn−1)(Wn + vn)2
−Wn+1,

− Wn+1

Wn

(
1

Wn+1WnWn−1
− 2

)
vn +

Wn+1

Wn−1
vn−1. (4.101)

It was also shown that the Taylor expansion of (4.101) starts with an arbitrarily small constant term
and quadratic terms in vn and vn−1 [80]. Joshi then studied the homogeneous solution of (4.100),
Pn, which satisfies the equation

Pn+1 +

(
2
Wn+1

Wn
− 1

W 2
nWn−1

)
Pn +

Wn+1

Wn−1
Pn−1 = 0, (4.102)

and shows there exist two solutions of (4.102), denoted by P±n , with the following asymptotic
behaviours as n→∞,

P+
n ∼ c+q

3n(n−5/3)/2, (4.103)

P−n ∼ c−q−3n(n+5/3)/2, (4.104)

where c± are constants. For fixed values of q, Joshi was able to compute the anti-Stokes curves by
comparing the sizes of (4.103) and (4.104) in the limit n → ∞. The anti-Stokes curves are given
by ∣∣∣∣P+

n

P−n

∣∣∣∣ = O(1), (4.105)

which is equivalent to the condition given by (2.66). Using (4.103) and (4.104) we find that∣∣∣∣P+
n

P−n

∣∣∣∣ =

∣∣∣∣c+

c−
q3n2

∣∣∣∣ . (4.106)

Then by letting x = x0q
n, and writing x/x0 = reiθ, we find that n = log(x/x0)/ log(q). In

particular,

n =
log(r) + iθ

log(q)
, (4.107)

and hence by substituting (4.107) in (4.106) the exponent of q in (4.106) can be rewritten as

3

(log(q))2

(
(log(r))2 − θ2 + 2iθ log(r)

)
. (4.108)
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Since both r and θ are real, the anti-Stokes curves are described by (log(r))2 = θ2 where x = reiθ.
As a result, the anti-Stokes curves of (4.88) for fixed values of q, are described by q-spirals.

In our asymptotic analysis, we apply the continuum limit-like approach to study solutions of
(4.88) in the limit |q| → 1 rather than |x| → ∞. Then, by using exponential asymptotic methods we
find solutions of (4.88), which are described by asymptotic power series containing exponentially
small behaviour. In particular, this approach will allow us to capture the Stokes behaviour present
in these asymptotic solutions of q-PI in the limit |q| → 1.

4.4.2. Asymptotic analysis of the first q-Painlevé equation.

We first rewrite (4.88) as an additive difference equation by setting x = qn, which gives

wn+1wn−1 =
1

wn
− 1

qnw2
n

, (4.109)

where w(n) = w(x). In our analysis, we will introduce a small parameter, ε, by rescaling the
variables appearing in (4.109). However, recall that the term qn is not expandable in powers of
n in the limit n → ∞. Following the strategy demonstrated in Section 4.3, we also rescale the
parameter, q.

The rescalings we apply are given by

s = εn, q = 1 + ε, w(x) = W (s). (4.110)

Under these rescalings, q-PI, (4.88) becomes

W (s+ ε)W (s)2W (s− ε) = W (s)− 1

(1 + ε)s/ε
, (4.111)

where we now consider the limit ε→ 0. Due to the choice of rescalings, the limit ε→ 0 no longer
corresponds to a limit involving the independent variable as in Chapter 3, but is instead equivalent
to the limit |q| → 1. Hence, we investigate the asymptotic behaviour of solutions of (4.88) in the
limit |q| → 1.

Under the scalings (4.110), the corresponding symmetry of q-PI, (4.89), becomes

W 7→ λW, with s 7→ s− ε log(λ)

log(1 + ε)
∼ s− log(λ) +O(ε), (4.112)

as ε→ 0 and where λ3 = 1.

Furthermore, under the rescalings (4.110), the term, (1 + ε)−s/ε, in (4.111) can now be ex-
panded as

(1 + ε)−s/ε ∼ 1 + e−s
(
ε
s

2
+ ε2

(3s− 8)s

24
+O(ε3)

)
, (4.113)
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as ε→ 0. In general, the term (1 + ε)s/ε can be expanded as a power series of the form

(1 + ε)s/ε = es
∞∑
n=0

εnPn(s), (4.114)

as ε→ 0 where the coefficients, Pn(s) are given by

Pn(s) =

n∑
r=0

sr
r∑

k=0

(−1)r−k

(r − k)!

s1(k + n, k)

(k + n)!
, (4.115)

where s1(n, k) are the Stirling numbers of the first kind [2]. The full details of this derivation are
provided in Appendix D. By rescaling the parameter, q, we are able to describe solutions of (4.111)
as an asymptotic power series in ε.

4.4.3. Asymptotic Series Expansion.

We expand the solution, W (s), as an asymptotic power series in ε by writing

W (s) ∼
∞∑
r=0

εrWr(s), (4.116)

as ε→ 0. Substituting (4.116) into (4.111) and matching terms of O(εr) we obtain the recurrence
relation

r∑
q=0

 q∑
m=0

 m∑
k=0

(−1)kW
(k)
m−k

k!

q−m∑
j=0

W
(j)
q−m−j
j!

r−q∑
b=0

Wr−q−bWb

 = Wr − e−sPr(−s) (4.117)

for r ≥ 0 and where the polynomials Pn(s) are given by (4.115). From (4.117) we find that the
leading order behaviour satisfies

W 4
0 = W0 − e−s. (4.118)

Equation (4.118) is invariant under s 7→ s+ 2πi as the function es is 2πi-periodic. As a result, the
leading order behaviour, W0(s), is 2πi-periodic. Consequently, the singularity structure of W0(s)
is also 2iπ-periodic. Furthermore, we will show in Section 4.5 that the Stokes structure of the
asymptotic solutions we study only depend on the leading order behaviour, W0, and hence we may
restrict ourselves to the domainD0 as we did in the analysis of the q-Airy equation. AsW0 satisfies
a quartic we therefore have four possible leading order behaviours as ε → 0. We first define the
following

A = 4

(
2

3

)1/3

e−s, (4.119)

B = 9 +
√

3
√

27− 256e−3s, (4.120)

C = 21/332/3, (4.121)

D =
A

B1/3
+
B1/3

C
. (4.122)
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(A) Real part of W0,1. (B) Imaginary part of W0,1.

(C) Real part of W0,2. (D) Imaginary part of W0,2.

(E) Real part of W0,3. (F) Imaginary part of W0,3.

FIGURE 4.7. This figure illustrates plots of the real and imaginary parts of W0,1, W0,2,
and W0,3 in D0. The leading order behaviour, W0,j , is possibly singular at the points s0,j
as described by equations (4.131)-(4.132). Figures 4.7a and 4.7b show that W0,1 is only
singular at s0,1; Figures 4.7c and 4.7d show thatW0,2 is only singular at s0,2; Figures 4.7e
and 4.7f show that W0,3 is only singular at s0,3.
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(A) Real part of W0,4. (B) Imaginary part of W0,4.

FIGURE 4.8. Plots of the real and imaginary parts of W0,4 in D0. We see that W0,4 is
singular at the points s0,1, s0,2, and s0,3 as given in equations (4.130)-(4.132).

Then the four solutions for W0 are given by

W0,1 = −1

2

√
D +

i

2

√
D +

2√
D
, (4.123)

W0,2 = −1

2

√
D − i

2

√
D +

2√
D
, (4.124)

W0,3 =
1

2

√
D +

1

2

√
−D +

2√
D
, (4.125)

W0,4 =
1

2

√
D − 1

2

√
−D +

2√
D
. (4.126)

As equation (4.118) does not have a cubic term, the sum of roots of (4.118) is equal to zero, and
hence we find that

W0,4(s) = −
3∑
j=1

W0,j(s). (4.127)

Figure 4.7 illustrates the plots of W0,1,W0,2 and W0,3 in D0. In this figure we find that each
W0,j is only singular at three distinct points. We will show that the singular points of W0,j are
given by (4.130) - (4.132), which we denote by s0,j , where j = 1, 2, 3. However, we see in Figure
4.8 that the leading order behaviour W0,4 which is given by (4.126) is singular at each of these
points.
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The singularities ofW0 are located at the points for which the argument of the square root term
in (4.120) is equal to zero. That is, when

27− 256e−3s = 0, (4.128)

which occurs at the points

s0 =
1

3

(
log

(
256

27

)
+ 2ikπ

)
, (4.129)

where k ∈ Z. Let us denote the singularities

s0,1 =
1

3

(
log

(
256

27

)
− 2iπ

)
, (4.130)

s0,2 =
1

3

(
log

(
256

27

)
+ 2iπ

)
, (4.131)

s0,3 =
1

3
log

(
256

27

)
. (4.132)

From (4.129), we see that the singularities of W0(s) are vertical translations of the singularities
in (4.130)-(4.132) by integer multiples of 2iπ. This is actually a consequence of the W0(s) being
2iπ-periodic. This was also the case when we considered the singularity structure of the asymp-
totic solutions of the q-Airy equation in Section 4.3. Consequently, the Stokes structure in the
whole complex s-plane may be obtained by vertical translations of the Stokes structure found in
the domain D0 by integer multiples of 2iπ. Following the analysis of the q-Airy equation, we re-
strict the analysis to the domain D0, in which the relevant singularities are precisely those given by
(4.130)-(4.132).

The local behaviour of W0,k(s) near the singular points (4.129) is given by

W0,k ∼
(

1

4

)1/3

e2ikπ/3 +

(
1

8
√

2

)1/3

e2ikπ/3
√
s− s0,k +O(s− s0,k), (4.133)

as s→ s0,k for k = 1, 2, 3. In the subsequent analysis, we will find in Sections 4.5 and 4.6 that the
Stokes and anti-Stokes curves emanate from these singularities.

The formula (4.127) shows that W0,4(s) is the sum of W0,1(s),W0,2(s) and W0,3(s) and is
therefore singular at the points s0,1, s0,2 and s0,3 in D0. Therefore, W0,4 has the most complicated
behaviour in the sense that the associated Stokes structure for W0,4(s) will be comprised of Stokes
and anti-Stokes curves emanating from more than one point.

These two types of leading order behaviours can then be distinguished by the number of points
at which they are singular in D0. In the subsequent analysis, we will refer to solutions with leading
order behaviour described by (4.123), (4.124) or (4.125) as type A, while those with leading order
behaviour described by (4.126) as type B. Consequently, type A solutions are those which are
singular at one point in D0 while type B solutions are singular at three points in D0.
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In order to determine the form of the asymptotic series expansion (4.116) we investigate the
behaviour of its coefficients. The first few coefficients are given by

W1 =− e−ss

2(4W 3
0 − 1)

, (4.134)

W2 =− e−s(3s2 − 8s)

24(4W 3
0 − 1)

− 6W 2
0W

2
1 +W 2

0W
′2
0 +W 3

0W
′′
0

(4W 3
0 − 1)

, (4.135)

W3 =− e−s(s3 − 8s2 + 12s)

48(4W 3
0 − 1)

−4W0W
3
1 + 12W 2

0W1W2 − 2W0W1W
′2
0 − 2W 2

0W
′
0W
′
1 + 3W 2

0W1W
′′
0 +W 3

0W
′′
1

(4W 3
0 − 1)

.

(4.136)

From the expressions of the first few terms of Wr, we find that calculation of successive coefficient
terms of (4.116) involve repeated differentiation. Since the leading order term is singular at the
points, s0, successive coefficient terms will also be singular at s0. As a result, the coefficients of
(4.116) will have behaviour described by the factorial-over-power form (2.43) in the limit r →∞.
Consequently, the asymptotic series expansion (4.116) are therefore factorially divergent.

In particular, equations (4.135) and (4.136) shows that the calculation of W2 requires two
derivatives of W0 while W3 requires two derivatives of W1 yet no derivatives of W2 are taken. As
more terms are calculated, this pattern continues, and we deduce that the calculation ofWr involves
two derivatives of Wr−2.

Before we proceed to determine the form for late-order order terms we first rewrite the recur-
rence relation described by (4.117) as

2W 3
0Wr +W 3

0

r∑
k=0

(
(−1)k + 1

)
W

(k)
r−k

k!
+ 2W 2

0W1

r−1∑
k=0

(
(−1)k + 1

)
W

(k)
r−k−1

k!

+ 6W 2
0W1Wr−1 +W 2

0W
′
0

r−1∑
k=0

(
(−1)k − 1

)
W

(k)
r−k−1

k!
+W 2

0W1

r−1∑
k=0

(
(−1)k + 1

)
W

(k)
r−k−1

k!

+W 2
0

r−2∑
b=2

Wr−bWb +W0(W ′0 +W1)
r−2∑
b=1

Wr−b−1Wb + · · · = Wr − e−sPr(−s), (4.137)

for r ≥ 0, where we have omitted the terms which are of sizeO(Wr−2) as r →∞. This rearranged
form of the recurrence relation will be useful when we apply the factorial-over-power ansatz for
the behaviour of the late-order terms of (4.116).

4.5. Type A solutions of q-Painlevé I

In this section we investigate type A solutions of (4.111). Recall that these are solutions of
(4.111) with leading order behaviour described by either (4.123), (4.124) or (4.125) in the limit
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ε→ 0. In particular, we will perform the analysis of type A solutions with leading order behaviour
W0,3 as ε → 0. In doing so, we will drop the subscript 3 for notational convenience. The results
for the remaining type A asymptotic solutions described by W0,1 or W0,2 to leading order, may be
obtained using the symmetry (4.112). As the symmetry (4.112) relates the three distinct type A
solutions we will find that type A solutions correspond to the nonzero asymptotic solutions found
by Joshi [80].

In the subsequent analysis, we will first calculate the late-order terms behaviour, Wr(s). Once
the form of the late-order terms are computed, we will optimally truncate the asymptotic series
(4.116) and investigate the optimally-truncated error in order to describe Stokes behaviour present
within these asymptotic solutions.

4.5.1. Late-Order Terms Behaviour.

In this section we determine the form of the late-order terms of (4.116) for the choice of W0 =
W0,3. In general, the analysis applies for W0 = W0,j for j = 1, 2, 3 however, the remaining two
type A solutions can be obtained from the symmetry given by (4.112).

As the calculation of the coefficients of (4.116) involve repeated differentiation, the late-order
terms will be described by the following factorial-over-power ansatz

Wr(s) ∼
U(s)Γ(r + γ)

χ(s)r+γ
, (4.138)

as r →∞ where γ is a constant. We substitute (4.138) into (4.137) to obtain

2W 3
0Wr +W 3

0

r∑
k=0

(
(−1)k + 1

)
k!

(−χ′)kWr + 6W 2
0W1Wr−1

+W 3
0

r∑
k=0

(
(−1)k + 1

)
k!

((
k

1

)
(−χ′)k−1U

′

U
+

(
k

2

)
(−χ′)k−2(−χ′′)

)
Wr−1

+
r−1∑
k=0

(
(−1)k + 1

)
k!

(−χ′)k
(
3W 2

0W1 +W 2
0W

′
0

)
Wr−1 +O(Wr−2) = Wr + · · · , (4.139)

where the remaining terms are negligible for the purposes of this demonstration as r →∞. Then,
by matching terms of O(Wr) as r → ∞, we find from (4.139) that the leading order equation is
given by

2W 3
0 +W 2

0

r∑
k=0

(
(−1)k + 1

)
k!

(−χ′)k = 1. (4.140)
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as r → ∞. Matching at the next subsequent order, that is, matching terms of O(Wr−1) we find
from (4.139) that

W 3
0

r∑
k=0

(
(−1)k + 1

)
k!

((
k

1

)
(−χ′)k−1U

′

U
+

(
k

2

)
(−χ′)k−2(−χ′′)

)
+ 6W 2

0W1

+ 3W 2
0W1

r−1∑
k=0

(
(−1)k + 1

)
k!

(−χ′)k +W 2
0W

′
0

r−1∑
k=0

(
(−1)k − 1

)
k!

(−χ′)k = 0. (4.141)

as r →∞.

4.5.1.1. Calculating the singulant, χ.

In this section we determine the form of the singulant, χ, and hence we consider equation
(4.140). Following Chapter 3, we replace the upper limit of the sums in (4.140) by infinity, which
only introduces error which is exponentially small as r →∞. Evaluating the infinite sum appearing
in (4.140) gives

cosh(−χ′) =
1− 2W 3

0

2W 3
0

, χ(s0,3) = 0. (4.142)

We set

σ(s) =
1− 2W0(s)3

2W0(s)3
, (4.143)

for algebraic convenience. The solution of (4.142) is given by

χ(s) = ±
∫ s

s0,3

cosh−1(σ(t)) + 2iMπ dt, (4.144)

where M ∈ Z. However, as in Chapter 3, we take the case where M = 0 as this is the value for
which |χ| is smallest. From (4.144) we find that there are two expressions for χ(s). Hence we set

χ1(s) =

∫ s

s0,3

cosh−1(σ(t))dt, (4.145)

χ2(s) =−
∫ s

s0,3

cosh−1(σ(t))dt. (4.146)

4.5.1.2. Calculating the prefactor, U .

In order to determine the prefactor, U , we replace the upper limit of the sum appearing in
(4.141) by infinity following the previous section. This gives

− 2W 3
0 sinh(χ′)

U ′

U
−W 3

0χ
′′ cosh(χ′) + 2W 2

0W
′
0 sinh(χ′) + 3

W1

W0
= 0. (4.147)

To find the solutions of (4.147) we first consider the differential equation

− 2W 3
0 sinh(χ′)

F ′

F
−W 3

0χ
′′ cosh(χ′) + 2W 2

0W
′
0 sinh(χ′) = 0, (4.148)



4.5. TYPE A SOLUTIONS OF q-PAINLEVÉ I 113

which is simply equation (4.147) without the 3W1/W0 term. Using standard integration methods,
it is possible to show that the solution of (4.148) is given by

F (s) =
ΥW0√
sinh(χ′)

, (4.149)

where Υ is a constant of integration. Then, by making the substitution

U(s) = F (s)φ(s), (4.150)

into (4.147) we obtain
φ′

φ
=

3W1

2W 4
0 sinh(χ′)

, (4.151)

where we have used (4.148) to cancel terms. By taking the derivative of equation (4.142) we find
that

sinh(χ′) = − 3W ′0
2W 4

0χ
′′ ,

and hence equation (4.151) can be simplified to give

φ′

φ
= −W1χ

′′

W ′0
. (4.152)

Integrating (4.152) then gives

φ(s) = Υ̃ exp

(∫ s

−W1(t)χ′′(t)

W ′0(t)
dt

)
, (4.153)

where Υ̃ is a constant. Therefore, the expression for the prefactor, U , is given by

U(s) =
ΛW0√
sinh(χ′)

exp

(∫ s

−W1(t)χ′′(t)

W ′0(t)
dt

)
, (4.154)

where Λ = ΥΥ̃ is an constant. Since there are two singulant expressions, which differ by a change
in sign, we obtain two prefactor expressions. If we let Ui denote the prefactor associated with the
singulant χi, we find that

U1(s) =
ΛW0e

−G√
sinh(χ′1)

, U2(s) =
Λ̃W0e

G√
sinh(χ′1)

, (4.155)

where Λ, Λ̃ are constants and

G(s) =

∫ s W1(t)χ′′1(t)

W ′0(t)
dt. (4.156)

By substituting (4.145)-(4.146) and (4.155) into (4.138) we find that the late-order terms are given
by

Wr(s) ∼
W0Γ(r + γ1)√
sinh(χ′1)χr+γ11

(
Λe−G +

Λ̃eG

(−1)r+γ1

)
, (4.157)

as r →∞, where γ1,Λ, Λ̃ are constants and G is given by (4.156).
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In order to completely determine the form of the late-order terms we must determine the values
of γ1 and Λ in (4.157). Following the analysis of the second discrete Painlevé II equation in Chapter
3, we determine the value for γ1 by matching the strength of the singularity to the leading order
behaviour in the neighbourhood of the singularity. We therefore determine the behaviour of χ and
U in the neighbourhood of the singularity.

4.5.1.3. Calculating the value of γ1.

In order to determine the value of γ1 in (4.157) we calculate the local behaviour of χ and U .
As both the singulant and prefactor depend on the leading order behaviour, W0,3, we require the
local behaviour of W0,3, which is given by equation (4.133). Using (4.133) in equations (4.142)
and (4.147) we can show that

χ(s) ∼4i
√

6
√

2

5
(s− s0,3)5/4, (4.158)

U(s) ∼ Λ√
i
√

6
√

2(s− s0,3)1/8

, (4.159)

as s→ s0,3. Furthermore, using the local behaviour ofW0, which is given by (4.133), it is possible
to show that

W1(s) =
A1

(s− s0,3)1/2
+O

(
(s− s0,3)−1/2

)
, (4.160)

as s → s0,3, where A1 is some nonzero constant. Hence, from equations (4.160) and (4.156) we
find that

e±G(s) = 1±A2(s− s0,3)1/4 +O
(

(s− s0,3)1/2
)
, (4.161)

as s → s0,3 for some nonzero constant A2. The local behaviour of the late-order terms near the
singularity is therefore given by

Wr(s) ∼
(

5

4

)r+γ1 Γ(r + γ1)(
i
√

6
√

2
)r+γ1+1/2

(s− s0,3)5(r+γ1)/4+1/8

(
Λe−G +

Λ̃eG

(−1)r+γ1

)
,

(4.162)

as s → s0,3. We note that the term Λ + (−1)−γ1Λ̃ in (4.162) is constant. Recall from (4.137)
that the dominant behaviour of Wr is due to the term W ′′r−2/(4W

3
0 − 1). Hence, if Wr−2 has a

singularity at s0 with strength ν, thenWr has a singularity at s0 with strength ν+5/2. In particular,
since we know that W0 is singular at s0,3 with strength −1/2 then W2r will also be singular at s0,3

but with strength 5r/2− 1/2. Similarly, as W1 is singular at s0,3 with strength 1/2, then W2r+1 is
singular at s0,3 with strength 5r/2 + 1/2.
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We first observe from (4.161) that(
Λe−G +

Λ̃eG

(−1)r+γ1

)
∼
{

Λ + iΛ̃ +A2(−Λ + iΛ̃)(s− s0,3)1/4 +O((s− s0,3)1/2), for even r,

Λ− iΛ̃ +A2(−Λ− iΛ̃)(s− s0,3)1/4 +O((s− s0,3)1/2), for odd r,
(4.163)

as s→ s0,3.

Thus, in order for the singularity behaviour of (4.162) to be consistent with the singularity
behaviour of W2r, we require 5r/2− 1/2 = 5(2r+ γ1)/4 + 1/8 under the condition Λ + iΛ̃ 6= 0.
Hence, we deduce that γ1 = −1/2 and the leading order behaviour of the late-order terms is given
by

Wr(s) ∼
W0Γ(r − 1/2)√
sinh(χ′1)χ

r−1/2
1

(
Λe−G +

Λ̃eG

(−1)r−1/2

)
, (4.164)

as r →∞. We must also check that the strength of the singularity ofW2r+1 matches to 5r/2+1/2.
From (4.163) and (4.164) we find that first two terms of W2r+1 are proportional to

Λ− iΛ̃
(s− s0,3)5r/2+3/4

, and
−A2(Λ + iΛ̃)

(s− s0,3)5r/2+1/2
,

as s→ s0,3. Hence, in order for W2r+1 to have the correct singular behaviour in the limit s→ s0,3

we impose the condition Λ− iΛ̃ = 0, which gives

Λ̃ = −iΛ. (4.165)

Hence, the leading order behaviour of the late-order terms, is given by

Wr(s) ∼
ΛW0Γ(r − 1/2)√

sinh(χ′1)χ
r−1/2
1

(
e−G − ieG

(−1)r−1/2

)
, (4.166)

as r → ∞. In particular, we find that the late-order terms may be separated into even and odd
late-order terms. More specifically, we have

W2r(s) ∼
2W0Λ cosh(G)Γ(2r − 1/2)√

sinh(χ′1)χ
2r−1/2
1

, (4.167)

W2r+1(s) ∼ −2W0Λ sinh(G)Γ(2r + 1/2)√
sinh(χ′1)χ

2r+1/2
1

, (4.168)

as r →∞.

4.5.2. q-Painlevé I inner problem.

The expression for the late-order terms given by (4.166) contains a constant Λ, which is yet
to be determined. In order to determine the value of Λ we perform an inner analysis of (4.111)
near the singularity, s0,3 and determine the inner expansion of the inner solution. We then use the
method of matched asymptotics to match the outer expansion to the inner expansion following Van
Dyke’s matching principle [69].
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In view of the leading order behaviour given by (4.133), we study the inner solution by applying
the scalings

s = s0,3 + ε4/5ζ, W (s) = a3 + ε2/5ψ1(ζ) + ε3/5ψ2(ζ), (4.169)

where ζ is the inner variable, ψ1 and ψ2 are the first two terms of the inner solution, ψ. In particular,
we recall that

s0,3 =
1

3
log

(
256

27

)
, a3 =

(
1

4

)1/3

, b3 =

(
1

8
√

2

)1/3

. (4.170)

Substituting (4.169) into (4.111) we obtain

(a4
3 − a3 + e−s0,3)+ε2/5(4a3

3 − 1)ψ1,

+ε3/5(4a3
3 − 1)ψ2 + ε4/5(6a2

3ψ
2
1 − e−s0,3ζ + a3

3ψ
′′
1),

+ε
(s0,3

2
e−s0,3 + 12a2

3ψ1ψ2 + a3
3ψ
′′
2

)
+O(ε6/5) = 0, (4.171)

as ε→ 0 and where the prime denotes derivatives with respect to ζ. Using the values of a3, b3 and
s0,3 given in (4.170) we find that the coefficients of ε0, ε2/5 and ε3/5 are identically zero. Therefore,
the leading order equation of the inner solution is given by

ψ2
1 − b23ζ +

a3

6

d2ψ1

dζ2
= 0, (4.172)

as ε → 0. From equation (4.171) we see that the term ψ2 does not appear in the leading order
equation in the limit ε → ∞. This therefore reinforces the fact that the odd terms are indeed
negligible in the limit ε→ 0 as the term ψ2 corresponds to the first odd coefficient term in the outer
problem (far field expansion), (4.116).

To study the inner solution, we analyze (4.172) in the limit |ζ| → ∞. Using the method of
dominant balance, equation (4.172) has a solution described by ψ1 ∼ b3

√
ζ as |ζ| → ∞. For

algebraic convenience, we rescale the inner solution by setting ψ = b3
√
ζΨ, where

Ψ(ζ) =
∞∑
r=0

Er

ζ5r/2
(4.173)

withE0 = 1. We then substitute (4.173) into (4.172) and match terms ofO(ζ) in the limit |ζ| → ∞.
Doing this, we obtain the following nonlinear recurrence relation

Er = − 1

2b23

(
a3b3
24

(5r − 4)(5r − 6)Er−1 + b23

r−1∑
k=1

Er−kEk

)
, (4.174)

for r ≥ 1. The inner solution therefore has an expansion of the form

ψ1(ζ) ∼ b3
√
ζ
∞∑
r=0

Er

ζ5r/2
, (4.175)
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as |ζ| → ∞. We can express (4.175) in terms of the outer variables by reversing the scalings given
in (4.169). Doing this, we find that the inner expansion of the outer solution is given by

W (s) ∼ a3 + b3

∞∑
r=0

ε2rEr

(s− s0,3)(5r−1)/2
, (4.176)

as ε→ 0. Recall that the outer expansion is given by the expression

W (s) ∼
∞∑
r=0

ε2rW2r(s) +
∞∑
r=0

ε2r+1W2r+1(s), (4.177)

as ε → 0, and where the behaviour of W2r(s) and W2r+1(s) are given by (4.167) and (4.168),
respectively. By matching the expansions (4.177) and (4.176) it follows that

Λ = lim
r→∞

b3Er

√
i
√

6
√

2

Γ(2r − 1/2)

(
4i
√

6
√

2

5

)2r−1
2

. (4.178)

We then compute the first 1000 Er terms using the recurrence relation (4.174). Then, by using the
formula (4.178) we find numerically that the approximate value of Λ is

Λ ≈ −0.04364. (4.179)

The approximate value for Λ is shown in Figure 4.9.

0 10 20 30 40 50 60

−0.043

−0.042

−0.041

r

Λ3

FIGURE 4.9. This figure illustrates the approximation for Λ appearing in the even late-
order terms (4.162). As r increases, the approximation for Λ tends to the limiting value of
−0.04364, which is denoted by the black dashed line.
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4.5.3. Analysis of the remainder using exponential asymptotics.

As the form of the asymptotic power series (4.116) has been determined, we may optimally-
truncate (4.116) in order to study the exponentially small terms present within type A solutions.

Recall from Section 4.5.1 that the leading order behaviour of the late-order terms may be
separated into even and odd terms. Consequently, the asymptotic series (4.116) also separate into
two asymptotic series; one with even powers of epsilon and the other with odd powers of epsilon.
In the subsequent analysis we will proceed by truncating the asymptotic series with even powers
of epsilon and find that the optimally-truncated error will be proportional to U exp(−χ/ε).

The asymptotic series with odd powers of epsilon may also be optimally-truncated. However,
this will produce an error proportional to εU exp(−χ/ε), which is asymptotically smaller than the
error produced by optimally truncating the even-powered asymptotic series. As such, we truncate
(4.116) at the least even term by writing

W (s) =

2Nopt−1∑
r=0

εrWr(s) +RN (s), (4.180)

where Nopt is the optimal truncation point. For algebraic convenience, we adopt the following
notation

T (s) =

2Nopt−1∑
r=0

εrWr(s), (4.181)

and use the shift notation denoted by F = F (s), F = F (s+ ε), F = F (s− ε). Under this notation
(4.180) can be expressed as W = T +R and

T (s) = W (s)−RN (s). (4.182)

Using the late-order terms (4.138) to truncate, we find using the heuristic (2.25) that the optimal
truncation point occurs at approximately Nopt ∼ |χ|/(2ε) as ε→ 0. Hence, we let

Nopt =
1

2

( |χ|
ε

+ κ

)
, (4.183)

where κ ∈ [0, 2) is chosen such that Nopt ∈ Z. By substituting the truncated series, (4.180), into
the governing equation (4.111) we obtain

TT 2T + T 2TR+ 2TTTR+ TT 2R+ · · · = T +R− 1

(1 + ε)s/ε
, (4.184)

where the terms neglected are quadratic in RN . We may use the recurrence relation (4.137) to
cancel terms in (4.184), which leaves terms of sizeO(ε2N ). Hence, after rearrangement, we obtain
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from (4.184) the equation

T 2TR+ 2TTTR+ TT 2R−R =− TT 2T + T − 1

(1 + ε)s/ε
+ · · · ,

∼ε2N (4W 3
0W2N −W2N ), (4.185)

as ε → 0, where the terms neglected are of size O(ε2N+1W2N+1) and terms quadratic in RN .
Terms of these sizes are negligible compared to the terms kept in (4.185) as ε→ 0.

4.5.3.1. Analysis for the homogeneous remainder equation.

As in Chapter 3, the behaviour of RN away from the Stokes curve may be determined by
considering the homogeneous form of (4.185). We therefore apply a WKB ansatz of the form

RN,hom(s) = α(s)eβ(s)/ε. (4.186)

Substituting (4.186) into the homogeneous version of (4.185) and matching terms of O(RN ) we
find that the leading order equation is given by

W 3
0

∞∑
j=0

(−1)j(β′)j

j!
+ 2W 3

0 +W 3
0

∞∑
j=0

(β′)j

j!
= 1, (4.187)

as ε→ 0. Equation (4.187) can be simplified and rearranged to give

cosh(β′) =
1− 2W 3

0

2W 3
0

. (4.188)

Comparing (4.188) to (4.142) shows that (4.187) is satisfied if β′ = −χ′. We therefore set β(s) =
−χ(s).

Continuing to the next order involves matching terms of O(εRN ). By collecting terms of this
size in (4.185) we obtain the equation

2W 3
0

∞∑
j=0

1

(2j)!

((
2j

1

)
(β′)2j−1α

′

α
+

(
2j

2

)
(β′)j−2β′′

)
,

+ 6W 2
0W1

∞∑
j=0

(β′)2j

(2j)!
− 2W 2

0W
′
0

∞∑
j=0

(β′)2j+1

(2j + 1)!
+ 6W 2

0W1 = 0. (4.189)

By substituting β′ = −χ′ in equation (4.189), and using equation (4.142) to simplify, equation
(4.189) can be rewritten as

− 2W 3
0 sinh(χ′)

α′

α
−W 3

0χ
′′ cosh(χ′) + 2W 2

0W
′
0 sinh(χ′) + 3

W1

W0
= 0. (4.190)

By comparing equation (4.190) to (4.147) we find that α satisfies to same equation as the prefactor,
U , and hence α(s) ∝ U(s). Hence, away from the Stokes curves the solution of (4.185) is given
by

RN,hom(s) ∼ C1U(s)e−χ(s)/ε, (4.191)
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as ε→ 0, where C1 is a constant.

4.5.3.2. Stokes Smoothing for q-PI.

In order to determine the Stokes switching behaviour, which occurs in the neighbourhood of
Stokes curves, we set

R(s) = S(s)U(s)e−χ(s)/ε, (4.192)

where S(s) is the Stokes multiplier. We substitute (4.192) into (4.185) and use equations (4.142)
and (4.147) to cancel terms. Doing this we find that the Stokes multiplier satisfies

dS
ds
∼ ε2N−1(1− 4W 3

0 )W2N

2W 3
0 sinh(χ′)U(s)

eχ/ε,

∼ ε2N−1
√

1− 4W 3
0

Γ(2N + γ1)

χ2N+γ1
eχ/ε, (4.193)

as ε→ 0. We note that we have used equation (4.142) and conjunction with the hyperbolic identity

cosh2(x)− sinh2(x) = 1,

to replace the hyperbolic sine by

sinh(χ′) =

√
1− 4W 3

0

2W 3
0

in equation (4.193). We make the change of variables to write S as a function of χ rather than s.
Under this change of variables, equation (4.193) becomes

dS
dχ
∼ ε2N−1

√
1− 4W 3

0

χ′
Γ(2N + γ1)

χ2N+γ1
eχ/ε, (4.194)

as ε→ 0. By noting the form of the optimal truncation point, (4.183), we follow [32, 92, 121] and
change to polar coordinates by letting

χ = ρeiθ, (4.195)

where we rewrite the equations in terms of the fast variable, θ. We note that under this change of
variables, ρ = |χ| and

d

dχ
= − ie

−iθ

ρ

d

dθ
.

Applying the change of variables given by (4.195) and substituting (4.183) we have

dS
dθ
∼ iρερ/ε+κ−1

√
1− 4W 3

0

χ′
Γ(ρ/ε+ κ− 1/2)

ρρ/ε+κ−1/2
exp

(
ρ

ε
eiθ + iθ − iθ

(
ρ

ε
+ κ− 1

2

))
,

(4.196)
as ε→ 0. Using Stirling’ formula [2], we replace the Gamma function by its asymptotic behaviour
in (4.196) to obtain

dS
dθ
∼ i
√

2πρ
√

1− 4W 3
0

χ′
exp

(ρ
ε

(eiθ − 1− iθ)− iθ(κ− 3/2)
)
, (4.197)
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as ε → 0. For simplicity, we will let H(s(θ); ρ) =
√

1− 4W 3
0 /χ

′. From (4.197) we find that the
variation of the Stokes multiplier is exponentially small except when

eiθ − 1− iθ = 0,

which occurs when θ = 0. This is exactly the location of the Stokes curve since χ is purely
real and positive when θ = 0. In order to capture the Stokes switching behaviour we analyze
(4.197) near the Stokes curve. We therefore rescale to the neighbourhood of the Stokes curve by
setting θ =

√
εθ̂. Note that under this scaling, H(s(θ); ρ) ∼ H(|χ|) as ε → 0, which is therefore

independent of θ. Applying the scaling θ =
√
εθ̂ to (4.197) gives

S ∼ i
√

2πεH(|χ|)
∫ |χ|θ̂

e−x
2/2dx,

= iπ
√
εH(|χ|)

(
erf

(
θ

√
|χ|
2ε

)
+ C

)
, (4.198)

where C is an arbitrary constant. From (4.198) we may determine the jump in S as the Stokes
curves are crossed. The variation of the jump varies rapidly as θ̂ varies between −∞ and ∞.
Hence, we have

∆S ∼i
√

2πεH(|χ|)
∫ ∞
−∞

e−x
2/2dx,

=2iπ
√
εH(|χ|), (4.199)

and therefore
∆RN ∼ 2iπ

√
εH(|χ|)U(s)e−χ(s)/ε, (4.200)

as ε→ 0.

Hence, the asymptotic power series expansion of type A solutions to (4.111) up to exponen-
tially small corrections is given by

W (s) ∼W0,3(s) +
N−1∑
r=1

ε2rW2r(s),

+iπ
√
εH(|χ|)

(
erf

(
θ

√
|χ3|
2ε

)
+ C

)
U3(s)e−χ3(s)/ε, (4.201)

as ε→ 0, and where we have reintroduced the subscripts for the prefactor and singulant to explicitly
denote they are associated with W0,3. Furthermore, we recall that Wr is described by

Wr(s) ∼
Λ3U3(s)Γ(2r − 1/2)

χ3(s)2r−1/2
, (4.202)

as r → ∞ where Λ3 was numerically calculated to be approximately −0.0436 and U3 and χ3 are
solutions to (4.147) and (4.142), respectively. Recall that the remaining type A solutions may be
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obtained from the symmetry (4.112). By applying the symmetry

λ3 = 1, W 7→ λW, with, s 7→ s− ε log(λ)

log(1 + ε)
∼ s− log(λ),

as ε→ 0 to (4.201) we find that the other type A solutions are given by

W (s) ∼W0,1(s) + λ1

N−1∑
r=1

ε2rW2r(s),

+iλ1π
√
εH(|χ|)

(
erf

(
θ

√
|χ1|
2ε

)
+ C

)
U1(s)e−χ1(s)/ε, (4.203)

W (s) ∼W0,2(s) + λ2

N−1∑
r=1

ε2rW2r(s),

+iλ2π
√
εH(|χ|)

(
erf

(
θ

√
|χ2|
2ε

)
+ C

)
U2(s)e−χ2(s)/ε, (4.204)

as ε→ 0 where λ1 = e−2iπ/3, λ2 = e2iπ/3 and

χ1(s) =χ3(s+ 2iπ/3), (4.205)

U1(s) =U3(s+ 2iπ/3), (4.206)

χ2(s) =χ3(s− 2iπ/3), (4.207)

U2(s) =U3(s− 2iπ/3). (4.208)

In general, the late-order terms associated with the leading order behaviour W0,j is given by

W2r(s) ∼
ΛjUj(s)Γ(2r − 1/2)

χj(s)2r−1/2
, (4.209)

as r →∞ for j = 1, 2, 3. In particular, the values of Λj are

Λ1 =λ1Λ3 = e−2iπ/3Λ3, (4.210)

Λ2 =λ2Λ3 = e−2iπ/3Λ3, (4.211)

where Λ3 is given by (4.179).

4.5.4. Stoke structure for type A solutions.

With the results for χj given by (4.145), we can now investigate the switching behaviour of
the exponentially small contributions in both the complex s-plane and the complex x-plane. As
demonstrated in Section 4.5.3.2, we found that the exponential contributions present in the series
expansions (4.201), (4.203) and (4.204) are proportional to exp(−χj/ε). These terms are expo-
nentially small when Re(χj) > 0 and exponentially large when Re(χj) < 0. In order to investigate
the behaviour of these terms we consider the solution’s Stokes structure as in Chapter 3. Once their
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Stokes behaviour has been deduced in the complex s-plane we may reverse the rescalings (4.110)
in order to determine the Stokes behaviour of type A solutions in the complex x-plane.

We recall that Stokes curves follow curves where Im(χj) = 0, while anti-Stokes curves follow
curves where Re(χj) = 0. Additionally, we recall that Stokes switching occurs across Stokes
curves where Re(χj) > 0.

We first illustrate and explain the Stokes structure and Stokes switching behaviour in the do-
main D0, described by (4.29). The upper and lower boundaries of D0 are described by the curves
Im(s) = ±π and are denoted by the dashed green curves in Figure 4.10a. In this figure we also see
that there are two Stokes curves (red curves) and three anti-Stokes curves (blue curves) emanating
from the singularity. The Stokes curves extending towards the upper boundary of D0 switches the
exponential contribution associated with χ3 as Re(χ3) > 0. This Stokes curve is denoted by Â
in Figure 4.10b. While the Stokes curve extending towards the lower boundary of D0 does not
switch any exponential contributions as Re(χ3) < 0. Additionally, there is a branch cut (dashed
curve) of χ3 located along the negative real s axis emanating from the singularity, s0,3. Using this
knowledge, we can determine the switching behaviour as Stokes curves are crossed. Additionally,
we observe in Figure 4.10a that the Stokes structure and the branch cut separateD0 into six regions.

Re(s)

Im(s)

Re(χ3) > 0

Im(χ3) < 0

Re(χ3) < 0

Im(χ3) < 0

Re(χ3) < 0, Im(χ3) > 0

Re(χ3) > 0, Im(χ3) > 0

Re(χ3) > 0, Im(χ3) > 0

Re(χ3) < 0, Im(χ3) > 0

(A) Behaviour of χ3.

Re(s)

Im(s)

χ3 exp. small

χ3 exp. large

χ3 exp. large

χ3 exp. small

χ3 exp. small

χ3 exp. large

Â

(B) Exponential behaviour.

FIGURE 4.10. These figures illustrate the Stokes structure for type A solutions of q-PI
with leading order behaviour described by W0,3, which is given by (4.125), in D0. Figure
4.10a illustrates the behaviour of χ3 as Stokes and anti-Stokes curves (denoted by red and
blue curves, respectively) are crossed. Figure 4.10b illustrates regions of D0 in which the
exponential contribution associated with χ3 is exponentially large or small.

We now determine regions in D0 in which the asymptotic behaviour of (4.111) is described by
the power series expansion (4.201), referred to as regions of validity. From Figure (4.10a) we may
deduce the regions in which the exponential contribution associated with χ3 is exponentially large
or small; this is illustrated in Figure 4.10b.
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From Figure 4.10b we observe that the exponential contribution associated with χ3 is exponen-
tially small in the neighbourhood of the upper Stokes curves since Re(χ3) > 0, and therefore the
presence of exp(−χ3/ε) does not affect the dominance of the leading order behaviour in (4.201).
Hence, the value of the Stokes multiplier, S3, in the neighbourhood of the upper Stokes curve
may be freely specified, and will therefore contain a free parameter hidden beyond-all-orders. The
values of S3 in the regions of D0 is illustrated in Figure 4.11a.

Re(s)

Im(s)

S3 = S−3

S3 = S−3

S3 = S−3

S3 = S−3

S3 = S+
3

S3 = S+
3

Â

(A) General values of S3.

Re(s)

Im(s)

Valid

Valid

Exp. Large Contribution

Exp. Small Contribution

(B) Regions of validity.

FIGURE 4.11. Figure 4.11a illustrates the value S3 as Stokes curves are crossed while
Figure 4.11b illustrates the regions of validity for type A solutions of q-PI with leading
order behaviour described by W0,3. The regions of validity are those which are shaded in
blue. The blue and red shaded regions denote regions in which the exponential contribu-
tion associated with χ3 is small and large, respectively.

Re(s)

Im(s)

S3 = 0

S3 = 0

S3 = 0

S3 = 0

S3 = S+
3

S3 = S+
3

Â

(A) Special values of S3.

Re(s)

Im(s)

Valid

Exp. Large Contribution

Exp. Small Contribution

No Exp. Contribution

(B) Extended regions of validity.

FIGURE 4.12. Figure 4.12a illustrates the values S3 while Figure 4.12b illustrates the
regions of validity for special type A solutions of q-PI with leading order behaviour de-
scribed by W0,3. The choice of S−3 = 0 gives an asymptotic solution of (4.111) with
an extended region of validity. Non-shaded regions denote regions in which there are no
exponential contributions present. The legend in this figure will be used throughout the
remainder of this chapter, unless stated.
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Re(s)

Im(s)

π

3π

−π

−3π

e−
χ3

ε exp. small

e−
χ3

ε exp. large

e−
χ3

ε exp. large

e−
χ3

ε exp. small

e−
χ3

ε exp. small

e−
χ3

ε exp. large

e−
χ+
3

ε exp. small

e−
χ+
3

ε exp. large

e−
χ+
3

ε exp. large

e−
χ+
3

ε exp. small

e−
χ+
3

ε exp. small

e−
χ+
3

ε exp. large

e−
χ−
3

ε exp. small

e−
χ−
3

ε exp. large

e−
χ−
3

ε exp. large

e−
χ−
3

ε exp. small

e−
χ−
3

ε exp. small

e−
χ−
3

ε exp. large

(A) Stokes structure of χ3 in the domainsD0,D1

and D−1.

Re(s)

Im(s)

π

3π

−π

−3π

(B) Exponential contributions originating from
the domains D0, D1 and D−1.

FIGURE 4.13. This figure illustrates the Stokes structure depicted in Figure 4.10b ex-
tended to the adjacent domains D1 and D−1. In fact, the Stokes structure in the kth-
adjacent domains are identical to those in D0 since W0 is 2πi-periodic. Each adjacent do-
main provides an exponential contribution to the asymptotic solution described by (4.201).
From figure 4.13a, we see that the presence of the exponential contribution fromD−1 does
not affect the dominance of (4.201) in D0 and hence its associated Stokes multiplier may
be freely specified. However, the presence of the exponential contribution from D1 dom-
inates the asymptotic solution, (4.201). In order for (4.201) to remain valid in D0, we
require the value of the Stokes multiplier associated with exponential contribution in D1

must be chosen to be equal to zero. Figure 4.13b illustrates the regions where each expo-
nential contribution are present.
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The remainder term associated with χ3 will exhibit Stokes switching and therefore varies as it
crosses a Stokes curve; say, from state 1 to state 2 which we denote by S−3 and S+

3 , respectively.
If we assume that the value of S3 is nonzero on either side of the upper Stokes curve, then we
conclude that the exponentially small contribution associated with χ3 is present in the regions
bounded by the upper anti-Stokes curve and the anti-Stokes curve emanating from the singularity
along the positive real s axis. Furthermore, the exponential contribution associated with χ3 is also
exponentially small in the region bounded by the branch cut and the lower anti-Stokes curve. The
regions of validity of the asymptotic solution described by (4.201) is illustrated in Figure 4.11b.

However, for special choices of the free parameter hidden beyond-all-orders, we can obtain
asymptotic solutions with an extended range of validity in D0. If we specify the value of S−3 to be
equal to zero, then the exponential contribution associated with χ3 is no longer present in regions
where it is normally exponentially large. In this case, the region of validity is extended by an
additional two adjacent sectorial regions in D0 and is illustrated in Figure 4.12b. We note that the
case where S+

3 = 0 is specified can also give type A solutions with an extended region of validity.
However, this only extend the regions of validity of (4.203) by one additional sectorial region. In
both cases the value of S3 is specified, and therefore the asymptotic solutions described by (4.201)
are uniquely determined; we call these special type A asymptotic solutions.

Figure 4.13 illustrates the Stokes structure in the adjacent domains D1 and D−1 as described
by (4.30). Due to the 2πi-periodic nature of W0, the Stokes structure is also 2πi-periodic as
shown in Figure 4.13. Hence, we obtain an exponential contribution in each adjacent domain
Dk. For integers k ≤ −1, there are exponentially small contributions present in the adjacent
domains Dk. The presence of these exponentially small contributions do not affect the asymptotic
behaviour in the principal domain, D0 and hence the corresponding Stokes multipliers may be
freely specified. However, for integers k ≥ 1 the exponential contributions originating from the
adjacent domains Dk dominate those in D0 and hence affect the asymptotic behaviour in D0. In
order for the asymptotic solution (4.201) to correctly describe the solution behaviour in D0, the
value of the Stokes multipliers must be specified such that the are not present in D0. The presence
of the exponential contributions in the domains D−1,D0 and D1 is illustrated in Figure 4.13b.

The corresponding analysis of the Stokes structure and switching behaviour of the exponen-
tial contributions present within the asymptotic solutions described by (4.203) and (4.204) can be
determined using the same approach.

Figures 4.14a and 4.14b illustrate the Stokes structure associated with the singulants χ1 and
χ2. Due to symmetry of the rescaled q-PI equation which is given by (4.112), we observe that
the Stokes structure associated with χ1 and χ2 are vertical translations of the Stokes structure
associated with χ3 by ∓2iπ/3, respectively.

The general values of the Stokes multipliers, S1 and S2, are shown in Figures (4.15a) and
4.15b, respectively. In the general case, the values of S1 and S2 may be freely specified and there-
fore contain a free parameter hidden beyond-all-orders. The ranges of validity for the asymptotic
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Re(s)

Im(s)

Re(χ1) > 0

Im(χ1) < 0

Re(χ1) < 0, Im(χ1) < 0

Re(χ1) < 0, Im(χ1) > 0

Re(χ1) > 0, Im(χ1) > 0

Re(χ1) < 0, Im(χ1) > 0

Re(χ1) > 0, Im(χ1) > 0

À

(A) Behaviour of χ1.

Re(s)

Im(s)

Re(χ2) > 0

Im(χ2) > 0

Re(χ2) < 0, Im(χ2) > 0

Re(χ2) < 0, Im(χ2) < 0

Re(χ2) > 0, Im(χ2) < 0

Re(χ2) < 0, Im(χ2) < 0

Re(χ2) > 0, Im(χ2) > 0

Á

(B) Behaviour of χ2.

FIGURE 4.14. Figures 4.14a and 4.14b illustrate the behaviours of the singulants, χ1 and
χ2, as Stokes and anti-Stokes curves are crossed in the domainD0 in the complex s-plane,
respectively. The subdominant exponential associated with χ1 and χ2 are switched across
the Stokes curves labelled with À and Á, respectively. We note that the Stokes structures
in Figures 4.14a and 4.14b are vertical translations of Figure 4.10a by∓2π/3, respectively
as a result of the symmetry (4.112). Furthermore, we note that the anti-Stokes curves of
χ1 and χ2 asymptotically approach the lower and upper boundaries of D0.

Re(s)

Im(s)

S1 = S−1

S1 = S−1
S1 = S−1

S1 = S+
1

S1 = S+
1

S1 = S−1

À

(A) General values of S1.

Re(s)

Im(s)

S2 = S+
2

S2 = S+
2

S2 = S+
2

S2 = S−2

S2 = S−2

S2 = S+
2

Á

(B) General values of S2.

FIGURE 4.15. Figures 4.15a and 4.15b illustrate the values of S1 and S2, as Stokes curves
are crossed, respectively. S− and S+, denotes the values of the Stokes multipliers in
regions where Im(χ) < 0 and Im(χ) > 0 respectively. Furthermore, we see that the
Stokes multipliers S1 and S2 change in value across the Stokes curves labelled by À and
Á, respectively.

solutions described by (4.203) and (4.204) are illustrated in Figures 4.16a and 4.17a. For spe-
cial values of the free parameter hidden beyond orders, we also obtain special type A asymptotic
solutions of (4.203) and (4.204) with an extended range of validity. These special solutions are
therefore uniquely specified and their regions of validity are illustrated in Figures 4.16b and 4.17b.
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Re(s)

Im(s)

Valid

Valid

(A) Regions of validity.

Re(s)

Im(s)

Valid

(B) Extended regions of validity.

FIGURE 4.16. Figure 4.16a illustrates the regions of validity for type A solutions of q-PI
with leading order behaviour described byW0,1, which is given by (4.123), and containing
one free parameter. The blue and red shaded regions denote those in which the exponen-
tial contribution associated with χ1 is small and large, respectively. Non-shaded regions
denote those where there are no exponential contributions present in (4.203). Figure 4.16b
illustrates the regions of validity for special type A solutions of q-PI with leading order
behaviour described by W0,1. This is possible by choosing S−1 = 0 and therefore the
asymptotic solution described by (4.203) is uniquely specified.

As the Stokes structure and switching behaviour of the exponential contributions have been
determined in the domain D0, we may finally determine the Stokes structure in the original com-
plex x-plane. In order to determine the Stokes structure in the x-plane we reverse the scaling
transformations (4.110). We recall that the choice of scalings were given by

x = qn, n =
s

ε
, q = 1 + ε,

and therefore

s =
ε log(x)

log(1 + ε)
∼ log(x) +O(ε), (4.212)

as ε→ 0.
Without loss of generality, we demonstrate the Stokes structures of type A solutions for the

choice of q = 1 + 0.2i. Using (4.212), the singulants, χj(s), can be written as a function of x.
Then, we compute the Stokes structure in the complex x-plane using MATLAB. The corresponding
Stokes structure of χ3 in the complex x-plane is illustrated in Figure 4.18a while those for χ1 and
χ2 are illustrated in Figures 4.19a and 4.20a, respectively. In these figures, Stokes curves and anti-
Stokes curves are denoted by red and blue curves, respectively. The branch cuts of the singulants,
χj , are denoted by the dashed curve which extend from the singularity to the origin of the x-plane.
As in the case of the q-Airy, the asymptotic approximation described by (4.201) has a logarithmic
branch cut (dashed green curves) the complex x-plane, which is due to the leading order term of
the inverse transformation (4.212).
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Re(s)

Im(s)

Valid

Valid

(A) Regions of validity.

Re(s)

Im(s)

Valid

(B) Extended regions of validity.

FIGURE 4.17. Figure 4.17a illustrates the regions of validity for type A solutions of q-PI
with leading order behaviour described byW0,2, which is given by (4.124), and containing
one free parameter. The blue and red shaded regions denote those in which the exponen-
tial contribution associated with χ2 is small and large, respectively. Non-shaded regions
denote those where there are no exponential contributions present in (4.204). Figure 4.17b
illustrates the regions of validity for special type A solutions with leading order behaviour
described by W0,2. This is possible by choosing S−2 = 0 and therefore the asymptotic
solution described by (4.204) is uniquely specified.

The inverse transformation given by (4.212), maps the Stokes and anti-Stokes curves in the
s-plane to q-spirals in the complex x-plane. Therefore, the Stokes and anti-Stokes curve separate
the complex x-plane into sectorial regions bounded by arcs of spirals, as illustrated in Figures 4.18,
4.19 and 4.20.

We interpret the asymptotic results for the complex x-plane. Figure 4.18b illustrates the regions
of validity of (4.201) which contain one free parameter in the complex x-plane. In this figure, the
blue shaded regions are regions in which Re(χ3) > 0 and hence the exponential contribution as-
sociated with χ3 is exponentially small. In Figure 4.18a the subdominant exponential contribution
associated with χ3 exhibits Stokes switching as the Stokes curve labelled by Â is crossed. In the
red shaded regions, this exponential contribution is exponentially large. Consequently, the regions
of validity of the asymptotic solution (4.201) containing one free parameter hidden beyond-all-
orders are denoted by the regions shaded in the blue. The regions of validity of (4.201) for which
the value of S−3 is uniquely specified are illustrated in Figure 4.18c.
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Re(x)

Im(x)

Â

(A) Stokes structure of χ3 in the x-plane.

Re(x)

Im(x)

Â

(B) Regions of validity of (4.201) in the x-plane.

Re(x)

Im(x)

Â

(C) Extended regions of validity of (4.201) in the x-plane.

FIGURE 4.18. This figure illustrates the Stokes structure of the series solution (4.201)
of q-PI in the complex x-plane with q = 1 + 0.2i. Under the inverse transformation
(4.212), the Stokes and anti-Stokes curves are now described by q-spirals in the x-plane.
The branch cuts of χ3 in the x-plane extends from the singularity and terminates at the
origin. The dashed green curve denotes a logarithmic branch cut, which is due to the
use of the leading order term of the inverse transformation. Figure 4.18b illustrates the
region of validity (blue shaded regions) of (4.201) which contain a free parameter hidden
beyond-all-orders. The regions of validity of (4.201) for which S−3 is uniquely specified
are illustrated in Figure 4.18c.

Due to the periodic nature of W0, the Stokes curves which correspond to the different branches
of (4.144) are identical to those in the principal sheet and therefore extend continuously across
the logarithmic branch cut in both the complex s-plane as shown in Figure 4.13. Consequently,
the Stokes curves in the complex x-planes extend continuously across the logarithmic branch cut
(dashed green curve) onto the other Riemann sheets. In particular, the exponentially small con-
tributions originating from the different Riemann sheets (from the domains Dk with k ≤ −1) are
sub-subdominant compared to optimally-truncated errors in (4.201), (4.203) and (4.204).
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Im(x)
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(A) Stokes structure of χ1 in the x-plane.

Re(x)

Im(x)

Â

(B) Regions of validity of (4.203) in the x-plane.

Re(x)

Im(x)

Â

(C) Extended regions of validity of (4.203) in the x-plane.

FIGURE 4.19. This figure illustrates the Stokes structure of the series solution (4.203)
of q-PI in the complex x-plane with q = 1 + 0.2i. Under the inverse transformation
(4.212), the Stokes and anti-Stokes curves are now described by q-spirals in the x-plane.
The branch cuts of χ1 in the x-plane extends from the singularity and terminates at the
origin. The dashed green curve denotes a logarithmic branch cut, which is due to the
use of the leading order term of the inverse transformation. Figure 4.19b illustrates the
region of validity (blue shaded regions) of (4.203) which contain a free parameter hidden
beyond-all-orders. The regions of validity of (4.203) for which S−1 is uniquely specified
are illustrated in Figure 4.19c.

We note that the Stokes structures for each of the three type A asymptotic solutions illustrated
in Figures 4.18, 4.19 and 4.20 are rotations of each other. This is a consequence of the symmetry
of q-PI, which is given by (4.89). The regions of validity of the asymptotic solutions (4.203) and
(4.204), which contain one free parameter hidden beyond-all-orders are depicted as the blue shaded
regions in Figures 4.19b and 4.20b, respectively. While Figures 4.19c and 4.20c illustrate the
regions of validity of the uniquely specified asymptotic solutions (4.203) and (4.204), respectively.
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(A) Stokes structure of χ2 in the x-plane.
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(C) Extended regions of validity of (4.204) in the x-plane.

FIGURE 4.20. This figure illustrates the Stokes structure of the series solution (4.204)
of q-PI in the complex x-plane with q = 1 + 0.2i. Under the inverse transformation
(4.212), the Stokes and anti-Stokes curves are now described by q-spirals in the x-plane.
The branch cuts of χ2 in the x-plane extends from the singularity and terminates at the
origin. The dashed green curve denotes a logarithmic branch cut, which is due to the
use of the leading order term of the inverse transformation. Figure 4.20b illustrates the
region of validity (blue shaded regions) of (4.204) which contain a free parameter hidden
beyond-all-orders. The regions of validity of (4.204) for which S+2 is uniquely specified
are illustrated in Figure 4.20c.

4.6. Type B solutions

In this section we investigate type B solutions of (4.111). These are the asymptotic solutions of
(4.111), which are described by (4.126) to leading order as ε → 0. Compared to type A solutions
found in Section 4.5, which are singular at one point in D0, type B solutions are singular at three
points inD0. Specifically, they are singular at the points s0,1, s0,2 and s0,3 inD0, which are given by
(4.130), (4.131) and (4.132), respectively. These solutions will therefore display more complicated
behaviour than type A solutions as the Stokes curves emerge from three singular points rather than
one.
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The analysis for type B solutions can be similarly repeated as demonstrated for type A solutions
in Section 4.5, although the complete analysis need not be repeated. As the analysis is near identical
as the analysis for type A solutions, we state the main results. In fact, the analysis is exactly
identical except for the calculation of the singulant. As type B solutions are singular at three
points, the singulant for type B solutions will contain three contributions.

Type B solutions may be expanded as a power series in ε of the form

W (s) ∼W0,4(s) +
∞∑
r=1

εryr(s), (4.213)

as ε → 0. Following the analysis for type A solutions, it can be shown that the behaviour of yr is
also described by a factorial-over-power form. The behaviour of yr is therefore described by

y2r(s) ∼
Y (s)Γ(2r + γ2)

η(s)2r+γ2
, (4.214)

as r → ∞. The analysis for type B solutions is near identical for the analysis of type A solutions.
However, the main difference between type A and type B solutions is in the calculation of the
singulant function, η. We recall that the singulant function, η(s), is required to be singular at
the singularities of the leading order behaviour, W0,4. Since the leading order behaviour W0,4 is
singular at s0,1, s0,2 and s0,3, we obtain three singulant contributions, which we denote by ηj(s).
This feature can be deduced from equation (4.127), which shows that W0,4 is expressible as the
sum of W0,1,W0,2 and W0,3. Following the analysis in Section 4.5.1, ηj(s) is given by

ηj(s) =

∫ s

s0,j

cosh−1(σ(t))dt, (4.215)

for j = 1, 2, 3 and where σ is given by (4.143) with u0 replaced by W0,4. Hence we obtain three
contributions for η. Using the results for the late-order terms found in Section 4.5.1, we find that
the late-order terms of (4.213) is given by

y2r(s) ∼
3∑
j=1

Yj(s)Γ(2r + γ2)

ηj(s)2r+γ2
, (4.216)

as r → ∞ and where Yj(s) are the prefactor terms corresponding to ηj(s). Hence the asymptotic
expansions of type B solutions of (4.111) is given by

W (s) ∼W0,4(s) +
3∑
j=1

∞∑
r=1

ε2rYj(s)Γ(2r + γ2)

ηj(s)2r+γ2
, (4.217)

as ε → 0. As there are three distinct singulant terms in (4.217) there will be three subdominant
exponentials present and hence type B solutions will also display Stokes behaviour.

By applying the Stokes smoothing technique demonstrated in Section 4.5.3, the asymptotic
series expansion of (4.217) which capture the Stokes behaviour of the subdominant exponential
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correction terms is given by

W (s) ∼W0,4 +
3∑
j=1

Nopt−1∑
r=1

ε2rYj(s)Γ(2r + γ2)

ηj(s)2r+γ2
+

3∑
j=1

Ŝj(s)φ̂(s)Yj(s)e
−ηj(s/ε), (4.218)

as ε → 0 and where Nopt is the optimal truncation point. In particular, the type B prefactor terms
satisfy equation (4.154) with W0 replaced by W0,4. Similarly, the Stokes multipliers Ŝ(s) satisfy
(4.198) with u0 and χ replaced by W0,4 and η, respectively. In view of the formula (4.127), the
leading order behaviour of the type B solution is a composition of the leading order behaviours
of type A solutions. Consequently, the Stokes behaviour present in this solution will be more
complicated as the Stokes curves emanate from more than one point. In particular, the Stokes
structure for type B solutions may be obtained by investigating the singulant (4.215).

4.6.1. Stoke Geometry for type B solutions.

The Stokes and anti-Stokes curves of emanating from the singularities, s0,j , may be determined
by the conditions

Im(ηj(s)) = 0,

and
Re(ηj(s)) = 0,

respectively. The Stokes structure of type B asymptotic solutions inD0 is illustrated in Figure 4.21.
In Figure 4.21 we see that there are three Stokes (red curves) and two anti-Stokes curves curves
(blue curves) emanating from each of the singularities, s0,j for j = 1, 2, 3. The Stokes structure
for type B solutions is more complicated as there are Stokes curves which cross into the branch
cuts (dashed curves) of ηj as illustrated in Figure 4.21. These Stokes curves may have possible
interaction effects with the exponentially small contributions from the different Riemann sheets of
ηj .

However, we observe from Figure 4.21 that there are regions which do not contain the Stokes
curves originating from the different Riemann sheets of ηj . This regions are labelled as regions
I-IV in Figure 4.21. We first note that the Stokes curves emanating from the singularities s0,1 and
s0,2 asymptote to +∞ as Re(s) → ∞ as illustrated in Figure 4.21a. In Figure 4.21a, we find that
region I is the region bounded by the upper boundary ofD0, the upper anti-Stokes curve emanating
from s0,1 and the Stokes curve emanating from s0,2, which is labelled by Á; region II is the region
bounded by the upper anti-Stokes curve emanating from s0,1, and the Stokes curves labelled by Á
and Â; region III is the region bounded by the lower anti-Stokes curve emanating from s0,2, and
the Stokes curves labelled by À and Â; and finally region IV is the region bounded by the lower
boundary of D0, the lower anti-Stokes curve emanating from s0,2 and the Stokes curve emanating
from s0,1, which is labelled by À.

Furthermore, Re(ηj) is positive in each of these four regions and hence the exponential con-
tributions associated with ηj are exponentially small there. This is illustrated by the blue shaded
regions in 4.21b. We therefore restrict our analysis to regions I-IV as these are the regions in which
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(A) Stokes structure of type B solutions in the complex s-plane
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FIGURE 4.21. Stokes structure of the series solution (4.217) of q-PI in the domain D0.
Regions I-IV denote regions in which the exponential contributions associated with ηj are
exponentially small and therefore denote the regions of validity for (4.218).

the dominant asymptotic behaviour is described by (4.218). Consequently, the regions of validity
of type B solutions is the region bounded by the anti-Stokes curves emanating from the singularity,
s0,3, the upper and lower boundaries of D0, containing the positive real s axis. This is the union of
regions I-IV and is illustrated in Figure 4.21b.

In order to determine Stokes behaviour present in the asymptotic solution (4.218) we investi-
gate the behaviour of ηj in regions I-IV. In Figure 4.21, regions I-IV denotes those of D0 in which
Re(ηj) > 0 and

• Region I : Im(ηj) > 0,
• Region II : Im(η1) > 0, Im(η2) < 0, Im(η3) > 0,
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• Region III : Im(η1) > 0, Im(η2) < 0, Im(η3) < 0,
• Region IV : Im(ηj) < 0.

Hence, the Stokes curve separating regions I and II switches on the exponential contribution associ-
ated with η2, the Stokes curve separating regions II and III switches on the exponential contribution
associated with η3 and the Stokes curve separating regions III and IV switches on the exponential
contribution associated with η1. To denote the Stokes switching behaviour of these subdominant
exponentials, the Stokes curves are labelled by À, Á and Â.

In regions I-IV, the presence of the exponential contributions associated with ηj are expo-
nentially small since Re(ηj) > 0, and therefore do not affect the dominance of the leading order
behaviour in (4.218). Hence, the values of Ŝj may be freely specified in these regions and therefore
the asymptotic solution described by (4.218) contains free parameters hidden beyond-all-orders.

In Section 4.5.4 we obtained special type A solutions, which are valid in an extended region
of the complex plane. These special solutions were obtained by selecting values of the Stokes
multipliers such that the exponential contributions are absence in regions where it is normally
large. However, this is not possible for type B solutions. The reason this is not possible interaction
effects of Stokes curves emerging from the different Riemann sheets of ηj .

Hence, in order to find special type B solutions, the exponential contributions on different
Riemann sheets of ηj must be accounted for. As this is beyond the scope of this thesis, we restrict
our attention to regions I-IV and therefore only obtain asymptotic solutions described by (4.218)
which contain free parameters hidden beyond-all-orders.

Following the analysis in Section 4.5.4 we obtain the Stokes structure in the original x-plane
by applying the inverse transformation given by (4.212). As in Section 4.5.4 we demonstrate the
Stokes structure for the value of q = 1 + 0.2i. Using MATLAB, the Stokes structure of type B
solutions is illustrated in Figure 4.22.

Figure 4.22 shows the corresponding regions I-IV in the complex x-plane. In this figure, the
Stokes and anti-Stokes curves are denoted by red and blue curves, respectively. The branch cuts of
ηj are depicted as the dashed curves, which connect the singularities to the origin in the complex
x-plane. Furthermore, the green dashed curve denotes the logarithmic branch cut defined by the
reverse transformation (4.212) for the choice of q = 1 + 0.2i.

Recall that the inverse transformation maps the Stokes and anti-Stokes curves in the complex
s-plane to q-spirals in the complex x-plane. In particular, we find in Figure 4.22 that the Stokes
curves of type B solutions extend to infinity in the complex x-plane. This is due to the fact that the
Stokes curves in the complex s-plane extend to infinity as Re(s) → ∞ as shown in Figure 4.21a.
This was not case for the Stokes curves of type A solutions in Section 4.5.4. Instead the Stokes
curves of type A solutions emanate from the singularities and approach the logarithmic branch
cuts and enter a different Riemann sheet of the inverse transformation; this is illustrated in Figures
4.18a, 4.19a and 4.20a.
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FIGURE 4.22. This figure illustrates the Stokes structure of type B solutions of q-PI in
the original x-plane. Under the inverse transformation (4.212) the Stokes and anti-Stokes
curves are described by q-spirals in the x-plane. The exponential contributions associated
with η1, η2 and η3 are switched across the Stokes curves labelled by À, Á and Â, respec-
tively as illustrated in Figure 4.22b. In Figure 4.22c the regions shaded in blue denote
regions in which the asymptotic solution described by (4.218) is valid. These are the re-
gions in which the exponential contributions present in (4.218) are exponentially small.
The regions shaded in red are regions in which these exponential contributions are expo-
nentially large and hence regions in which the asymptotic behaviour is not described by
(4.218).

Furthermore, we recall that the dashed green curves denote the branch cuts of the inverse
transformation, (4.212), and therefore the region of the x-plane bounded by these two branch cuts
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is not covered by inverse transformation. Therefore, the Stokes and anti-Stokes curve separate the
complex x-plane into sectorial regions bounded arcs of spirals.

We have therefore determined the regions of validity for type B asymptotic solutions of q-PI,
(4.111), in the complex x-plane. Type B asymptotic solutions are described by the asymptotic
power series expansion (4.218) as ε → 0 and contain a free parameter hidden beyond-all-orders.
Furthermore, we have also calculated the Stokes behaviour present within these asymptotic solu-
tion, (4.218), which allowed us to determine regions in which this asymptotic description is valid.

4.7. Connection between type A and type B solutions and the nonzero and vanishing
asymptotic solutions of q-Painlevé I

In this section we establish a connection between both type A and B solutions found in this
study to the nonzero and vanishing asymptotic solutions of q-Painlevé I, respectively. We recall
that the nonzero and vanishing asymptotic solutions were first found by Joshi in [80]. The nonzero
asymptotic solutions of (4.88) are described by the series expansion given by (4.90) where the
coefficients are given in (4.91). Whereas the vanishing asymptotic solutions are described by (4.94)
where the coefficients are given in (4.95). In particular, the nonzero asymptotic solutions have the
following behaviour

w(x) ∼ ω3 +O
(

1

x

)
, (4.219)

as |x| → ∞, while the vanishing asymptotic solutions have the behaviour

w(x) ∼ 1

x
+O

(
1

x4

)
, (4.220)

as |x| → ∞.

Recall that the four possible solutions for W0(s) are denoted by W0,j(s), which are defined by
(4.123)-(4.126), and the term D is defined by (4.122). In our investigation, we applied the scalings
given in (4.110), in which the variable x has the behaviour

x ∼ es +O(ε), (4.221)

as ε → 0. The analysis for both type A and B solutions are valid in the limit ε → 0, which was
shown to be equivalent to the limits |q| → 1 and n → ∞. However, under the additional limit,
s→ +∞, we see that the behaviour of x in (4.221) approaches infinity. Therefore, the limits ε→ 0
and s→ +∞ are equivalent to the limit |x| → ∞.

We now study the behaviour of W0,j(s) under the additional limit s → +∞. In order to
understand the behaviour of W0,j(s) as s → +∞ we must consider the limiting behaviour of the
components A,B,C and D. As D is equal to

D =
A

B1/3
+
B1/3

C
, (4.222)
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where the terms A,B and C are defined by equations (4.119)-(4.121). From equations (4.119)-
(4.121), we find that

lim
s→+∞

A =0, (4.223)

lim
s→+∞

B =18, (4.224)

lim
s→+∞

C =21/332/3, (4.225)

and hence
lim

s→+∞
D = 1. (4.226)

Applying the limit s→ +∞ to the leading order behaviours of W (s), which are given in (4.123)-
(4.126) we find that

lim
s→+∞

W0,1 =− 1

2
+ i

√
3

2
, (4.227)

lim
s→+∞

W0,2 =− 1

2
− i
√

3

2
, (4.228)

lim
s→+∞

W0,3 =1, (4.229)

lim
s→+∞

W0,4 =0. (4.230)

The limiting behaviour of type A solutions under the limit s → +∞ are therefore described by
cube roots of unity. That is

W0,j ∼ ω3, (4.231)

for j = 1, 2, 3 as ε → 0 and s → +∞ where ω3 = 1. However, we find from (4.230) that type B
solutions vanish in the limit s→ +∞. We therefore find that type A solutions of (4.111) tend to the
nonzero asymptotic behaviour solutions found by Joshi [80] under the additional limit s→ +∞.

In order to calculate the leading order behaviour of W0,4(s) as s → +∞, we need to keep
terms up to order O(e−3s). From equation (4.120), we find that

B ∼ 18− 128e−3s

3
+O(e−6s), (4.232)

as s→ +∞ and hence from (4.122) we obtain

D ∼ 1− 4e−s

3
+O(e−3s), (4.233)

as s → +∞. By substituting the behaviour of D by (4.233) in (4.126) we find that the behaviour
of type B solutions are given by

W0,4 ∼
1

2

√
1− 4e−s

3
− 1

2

√
−
(

1− 4e−s

3

)
+

2

1− 4e−s

3

,

∼ e−s +O(e−3s), (4.234)
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as s→ +∞. From (4.221) we find that (4.234) is equivalent to the behaviour 1/x as |x| → ∞ and
hence type B solutions correspond to the vanishing asymptotic behaviour of (4.88).

4.8. Numerical computation for q-Painlevé I

In this section we give a numerical example of (4.109) with the parameter choice of q =
1 + 0.2i. Given two initial conditions, w0 and w1, a sequence of solutions of (4.109) may be
obtained by repeated iteration. In general, only a certain choice of initial conditions will give
a solution of (4.109) which tends to the asymptotic behaviour of interest. As in Section 3.6 of
Chapter 3 we follow the numerical method demonstrated by [83], originally based on the works
of [81] to find appropriate initial conditions which tend to Type A solutions of (4.109).
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FIGURE 4.23. This figure illustrates the behaviour of the solutions to (4.109) with q =
1+0.2i. The boundary conditions are chosen such thatw0 = 0.846885522+i0.798385416
and w1 = −0.502881648 − i0.650433326. The values of wn are represented as blue
circles, and the Type A asymptotic solution, wn ∼ ω as n → ∞, where ω3 = 1, is
represented by the black cross marks. From Figures 4.23a and 4.23b we see that the
behaviour of the difference equation tends to the asymptotic expression for large n.

Figure 4.23 illustrates a comparison between the numerical solution of (4.109) with q = 1 +
0.2i and the initial conditions w0 = 0.846885522 + i0.798385416 and w1 = −0.502881648 −
i0.650433326 and the leading order term of (4.90) with a0 = (−1 + i

√
3)/2. Figure 4.23a and

4.23b show that real and imaginary part of wn converges to −1/2 and
√

3/2 respectively for large
n, which is precisely the leading order term of (4.90).

As in Section 3.6 of Chapter 3 we are unable to find appropriate initial conditions which give
solutions of (4.109) that tend to Type B solutions using the numerical method of [81, 83]. As for
the vanishing type solutions of the second discrete Painlevé equation, more sophisticated numerical
methods are required in order to capture the Type B solutions of the first q-Painlevé equation.
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4.9. Conclusions

In this chapter, we extended the exponential asymptotic methods used in Chapter 3 to compute
and investigate Stokes behaviour present in the asymptotic solutions of both the q-Airy equation
and q-PI in the limits |q| → 1 and n → ∞. In order to investigate the solution behaviour of q-
difference equations we rescaled the variables and parameters in the problem such that the limits
|q| → 1 and n → ∞ was equivalent to the limit ε → 0. As a result, we refer to this method as
the continuum limit-like approach. The solutions of the q-Airy equation are described by the series
expansion (4.77), while we found two types of solutions for q-PI; type A and type B solutions.
Type A solutions of q-PI are described asymptotically by either (4.201), (4.203) or (4.204), and
type B solutions are described by (4.218). In particular, type A and type B are distinguished
by the number of their singularities in the principal sheet of the complex plane. The asymptotic
descriptions obtained in this analysis are given as a sum of a truncated asymptotic power series and
an exponentially-subdominant correction term. We then determined the Stokes structure and used
this information to deduce the regions of the complex plane in which these asymptotic solutions
are valid.

In Section 4.3, we applied the WKB method for difference equations [49] to find that the
asymptotic solution of the q-Airy equation is composed of two exponential contribution terms
given by (4.74) and (4.75). From this behaviour, we determine the associated Stokes structure,
illustrated in Figure 4.3 and qualitatively determine Stokes behaviour present in the asymptotic
solution of the q-Airy equation in the limits |q| → 1 and n→∞.

In Section 4.4 we then applied these methods to study the asymptotic solutions of the first
q-Painlevé equation. By applying the continuum limit-like approach we found two classes of as-
ymptotic solutions for (4.111); type A and type B solutions. In Section 4.5 we considered the
asymptotic solutions of (4.111) described by type A solutions. Using exponential asymptotic meth-
ods, we determined the form of the subdominant exponential contribution present in the asymptotic
solutions, which were found to be defined by one free Stokes-switching parameter. From this be-
haviour, we deduced the associated Stokes structure, illustrated in Figures 4.10a, 4.14a and 4.14b.
By considering the Stokes switching behaviour of these subdominant exponentials, we found that
the dominant asymptotic behaviour is described by either (4.201), (4.203) or (4.204) in a region in
the complex s-plane containing the positive real axis. Furthermore, we found that it is possible to
select the Stokes parameters so that the exponential contribution is absent in the regions where it
would normally be large. Consequently, the regions of validity for the special type A solutions are
larger than the regions of validity for generic type A solutions as illustrated in Figures 4.12b, 4.16b
and 4.17b.

In Section 4.6, we considered the equivalent analysis for type B solutions of (4.111). Com-
pared to type A solutions, type B solutions are those which are singular at three points rather than
one. Although exponential asymptotic methods may be used again to determine the form of the
exponential small contributions present in type B solutions, we noted that the analysis is near iden-
tical except for the determination of the singulant of this problem, η. The main difference is due
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to the fact that type B solutions are singular at three points rather than one, and the remaining
analysis was therefore identical as for type A solutions. Type B asymptotic solutions are given as a
sum of a truncated asymptotic power series and three exponentially-subdominant correction terms
as described in (4.218). The Stokes structure for type B solutions, illustrated in Figure 4.21, is
significantly more complicated than the Stokes structure of type A solutions. In order to describe
the Stokes switching behaviour in the domain D0 we must understand how the asymptotic solu-
tion (4.218) interacts with solutions on different Riemann sheets. However, we restrict ourselves
to regions I-IV as these regions are free of the interaction effects originating from the different
Riemann sheets. Furthermore, all three exponential contributions present in type B solutions are
exponentially subdominant in regions I-IV and therefore represent the regions of validity of (4.218).
Consequently, the asymptotic solutions described by (4.218) contain one free parameter defined by
the Stokes multiplier.

By reversing the rescaling transformations we are then able to obtain the corresponding Stokes
structure in the complex x-plane. In both investigations of the q-Airy and q-PI equation, we found
that the Stokes and anti-Stokes curves are described by q-spirals in the complex plane. As a result,
the regions of validity are no longer described by traditional sectors bounded by rays but sectorial
regions bounded by arcs of spirals.

In Section 4.7 we showed that type A and B solutions are related to the nonzero asymptotic
and vanishing asymptotic solutions found by Joshi [80]. If the additional limit s → +∞ is also
taken, then we find that type A solutions correspond to the nonzero asymptotic solutions of q-PI
while type B solutions correspond to the quicksilver solutions of q-PI [80].



CHAPTER 5

Conclusions

In this thesis, we have shown how exponential asymptotic methods can be applied to both
additive and multiplicative difference equations in order to investigate Stokes behaviour present
in their solutions under some limit. The exponential methods we use are based on the works of
Chapman, et al. [32] and King and Chapman [92] under the framework of matched asymptotic
expansions developed by Olde Daalhuis [121]. The main equations of interest in this thesis were
the discrete Painlevé equations. In particular, we studied the second discrete Painlevé equation and
the first q-Painlevé equation. They were chosen as they are of potential use in mathematical physics
problems and are regarded as defining new, nonlinear special functions.

In Chapter 3 we determined two types of solution behaviour for the second discrete Painlevé
equation (dPII) which have vanishing and non-vanishing type behaviours in the limit as the in-
dependent variable approaches infinity. We achieve this by introducing a small parameter, ε, by
rescaling the variables present in the problem. In doing so, the difference equation may then be
transformed into another difference equation for which the step size is small in the limit ε → 0.
The resulting difference equation can then be considered as a differential equation of infinite order.
We call this the continuum limit-like approach. In both cases, we showed that solutions of dPII
with these limiting behaviours are asymptotic to two types of power series expansions which con-
tain exponentially subdominant correction terms. We then studied Stokes behaviour present within
these series expansions and used this information to deduce regions in the complex plane in which
they are valid. We obtain a one-parameter family of asymptotic power series expansions of dPII.
The free parameter contained within these asymptotic power series are hidden beyond-all-orders as
they were shown to be encoded within the Stokes multipliers. Furthermore we showed it is possible
to select particular values of the free parameter such the asymptotic power series expansions are
valid in a wider domain, obtaining special asymptotic solutions for dPII.

In addition to obtaining one- and zero-parameter asymptotic series expansions for dPII, we
found that these solutions share similar features to the tronquée and tri-tronquée solutions of the
second Painlevé equation. When the scalings are undone, the asymptotic solutions we find are
described by xn ∼ −γ/αn or xn ∼ ±i

√
αn/2 as n → ∞. The (tri)-tronquée solutions of the

second Painlevé equation are described to leading order by y ∼ −µ/t or y ∼
√
−t/2 as |t| → ∞.

Furthermore, the tronquée solutions contain a free parameter hidden beyond-all-orders while the
tri-tronquée solutions are uniquely specified, both of which are also described by asymptotic power
series in certain sectors in the complex plane. The asymptotic solutions we find for dPII may
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therefore be regarded as the discrete analogues of the tronquée and tri-tronquée solutions of the
second Painlevé equation.

In Chapter 4, we investigated Stokes behaviour in the asymptotic solutions of q-difference
equations in the limits |q| → 1 and n → ∞. In order to demonstrate the applicability of the
continuum limit-like approach to both linear and nonlinear q-difference equations, we studied a
q-analogue of the Airy equation and the first q-Painlevé in the limits |q| → 1 and n → ∞. In
particular, we chose to rescale q by setting q = 1 + ε. We note that different choices of scalings
may also be applied to the parameter q and the effects of these different choices of scalings may be
considered as the subject of future work.

In the first part of Chapter 4 we use the WKB method to show that the asymptotic solution
of the q-Airy equation is a linear combination of two exponential contribution terms where the
constants are replaced q-periodic functions. In particular, these two asymptotic solutions describe
two linearly independent solutions of the q-Airy equation. Although we did not determine the
full asymptotic power series expansions of the q-Airy equation, we were still able to successfully
deduce the Stokes structure and Stokes behaviour present within these asymptotic solution. We
found that the Stokes and anti-Stokes curves are described by q-spirals in the original coordinate
space and hence the regions of validity are no longer bounded by traditional rays but bounded by
arcs of spirals. For further study, the complete asymptotic series expansion of the q-Airy should
be computed. This would then allow the Stokes behaviour of the q-Airy function to be explicitly
computed.

In the second part of Chapter 4, we then considered the first q-Painlevé equation in the limit as
|q| → 1. In particular, we were able to distinguish two types of solution behaviour which we called
type A and type B solutions. Both type A and type B solutions were shown to be described by
divergent asymptotic power series expansions which contain exponentially subdominant exponen-
tial terms. The distinguishing feature between type A and type B solutions is that type A solutions
are singular at one point in the complex plane while type B solutions are singular at three points.
As a result, type A solutions contain one exponentially subdominant correction term while type
B solutions contain three exponentially subdominant correction terms in their asymptotic series
expansions. As in the case of the q-Airy equation, we showed that the Stokes structure of the q-
Painlevé equation is also described by q-spirals which separate the complex plane into sectorial
regions bounded by arcs of these spirals.

Using exponential asymptotic methods, the asymptotic power series expansions of type A and
type B solutions of q-PI are given as a sum of a truncated asymptotic power series and exponentially
subdominant correction terms which are valid in certain regions in the complex plane. Furthermore,
these asymptotic descriptions contain a free parameter hidden beyond all order like those found in
Chapter 3. Additionally, we also show that it is possible to select particular values of the free
parameter such that the asymptotic descriptions of type A solutions are valid in a wider region of
the complex plane. As the asymptotic power series expansion is uniquely specified, we call these
the special type A asymptotic solutions of q-PI. However, this is not possible for type B solutions
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due to its complicated Stokes structure. We found that there are Stokes curves emerging from
the branch cuts which originate from the different Riemann sheets defined by type B solutions.
Fortunately, we are able to identify regions in the complex plane which are free of such Stokes
curves, and in which the exponential contributions present in the asymptotic series expansion of
type B solutions are exponentially small. For future research, the interaction effects originating
from the different Riemann sheets of type B solutions should be investigated. This introduces
the possibility of higher-order Stokes phenomenon effects as the Stokes curves of the principle
Riemann sheet may interact with the Stokes curves originating from other Riemann sheets. By
understanding these interaction effects, it may be possible to determine special type B asymptotic
solutions. This is currently beyond the scope of this thesis and will therefore be the subject of
future research.



APPENDIX A

Singularity Confinement

In order to illustrate the idea of singularity confinement we consider the discrete Painlevé
I, which is given by (1.14). Given any two initial conditions, say xn = µ and xn−1 = ν we
may iterate equation (1.14) forwards (n 7→ n+ 1) or backwards (n 7→ n− 1) in order to obtain a
sequence of solutions. We can do this indefinitely provided that xn0 6= 0 for some n0, which is a
singularity of (1.14).

In order to study how this singularity propagates upon successive iteration, we let x0 = µ and
x1 = ε and iterate forward in time. By successive iteration we find that

x2 ∼
α+ β

ε
, (A.1)

x3 ∼ −
α+ β

ε
, (A.2)

x4 ∼ −
4α+ β

α+ β
ε, (A.3)

x5 ∼
2αγ + µ (α+ β)

4α+ β
, (A.4)

as ε → 0. By starting arbitrarily close to the singularity, we find that the iterates x2 and x3 tend
to +∞ and −∞, respectively. The singularity persists upon iteration, to leading order, and is
therefore said to propagate upon iteration. The next iterate, x4, is proportional to ε as ε → 0 as
shown in (A.3). However, we find from (A.4) that x5 is not dependent on ε. In particular, we also
find that the initial condition, µ, appears in the leading order expression for x5.

Therefore, we observe that the singularity disappears within four forward iterations and that
the initial condition, x0 = µ, is recovered. In fact, it can be shown that further iterations are
non-vanishing in the limit ε→ 0 and thus the singularity is confined.
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Error of the singulant and prefactor

Let us consider the sum

E(z; r) =

∞∑
k=r

z2k

(2k)!
. (B.1)

We will that the function E(x; r) is exponentially small in z as r → ∞. The sum in (B.1) can be
rewritten as

E(z; r) =
z2r

(2r)!

∞∑
n=0

(1)n
(r + 1/2)n(r + 1)n

1

n!

(z
2

)2n
,

= z2r
∞∑
n=0

z2n

Γ(2r + 2n+ 1)
, (B.2)

where (a)k is the falling factorial [2]. For large values of r, we replace the Gamma function
appearing in the denominator of the sum in (B.2) by Stirling’s formula in order to obtain

E(z; r) ∼ z2r

√
2πe−2r(2r)2r+1/2

∞∑
n=0

z2n

(2r)2n
=

z2re2r

√
2π(2r)2r+1/2

4r2

2r2 − z2
, (B.3)

which is exponentially small in z as r →∞.
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APPENDIX C

Stokes smoothing via Borel summation

We consider a function f(s), which is asymptotic to a factorially divergent power series in ε.
In particular we consider

f(s) ∼
∞∑
r=0

εr
F (s)Γ(r + γ)

χ(s)r+γ
, (C.1)

as ε→ 0. We may optimally truncate (C.1) by writing

f(s) ∼
N−1∑
r=0

εr
F (s)Γ(r + γ)

χ(s)r+γ
+
∞∑
r=N

εr
F (s)Γ(r + γ)

χ(s)r+γ
, (C.2)

as ε→ 0, where N = |χ|/ε+ ω. The error function smoothing of the asymptotic series (C.1) may
be obtained by applying Borel summation methods to the divergent tail in (C.2) [11]. The Borel
sum of the divergent tail is given by

∞∑
r=N

εr
F (s)Γ(r + γ)

χ(s)r+γ
=

∫ ∞
0

e−t
Ftγ−1

χγ

∞∑
r=N

(
εt

χ

)n
dt,

=
F

εγ

∫ ∞
0

exp

(
1

ε
(−χy + |χ| log(y))

)
yω

1− ydy, (C.3)

as ε→ 0. The integral (C.3) has a saddle point at y = |χ|/χ, which coincides with the pole of (C.3)
for Im(χ) = 0 and Re(χ) > 0. This coincides with the characterization of Stokes curves in Section
2.4 of Chapter 2. Away from the Stokes curves, the leading order behaviour of the divergent tail
may be obtained using the method of steepest descents [8]. To determine the behaviour of the
divergent tail near the Stokes curves, we follow [11, 24] and let T = y − 1. Under this change of
variable, (C.3) becomes

RN ∼ −
F

εγ

∫ ∞
−1

exp

(
1

ε
(−χ(1 + T ) + |χ| log(1 + T ))

)
(1 + T )ω

T
dT, (C.4)

as ε → 0. Near the Stokes curve, the integrand of (C.4) is localized near T = 0. In particular, we
have

−χ(1 + T ) + |χ| log(1 + T ) ∼ −χ+ (|χ| − χ)T − |χ|
2
T 2 +O(T 3), (C.5)

(1 + T )ω

T
∼ 1

T
+O(1), (C.6)
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as T → 0. If we let χ = |χ|eiθ, then we also have

|χ| − χ ∼ −i|χ|θ, (C.7)

as θ → 0. Using (C.5)-(C.6) and (C.7), we find that the behaviour of (C.4), after taking the Cauchy
principal value integral, near the Stokes curve may be approximated by

RN ∼ −
Fe−χ/ε

εγ

(∫ ∞
−∞

exp

(
− i|χ|θT

ε
− |χ|T

2

2ε

)
1

T
dT + C̃

)
, (C.8)

as T → 0, where C̃ is a constant. To evaluate (C.8) we use the following Fourier transform
identity [24]

lim
δ→0

(
− i

2π

∫ ∞
−∞

exp(−ikx) exp(−a2k2)
1

k + iδ
dk

)
=

1

2
+

1

2
erf
( x

2a

)
. (C.9)

Using (C.9), we find that (C.8) may be evaluated to give

RN ∼ −
Fe−χ/ε

εγ

(
iπ erf

(
θ

√
|χ|
2ε

)
+ iπ + C̃

)
, (C.10)

as ε → 0 near the Stokes curves. We denote the divergent tail as RN = SFe−χ/ε where S is the
Stokes multiplier. Then from (C.10) we find that the Stokes multiplier is given by

S ∼ − 1

εγ

(
iπ erf

(
θ

√
|χ|
2ε

)
+ iπ + C̃

)
, (C.11)

as ε→ 0. Hence the asymptotic series (C.1) is given by

f(s) ∼
N−1∑
r=0

εr
FΓ(r + γ)

χr+γ
− Fe−χ/ε

εγ

(
iπ erf

(
θ

√
|χ|
2ε

)
+ iπ + C̃

)
, (C.12)

as ε→ 0.

C1. Example from Chapman, King and Adams.

In the study by Chapman, King and Adams [32], they considered a problem with an asymptotic
solution given by

φ(s) ∼
∞∑
r=0

ε2rφr(s), (C.13)

as ε→ 0, where

φr(s) ∼
ΛΓ(2r + γ + 1)(−1)r√

φ′0(s− σ)2r+γ+1
, (C.14)

as r → ∞, where γ,Λ are constants and φ0 = φ0(s). Using the Stokes smoothing method, the
authors of [32] showed that

φ(s) ∼
N−1∑
r=0

ε2rφr(s) +
Λπeiπγ/2e−i(s−σ)/ε

2εγ+1
√
φ′0

(
erf

(
(θ + π/2)

√
|s− σ|

2ε

)
+ C

)
, (C.15)
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as ε→ 0, whereC is a constant. We show that the form of the remainder term may also be obtained
by Borel summation methods. We first rewrite (C.14) as

φr(s) ∼
Λeiπ(γ+1)/2Γ(2r + γ + 1)√
φ′0((s− σ)eiπ/2)2r+γ+1

, (C.16)

as r →∞. The Borel sum of the divergent tail of (C.13) is given by

RN ∼
Λeiπ(γ+1)/2√

φ′0((s− σ)eiπ/2)γ+1

∫ ∞
0

e−ttγ
∞∑
r=N

(
εt

(s− σ)eiπ/2

)2r

dt,

=
Λeiπ(γ+1)/2√

φ′0((s− σ)eiπ/2)γ+1

∫ ∞
0

e−ttγ

(
εt

(s−σ)eiπ/2

)2N

1−
(

εt
(s−σ)eiπ/2

)2dt, (C.17)

as ε→ 0, and where N = |s− σ|/(2ε) + α. If we let y = εt/((s− σ)eiπ/2) then (C.17) becomes

RN ∼
Λeiπ(γ+1)/2

εγ+1
√
φ′0

∫ ∞
0

exp

(
1

ε

(
−(s− σ)eiπ/2y + |s− σ| log(y)

)) y2α+γ

1− y2
dy, (C.18)

as ε→ 0. The saddle point of (C.18) is located at y = |s−σ|e−iπ/2/(s−σ), which coincides with
the pole of (C.18) if Re(s−σ) > 0 and Arg(s−σ) = −π/2; which are the locations of the Stokes
curves. To investigate the behaviour of (C.18) near the Stokes curves we apply the substitution
y = 1 + T in (C.18) to give

RN ∼
Λeiπ(γ+1)/2

εγ+1
√
φ′0

∫ ∞
−1

exp

(
1

ε

(
−(s− σ)eiπ/2(1 + T ) + |s− σ| log(1 + T )

)) (1 + T )2α+γ

1− (1 + T )2
dT,

(C.19)
as ε→ 0. Near the Stokes curve, (C.19) is approximated by

RN ∼ −
Λeiπ(γ+1)/2e−i(s−σ)/ε

2εγ+1
√
φ′0

(∫ ∞
−∞

exp

(
− i|s− σ|(θ + π/2)T

ε
− |s− σ|T

2

2ε

)
1

T
dT + Ĉ

)
,

(C.20)
as ε→ 0, where Ĉ is a constant. Using (C.9) we can evaluate (C.20) to obtain

RN ∼
Λπeiπγ/2e−i(s−σ)/ε

2εγ+1
√
φ′0

(
erf ((θ + π/2))

√
|s− σ|

2ε
+ C

)
, (C.21)

as ε → 0, where C is a constant. Comparing the forms of the divergent tail in (C.21) and (C.13)
show that they are identical. Hence, finding the form of the divergent tail may be obtained by either
using the Stokes smoothing method demonstrated in [32, 92, 121] or by Borel summation.



APPENDIX D

Series expansion for x = qn as ε→ 0

The choice of rescalings given by n = εs and q = 1+ε allow us to expand the non autonomous
term, x = qn, as a power series in ε. In order to obtain the general series expansion of x = qn we
follow the work of Brede [27]. We let

E(s) := (1 + ε)s/ε. (D.1)

The goal is to determine the coefficients of the series expansion of (D.1) in powers of ε. The first
step in determining the general form of the coefficients is to rewrite (D.1) as an exponential. We
do this by writing

E(s) = exp
(s
ε

log(1 + ε)
)

= es
∞∑
k=0

(
s

ε

)k( ∞∑
n=2

(−1)n+1εn

n

)k
.

This function can then be rewritten as

E(s) = es
(

1− s

2
ε+

(
s

2
+
s2

8

)
ε2 −

(
s

4
+
s2

6
+
s3

48

)
ε3 + · · ·

)
.

Hence, we infer that the function E(s) has the form

E(s) = es
∞∑
n=0

Pn(s)εn, (D.2)

where Pn(s) is an nth degree polynomial in s. The second part makes use of the Binomial theorem.
Using the Binomial theorem, we may write (D.1) as

E(s) =

∞∑
k=0

(
s/ε

k

)
εk =

∞∑
k=0

εk

k!

(s
ε

)
k
,
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where (s/ε)k is the falling factorial [2]. By using the Stirling numbers of the first kind [1], s1(n, k),
we can rewrite the above expression as

E(s) =
∞∑
n=0

εn

n!

n∑
k=0

s1(n, k)
(s
ε

)k
,

=
∞∑
n=0

1

n!

n∑
k=0

εksn−ks1(n, n− k),

=
∞∑
k=0

( ε
s

)k ∞∑
n=k

sn

n!
s1(n, n− k). (D.3)

The second equality can be obtained by explicitly writing out the second sum and by simple manip-
ulation. While the third equality is a result of changing the order of summation. We have therefore
obtained two different expressions for the series expansion of E(s) in powers of ε. In particular,
these two expansions must be equal to each other. By comparing the coefficients of ε in both (D.2)
and (D.3) we find that

Pn(s) =
∞∑
m=0

(−1)msm

m!n

∞∑
k=0

s1(k + n, k)

(k + n)!
sk,

=
∞∑
r=0

sr
r∑

k=0

(−1)r−k

(r − k)!

s1(k + n, k)

(k + n)!
.

However, we noted that Pn(s) is an nth degree polynomial in s. As a by product we obtain the
result

r∑
k=0

(−1)r−k

(r − k)!

s1(k + n, k)

(k + n)!
= 0,

for r > n and

Pn(s) =

n∑
r=0

sr
r∑

k=0

(−1)r−k

(r − k)!

s1(k + n, k)

(k + n)!
. (D.4)
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Thus, the function E(s) = (1 + ε)s/ε may be written as (D.2) with Pn(s) given by (D.4). Here are
the first few expressions for Pn(s):

P0(s) = 1,

P1(s) = −s
2
,

P2(s) =
s(3s+ 8)

24
,

P3(s) =
−s(s2 + 8s+ 12)

48
,

P4(s) =
s(15s3 + 240s2 + 1040s+ 1152)

5760
.
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