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“In order to solve this differential equation you look at it till a solution occurs to you.”

George Pólya
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Analysis of Singular Solutions of Certain Painlevé Equations

by Michael Twiton

The six Painlevé equations can be described as the boundary between the non-
integrable- and the trivially integrable-systems. Ever since their discovery they have
found numerous applications in mathematics and physics. The solutions of the Painlevé
equations are, in most cases, highly transcendental and hence cannot be expressed in
closed form. Asymptotic methods do better, and can establish the behaviour of some of
the solutions of the Painlevé equations in the neighbourhood of a singularity, such as
the point at infinity. Although the quantitative nature of these neighbourhoods is not
initially implied from the asymptotic analysis, some regularity results exist for some of
the Painlevé equations. In this research, we will present such results for some of the
remaining Painlevé equations. In particular, we will provide concrete estimates of the
intervals of analyticity of a one-parameter family of solutions of the second Painlevé
equation, and estimate the domain of analyticity of a “triply-truncated” solution of the
fourth Painlevé equation. In addition we will also deduce the existence of solutions
with particular asymptotic behaviour for the discrete Painlevé equations, which are
discrete integrable nonlinear systems.
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Chapter 1

Introduction

Differential equations abound in the sciences, particularly in mathematics and physics,
and as such, their solutions are of high value. However, with the exception of linear
differential equations, there are very few methods of solving differential equations ex-
plicitly, and one often has to settle for approximations instead. In this work we will
focus on a particular set of ordinary differential equations, known as the Painlevé equa-
tions. These were obtained in the search for differential equations of second order with
the property that all singularities of the solutions whose location depends on the inte-
gration constants are poles (this is known as the Painlevé property). Our main objective
is to provide concrete estimates on the domains of regularity of certain solutions of var-
ious Painlevé equations. We also discuss discrete Painlevé equations, which are non-
autonomous discrete integrable systems, and their connection to the standard Painlevé
equations.

1.1 Singularities in Differential Equations

When solving differential equations, singularities are a common occurrence. We dis-
cuss the difference between singularities in linear ODEs compared with nonlinear ones.
In particular, we describe the situation in which singularities appear in the solution
even though the ODE itself is regular.

1.1.1 The Linear Case

Consider an n× n linear system of first order differential equations

y′(x) = A(x)y(x) + b(x), (1.1a)

with initial conditions
y′(x0) = y0, (1.1b)

where A : Ω → Cn×n and b : Ω → Cn are analytic in a simply connected domain
Ω ⊆ C. Solutions to such systems are as well-behaved as the equations themselves in
the following sense [Tes12]:

Theorem 1.1. Given functions A : Ω → Cn×n and b : Ω → Cn, analytic in Ω, the IVP of
Equations (1.1) has a unique solution defined on all of Ω.

Since scalar equations of order ≥ 2 can be recast as a linear system of first order
equations, we also have

1
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Corollary 1.2. Equations of the form

y(n)(x) =
n−1∑
k=0

ak(x)y(k)(x) + b(x),

where a1, . . . , an−1, b : Ω→ C are analytic in a simply connected domain Ω ⊆ C admit unique
solutions, defined on all of Ω, to IVPs with initial data

y(x0) = y0,

y′(x0) = y′0,
...

y(n−1)(x0) = y
(n−1)
0 .

It follows from the last two results that solutions to linear problems can develop
singularities only at points in which the equation itself is singular.

Example 1.3. The general solution to the equation

y′ +
1

x2
y = 0,

is
y(x) = Ce1/x,

where C is an integration constant, and (for C 6= 0) possesses an essential singularity at the
origin.

However, a point of singularity of the equation does not necessarily imply the sin-
gularity of the solutions.

Example 1.4. The Cauchy-Euler equation

d2y

dx2
− 3

x

dy

dx
+

3

x2
y = 0,

is singular at the point x = 0. However, its general solution is

y(x) = C1x+ C2x
3,

for arbitrary constants C1, C2, which is analytic everywhere.

1.1.2 The Nonlinear Case

The standard existence and uniqueness theorem for ODEs is the Picard-Lindelöf theo-
rem, formulated below for second order equations.

Theorem 1.5 (Theorem 2.2 of [Tes12]). Consider the IVP

y′′(x) = f
(
x, y(x), y′(x)

)
, y(x0) = y0, y

′(x0) = y1. (1.2)

Suppose that f is continuous in x, and locally Lipschitz continuous in y and y′, uniformly with
respect to x. Then there exists a unique solution of the IVP (1.2) in some neighbourhood of x0.
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The Picard-Lindelöf theorem is of a local nature. As such, it does not allow one to
predict where singularities will occur. What can be said about singularities in nonlinear
equations? Let us begin with the simplest form of nonlinearity – a square.

Example 1.6. The seemingly regular equation

y′ = y2,

has the general solution

y(x) =
1

C − x,

which has a pole at the point x = C.

Equations can have a more complicated distribution of singularities: for instance,
the equation

y′′ + 4y3y′ + y = 0,

admits solutions with an accumulation point of algebraic singularities [Smi53]. Fur-
thermore, Table 1.1, taken from [KJH97] displays a wide variety of types of singulari-
ties. These new seemingly unpredictable phenomena call for a definition, given below.

Equation General Solution Singularity Type

1. y′ + y2 = 0 y = (z − z0)−1 simple pole

2. 2yy′ = 1 y =
√
z − z0 branch point

3. y′′ + y′2 = 0 y = ln(z − z0) + k logarithmic branch point

4.
yy′′

+y′2(y/y′ − 1)
= 0

y = k exp
[
(z − z0)−1

] isolated
essential

singularity

5.
(1 + y2)y′′

+(1− 2y)y′2

= 0
y = tan (ln (k(z − z0)))

nonisolated
essential

singularity

6.
(
y′′ + y3y′

)2
= y2y′2

(
4y′ + y4

) y = k tan
[
k3(z − z0)

]
or

y =
[

4/3
(z−z0)

]1/3 pole
or

branch point

TABLE 1.1: Various types of singular behaviours.

Definition 1.7. Singularities whose position depends on the integration constants are called
spontaneous- or movable- singularities.

Some questions now arise naturally, among them

• What can be then said, about the nature of singularities in nonlinear equations?

• Is there a way to “minimise”, in some sense, the singular nature of the solutions?

1.2 The Painlevé Equations

Asking for no movable singularities at all in solutions of nonlinear ODEs results in los-
ing many important and applicable examples. S. Kowalevski found in [Kow90] that
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the requirement of the solutions being single valued resulted in complete integrability
for the case of a spinning top. Continuing in this philosophy, a system all of the mov-
able singularities of its solutions are poles is said to have the “Painlevé Property” (PP),
named after P. Painlevé.

It was shown by H. Poincaré and L. Fuchs [Fuc84] that for first order equations with
the PP of the form

y′ = F (x, y),

where F is analytic with respect to x and rational with respect to y can be reduced to a
Riccati equation of the form

du

dz
= a0(z) + a1(z)u+ a2(z)z

2,

which in turn, can be linearised (cf. [Inc56, Cha94, Pic84]).
The classification of second order equations with the PP of the form

y′′ = F (x, y, y′),

where F is analytic with respect to x and rational with respect to y, y′ led to many new
results, some of which are still being explored today. For instance, E. Picard found that
in the case of equations of order two or higher movable essential singularities can occur
[Pic89].

Painlevé [Pai97], Gambier [Gam10] and Fuchs [Fuc05] proved that there are fifty
canonical such equations, amongst which the six referred to as the Painlevé equations
PI, . . . ,PVI give rise to new transcendental functions. These six equations are listed in
Table 1.2.

Indeed, the solutions of eleven other equations from the list can be expressed in
terms of solutions of the Painlevé equations, while the remaining thirty-three equations
are solvable in terms of linear equations, or elliptic functions.

Index Equation

I y′′ = 6y2 − x
II y′′ = 2y3 + xy + a

III y′′ = (y′)2

y −
y′

x + d
y + b

x + ay
2

x + cy3

IV y′′ = (y′)2

2y + b
y + 2(x2 − a)y + 4xy2 + 3

2y
3

V y′′ =
(

1
2y + 1

y−1

)
(y′)2 − 1

xy
′ + (y−1)2

x2

(
ay + b

y

)
+ c yx + dy(y+1)

y−1

VI
y′′ = 1

2

(
1
y + 1

y−1 + 1
y−x

)
(y′)2 −

(
1
x + 1

x−1 + 1
y−x

)
y′

+y(y−1)(y−x)
x2(x−1)2

(
a+ b x

y2
+ c x−1

(y−1)2 + dx(x−1)
(y−x)2

)
TABLE 1.2: The Painlevé equations PI,PII,PIII,PIV,PV and PVI where y
depends on x, the primes denote differentiation with respect to x and
the roman letters a, b, c, d refer to constant parameters.

Remark 1.8. There is a subtle nuance in the tests used widely for the Painlevé property
[KJH97]. These rely on being able to expand the solutions in Laurent series around an arbi-
trary point (not equal to a fixed singularity of the equation). It follows from the definition of
the PP that these are convergent Laurent series with non-zero radius of convergence. However,
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the Painlevé property actually requires more than this local result. It requires that none of these
poles merge with each other to produce more complicated singularities, as illustrated in Example
5 of Table 1.1.

1.2.1 The First Painlev́e Equation

The first Painlevé equation
y′′ = 6y2 − x, (1.3)

is the simplest of the list, and it has discrete scaling symmetries given by

x 7→ ωx,

y 7→ ω3y,

where ω is any fifth root of unity. These symmetries partition the complex x-plane into
five sectors, each of angle 2π/5, which play a role in the asymptotic study of Equation
(1.3).

Boutroux’s work

In his 1913 paper [Bou13] Boutroux proved that the general solution of Equation (1.3)
has its poles lying on a deformed lattice near infinity, as can be seen in Figure 1.1.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

<(x)

=(x)

FIGURE 1.1: Illustration of the pole distribution of the general solution
of PI. The dots represent poles of the Padé approximant of the solution
y, of PI of order [80/80] with initial values y(0) = y′(0) = 0 (see
Appendix A.2).

Boutroux also proved the existence of solutions which have no poles of large modu-
lus in certain sectors of angle 4π/5 in the complex x plane, which he called intégrales
tronquées (see Figure 1.2).

He further proved the existence of intégrales tritronquées – solutions which are free
of poles of large modulus in sectors of angle 8π/5 (Figure 1.3). The way Boutroux
obtained these results, starting from the PI variant

y′′ = 6y2 − 6x,
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FIGURE 1.2: Illustration of the pole distribution of a tronquée solution
of PI. The dots represent poles of the Padé approximant of the solution
y, of PI of order [100/100] with initial values y(0) = 0.16 and
y′(0) ≈ 0.2193934573994778462 (see Appendix A.2).
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FIGURE 1.3: Illustration of the pole distribution of a tritronquée
solution of PI. The dots represent poles of the Padé approximant of the
solution y, of PI of order [100/100] with initial values
y(0) = −0.1875543083404949 and y′(0) = −0.3049055602612289 (see
Appendix A.2).

was to use the change of variables, given by

y =
√
xY, (1.4a)

X =
4

5
x

5
4 . (1.4b)
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The new coordinates defined in Equations (1.4) are known as Boutroux’s coordinates for
PI. They result in the ODE

Y ′′ +
Y ′

X
− 4

25

Y

X2
= 6Y 2 − 6, (1.5)

which has the asymptotic limit
Y ′′ = 6Y 2 − 6. (1.6)

Equation (1.6) can be solved by means of the Weierstraß ℘-function. Therefore, the
movable poles of a solution of PI, for large x, are arranged in a deformed lattice.
Boutroux proceeded by proving the existence of solutions admitting the asymptotic
behaviour

y(x) ∼
(x

6

)1/2
,

for large x in sectors of angle 8π/5. Note that this does not initially tell us anything
about the behaviour of such solutions in the finite domain.

Joshi and Kitaev’s Work

In their 2001 paper [JK01], N. Joshi and A.V. Kitaev studied the behaviour of the real
tritronquée solution Y (x) (that is which maps real numbers to real numbers) in the
finite domain. They began with modern existence proofs for the tronquée and tritron-
quée solutions of PI, based on Wasow’s [Was02] theorem (Theorem 12.1, also stated
in Section 2.2). The authors then proceed to study the real tritronquée solution of PI,
establishing a characterisation of it based on its behaviour in the finite domain. Nu-
merical estimates of the location of the real pole, closest to the origin, of the tritronquée
solution are calculated also, by means of a one-parameter family of solutions tangent
to the parabolic branch

Π− :=

{
y = −

√
x

6

}
, (1.7)

resulting in an estimated interval of analyticity for the tritronquée solution Y (x).
The asymptotic expansion

Y (x) ∼ −
√
x

6
− 1

48x2
+O

(
x−9/2

)
,

tells us that the graph of Y (x) eventually lies below the parabolic branch Π− (see Figure
1.4). The authors proved that a finite point of intersection with Π− implies infinitely
many following ones, which must, according the asymptotic behaviour, have a finite
accumulation point. The meromorphic nature of solutions of Equation (1.3) then im-
plies that the functions Y (x) and −

√
x
6 coincide in an interval, which is a contradiction

(see Figure 1.5).
Figure 1.6 shows a portion of the graph of Y (x). The reasoning above implies that

the interval of existence of Y (x) contains the positive real semi-axis, and that the graph
of Y (x) remains below Π−. This was the first proof that the tritronquée solution of PI
is pole free on finite region containing a semi-axis.

Remark 1.9. Dubrovin conjectured in [DGK09] that the tritronquée solution Y (x) is pole-free
in the sector | arg(x)| < 4π/5, and it was proven in [CHT+14].
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x

y

FIGURE 1.4: Convexity plot of Equation (1.3): solutions are convex in
the region 6y2 − x > 0 (shaded), and concave in the region 6y2 − x < 0.
The tritronquée solution Y (x) is plotted for large x (dashed), displaying
its asymptotic behaviour.

x

y

FIGURE 1.5: Portions of the graphs of the tritronquée solution Y (x)
(dashed), and of a solution oscillating about the parabolic branch Π−
(dotted).

1.2.2 The Second Painlevé Equation

Boutroux also discussed the second Painlevé equation

y′′ = 2y3 + xy + a, (1.8)

which has discrete scaling symmetries given by

x 7→ ωx,

y 7→ ω2y,
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where ω is any third root of unity. The six sectors

Sk =

{
x :

2πk

6
< arg x <

2π(k + 1)

6

}
, k = 0, 1, 2, 3, 4, 5.

play a role analogous to the five sectors of PI above, in the sense that Boutroux had
demonstrated, for each sector Sk, the existence of solutions having no poles of large
modulus in it. These sectors come about as domains of validity of certain asymptotic
series expansions of PII, and their boundaries consist of what is known as Stokes- or
anti-Stokes- lines.

The pole distribution of a truncated solution, such as mentioned above, appears in
Figure 1.8. More recently, using the the complex WKB method [Fok06] all simply- and
multiply- truncated solutions of PII have been classified. This classification has also
been done using singular submanifolds of a certain complex manifold [Nov12].

−1 1 2 3

−1

1

x

y

FIGURE 1.6: Plot of the tritronquée solution of Equation (1.3), which is
real on the real line.

In 1979, M. J. Ablowitz, M. D. Kruskal and H. Segur [AKS79] have first identified a
one-parameter family of solutions of Equation (1.8) with a = 0, admitting the asymp-
totic behaviour

y(x) ∼ kAi(x), x→ +∞. (1.9)

Here the parameter k is real, and Ai and Bi are the standard basis of the solution space
of the ODE

w′′ = xw,

with asymptotic behaviour

Ai(x) ∼ e−
2
3
x3/2

2π1/2x1/4
, x→ +∞,

Bi(x) ∼ e
2
3
x3/2

π1/2x1/4
, x→ +∞.
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The behaviour (1.9) came about out of their studies of self-similar solutions of the
modified Korteweg-de Vries (MKdV) PDE

vt − 6v2vx + vxxx = 0.

The authors have managed to relate the asymptotic behaviour of Equation (1.9)
with other asymptotic behaviours, depending on the value of |k|:

• In the case where |k| < 1, we have that

y(x) ∼ d(k)|x|− 1
4 sin

(
2

3
|x| 32 − 3

4
d2(k) ln |x| − c(k)

)
, x→ −∞, (1.10)

where numerical observations suggested that

d2(k) = − 1

π
ln
(
1− k2

)
. (1.11)

• In the case where |k| = 1, we have that

y(x) ∼ sgn(k)

(∣∣∣x
2

∣∣∣ 12 − 1

2
|2x|−5/2 +O

(
|x|− 11

2

))
, x→ −∞. (1.12)

• In the case where |k| > 1, the authors have found that the solution has a simple
pole x0 = x0(k) somewhere on the real axis:

y(x) ∼ sgn(k)

(
1

x− x0
− x0

6
(x− x0) +O

(
(x− x0)2

))
, x→ x+0 . (1.13)

Remark 1.10. The conjectured formula (1.11) was proven by P. A. Clarkson and J. B. McLeod
in [CM88]. An exact formula for the phase term, c(k), of Equation (1.10) was given for the first
time by H. Segur and M. J. Ablowtiz [SA81], and was re-derived by P. A. Deift and X. Zhou,
using Riemann-Hilbert methods [DZ95]. The formula for the phase term is

c(k) =
3

2
d2(k) ln 2− ln Γ

(
i

2
d2(k)

)
− π

2
sgn(k)− π

4
,

with d2(k) given by Equation (1.11).

In their 1980 paper [HM80], S. P. Hastings and J. B. McLeod studied the differential
equation

d2y

dx2
− xy = 2y|y|α, (1.14)

over the real line, with α being a positive quantity 1. They have found that the solutions
of Equation (1.14) satisfying the boundary condition

lim
x→+∞

y(x) = 0,

1The parameter α used here should not be confused with the parameter of PII in its traditional form.
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are precisely the solutions yk of the family of integral equations 2

yk(x) = kAi(x) + 2π

∫ +∞

x
{Ai(x) Bi(t)− Bi(x) Ai(t)}yk(t)|yk(t)|αdt, (1.15)

which may obtained via the method of variation of parameters.
Moreover, the authors have shown the existence of a unique k∗ = k∗(α) > 0 with

the property that solutions yk with k > k∗ are positive over their interval of existence,
which is bounded below, whilst solutions yk with 0 < k < k∗ cross the x-axis at some
point. The case k = k∗ gives a non-vanishing solution which is continuously defined
over the entire real line (see Figure 1.7).

−4 −2 2 4

−2

−1

1

2

x

y

FIGURE 1.7: Convexity plot of Equation (1.14) with α = 2: solutions are
convex in the shaded region, and concave in the white region. Graphs
of solutions yk with k < k∗ (dashed), k = k∗ (solid) and k > k∗ (dotted),
obtained via shooting methods, are plotted as well.

When α = 2, Equations (1.10), (1.12) and (1.13) suggest that k∗(2) = 1. This is truly
the case, as was shown in [HM80]. In addition, when α = 2, the solutions of Equations
(1.14),(1.15) are solutions of the second Painlevé equation. The solution yk∗(2) is known
as the Hastings-McLeod solution, and it is characterised by its boundary behaviour

y(x)→ 0, x→ +∞,

y(x) ∼
√
−x
2
, x→ −∞.

To the best of our knowledge, a rigorous proof regarding the existence and uniqueness
of solutions of Equation (1.15) appears not to be complete in the literature. We will thus
provide a functional-analytic proof for the special case α = 2 in Section 2.1.

An extension of Dubrovin’s conjecture to PII, made by V.Y. Novokshenov in [Nov14]
has been proven for the Hastings-McLeod solution in [HXZ16]. In other words, the
solution was proved to have no poles in the region arg x ∈

[
−π

3 ,
π
3

]
∪
[
2π
3 ,

4π
3

]
(see

2Equation (2.1) of [HM80] is in fact missing the factor of π, which is the reciprocal of the Wronskian of
the Airy functions Ai and Bi.
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FIGURE 1.8: Illustration of the pole distribution of a tronquée solution
of PII. The dots represent poles of the Padé approximant of the solution
y, of PI of order [60/60] with initial values y(0) = 0.1 and
y′(0) = −0.07348321929513198102 (see Appendix A.2).

Figure 1.9). This was done via the construction of quasi-solutions approximating the
Hastings-McLeod solution in various domains. Triply truncated solutions exist for PII
as well [Nov12], however, they are no longer real-valued over the real line.

1.2.3 The Fourth Painlevé Equation

In their 1992 paper [CM92] P.A. Clarkson and J.B. McLeod studied the boundary value
problem for the fourth Painlev́e equation

d2η

dξ2
= 3η5 + 2ξη3 +

(
1

4
ξ2 − ν − 1

2

)
η, (1.16a)

lim
ξ→+∞

η (ξ) = 0. (1.16b)

In particular, it is proved that the BVP (1.16) admits solutions η = ηk(ξ; ν), with

ηk(ξ; ν) ∼ kDν(ξ), as ξ → +∞, (1.17)

for some nonzero k, where Dν denotes the parabolic cylinder function [DLMF] . More-
over, any nonzero solution of Equations (1.16) is in fact of the form ηk for some k 6= 0
(the case k = 0 corresponds to the constant solution η(ξ) ≡ 0). An important result of
[CM92] is the following theorem.

Theorem 1.11 ([CM92], Theorem 4.2). If |k| < k∗ν , for some k∗ν , the solution asymptotic to
kDν(ξ) exists for all ξ, has the same number of zeros as Dν(ξ) and as ξ → −∞

ηk(ξ; ν) ∼ κnDn(ξ), if ν = n ∈ Z+, (1.18a)

ηk(ξ; ν) ∼ ±
(
−1

6
ξ

)1/2

+ d (−ξ)−1/2 sinφ(ξ), if ν /∈ Z+, (1.18b)



Chapter 1. Introduction 13

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

<(x)

=(x)

FIGURE 1.9: Illustration of the pole distribution of the
Hastings-McLeod solution of PII. The dots represent poles of the Padé
approximant of the solution y, of PI of order [60/60] with initial values
y(0) = 0.3670615515480784 and y′(0) = y′(0) = −0.2953721054475501
(see Appendix A.2).

with

φ(ξ) =
ξ2

2
√

3
+

1

2

√
3

(
ν +

1

2

)
ln |ξ|+ c+O

(
ξ−2
)
,

and where the constants κn, d, c are dependent on k. If |k| = k∗ν , then as ξ → −∞

ηk(ξ; ν) ∼ sgn(k)

(
−1

2
ξ

)1/2

, (1.19)

and if |k| > k∗ν , then ηk(ξ; ν) has a pole at a finite point ξ0, dependent on k, so

ηk(ξ; ν) ∼ sgn(k)(ξ − ξ0)−1, as ξ ↓ ξ0.

Theorem 1.11 has been proved in the case in which the parameter ν is an integer
[BCHM92], and numerical evidence of its validity for some of the non-integer values
of ν can be found in [BCH93]. Moreover, connection formulae have been established for
PIV transcendents. The connection formulae were expressed erroneously in [BCHM92,
LW13] and correctly in [BCH93, TW94], with the first rigorous proof given in [IK98]
using the isomonodromy and Riemann-Hilbert methods. In greater detail, the change
of variables

η(ξ) = 2−
3
4

√
w(x), x =

ξ√
2
,

transforms Equation (1.16a) into

w′′ =
(w′)2

2w
+

3

2
w3 + 4xw2 + 2

(
x2 − (2ν + 1)

)
w,
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which is PIV with parameter values a = 2ν+1 and b = 0. The family {ηk}k∈R transforms
into a family {wk}k∈R with the asymptotic behaviour

wk(x) ∼ k223/2D2
ν

(√
2x
)
, x→ +∞.

In the case where ν /∈ Z and

0 < k22
√

2πΓ

(
α+

1

2

)
< 1,

we have that

wk(x) = −2x

3
+ 2
√

2a cos

(
x2√

3
−
√

3a2 ln
(

2
√

3x2
)

+ φ

)
+O

(
(−x)−1/4 ln(−x)

)
,

(1.20)
as x→ −∞, with

a2 = − 1

2
√

3π
ln
(
1− |s−|2

)
, a > 0, (1.21a)

φ = −3π

4
− 2π

3
α− arg Γ

(
−i
√

3a2
)
− arg s−, (1.21b)

s− = 1− 2(2π)3/2e−iπα

Γ
(
1
2 − α

) k2. (1.21c)

In the case where α = 0, the value

k2 =
Γ
(
1
2

)
2(2π)3/2

=
1

4
√

2π
.

results in a solution which has no oscillatory term in Equation (1.20). The pole dis-
tribution of this solution has been studied numerically in [RF13]. We will see such
non-oscillatory behaviour in Section 2.2.

Additional studies of the asymptotic behaviours near infinity of PIV transcendents
have also been carried out [Kap98]. Using the notation of Equation (1.16a), they entail,
among other things, the following families

• One solution with η(ξ) ∼
√
−ξ/6 as ξ → −∞.

• One-parameter family of solutions with η(ξ) ∼
√
−ξ/2 as ξ → −∞.

• One-parameter family of solutions with η(ξ) ∼ C/
√−ξ as ξ → −∞, for some

constant C.

We will see how some of these solutions arise, starting with a power series ansatz in
Section 2.2. Furthermore, we will provide estimates on the intervals of existence of
some of these solutions using classical methods such as estimations of integrals.

Unlike the previous Painlevé equations, estimates on the interval of existence of dis-
tinguished solutions of the fourth Painlevé equation are not known (There are however
continuity results over rays in the complex plane of the independent variable [Fok06]).
Furthermore, a deep understanding of the distribution of poles of the fourth Painlevé
transcendents is currently lacking. Further asymptotics of other Painlevé equations can
be found in [Fok06].
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1.3 Discrete Painlevé Equations

In this section we will discuss discrete equations, and in particular introduce the dis-
crete Painlevé equations, which are discrete analogues of the continuous Painlevé equa-
tions of Section 1.2. Some well-known scalar discrete Painlevé equations are presented
in Table 1.3, taken from [GR04].

Name Equation

d-PI xn+1 + xn + xn−1 =
zn
xn

+ 1

d-PII xn+1 + xn−1 =
znxn + a

1− x2n
q-PIII xn+1xn−1 =

(xn − aqn)(xn − bqn)

(1− cxn)(1− xn/c)

d-PIV (xn+1 + xn)(xn + xn−1) =
(x2n − a2)(x2n − b2)

(xn − zn)2 − c2

q-PV (xn+1xn − 1)(xnxn−1 − 1) =
(xn − a)(xn − 1/a)(xn − b)(xn − 1/b)

(1− cxnqn)(1− xnqn/c)

d-PV

(xn + xn+1 − zn − zn+1)(xn + xn−1 − zn − zn−1)
(xn + xn+1)(xn + xn−1))

=
(xn − zn − a)(xn − zn + a)(xn − zn − b)(xn − zn + b)

(xn − c)(xn + c)(xn − d)(xn + d)

q-PVI

(xnxn+1 − qnqn+1)(xnxn−1 − qnqn−1)
(xnxn+1 − 1)(xnxn−1 − 1)

=
(xn − aqn)(xn − qn/a)(xn − bqn)(xn − qn/b)

(xn − c)(xn − 1/c)(xn − d)(xn − 1/d)

TABLE 1.3: A selected list of scalar discrete Painlevé equations. Here
zn = αn+ β, qn = q0λ

n and a, b, c, d, α, β, λ are constants.

1.3.1 General Discrete Equations

Classical examples of discrete equations are the linear difference equations of the form

xn =
N∑
k=1

akxn−k,

where n, the independent variable, is an integer, a1, . . . , aN are complex coefficients,
and the sequence (xn)∞n=0 of complex numbers plays the role of the dependent variable.

In the case of linear difference equations it is readily seen, by iteration, that the
solutions exist for all n if the coefficients are well defined. Moreover, in the general case,
the solution can be expressed in closed form using the power ansatz xn = λn and the
linear superposition principle. However, in the nonlinear case, movable singularities
may occur, as the example below illustrates.

Example 1.12. The difference equation

xn+1 = xn −
x2n + 1

2xn
,
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with the initial value x0 = 1, leads to x1 = 0, and consequentially to x2 being undefined.

1.3.2 The Method of Singularity Confinement

The singularity of Example 1.12 is not avoidable. At the early 1990s A. Ramani, B.
Grammaticos and V. Papageorgiou [GRP91, RGP94] presented a method that allows
one to “iterate through” singularities in some equations. This method is known as
singularity confinement , and we will illustrate it with an example, taken from [GR04].

Example 1.13. Consider the equation

xn+1 + xn + xn−1 = an +
bn
xn
, (1.22)

and suppose that for some n, xn is regular while xn+1 = 0. If we take ε to be small, and set
xn+1 = ε, we get

xn+2 =
bn+1

ε
+ an+1 − xn +O(ε),

and
xn+3 = −bn+1

ε
+ an+2 − an+1 + xn +O(ε),

which are singular as ε → 0 for nonzero bn+1. The next term, xn+4 diverges, unless an+3 −
an+2 = 0, rendering the sequence an constant, in which case

xn+4 =
bn+1 − bn+2 − bn+3

bn+1
ε+O(ε2),

is finite as ε→ 0. In order to avoid the scenario where xn+5 is undefined, we obtain the relation

bn+1 − bn+2 − bn+3 + bn+4 = 0,

whose solution is bn = αn+ β + γ(−1)n. Thus, the method had reduced Equation (1.22) into
a four-parameter family of equations, one of them being

xn+1 + xn + xn−1 = a+
zn
xn
,

which is a discrete form of PI.

Aside from Example 1.13, one historical approach to obtaining discrete Painlevé
equations was to start with some general functional form, and apply the method of
singularity confinement in order to obtain constraints on its parameters. This method is
now known not to be sufficient for integrability and further tests have been developed
to identify integrable discrete equations. We mention for example the counterexample
given by [HV98].

The discrete Painlevé equations can be thought of as a “boundary” between the
integrable- and non-integrable- discrete systems of order two, in the sense that any sim-
pler system is trivially solvable (usually linearisable) - while more complicated equa-
tions are not integrable.

The continuum limits allow one to study the Painlevé equations themselves via
their discrete counterparts: for example, the discrete Painlevé equations are integrable
discretisations of the continuous ones, creating potential methods for the numerical
study of the classical Painlevé equations.
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The first instance of a discrete, non-autonomous integrable system appears in the
work of E. Laguerre [Lag85], albeit the system he had discussed was of order greater
than two.

In Chapter 3 we will explore the connection between the discrete first Painlevé
equation in the form

d-PI : wn+1 + wn + wn−1 = −2t+
γn
wn

,

and the fourth Painlevé equation PIV. In particular we will use known asymptotic
behaviours for PIV in the case where the independent variable turns large, in order to
derive asymptotic properties of d-PI when its parameter turns large.

1.4 Outline of the Thesis

In Section 2.1 of this thesis, we will provide, for the first time, a rigorous proof of the
existence and uniqueness of a one-parameter family of solutions of the second Painlevé
equation, as stated in [HM80]. This reference asserts that a certain integral equation
can be solved by iteration, but does not explicitly provide the proof. We provide the
missing proof. In particular, we prove in Theorem 2.2 that this integral equation has
a unique fixed point in an appropriate space of functions by applying a fixed point
theorem.

In Section 2.2 we prove Theorem 1.11, which gives the existence and uniqueness of
a family of solutions {ηk(ξ,−1/2)}}k∈R of the fourth Painlevé equation.

In Section 2.2 we will formulate, for the first time, a rigorous existence and unique-
ness proof for the family of solutions {ηk(ξ,−1/2)}}k∈R of the fourth Painlevé equation
stated in Theorem 1.11. In addition we demonstrate the existence of a one-parameter
family of monotonically decreasing solutions of PIV, defined over the ray [0,+∞). We
then prove the existence of tronquée and tritronquée solutions for PIV, using Wasow’s
theorem (Theorem 2.5). Although solutions of PIV with no poles in certain directions
in the complex plane have been found before [Fok06], our proof of the existence and
uniqueness of the tritronquée solution of PIV is the first time a solution is shown to be
free of poles of large modulus in a half-plane. This is one of the major results of this
thesis. Next, we study a solution which has the same leading asymptotic behaviour as
one of the members of the family {ηk(ξ,−1/2)}}k∈R. In particular we study the solu-
tion’s behaviour on the real axis using classical methods, as was done for the tritron-
quée solution of the first Painlevé equation in [JK01], and deduce, for the first time,
its extended existence over an interval of the form (α,+∞) for a constant α which is
estimated numerically. This is another major result of the thesis.

In Section 2.3 we use the Hamiltonian structure of the fourth Painlevé equation and
study its behaviour near the equilibrium points of its limiting autonomous equation.
In particular, after applying a certain change of variables, the methods used in [DJ11],
which rely on a Hamiltonian formulation of PI, become available. Using them we
obtain an additional existence proof of some of the truncated solutions of the fourth
Painlevé equation.

In Section 2.4 we provide the Mathematica code that has been used in order to
numerically compute the solutions of certain IVPs of PIV in Section 2.2.

Finally, in Chapter 3 we discuss the discrete first Painlevé equation, and its rela-
tionship with the fourth Painlevé equation. In particular, we deduce new asymptotic
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behaviours of the discrete first Painlevé equation in the limit as a parameter approaches
infinity.

1.4.1 Outline of Main Results

In this section, we collect and outline the main results of the thesis.
Our main original results fall into three parts. The first part concerns the existence

of physically important solutions on the real line for the second and fourth Painlevé
equations. Although such solutions have been studied before, in detail for PII and in
lesser detail for PIV, certain important aspects of the study were missing the literature.
We fill such gaps. In particular, we provide proofs of existence and uniqueness for
bounded solutions with certain asymptotic behaviours on the real line, described for
PII by Hastings and McLeod [HM80] and for PIV by [CM92]. The second part concerns
the analytic continuation and uniqueness of the solution for PIV in an extended sector
in the complex plane. Our results show that tritronquee solutions exist for PIV and
are unique. The third part concerns a related study of solutions of the discrete first
Painlevé equation in a limit that is related to our results for PIV.

Theorem 2.2 of Section 2.1 uses tools from functional analysis in order to establish
the existence and uniqueness of a one-parameter family of solutions of a special case of
the second Painlevé equation. The family is characterised by the asymptotic behaviour
of the solutions as the independent variable approaches infinity. We note that this
result has been referenced and used numerous times in the literature without a rigorous
proof. To the best of our knowledge, our proof is the first one given in the literature for
this widely used result.

Theorem 2.3 of Section 2.2 is analogous to Theorem 2.2 of Section 2.1. It provides
a functional-analytic proof of the existence and uniqueness of a one parameter family
of solutions of a special case of the second Painlevé equation. This family is similarly
characterised by the asymptotic behaviour of the solutions as the independent vari-
able approaches infinity. We do not know of any rigorous proof of the existence and
uniqueness this family, making our result novel.

Theorem 2.8 of Section 2.2.2 provides the existence and uniqueness of a pair of
solutions, Y±, of a special case of the fourth Painlevé equation, which have no poles of
large modulus in the half-plane <(x) > 0. The pair Y± is analogous to similar solutions
of other Painlevé equations [JK01, Nov12]. The behaviour of Y± over the real line is
later studied in Theorem 2.28 of Section 2.2.4, where an estimation of the interval of
existence is obtained. The existence and uniqueness of Y±, combined with the study of
their behaviour over the real axis is the key result of this thesis.



Chapter 2

The Painlevé Equations

In this chapter we consider the existence of tritronquée solutions of the fourth Painlevé
equation. In particular, we show regularity properties of such solutions on the real line.
Similar problems for the other Painlevé equations have been considered in the litera-
ture [JK01]. To lay the groundwork for new results, we also provide rigorous proofs
here for the existence and uniqueness of analogous solutions of the second Painlevé
equation, which include the so-called Hastings-McLeod solution.

The existence of true solutions that are asymptotic to power series expansions relies
on Wasow’s theorem [Was02]. These expansions are valid in a sector near the limit of
interest, which is infinity in this case. To extend the solution into finite regions, we use
functional analytic arguments and estimates, which provide us with a lower bound for
the interval of existence.

Before we consider the approach of this chapter, we set the scene by transforming
PIV to a form in which the first derivative no longer appears. Both PI and PII have
this form, which makes the subsequent arguments simpler. For each given pair of
parameters a ∈ C, b ∈ C, PIV is traditionally written as

PIV(a, b) :
d2w

dz2
=

1

2w

(
dw

dz

)2

+
3

2
w3 + 4zw2 + 2(z2 − a)w +

b

w
. (2.1)

Clearly, it involves the first derivative w′(z) on the right-hand side. However, there is
a change of dependent variable

w(z) = y2(z),

which results in a new equation of the form

d2y

dz2
= f(z, y),

where f is rational in y and polynomial in x. (See Equation (2.16).)
We will focus on the case a = 0 = b in PIV, because it leads to f being polynomial in

y. We choose this case for conciseness and simplicity. We believe the methods provided
in this chapter may be extended to the case of nonzero a without major change in the
proofs. We also take the parameter in PII to be zero for similar reasons.

We consider the limit x → ±∞ on the real line in both directions. We use standard
arguments based on the fixed point theorem on the positive semi-axis while majorizing
arguments are used on the negative semi-axis.

We start by considering PII in Section 2.1. The main results of the thesis lie in Sec-
tion 2.2 where we consider solutions of PIV. A different perspective is explored in Sec-
tion 2.3 where we study solution behaviours in the neighbourhood of equilibria of the
time-dependent Hamiltonian of PIV. The chapter concludes with Section 2.4, where the

19
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initial value problem of PIV is explored numerically. These numerical results support
and illustrate the qualitative results proved in Section 2.2.

2.1 The Second Painlevé Equation

Although referred to in the literature, the one-parameter family of solutions of Equa-
tion (1.15) with α = 2 does not have a rigorous existence and uniqueness result. We
provide such a proof here. Our proof relies on the following formulation of the con-
traction mapping theorem for integral operators, given in [GLS90].

Theorem 2.1 (Theorem 11.2.1 of [GLS90]). Assume the following:

(i) K is a closed subset of a Banach space B of functions taking an interval J ⊆ R into Rn;

(ii) F and G are operators mapping K into B satisfying

‖F (x)− F (y)‖ ≤ LF ‖x− y‖, and ‖G(x)−G(y)‖ ≤ LG‖x− y‖,

for some constants LF and LG and for all x and y in K;

(iii) the mapping
x 7→ r ? x,

defined by

(r ? x)(t) =

∫
J
r(t, s)x(s)ds,

is a linear and continuous operator from B into itself, with norm %;

(iv) the function
x 7→ F (x) + r ? G(x),

defined by

(F (x) + r ? G(x)) (t) = F (x)(t) +

∫
J
r(t, s)G(x)(s)ds,

takes K into itself;

(v) the constants LF , LG and % satisfy LF + LG% < 1.

Then
x(t) = F (x)(t) +

∫
J
r(t, s)G(x)(s)ds, t ∈ J,

has a unique solution in K.

Using the above, we can prove the following

Theorem 2.2. Fix a real number k, and a number M > |k|. Let

B = Cw(R), (2.2)

be the weighted space of continuous functions defined over the real line with the weight function

w(t) :=
H(t− t0)

Ai(t)
,
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and norm
‖u‖ = sup

t∈R
|w(t)u(t)|. (2.3)

Here t0 is chosen larger than all zeros of Ai′, AndH denotes the Heaviside step function, defined
by

H(t) =

{
1 t ≥ 0

0 t < 0
.

Also, let
K = {u ∈ B : ‖u‖ ≤M} , (2.4)

denote the closed ball in B of radius M centered at zero. The integral equation

yk(t) = kAi(t) + 2π

∫ +∞

t
{Ai(t) Bi(s)− Bi(t) Ai(s)}y3k(s)ds, (2.5)

has a unique solution in K, provided that t0 is chosen large enough so that

ρ(t0) ≤
M − |k|
M3

,

ρ(t0) <
1

3M2
,

where

ρ(t0) :=
2π

Ai(t0)

∫ +∞

t0

Ai3(s) (Ai(t0) Bi(s)−Ai(s) Bi(t0)) ds.

In particular, Equation (2.5) with k 6= 0 has a unique solution in

K =

{
u ∈ B : ‖u‖ ≤ 3

2
|k|
}
,

provided that

ρ(t0) <
4

27k2
.

Proof. The proof is an application of Theorem 2.1, with B andK as defined by equations
(2.2) and (2.4) respectively, J = R, n = 1 and in addition

F (x)(t) = kAi(t),

G(x)(s) =
x3(s)

Ai2(s)
,

r(t, s) = 2πAi2(s)H(s− t) (Ai(t) Bi(s)−Ai(s) Bi(t)) .

The condition (i) of Theorem 2.1 clearly holds. Let x ∈ K, then by definition

‖F (x)‖ = sup
t∈R

∣∣∣∣kAi(t)

Ai(t)
H(t− t0)

∣∣∣∣ = |k| < +∞,

‖G(x)‖ = sup
t∈R

∣∣∣∣ x3(t)Ai3(t)
H(t− t0)

∣∣∣∣ = sup
t≥t0

∣∣∣∣ x3(t)Ai3(t)

∣∣∣∣ = ‖x‖3 = M3 < +∞.
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Since F is independent of x, we may take LF = 0. Furthermore given x, y ∈ K

‖G(x)−G(y)‖ = sup
s∈R

∣∣∣∣x3(s)− y3(s)Ai2(s)

H(s− t0)
Ai(s)

∣∣∣∣
= sup

s≥t0

∣∣∣∣x2(s) + x(s)y(s) + y2(s)

Ai2(s)

x(s)− y(s)

Ai(s)

∣∣∣∣
≤ 3M2‖x− y‖.

Thus we have LG ≤ 3M2, and the validity of the condition (ii) of Theorem 2.1.
Observe that by the definition of the weighted norm (2.3), we have

‖r ? x‖ = sup
t≥t0

∣∣∣∣ 2π

Ai(t)

∫ +∞

t
Ai2(s) (Ai(t) Bi(s)−Ai(s) Bi(t))x(s)ds

∣∣∣∣
= sup

t≥t0

2π

Ai(t)

∣∣∣∣∫ +∞

t
Ai2(s) (Ai(t) Bi(s)−Ai(s) Bi(t))x(s)ds

∣∣∣∣
= sup

t≥t0

2π

Ai(t)

∣∣∣∣∫ +∞

t
Ai3(s) (Ai(t) Bi(s)−Ai(s) Bi(t))

x(s)

Ai(s)
ds

∣∣∣∣
≤ sup

t≥t0

2π

Ai(t)

∫ +∞

t

∣∣Ai3(s) (Ai(t) Bi(s)−Ai(s) Bi(t))
∣∣ ∣∣∣∣ x(s)

Ai(s)

∣∣∣∣ ds.
Using Hölder’s inequality on the final integral above, we obtain further

‖r ? x‖ ≤ sup
t≥t0

2π

Ai(t)

(
sup
s≥t

∣∣∣∣ x(s)

Ai(s)

∣∣∣∣) ∫ +∞

t

∣∣Ai3(s) (Ai(t) Bi(s)−Ai(s) Bi(t))
∣∣ ds

≤
(

sup
t≥t0

2π

Ai(t)

∫ +∞

t
Ai3(s) |Ai(t) Bi(s)−Ai(s) Bi(t)|ds

)
‖x‖.

It follows that the operator
x 7→ r ? x,

is continuous, with operator norm

%(t0) ≤ sup
t≥t0

2π

Ai(t)

∫ +∞

t
Ai3(s) |Ai(t) Bi(s)−Ai(s) Bi(t)|ds =: ρ(t0). (2.6)

In fact, applying Leibniz’s rule for differentiation under the integral sign yields

d

dt

(
2π

Ai(t)

∫ +∞

t
Ai3(s) |Ai(t) Bi(s)−Ai(s) Bi(t)|ds

)
= −2πAi2(t)|Ai(t) Bi(t)−Ai(t) Bi(t)|

+ 2π

∫ +∞

t
Ai3(s)

(Ai′(t) Bi(s)−Ai(s) Bi′(t)) Ai(t)− (Ai(t) Bi(s)−Ai(s) Bi(t)) Ai′(t)

Ai2(t)
ds

= −2

∫ +∞

t

Ai4(s)

Ai2(t)
ds < 0,
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where we have used the fact that the Wronskian of the Airy functions Ai and Bi is 1/π.
It follows that the supremum in Equation (2.6) is attained at t = t0, giving

ρ(t0) =
2π

Ai(t0)

∫ +∞

t0

Ai3(s) |Ai(t0) Bi(s)−Ai(s) Bi(t0)|ds,

and proving that the condition (iii) of Theorem 2.1 holds.
Let x ∈ K. We now estimate the norm of F (x) + r ? G(x):

‖F (x) + r ? G(x)‖ = sup
t≥t0

∣∣∣∣(kAi(t) + 2π

∫ +∞

t
(Ai(t) Bi(s)−Ai(s) Bi(t))x3(s)ds

)
1

Ai(t)

∣∣∣∣
= sup

t≥t0

∣∣∣∣k +
2π

Ai(t)

∫ +∞

t
(Ai(t) Bi(s)−Ai(s) Bi(t))x3(s)ds

∣∣∣∣
≤ sup

t≥t0

(
|k|+ 2π

Ai(t)

∫ +∞

t
Ai3(s) (Ai(t) Bi(s)−Ai(s) Bi(t))

|x3(s)|
Ai3(s)

ds

)
≤ sup

t≥t0

(
|k|+ 2π

Ai(t)

∫ ∞
t

Ai3(s) (Ai(t) Bi(s)−Ai(s) Bi(t)) ds‖x‖3
)

= |k|+ 2π

Ai(t0)

∫ ∞
t0

Ai3(s) (Ai(t0) Bi(s)−Ai(s) Bi(t0)) ds‖x‖3

≤ |k|+ ρ(t0)M
3.

We require that ‖F (x) + r ? G(x)‖ ≤M , resulting in the condition

ρ(t0) ≤
M − |k|
M3

, (2.7)

under which the condition (iv) of Theorem 2.1 is valid.
The condition (v) of Theorem 2.1 is satisfied if

ρ(t0) <
1

3M2
. (2.8)

If k 6= 0, the choice

M =
3

2
|k|,

results in the equivalence of the simultaneous conditions of Equations (2.7), (2.8) with

ρ(t0) <
4

27k2
. (2.9)

It is routine to show that
lim

t0→+∞
ρ(t0) = 0,

and thus Equation (2.9) holds for sufficiently large t0 = t0(k). The case k = 0 leads to
the zero solution. This completes the proof of the theorem.

2.2 The Fourth Painlevé Equation

In this Section, we explore the fourth Painlevé equation from both the real and the
complex perspective. In particular, we first prove an existence and uniqueness result
the family of functions of Equation (1.17). Then, we provide estimates on intervals on
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which solutions are analytic. We also discuss solutions which have no poles of large
modulus in certain sectors of the complex plane.

2.2.1 Existence and Uniqueness of a One-Parameter Family

We provide an existence and uniqueness proof for the functions ηk of Equation (1.17).
We will restrict ourselves to the case in which ν = −1

2 . The proof will make use of
validity of the inequality

1

D− 1
2
(t)
≥ 1

(1 + t2)
1
4

,

for sufficiently large t (see Figure 2.1).

−3 −2 −1 1 2 3

0.5

1

1.5

2

t

x

FIGURE 2.1: Plots of the graphs of the functions 1/D−1/2(t) (solid), and
1/(1 + t2)1/4 (dashed).

Theorem 2.3. Fix real numbers t0, k and M such that

1

D− 1
2
(t)
≥ 1

(1 + t2)
1
4

,

for all t ≥ t0, and M > |k|. Let
B = Cw(R), (2.10)

be the weighted space of continuous functions defined over the real line with the weight function

w(t) :=
H(t− t0)
D− 1

2
(t)

,

and norm
‖u‖ = sup

t∈R
|w(t)u(t)|. (2.11)

Also, let
K = {u ∈ B : ‖u‖ ≤M} , (2.12)



Chapter 2. The Painlevé Equations 25

denote the closed ball in B of radius M centered at zero. The integral equation

x(t) = kD− 1
2
(t)−
√

2

∫ +∞

t

(
D− 1

2
(t)D− 1

2
(−s)−D− 1

2
(s)D− 1

2
(−t)

) (
3x5(s) + 2sx3(s)

)
ds,

whose solutions satisfy the differential equation (1.16a) with ν = −1/2, has a unique solution
in K, provided that t0 is chosen large enough so that

ρ(t0) ≤
M − |k|

3M5 + 2M3
, (2.13a)

ρ(t0) <
1

15M4 + 6M2
, (2.13b)

where

ρ(t0) :=

√
2

D− 1
2
(t0)

∫ +∞

t0

(1 + s2)
1
2D3
− 1

2

(s)
(
D− 1

2
(t0)D− 1

2
(−s)−D− 1

2
(s)D− 1

2
(−t0)

)
ds.

Proof. The proof is an application of Theorem 2.1, with B andK as defined by equations
(2.10) and (2.12) respectively, J = R, n = 1 and in addition

F (x)(t) = kD− 1
2
(t),

G(x)(s) =
1

(1 + s2)
1
2D− 1

2
(s)2

(
3x5(s) + 2sx3(s)

)
,

r(t, s) = −
√

2(1 + s2)
1
2D− 1

2
(s)2

(
D− 1

2
(t)D− 1

2
(−s)−D− 1

2
(s)D− 1

2
(−t)

)
H(t− s).

The condition (i) of Theorem 2.1 clearly holds.
Let x ∈ K, then by definition

‖F (x)‖ = sup
t∈R

∣∣∣∣∣kD− 1
2
(t)
H(t− t0)
D− 1

2
(t)

∣∣∣∣∣ = |k| < +∞,

‖G(x)‖ = sup
t∈R

∣∣∣∣∣∣ 1

(1 + t2)
1
2D− 1

2
(t)3

(
3x5(t) + 2tx3(t)

)
H(t− t0)

∣∣∣∣∣∣
≤ sup

t≥t0

∣∣∣∣∣∣ 1

(1 + t2)
1
2D− 1

2
(t)3

(
3M2(1 + t2)

1
2 |x3(t)|+ 2(1 + t2)

1
2 |x3(t)|

)∣∣∣∣∣∣
≤M3

(
3M2 + 2

)
= 3M5 + 2M3 < +∞.
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Since F is independent of x, we may take LF = 0. Furthermore given x, y ∈ K

‖G(x)−G(y)‖ = sup
s∈R

∣∣∣∣∣∣ 1

(1 + s2)
1
2D− 1

2
(s)3

(
3x5(s)− 3y5(s) + 2sx3(s)− 2sy3(s)

)
H(s− t0)

∣∣∣∣∣∣
= sup

s≥t0

∣∣∣∣∣∣ 1

(1 + s2)
1
2D− 1

2
(s)2[

3
(
x4(s) + x3(s)y(s) + x2(s)y2(s) + x(s)y3(s) + y4(s)

)
+ 2s

(
x2(s) + x(s)y(s) + y(s)2

) ] [ 1

D− 1
2
(s)

]
(x(s)− y(s))

∣∣∣∣∣
≤ sup

s≥t0

 1

(1 + s2)
1
2D− 1

2
(s)2[

3M2(1 + s2)
1
2
(
x2(s) + 3|x(s)y(s)|+ y2(s)

)
+2(1 + s2)

1
2
(
x2(s) + |x(s)y(s)|+ y2(s)

) ] [ 1

D− 1
2
(s)

]
|x(s)− y(s)|

}
≤
[
3M2

(
5M2

)
+ 6M2

]
‖x− y‖ =

(
15M4 + 6M2

)
‖x− y‖.

Thus we have LG ≤ 15M4 + 6M2, and the validity of the condition (ii) of Theorem 2.1.
Observe that by the definition of the weighed norm (2.11), we have

‖r ? x‖ = sup
t≥t0

∣∣∣∣∣−√2w(t)

∫ +∞

t

(1 + s2)
1
2

w2(s)

(
D− 1

2
(t)D− 1

2
(−s)−D− 1

2
(s)D− 1

2
(−t)

)
x(s)ds

∣∣∣∣∣
= sup

t≥t0

√
2w(t)

∣∣∣∣∣
∫ +∞

t

(1 + s2)
1
2

w3(s)

(
D− 1

2
(t)D− 1

2
(−s)−D− 1

2
(s)D− 1

2
(−t)

)
x(s)w(s)ds

∣∣∣∣∣
≤ sup

t≥t0

√
2w(t)

∫ +∞

t

(1 + s2)
1
2

w3(s)

(
D− 1

2
(t)D− 1

2
(−s)−D− 1

2
(s)D− 1

2
(−t)

)
|x(s)|w(s)ds.

Using Hölder’s inequality on the final integral above, we obtain further

‖r ? x‖ ≤ sup
t≥t0

√
2w(t)

(
sup
s≥t
|x(s)|w(s)

)∫ +∞

t

(1 + s2)
1
2

w3(s)

(
D− 1

2
(t)D− 1

2
(−s)−D− 1

2
(s)D− 1

2
(−t)

)
ds

≤
[

sup
t≥t0

√
2w(t)

∫ +∞

t

(1 + s2)
1
2

w3(s)

(
D− 1

2
(t)D− 1

2
(−s)−D− 1

2
(s)D− 1

2
(−t)

)
ds

]
‖x‖.

It follows that the operator
x 7→ r ? x,

is continuous, with operator norm

%(t0) ≤ sup
t≥t0

√
2w(t)

∫ +∞

t

(1 + s2)
1
2

w3(s)

(
D− 1

2
(t)D− 1

2
(−s)−D− 1

2
(s)D− 1

2
(−t)

)
ds =: ρ(t0).

(2.14)
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Differentiation of Equation (2.14) shows that the function inside the supremum is
monotonically decreasing. Hence the supremum is attained at the point t = t0

ρ(t0) =
√

2w(t0)

∫ +∞

t0

(1 + s2)
1
2

w3(s)

(
D− 1

2
(t0)D− 1

2
(−s)−D− 1

2
(s)D− 1

2
(−t0)

)
ds.

This proves that the condition (iii) of Theorem 2.1 is valid.
Let x ∈ K. We now estimate the norm of F (x) + r ? G(x).

‖F (x) + r ? G(x)‖

= sup
t≥t0

∣∣∣∣[kD− 1
2
(t)−

√
2

∫ +∞

t

(
D− 1

2
(t)D− 1

2
(−s)−D− 1

2
(s)D− 1

2
(−t)

) (
3x5(s) + 2sx3(s)

)
ds

]
w(t)

∣∣∣∣
≤ sup

t≥t0
|k|D− 1

2
(t)w(t) +

√
2w(t)

∫ +∞

t

(
D− 1

2
(t)D− 1

2
(−s)−D− 1

2
(s)D− 1

2
(−t)

) ∣∣3x5(s) + 2sx3(s)
∣∣ ds

≤ sup
t≥t0
|k|D− 1

2
(t)w(t)

+
√

2w(t)

∫ +∞

t

(
D− 1

2
(t)D− 1

2
(−s)−D− 1

2
(s)D− 1

2
(−t)

) (
3M2 + 2

)
(1 + s2)

1
2 |x3(s)|ds

≤ sup
t≥t0
|k|D− 1

2
(t)w(t) + (3M2 + 2)

√
2w(t)

∫ +∞

t

D− 1
2
(t)D− 1

2
(−s)−D− 1

2
(s)D− 1

2
(−t)

w3(s)
(1 + s2)

1
2 ds‖x‖3

≤ sup
t≥t0
|k|D− 1

2
(t)w(t) + (3M2 + 2)ρ(t0)M

3 = |k|+ (3M5 + 2M3)ρ(t0).

We require that ‖F (x) + r ? G(x)‖ ≤M , resulting in the condition

ρ(t0) ≤
M − |k|

3M5 + 2M3
,

under which the condition (iv) of Theorem 2.1 holds.
The condition (v) of Theorem 2.1 is satisfied if

ρ(t0) <
1

15M4 + 6M2
,

which completes the proof of the theorem.

Remark 2.4. The choice

M =
1

108

(
9

3

√
125|k|3 + 4

√
6750k4 + 4884k2 + 256 + 312|k|

+
9
(
25k2 − 16

)
3

√
125|k|3 + 4

√
6750k4 + 4884k2 + 256 + 312|k|

+ 45k

 ,

results in the equality of the right-hand sides of equations (2.13). In particular, if k = 1/(2π),
which is the value corresponding to the absence of the leading order oscillatory term in Equation
(1.20), based on the connection formulae (1.21) we get the condition

ρ(t0) / 2.69913.
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Taking t0 to be the abscissa of the intersection of the two curves of Figure 2.1 (which is roughly
0.32797), and evaluating the integral numerically results in the relation

0.896619 / 2.69913,

which holds. Hence, we have numerical evidence that the solution η1/(2π) is continuous on the
interval (0.328,+∞).

2.2.2 PIV in the Complex Plane

In this section, we will discuss special asymptotic behaviours of solutions of the fourth
Painlevé equation in the complex plane, based on Wasow’s theorem [Was02]. In partic-
ular, we will prove the existence of tronquée and tritronquée type solutions, similarly
to the case of the first- and second Painlevé equations.

We continue studying PIV using the change of variables

w(z) = 2
√

2y2(x), x = −
√

2z, (2.15)

which transforms Equation (2.1) into

P1/2
IV (a, b) : y′′ = 3y5 − 2xy3 +

1

4
x2y − 1

2
ay +

b

32y3
. (2.16)

Furthermore, we let the constants a, b both be zero, and focus on

SIV : y′′ = 3y5 − 2xy3 +
1

4
x2y =

1

4
y(6y2 − x)(2y2 − x) =: f(x, y), (2.17)

which is equivalent to Equation (1.16a) under the reflection ξ 7→ −ξ. The zero set of the
right-hand side of Equation (2.17) will be used to study the convexity of its solutions.
See Figure 2.2.

Figure 2.3 shows a solution of Equation (2.17) obtained via numerical integration.
It suggests the existence of solutions of Equation (2.17) with the asymptotic behaviour

y(x) ∼ ±
√
x

6
, as x→ +∞. (2.18)

There is also numerical evidence of solutions with the asymptotic behaviour

y ∼
√
x

2
, as x→ +∞,

provided that one works with high precision, and furthermore, the convexity plot in
Figure 2.2 suggests the existence of solutions y(x) of PIV, which approach 0 as x → ∞.
While we do not consider this special case here, we rediscover it through the analysis
presented in Section 3.3 in Chapter 3.

To get an analytical foothold of the situation, we try substituting the fractional
power series ansatz

yf (x) = x1/2
∞∑
n=0

an
x4n

, (2.19)
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x

y

Π+
1

Π+
1/2

Π+
0

Π−
0

Π−
1/2

Π−
1

FIGURE 2.2: The zero set of f(x, y) = 1
4y(2y2 − x)(6y2 − x) (solid), as

well as two curves on which f(x, y) has extrema with respect to y
(dashed). Solutions of Equation (2.17) are convex in the shaded set
{x ≤ 0, y > 0} ∪ {x > 0, y > Π+

1 (x)} ∪ {x > 0, 0 < y < Π+
0 (x)} ∪ {x >

0,Π−1 (x) < y < Π−0 (x)}, and concave in the white set
{x ≤ 0, y < 0} ∪ {x > 0,Π+

0 (x) < y < Π+
1 (x)} ∪ {x > 0,Π−0 (x) < y <

0} ∪ {x > 0, y < Π−1 (x)} .

0 5 10 15 20

0

0.5

1

1.5

2

FIGURE 2.3: A numerical solution of Equation (2.17) (solid), which is
asymptotic to the curve y =

√
x
6 (dashed) as x→ +∞.

in Equation (2.17). Doing so yields the leading term coefficient a0 ∈
{

0,± 1√
2
,± 1√

6

}
and the recurrence relation

3a∗5n − 2a∗3n +
1

4
an =

1

4
(8n− 7)(8n− 9)an−1,

where

a∗mn =
n∑

nm−1=0

· · ·
n3∑
n2=0

n2∑
n1=0

an1an2−n1 · · · an−nm−1 ,
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denotes the mth convolution power of the sequence {an}.
The series obtained are not necessarily convergent. Nevertheless, they are of inter-

est, thanks to the following theorem (also used in [JK01] for studying Equation (1.3))
which turns a formal power series solution to an asymptotic series of a genuine solu-
tion.

Theorem 2.5 ([Was02], Theorem 12.1). Let S be an open sector of the complex x-plane with
vertex at the origin and a positive central angle not exceeding

π

q + 1
,

(where q is a non-negative integer). Let f(x,w) be an r-dimensional vector function of x and
the r-dimensional vector w with the following properties:

1. f(x,w) is a polynomial in the components wj of w, j = 1, . . . , r, with coefficients that
are holomorphic in x in the region

{x ∈ S : 0 < x0 ≤ |x| <∞},

for some x0.
2. The coefficients of the polynomial f(x,w) have asymptotic series in powers of x−1 as

S 3 x→∞.
3. If {fj(x,w)} denote the components of f(x,w), then all eigenvalues λj , j = 1, . . . , r of

the limiting Jacobian matrix

lim
S3x→∞

∂f

∂w

∣∣
w=0

,

differ from zero.
4. The differential equation x−qw′ = f(x,w) is formally satisfied by a power series of the

form
∑∞

k=1 bkx
−k.

If all these conditions hold, there exists, for sufficiently large x ∈ S, a solution w = φ(x)
of x−qw′ = f(x,w), such that, in every proper subsector of S

φ(x) ∼
∞∑
k=1

bkx
−k.

We are now in position to prove

Theorem 2.6 (Tronquée Solutions). For any sector S of angle< π/2 with vertex at the origin
there exists a solution of Equation (2.17) with the asymptotic expansion

y(x) ∼ 1√
6
x1/2 −

√
6

8
x−7/2 +O

(
x−4

)
, as S 3 x→∞, (2.20)

with x1/2 denoting either branch of the square root.

Proof. The change of variables

u(ζ) =
y(x)

x1/2
− 1√

6
, ζ =

1

2
x2,

transforms Equation (2.17) to

u′′ =
1

16
√

6ζ2
− u′

ζ
+

u

16ζ2
+ 3u5 + 5

√
3

2
u4 + 3u3 − u2√

6
− u

3
,
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which is equivalent to the system

u′1 = u2,

u′2 =
1

16
√

6ζ2
− u2

ζ
+

u1
16ζ2

+ 3u51 + 5

√
3

2
u41 + 3u31 −

u21√
6
− u1

3
.

The asymptotic series in Equation (2.19) transforms accordingly to

uf (ζ) =

∞∑
n=1

an
4n
ζ−2n,

and Wasow’s theorem is applicable with q = 0, r = 2 and λ1λ2 = 1
3 6= 0. Note that the

change of independent variable ζ → x decreases the angle of the sector by a factor of
2.

Remark 2.7. It is possible to describe solutions y(x) of Equation (2.17) with leading asymptotic
behaviour

y(x) ∼ 1√
2
x1/2, x→∞

using Wasow’s theorem as well. We choose to focus on the behaviour given in Equation (2.20),
for its analogy with the tritronquée solution of PI.

One can take two tronquée solutions as defined above, and “sew” them together to
create a tritronquée solution in the following way:

Let ε > 0 be given and let y1(x), y2(x) be tronquée solutions defined in the sectors

S1 : −ε/2 < arg(x) < π/2− ε, S2 : −π/2 + ε < arg(x) < ε/2,

See Figure 2.4. In the intersection S1 ∩ S2, y1, y2 have the same asymptotic expansion,

<(x)

=(x)

S1

S2

FIGURE 2.4: The sectors S1 and S2 used in the construction of the
tritronquée solution.
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hence
v(x) := y1(x)− y2(x) = o(x−n), (2.21)

for all n ∈ N. At the same time v satisfies the ODE

v′′ =[1/4x2 − 2x(y21 + y1y2 + y22) + 3(y41 + y31y2 + y21y
2
2 + y1y

3
2 + y42)]v

=: −f(x)v ∼ −1

3
x2v,

for large real x. Applying Theorem 2.2 from Olver’s “Asymptotics and Special Func-
tions” monograph [Olv97] gives the representation

v(x) =
c1

f1/4
exp

(
i

∫ ∞
x

f1/2dx

)
[1 + o(1)]

+
c2

f1/4
exp

(
−i
∫ ∞
x

f1/2dx

)
[1 + o(1)],

and Equation (2.21) implies c1 = c2 = 0, so that y1, y2 coincide for large x. The identity
theorem for analytic functions, combined with letting ε→ 0 gives

Theorem 2.8 (Tritronquée Solutions). There exists a unique pair, Y±, of solutions of Equa-
tion (2.17) that have no poles of large modulus in the half plane

{x ∈ C : <(x) > 0}, (2.22)

with the asymptotic expansion (2.19) with a0 = 1/
√

6. The pair of solutions is in correspon-
dence with the pair of choices of a branch of x1/2 in the half plane (2.22). Correspondingly, the
change of variables of Equations (2.15) implies that there is a unique solution of (PIV(0, 0))
with no poles of large modulus, in the half plane

{z ∈ C : <(z) < 0},

with the asymptotic expansion that is given by applying the change of variables of Equations
(2.15) to the asymptotic expansion (2.19) with a0 = 1/

√
6 for any choice of a branch of x1/2.

Remark 2.9. In order to be able to discuss the solutions Y± of Theorem 2.8 individually, we
will distinguish them based on their leading asymptotic behaviour. That is, we will label the
pair in such a way that

Y±(x) ∼ ±
√
x

6
, as x→ +∞.

Remark 2.10. In [RF13] Equation (2.17) is studied from a numerical perspective. Among
other things, the authors describe a solution which appears to have no poles in a half-plane. This
solution corresponds to one of the tritronquée solutions defined in Theorem 2.8.



Chapter 2. The Painlevé Equations 33

Our analysis of PIV on the real line will make extensive use of the following func-
tions (see Figure 2.2):

Π±0 : y = ±
√
x

6
,

Π±1/2 : y = ±

√
6 +
√

21

30
x,

Π±1 : y = ±
√
x

2
.

for convenience we will refer to Π±i , with i ∈ {0, 1/2, 1} both as a function, as well as its
graph over [0,∞). Our goal is to take solutions of Equation (2.17), which are defined by
their asymptotic behaviour, and establish their behaviour in the finite domain as well.

2.2.3 A Boundary Value Problem on R≤0
In this section, we will demonstrate the continuity and monotonicity of a one-parameter
family of solutions of Equation (2.17). This family is, up to the corresponding change
of variables, the subset of the family {ηk}k∈R from the introduction, with the property
that ηk is continuous on [0,∞). More specifically, we will prove that for any real y0
there is a unique solution y of Equation (2.17) with y(0) = y0 and

lim
x→−∞

y(x) = 0.

We make the dependence on the initial conditions explicit by writing yy0,m0 for the
solution of Equation (2.17) with the initial data y(0) = y0, y

′(0) = m0. We then have the
following results.

Lemma 2.11. Let x0 ≤ 0 and let ϕ be a solution of Equation (2.17) with the initial data

ϕ(x0) ≥ 0, (2.23a)
ϕ′(x0) < 0. (2.23b)

Then ϕ(x) is positive for any x < x0 in its interval of existence, and this interval of existence
is bounded from below.

Proof. Let I be the largest interval of the form (α, x0), on which ϕ is defined and ϕ′ < 0.
If limx→α+ ϕ(x) = +∞, there is nothing to prove. If α is a critical point of ϕ, then it
follows from the convexity of ϕ that ϕ′(α + ε) is positive for sufficiently small ε > 0.
However, by assumption, ϕ′(α+ ε) < 0, making this case impossible.

We are left with the case in which α = −∞. Suppose that inf I = −∞, and observe
that in that case the differential inequality

ϕ′′(x) ≥ 3ϕ5(x),

holds for all x ≤ x0. Multiplying by the negative quantity ϕ′(x) gives

ϕ′′(x)ϕ′(x) ≤ 3ϕ5(x)ϕ′(x),

and integrating this inequality over the interval [x, x0] results in

ϕ′(x)2 ≥ ϕ6(x)− (ϕ6(x0)− ϕ′(x0)2). (2.24)
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The positivity and convexity of ϕ over (−∞, x0) allows us to find a point x∗ ≤ x0, such
that

3

4
ϕ6(x)− (ϕ6(x0)− ϕ′(x0)2) ≥ 0,

for all x ≤ x∗. Thus the inequality (2.24) implies

ϕ′(x)2 ≥ 1

4
ϕ6(x),

for x ≤ x∗. Taking the square root and integrating yields

ϕ−2(x)− ϕ−2(x∗) ≤ x− x∗, (2.25)

for all x ≤ x∗. Letting x → −∞ leads us to a contradiction, as the right-hand side gets
arbitrarily negatively large - while the left-hand side remains bounded. It follows that
the interval (α, x0) is in fact bounded from below.

Corollary 2.12. Let y0 be a non-negative real number. There exists a solution y(x) of Equation
(2.17) with y(0) = y0, which is continuous and positive over a bounded interval of the form
(α, 0), and limx→α+ y(x) = +∞.

Proof. Lemma 2.11 implies that all solutions y of Equation (2.17) with y(0) = y0 ≥ 0
and y′(0) < 0 are positive in the negative part of their interval of existence, (α, 0), and
limx→α+ y(x) = +∞.

Lemma 2.13. Let y0 ≥ 0. There exists a solution of Equation (2.17) with y(0) = y0, defined
over an interval of the form [α, 0], and satisfying y(α) < 0.

Proof. If y0 = 0, the result follows trivially. Otherwise, fix y0 > 0 and m > 1, and let f
be a solution of Equation (2.17) with the initial conditions

y(0) = y0,

y′(0) = m.

Let ` be the line y − x = y0. If f does not have a zero, then its graph and ` will have
another intersection point, with x-coordinate ξ0, between 0 and −y0. Rolle’s theorem
yields a point ξ1 ∈ (ξ0, 0) such that

f ′(ξ1) =
f(ξ0)− f(0)

ξ0 − 0
= 1.

Applying Rolle’s theorem a second time, there is a point ξ2 ∈ (ξ1, 0) such that

f ′′(ξ2) =
f ′(ξ1)− f ′(0)

ξ1 − 0
=

1−m
ξ1

>
m− 1

y0
. (2.27)

On the other hand

f ′′(ξ2) =
1

4
f(ξ2)

(
2f2(ξ2)− ξ2

) (
6f2(ξ2)− ξ2

)
<

1

4
y0(2y

2
0 + y0)(6y

2
0 + y0). (2.28)

Equations (2.27),(2.28) show that m is bounded from above. Taking m larger than this
value will result in a solution which becomes negative at some point on its interval of
existence.
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We proceed by making the following definitions.

Definition 2.14. For a fixed y0 ≥ 0, let A(y0) denote the set of all real numbers m such that
yy0,m is positive on an interval of the form (α, 0), and limx→α+ yy0,m(x) = +∞. Let B(y0)
denote the set of all real numbers m such that the solution yy0,m is defined on an interval of the
form [α, 0), and y(α) < 0 for some real α.

Lemma 2.15. Fix y0 ≥ 0. The sets A(y0), B(y0) are open intervals of the form (−∞, a(y0))
and (b(y0),+∞) respectively.

Proof. This is a consequence of the continuous dependence of the solution of an ordi-
nary differential equation on its initial conditions [Arn92]. Although its application to
proving the openness of B(y0) is evident, it is worthwhile to discuss that of A(y0): Let
m ∈ A(y0), if m is negative, then there exists a small neighbourhood of m, all of its
elements are negative, and Lemma 2.11 shows that all such elements are in A(y0). If
m is non-negative, then yy0,m attains a positive minimum at some point xm ≤ 0, and
consequently, according to Lemma 2.11, approaches infinity in finite time. Here the
continuous dependence on the initial conditions shows that a slight perturbation of
m will only slightly affect the location and value of this minimum and thus the solu-
tion will remain of the same type. The fact that the sets are intervals follows from the
fact that f(x, y) in Equation (2.17) is monotonically increasing with respect to y, when
x ≤ 0. As it implies that ifm1 < m2 then yy0,m1(x) ≥ yy0,m2(x) in their common interval
of existence. The fact that a(y0) ≤ b(y0) is a consequence of the fact that the sets A(y0)
and B(y0) are disjoint.

−0.8 −0.6 −0.4 −0.2 0

0

5

10

15

FIGURE 2.5: Solutions yy0,m of Equation (2.17) with m ∈ A(y0) (solid),
m ∈ B(y0) (dashed), and m = m−(y0) (thick).

We will now show that a(y0) = b(y0).

Lemma 2.16. The boundary value problem

u′′(x) = q(x)u(x) (2.29a)
u(0) = lim

x→∞
u(x) = 0 (2.29b)

with continuous q : [0,∞)→ [0,∞) has the unique solution u(x) ≡ 0.
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Proof. Multiply Equation (2.29a) by u(x) and integrate to get∫ x

0
u(t)u′′(t)dt =

∫ x

0
q(t)u(t)2dt ≥ 0.

Applying integration by parts on the left hand side then gives

u(x)u′(x)−
∫ x

0
u′2(t)dt ≥ 0,

which implies

u(x)u′(x) =
1

2

d

dx

(
u2(x)

)
≥ 0.

Since u2 is monotonically nondecreasing, we must have u′(0) = 0 in order to have
limx→∞ u(x) = 0, and the uniqueness follows.

Lemma 2.17. There is a single solution in the family {yy0,m}m∈R whose initial slope, y′y0,m(0),
is neither in A(y0), nor B(y0).

Proof. Let m1,m2 ∈ [a(y0), b(y0)], and set φ1(x) := yy0,m1(−x), φ2(x) := yy0,m2(−x) and
u := φ1 − φ2. The difference u satisfies the ODE (2.29) with

q(x) = 3(φ41 + φ31φ2 + φ21φ
2
2 + φ1φ

3
2 + φ42) + 2x(φ21 + φ1φ2 + φ22) +

1

4
x2 ≥ 0,

and we find that φ1 ≡ φ2.

We proceed by making the following definition.

Definition 2.18. For any y0 ≥ 0, define

m−(y0) = supA(y0) = inf B(y0).

Some of the values of m− are plotted in Section 2.4. Since m−(y0) /∈ A(y0) ∪ B(y0),
the solutions yy0,m−(y0) are continuous on the nonpositive real semi-axis, and remain
positive there (c.f. Figure 2.6). Moreover yy0,m−(y0)(x) → 0 monotonically as x → −∞,
as can be seen due to the nature of the right hand side f(x, y) of Equation (2.17).

Lemma 2.19. For ε > 0 fixed, the restricted function f |R≤0×[ε,∞), with f as in Equation (2.17)
approaches infinity as x → −∞, uniformly in y. Consequently, the solutions yy0,m−(y0)(x)
approach zero as x→ −∞.

Proof. We have

f(x, y) = 3y5 + 2|x|y3 +
1

4
|x|2y ≥ 3ε5 + 2ε3|x|+ 1

4
|x|2ε.

Let ϕ denote a solution of the form yy0,m−(y0). Since ϕ′(0) /∈ B(y0), ϕ is bounded from
below on R ≤ 0. Furthermore, ϕ′(x) ≤ 0 for all x ≤ 0, as can be seen from Lemma 2.11.
Thus the limit l = limx→−∞ ϕ(x) exists, and l ≥ 0. It follows that limx→−∞ ϕ′(x) = 0. If
l > 0, the second derivative ϕ′′(x) is unbounded as x→ −∞, which is in contradiction
with limx→−∞ ϕ′(x) = 0. We conclude that l = 0.

Lemma 2.20. The functionm− is a monotonically increasing, continuous, odd function defined
on the entire real line, satisfying limx→±∞m−(x) = ±∞.
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FIGURE 2.6: Graphs of solutions yy0,m−(y0) of Equation (2.17) with
y0 ∈ {0.4, 0.8, 1.2}.

Proof. The monotonicity ofm− follows from the monotonicity of f(x, y) with respect to
its second argument: Let ϕ1, ϕ2 denote the solutions yy1,m−(y1), yy2,m−(y2) with y1 > y2.
Suppose that m−(y1) < m−(y2), the mean value theorem gives

(ϕ1 − ϕ2)
′′(x) = f(x, ϕ1(x))− f(x, ϕ2(x)) =

∂f

∂y
(x, ϕ∗(x))(ϕ1(x)− ϕ2(x)),

for some ϕ2(x) ≤ ϕ∗(x) ≤ ϕ1(x). This shows that u = ϕ1 − ϕ2 is a convex function
on R≤0 with u(0) > 0, u′(0) < 0. This is in contradiction with limx→−∞ u(x) = 0. The
continuity follows, once again from the continuous dependence of yy0,m on its initial
conditions. The symmetry y(x) 7→ −y(x) of Equation (2.17) shows that we can repeat
our analysis above for y0 < 0, and get an odd extension m− : R → R. As for the
unboundedness of m−, suppose by way of contradiction the existence of a number
M > 0 such that m−(y0) ≤ M for all y0 ≥ 0. Taylor’s theorem combined with the
convexity of yy0,m−(y0) gives

y′(x) = m−(y0) +

∫ x

0
y′′(t)dt ≤ m−(y0) +

∫ x

0
f(t, y0 +m−(y0)t)dt, (2.30)

where we have used the monotonic nature of f in the domain x ≤ 0. For x1 :=
− y0
m−(y0)

< 0 the inequality (2.30) reads

y′(x1) ≤ −
y60

2m−(y0)
− y50

10(m−(y0))2
− y40

48(m−(y0))3
+m−(y0)

≤ − y60
2M
− y50

10M2
− y40

48M3
+M.

This shows that y′(x1) is negative, provided that y0 is taken large enough, which is in
contradiction with the fact that y is monotonically increasing on R≤0. We conclude that
m− : R→ R is an odd, monotonically increasing bijection of the real line.
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2.2.4 The Tritronquée Solution on the Positive Real Semi-Axis

The main result of this section is proving that the interval of existence of the solutions
Y±(x) of Equation (2.17) mentioned in Remark 2.9 contains (α,+∞) for a particular α.
Without loss of generality, we will state the results for Y−(x) alone. First we state the
following result:

Theorem 2.21. Let y(x) be a solution of Equation (2.17) and let y(x) = −
√
x/6 − w(x).

Then w(x) satisfies

w′′ = 3w5 + 5

√
3

2

√
xw4 + 3xw3 − x3/2√

6
w2 − x2

3
w +

1

4
√

6x3/2
. (2.31)

If w(x0) = 0, w′(x0) ≥ 0 and w(x) has a maximum M at some xm > x0, then w(xf ) = 0
again, for some xf > x0.

In order to prove this result we prove the following two lemmas:

Lemma 2.22. The function

g(x,w) := 3w5 + 5

√
3

2

√
xw4 + 3xw3 − x3/2√

6
w2 − x2

3
w +

1

4
√

6x3/2

with w > 0 fixed is monotonically decreasing with respect to x for x > q0w
2, where q0 ≈ 4.65

is the largest real root of the cubic

32q3 − 315q2 + 918q − 675.

Proof. Write x = qw2, so that

g(x,w) = g(qw2, w) =
1

4
√

6q3/2w3
+

1

24

(
−4
√

6q3/2 − 8q2 + 72q + 60
√

6
√
q + 72

)
w5.

The first term is monotonically decreasing with respect to q, and the second term is too,
provided that the derivative of the expression inside the parenthesis is negative, i.e.
when

−16q − 6
√

6
√
q +

30
√

6√
q

+ 72 < 0.

This happens when q is greater than the largest real root of the cubic

32q3 − 315q2 + 918q − 675,

which is 4.65 approximately (see Figure 2.7).

Lemma 2.23. Suppose w(x) solves Equation (2.31) with the initial data w(x0) = 0, w′(x0) ≥
0 for some x0 > 0, and that w(x) <

(
1√
2
− 1√

6

)√
x. Suppose also that w has a maximum M

at xm > x0. Let x1, x2 be points satisfying x0 < x1 < xm < x2 and w(x1) = w(x2). We then
have w′′(x1) > w′′(x2).

Proof. Using the previous lemma it suffices to show that x1 > q0w(x1)
2. The hypothesis

of this lemma gives

x1 >
w2(x1)(
1√
2
− 1√

6

)2 ,
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1 2 3 4 5

FIGURE 2.7: The graphs of −16q − 6
√

6
√
q + 30

√
6√

q + 72 (solid) and
32q3 − 315q2 + 918q − 675 (dashed).

so that the proof boils down to showing

1(
1√
2
− 1√

6

)2 > q0,

which indeed holds (the left hand side is approximately 11.196 while the right hand
side is about 4.65).

We are now in position to prove Theorem 2.21.

Proof of Theorem 2.21. One needs to utilise the differential inequality w′′(x1) > w′′(x2)
in an identical way to that used in the proofs of lemmas 1 and 2 in [JK01].

We will now address the solutions Y± defined in Remark 2.9.

Theorem 2.24. The solution Y−(x) does not intersect the parabolic arc Π−0 on its maximal
interval of existence I .

Proof. Suppose x0 ∈ I is a point such that Y−(x) intersects −
√
x/6 from above at x0,

that is the function w from Theorem 2.21 satisfies w(x0), w
′(x0) ≥ 0. The asymptotic

nature of Equation (2.20) of Y−(x) implies that w must attain a maximum, so that the
conditions of Theorem 2.21 hold and there exists a succeeding intersection.

Suppose now that x1 ∈ I is a point such Y−(x) intersects −
√
x/6 from below at

x0. In this case, the asymptotic nature in Equation (2.20) implies that there exists a
succeeding intersection.

We conclude that if Y−(x) intersects Π−0 once, it must do so infinitely many times,
which leaves us with two cases: either the intersection points grow arbitrarily large, or
they must accumulate at a finite point. The former is impossible, since such behaviour
is incompatible with the asymptotic series of Equation (2.20). The latter is also impos-
sible, since the identity theorem for complex analytic function would then imply that
Y−(x) ≡ −

√
x/6, which is clearly not a solution of Equation (2.17).

We turn to prove some additional lemmas, including a finite-time blowup result.
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Lemma 2.25. Let x0 > 0. If y(x) satisfies Equation (2.17) with the initial data

y(x0) = −
√
x0/2,

y′(x0) ≤ −
1

2
√

2x0
,

(i.e. the intersection is from above), then the solution develops a singularity xp > x0, where
limx→x−p |y(x)| =∞ in finite time.

Proof. As the solution decreases at a negative rate, there exists a point x1 > x0 such that
y(x) < −√x for all x ≥ x1. We thus have for all x > x1

y′′ = 3y5 − 2xy3 +
1

4
x2y ≤ 3y5 − 2xy3 ≤ y5.

Multiplying by y′(x) < 0 and integrating gives

1

2
y′(x)2 ≥ 1

6
y(x)6 +

1

2
y′(x1)2 −

1

6
y(x1)

6,

or
y′(x)2 ≥ 1

3
y(x)6 + y′(x1)2 −

1

3
y(x1)

6 ≥ 1

6
y(x)6,

for x ≥ x2 for some x2. This means that

|y′(x)| ≥ 1√
6
|y(x)|3,

or
y′(x)

y(x)3
≥ 1√

6
.

Integration of both sides from x2 to x gives

−1

2
y(x)−2 +

1

2
y(x2)

−2 ≥ 1√
6

(x− x2),

which is a contradiction as x→∞.

Lemma 2.26. Let x0 > 0, and let y(x) be a solution of Equation (2.17) with the initial data

−
√
x0
2
<y(x0) < −

√
x0
6
,

y′(x0) = 0.

Then there exists a point x1 > x0 such that

y(x1) = −
√
x1
6
.

Proof. The critical point of y at x0 is evidently a minimum, since

y′′(x0) =
1

4
y(x0)(6y(x0)

2 − x0)(2y(x0)
2 − x0) > 0.
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The slope y′ thus remains positive in the interval [x0, x1] where x1 is the supremum of
the set

S :=

{
x ≥ x0 :

1

4
y(t)(6y(t)2 − t)(2y(t)2 − t) > 0 for x0 ≤ t ≤ x

}
.

We consider several cases

• x1 = ∞. In this case y(x) is monotonically increasing, while −
√
x/6 → −∞ as

x→ −∞. It is clear that an intersection must occur.

• x1 < ∞. In this case one of the factors y(t), 6y(t)2 − t, 2y(t)2 − t must vanish at
x1. If y(x1) = 0, then the intermediate value theorem furnishes an earlier point
in which y intersects Π−0 . A similar use of the intermediate value theorem shows
that y(x1) cannot equal

√
x1/6 nor

√
x1/2. The only case left to eliminate is that

in which y(x1) = −
√
x1/2. However, this is also impossible, since that would

imply the existence of a maximum in (x0, x1), which is incomatible with

−
√
x

2
< y(x) < −

√
x

6
.

Lemma 2.27. Let

x0 ≥
33/853/4

4
√

34
√

3 + 7
√

7
=: α ≈ 1.70196.

Suppose y(x) satisfies Equation (2.17) and

y(x0) = −
√
x0
2
.

If in addition y(x) is defined for all x ≥ x0 and approaches −
√
x/6, then y(x) must intersect

Π−0 at some point x1 > x0.

Proof. Using Lemma 2.25 above, we may assume

y′(x0) > −
1

2
√

2x0
,

and
y(x) ≥ −

√
x/2,

for all x ≥ x0. If y′(x0) ≥ 0, Lemma 2.26 yields an intersection with Π−. Thus we
assume

− 1

2
√

2x0
< y′(x0) < 0,

from this point onwards.
According to the intermediate value theorem there exists a point x1/2 where

y(x1/2) = −
√√

21 + 6√
30

√
x1/2

and this intersection is from below (this is one of the curves where ∂f
∂y = 0. It is in fact a

minimum with respect to y). If the slope y′(x1/2) ≥ 0 an intersection with {y = −
√
x/6}
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is guaranteed. Also, if y intersects the line {y = y(x1/2)} at some point > x1/2, Rolle’s
theorem furnishes an intermediate point where y′ = 0, and once again an intersection
with {y = −

√
x/6} is bound to happen.

Thus we may assume that y(x) ≤ y(x1/2) for all x ≥ x1/2. Using Taylor’s Theorem
we have

y(x) = y(x1/2) + y′(x1/2)(x− x1/2) +

∫ x

x1/2

(x− t)f(t, y(t))dt

≥ y(x1/2) +m1/2(x− x1/2) +

∫ x

x1/2

(x− t)f(t, y(t))dt

≥ y(x1/2) +m1/2(x− x1/2) +

∫ x

x1/2

(x− t)f(t, y(x1/2))dt := yL(x),

where m1/2 is the slope of the curve

y = −
√√

21x+ 6x√
30

,

at x = x1/2, and the last inequality is valid for

x1/2 ≤ x ≤
33/853/4

4
√

34
√

3 + 7
√

7
x1/2.

Evaluating the inequality y(x) ≥ yL(x) at the upper bound

x1 =
33/853/4

4
√

34
√

3 + 7
√

7
x1/2,

gives y(x1) ≥ −
√
x1/6 as long as

x41/2 ≥
375
√

3

34
√

3 + 7
√

7
.

The number α found in the previous lemma can now be used in the following exis-
tence theorem.

Theorem 2.28. The solutions Y±(x) is continuous on the interval (α,∞).

Proof. We have already established that Y− does not intersect Π−0 for x ≥ 0. The preced-
ing lemma implies that if it intersects Π−1 at any point > α, then it must also intersect
Π−0 . Thus our solution is bounded

−
√
x/2 ≤ Y−(x) ≤ −

√
x/6,

for x ∈ (α,∞). The reflection symmetry y 7→ −y of Equation (2.17) implies that Y+ has
an identical interval of existence.
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2.3 Behaviour near the Equilibria Points

The purpose of this section is studying the fourth Painlevé equation via the Hamil-
tonian formalism, similarly to what was done for the first Painlevé equation in [DJ11].
Joshi and Radnović [JR16] have used a Hamiltonian formulation for the fourth Painlevé
equation (2.1), which can be derived from the symmetric form of Equation (2.1) as in
[NY98]:

dy1
dx

= −y1(y1 + 2y2 + 2x)− 2α1,

dy2
dx

= y2(2y1 + y2 + 2x)− 2α2,

with the time-dependent Hamiltonian function

H(x, y1, y2) = −y1y2(y1 + y2 + 2x) + 2α2y1 − 2α1y2,

where y1 = y solves Equation (2.1), with a = 1− α1 − 2α2, b = −2α2
1.

Using the change of variables

y1(x) = xu(z), y2(x) = xv(z), z = x2/2,

we get the system

u′ = −u(u+ 2v + 2)− α1

z
− u

2z
, (2.32a)

v′ = v(2u+ v + 2)− α2

z
− v

2z
. (2.32b)

The limiting autonomous system is obtained by neglecting the O(1/z) terms

u′ = −u(u+ 2v + 2), (2.33a)
v′ = v(2u+ v + 2), (2.33b)

whose fixed points are

(0, 0),

(−2, 0),

(0,−2),(
−2

3
,−2

3

)
.
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The corresponding Jacobian matrices are(
−2 0
0 2

)
,(

2 4
0 −2

)
,(

2 0
−4 −2

)
,(

2
3

4
3

−4
3 −2

3

)
,

with respective eigenvalues

{−2, 2} ,
{−2, 2} ,
{−2, 2} ,{
− 2i√

3
,

2i√
3

}
.

Now, in the neighbourhood of each of the fixed points, we will bring the system (2.32)
into the form

dp

dt
= v(t−1, p), (2.34)

with p = (p+, p−), and v satisfying the conditions of the following Lemma:

Lemma 2.29 (Lemma 5.1 of [DJ11]). Assume that v = (v+, v−) is a C2-valued complex
analytic function on an open neighbourhood D of the origin in C3 such that v±(u, p) = ±p±+
w(u, p), w(0, 0) = 0, and

∂w(0, p)

∂p

∣∣
p=0

= 0.

Here p = (p+, p−) ∈ C2 and ‖p‖ := max{|p+|, |p−|}. Then there exist strictly posi-
tive real numbers δ0, ε0, C1, C2, C3, and C4 such that ‖w(u, p)‖ ≤ C1‖p‖2 + C2|u|, and
‖∂w(u, p)/∂p‖ ≤ C3‖p‖ + C4|u| if ‖p‖ < δ0 and |u| < ε0. Here the last condition im-
plies the preceding one for C1 = C3/2 and a suitable C2. In the sequel we will take D equal to
the set of all (u, p) ∈ C×C2 such that |u| < ε0 and ‖p‖ < δ0. For solutions p of (2.34) we will
always require that |t| > 1/ε0 and ‖p(t)‖ < δ0 for all t in the domain of definition of p.

The proof of this lemma is identical to that given for the corresponding result in
[DJ11] and we refer to that paper for details.

At each fixed point, the sequence of lemmas of [DJ11] produces three types of solu-
tions: pt0,a− , p↑ and p↓. We describe their asymptotic behaviours in the particular case
of Equation (2.32). For a given fixed point, let us follow the convention in [DJ11] and
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define

c1 = −
(
∂v(0, p)

∂p

∣∣∣
p=0

)−1 ∂v(u, 0)

∂u

∣∣∣
u=0

,

L1 =
∂2v(u, p)

∂u∂p

∣∣∣
u=0,p=0

+
∂2v(0, p)

∂p2 p=0

c1,

α = (0 1)L1(0 1)T ,

Rη,r =
{
t ∈ C : |t| ≥ r,

∣∣e−ttα∣∣ ≤ η} .
Focusing on the first fixed point (the origin), the simple change of variables t = 2z, u =
p−, v = p+.

p+
′
= p+ + p−p+ +

p+
2

2
− p+

2t
− α2

t
:= v+,

p−′ = −p− − p−p+ − 1

2
p−2 − p−

2t
− α1

t
=: v−.

The truncated solutions pt0,a− from [DJ11] correspond to solutions of Equation (2.1)
which approach zero on the domain which consists of applying the transformation
x 7→

√
2x1/2 to Rη,r for some η, r > 0 (which we will call R̂η,r), and p↑, p↓ correspond to

solutions which approach zero as their argument approaches infinity in the sectors

−π/4 + ε < arg(x) < 3π/4− ε,

and
−3π/4 + ε < arg(x) < π/4− ε,

respectively.
Another fixed point is (−2, 0). The affine map is

u = −p− + p+ − 2,

v = p−,

which results, along with the transformation t = 2z, in the following system

p+
′
= p+ − p+

2t
− 1

2

(
p+
)2

+ p−p+ − α1

t
− α2

t
+

1

t
,

p−′ = −p− − p−

2t
− 1

2

(
p−
)2

+ p+p− − α2

t
.

This time the truncated solutions correspond to solutions of Equation (2.1) which are
asymptotic to −2x as |x| → ∞ in R̂η,r, while p↑, p↓ have the same behaviour in their
corresponding sectors above.

Another fixed point is (0,−2). The affine map is

u = −p+,
p− = p− + p+ − 2,

and the resulting system is
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p+
′
= p+ − p+

2t
− (p+)

2

2
− p−p+ +

α1

t
,

p−′ = −p− − p−

2t
+

(p−)
2

2
+ p+p− − α1

t
− α2

t
+

1

t
.

This point is symmetric with the point (−2, 0).
Lastly, there is the point (−2/3,−2/3). The affine map is

u =
1

2

(√
3 + i

)
ip− − 1

2
i
(√

3− i
)
p+ − 2

3
,

v = p− + p+ − 2

3
.

The resulting system is

p+
′
= p+ +

3 (p−)
2

2
− p+

2t
+−α2

2t
− iα1√

3t
− iα2

2
√

3t
+

1

6t
+

i

2
√

3t
,

p−′ = −p− − p−

2t
− 1

2
3
(
p+
)2

+
iα1√

3t
+

iα2

2
√

3t
− α2

2t
+

1

6t
− i

2
√

3t
.

Here the truncated solutions pt0,a− and the triply truncated solutions p↑, p↓ correspond
to solutions of Equation (2.1) which are asymptotic to −2/3x in the domains R̂η,r,

−π/4 + ε < arg(x) < 3π/4− ε,

and
−3π/4 + ε < arg(x) < π/4− ε,

respectively.
The above results show that the system (2.33) has four fixed points. We showed

in this section that in the neighbourhood of each such point, there exist three types of
solutions, which correspond to tronquée or tritronquée solutions, with specific asymp-
totic behaviours near infinity. In the case of the final fixed point studied above, the
solutions p↑ and p↓ match up with the results we found in Section 2.2.2 eariler.
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2.4 Numerical Analysis

The Mathematica code below, allows us to approximate the function m− at various
points y0 > 0, with the parameter “eps” being the precision.

mMinus[ y0 , in f , wp, step , eps ] = ( p0 = 0 ;
s o l = ParametricNDSolveValue [ { y ’ [ x ] == a [ x ] p [ x ] ,

p ’ [ x ] == a [ x ]∗y [ x ]/4∗ (6 y [ x ]^2 + x )∗ ( 2 y [ x ]^2 + x )
, y [ 0 ] == y0 , p [ 0 ] == m0, a [ 0 ] == 1 ,
WhenEvent [ y [ x ] < 0 , { a [ x ] −> 0 , y [ x ] −> −1}] ,
WhenEvent [ y [ x ] > y0 + 1 , { a [ x ] −> 0 , y [ x ] −> 1 } ] } ,

y [ i n f ] , { x , 0 , i n f } , m0, MaxSteps −> Inf ini ty ,
WorkingPrecision −> wp, Method −> " S t i f f n e s s S w i t c h i n g " ,
D i s c r e t e V a r i a b l e s −> a ] ;

s = step ;
−NestWhile [ I f [ s o l [# − s ] > 0 , # − s , s /= 2 ; # ] &, p0 ,

Abs [ s ] >= eps &] // Quiet )





Chapter 3

Discrete Painlevé Equations

In this chapter we will explore the relationship between the fourth Painlevé equation
PIV and the discrete first Painlevé equation d-PI. Although studies of d-PI concerning
the behaviour of its solutions in the asymptotic limit where the independent variable
becomes large are known [JL15], asymptotic results for a large parameter are lacking.
In particular, we will use the existence of a one-parameter family of solutions of PIV
with its asymptotic behaviour, to establish asymptotic results for solutions of d-PI.

The discrete first Painlevé equation d-PI plays a role in the study of orthogonal
polynomials, and is referred to as the Freud equation there [DK06, Mag95, Mag96].

3.1 The Connection Between PIV and d-PI

In [HJN16] the authors make use of the connection between the discrete Painlevé equa-
tion d-PI and the continuous Painlevé equation PIV described in [FIK91]. Their starting
point is the fourth Painlevé equation, in the form

w′′ =
(w′)2

2w
+

3

2
w3 + 4tw2 + 2(t2 − α)w +

β

w
.

The starting point for the derivation is a collection of transformations for solutions of
PIV called Bäcklund transformations (see [HJN16] for further information about such
transformations). The Bäcklund transformations (BTs) we consider are given by

w̃±(t) :=
w′ − w2 − 2tw ∓ γ

2w
,

where w̃± with parameters α̃±, β̃± given by the formulas

α̃± =
1

4
(2− 2α± 3γ) ,

β̃± = −1

2

(
1 + α± 1

2
γ

)2

,

and

ŵ±(t) := −w
′ + w2 + 2tw ∓ γ

2w
,

with

α̂± = −1

4
(2 + 2α± 3γ),

β̂± = −1

2

(
1− α± 1

2
γ

)2

.

49
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It is interesting to note that the mappings of the parameters above can be expressed in
terms of an integer n, as

αn = −n
2

+ c0 + c1(−1)n, (3.1a)

γn = n− 2c0 +
2c1
3

(−1)n. (3.1b)

Denoting each solution of PIV with parameters αn, γn by wn = w(t;αn, γn), we obtain
ŵ+ = wn+1 and w̃− = wn−1, from the corresponding mappings of parameters given
above. Starting from any seed solutionw0, one finds a sequence {wn}∞n=−∞ of solutions
by forward and backward iteration of the above Bäcklund transformations.

Actually, we can eliminate the derivative w′n from the pair of Bäcklund transforma-
tions that give this sequence. Doing so, we arrive at the so-called discrete first Painlevé
equation

d-PI : wn+1 + wn + wn−1 = −2t+
γn
wn

. (3.2)

Notice that the independent variable of this difference equation is n, while c0 and c1 in
the equation (3.1b) for γn and t play the role of parameters. In other words, the roles of
variable and parameter are interchanged from those of the differential equation PIV.

3.2 General asymptotic behaviours as t→∞
In this section, we discuss the asymptotic analysis of solutions of d-PI as t → ∞. Al-
though this may appear to be similar to the asymptotic analysis of PIV in Chapter 2,
there are some important differences that make the analysis of this section worthwhile
as a separate study.

Our motivation is analogous to the study of special functions, such as Bessel func-
tions Jν(x) in the limit as x → ∞ versus the limit ν → ∞. The results of Chapter
2 relied on a given fixed pair of values of parameters α and β in PIV. In contrast, in
this section, these parameters will be varying, whilst t although taken to be arbitrarily
large, will stay fixed.

We find two families of asymptotic behaviours. In this section, we show that there
exist 2-parameter solutions with oscillatory behaviour (for real n). In the next section,
we consider behaviours that do not appear to be covered by this result.

The asymptotic behaviour of the sequence of solutions of Equations (3.2) can also
be arrived at by a scaling approach: we start by the change of dependent variable

wn = tvn,

which results in the equation

vn+1 + vn + vn−1 = −2 +
γn
t2vn

. (3.3)

As t→ +∞, Equation (3.3) has the maximal dominant balance

v
(0)
n+1 + v(0)n + v

(0)
n−1 = −2.
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It is elementary to obtain the solution

v(0)n = −2

3
+ C1e

2πin
3 + C2e

− 2πin
3 ,

where C1 and C2 depend on t only. These provide the dominant behaviour of Equation
(3.3).

To prove that v(0)n indeed provide leading order behaviours of the solution of Equa-
tion (3.3), we convert this difference equation to a summation equation (i.e., discrete
analogue of an integral equation ). First, transform the dependent variable in Equation
(3.3) according to

vn = −2

3
+ un,

which results in the equation

un+1 + un + un−1 =
γn

t2
(
−2

3 + un
) . (3.4)

The solution of the associated homogeneous equation of Equation (3.4) is

uhn = c1e
2πin
3 + c2e

− 2πin
3 .

We make use of the associated homogeneous solution in order to convert Equation (3.4)
into a summation equation.

Theorem 3.1. The solutions un of Equation (3.4) satisfy the summation equation

un = p0e
2πin
3 + q0e

−2πin
3 +

n−1∑
l=n0

l∑
k=n0

e
2πi(n+k−2l−1)

3 γk

t2
(
−2

3 + uk
) , (3.5)

where p0 and q0 are constants.

Proof. First we multiply Equation (3.4) by e
2πin
3 and rearrange the terms, to get

e−
2πi
3

(
e

2πi(n+1)
3 un+1 − e

2πin
3 un

)
+
(

1 + e−
2πi
3

)(
e

2πin
3 un − e

2πi(n−1)
3 un−1

)
=

e
2πin
3 γn

t2
(
−2

3 + un
) .

Taking the indefinite sum yields

e
2πin
3 un+1 +

(
1 + e−

2πi
3

)
e

2πin
3 un = a0 +

n∑
k=n0

e
2πik
3 γk

t2
(
−2

3 + uk
) ,

where a0 depends on t and the lower summation limit n0. Rearranging gives

un+1 +
(

1 + e−
2πi
3

)
un = a0e

− 2πin
3 +

n∑
k=n0

e
2πi(k−n)

3 γk

t2
(
−2

3 + uk
) ,

and multiplying by e−
2πin
3 results in the equation

e
2πi
3

(
e−

2πi(n+1)
3 un+1 − e−

2πin
3 un

)
= a0e

− 4πin
3 +

n∑
k=n0

e
2πi(k−2n)

3 γk

t2
(
−2

3 + uk
) .
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Rearranging gives

e−
2πi(n+1)

3 un+1 − e−
2πin
3 un = a0e

− 4πin
3 e−

2πi
3 +

n∑
k=n0

e
2πi(k−2n−1)

3 γk

t2
(
−2

3 + uk
) ,

and taking a second indefinite summation gives

e−
2πin
3 un = b0 +

n−1∑
l=n0

a0e− 4πil
3 e−

2πi
3 +

l∑
k=n0

e
2πi(k−2l−1)

3 γk

t2
(
−2

3 + uk
)
 ,

where b0 is a constant depending on t and n0. Simplifying gives

un = b0e
2πin
3 + a0e

−πi
2
e

2πin−4πin0
3 − e− 2πin

3√
3

+
n−1∑
l=n0

l∑
k=n0

e
2πi(n+k−2l−1)

3 γk

t2
(
−2

3 + uk
) .

We obtain the desired summation equation, where

p0 = b0 −
ie
−4πin0

3√
3

a0,

q0 =
i√
3
a0.

We now show that the fixed point theorem can be applied to the summation equa-
tion (3.5) to provide a two-parameter family of solutions with the leading order be-
haviour described above. The argument is analogous to those given in Sections 2.1
and 2.2 for the case of the second and fourth Painlevé equations in Chapter 2 and for
reasons of simplicity, we do not give the technical details of the proof here.

Theorem 3.2. For each given ε > 0, p0, q0, n0, there exists N such that a unique solution of
the summation equation (3.5) exists for n0 ≤ n ≤ N and 1/ε < |t|. Moreover, this solution
has the leading order asymptotic behaviour

un = p0e
2πin
3 + q0e

−2πin
3 +O

(
1

t2

)
, (3.6)

for t→∞.

Sincewn(t) is a solution of PIV, it is natural to ask whether the asymptotic behaviour
(3.6) found above is related to the ones we deduced in Chapter 2. The answer to this
question is affirmative, as described in the following Remark.

Remark 3.3. The behaviour given by Equation (3.6) is the same as the asymptotic behaviour
(2.18), in the limit t→ −∞.

Proof. Since

wn = t

(
−2

3
+ un

)
,
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and using (2.15), keeping in mind that t = z, we have

y0(x) ∼ ±
√
x

6
,

where y2n(x) = wn(−x/
√

2)/(2
√

2) and t = −x/
√

2. We have the desired result, in the
special case where αn = γn = 0 in Equation (3.1). Furthermore, one could relate the
values of p0 and q0 with that of a of Equation (1.20) by expanding the oscillating term
and comparing the coefficients.

3.3 Special asymptotic behaviours as t→∞
We show in this section that there also exists a 0-parameter solution of Equation (3.2),
which has a power series expansion in powers of t. Estimates based on the recursion
relation indicate that this is a divergent asymptotic series as t → ∞. This divergence
property suggests that there may be exponentially small terms that are hidden by this
series, giving rise to Stokes phenomena in the t-plane. (See [JL15] for such a study in
the case where both n � 1 and t � 1 and Equation (3.2) is studied in a continuum-
limit-like approach.)

In investigating Equation (3.3) to obtain the 2-parameter asymptotic behaviour in
the previous section, we assumed that vn cannot be vanishingly small. Now we con-
sider the possibility vn � 1.

Multiplying Equation (3.3) by vn we get

(v + v + v)v = −2v +
γn
t2
. (3.7)

where v = vn, v = vn+1 and v = vn−1. The left-hand side of Equation (3.7) is of or-
der O

(
v2
)

- while the two terms on the right-hand side are of order O(v) and O(1)
respectively. The method of dominant balances thus suggests

v ∼ γn
2t2

,

and one can see that this behaviour is consistent with Equation (3.7) by recursive sub-
stitution.

Starting with this behaviour, we find a formal series solution of the form

vn =

∞∑
k=1

ak(n)

t2k
, (3.8)

for t→∞. To find the coefficients ak(n), we substitute this series into Equation (3.7).
This substitution results in the equation

∞∑
k=1

∞∑
l=1

(ak + ak + ak) al
t2k+2l

= −2
∞∑
k=2

ak
t2k

,
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where we have used the value a1(n) = γn/2. Letting m = k+ l, and changing the order
of summation, we find

∞∑
m=2

m−1∑
k=1

(ak + ak + ak) am−k
t2m

= −2

∞∑
k=2

ak
t2k

.

Thus, one gets the recurrence relation

−2am =

m−1∑
k=1

am−k (ak + ak + ak) . (3.9)

Taking γn = γ0 +n, one can explicitly calculate the first few coefficients, as given in
Table 3.1

k ak(n)

1 1
2 (γ0 + n)

2 −3
8 (γ0 + n)2

3 9
16 (γ0 + n)3 + 3

16 (γ0 + n)

4 −135
128 (γ0 + n)4 − 81

64 (γ0 + n)2

5 567
256 (γ0 + n)5 + 783

128 (γ0 + n)3 + 315
256 (γ0 + n)

6 −5103(γ0+n)
6

1024 − 26325(γ0+n)
4

1024 − 18711(γ0+n)
2

1024

TABLE 3.1: The coefficients ak(n) for γn = γ0 + n and 1 ≤ k ≤ 6.

One can see that each of the coefficients ak listed in Table 3.1 is a polynomial of
degree k in the variable γ0 + n. This is shown to be true in the following result:

Proposition 3.4. For every positive integer k there exist coefficients dk,1, . . . , dk,k such that

ak(n) =
k∑
l=1

dk,l(γ0 + n)l.

Proof. Table 3.1 shows that the base case for a proof by induction is valid. Assuming
the proposition holds for all positive integers k < m, the recurrence relation (3.9) gives

am = −1

2

m−1∑
k=1

m−k∑
l=1

dm−k,l(γ0 + n)l
k∑
p=1

dk,p [(γ0 + n+ 1)p + (γ0 + n)p + (γ0 + n− 1)p] ,

which is a polynomial of degree m in γ0 + n.

Letting γ0 = 0, and plotting the ratios

am+1(n)

am(n)
(3.10)

for various values of n, we observe the fact that they appear to behave like−(m+n−1)
(see Figure 3.1). Furthermore, in the case where γ0 = 1/2, the ratios (3.10) seem to
behave like − (m+ n+ 1/2− 1), as presented in Table 3.2. These cases lead to the
asymptotic recurrence relation

am+1(n) ∼ −(m+ γ0 + n− 1)am(n)
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20 40 60 80 100

−100

−80

−60

−40

−20

m
am+1/am

FIGURE 3.1: The ratios am+1(n)/am(n) for γ0 = 0 and n = 1 (solid), 5
(hollow) or 10 (plus).

which can be solved exactly, suggesting Conjecture 3.5:

m am+1(1)
am(1) −(m+ 1 + 1/2− 1)

1 -1.125 -1.5
50 -50.522 -50.5

100 -100.511 -100.5
150 -150.507 -150.5
200 -200.505 -200.5
250 -250.504 -250.5
300 -300.503 -300.5

TABLE 3.2: Ratios of consecutive coefficients am(1) and their linear
growth for γ0 = 1/2.

Conjecture 3.5. We have for any fixed n

am(n) ∼ Cn(−1)m+1Γ(m+ γ0 + n− 1))

Γ(γ0 + n)
,

where Cn is some real coefficient. Thus, the asymptotic series (3.8) diverges.

3.4 Convexity-Like Approach

The discrete first Painlevé equation can also be studied in a similar way to second order
ODEs where the first derivative of the dependent variable does not appear explicitly.
This is done by rewriting it in terms of a difference operator as

∆2vn = −2− 3vn +
γn
t2vn

,
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where
∆2vn = vn+1 + vn−1 − 2vn.

Analogously with the continuous Painlevé equations, we examine the zero set of the
right-hand side

−2t2vn − 3t2v2n + γn
t2vn

= 0.

In terms of vn the solutions are

vn = −1

3
±
√
t2 + 3γn

3|t| ,

which are real, provided that

γn ≥ −
t2

3
.

Figures 3.2,3.3, and 3.4 show some values of the solutions vn of Equation (3.3) with
the initial values v0 = 1, v1 = 2 and t = 1, t = 5 and t = 10. One can see that as t
increases vn appears better and better approximated by a sinusoidal wave of period
3, as predicted by Theorem 3.2. The special asymptotic behaviour of Equation (3.8)
appears to be unstable, hence a plot of the corresponding solution is not presented
here.

−10 −5 5 10

−5

5

n

vn

FIGURE 3.2: Starting with initial values v0 = 0.9, v1 = 1.2, the values of
iterates vn, with t = 1, are plotted as dots for each n in the interval
−10 ≤ n ≤ 10. Each dot is assigned a grayscale intensity that varies
with n so that vn with the largest n appears as black while those with
the smallest n appear as light gray. These dots are overlaid on the
convexity-like plot for Equation (3.3), in which shaded regions indicate
the positivity of ∆2vn.

3.5 Summary

In this Chapter, our main focus was the discrete first Painlevé equation d-PI in the
limit as its parameter t→∞. We have established its general asymptotic behaviour as
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−10 −5 5 10

−5

5

n

vn

FIGURE 3.3: Starting with initial values v0 = 0.9, v1 = 1.2, the values of
iterates vn, with t = 5, are plotted as dots for each n in the interval
−10 ≤ n ≤ 10. Each dot is assigned a grayscale intensity that varies
with n so that vn with the largest n appears as black while those with
the smallest n appear as light gray. These dots are overlaid on the
convexity-like plot for Equation (3.3), in which shaded regions indicate
the positivity of ∆2vn.
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FIGURE 3.4: Starting with initial values v0 = 0.9, v1 = 1.2, the values of
iterates vn, with t = 1, are plotted as dots for each n in the interval
−10 ≤ n ≤ 10. Each dot is assigned a grayscale intensity that varies
with n so that vn with the largest n appears as black while those with
the smallest n appear as light gray. These dots are overlaid on the
convexity-like plot for Equation (3.3), in which shaded regions indicate
the positivity of ∆2vn.

t → ∞ for the first time and related this to the analogous asymptotic behaviours we
found in PIV. However, we also discovered an additional behaviour, which could be
interpreted as a formal asymptotic series expansion of a discrete tronquée solution of
d-PI. We provided evidence that indicates that this expansion is a divergent and there-
fore hides a free parameter. Finally, we have also produced some numerical evidence,
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involving plots of solutions of d-PI, demonstrating the preceding analysis.



Chapter 4

Conclusion

In this thesis, we studied asymptotic behaviours of continuous and discrete Painlevé
equations. In particular, we focused on the second and fourth Painlevé transcendents
and studying behaviours that arise in the limit as their independent variable x → ∞.
Despite widespread interest and long history of such investigations, there are some so-
lutions, whose properties remain undiscovered. These are the solutions that Boutroux
called tronquée or tritronquée solutions. We establish concrete bounds on their domains
of existence and asymptotic validity.

One question that remains unanswered in the literature concerns the finite proper-
ties of solutions defined in such asymptotic limits. We have deduced some new results
in the finite domain for PII and for PIV.

For PII, perhaps the most famous solution in the literature is the so-called Hastings-
McLeod solution, which is a special case of a family of solutions that decay as x→ +∞
on the real line [CM88]. We extend the study of this family of solutions to an interval
with a finite lower bound, which is given explicitly as a function of the free parameter
in the asymptotic behaviour.

For PIV, there are also families of solutions studied at infinity. However, the main
interest has been in connection formulas between these behaviours. In this thesis, our
focus has been on the extension of these solutions to the finite domain. We start with
an analysis similar to [JK01], by studying regions of convexity of the solutions on the
real line. We identify a solution that lies between two parabolæ, which turns out to be
a tritronquée solution, in the sense defined by Boutroux. We provide numerical infor-
mation about this solution. In particular, we define and investigate a one-parameter
family of tangent solutions, and demonstrate evidence for its convergence to the tritron-
quée solution.

The above results were obtained in the limit x → ∞, but the role of Painlevé tran-
scendents as nonlinear special functions also suggests questions in other directions.
For example, recurrence relations for the solutions of PIV obtained from their Bäcklund
transformations, lead immediately to a discrete Painlevé equation known as d-PI. In
the latter equation, the parameters of PIV become the independent variable n, while
the independent variable is fixed as a parameter. We consider d-PI in the limit that the
latter parameter t→∞ and find two types of asymptotic behaviours.

We have also managed to use asymptotic data of continuous equations (PIV) to
deduce asymptotic behaviour of discrete equations (d-PI). Although it is not widely
known in the literature, PIV also has solutions that have power-like growth in the
asymptotic limit. It is likely that such solutions are related to special families of so-
lutions of d-PI. Moreover, relations of the same kind between other continuous and
discrete Painlevé equations may lead to similar results.

59
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One tool that has been used repeatedly is the contraction mapping theorem in the
context of an integral equation , arising from ODEs of the type

x′′(t)− q(t)x(t) = R(x(t), t). (4.1)

Thinking of the right-hand side as a function of t alone, that is, as a forcing term, al-
lowed us to formulate equivalent integral equations . If x1, x2 are linearly independent
solutions of Equation (4.1) with Wronskian

W ≡W (t) = x1(t)x
′
2(t)− x′1(t)x2(t)

then solutions of

x(t) = c1x1(t) + c2x2(t)−
∫ t

a

x1(t)x2(s)− x1(s)x2(t)
W (s)

R(x(s), s)ds

with fixed a, are all solutions of Equation (4.1). Furthermore, if the basis {x1, x2} is cho-
sen with particular behaviour at +∞, we may let a tend to +∞ and obtain an integral
equation which encapsulates one-parameter families of solutions of Equation (4.1) hav-
ing similar behaviour as t → +∞. This has been discussed here for the second- third-
and fourth- Painlevé equations, and the same reasoning remains valid when applied to
other equations.
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Numerics

A.1 The Painlevé Equations on the Real Line

A.1.1 One Parameter Family of Solutions of the Second Painlevé Equation

In this section, we will present a method that allows one to approximate the initial
values y(0) and y′(0) of solutions of PII, satisfying y(x)→ 0 as x→∞ (such as those in
Figure 1.7. Fixing the initial value

y(0) = y0 6= 0,

the convexity plot 1.7 suggests the following trichotomy:

• y(x) exists over an interval of the form [0, α), and has a constant sign there. In
addition limx→α− y(x) = sgn(y0)∞.

• y(x) = 0 for some positive value of x.

• y(x)→ 0 as x→∞.

Thus by modifying the initial slope y′(0) one can “close in” on the one that makes the
solution decay to zero.

A.1.2 Tangent Solutions for the Fourth Painlevé Equation

In this section we shall define and study numerically a 1-paramteric family of solutions
of (2.17).

Definition A.1. Let x0 > 0, the solution yx0 of (2.17) is defined as the one satisfying the
initial conditions

yx0(x0) =

√
x0
6

y′x0(x0) =
1

2
√

6x0

We shall refer to yx0 as the “tangent solution” of (2.17) based at x0, since its initial conditions
precisely describe tangency to the parabolic branch

y =

√
x

6

at the point x = x0.
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wp
x0 1 10 50 100

10 -3.322158202 -6.314226432 -5.837486777 -5.439292980
20 -3.322154914 -6.443308764 -7.474563554 -8.051176608
100 -3.322154914 -6.443308651 -7.474217811 -8.051715964

wp
x0 150 200 250 300

10 -5.726193681 -5.710288161 -5.889044098 -5.547082398
20 -8.418359479 -8.491892696 -8.580908904 -8.579835265
100 -8.434998404 -8.611994854 -8.795069863 -8.875642979

FIGURE A.1: The approximate position of the earliest pole smaller than
x0

In order to obtain high-precision results, we use the “StiffnessSwitching” method
in Mathematica’s NDSolve. Tables A.1 display the position of the earliest encountered
poles of the tangent solutions yx0 for various values of x0. One can also see how the
value of the parameter “WorkingPrecision” (wp) used affects the results.

−2 2 4 6 8 10

−2

−1

1

2

x

y

FIGURE A.2: Graph of the tangent solution yx0
of (2.17) with x0 = 1 and

WorkingPrecision=10
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FIGURE A.3: Graph of the tangent solution yx0
of (2.17) with x0 = 1 and

WorkingPrecision=20
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FIGURE A.4: Graph of the tangent solution yx0 of (2.17) with x0 = 1 and
WorkingPrecision=100
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FIGURE A.5: Graph of the tangent solution yx0
of (2.17) with x0 = 10

and WorkingPrecision=10
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FIGURE A.6: Graph of the tangent solution yx0 of (2.17) with x0 = 10
and WorkingPrecision=20
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FIGURE A.7: Graph of the tangent solution yx0
of (2.17) with x0 = 10

and WorkingPrecision=100
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FIGURE A.8: Graph of the tangent solution yx0 of (2.17) with x0 = 50
and WorkingPrecision=10
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FIGURE A.9: Graph of the tangent solution yx0
of (2.17) with x0 = 50

and WorkingPrecision=20
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FIGURE A.10: Graph of the tangent solution yx0 of (2.17) with x0 = 50
and WorkingPrecision=100
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FIGURE A.11: Graph of the tangent solution yx0
of (2.17) with x0 = 100

and WorkingPrecision=10
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FIGURE A.12: Graph of the tangent solution yx0 of (2.17) with x0 = 100
and WorkingPrecision=20

20 40 60 80 100 120 140

−5

5

x

y

FIGURE A.13: Graph of the tangent solution yx0 of (2.17) with x0 = 100
and WorkingPrecision=100
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FIGURE A.14: Graph of the tangent solution yx0
of (2.17) with x0 = 150

and WorkingPrecision=10
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FIGURE A.15: Graph of the tangent solution yx0 of (2.17) with x0 = 150
and WorkingPrecision=20
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FIGURE A.16: Graph of the tangent solution yx0
of (2.17) with x0 = 150

and WorkingPrecision=100
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FIGURE A.17: Graph of the tangent solution yx0 of (2.17) with x0 = 200
and WorkingPrecision=10
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FIGURE A.18: Graph of the tangent solution yx0
of (2.17) with x0 = 200

and WorkingPrecision=20
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FIGURE A.19: Graph of the tangent solution yx0
of (2.17) with x0 = 200

and WorkingPrecision=100
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FIGURE A.20: Graph of the tangent solution yx0 of (2.17) with x0 = 250
and WorkingPrecision=10
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FIGURE A.21: Graph of the tangent solution yx0
of (2.17) with x0 = 250

and WorkingPrecision=20
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FIGURE A.22: Graph of the tangent solution yx0 of (2.17) with x0 = 250
and WorkingPrecision=100
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FIGURE A.23: Graph of the tangent solution yx0
of (2.17) with x0 = 300

and WorkingPrecision=10
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FIGURE A.24: Graph of the tangent solution yx0
of (2.17) with x0 = 300

and WorkingPrecision=20
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FIGURE A.25: Graph of the tangent solution yx0
of (2.17) with x0 = 300

and WorkingPrecision=100
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A.2 The Painlevé Equations in the Complex Plane

In Chapter 1, we have presented figures displaying the pole distribution of solutions of
various Painlevé equations. The numerical method behind these, is based on the Padé
approximant . The Padé approximant of order [m/n] of a function f(x) is the rational
function

Rm,n(x) =

∑m
j=0 ajx

j

1 +
∑n

k=1 bjx
j
,

satisfying

f(0) = Rm,n(0),

f ′(0) = R′m,n(0),

f ′′(0) = R′′m,n(0),

...

f (m+n)(0) = R(m+n)
m,n (0).

A.2.1 The First Painlevé Equation

The Maclaurin series of degree n of a solution of PI can be found by recursively defining
the derivatives

d [ n_ ] := d [ n ] = Expand [D[ d [ n − 1 ] , x ] / . y ’ ’ [ x ] −> 6 y [ x ]^2 − x ]

with the initial conditions

d [ 0 ] = y [ x ] ; d [ 1 ] = y ’ [ x ] ;

The command

L i s t P l o t [ { Re [ # ] , Im [ # ] } & /@ ( x /.
NSolve [ Denominator [

PadeApproximant [
Sum[ ( d [ k ] / . { y [ x ] −> y0 , y ’ [ x ] −> y1 , x −> 0} ) / k ! x^k
, { k , 0 , m+n } ] , { x , 0 , {m, n } } ] ] == 0 ] ) ,

PlotRange −> {{−10 , 1 0 } , {−10 , 1 0 } } , AspectRatio −> 1]

then produces that Padé approximant of order [m/n] of the solution of PI with the
initial conditions y(0) = y0, y′(0) = y1, and plots its poles.

In particular, in Figure 1.1 we have used the Padé approximant of order [80/80]
with initial conditions y(0) = y′(0) = 0, in Figure 1.2 we have used the Padé approxi-
mant of order [100/100] with initial conditions [100/100] with initial conditions y(0) =
0.16, y′(0) = 0.2193934573994778462, and in Figure 1.3 we have used the Padé approx-
imant of order [100/100] with initial conditions y(0) = −0.1875543083404949, y′(0) =
−0.3049055602612289.

A.2.2 The Second Painlevé Equation

The high-order derivatives of a solution of PII can be defined recursively, by

d [ n_ ] := d [ n ]
= Expand [D[ d [ n − 1 ] , x ] / . y ’ ’ [ x ] −> 2 y [ x ]^3 +x y [ x ] ]
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with the same initial conditions as in the case of PI

d [ 0 ] = y [ x ] ; d [ 1 ] = y ’ [ x ] ;

Producing the figures for the second Painlevé equation follows the same lines as in the
case of the first Painlevé equation. In Figure 1.8 we have used the Padé approximant of
order [60/60] with the initial conditions y(0) = 0.1, y′(0) = −0.07348321929513198102,
and in Figure 1.9 we have used the Padé approximant of order [60/60] with the initial
conditions y(0) = 0.3670615515480784, y′(0) = −0.2953721054475501.





Appendix B

Asymptotic Expansions

In this appendix, we define asymptotic notations, which enable us to compare func-
tions to other known functions.

Definition B.1. Let F : D → C and G : D → C be two functions defined over a domain
D ⊆ C. Suppose that x0 is a limit point of D, and let ρ be a path lying in D with x0 as an
end-point. Assume |G(x)| is bounded below, i.e., non-zero, along ρ.

1. F is said to be much much less than G as x→
ρ
x0, or

F � G, as x→
ρ
x0,

if and only if

lim
x→
ρ
x0

F (x)

G(x)
= 0.

2. F is said to be asymptotic to G as x→
ρ
x0, or

F ∼ G, as x→
ρ
x0,

if and only if

lim
x→
ρ
x0

F (x)−G(x)

G(x)
= 0,

⇔
lim
x→
ρ
x0

F (x)

G(x)
= 1.

3. F is said to be of the order of G as x→
ρ
x0, or

F = O
(
g
)
, as x→

ρ
x0,

if and only if

there exists a constant K such that lim
x→
ρ
x0

∣∣∣∣F (x)

G(x)

∣∣∣∣ ≤ K.
Remark B.2. Note that there are some alternative notations for the above concepts.

F � G as x→
ρ
x0 ⇔ G� F as x→

ρ
x0,

F � G as x→
ρ
x0 ⇔ F = o

(
G
)

as x→
ρ
x0.
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Where the path ρ is understood from the context, we omit it for simplicity.

Let ρ be the positive real-axis R+ and x0 be infinity. In this case, we write x→ +∞
instead of x →

R+
∞.

In Definition B.1, we saw how to approximate F by G in a limit, which leaves a
correction term: F (x)−G(x). In general, taking more and more corrections leads to an
infinite series of approximations given in terms of “reference functions1”Ṫhe simplest
reference functions are powers of (x− x0), for the limit x→

ρ
x0. Given a function F (x)

and a limit x→ x0, Poincaré defined asymptotic series in the following way.

Definition B.3. F is said to be asymptotic to the series
∑∞

k=0 ak(x − x0)k as x →
ρ
x0, if

and only if for each integer N ≥ 0, we have

lim
x→
ρ
x0

F (x)−∑N
k=0 ak

(
x− x0

)k(
x− x0

)N = 0. (B.1)

In that case, we write

F (x) ∼
∞∑
k=0

ak
(
x− x0

)k
, x→

ρ
x0.

In the case when x0 =∞, the asymptotic series becomes
∑∞

k=0 ak/x
k.

Taylor series expansions of analytic functions2 provide simple examples of asymp-
totic series.

Example B.4. The function given by

exp(x) + exp(−1/x)

shares the same asymptotic series as exp(x), as x → 0+. Note that the term exp(−1/x)
lies “beyond all orders” of the power series expansion of exp(x) as x → 0+, since Poincaré’s
definition does not reveal this term in the limit.

The study of terms that are undetectable by the reference functions leads to what
are known as trans-series.

1See Olver [Olv97] for generalizations of reference functions.
2Recall that a function F (x) is analytic at a point x0 ∈ C if dF/dx exists in a neighbourhood of a. In that

case, we can expand the function in a Taylor series: F (x) =
∑∞
k=0 Fk(x− x0)

k and the result converges.
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