
1  

BONE MARROW FAT – A NOVEL QUANTIFICATION METHOD 

AND POTENTIAL CLINICAL APPLICATIONS 

 
 
 

 
BY 

 

 
ODDOM S DEMONTIERO 

MBBS, FRACP 

 

 

 

 

 

 
A THESIS IN SATISFACTION OF THE REQUIREMENT FOR THE 

DEGREE OF DOCTOR OF PHILOSOPHY (MEDICINE) 

 

 

 

 

 

 

 

 

 
MUSCULOSKELETAL AGEING RESEARCH PROGRAM DEPARTMENT 

OF MEDICINE 

FACULTY OF MEDICINE, THE UNIVERSITY OF SYDNEY 

APRIL, 2018 



2 

 

 

Statement of Originality 
 
 

This thesis is submitted to the University of Sydney in fulfilment of the requirement for 

the degree of Doctor of Philosophy. 

I declare that this submission is my own work and that it contains no material previously 

published or written by another person except where acknowledged in the text. Nor does 

it contain material that has been submitted, either in full or in part, for a degree at this or 

any other institution. 

I understand that if I am awarded a higher degree for my thesis entitled “Bone Marrow 

Fat- A Novel Quantification Method and Potential Clinical Applications” being lodged 

herewith for examination, the thesis will be lodged in the University of Sydney Library 

and be available for immediate use. I agree that the University Librarian (or in the case of 

a department, the Head of the Department) may supply a copy of the thesis to an 

individual for research or study, or to a library. 

 

 
 

Oddom Samban Demontiero 
 

 
 

April 2018 

 

 

 

 

 

 

 

Ethics Approval 
This research was approved by the Human Research Ethics Committee of the University of 

Sydney, and the Research Ethics Committee of Nepean Blue Mountains Local Health 

District. 

 

 

 

 

 

 



3 

 

 

Contents 

BONE MARROW FAT – A NOVEL QUANTIFICATION METHOD AND POTENTIAL 
CLINICAL APPLICATIONS ................................................................................................................... 1 

Statement of Originality ..................................................................................................................... 2 

Ethics Approval ..................................................................................................................................... 2 

Acknowledgements ............................................................................................................................. 7 

Publications Resulting During the Course of This Thesis ................................................... 10 

Presentations and Abstracts ......................................................................................................... 12 

ABSTRACT ............................................................................................................................................ 13 

1.0 Chapter 1: Introduction and Background .................................................................... 15 

1.1 Osteoporosis in the older population ......................................................................................................... 15 

1.2 Age related bone loss .................................................................................................................................. 17 
1.2.1 Secondary hyperparathyroidism ................................................................................................................... 19 
1.2.2 Gonadal sex steroid deficiency ..................................................................................................................... 20 
1.2.3 Bone marrow fat ........................................................................................................................................... 22 
1.2.4 Systemic fat distribution ............................................................................................................................... 25 
1.2.5 The role of exercise ...................................................................................................................................... 27 
1.2.6 Bone loss due to decreased bone formation .................................................................................................. 27 
1.2.7 Cathepsin K .................................................................................................................................................. 29 

1.3 Bone Marrow Fat........................................................................................................................................ 34 
1.3.1 Bone marrow adipocytes .............................................................................................................................. 36 
1.3.2 Pathophysiology in osteoporosis .................................................................................................................. 41 

1.4 Quantification of Bone and Bone Marrow Fat .......................................................................................... 44 
1.4.1 Invasive methods .......................................................................................................................................... 45 
1.4.2 Non-invasive methods .................................................................................................................................. 49 
1.4.2.1 Computed Tomography (CT) and Quantitative Computed Tomography (QCT) .................................. 49 
1.4.2.2 Peripheral QCT (pQCT) and High Resolution Peripheral QCT (hr-pQCT) .......................................... 54 
1.4.2.3 Microquantitative Computed Tomography (µ-CT) ............................................................................... 55 
1.4.2.4 Magnetic Resonance Imaging (MRI) ..................................................................................................... 56 
1.4.2.5 Dual X-ray Absorptiometry (DXA) ....................................................................................................... 59 
1.4.2.6 Quantitative ultrasound (QUS) .............................................................................................................. 60 
1.5 Summary of marrow fat and the aging skeleton ........................................................................................... 61 

2.0 Chapter 2 -Methodology ..................................................................................................... 54 

2.1 Computed Tomography (Chapters 5 and 6) ............................................................................................ 54 
2.1.1 CT Acquisition Protocol ............................................................................................................................... 54 



4 

 

 

2.1.2 CT Image Analysis Protocol ........................................................................................................................ 54 

2.2 Micro-CT (chapters 3 and 4) ..................................................................................................................... 63 

References ................................................................................................................................................................ 66 

3.0 Validation of noninvasive quantification of bone marrow fat volume with 
microCT in aging rats ....................................................................................................................... 98 

3.1 Introduction .............................................................................................................................................. 98 

3.2 Materials  and methods ........................................................................................................................... 99 
3.2.1 Animals ........................................................................................................................................................ 99 
3.2.2 Quantitative radiologic imaging ................................................................................................................ 99 
3.2.3 μCT  image analysis ..................................................................................................................................... 99 
3.2.4 Intra- and inter-observer reliability ........................................................................................................ 100 
3.2.5 Histology and histomorphometry .......................................................................................................... 100 
3.2.6 Statistical analysis ..................................................................................................................................... 101 

3.3 Results ....................................................................................................................................................... 101 
3.3.1 Invasive and non-invasive identification of marrow fat in young and old LOU rats ............................ 101 
3.3.2 Intra- and inter-rater reliability ............................................................................................................... 102 
3.3.3 Age-related changes and SliceOMatic validity ...................................................................................... 102 
3.3.4 Agreement  between SliceOMatic  and histology................................................................................... 103 

3.4 Discussion ................................................................................................................................................. 103 

3.5 References ............................................................................................................................................... 106 

4.0 Chapter 4: The effect of Dietary Fatty Acids on Bone Marrow Fat in a Murine 
Model of Senile Osteoporosis ...................................................................................................... 109 

4.1 Introduction .............................................................................................................................................. 109 

4.2 Materials and methods ............................................................................................................................. 112 
4.2.1 Ethics .......................................................................................................................................................... 113 
4.2.2 Animals ...................................................................................................................................................... 114 
4.2.3 Diets ........................................................................................................................................................... 115 
4.2.4 Bone morphological analysis ..................................................................................................................... 115 
4.2.5 Data Analysis ............................................................................................................................................. 118 

4.3 Results ....................................................................................................................................................... 119 
4.3.1 SAMP8 mice as a progeria model .............................................................................................................. 119 
4.3.2 Sunflower diet and marrow fat volumes..................................................................................................... 120 
4.3.3 Fatty acid enriched diets (Borage [ω-6] and Fish oil [ω-3]) and marrow fat volumes ............................... 120 

4.4 Discussion .................................................................................................................................................. 123 

4.5 References ................................................................................................................................................. 131 

5.0 Chapter 5: Anatomical Differences in Marrow Fat in a Cohort of Older Men: 
Correlation with Body Composition and Calciotropic Hormones. ................................. 137 



5 

 

 

5.1. Introduction .............................................................................................................................................. 137 

5.2 Subjects and Methods .............................................................................................................................. 142 
5.2.1 Subjects ...................................................................................................................................................... 142 
5.2.2 Biochemical analysis .................................................................................................................................. 143 
5.2.3 CT abdomen ............................................................................................................................................... 144 
5.2.4 Slice-O-Matic imaging analysis ................................................................................................................. 144 
5.2.5 Statistical analyses ...................................................................................................................................... 149 

5.3 Results ....................................................................................................................................................... 150 
5.3.1 Baseline characteristics .............................................................................................................................. 150 
5.3.2 Distribution of marrow fat at ROIs with age .............................................................................................. 151 
5.3.3 Associations of ROI fat volume with age, BMI, vitamin D status and glucose ......................................... 153 
5.3.4 Associations of fat volume with bone volume and BMD ........................................................................... 155 
5.3.5 Associations of fat volume with inflammatory cytokines, insulin resistance indicators and bone biomarkers

 155 

5.4 Discussion .................................................................................................................................................. 158 
5.4.1 Regional marrow fat depots and age .......................................................................................................... 158 
5.4.2 Relationship with BMD.............................................................................................................................. 160 
5.4.3 Marrow fat and BMI .................................................................................................................................. 161 
5.4.4 Marrow fat and Vitamin D ......................................................................................................................... 162 
5.4.5 Marrow fat and diabetes ............................................................................................................................. 163 
5.4.6 Marrow fat and markers of bone turnover and adipocyte activity .............................................................. 163 
5.4.7 Study limitations ........................................................................................................................................ 164 

5.5 References ................................................................................................................................................. 165 

6.0 Chapter 6: Effects of Calcium-Vitamin D3 and Exercise on Marrow fat in Older 
Men: An 18-Month Randomized Controlled Trial ................................................................ 174 

6.1 Introduction .............................................................................................................................................. 174 

6.2 Materials and Methods ............................................................................................................................ 176 
6.2.1 Study design ............................................................................................................................................... 176 
6.2.2 Participants ................................................................................................................................................. 177 
6.2.3 Screening and randomization ..................................................................................................................... 178 
6.2.4 Interventions ............................................................................................................................................... 178 
6.2.5 Measurements............................................................................................................................................. 181 
6.2.6 Statistical analysis ...................................................................................................................................... 183 
6.2.7 Study attrition and adherence ..................................................................................................................... 184 

6.3 Results ....................................................................................................................................................... 184 
6.3.1 Baseline characteristics .............................................................................................................................. 184 
6.3.2 Changes in marrow fat volume indices ...................................................................................................... 189 

6.4 Discussion .................................................................................................................................................. 192 

6.5 References ................................................................................................................................................. 196 

7.0 Chapter 7: Conclusions and Future directions ......................................................... 204 

7.1 Going forward .......................................................................................................................................... 209 



6 

 

 

8.0 Appendix ................................................................................................................................ 212 

8.1 Chapter 5 ................................................................................................................................................... 212 

8.2 Chapter 6 ................................................................................................................................................... 214 
 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 



7 

 

 

Acknowledgements 

I acknowledge that my supervisor, Professor Gustavo Duque, has contributed significantly 

to the work presented in this thesis- including study concepts, data analysis, data 

interpretation and the review of resulting manuscripts. I am in debt to Gustavo for his 

unconditional support and guidance in pursuing this doctorate. I thank him for his 

encouragement as a supervisor, colleague and a friend. His dedication to support and 

promote clinician scientists is inspiring. 

I am also thankful to Professor Richard Lindley for his guidance with this thesis in his 

role as co-supervisor. 

A number of colleagues and collaborators were involved in the design, 

implementation and data collection in the studies described in this thesis. I would like to 

acknowledge their important contribution, as well as describe my role, in the following 

chapters. My principal role was to study concepts, in particular, marrow fat quantification 

method, data analysis, interpretation and writing manuscripts. 

 

 

Chapter 3 
 

The study described in this chapter, validation of non-invasive quantification of marrow 

fat in aging LOU rats, was designed by Professor Gustavo Duque. The research program’s senior 

scientist, Wei Li, conducted all laboratory procedures involving animal specimens, including 

animal procurement; euthanasia; dissection; histomorphometry and micro CT imaging. Miss 

Emma Thembani provided research assistance support. 

My role included the design of the study; performing all the image analysis; 

completing all statistical analysis; data interpretation; and preparing and writing the 

published manuscript. 

Professor Gustavo Duque also provided guidance in writing this chapter. 



8 

 

 

Chapter 4 
 

The study “The Effect of Dietary Fatty Acids on Bone Marrow Fat in a Murine Model 

of Senile Osteoporosis” in this chapter is a sub-study of a previously published study by Dr 

Yohann Wittrant (Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, 

BP 10448, F-63000 Clermont-Ferrand, France, INRA, UMR 1019, UNH, CRNH Auvergne, 

F-63009 Clermont-Ferrand, France, and Equipe Alimentation, Squelette et Métabolismes, 

France) and his group. 

I am grateful for Dr Yohann Wittrant’s collaboration. Tasks in the study design, 

including animal procurement and care; specimen preparation; imaging; data measurement; 

and collection, were carried out by his team of researchers. I thank him for access to the data-

base of µCT images and associated clinical data. 

My role involved examining all the µCT images manually and completing analysis of 

these images; completing all statistical analysis; data interpretation; preparing and writing this 

chapter. Professor Gustavo Duque provided feedback in writing this chapter. 

 

 

Chapter 5 
 

I am thankful to Dr Alvin C Ng (Department of Endocrinology, Singapore General 

Hospital, Outram Road, Singapore) and his team for their collaboration. I thank Dr Ng for 

allowing us access to his data-base, making the study “Anatomical Differences in Marrow Fat 

in a Cohort of Older Men: Correlation with Body Composition and Calciotropic Hormones” 

possible. 

Dr Ng and his team were responsible for patient recruitment and data collection, 

including CT images. My role included performing all the image analyses; completing all 

statistical analysis and data interpretation; preparing and writing this chapter. Professor 

Gustavo Duque provided guidance in writing this chapter. 



9 

 

 

Chapter 6 
 

The study “Effects of Calcium-Vitamin D3 and Exercise on Marrow Fat in Older men: 

an 18- Month Randomized Controlled Trial” in this chapter is a sub-study of a previously 

published trial by Professor Robin M. Daly (Department of Medicine, The University of 

Melbourne, Western Hospital, Footscray, Melbourne 3011, Australia) and his group. I am 

grateful for Professor Daly’s collaboration. The study design, including participant recruitment 

and retention; conduct of the trial; and data collection were carried out by Professor Daly’s 

research team. I thank him for access to the data- base of CT images and clinical data. In 

addition, his feedback for the analysis of the data has been invaluable. 

My role involved examining the thousands of CT images manually and completing 

analysis of these images; completing all statistical analysis; data interpretation; preparing and 

writing this chapter. Professor Gustavo Duque provided feedback in writing this chapter. 

 

 

 

 
I would also like to acknowledge the support of my family (wife and best friend Minh Xuan, 

and my two angels Joranai and Apsara) and extended family for their love and patience, and 

my work colleagues for their encouragement during the chaos of work. 

 

 
Thank you all for your encouragement and support. 



1
0 

 

 

Publications Resulting During the Course of This Thesis 

Peer reviewed papers 

 

1. Marrow Adipose Tissue in Older Men: Association with Visceral and Subcutaneous Fat, 

Bone Volume, Metabolism, and Inflammation. Bani Hassan E, Demontiero O, Vogrin S, Ng 

A, Duque G. Calcif Tissue Int. 2018 Mar 26. 

2. Association Between Circulating Osteogenic Progenitor Cells and Disability and Frailty in 

Older Persons: The Nepean Osteoporosis and Frailty Study. Gunawardene P, Bermeo S, 

Vidal C, Al-Saedi A, Chung P, Boersma D, Phu S, Pokorski I, Suriyaarachchi P, Demontiero 

O, Duque G. J Gerontol A Biol Sci Med Sci. 2016 Sep;71(9):1124-30. 

3. Yield and cost-effectiveness of laboratory testing to identify metabolic contributors to falls 

and fractures in older persons. Johnson K, Suriyaarachchi P, Kakkat M, Boersma D, 

Gunawardene P, Demontiero O, Tannenbaum C, Duque G. Arch Osteoporos. 2015; 10:226. 

doi: 10.1007/s11657-015-0226-3. Epub 2015 Jul 21. 

4. Comprehensive nutritional status in sarco-osteoporotic older fallers. Huo YR, 

Suriyaarachchi P, Gomez F, Curcio CL, Boersma D, Gunawardene P, Demontiero O, Duque 

G. J Nutr Health Aging. 2015 Apr; 19(4):474-80. 

 

5. Phenotype of osteosarcopenia in older individuals with a history of falling. Huo YR, 

Suriyaarachchi P, Gomez F, Curcio CL, Boersma D, Muir SW, Montero-Odasso M, 

Gunawardene P, Demontiero O, Duque G. J Am Med Dir Assoc. 2015 Apr;16(4):290-5. 

6. Clinical Outcomes of Impaired Muscle and Bone Interactions. Demontiero O., Boersma 

D., Suriyaarachchi P., Duque G. Clinic Rev Bone Miner Metab. 2014; 12:86–92. 

7. Postoperative prevention of falls in older adults with fragility fractures. Demontiero O, 

Gunawardene P, Duque G. Clin Geriatr Med. 2014 May; 30(2):333-47. 

8. Evaluation of a blended learning model in geriatric medicine: a successful learning 

experience for medical students. Duque G, Demontiero O, Whereat S, Gunawardene P, 

Leung O, Webster P, Sardinha L, Boersma D, Sharma A. Australas J Ageing. 2013 Jun; 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Association+Between+Circulating+Osteogenic+Progenitor+Cells+and+Disability+and+Frailty+in+Older+Persons%3A+The+Nepean+Osteoporosis+and+Frailty+Study
http://www.ncbi.nlm.nih.gov/pubmed/25809813
http://www.ncbi.nlm.nih.gov/pubmed/25512216
http://www.ncbi.nlm.nih.gov/pubmed/24721372


1
1 

 

 

32(2):103-9. 

9. Effects of balance training using a virtual-reality system in older fallers. Duque G, Boersma 

D, Loza-Diaz G, Hassan S, Suarez H, Geisinger D, Suriyaarachchi P, Sharma A, Demontiero 

O. Clin Interv Aging. 2013; 8:257-63. doi: 10.2147/CIA.S41453. Epub 2013 Feb 28. 

10. Differing approaches to falls and fracture prevention between Australia and Colombia. 

Gomez F, Curcio CL, Suriyaarachchi P, Demontiero O, Duque G. Clin Interv Aging. 

2013; 8:61-7. doi: 10.2147/CIA.S40221. Epub 2013 Jan 20. Review. 

11. Aging and bone loss: new insights for the clinician. Demontiero O, Vidal C, Duque G. 

Ther Adv Musculoskelet Dis. 2012 Apr; 4(2):61-76. 

12. Vitamin D status in relation to postural stability in the elderly. Boersma D, Demontiero 

O, Mohtasham Amiri Z, Hassan S, Suarez H, Geisinger D, Suriyaarachchi P, Sharma A, 

Duque G. J Nutr Health Aging. 2012 Mar; 16(3):270-5. 

13. Supplementation with vitamin D and calcium in long-term care residents. Demontiero O, 

Herrmann M, Duque G. J Am Med Dir Assoc. 2011 Mar;12(3):190-4. 

14. Validation of non-invasive quantification of bone marrow fat volume with micro CT in 

aging rats. Demontiero O, Li W, Thembani E, Duque G. Exp Gerontol. 2011 Jun; 

46(6):435- 40. 

15. Once-yearly zoledronic acid in hip fracture prevention. Demontiero O, Duque G. Clin 

Interv Aging. 2009; 4:153-64. 

16. Prevention and treatment of senile osteoporosis and hip fractures. Duque G, Demontiero 

O, Troen BR. Minerva Med. 2009 Feb; 100(1):79-94. 

http://www.ncbi.nlm.nih.gov/pubmed/22456785
http://www.ncbi.nlm.nih.gov/pubmed/21333920
http://www.ncbi.nlm.nih.gov/pubmed/21256205
http://www.ncbi.nlm.nih.gov/pubmed/21256205
http://www.ncbi.nlm.nih.gov/pubmed/19503777
http://www.ncbi.nlm.nih.gov/pubmed/19277006


10 

 

 

Presentations and Abstracts 

 
Poster presentation at The 2010 Annual Scientific Meeting of The American Geriatrics 

Society (May, Orlando Florida) “Increasing Levels of Marrow Fat are site specific: The Fat 

Against Trabeculae (FAT) Study” 

Poster presentation at American Society of Bone Mineral Research Conference 

(September, Denver Colorado) “Validation of Non-invasive Marrow Fat 

Measurement by Micro CT in Aging LOU Rats” 

 

 
Awards and Scholarships 

 

2012 American Geriatric Society Annual Scientific Meeting - Merck New Investigator 

Award 

2012 Best Poster Award at The 2012 Annual Scientific Meeting of The American 

Geriatrics Society (Seattle, WA) “Fat infiltration of the pancreas is associated with 

vitamin D deficiency in older men” 

2011 Nepean Medical Research Foundation Research Grant Award 

2011 Nepean Medical Research Foundation Equipment Grant Award 

2010 Nepean Medical Research Foundation Isobel Corin Travel Award 

2009 Award – Nepean Scientific Day: Best Oral Presentation by Medical Registrar 

2009 Scholarship – Rebecca Cooper Medical Research Foundation



13 

 

 

ABSTRACT 
 

Ageing bone is characterised by increased marrow fat infiltration altering its 

composition and microstructure, thus predisposing the person to osteoporosis. Yet to date, 

non-invasive quantifications of marrow fat are limited to special MRI techniques, and 

clinical studies examining marrow fat in the ageing skeleton are scarce. 

Thus, the key aims of this thesis are to:  

  Validate a new non-invasive technique of marrow fat quantification using 

CT technology  

  Determine the effects of dietary fatty acids on marrow fat  

  Measure marrow fat content in different skeletal regions in healthy older 

men   

  Determine the effect of exercise and calcium on marrow fat. 

The imaging techniques employed in our animal and human studies were micro CT 

(µCT) and quantitative CT (QCT) respectively. All images were analysed with the imaging 

software Slice O Matic version 4.1 (Tomovision). Regions of interest [ROIs] were 

Volumes of interests (VOIs) of bone, fat and blood measured in µm3 or mm3. Individual 

tissue volumes, expressed as percentages of the total marrow volume, and ratios of tissue 

volumes were also used in the analysis. 

Global and local thresholds for individual tissue volumes were determined 

separately for µCT and QCT. Thresholds for µCT were those derived from the initial 

validation study, whereas those for QCT were based on previous published data. To 

account for partial volume averaging effects, further manual refinement of threshold 

ranges were undertaken by inspection of individual pixels and their neighbours. This 

manual process was carried out for both µCT and QCT to derive local thresholds for use in 

manual segmentation and computation of volumes. 
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Our validation study showed that quantification of marrow fat using µCT was 

reliable and accurate compared to the gold standard technique- histology- when reliably 

definedthresholds were used. Good agreement between tissue volumes measured by 

histology and those computed by the imaging software was demonstrated. We applied this 

technique to quantify marrow fat in an animal model of senile osteoporosis, and showed 

that fatty acids (ω- 3 and ω-6) had dual effects on bone. With QCT studies, we confirmed 

the age related increase in marrow adiposity, and more significantly, different ratios 

between fat and bone in common fracture regions. Similarly, exercise affects marrow fat 

differently in different regions, and there was a trend to statistically significant changes to 

marrow fat with exercise. 

In conclusion, this body of work showed that quantification of marrow fat using CT is 

promising, and has future clinical implications. However, significantly more clinical 

studies are needed to confirm these findings and refine shortfalls in quantification 

capabilities. 
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1.0 Chapter 1: Introduction and Background 
 

1.1 Osteoporosis in the older population 

Osteoporosis has been defined as a decline in bone mass and altered micro-

architecture, associated with a preponderance to fragility fractures.1 In clinical practice, it 

is defined as a T score of -2.5 measured by DXA as recommended by the World Health 

Organisation (WHO) or by the occurrence of a fragility fracture. 

There are a number of risk factors that interact overtime to reduce bone mass and 

negatively impact bone quality. Bone quality has been operationally defined as the 

combination of characteristics of bone that allow it to resist fracture. These characteristics 

include microarchitecture, accumulated microscopic damage, the quality of collagen, the size 

of mineral crystals and the rate of bone turnover. Risk factors that impact these qualities and 

bone mass range from unmodifiable factors such as gender, age, race, family history and 

body built to modifiable factors including hormone levels (sex hormone levels and hormone 

levels from the thyroid, adrenal and parathyroid), dietary factors (low calcium intake, eating 

disorders, gastrointestinal surgery), medications (steroids, anticonvulsants, PPIs, 

immunosuppressants in setting of cancer treatments and transplant rejections), medical 

comorbidities (celiac disease, inflammatory bowel disease, kidney or liver disease, cancer, 

lupus, multiple myeloma, rheumatoid arthritis) and life style factors (sedentary lifestyle, 

excessive alcohol and tobacco consumption). 

Among these risk factors for osteoporosis, aging is the most important.2, 3 For Caucasian 

women in the United States, the prevalence is 15% at age 50-59 years and 70% at age 80 

years or older.4  In Australia, 5.9% of men and 22.8% of women aged 50 years and over have 

osteoporosis. The incidence of osteoporosis increases to 12.9% of men and 42.5% of women 

in those aged 70 years and above.5 However, in both countries the prevalence is expected to 

increase significantly with the aging population.  In Australia, 1.2 million people are currently 
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affected by osteoporosis and 6.3 million people have low bone density (osteopenia).5 The 

prevalence is expected to reach 3 million people by 2021 as a result of the ageing population.6 

This high prevalence may be explained by the combination of pathophysiological changes 

with ageing and the silent nature of the disease where the processes evolve unchecked. 

Unfortunately, a diagnosis of osteoporosis typically only becomes evident after fragility 

fractures occur.  

The rates for fragility fractures in people above the age of 60 years is up to 1 in 2 and 

1 in 3 in postmenopausal women and older men respectively.6 More importantly, a fragility 

fracture, especially the hip, predicts new fractures7-10 increases mortality10-12 and results in 

greater disability.13 The increased risk in all-cause mortality is greatest with a hip fracture 

during the first three months. The risk is estimated to be 5-8 fold higher in older adults. In 

fact, in the first 6 months after hip fractures, the 20% to 30% of deaths that occur in this 

period may be causally linked to the hip fracture itself.11    

Over time, the increased mortality rates persist but they are higher for men at any 

given age after a hip fracture.14 More than 25% of people will die within a year of having 

suffered a hip fracture and less than 30% of people will regain their previous ability to 

ambulate.15 Unfortunately, the prediction for the number of Australians who will suffer hip 

fractures remains bleak for the immediate and intermediate future. Over the next decade 

until 2026, it is projected to rise at a rate of 15% per five years. By 2051, when the 

projected population of Australians age 65 and over and 85 years and over reach 23% and 

8% respectively, the hip fracture rates are predicted to quadruple.16
 

Thus, it is evident that osteoporosis remains a major burden in the older population due 

to significant gaps in our knowledge with respect to the evaluation of overall bone health and 

effective therapies. Despite significant advancement in the understanding of the 

pathophysiology of osteoporosis over the last two decades, the underlying biology at both the 

cellular and molecular level remains a work in progress. The following section summarizes 
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the mechanisms of age related bone loss and highlights the gaps in our knowledge. 

 

1.2 Age related bone loss 

 
Bone tissue is dynamic, as it has a mechanical function as a structural support for soft 

tissues, muscles and nervous systems, plus a homeostatic function in storing and releasing 

calcium and haematopoiesis. To carry out its functions throughout the lifespan, bone 

continually regenerates itself by removing old bone (resorption) and replacing it with new 

bone (formation) (Figure 1). This active process takes place in dedicated areas or pits 

termed “bone metabolic units (BMUs)”.18 Each cycle of the process within each BMU is 

coordinated such that bone resorption is followed by bone formation. These cycles of new 

bone production (undertaken by osteoblasts) and bone destruction (carried out by 

osteoclasts) are connected and balanced tightly to preserve net bone mass and structural 

integrity. However, with increasing age this tight coordination and delicate balance is 

lost, resulting in a deficit in net bone formation relative to bone resorption. Ultimately, 

the deficiency in bone mass and strength reduction results in osteoporosis and propensity 

to fractures. 

Bone remodelling occurs throughout life. The bone formation phase is coupled 

firmly with the resorption phase in a relatively steady state for approximately the first 

thirty years of life. With some variances in bone turnover rates, women achieve 

maximum bone mass and size approximately by the ages of 15–20 whereas men achieve 

it later.19  Beyond the third decade however, predating any deficiency in sex steroids, bone 

loss starts to emerge. 20   
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Figure 1. Bone remodeling process. In the resting state, the bone surface is covered with 

bone-lining cells intercalated with preosteoblasts. B-cells are present in the bone marrow and 

secrete OPG, which suppresses osteoclastogenesis.The cycle of bone remodeling is carried by 

a group of osteoclasts and osteoblasts arranged within temporary anatomical structures 

known as “basic multicellular units” (BMUs). Activation – remodeling initiation signal is 

detected. Osteoclast precursors are recruited to the site and upon activation by receptor 

activator of NF-κB ligand (RANKL), secreted from osteoblasts, they fuse together to form 

multinucleated, active osteoclasts. Meanwhile, lining cells retract and underlying membrane 

is removed. Resorption - the mature osteoclasts attach to the bone surface by adhering to 

hydroxyapatite crystals. Subsequently, a sealing mechanism is formed and a ruffled border is 

created. Osteoclasts then begin resorbing bone by secreting collagenases and proteinases to 

solubilize the bone matrix. Osteoclasts diminish when the resorption is complete.  Reversal – 

the resorbed surface remains covered with undigested demineralized collagen matrix. 

Mononuclear cells of undetermined lineage, also called “reversal cells”, remove these 

collagen remnants and prepare the bone surface for the subsequent bone formation phase. A 

sugar-rich cement line is produced to help with bonding old bone and new bone. Formation - 

precursors of osteoblasts appear along the cavities and undergo mitosis and proliferate to 

become mature osteoblasts. These osteoblasts then deposit an unmineralized bone matrix 

called osteoid at the cavities. As osteoblasts become embedded within the matrix, they 

synthesize, become inactivated and differentiate into osteocytes on the surface and regulate 

bone remodeling processes. Mineralization – this calcification process begins a few days 

after the osteoid is deposited. Over several months, the osteoid becomes mineralized with 

calcium and phosphorus forming the new bone. Finally, the bone surface is restored and 

covered by the protective lining cells, and remains quiescent till the next cycle.17  
 

Once “peak bone mass” is reached, the bone remodelling rate slows down with 

predominant phases of bone resorption and over bone formation, as demonstrated by 

studies showing a rapid reduction in bone turnover markers.19 Later, in the post-

menopausal state, oestrogen deficiency in women markedly increases “bone resorption” 

further accelerating “age related bone loss.” 

Compared to menopausal related bone loss, the mechanisms responsible for the 

shift from a balanced bone turnover state to a net bone mass deficit state during ageing 
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remain not well understood.  

Macroscopically, “age related bone loss” is evident at surfaces of bone due to two 

simultaneous yet opposing processes. At individual “BMU” sites, resorption occurs inside 

surfaces of the bone (endosteal) and formation occurs on outside surfaces of the bone 

(periosteal apposition). Overall, bone losses from endosteal resorption are compensated 

adequately by concurrent steady periosteal apposition prior to the fourth decade. In both 

sexes, beyond the fourth decade bone turnover rates slow down, resulting in net bone loss 

at individual BMU sites.  From the fourth decade onwards, periosteal apposition can no 

longer keep up with escalating bone resorption associated with greater concentration of 

remodelling units at endosteal surfaces. “Although men and women have a similar 

decline in endosteal bone resorption, periosteal apposition is less affected in men.”21  

Overall, ageing leads to “cortical thinning, increased cortical porosity, thinning of the 

trabeculae and loss of trabecular connectivity, all of which reduce bone quality and 

consequently bone strength.”22
 

Other mechanisms proposed to contribute to bone loss with ageing include: 

secondary hyperparathyroidism; gonadal sex steroid deficiency; increasing bone marrow 

fat; leptin; serotonin; fat and muscle interactions; bone formation decline; cathepsin K and 

comorbidities  

 
1.2.1 Secondary hyperparathyroidism 

 

Deficiencies in either calcium or vitamin D can lead to secondary 

hyperparathyroidism.23 Globally, vitamin D deficiency is prevalent in older people.22 A low 

serum level of 25 Hydroxyl Vitamin D (25-(OH) D) concentration results in a low active 

form of vitamin D (1,25-(OH)2D), and reduced calcium absorption subsequently stimulates 

an parathyroid hormone (PTH) secretion. The “increased serum PTH subsequently 

increases osteoclastic activity and bone resorption, resulting in primarily cortical bone 
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loss.”23 Further bone loss also occurs due to impaired osteoblastogenesis and reduced bone 

formation as a direct consequence of vitamin D deficiency.  

A chronic net negative calcium balance can also occur independently of vitamin D. Low 

dietary intake, which commonly occurs with ageing, leads to reduced calcium absorption.24 

Subsequently, secondary hyperparathyroidism results when this deficiency is not 

adequately compensated through dietary intake or calcium supplements. 

Other factors that are associated with aging can also cause elevated levels of PTH. 

Common factors include impaired renal function; the use of loop diuretics, such as 

furosemide and estrogen deficiency. In women, the rapid bone loss occurring in the early 

phase of menopause is associated with some suppression of PTH secretion. However, PTH 

secretion gradually rises and increases bone turnover in the later stages.25 In men, a similar 

increase in PTH secretion is also seen with ageing.26,27 However, their effects on bone 

resorption may be tempered by normal circulating testosterone and other gonadal sex 

steroids. Thus, a direct role of PTH causing bone loss in ageing men is less certain.28 

 

1.2.2 Gonadal sex steroid deficiency 

 

Approaching menopause, ovarian function ceases, leading to reduced oestrogen 

levels and the beginning of rapid bone loss. During this menopausal phase, “serum 17b-

estradiol levels decrease by 85–90% and serum estrone levels decrease by 65–75% from 

mean pre- menopausal levels.” 29 Of greater significance, there are marked reductions in 

the levels of free sex steroids associated with aging. In fact, it has been shown that the start 

of bone loss may be associated with a serum bioavailable (non-sex hormone binding 

globulin [non-SHBG]-bound) oestradiol threshold of below 40 pmol/L.30 For most women, 

this period of rapid bone loss may continue for up to a decade after menopause. 

The mechanisms by which oestrogen deficiency induce bone loss are multiple and 

are relatively well elucidated. In general, oestrogen deficiency is associated with the loss of 

control and restraint over the mediators of bone resorption.31  Increasing “osteoprotegerin 
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(OPG)”, or “transforming growth factor β(TGF-β” production, and thus inhibiting the 

formation and reducing osteoclasts activity are usually the mechanisms by which oestrogen 

affects the resorption process.32,33 Oestrogen also suppresses “osteoblastic cells” and “T 

and B lymphocytes” production of RANKL as shown by both in-vitro and in-vivo 

studies.34,35   

The Receptor activator of nuclear factor kappa-Β (RANK)/ Receptor activator of nuclear 

factor kappa-Β Ligand (RANKL) signalling system plays a critical role in bone remodelling. 

RANK is a transmembrane protein member of the Tumor Necrosis Factor (TNF) receptor 

superfamily. It is expressed on osteoclast precursors, mature osteoclasts and other cells 

including dendritic cells, mammary gland cells and some cancer cells, including breast and 

prostate. RANKL is a membrane-bound homotrimeric protein secreted by osteoblastic and 

activated T cells. The coupling of RANK and its ligand (RANKL), expressed by osteoblasts 

in the local bone micro-environment, recruits osteoclast precursors to the site of resorption 

and promotes osteoclastogenesis from progenitor cells and activates mature osteoclasts. 

Directly by dampening “c-jun” activity and blocking “RANKL/macrophage colony-

stimulating factor (M-CSF)”-induced “activator protein-1-dependent transcription”, 

oestrogen enhances apoptosis and reduces differentiation of “osteoclast” precursor cells.36,37 

In addition, the production of cytokines that favour “bone resorption”, such as TNF-α, M-

CSF, prostaglandins and interleukin (IL)-1 and IL-6, may be suppressed indirectly by 

oestrogen.38 Finally, the actions of mature “osteoclasts” may also be directly inhibited 

through receptor-mediated mechanisms by oestrogen.39 Concurrently with declining 

oestrogen levels, low ovarian “inhibin B” and elevated follicle-stimulating hormones (FSH) 

during this menopause transition also escalate bone turnover.40   

In men, the generally accepted assumption was that low serum testosterone 

primarily contributed to bone loss associated with ageing. However, similar to women, a 

dominant role played by oestrogen has also been shown. Better correlations between 
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serum oestradiol and BMD, compared with testosterone and BMD at different skeletal 

sites, have been demonstrated in cross- sectional and observational studies involving 

ageing men.41-45 In fact, further studies investigating contrasting effects of testosterone 

and oestrogen confirmed that deficiency of the latter was more important in causing bone 

deterioration in ageing men46,47 and that these skeletal effects of “oestrogen” were not 

dependent on FSH.48 More significantly, a recent large prospective study of older men 

showed that low bio-available oestradiol levels correlated with a marked increase in 

fracture risk. Furthermore, after adjusting for “oestradiol” levels and in the presence of 

high “SHBG”, low levels of testosterone correlated with an elevated fracture risk.49 

Nevertheless, testosterone does contribute to reducing men’s fracture risk due to its 

positive influence on bone size during the growth and development phase in men.50
  

 

1.2.3 Bone marrow fat 

 

A prominent feature of age-related bone loss is the accumulation of bone marrow 

fat at the expense of bone tissue.51 This is evident from the 30s and 40s and it is an active 

process that is not dependent on oestrogen.52 Significant increases in marrow fat have been 

shown consistently in both ageing bone and osteoporotic bone from animal model biopsy 

studies53 and human studies.54, 55  

More recently, studies using MRI have also shown correlation between the amount 

of marrow fat (measured as marrow fat fraction) and increasing age.56,57 Furthermore, in 

osteoporotic men and women the relationship between marrow fat, volume tissue fraction 

and bone volume tissue fraction was inversed and independent of sex.58 These observations 

suggest that mesenchymal stem cells (MSCs) predominantly differentiate into adipocytes, 

rather than osteoblasts as we age.59 However, optimal conditions are needed for MSCs to 

be stimulated to differentiate into osteoblasts, including the recruitment of appropriate 

number of MSCs to adequate density and confluence, release of appropriate amount of 

growth factors, activation of lineage-specific transcription factors,59,60,62 and a good blood 
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supply within the bone marrow to achieve adequate oxygen tension.63  Ageing can alter 

these conditions and facilitate MSCs differentiation into adipocytes instead.62
 

Furthermore, the expressions of transcription factors specific for osteoblastic lineage 

and adipocyte lineages (runt-related transcription factor 2 (Runx2), Dlx5 and peroxisome 

proliferator-activator gamma 2 (PPAR-γ2) respectively),are affected by ageing.51,64 In aged 

MSCs, the expression of Runx2 and Dlx5 are decreased, as are osteoblast markers such as 

collagen and osteocalcin. Conversely, the expression of PPAR-2 is increased, as is a gene 

marker of adipocyte phenotype- fatty acid binding protein aP2.65  

Recently, there has been some evidence suggesting that lamin A/C, a nuclear envelope 

protein, could have an important role in MSCs differentiation. Lamins are intermediate 

filament proteins that make up the major components of the nuclear lamina. There are three 

types of lamins, which are classified into 2 classes in adult mammalian somatic cells: “A type 

(A, AΔ10 and C) and B type (B1 and B2).”66 Both A- and B-type lamins appear to be 

expressed in all cells, with the exception of T-cells and B-cells, which express only B-type 

lamins. The B-type lamins (lamins B1, B 2 and B3) are the initial building blocks of the 

lamina,67 and at least one B-type lamin must be expressed in a cell to ensure its viability.68 

Lamin A and C are type V filament proteins located in the matrix and nuclear lamina, and 

they regulate the differentiation processes of stem cells.69 Both proteins are encoded by the 

LMNA gene and are produced by alternative splicing. Lamin C is directly translated into its 

mature form. In contrast, lamin A undergoes post-translational modifications. Lamin A/C 

serves several functions- including stabilization of the nuclear membrane; regulation of gene 

expression; and cell cycle control. Mice carrying mutations in the lamin A/C gene or in genes 

encoding for lamin A/C–processing proteins had lower BMD; thinning of trabeculae and 

cortices, and they suffered from spontaneous fractures.68,70 Aged mice have been shown to 

display lower lamin A/C expression levels in osteoblasts and decreased numbers of lamin 

A/C–expressing osteoblasts in bone.71 
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With increasing age, normal osteoblasts expression of “lamin A” is decreased with 

direct effects on osteoblastogenesis.72 The degree to which lamins deficiency affect bone 

mass can be seen in those who suffer “Hutchinson Gilford Progeria Syndrome (HGPS)”. 

In HGPS, mutations in the “lamin A/C” gene73 cause significant bone changes such as 

“severe osteoporosis, osteolysis, bone deformities and spontaneous fracture.”70 Similarly 

in mice, abnormalities in “type A lamins” cause low “lamin A/C” levels and low BMD,71 

and deficiency of the “lamin A/C” processing enzyme (Zmpste24−/−) accelerates bone loss 

typical of “age related osteoporosis.” 74 The role “lamin A/C” has in osteoblastogenesis 

was further illustrated in a recent in vivo knockout “lamin A/C” mice study. “MAN-1” 

protein which co localizes with “Runx2” is expressed uninhibited in the absence of “lamin 

A/C” and this impairs the “Runx2” ability to promote osteogenesis.66 

Because ageing on its own is a potent stimulator of marrow adipogenesis, age related 

osteoporosis can be considered a form of lipotoxic disease22 and in fact marrow 

adipocytes have shown direct toxicity on osteoblasts.75 When adipocytes are co-cultured 

with osteoblasts, adipocytes proliferate and release adipokines and fatty acids into the 

bone marrow milieu,76 limiting osteoblasts’ survival and inhibiting their activity. 

Illustrating this lipotoxicity effect is the use of thiazolidenediones in diabetes. 

Thiazolidenediones induce PPARγ and they are linked to increased bone loss and risk of 

fractures.77 This is consistent with the suggestion that elevated levels of PPARγ within 

the bone marrow affect bone formation, and also stimulate bone resorption.78 In fact, in a 

mice model, “PPARγ was observed to directly regulate osteoclastogenesis”79 and PPARγ 

knockout mice showed significantly increased bone formation.80 Thus, it was considered 

that the inhibition of PPARγ could present a potential therapeutic pathway for 

osteoporosis. However, results from animal studies so far have been inconclusive. In one 

study, blocking PPARγ with the antagonist bisphenol-A-diglycidyl ether (BADGE) 

decreased marrow fat but did not increase bone mass in type 1 diabetic mice.81 Similarly, 
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in human MSCs subjected to antagonists of PPARλ, bisphenol-A-diglycidyl ether 

(BADGE), GW9662, and lentivirus- mediated knockdown of PPAR, adipogenesis was 

inhibited with no significant effect on osteogenesis.82 This contrasts with another study 

using mature male mice, whose phenotypes were shown to be appropriate models for use 

in studying endogenous, age-related osteopenia and senile osteoporosis.83 In this study, 

nine-month-old C57BL/6 mice treated with a PPARγ antagonist, bisphenol-A-diglycidyl 

ether (BADGE), alone or in combination with active Vitamin D (1,25[OH]2 D3) for 6 

weeks, had significantly increased bone volume relative to total tissue volume and 

improved bone quality compared with controls as reflected in the increased number and 

thickness of trabeculae and higher mineral apposition rate in cortical and trabecular 

bone.84 This anabolic response occurred with a significant increase in circulating levels of 

bone formation markers without changes in bone resorption markers, with higher levels 

of expression of vitamin D receptor within the bone marrow and in the absence of 

alterations in osteoclast number. 

 

1.2.4 Systemic fat distribution 

 

The role of body fat and its influence on bone has been intensely researched over the 

last two decades. Ample evidence has supported the belief that obesity conferred protection 

against osteoporosis after menopause.85,86 Some studies have shown a positive correlation 

between increased body weight (or body mass index) and BMD, and an association between a 

decreased body weight and bone loss.87-90 Other studies also showed that fat mass, the main 

index of obesity, was independently and positively related to BMD.91-95 Furthermore, the 

changes in fat mass also showed positive correlations with changes in BMD over time.89,96 

However, observations that fat mass may not be protective to bone in contrast to the studies 

above have also been reported.97 -99 Fat mass and bone mass were positively correlated when 

the impact of mechanical loading due to total body weight had not been factored in.  

However, when this was controlled, fat mass was inversely correlated with bone mass.100 
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Furthermore, when subjects were matched by BMI, significant negative associations (p < 

0.001) between fat mass (%) and bone mass were demonstrated in all BMI groups for both 

sexes. In addition, another study not only showed that fat mass was negatively related to bone 

mass, but that subjects with higher body fat content (%), independent of weight, had much 

higher risks of osteopenia, osteoporosis, and non-spine fractures.97 A number of exercise and 

drug intervention studies have also demonstrated this negative association between fat and 

bone. In one study, bone mass increased while fat mass reduced with physical exercise 101 and 

bone mass decreased while central obesity increased with glucocorticoids.10,103 

Clearly, the relationship between fat and bone is complex and given the conflicting 

data, several mechanisms are thought to play a role .105 One mechanism suggests that 

biologically active molecules secreted from adipocytes, such as oestrogen, resistin, leptin, 

adiponectin, and interleukin-6 (IL-6), affect human energy homeostasis and indirectly, 

bone and fat. Another potential mechanism involves the effects of bone-active hormones 

secreted from the pancreas (including insulin, amylin, and preptin). However, the net 

effect of fat mass on bone ultimately depends on the fate of MSCs. Pluripotent MSCs, 

which have equal potential to differentiate into adipocytes or osteoblasts, are regulated 

by several competing pathways and the balance of these interactions determine the net 

effect of fat mass on bone.  

Another important factor that contributes to bone loss seen with aging is the attainment 

of peak bone mass. The likelihood of developing osteoporosis at later stages of life is less in 

those who achieve higher peak bone mass, whereas the risk is greater in those with low levels 

of bone mass.105 Nevertheless, a myriad number of factors, such as corticosteroids usage; 

chronic diseases including malabsorption, anorexia nervosa and idiopathic hypercalciuria; 

and behaviours, such as smoking, excess alcohol consumption and physical inactivity, also 

contribute to fracture risk in 40% of men and 20% of women in the older population.106 

Finally, “although controversial still, sarcopenia, probably through reduced muscle loading 
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on bone, may also contribute to age-related bone loss.”105,93 

 

1.2.5 The role of exercise 

 

With ageing, mechanical loading declines with physical activity levels. Less 

mechanical loading diminishes the downstream stimulus upon osteoblasts to secrete 

OPG while increasing signals to express and secrete more RANKL, IL-1, IL-6, IL-11, 

and TNF-α. Consequently, these molecules directly enhance osteoclast activity and 

trigger an increase in osteoclast formation. Furthermore, lower levels of OPG increase 

availability of RANKL to bind RANK, further promoting osteoclastogenesis and bone 

resorption.22  These cellular and molecular events are also consistent with observations 

from animal studies investigating the effects of complete immobility on bone. These 

animal studies showed a striking imbalance in bone remodelling characterized by a 

transient but rapid increase in bone resorption phase that is followed by a persistent 

lower rate of bone formation.107  

Recently, lamin A/C an was shown to play a role in the anabolic response to 

exercise.108  Relative to their non-exercised counterparts, when “Lamin A/C 

haploinsufficient mice” undergo strenuous exercise, there is a depletion of osteoblasts, 

as well as osteocytes, leading to significant thinning of cortical and trabecular bone; 

whereas, with wild types, exercise exposure increased bone volume and bone cellularity. 

Similarly, it has been shown that functional loading in humans improves bone mass109 

and “exercise training programs can prevent or reverse almost 1% of bone loss per year 

in both lumbar spine (LS) and femoral neck (FN) for both premenopausal and 

postmenopausal women.”110 

 

1.2.6  Bone loss due to decreased bone formation 

 

Although reduced levels of sex steroids play a key role in the age-related decrease in 

bone formation, deficiencies in essential growth factors critical for osteoblast 
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differentiation/function may equally contribute. With ageing, the anterior pituitary secretes 

growth hormone less frequently and with decreased amplitude.111 Growth hormone levels may 

decline by 1.4% annually in both men and women,112 resulting in a reduction in hepatic 

synthesis of insulin-like growth factor (IGF)-1113and IGF-2 (its major role is as a growth 

promoting hormone during gestation).114 Other than decreases in the skeletal production of 

IGF-1 and IGF-2 locally and systemically, growth factor binding proteins may also play a role 

in the pathophysiology of age- related bone loss. Higher serum levels of IGF binding protein 

(IGFBP)-2 not only predicted lower BMD, but increased bone resorption, as evident by 

elevated markers independently of sex hormones, age and body weight.115
 

Changes in essential proteins, such as sclerostin, may also contribute to impaired bone 

formation. Predominantly secreted by osteocytes, the glycoprotein Sclerostin (SOST) 

inhibits osteoblastogenesis vigorously. By binding to “LRP5” and “LRP6”, SOST prevents 

the co-localization of these co-receptors with “frizzled protein” and “Wnt” signalling, thus 

impeding osteoblastogenesis and reducing bone formation.116 Furthermore, abnormalities 

of SOST at a gene level are associated with uninhibited bone formation. In the autosomal-

recessive disorder, “sclerosteosis”, a loss-of-function of the “SOST gene” causes 

progressive and excessive bone growth.117 Whereas, a deletion downstream from this gene 

causes reduced “SOST” expression and results in “van Buchem disease”, a milder form of 

“sclerosteosis,”118  and in animal studies, the phenotype of SOST-null mice is 

characterized by a high bone mass.119 Consistent with the above observations, 

pharmacologically inhibiting SOST produces significant anabolic effects. Animal model 

studies of postmenopausal osteoporosis aged ovariectomized rats treated with SOST 

neutralizing monoclonal antibody showed significant new bone formed in the trabecular 

region and at periosteal, endocortical and intracortical surfaces.110 More importantly, this 

antisclerostin antibody- induced bone formation is not accompanied by increases in bone 

resorption.120 SOST seem to mediate bone signals by responding to mechanical unloading. 

https://en.wikipedia.org/wiki/Gestation
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Mechanical unloading in SOST knockout mice did not induce bone loss.113 Promising 

results were also seen in humans with a recent phase I study, in which healthy men and 

postmenopausal women were administered a single dose of a SOST monoclonal antibody 

(AMG 785). Bone formation markers, such as procollagen type 1 N-propeptide (P1NP), 

bone-specific alkaline phosphatase (BAP) and osteocalcin, increased in a dose-related 

manner. Conversely, with the bone-resorption marker serum C- telopeptide (sCTx), a dose-

related decrease was seen.121
 

1.2.7 Cathepsin K 
 

The synthesis and release of cathepsin K (CTSK) from osteoclasts is the critical step 

during normal bone remodelling processes; in particular, the resorption phase.122-124 Bone 

resorption is initiated when osteoclasts avidly bind bone surfaces to form resorption pits. The 

acid medium that is produced inside these pits then dissolves the bone mineral component, 

revealing the organic matrix. Metalloproteinases and CTSK enzymes then degrade the 

exposed matrix. In human osteoclasts, RANKL plays a central role in activating and driving 

the differentiation of osteoclasts by stimulating CTSK mRNA and protein expression.125   

Indeed, any agent that induces formation and activation or inhibits activity of osteoclasts will 

enhance CTSK gene expression or suppress it respectively.126
 

Osteoclasts can be stimulated by a number of agents to increase CTSK production, 

including transcription factors (NFAT) cytokines (TNF, IL-1), nuclear receptors (PPARΔ/β), 

stretching, and proteins (extracellular matrix proteins (ECM)). Likewise, CTSK expression 

can be inhibited by agents, such as oestrogen, interferon-γ (IFN- γ), and OPG.122  

In a phase I study, odanacatib (ODN), a CTSK inhibitor, was well tolerated; had a 

long half-life; plus it showed marked and sustained suppression of bone resorption markers 

when administered weekly and daily with no influence on bone formation markers.127 In a 

follow up phase II study, postmenopausal women 128 administered ODN achieved dose 

dependent gain in BMD at all sites. The highest dose produced the greatest increase. In 
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addition, there were dose-dependent reductions in resorption markers in the first 6 months, 

which then increased and resembled placebo levels. Markers of bone formation increased 

significantly and at 12 and 24 months remained significantly different compared to a placebo.  

When this phase II was extended for another year to 3 years,129 50 mg of ODN 

treatment resulted in marked increases in BMD from baseline and from year 2 at the spine 

(7.9% and 2.3% respectively) and total hip (5.8% and 2.4% respectively). Urine cross-linked 

N-telopeptide of type I collagen (NTx) was suppressed up to 3 years (−50.5%), but bone-

specific alkaline phosphatase (BSAP) did not change from baseline. When treatment ceased, 

bone loss resulted at all sites, however, BMD persisted at or above baseline. Twenty- four 

months after discontinuation, there was a transient increase of bone turnover markers above 

baseline, but it was resolved 12 months later. There were no significant differences with 

adverse event rates between treatment groups.  

Observations were further extended to 5 years.130 Consistent increases in spine and 

hip BMD were seen in women continuously treated with Odanacatib (10-50mg) for 5 years. 

Those treated with 50mg of Odanacatib (n=13) showed the largest percentage change from 

baseline in spine and hip BMD (11.9%) compared to women who were switched to a placebo 

after 2 years (0.4%, n=14). At 5 years, bone resorption markers (NTX/creatinine and CTX) 

reduced by 55% with continuous ODN treatment (10-50 mg, n = 26-29) but bone formation 

markers (BSAP and P1NP) remained near baseline.  

A small phase III trial evaluated the effects of odanacatib at the hip and lumbar spine with 

QCT131, 132 distal radius and tibia with high resolution peripheral (HRp) QCT129 , bone 

turnover markers and areal BMD with DXA in 214 postmenopausal women with low bone 

density. After one year, there was a greater percentage change in BMD from baseline of 3.5% 

with odanacatib compared with a placebo.131 After 6 months, greater increases in trabecular 

volumetric BMD and estimated compressive strength at the spine and hip (P < .001) were 

shown in the treated women. At 2 years, bone mineral content, thickness, volume, and cross-



31 

 

 

sectional area also increased from baseline with odanacatib vs a placebo (P < .001) at the 

cortical envelope of the femoral neck. Bone-resorption marker C-telopeptide of type 1 

collagen was significantly lower with odanacatib vs a placebo at 6 months and 2 years (P < 

.001). Bone-formation marker procollagen I N-terminal peptide initially decreased with 

odanacatib but did not differ from a placebo by 2 years.  

At the proximal femur, QCT analyses132 showed significant gains in total hip integral 

(5.4%), trabecular volumetric BMD (vBMD) (12.2%), and cortical vBMD (2.5%) at 2 years 

with comparable gains also in bone mineral content (BMC) for integral and trabecular 

compartments but smaller differential increases in cortical volume (1.0% to 1.3%) and 

thickness (1.4% to 1.9%).  

Cortical geometry and bone strength analysis using HRp QCT133 showed significant 

increases in total, trabecular, and cortical volumetric BMD with treatment compared with a 

placebo (3.84% and 2.63% difference for radius and tibia, respectively). Similar 

improvements were seen with cortical thickness, cortical area, and strength (failure load) 

(2.64% at radius and 2.66% at tibia). In addition, trabecular thickness improved at the distal 

radius; attenuation of cortical porosity at a more proximal radial site; and significantly 

improved trabecular number and separation at the distal tibia. Safety and tolerability were 

similar between treatment groups.  

The usefulness of any anti-osteoporosis agents requires the demonstration of its anti-fracture 

efficacy and tolerability in a large phase III study. The LOFT134 (long-term odanacatib 

fracture trial) study was a large international, randomized, blinded, placebo-controlled study 

that included 16 713 postmenopausal women aged ≥ 65 years with a BMD T-score of -2.5 or 

worse at the total hip, or femoral neck, or a history of vertebral fracture and a T-score at the 

total hip or femoral neck of -1.5 or worse. Primary analysis showed 50 mg of odanacatib once 

a week for 3 years reduced the relative risk of new and worsening morphometric vertebral 

fractures by 54%, clinical hip fractures by 47%, clinical vertebral fractures by 72% and 23% 
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for clinical nonvertebral fractures.135 These risk reductions were evident across subgroups 

including age; race; bisphosphonate intolerance; pre-existing radiographic vertebral fracture 

and BMD at baseline.136 In a small sample of women (164), a second subgroup analysis137 

showed that compared to a placebo, odanacatib treatment (n=78) led to significant increases 

in trabecular, cortical, and integral volumetric BMD at the spine and total hip. In addition, 

finite element analysis showed associated increases in whole bone-estimated strength at both 

sites. In the pre-plan double blind extension study, which included 8257 women for a mean 

follow-up period of 44 months, continual odanacatib treatment resulted in relative risk 

reductions of 48% for hip fractures, 67% for clinical vertebral fractures, 52% for 

morphometric vertebral fractures and 26% for nonvertebral fractures. Associated with these 

risk reductions were mean increases in BMD at the lumbar spine and hip (10.9% and 10.3% 

respectively).13 

Although odanacatib seemed generally well tolerated, there were some safety 

concerns noted in phase II studies, and because of adverse events with other cathepsin 

inhibitors and significant adverse events associated with other osteoporosis agents, a number 

of categories of adverse events were assigned for further examination by external independent 

clinical adjudication committees.  

One category consisting of significant dermatologic (morphea-like skin lesions and systemic 

sclerosis) and serious respiratory infections was included, because these had been noted from 

phase II studies of another cathepsin inhibitor, balicatib. A skeletal category- given major 

skeletal adverse events, such as delayed fracture union; osteonecrosis of the jaw; and atypical 

femoral shaft fractures, which have been known to occur with antiresorptives- was included 

In addition, the category of major adverse cardiovascular events was included due to 

increased incidence of atrial fibrillation associated with Zoledronic acid and observations of 

atheroma stabilization in a murine genetic cathepsin K-null model of dyslipidaemia.  
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Despite reports of similar adverse events between odanacatib- and placebo-treated groups139-

140 in the major phase III study of the LOFT research, some adverse events were adjudicated 

to be more common with odanacatib. Diarrhoea and extreme pain were seen more frequently 

with odanacatib treatment, as was morphea-like lesions (13 cases with odanacatib (0.1%) 

compared with 3 cases with a placebo].135, 140 Incidence of serious respiratory infections 

systemic sclerosis, and delayed fracture union were similar to placebo groups. Osteonecrosis 

was not evident with either group although atypical femoral fractures were more common 

with odanacatib 10 subjects vs none in placebo (0.1% incidence).140-141  

The most concerning result, however, was the adjudicated difference in major cardiovascular 

events compared with a placebo.142 Although atrial fibrillation and atrial flutter events were 

more common in patients treated with odanacatib, the difference did not reach statistical 

significance (hazard ratio, 1.22; 95% confidence interval, 0.99 to 1.55). Similarly, incidence 

of major adverse cardiovascular events was greater with the odanacatib group vs the placebo 

group, but the difference also did not reach statistical significance. However, relative to 

treatment with a placebo, odanacatib treatment was associated with a statistically significantly 

increased risk of cerebrovascular accidents (hazard ratio, 1.37; 95% confidence interval, 1.10 

to 1.71; P < 0.01), most of which were ischemic rather than haemorrhagic. This independent 

analysis further noted that the earlier trend towards an increased risk of cerebrovascular 

accidents appeared to be further increased during the extension phase of LOFT. 

Subsequently, the study sponsor withdrew odanacatib from regulatory consideration by the 

U.S. Food and Drug Administration (FDA).  

Finally, another important and common extrinsic factor seen with ageing that reduces 

bone formation is the use of glucocorticoids. Glucocorticoids used in the treatment of 

common diseases such as COPD and RA affect bone directly and indirectly, plus they affect 

bone formation and to a lesser extent, resorption. On histomorphometry, the most prominent 

feature seen is reduced bone mass, which is seen more in cancellous bone than cortical. The 
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bone loss occurs in two stages- a rapid phase of bone loss due to resorption and a later phase 

of bone loss through reduced bone formation. In a study of healthy volunteers prescribed 5mg 

of prednisone, markers of bone formation serum P1NP and osteocalcin rapidly and 

significantly decreased. These changes reversed upon cessation of prednisone. 143  High 

concentrations of steroids reduced osteoblast numbers due to decreased formation of 

osteoblasts and increased osteoblast apoptosis. A similar picture is seen with osteocyte 

numbers and activity.144 Glucocorticoids induce the differentiation of MSCs into adipocytes 

and osteoblasts, but fail to induce terminal osteoblast differentiation. The transcription factors 

for adipocytes CCAAT/enhancer-binding proteins (C/EBPs), such as C/EBP, C/EBP and 

C/EBP and PPAR2, are upregulated whereas the expression of an osteoblast transcriptor 

such as osterix, responsible for terminal osteoblast differentiation, is diminished.145-147 

Glucocorticoids increase the expression of cytokines, including receptor of activator of NF-

kappa b ligand (RANKL), that are involved in differentiation of osteoclasts and conversely 

decrease those involved in inhibition of osteoclasts, resulting in a net increase in bone 

resorption.148 Indirectly, glucocorticoids contribute to bone loss through decreases in calcium 

resorption; suppression of sex hormones and growth hormones; and changes in parathyroid 

hormone pulsatility.148 The secondary hyperparathyroidism is subclinical and is considered a 

minor pathway for bone loss in glucocorticoid induced osteoporosis.  

 

1.3 Bone Marrow Fat  

 
Bone marrow fat (BMF) is composed of adipocytes and their products, which make part 

of the bone marrow milieu. These adipocytes contain a large lipid vacuole containing 

triglycerides made of a combination of saturated, mono or polyunsaturated fatty acid. The 

amount of BMF varies with age58,149, sex150,151 and disease states.56,58,152-155 

Bone cavities are predominantly filled with red hematopoietic marrow at birth and the red 

marrow is then gradually converted to yellow (fat marrow) during childhood. How this 
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transition occurs is not fully elucidated. Earlier thoughts were that adipocytes are 

metabolically inert under most physiological conditions and that this transition was a default 

pathway where mesenchymal cells, which could not differentiate into various tissue lineages 

such as muscle, bone or chondrocytes, enter fat lineage.156 However, studies emerging since 

have demonstrated an active role of adipocytes. Adipocytes can self-promote such that 

existing marrow adipocytes can induce differentiation of more MSCs into adipocytes156-157 by 

secreting paracrine, and autocrine factors such as adipokines, steroids, and cytokines158-159 

that can sustain or suppress adjacent marrow cells’ ability to carry out haematopoiesis and 

osteogenesis.160  

The conversion of bone marrow begins distally in peripheral bones then up to the 

axial skeleton. Then, by the age of 25, red marrow is limited to the axial skeleton, ribs 

and breastbone.161   In adults, the appendicular skeleton is the primary location for yellow 

bone marrow. However, quantities vary according to anatomical location (BMF is higher 

in long bones diaphysis than in the epiphyses); age (increases with age); and sex (BMF is 

higher in men than in women).55,58,161 Moreover, quantitative variations of BMF have 

been observed in several diseases, especially in osteoporosis.54,55,58
 

Marrow fat’s actions differs from other types of fat. Earlier animal model 

studies162,163 and more recent studies of anorexia nervosa patients164,165 showed that 

marrow fat did not have a role in energy metabolism during periods of severe calorie 

restriction. In addition, higher marrow fat content was not associated with higher body 

mass index or with increased cholesterol or triglycerides levels, indicating that BMF 

possess different characteristics that separate it from other adipose tissue and explains 

why it has a negligible metabolic role. In a mice model examining adipokine expression, 

compared with adipocytes from subcutaneous tissue, marrow adipocytes from ageing 

bone displayed a more “proadipogenic, anti-osteoblastogenic and proapoptotic 

phenotype”. Furthermore, marrow adipocytes derived from ageing mice demonstrated 
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higher toxic adipokine levels that have been linked to the stimulation of lipoapoptosis in 

other tissues.166   Lipoapoptosis describes a variety of deleterious effects resulting from 

ectopic fat deposits. Fatty acids and other metabolites released by adipocytes in these 

deposits affect the survival and function of surrounding cells.167 An example of an organ 

well known to be affected by lipotoxicity is the pancreas. Progressive fat infiltration of 

the pancreas leads to the release of fatty acids and production of ceramide,175 in addition 

to activation of apoptotic pathways in β cells resulting in cell death and affecting the total 

population of β cells and inducing pancreatic failure.168,169 

Another study compared fatty acid compositions of marrow fat with that of 

subcutaneous tissues from human subjects having varied bone densities. Concordant with the 

data from mice studies, fatty acid composition of marrow fat in this study differed from the 

composition of subcutaneous fat, and varied between marrow sites that are predominantly 

erythropoietic or fatty. Subcutaneous fat showed significantly higher monounsaturated fat and 

significantly lower saturated fatty acid concentration. This difference was reflected by a 

significant difference in the amount of many fatty acids between marrow and subcutaneous 

fat. Marrow fat obtained from the proximal femur had a higher saturated fat content than 

marrow obtained from the proximal tibia. More than half of the fatty acids differed between 

the two sites. The content of all fatty acids, except for cis-7-hexadecenoic acid [C16:1 (n-9)] 

and docosanoic acid [C22:0], was similar in all subjects irrespective of BMD. The marrow fat 

content of cis-7-hexadecenoic acid [C16:1 (n-9)] was significantly less in osteoporotic 

subjects compared to low bone mass subjects and normal subjects, while docosanoic acid 

[C22:0] was significantly lower in osteopaenic subjects compared to osteoporotic subjects.177 

 

1.3.1 Bone marrow adipocytes 
 

In the skeleton, mesenchymal stem cells (MSCs), erythrocytes, leukocytes, 

thrombocyte and their precursors constitute the bone marrow, which surrounds the skeletal 



37 

 

 

lattice elements called trabecular bone. A complex interplay of extracellular mediators 

such as growth factors, hormones, nutrients and certain physiologic and pathologic states 

then affect the expression and activation of lineage-specific transcription factors that 

determines the fate of MSCs. Differentiation of MSCs to a specific lineage in the bone 

marrow comprises two processes: cellular commitment to a specific lineage and the 

proliferation of these lineage-committed cells. A number of events involving extracellular 

and intracellular signalling are involved throughout both phases. 

Wnt gene transcription factors CCAAT/enhancer binding protein (C/EBP) and 

PPAR-γ are important for initiating adipocyte differentiation.171 Wnt signalling and 

activation of β-catenin through the canonical pathway inhibits adipogenesis primarily by 

blocking the generation of critical adipogenic transcription factors C/EBP and PPAR-γ 

and restrict preadipocytes to remain undifferentiated.171 Conversely, PPAR- induction is 

known to suppress the β-catenin signalling during adipogenesis.172 Deviation of MSCs 

down the adipogenesis pathway occurs after activation of the nuclear receptor PPAR-γ2 

by fatty acids or exogenous ligands173 and a number of other essential intermediary 

adipogenic transcription factors such as sterol regulatory element binding protein-1c 

(SREBP1c); phosphorylated cAMP response element-binding protein (pCREB); the zinc 

finger transcription factor KROX-20; Kruppel-like factor 5 (KLF5); CEBPβ and 

CEBP.153
 

PPARλ is part of the nuclear hormone receptor gene superfamily of ligand-

activated transcription factors and is expressed as two isoforms: PPAR-λ1 and PPAR-λ2. 

PPAR-λ2 is the predominant isoform found in adipose tissue whilst PPAR-λ1is expressed 

at lower levels but is found in many other cell types and tissues as well. All PPAR-λ 

isoforms play an important role in adipocyte differentiation, energy balance and lipid 

biosynthesis. Thus PPAR-λ is commonly referred to as the master regulator of 

adipogenesis, because no factor has yet been identified that can induce normal 
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adipogenesis in its absence. In addition, PPAR-λ is the focal point of adipogenesis, which 

all involved key cell signalling pathways converge on and factors that stimulate 

adipogenesis largely produce their effect by regulating this transcription factor.153,174 

As bone marrow ages, PPAR-λ2 expression on bone marrow cells increases.175 The 

increases in PPAR-λ2 levels are accompanied by higher levels of fatty acids,183 as well as 

impairment of osteogenesis, because  cyclooxygenase-2 and inducible nitric oxide 

expressions have been down regulated.176 In vivo, forced expression of PPAR-λ is 

insufficient to induce adipogenesis of satellite cells, implying that some other factors 

besides PPAR-λ expressions are needed to initiate adipogenesis in vivo.177 However, the 

presence of a ligand does not appear to be a requisite to maintain the differentiation of 

mature adipocytes, but rather for commitment of cells to the adipocyte lineage. This was 

made evident with the observation that differentiation of non-adipogenic fibroblasts with 

forced expression of PPAR-λ, required PPAR-λ activation via exposure to exogenous 

ligand, whereas the adipogenic differentiation of preadipocytes occurred in the absence of 

a ligand.64,177Exogenous ligands for PPAR-λ include derivatives of long-chain 

polyunsaturated acids, as well as thiazolidenediones (TZD). Indeed, treatment with 

rosiglitazone has been shown to inhibit osteoblastogenesis, while simultaneously 

stimulating marrow adipogenesis and markedly decreasing bone mineral density (BMD), 

bone volume and bone microarchitecture changes.178
 

A number of other extracellular ligands that modulate adipocyte differentiation of 

bone marrow-derived MSCs, along with potential interactions on osteoblastogenic 

differentiation pathways, have been identified, such as members of the hedgehog, 

delta/jagged, FGF, and IGF families of proteins.179 Among these, the role of hedgehog and 

its transcriptional effectors (members of the Ci/Gli family of zinc-finger proteins) has been 

the best described. Adipocyte differentiation of human MSCs is characterized by a 

decrease in hedgehog signalling, primarily as a consequence of decreased Gli expression. 
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Conversely, hedgehog activation was shown to interfere with adipocyte differentiation by 

reducing the adipogenic induction of C/EBPa and PPAR, as well as lipid accumulation.180
 

The delta and jagged family of proteins are the extracellular ligands for the notch 

receptors. The role of notch signalling in the adipogenic differentiation is highly complex, 

and remains poorly elucidated. Existing evidence provides support for both an inhibitory 

role and, alternatively, an absolute requirement for notch signalling in adipogenic 

differentiation.181  

Several hormones and growth factors have also been identified as important 

extracellular regulators of adipocytes. Commitment to adipocyte differentiation involves the 

cooperation of C/EBPs with PPAR2. C/EBP and C/EBP are induced in response to 

hormonal stimuli and, together, directly activate transcription of the PPAR2 gene182,183 and 

other genes linked to adipogenesis.184 Activation of PPAR2 transcription and transcriptional 

activation by ligand results in further activation of adipocyte marker genes. C/EBP and - 

are down-regulated as differentiation proceeds, and their transcription functions are thought 

to be replaced by C/EBP.185C/EBP cooperates with PPAR2 to activate adipocyte gene 

expression, and both factors are required for adipocyte differentiation.186 Thus, any of these 

transcription factors could represent targets for regulation by signalling pathways that affect 

adipogenesis. One signalling pathway that affects adipocyte differentiation is initiated by 

TGF-. TGF- regulates mesenchymal differentiation, inhibiting osteoblast189, myoblast190, 

and adipocyte differentiation.189,190  

TGF- signals through two types of transmembrane serine threonine kinase receptors-

Ligand binding to the type II TGF- receptor stabilizes complex formation with the type I 

TGF- receptor and induces activation of the type I receptor (TRI) by the type II receptor 

(TRII) kinase.192 Smads then act as signalling effectors.192,193C-terminal phosphorylation 

of Smad2 or Smad3 by TRI results in a conformational change that promotes 
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heteromerization with Smad4, and stimulates nuclear translocation of Smad complexes, 

leading to inhibition of adipocyte differentiation by TGF-.190 It was then shown that TGF- 

directly targeted either C/EBP or C/EBP,  inhibiting them without affecting C/EBP protein 

levels. C/EBP and C/EBP physically interacted with Smad3 and Smad4, and Smad3 

cooperated with Smad4 and TGF- signalling to repress the transcriptional activity 

of C/EBPs. Ultimately, the suppression of the activity of C/EBPs by Smad3/4 at C/EBP 

binding sites inhibited transcription from the PPAR2 and leptin promoters.194 In contrast, 

BMP2/4 cytokines, the largest member of the TGF-β super family of growth factors, 

commit MSCs to adipocyte lineage and/or enhance their differentiations via Smad-

dependent mechanisms, as well as p38 kinase.195 GH affects both proliferation and 

differentiation of preadipocytes. Both preadipocytes and mature adipocytes possess 

specific GH receptors. GH may mediate its actions via these receptors, but some effects 

are indirectly mediated through GH secretion of insulin-like growth factor-I (IGF-I) 

within adipose tissue.196
 

Apart from the switching that occurs through specific signalling pathways as 

describe in the previous sections, the number and size of adipocytes increase, resulting in 

higher marrow fat volume, paralleling advancing age.197 In humans, by the thirties, fat 

predominantly occupies the femoral cavity and the vertebral marrow is heavily infiltrated 

with fat, so much so that it can be visualized and quantified by magnetic resonance 

imaging scans.198 With increasing age, the microenvironment of the bone marrow changes 

to favour committing MSCs to differentiate into adipocytes. Despite the mechanisms 

underlying this switch remaining relatively unclear, it is thought to involve both intrinsic 

(occurring inside MSCs) and extrinsic mechanisms. 

Among numerous intrinsic factors underlying the switch of MSCs to favour 

adipogenesis telomerase and lamin A/C, are important determinants. Lifespan is 

prolonged and osteogeneic differentiation potential is maintained when telomerase is 
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stabilized.199 Furthermore, evidence from long-term culture showed that telomerized 

clones of human stromal cells displayed physical characteristics of hematopoietic-

supporting osteoblastic and myofibroblastic cells.200 Similarly, Lamin A/C plays a 

critical role in osteoblast differentiation,190,201 and where lamin A/C expression is 

reduced, for example, aging osteoblasts,72 MSCs predominantly differentiate into 

adipocytes74,201 and osteoblastogenesis is inhibited.74 Indeed, it has been demonstrated in 

mice deficient of lamin A/C, that agents capable of inducing lamin A/C activity- for 

example, zoledronic acid combined with statins- can correct osteoporotic phenotypes.202
 

As for extrinsic factors, associations have been shown between reduced marrow 

perfusion and increased oxidative stress levels;203 lower oestrogens levels;149 and declining 

osteogenic factors.65 A magnetic resonance imaging study in men (mean age = 73 years)56 

showed reduced vertebral marrow perfusion and higher marrow fat content in osteoporotic 

subjects compared to counterparts with osteopenia. In turn, osteopaenic subjects relative to 

those with normal BMD have reduced marrow perfusion and higher marrow fat content. In 

vitro studies have shown a direct association between hypoxia and increasing adipocyte 

differentiation,204 whereas oestrogen inhibits adipogenesis.205 Consistent with this, one 

study showed that oestrogen administration to postmenopausal women could mitigate 

rising marrow fat volume.206 The mechanism for the abating effect of oestrogen on marrow 

fat possibly relates to circulating MSCs, preserving their capacity to differentiate into 

osteoblasts in an oestrogen rich environment. This was demonstrated in a study comparing 

old and young oophorectomized mice. The old mice receiving supplemental oestrogen 

showed much lower marrow fat levels.149  

 

1.3.2 Pathophysiology in osteoporosis 

 

The role of adipocytes (direct and indirect) in the pathogenesis of osteoporosis has 

been interpreted as a type of lipotoxic disease (Figure 2).207The indirect role lies in the fact 
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that the fate of MSCs, whether it differentiates into adipocyte or osteoblast, is in a 

competitive balance, where the fate of one cell is promoted by the same mechanisms that 

inhibit the stimulation of the alternative lineage. Complex signalling pathways achieve this 

through “cross talking,” including those related to “bone morphogenic proteins (BMPs), 

wingless type mouse mammary tumour virus (MMTV) integration site (Wnt) proteins, 

hedgehogs, delta/jagged proteins, fibroblastic growth factors (FGF), insulin, insulin-like 

growth factors (IGF), and transcriptional regulators of adipocyte and PPARg and 

Runx2.”219 This reciprocal regulation is supported by numerous in-vitro experiments 

performed with bone marrow-derived MSCs, which have demonstrated that factors which 

induce adipogenesis inhibit osteoblast formation209,210 and, likewise, factors which induce 

osteoblastogenesis hinder adipocyte formation.211 Furthermore, the majority of conditions 

associated with accelerated bone loss, including ageing; glucocorticoid treatment;212,213 

increased cortisol production; osteoporosis and post- ovariectomy state;214,215also show 

increased adipogenesis in the marrow and decreased osteogenesis.216
 

As for direct effects, one example is their stimulatory effect on osteoclasts. An in 

vitro study showed that bone marrow adipocytes co-cultured with osteoclast precursor 

cells supported osteoclast differentiation.217 This effect of adipocytes is mediated through 

RANKL expressions.21 Furthermore, PPAR-λ and its ligands may also stimulate osteoclast 

differentiation and resorption.79
 

Adipocytes may further impact bone remodelling by releasing fatty acids 

(lipotoxicity) and adipokines (adipotoxicity), that could influence the development and 

function of stem cell precursors and mature osteoblasts and mature osteoclasts.219To what 

extent the degree of fat infiltration affects bone is still not clear; however, sufficient 

evidence exists to indicate that within the bone marrow microenvironment, fat and bone 

maintain an inverse relationship.  Co- culture experiments showing adipocytes inhibiting 

the proliferation of human osteoblasts confirmed this inverse relationship.75This inhibition 
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was shown to be due to polyunsaturated fatty acids220 in the marrow milieu;  Runx2 

expression and induced osteoblast apoptosis.221 Subsequent analysis demonstrated two fatty 

acids, stearate and palmitate, to be responsible for this lipotoxicity and indeed, when 

adipocytes were subjected to the fatty acid synthase inhibitor, “cerulenin”, the detrimental 

effects of fatty acids on osteoblast function and survival were negated.221
 

The adipokine, “Leptin”, is secreted from fat cells and is well known for its 

regulatory role of appetite, reproduction, and energy use. With respect to bone, after 

traversing the blood–brain barrier, it binds to a receptor in the “ventromedial nucleus” of 

the “hypothalamus” and induces activation of the sympathetic nervous system, reducing 

osteoblast activity and stimulating bone resorption. On the contrary, peripherally, leptin 

signalling increases cortical bone growth and triggers MSC to differentiate down the 

osteoblast lineage over adipocytes.222 Animal studies have shown that high bone mass 

associated with leptin deficiency is a result from decreased sympathetic tone innervating 

β2 adrenergic receptors in osteoblasts. However, the link between serum leptin and BMD 

remains uncertain, given that studies have equally reported positive and negative 

associations, especially after adjustments for body compositions.223
 

Given the increasing body of evidence that bone marrow adipogenesis is detrimental to 

bone formation, it would seem pertinent to consider the possibility of utilizing the degree of 

bone marrow adiposity as another correlate of bone quality. Although there is no consensus 

definition for “Bone quality”, it has been defined operationally as “the totality of features and 

characteristics that influence a bone’s ability to resist fracture.”224As such, it encompasses 

abnormalities in bone size; cortical thickness; porosity; trabecular number; thickness and 

connectivity; bone tissue mineral content; micro damage production; progression; cessation 

and removal; rate of remodelling; extent of resorption and formation in each BMU; osteocyte 

number and distribution; and periosteal apposition.225 Since we now know that the “pores” 

contain marrow fat and that marrow fat has a physiological role, it is plausible to argue that 
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the amount of marrow fat may reflect the level of activity of adipocytes within that bone 

region. Furthermore, it is plausible to imagine that the greater the amount of marrow fat 

within a volume of bone would proportionately affect the number, thickness and connectivity 

of trabecular bone. Thus, given that that the propensity to fracture results from a number of 

components failing, the addition of marrow fat volume, as another quantifiable component or 

risk factor, may improve the ability to predict fracture risk. 

 

Figure 2.207 Cross- communication within a network of extracellular stimuli, receptors and 

transcription factors affecting the differentiation of osteoblasts and adipocytes. The net 

outcome of the bone marrow milieu is determined by the result of the cross talk. sFFRP-1, 

secreted frizzled related protein 1, OPG, osteoprotegerin.  

 

 

 

1.4 Quantification of Bone and Bone Marrow Fat 
 

As illustrated above, a weight of evidence has shown that marrow fat plays an active 

and integral role in the pathophysiology of osteoporosis. Just like the amount of bone 

tissue, whether quantified as density or volume, reflects the net result of formation versus 
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resorption, so does the amount of marrow fat tissue. Thus, it makes physiological and 

clinical sense that quantification of this tissue would also reflect bone health. In fact, the 

rationale for the quantification of marrow fat is twofold. 

Firstly, the amount of fat tissue in the marrow cavities is determined by the 

commitment of MSCs entry into the adipogenesis pathway. This level of commitment has, 

in turn, been determined by the net outcome of the interactions of several pathways that 

lead to differentiation of MSCs into adipocytes. Thus, the degree of marrow adiposity 

would indicate whether the bone state is in one of predominant formation or resorption 

phase. In addition, the degree of adiposity would also indicate the lipotoxic state of the 

bone marrow milieu. 

Ultimately, the amount or degree of adiposity may be a clinical surrogate of bone 

health. Secondly, current therapeutics for osteoporosis mainly affect osteoblasts and 

osteoclasts. Considering the significant direct and indirect effects adipocytes have in 

the bone marrow milieu, therapeutics targeting adipocytes or precursors of adipocytes 

could increase the osteoporosis armament. Below is a review of the advances that have 

been made with marrow fat quantification thus far. 

 

1.4.1 Invasive methods 
 

Histomorphometry has been the primary method of evaluating the bone marrow- 

quantitatively (the amount of bone, haematopoietic and adipocytic tissue) and qualitatively 

(the cellularity).  

An early pathological association between bone marrow adipogenesis and 

osteoporosis came from the work of Meunier,55who reported a marked accumulation of 

adipocytes in iliac crest biopsies prepared from osteoporotic patients. In this study, 84 

subjects, comprising of those with clinical osteoporosis and those who were healthy, 

underwent iliac crest biopsies. Decalcified sections were stained in haematoxylin-eosin-
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safranin and undecalcified sections in osteochrome of Villa-neuva of Frost. All were 

analysed quantitatively using integrating Zeiss I eyepieces. Trabecular bone and marrow 

adipose tissue volumes were calculated. In the healthy group, trabecular bone volume ranged 

from 26% to 16% between the age of 20 and 65. In contrast, in the osteoporotic group, the 

trabecular bone volume was consistently below 16% irrespective of age. In the same age 

range, marrow adipose tissue volume increased from 15% to about 60% of the marrow 

cavity in the healthy group compared to an adipose tissue volume of greater than 35% in all 

osteoporotic individuals. More importantly, for the first time, a significant inverse 

relationship between trabecular bone volume and adipose tissue volume was demonstrated. 

This inverse relationship between bone and fat subsequently drove the “clonal switch’ 

hypothesis. Indeed, a number of in vitro studies using various animal models demonstrated an 

inverse relationship between osteoblastic and adipocytic differentiation of bone marrow 

stromal cell cultures.216, 217,226,227 One of the first in vivo studies to investigate this clonal 

switch and address a further question resulting from Meunier’s study was conducted by 

Hirano et al.228 They made histomorphometric measurements of the ratio of haemopoietic 

tissue to adipose tissue in osteoporotic women. A gradual decrease in hematopoietic tissue of 

the bone marrow was proportionate to the decrease in cancellous bone, regardless of age. On 

the other hand, the ratio of eroded perimeter/bone perimeter remained almost steady until 

hematopoietic tissue decreased significantly. The findings of this study suggested that 

decrease in hematopoietic tissue causes an imbalance in bone formation and resorption, and 

leads to bone loss. 

However, a number of other in vivo studies subsequently confirmed increased bone 

marrow adiposity in osteoporotic postmenopausal women, and an inverse relationship 

between bone formation and marrow adiposity.54,58, 149,213,229,230 

Justesen et al58 compared healthy individuals of different ages (age 30 -100) with those who 

have osteoporosis (age 52 -92). Fat and bone tissues were obtained through biopsies of the 
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iliac crests. Individual tissue volume of interest, namely adipose (AV), haemopoietic (HV) 

and trabecular (TV), were quantified as a percentage fraction of the total tissue volume 

(calculated as BV + AV + HV) using the point-counting method. This was in contrast to 

findings from previous studies, which found an increase in AV in osteoporotic patients only; 

thus, there was an age-related increase in AV and HV but a decline in BV was demonstrated. 

As well, there was an age-related inverse correlation between BV and AV that was 

independent of BMI. Osteoporotic patients, relative to their age-matched healthy 

counterparts, demonstrated increased AV, decreased BV and no significant difference in HV. 

Verma et al54 examined the ratio of adipose tissue to haemopoietic/stromal tissue in a sample 

of osteoporotic patients to investigate the differentiation of stromal cells from an osteoblastic 

to an adipocytic lineage. Bicortical iliac crest biopsies from 127 patients with established 

osteoporosis (47 male, 80 female) were examined. Patients ranged in age 5 to 80 with a mean 

age of 55. Primary osteoporosis accounted for sixty -seven patients; the remaining 60 cases 

were secondary osteoporosis, including 36 postmenopausal; 10 steroid induced cases; 12 

involving other endocrine dysfunction and two post gastrectomy cases. The control group 

consisted of 14 patients (nine female, five male), with an age range of 21 to 70 years (mean 

age 48). The ratio of adipocytic to haemopoietic/stromal tissue (A/H) was higher in OP bone 

than in the normal controls (OP mean 43.06% v normal mean 22.4%; p < 0.001). Age and 

several measures of bone formation (primarily cancellous apposition rate and osteoid volume) 

largely accounted for the variability in the A/H ratio.   

  More recent studies performed on iliac crest bone biopsies also demonstrate that 

marrow adipose tissue volume increases with age.  Burkhardt et al229 carried out a 

retrospective study, comparing fat and bone volume of normal persons of different age groups 

with age- and sex-matched groups of patients with primary osteoporosis and aplastic 

anaemia. Bone biopsies and post mortem samples were analysed by histology in both 

populations. Higher adipose tissue volume was demonstrated only in younger patients with 



48 

 

 

osteoporosis aged 27–52 years. However, the inverse relationship between percentage bone 

volume and fat volume in osteoporotic individuals was evident, and was similarly 

demonstrated with ageing. This age-related increase in fat tissue fraction was shown to be 

related to an increase in both the size of individual adipocytes and their number in another 

study.149   

Since increasing age in women parallel decreasing levels of oestrogen, Syed et al213 

examined the possibility that the observed increase in marrow adiposity associated with 

ageing would be in part due to oestrogen deficiency. They examined trans iliac bone biopsies 

of 56 postmenopausal osteoporotic women (mean age, 64 years) from an earlier randomized, 

placebo-controlled trial involving treatment either with a placebo (n = 27) or transdermal 

oestradiol (0.1 mg/d, n = 29) for 1 year. Adipocyte volumes/tissue volumes (AV/TV), and 

adipocyte numbers increased by about 20% in the placebo group. In contrast, the adipocyte 

numbers did not change, and the AV/TV decreased by 24% in the oestrogen group. Treatment 

with oestrogen also prevented increases in mean adipocyte size over 1 year.  

However, a more recent study examining the marrow fat bone relationship did not find an 

inverse relationship, as prior studies have found. Cohen et al230 compared marrow adiposity 

and bone formation; volume and microstructure measures quantified from tetracycline-

labelled trans iliac biopsy specimens in 64 premenopausal women with idiopathic 

osteoporosis (IOP) or idiopathic low bone mineral density (ILBMD), and 40 controls. Those 

with IOP and ILBMD had significantly higher adipocyte number, size, and volume than 

controls; independent of age, body mass index, and bone volume. However, an inverse 

relationship between adiposity and bone parameters was not observed. Interestingly, controls 

did show expected direct associations between marrow adiposity and age, and inverse 

relationships between marrow adiposity and bone formation; volume; and microstructure 

measures.  
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1.4.2 Non-invasive methods 

 

Over the last two decades, great advances have been made into the understanding 

of the ways in which bone responds to phenomena, such as aging, weightlessness, and 

treatment from a physiological and micro architectural perspective. Much of this has been 

achieved by a number of imaging techniques. Macro and micro-architectural parameters, 

such as bone size and geometry; fine cortical and trabecular structural detail; and marrow 

content have been assessed with techniques such as radiography; Dual-energy X-ray 

Absorptiometry (DEXA); Quantitative ultrasound (QUS); high resolution peripheral 

quantitative computed tomography (HR-pQCT); Quantitative Computed Tomography 

(QCT); micro CT (µCT) and Magnetic Resonance Imaging (MRI). 

 
1.4.2.1 Computed Tomography (CT) and Quantitative Computed Tomography 

(QCT) 
 

CT’s ability to delineate one tissue from another is based on the differential absorption of 

ionizing radiation by different tissues within an organ. The projections through objects 

generate the linear attenuation profile. The linear attenuation profile from each X-ray 

projection passing through the object is unique and combined to form a 3D reconstruction. 

For bone quantification, standard QCT is generally performed at the lumbar spine using 

routine clinical CT scanners with a mineral reference phantom scanned in the same field 

for calibration. The calibration phantom contains known different concentrations of 

hydroxyapatite equivalent material. The resultant attenuation of the lumbar vertebrae 

measured in Hounsfield Units (HU) is then transformed into bone mineral equivalents 

(mg/cm3) using standardized software.231 QCT can provide separate measurements of 

BMD for each voxel of the scanned volume of interest (VOI) in the cortical and trabecular 

compartments. The bone mineral content (BMC) can then be derived from the product of 

BMD and volume. Analogous to T-scores derived from DEXA BMD, QCT T-scores can 

be calculated based on appropriate normal reference data, but their relevance to clinical 
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care is limited by the considerable discordance from DXAT-scores.232-234 

 Quantitative Computed Tomography (QCT) has been utilized extensively to 

characterize and quantify bone structure. Main uses have been to characterize the 

trabecular bone structure of vertebrae two-dimensionally and at a three-dimensional level; 

enable quantification of bone tissue content as mass (BMC); or density (volumetric BMD, 

vBMD) of a sub region of bone or the whole anatomical area. More recent applications 

include finite element modelling (FEM) - an engineering technique enabling estimation of 

bone strength based on bone geometry; vBMD values and clinically relevant loading 

conditions;235 and the accurate quantification of cortical bone thickness.236
 

 Despite its widespread use, particularly in research settings, QCT cannot provide 

high-spatial resolution images to quantify individual trabeculae, due to the high exposure 

time and thus, high radiation dose that would be needed to achieve the required spatial 

resolution. The trabecular structure is compromised by the effects of partial-voluming, so 

the actual CT images represent a projection or pattern instead of a true image of the 

trabecular structure. For instance, a high-resolution CT with in- plane spatial resolution of 

400 × 400 µm is only able to characterise a structure as rough or smooth in texture; 

homogeneous or heterogeneous in content; or high rather than low orientation with 

respect to trabecular distribution. Partial volume also affects newer higher resolution CTs, 

such as spiral CT and Multidetector row CT (MDCT). However, these scanners, 

particularly MDCT, have significantly improved the capacity to assess the structure of 

trabecular bone. 

 Relevant to this thesis, standard clinical computed tomography (CT) has been used to 

measure BMD and was found to be useful. Data from both in vitro experiments and in vivo 

studies showed strong correlation between BMD measured on routine clinical CT and BMD 

derived from standard QCT.237 A reference phantom was used in this study to standardize 

measurements and to calibrate mineral reference. In contrast, a phantom in daily clinical 
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practice is typically absent. More interestingly, a study of menopausal women having 

coronary CT showed strong correlations between BMD measurements of the thoracic spine, 

regardless of whether a reference phantom was used or not.238    

 Similarly, in a study of adults age 50 years and older, simple attenuation 

measurements without a reference phantom and obtained directly from images on CT 

colonography compared to DEXA derived BMD measurements were effective in screening 

for osteoporosis.239 A board-certified radiologist performed formal QCT on a dedicated 

phantomless QCT software package (BMAP, Philips Healthcare). The procedure entails 

placing oval regions of interests (ROIs) on the vertebral body, paraspinal musculature and 

subcutaneous fat at each level from T12 through L5. A sagittal reconstruction is used to angle 

the transverse plane of section to make it parallel with the end plate at each level. The 

vertebral body ROI is placed in the anterior trabecular region, avoiding the basi-vertebral 

venous plexus posteriorly, the surrounding cortical bone and any focal lytic or sclerotic 

lesion. A BMD measurement (in gm/cc) is derived by the software program, which was used 

as the main QCT outcome measure for comparison against the DEXA T-score. The 

radiologist was unaware of the DEXA results at the time of QCT interpretation. With the 

simple attenuation measurements, vertebral body attenuation at individual levels was 

obtained using a trabecular ROI technique similar to QCT, but without the initial step of 

plane angulation. A single ROI measurement of mean attenuation (in HU) at an individual 

spinal level was carried out on a standard PACS workstation (McKesson), as would be used 

for routine CT interpretation, with images viewed in a bone window setting (W:1200, L:350). 

Individual ROI measurements were performed from T12 through L5. The interpreting 

radiologist was again blinded to DXA results. The diagnostic ability of phantomless QCT and 

simple ROI approaches, with respect to the DXA T-score reference standard, was assessed 

using ROC curve analysis, as well as threshold analysis to determine relevant cut-off values 

for osteoporosis detection. The results showed that simple mean attenuation measurements of 
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trabecular ROIs of the lumbar spine, without formal derivation of BMD values, yielded 

results that were similar to phantomless QCT. At L1, a trabecular ROI attenuation cut-off of 

160 HU was 100% sensitive for osteoporosis, with a specificity of 46.4%. Below this 

threshold, 84% had low BMD and 58% above this threshold had normal BMD at DEXA. ROI 

performance was similar at all individual T12-L5 levels. At ROC analysis, AUC for 

osteoporosis was 0.888 for phantomless QCT, compared with 0.825–0.853 using trabecular 

ROIs at single lumbar levels at multivariate analysis. However, marrow fat was not 

determined. 

 More recently, another group employed similar attenuation measurements of thoracic 

vertebrae on routine clinical chest CTs to assess skeletal health of COPD patients. They 

measured the average attenuation of thoracic vertebrae 4, 7, and 10 on routine chest CTs of 

COPD patients and correlated these measurements with the lowest BMD of the hip and 

lumbar spine (L1 to L4) on DEXA.240 The average attenuation for bone in COPD patients 

with osteoporosis (on DXA) was 152.3 ± 56.5 HU. This mean bone attenuation was about 

50% lower compared to the mean bone attenuation in COPD patients with normal BMD 

(p<0.001). The correlation between CT-measured bone attenuation and the lowest BMD 

assessed on DXA was high (r = 0.827, p<0.001). The correlation between bone attenuation 

and BMD of the hip and lumbar spine were 0.775 (p<0.001) and 0.767 (p<0.001) 

respectively. At the highest sensitivity (93%) and specificity (97%) for detection of 

osteoporosis, the mean bone attenuation threshold was 147 HU.  

 Other studies that have used simple attenuation measurements from clinical CTs 

employing the same techniques have also found similar high correlations between mean bone 

attenuation; age and presence of fractures;241 and osteoporosis with acceptable specificity and 

sensitivity.242  

 Although high degrees of interrater reliability have been demonstrated in the above 

studies, suggesting that it could be a reliable method for that particular machine and 
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institution, the technique is limited in its generalizability and diagnostic utility for a number 

of reasons. Many of the studies that have been done are retrospective in nature and thus are 

limited by referral and spectrum biases. Hence, the applicability of the results to the general 

population is limited. The associations and correlations between bone attenuation and BMD 

have been derived differently- for example, using the attenuation of the individual vertebra, 

rather than the average attenuation of the thoracic vertebrae; and correlated BMD of the 

lumbar spine, rather than the lowest BMD of the lumbar spine and hip. 

Also, the use of simple attenuation as a screening and diagnostic tool is limited by the fact 

that there is a lack of CT-attenuation data for the hip, a region associated with high incidence 

of fractures. Indeed, data for the use of CT attenuation in the prediction of fracture risk has 

been based largely on the values derived from attenuation at the level of L1. Furthermore, 

there has not been cross validation of different scanners across different settings to confirm 

whether current cut-offs apply to other CT scanner configurations and acquisition techniques. 

In contrast to its utilization in quantifying the bone compartment of the marrow, the use of 

QCT and other CTs to quantify marrow fat is limited.243-249  

 Earlier studies have measured the amount of bone marrow fat in patients with 

Gauchers disease, 243-245 anorexia and Cushing’s disease,246 using a combination of single 

energy and dual energy QCT. The methods employed to quantify marrow fat in these studies, 

however, involved complicated post processing techniques.243   

 More recently, Di Iorgi et al247 examined the relationship between marrow fat and 

bone mass at the time of peak bone mass using clinical CTs. The first three lumbar vertebrae 

and mid shafts of femurs of 255 healthy teenagers and young adults (126 females, 129 males, 

15–24.9 yrs. of age) were scanned using a General Electric Hilite Advantage scanner 

(General Electric Healthcare, Milwaukee, WI) and a standardized mineral reference phantom 

for simultaneous calibration (CT bone densitometry package; General Electric). They showed 

that for both men and women, the inverse association between cancellous bone in the 
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vertebrae and femoral cortical bone in the femur with bone marrow fat was independent of 

anthropometric measurements, bone dimensions and total body fat. The technique of marrow 

fat quantification employed by these researchers resembles the technique that we use for this 

body of work that comprises the thesis. In their study, simple CT attenuations of ROIs in HU 

(average attenuation of first three lumbar vertebrae and mid shaft of femur) were obtained, 

then converted to established density values for analyses.   

 

 

1.4.2.2 Peripheral QCT (pQCT) and High Resolution Peripheral QCT (hr-

pQCT) 

 

Given the difficulties of assessing the structure of trabecular bone in vivo, peripheral CT 

scanners (pQCT) were specially developed to characterize extremities of the skeleton where 

trabecular thickness (Tb.Th) ranges from 60 to 150 µm and trabecular separation (Tb.Sp) 

from 300 to 1000µm, such as the tibia and distal forearm.
248  Once the bone volume fraction 

derived by pQCT has been calibrated with that from µCT, a range of segmentation thresholds 

can be determined. Despite lower resolution, in vitro structure measurements with pQCT can 

correlate highly with measurements by µCT.
249 More recently, higher resolution hr-pQCT, 

which produces 3D images with an isotropic voxel size of 62 μm or 82 μm and provides 

isotropic spatial resolution of about 130–150 μm, has been used to evaluate peripheral 

skeletons, in particular the distal forearm and tibia.
250 A number of microarchitecture 

parameters within trabecular bones can be determined including BV/TV, Tb.Th, Tb.Sp, and 

trabecular number (Tb.N) in addition to BMD, and in cortical bones, parameters such as 

BMD, thickness and porosity can also be calculated.
251 pQCT and hr-pQCT have been used 

extensively in clinical studies for microstructure assessment,
252,253 

fracture discrimination254-

257 and prediction of bone strength..
258

 To date, two studies have quantified marrow fat, and 

both have used different approaches. Rantalainen et236 al employed a threshold-based edge 
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detection method from the BoneJ software to measure bone marrow density (MaD) as an 

estimate of marrow adiposity in a small sample of young female athletes, and found 

acceptable precision error. In this study, marrow density (milligrams per cubic centimetre) at 

the mid tibia was analysed and used as an estimate of bone marrow adiposity. A custom made 

Java software was used for the segmentation procedure. Using established CT number (in 

HU) and physical density of various human tissues, a threshold density of 80 mg/cm3, 

corresponding to 1.05 times the physical density of red marrow, was used to separate marrow 

fat from bone. A recalibration of the equivalent coefficient of water for the device used in the 

study was determined first, then the marrow density was computed according to previously 

published equations relating these coefficients and Hounsfield measurements.259 The range of 

marrow density considered to be marrow fat, (0.928 g/cm3 (91.9% fat) to 1.08 g/cm3 (3.3% 

fat), were taken from previously calculated densities based on chemical composition derived 

from human tissue samples.260 

 More recently, Gibbs et al237   compared the test-retest precision error for pQCT 

derived marrow density and marrow area segmentation at the tibia in younger and older 

adults, and in individuals with spinal cord injury using 3 software packages (Stratec, BoneJ, 

and SliceOmatic). Test-retest precision errors for marrow density (mg/cm3) and marrow area 

(mm2) were calculated for the watershed-guided manual segmentation technique for 

SliceOmatic version 4.3 and 2 threshold-based edge detection technique for Stratec version 

6.0 and BoneJ version 1.3.14. Precision error for pQCT-derived marrow density segmentation 

exceeded 5% for all methods of analysis across a range of bone mineral densities and fat 

infiltration, whereas precision error for marrow area segmentation ranged from 2% to 5%. 

The researchers concluded that in the current format, all three software packages are limited 

in their utility for clinical and research applications. 

 

1.4.2.3 Microquantitative Computed Tomography (µ-CT) 
 

 µ-CT is a CT technique that uses X ray tube as the radiation source, or more recently, 
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tight collimation synchrotron as the radiation source to allow either faster scanning or higher 

spatial resolution in imaging bone specimens. Standard µ-CT enables in vitro assessment of 

bone microstructure at an ultra-high spatial resolution of 1–100µm non-invasively and non-

destructively. The system employs a cone-beam X-Ray geometry and   reconstruction 

algorithm. A spatial resolution as high as ≈60 µm is typically achievable and can clearly 

visualize individual trabecula. These cross sections can then be reconstructed to form a 3D 

model of trabecular network for intensive analysis.261 It has largely replaced the traditional 

labour intensive histomorphometry technique that was used to analyse fine bone sections of 

small animals, typically mice and rats.262-265 Human clinical studies have also extensively 

used this technique to investigate effects of osteoporosis drug therapy on the 

microarchitecture of trabecular bone obtained from  biopsies of human iliac crest.266-270 

Overall, µ-CT enables highly accurate and precise assessment of three-dimensional structural 

components of cortical as well as trabecular bone, permitting 3D modelling for finite-element 

analysis as used in virtual biomechanics to enable the prediction of mechanical properties.271 

However, marrow fat quantification is yet to be explored. 

 
1.4.2.4 Magnetic Resonance Imaging (MRI) 

 

 MRI is an imaging technique that does not involve ionizing radiation, but 

electromagnetic wave frequency (radiofrequency range), which is found all around us. The 

images result from the interaction between an atom, an external magnetic field and radio 

waves. Atoms, the smallest constituents of living tissues in the body, are made up of 

protons, electrons and neutrons. Atoms with an odd number of protons and/or an odd 

number of neutrons spin on their own axes, behaving like bar magnets and under normal 

circumstances, their axes randomly align.272  

 Hydrogen is the most abundant element in existence, particularly in water and fat, 

and thus for MR imaging the hydrogen nucleus (a single proton) is used. As the body 
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enters the MRI scanner and its magnetic field, all axes of the protons line up along the 

axis of the MRI scanner, producing magnetic vectors.  These magnetic vectors are 

deflected when radio wave (additional energy) is then added to the magnetic field. The 

energy (radio wave frequency (RF)) that causes the hydrogen nuclei to create magnetic 

vectors is proportional to the element and the magnetic field’s strength. The magnetic 

field strength is altered in small increments using multiple gradient electric coils and 

multiple different transmitted radiofrequency pulses applied in sequence. Once the 

radiofrequency source is switched off, the magnetic vector returns to its resting state 

(Longitudinal or T1 relaxation) then afterwards, the axial spin returns to its resting state 

(Transverse or T2 relaxation). These relaxation times cause signals (forms of radio waves 

also) to be emitted. The intensity of these signals are then collected in k-space and 

Fourrier transformed into the spatial domain from frequency. Axial images are finally 

reconstructed to create MR images. Among all the non-invasive imaging modalities, MRI 

has been extensively applied to the study of bone quality in particular marrow fat content, 

marrow diffusion and marrow perfusion. MRI methods that have been mainly used to 

quantify bone marrow fat fraction have been T1-weighted imaging (T1WI), magnetic 

resonance spectroscopy (MRS), and chemical shift encoding-based water–fat imaging 

(Dixon method). Among these techniques, marrow adipose tissue (MAT) has been 

quantified reliably using single-voxel proton magnetic resonance spectroscopy (MRS).273-

275 The physics and mechanics of MR spectroscopy (MRS) are the same as standard MRI, 

however, it does not generate images- instead, it quantifies the relative amount of fat 

within tissues by measuring the fat to water ratio (Figure 1).  
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Figure 1. MRS of L3 vertebral body. MRS assesses the fat peak: water peak ratio. Relatively higher 

water peak compared to fat peak is consistent with red marrow.  
 

 Two main MRS pulse sequence acquisition methods have been used, either point-

resolved spectroscopy (PRESS) or stimulated echo acquisition mode (STEAM). The STEAM 

mode has two advantages over PRESS mode- firstly, it has reduced sensitivity to J-coupling 

effects of the fat peaks and thus, reduced errors when performing an echo time (TE) series to 

correct for T2 decay effects in proton density fat fraction quantification. Secondly, the bone 

marrow water peak has short T2. STEAM allows shorter minimum echo times compared to 

PRESS, and despite its 50% signal loss compared to PRESS, can reduce the T2-weighted 

signal loss for the short T2 water peak. Although quantification of marrow fat by MRI is 

considered the gold standard non-invasive technique, MRS has some limitations. The marrow 

water content is not constant but is assumed to be so in MRS; volumes of interest (VOI) may 

only be studied one at a time; and density (g/cm3) is not calculated but rather the amount of 

fat expressed as % fat content (semi-quantitative measurement) is obtained. Alternative MRI 

techniques have recently been proposed, which allow multiple skeletal regions to be studied 

concurrently. These techniques use alternative pulse sequencing to generate images of either 

fat measurements only or water measurements only pixel by pixel. However, proton MRS has 
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been the primary technique used in clinical investigations to determine the status of marrow 

fat with age, 150,276,279,281 sex276,279 and disease states.277,278,280. 

 Another MR method is chemical shift encoding-based water–fat imaging. This 

technique overcomes the spatial resolution requirements of single voxel MRS and enables the 

spatially resolved assessment of bone marrow fat fraction, especially in regions with 

heterogeneous red marrow distribution (e.g., proximal femur, spine). The technical aspects of 

this technique have been reviewed in detail previously.282  

 Finally, T1-weighted imaging is the least technically demanding, and has been mostly 

used for the pelvis, hip and spine. The technique calculates bone marrow fat volume by 

applying a set threshold at the same gray-scale level as subcutaneous adipose. Thresholds are 

then applied on T1WI to extract bone marrow fat voxels.283 The main error source for the 

quantification of bone marrow fat volume based on T1WI results from partial volume effects 

and threshold selection, especially in regions with red marrow.284 

 Recently, the measurements of bone marrow fat among T1-weighted MRI, modified 

Dixon method and MRS were compared.284 Good correlations were demonstrated among the 

three MR methods for bone marrow fat quantification. There was a correlation among the 

three MR methods measuring bone marrow fat fraction and bone marrow adipose tissue, with 

(BMAT) ranging from 0.78 to 0.88 in the L3 vertebra. There was also a correlation between 

BMAT measured by T1-weighted MRI and bone marrow fat fraction measured by modified 

Dixon- the result was 0.86 in femoral necks.  

Despite MRI methods being the gold standard, their use in clinical practice is limited by 

availability, technical demand and cost. 

 

 
1.4.2.5 Dual X-ray Absorptiometry (DXA) 

 

 Dual Energy X-ray Absorptiometry (DXA) is an imaging technique that employs 
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low levels of radiation and is widely available. However, because the X-Ray attenuations 

of bone are projected in 2-dimensions (2D) and DXA calculates density by dividing this 

by the scanned areas, areal bone mineral density is quantified rather than true density. 

Other limitations are its use in children, men and different ethnic groups. Even in the 

setting of post-menopausal females, over and under-estimations of BMD may occur in 

taller and shorter individuals respectively. 

 Nevertheless, calculated T scores that are derived from areal BMD remain the 

universally accepted bone density indices used for screening and defining “the 

diagnosis” of osteoporosis by The World Health Organisation (WHO). It is also used in 

serial monitoring of the response to therapy. However, DXA has limitations in its ability 

to measure the mass distribution in cortical bone and trabecular bone region, and in the 

analysis of bone geometry and microstructure.285
 

 

1.4.2.6 Quantitative ultrasound (QUS) 

 

QUS has been used for measuring BMD at peripheral sites such as the heel, tibia and 

phalanges. It is not suitable for central sites such as the spine or hip because of poor tissue 

penetration. QUS uses sound waves to measure broadband ultrasound attenuation (BUA) 

and speed of sound (SOS). Ultrasound waves are attenuated by bone as they travel from 

the transmitting transducer to the receiving transducer. Normal bones or bones of higher 

density attenuate greater sound waves, allowing sound to travel from one transducer to the 

other at a higher speed than osteoporotic bone. 

 Presently, QUS is considered a much inferior imaging modality compared to DXA 

and QCT for measuring BMD. It is not the approved modality to diagnose or to monitor 

responses to osteoporosis treatment. It is used to screen at-risk individuals, particularly 

older Caucasian women, with confirmation by DXA. It has not been utilised in the 

quantification of marrow fat. 
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1.5 Summary of marrow fat and the aging skeleton 

 
One of the aims of this thesis is to validate a new technique of quantifying bone marrow 

fat noninvasively and utilising an imaging technique that is readily available; easily 

accessible; inexpensive and well tolerated in the older population- CT. 

 

The following chapters of this thesis will present the methodology and results of studies: 

1.4.2.1 Validating our new technique using µ-CT and an imaging software. 

1.4.2.2 Exploring further the distribution of marrow fat in different areas of the ageing 

skeleton. 

1.4.2.3 Assessing the effects of dietary lipids on marrow fat distribution in animal 

model of senile osteoporosis. 

1.4.2.4 Exploring the effects of exercise and its interaction with calcium on bone 

and marrow fat in older men. 
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2.0 Chapter 2 -Methodology 

 

Details of subjects, image acquisition, image analysis and statistical analyses specific for each 

study are described under relevant sections within individual studies. Here the method of fat 

and bone parameters quantification are described for each imaging method used in the 

studies. 

 

2.1 Computed Tomography (Chapters 5 and 6) 

 
2.1.1 CT Acquisition Protocol 

 

Subjects were placed in a supine position with their arms extended above their head for the 

duration of the measurement. Axial images of the abdomen at the level of the T4– proximal 

femur were performed with no angulation, using a lateral pilot for location. Single- slice CT 

images were acquired at all these levels. Axial images of the mid femur and mid tibia were 

obtained at the level of the mid-thigh and mid lower leg respectively. All scans were 

performed using dual energy CT scanners and saved as DICOM images for analysis. 

Standard CT procedures of 120 kV with 5 mm thickness and a 512 x 512 matrix were used for 

all subjects. 

 

2.1.2 CT Image Analysis Protocol 
 

The physical density of a material as an X-Ray beam of a CT scan passes through it is 

expressed as a CT number. CT numbers describe the linear attenuations of x-ray beams, 

measured as they pass through a medium occupying that space (a volume element, or voxel), 

and is the sum of the attenuation of all the different materials contained in that voxel. The 

numbers are called Hounsfield units (HU), and the densities of water and air have been 

established as reference density points (linear attenuation coefficient of 0 and -1000 

respectively, i.e. HU = 0 and -1000 respectively).) Using these reference densities, 
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Hounsfield units describing fat lie in a range of negative values (Figure 2).286
 

 
 

Figure 2.286 Accuracy to which absorption values can be ascertained on a CT picture. The whole 

range of a machine from air (-1000) to bone (1000) describing 1000 absorption on either side of 

water, which has been chosen to be zero. The range of tones between black and white (viewing 

window) can be restricted to a small part of the scale and be raised or lowered depending on the 

tissues being compared or contrasted. 

 

  Previous published work on mass densities and elemental weights of human tissues and 

their correlation with CT numbers in Hounsfield units has shown that CT numbers of soft tissues 

are situated within the range between −100 and +100 Hounsfield units, whereas the CT numbers 

of skeletal tissues take values from 100 up to 1524.
259,287--289 Relevant to this thesis, calculated 

CT numbers for yellow marrow, red marrow, yellow and red marrow mixture of 1:1 and whole 

blood were -49, 11, -22 and 56 respectively.
259 These calculated CT numbers came about through 

a series of related equations that took into account the properties of the scanner (spectral 

function, Klein–Nishina coefficients),287 and established  mass densities and elemental weights of 

71 types of human tissues287,288 derived through bone models and calibration with phantoms. 

In vivo studies have shown variable normal distribution of both yellow and red marrow, and 

CT images of marrow from different regions within a bone have different appearances and 
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absolute Hounsfield values are location dependent. Given that both hematopoietic tissue, 

which has a density of 1.06 g/cm3, and adipose tissue, which has a density of 0.92 g/cm3, 

make up the marrow space, a higher density of the marrow tissue would suggest a lower fat 

fraction and vice versa.259 Changes in marrow fat fraction do not occur during growth, but 

throughout life depending on age, bone type and skeletal regions.289,290 With growth, 

hematopoietic tissue converts to fatty marrow in the vertebral bodies and metaphyses of the 

long bones. The conversion persists throughout life at a slow steady rate generally, but varies 

greatly. Thus, by adulthood, the metaphyseal and epiphyseal regions generally have positive 

Hounsfield values, at times reaching100 HU. Whereas, by the age of 15 years, the diaphyses 

of the long bones reach their adult pattern and comprise of fat mostly. Therefore, even in 

early adulthood, the CT marrow density values at this site of negative Hounsfield values 

predominantly as low as -100 HU, essentially reflect fat tissue density due to negligible 

influence of the haemopoietic component.
291 Furthermore, Hounsfield values at similar 

locations in long bones are generally comparable, such that a difference of up to 20 HU 

between sides would be considered acceptable,291 and given accurate positioning, Hounsfield 

readings from the two sides should be similar.292 The same, however, cannot be said for the 

vertebrae. 

 CT has also been used extensively as a research tool for the differentiation and 

quantification of various soft tissue depots investigating the impact of ageing, obesity and 

physical inactivity on clinical outcomes.293-296 In these studies, the threshold, which separates 

adipose from muscle, was found by taking the average of their peaks from an image histogram. 

For the purpose of the studies reported in this thesis, CT Hounsfield values for bone 

(trabecular and cortical), marrow fat and haematopoietic volume are based on previous 

published studies described above, and final threshold ranges used for quantification of these 

parameters are derived through similar approaches to previous techniques for delineating 

tissues of overlapping densities with an image histogram.293
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 Even though different scanners were used in our two CT studies, scanning 

settings were at similar levels. All images were analysed with the same imaging software 

(Slice O Matic version 4.1, Tomovision), and global and local thresholds for bone, 

haemopoietic and fat tissues were determined manually by the following procedure: 

Thirty randomly selected CT images in axial slices of vertebrae and proximal femur from 

different subjects were manually inspected. Images that contain artefacts, such as movements 

and over or under exposure, were excluded from the analysis. The maximum Hounsfield unit 

of bone tissue applied in the whole analysis was the maximum Hounsfield unit encountered in 

cortical bone from any anatomical region- for example. the vertebrae or femur. The maximum 

density of cortical bone in any image was consistently the same as the maximum CT number 

in the threshold setting in the region growing painting mode (Figure 3A). Thus, for the 

maximum density of cortical bone, the threshold was set as the maximum for each individual 

analysis. This maximum threshold was then gradually lowered to find the lowest threshold at 

which the resolution would still enable auto-segmentation of the region of interest (Figure 3B-

3C). The cortical bone surfaces, which were thin or were adjacent to trabecular bone, were not 

detected by this threshold limit. Segmentation of these regions of cortical bone required the 

lowest threshold limit, which accounted for partial volume effects. Partial volume effects 

significantly affect the CT numbers of cortical bone. Thus, to account for this, the image was 

viewed in zoom mode, and densities were determined pixel by pixel. Pixels that had lower CT 

numbers, but were bright in appearance and contiguous with cortical bone surface, were 

counted as cortical bone (Figure 3D-3F). Pixels that were not contiguous, but were bright and 

had lower CT numbers, were counted as trabecular bone. These pixels were presumed to be 

thin or broken trabecular whose thicknesses were beyond the resolution of the CT scanner. 
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Figure 3. [A-C] Maximum threshold limit gradually decreased until auto-segmentation no longer 

possible [A] is maximum global threshold for cortical bone (i.e. at gray scale value of 1600 few pixels 

detected). [B] Greater volume of cortical bone detected by auto-segmentation at limit of 1000. [C] is 

the lowest gray scale value (600) that auto-segmentation is able to be carried out i.e. lower limit for 

global threshold. [D-F] are zoomed images to determine the lower limit of cortical bone for local 

thresholds. 

 

The thirty values were then plotted on a histogram, and the average CT number was 

considered to be the lower threshold for cortical bone tissue in all the analyses. However, to 

derive final threshold ranges specific to each study set of images and the CT scanner used to 

obtain those images, during segmentation of the region of interest (ROI), CT numbers up to 2 

standard deviations lower than this average were accepted if the ROI was deemed to be bone 

on visual inspection.  

 

A B 
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 For trabecular bone, the maximum setting is 1 HU less than the lower threshold for 

cortical bone, and the lower limit was the average CT number of trabecular bone tissue at the 

interface with fat and haemopoietic tissue. Delineating trabecular bone from surrounding stromal 

tissues or haemopoietic tissue was carried out in the same way as delineating cortical bone from 

trabecular bone. To account for the presence of thin trabecular bone whose thickness was smaller 

than the voxel size, the principle of partial volume effects were applied to the surrounding pixels 

of visually obvious pixels representing bone tissue (Figure. 4). Partial volume effects occur when 

tissues of different absorption are encompassed on the same CT voxel, producing a beam 

attenuation, proportional to the average value of these tissues. Hence, the surrounding pixels with 

lower CT numbers, regardless of whether they were contiguous with a trabeculum or not, but 

bright in appearance, were counted as trabecular bone. The CT numbers were then plotted on a 

histogram (Figure. 5).  

  

  

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Segmentation procedure to determine the 

range of thresholds for trabecular bone. [A] Upper limit 

of threshold is 1 HU below lowest threshold for cortical 

bone. [B] - [D] threshold decreasing to capture 

trabecular bone pixels. [E] = Pixels with low CT 

numbers but appear bright and pixels adjacent to cortex 

that appear bright but have low CT numbers or appear 

disconnected from cortical surface are counted as 

trabecular bone by visual inspection. 
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Figure 5. Distribution of HUs for lower limits of trabecular bone in 30 random images. 

 

 

 Threshold ranges of grey scale values for fat were derived through the same process as 

above. The lower limit was set at a maximum negative value for each and every analysis. This 

was done for convenience, but also on the rationale that within a closed cavity, as in a 

vertebral body or proximal femur, all negative values represent fat rather than air. The upper 

limit was the average CT number of adipose tissue pixels adjacent to non-adipose 

neighbouring pixels. 

 Here we considered previous published data, showing that CT numbers for red 

marrow, yellow and red marrow mixture of 1:1 and whole blood were 11, -22 and 56 

respectively,259 but we further examined grey scale values pixel by pixel. Pixels that had low 

positive CT numbers, but had darker appearance resembling adipose pixels, were counted as 

adipose tissue. Pixels with low positive CT numbers, but appeared less dark, resembling 

haematopoietic tissue, were counted as haematopoietic tissue. The values were then plotted 

on a histogram (Figure 6).  
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Figure 6. Distribution of HUs for lower and upper limits of haemopoietic tissue density in 30 

random images. 

 

 

  

Figure 7. Distribution of HUs for upper limit of marrow fat in 30 random images. 

 

 

 Thus, the following CT numbers were applied for global thresholding algorithms in all 

CT image segmentation (semi-automated): bone (trabecular 130-600, cortical ≥ 601), marrow 

fat ≤ 10, and 21  haematopoietic tissue ≤ 129. For manual segmentation to include pixels that 

were not captured in the semi-automated segmentation procedure, local threshold for fat (≤ 

20) and lower limit of trabecular bone (≥ 100) were applied. 
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2.1.2.1 Slice-O-Matic Volume Quantification Protocol 
 

 Each axial CT scan image was examined for inclusion suitability. Images with any 

presence of artefacts, resulting in reduced image quality, were excluded from the analysis. 

Artefacts were deemed to be present if the image had been affected by movements, acquisition 

techniques or associated with hardware issues (Table 1), or the borders were poorly defined or 

the image was not complete with all ROIs intact. 

 The size of the tissue volume of interest (VOI) was defined by the total number of 

pixels, with Hounsfield units in the range, as defined above for that tissue. For the purpose of 

the quantification of volumes, each depot was assigned the following colours arbitrarily: 

marrow fat (yellow), bone (dark blue for cortical, green for trabecular) and red for 

haemopoietic volume. 

 The global threshold ranges for bone, marrow fat and blood volume were set 

consecutively using the thresholding function- this is the autosegmentation process based on 

previously published values. The global thresholded regions were edited manually. The 

region-growing function was then used to segment the volume compartment individually and 

sequentially using values obtained from the 30 individual pixels within cross sectional areas, 

which were not accounted for in the initial global segmentation. These were visually 

inspected and allocated as most likely blood or fat, and a local threshold was manually 

applied. The painting function was used to segmentate these pixels. The volume function was 

then used to compute the segmented VOIs. All absolute volumes were expressed in mm3. 

Note: Each CT scanner’s daily performance is checked in accordance with manufacturer’s 

recommendations and specifications. This is carried out as per local quality control procedure 

protocols. Cross calibrations of the CT scanners would be ideal but were not possible due to 

locations of each research centres and the retrospective nature of the studies. Previously 

published and validated CT numbers for various tissues were applied to both scanners for the 

auto and semi-autosegmentation procedures. Nevertheless, the final thresholds for 
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segmentations of volumes were determined individually for each scanner.  

Types of Artifacts Examples 

Patient related - motion blurring, streaking, or shading 

Physics based Beam hardening  -     cupping artifact 

- streak and darks bands 

- metal artifact/high-density foreign material artifact 

Noise 

Photon starvation – streaks 

Hardware based ring artifact 

tube arcing 

out of field artifact 

Table 1. Sources of image artifacts and types of artifacts excluded from study. 

 

2.2 Micro-CT (chapters 3 and 4) 

 
Micro-computed tomography (µCT) is an imaging technique possessing ultra-high resolution. 

It utilizes cone-beam X-ray geometry and a reconstruction algorithm to form 3D models and 

achieve high spatial resolution. Very high-spatial resolution images can be achieved, 

approaching 10 µm or better.261   With spatial resolution as high as ≈60 µm, individual 

trabeculae can be visualized clearly, allowing three-dimensional modelling and detailed bone 

microstructure analysis. Further advances in more recent times have seen the use of 

synchrotron radiation as the X-ray source, enabling spatial resolution up to 2 µm.297
 

Thus, in recent times, in vitro structural analyses in 2D or 3D of small bone samples 

(typically <2 cm3) have widely employed µCT scanners. Applications of µCT are found 

widely in animal studies, typically for characterizing skeletal phenotype in gene knockout 

298-300 in osteoporotic53 or arthritic rodents.301 µCT 3-D- determined trabecular parameters 

showed greater percentage changes than those observed with DXA, and also showed better 

correlation with biomechanical properties. In clinical studies, µCT with a resolution of 

20µm3 was employed to compare iliac crest bone samples from women in pre and post-

menopausal states. The postmenopausal samples showed significant changes in 3-D 

https://radiopaedia.org/articles/ring-artifact-1
https://radiopaedia.org/articles/tube-arcing
https://radiopaedia.org/articles/missing?article%5Btitle%5D=out-of-field-artifact
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trabecular structural parameters, including a change from plate like structure to rod like 

structure; decrease in trabecular thickness and number; and increase in trabecular 

separation.302 Evaluation of these 3D bone microstructure parameters has also been used to 

analyse bone biopsies from patients treated with antiresorptive agents such as oestrogen303, 

residronate304 and anabolic agents, such as PTH.305 An extensive review of the technical 

considerations relating to µCT can be found in a previously published article.306
 

 Despite its extensive applications as described above, quantification of marrow fat 

has not been evaluated. For the purpose of this thesis, we applied similar concepts and 

approaches to define thresholds for different tissues, as in the case of clinical CT, described 

in an earlier section. 

 In the validation study, fat depots and bone tissue were chemically stained, and thus 

were directly visualized with certainty. The range of gray scale attenuation of bone and fat 

pixels was obtained directly from the images in Slice O Matic. Nevertheless, to reduce effects 

of image variations and partial volume effects, ten random images of bone and fat depots 

were analysed, and the pixel gray scale values were plotted on a histogram. The range of 

values, which best estimated a 95% confidence interval, was chosen to represent the density 

threshold range of bone and marrow fat for the remainder of the analysis. The gray scale 

values for blood were assumed to be the values between bone and fat. 

 Threshold ranges derived from the validation study were used in the second µCT 

study. This assumption was based on the rationale that both micro CT systems employed 

equivalent energy settings, and therefore, attenuation values should not significantly differ. 

Local thresholds were further manually adjusted based on visual inspection of individual 

pixels. 

 It should be further noted that the author of this thesis was blinded to group allocation and 

treatment group allocation in all experimental procedures until the time of statistical analysis. 

The author was the primary researcher to carry out preliminary image analyses to derive initial 



 

65  

thresholds and the subsequent range of local thresholds. The final range of thresholds was 

applied to all subsequent analyses. Another blinded evaluator then applied the same thresholds to 

all subsequent image analyses.
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Marrow fat infiltration is one ofthehallmarks of age-related bone loss. This fat infiltration has been quantified 

by invasive and noninvasive methods. However, the validity of the noninvasive methods has not been 

correlated with a gold standard. In this study we aim to validate the usefulness of marrowfat quantification by 

correlating micro CT (μCT) images with histology analysis. Fat volume (FV) and bone volume (BV) of distal 

femora of young (4 months) and old (27 months) Louvain/c (LOU) rats (n= 22) were quantified by histology 

and compared with μCT images analyzed by an image analysis software (SliceOMatic). 

We found that for SliceOMatic/μCT the intra-rater reliability for duplicate measurements was 0.94 (pb 0.001) 

and the inter-rater reliability for FV/BV ratio in young and old rats was 98% and 99% respectively. Both 

methods showed a significant increase (~ 2 fold) in the FV/BV ratio in the old rats as compared with their 

young counterparts (pb 0.001). A significantly higher correlation (r2 = 0.85) in the old rats was found between 

our noninvasive method and histology. Furthermore, our noninvasive method showed good agreement with 

histology. 

In conclusion, noninvasive quantification of FV/BV ratio using an image analysis software is as reliable as 

histology for identifying age related marrow fat changes with high inter and intra-rater reliability. These 

findings provide a new noninvasive method for quantifying marrow fat, which is useful and can be tested not 

only in animals but also in human studies. 

© 2011 Elsevier Inc. All rights reserved. 
 

 

3.1 Introduction 
 

Osteoporosis and its most devastating sequelae, fractures, is a rising 

global health, economic and social burden. Thus the early detection and 

treatment of individuals at risk of fractures is a priority before the 

fragility fracture cascade sets in. Bone Mineral Density (BMD) and Dual 

Energy X-ray Absorptiometry (DXA) have long been the recommended 

fracture surrogate and non-invasive tool respectively that estimate 

fracture risk. However, there is evidence that BMD alone, as defined by 

the World Health Organization (WHO), does not reliably predict 

fractures (Marshall et al., 1996), does not identify the majority who are 

at moderate risk (Pasco et al., 2006), and is limited for monitoring the 

effect of drug therapy (Delmas and Seeman, 2004). This has led to the 

development of clinical tools for predicting fracture risks such as the 

WHO Fracture Risk Assessment Tool (FRAX) (Kanis et al., 2005) and the 

Garvan fracture risk calculator (Nguyen et al., 2007). However, the 

validity of a purely clinical tool to predict fractures is still controversial 

(Leslie and Hans, 2009) and its accuracy may be limited by differences 

between cohorts (Sandhu  et  al., 2010). 

 

* Corresponding author at: Ageing Bone Research Program, Sydney Medical School- 

Nepean, The University of Sydney, PO Box 63 Penrith NSW 2751, Australia. Tel.: +61 2 

4734  4278;  fax:  +61  2  4734  2614. 

E-mail address: gduque@med.usyd.edu.au (G. Duque). 

In recent years it is increasingly recognized that trabecular 

microarchitecture confers bone its strength (Seeman and Delmas, 

2006) and hence may explain the discrepancy between BMD and 

fracture risk (Delmas and Seeman, 2004). Several non-invasive 

methods [e.g. magnetic resonance imaging (MRI), and computed 

tomography (CT) scan] have been used to assess the 

microarchitecture of the different components of bone (Brandi, 2009). 

However despite their usefulness, there are other components of 

bone microarchitecture that have not been fully assessed. One of 

them is the presence of increasing levels of marrow fat (Burkhardt et 

al., 1987). In contrast to menopausal bone loss, age-related bone loss 

is not only associated with high levels of bone resorption, but also 

with increased adipogenesis (Rozman et al., 1989) and reduced 

osteoblas- togenesis (Zhou et al., 2008), which affects bone mass. 

Biopsy studies have shown significant increase in marrow fat with 

age (Tanaka and Inoue, 1976), as well as an inverse relationship 

between fat volume (FV) and bone volume that was independent of 

sex and correlated with the changes seen in people with osteoporosis 

(Justesen et al., 2001). 

Currently there are few non-invasive methods that have quanti- 

fied marrow fat in humans. Among them, magnetic resonance 

imaging (MRI) has been the main modality showing increased 

marrow fat in older subjects (Schellinger et al., 2001) and in 

osteoporotic individuals (Yeung  et   al.,  2005).  However    the 
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correlations between MRI and BMD by DXA have been inconsistent and were limited to the vertebrae (Griffith et al., 2005; Schellinger et al., 2004; 

Shen et al., 2007). Furthermore, although studies using MRI suggest that the degree of marrow adiposity may be a better predictor of bone loss and 

thus could be used as a surrogate for fracture risk (Schellinger et al., 2004), the lack of histology correlation limits the validity of this conclusion. 

Due to these reasons and other technical limitations (e.g. metallic prosthesis), a reliable alternative method to quantify fat infiltration is still 

required. With the emerging use of high resolution imaging methods to assess bone microarchitecture, such as peripheral quantitative CT (pQCT) in 

humans and microCT (μCT) in bone samples, the development of new image analysis methods to quantify marrow fat could offer an alternative to 

MRI. In this study, we aimed to validate a new method of non-invasive quantification of bone marrow fat by correlating μCT image analyses with 

the gold standard (histology) in aging rats. We expect that this new method will facilitate marrow fat quantification in animal and human studies 

looking at the mechanisms of age-related bone loss and senile osteoporosis. 

 

3.2 Materials  and methods 
 

3.2.1 Animals 
 

Twenty-two young mature (4-month-old, n= 12) and old (27- month-old, n= 10) male Louvain/c/rqrv (LOU) rats were studied. Male rats 

were selected due to their significantly higher levels of marrow fat infiltration as compared with old female LOU rats (Duque et al., 2009). Rats were 

obtained from the Aging LOU Rat Colony Infrastructure of the Quebec Network for Research on Aging (RQRV; www.rqrv.com). The rats were 

killed by rapid decapitation in block design fashion. Their bones were rapidly dissected and fixed. All animal protocols were approved by the 

Animal Care Committee of Centre Hospitaliere de l'Universite de Montreal Research Center in compliance with guidelines of the Canadian 

Council for Animal Care. 

 

3.2.2 Quantitative radiologic imaging 
 

μCT was performed, using a modification of previously published methods (Duque et al., 2009) on the left femur keeping soft tissues and after 

overnight fixation in 4% paraformaldehyde. A Skyscan 1172 instrument (Skyscan, Antwerp, Belgium) equipped with a 1.3 Mp camera was used to 

capture 2D serial cross-sections (axial and coronal), which were used to reconstruct 2- and 3-dimensional images for the quantification of the bone volume 

(BV) (cortical and trabecular) in the distal metaphysis. 

Analyses of the bone microarchitecture were carried out in a region of interest (ROI), which was defined as the cancellous bone compartment 

beginning 0.6 mm proximal to the most proximal point of the growth plate and extending proximally 1.0 mm, corresponding to approximately 1.55 

mm thick region of the distal femora. Topographic images of the bone were acquired with a rotation of 0.9° between each picture and at energy 

settings of 100 kV and 98 μA. The segmentation of the image was made by a global threshold and a voxel size of 21.90 × 21.90 × 21.90 μm. The same 

threshold setting was used for all the samples. 

 

3.2.3 μCT  image analysis 
 

Tomovision SliceOMatic 4.3 Rev-6i software (Tomovision, Montreal, QC, Canada) was used to analyze the images. This software has been 

validated against chemical analysis (Janssen et al., 2000) and other image analysis methods (Mitsiopoulos et al., 1998) and has been used as a 

reference standard method for comparisons of newer 

methods for adipose tissue quantification (Demerath et al., 2007; Bonekamp et al., 2008). 

Two trained observers carried out the image analysis. The image data were saved as Tagged Image File (TIFF) format. Adequate grayscale 

thresholds were determined by calculating the average of 20 quantifications per representative area for bone and fat in the images obtained from 

soft and bone tissue and applying the concept of multiple thresholds as previously described (Kuhn et al., 1990). All adipose and bone tissue pixels 

within the bone were measured. The calculated thresholds were: bone (blue) >100, bone marrow fat (yellow) -200 to +40, hematopoietic tissue 

40–60 (Fig. 1). described (Duque et al., 2009; Richard et al., 2005). Images were captured using a Nikon Eclipse E100 microscope (Nikon Instruments 

Inc.,Melville,NY,USA)equippedwithaRetiga1300camera(Qimaging, Burnaby, British Columbia, Canada) and the primary histomorpho- metric 

data obtained using Bioquant Nova Prime image analysis software (Bioquant Image Analysis Corp., Nashville,    Tennessee). 

For quantification of BV and FV, three coronal image sections were 

selected from each rat. Since the same femur was used in subsequent 

histology analysis, coronal sections were selected to closely match the 

histology sections anatomically. Regions of interest representing the 

whole axial section of the femur were created as previously described. 

Bone (cortical and trabecular), marrow fat and hematopoietic tissue 

were tagged blue, yellow and red respectively using the program's 

‘Region growing/painting’ mode. Within the ‘Region growing/paint- 

ing’ control panel, the upper threshold and lower threshold for each 

tissue were set to a value within the range as determined by the 

average pixel intensity of bone, marrow fat and hematopoietic tissue 

respectively. Each consecutive slice and each series of images were 

tagged using the same region growing procedure. Tagged images 

resulting from the ‘Region growing/painting mode’ were then 

manually inspected and edited as needed using the ‘Edit’ mode to 

http://dx.doi.org/10.1016/j.exger.2011.01.001
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exclude image artifacts and to tag the relevant tissue not previously 

tagged. BV and FV in mm3 were calculated from these respective 

tagged areas using the SliceOMatic TAG Surface/Volume tool in edit 

mode. Finally, the FV/BV ratio was calculated and expressed in 

percentage. 

 

3.2.4 Intra- and inter-observer reliability 
 

Two observers independently analyzed a total of sixty six μCT 

femoral slices (three coronal per rat). In addition, the observers 

performed the segmentations on two separate occasions 3 months 

apart. Both observers were blinded to the results obtained earlier. 

 

3.2.5 Histology and histomorphometry 
 

After μCT analysis was completed, the femora were processed 

for plastic embedding. For histomorphometric analyses of FV and 

BV, femora were embedded in polymethylmethacrylate (MMA) or 

a mixture of 50% MMAand 50% glycolmethacrylate (GMA). Serial 4- 

to 6-μm sections of the MMA-embedded tissues were left unstained 

or stained with von Kossa. Serial 4-μm sections cut on a Leica RM 

2155 rotary microtome (Leica Microsystems, Richmond Hill, 

Ontario, Canada) were deplastified in three changes of 2- 

methyoxyethyl acetate and 3 changes of acetone for 10 minute each, 

rehydrated in sequential concentrations of ethanol and maintained 

in PBS before staining as described previously (Valverde-Franco et 

al., 2006). FV was quantified using undecalcified, von-Kossa stained 

sections as previously described (Richard et al., 2005). Briefly, 

marrow fat (adipocytes) appears as distinct, translucent, yellow 

ellipsoids in the marrow cavity. A uniform number of fields were 

read in all sections, starting three fields from the left end of the bone 

section and three fields from the top endocortical surface. Any 

disruption in adipocyte shape would generate the exclusion of the 

field. All measures were done in a tissue volume area 

corresponding to 0.62 mm2 and analyzed at 40× magnification using 

the Bioquant Image Analysis Software. 

BV was quantified in von-Kossa stained sections as previously 
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Fig. 1. Comparison between fat volume/bone volume in histology and μCT image analysis in aging LOU rats. Bone micro architecture by histology analysis in young (A) and old (F) 

bones as compared with bone volume (BV, blue) and fat volume (FV, yellow) labeling using SliceOMatic analysis of μCT sections (B and G) obtained from the same young (C–E) and 

old (H–J) rats. In agreement with fat identification using histological analysis (A and F) μCT labeling shows higher levels of FV and low levels of BV in old rats (H–J) as compared to 

young rats (C–E). 
 

Nomenclature and abbreviations conform to those recommended by 

the American Society for Bone and Mineral Research (Parfitt et al., 

1987). Three independent examiners analyzed the histological sections. 

 

3.2.6 Statistical analysis 
 

Means and standard error of the mean (SEM) were used to 

describe the study sample. Intra- and inter-rater reliability was 

conducted using the intra-class correlation coefficient (ICC). In the 

intra-observer analyses, two measurements of the primary rater were 

compared. In the inter-observer analysis, the mean of the primary 

raters' results was compared to the mean of a second rater. Finally, to 

assess the correlation between the micro CT and histology variables, 

linear regression analysis was used with a p value <0.05 considered as 

significant. A Bland–Altman plot was used to determine the 

agreement between our non-invasive method and histology. 

 

3.3 Results 
 

3.3.1 Invasive and non-invasive identification 

of marrow fat in young and old LOU rats 
 

Fig. 1 illustrates both bone micro architecture by histology analysis 

in young (A) and old (F) bone as compared with BV and FV labeling 

using SliceOMatic analysis of μCT sections obtained from the same 

femur in young (B, C–E) and old (G, H–J) male LOU rats. In agreement 

with fat identification using histological analysis (A and F), μCT 
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labeling shows higher levels of FV in old rats (H–J) as compared to 

young rats (C–E). 

 

3.3.2 Intra- and inter-rater reliability 
 

For SliceOMatic/μCT the intra-rater reliability for duplicate 

measurements was 0.94 (p b 0.001). The agreement between FV/BV 

in young and old rats identified by SliceOMatic was 98% and 99% 

respectively (Table 1). 

 

3.3.3 Age-related changes and SliceOMatic validity 
 

In agreement with previous histology reports (Duque et al., 2009), 

SliceOMatic identified an age-related increase in FV and a significant 

decrease in BV on the older group (Fig. 2A, p b 0.01). Both methods 

showed a significant level of correlation when age-related changes in 

FV and BV were quantified (Fig. 2B) with a significantly higher 

correlation (r2 0.85) in the old animals. In both, histology and 

SliceOMatic, FV/BV ratio significantly increased in old vs. young  rats 

 
 

Table 1 

Reliability of method between independent examiners. 
 

Fat volume/bone volume (N)     Reader 1 mean Reader 2 mean SD 

 ICC Young (4 m) 22 0.23 

 0.24    0.02 0.98   
Old (27 m) 22 0.41 0.45 0.03    0.99 

SD — standard deviation. 

ICC — interclass correlation coefficient. 
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Fig. 2. Age-related changes in fat and bone volume in young (4 m) vs. old (27 m) LOU rats. (A) Bone and fat volumes were quantified in μCT images using SliceOMatic. The figure 

shows an age-related increase in fat volumes with a concomitant significant decrease in bone volume in old rats as compared with the younger group. *p b 0.001 for the comparison 

between young and old rats. (B) Correlation between volumes quantified by μCT vs. histology is shown in panel B (table). The correlation between both methods was significantly 

higher in the older rats. Panel C shows a significant difference in FV/BV ratio between young and old rats (n= 22), which was similar in both methods. Results represent   mean 

± standard error of the mean (SEM) after analysis of three different ROIs in two bone sections per rat by two independent observers. *p b 0.001 for the comparison between young 

and old rats. (D) Bland–Altman plot analysis showed a good level of agreement between both methods. The agreement was stronger when quantifying FV and BV in the older rats. 

 

 
(Fig. 2C, p b 0001). Both methods (histology and SliceOMatic) showed 

a significant increase (~ 2 fold) in the FV/BV ratio in the old rats as 

compared with their young counterparts (Fig. 2C, p b 0001). 

 

3.3.4 Agreement  between SliceOMatic  and 

histology 
 

Using a Bland–Altman plot, Micro CT image analysis method 

demonstrated good agreement with histology (Fig. 2D). All volume 

ratios calculated by both methods lie within ±2 SD from the mean 

volume ratio difference. 

 

3.4 Discussion 
 

In this study we successfully correlated image and histology 

analysis of the marrow fat/bone relationship in the aging skeleton. 

We validated anon-invasive method of FVquantification with μCT 

images using well-established imaging software. Consistent with 

previous invasive studies (Justesen et al., 2001; Verma et al., 2002) 

and with our own previous report in this same model (Duque et al., 

2009), our noninvasive quantification indicates that FV increases and 

BV decreases with age in this animal model. In addition, our non-

invasive method shows a high intra- and inter-rater reliability for 

duplicate measurements, demonstrates high correlation and good 

agreement with the gold standard when quantifying age-related 

changes in marrow fat infiltration. 

Biopsy studies with animal models (Duque et al., 2009) and 

humans (Verma et al., 2002; Meunier et al., 1971) have demonstrated a 

significant increase in FV and a parallel decline in BV in aging bone. 
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Studies looking at age-related changes in bone mineral structure in 

both an invasive and non-invasive manner have shown a high 

level of 
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correlation and reliability (Muller et al., 1996; Schmidt et al., 2003). In 

contrast, despite growing interest in the role of bone marrow 

adipocytes in the pathogenesis of osteoporosis, noninvasive studies 

quantifying marrow fat are mostly limited to MRI (Griffith et al., 2005; 

Shen et  al., 2007) and have not been correlated with   histology. 

In this study we correlated μCT analysis of marrow fat with 

histology in bones obtained from aging rats. μCT has been used to 

quantify visceral adipose tissue in animal models (Luu et al., 2009; 

Judex et al., 2010), however its usefulness in marrow fat quantifica- 

tion  remains unknown. 

Considering that the aging human skeleton is characterized by 

low bone mass arising from a reduction in bone formation, 

uncompensated bone resorption, and an increase in bone marrow 

adipogenesis (Zhou et al., 2008; Justesen et al., 2001), an animal 

model that exhibits similar physiological changes is ideal for the 

study and evaluation of bone changes with aging. We therefore 

used aging LOU rats as they have been shown to be a good model 

of healthy aging due to their longevity, absence of obesity and 

systemic pathologies that may confound skeletal changes that 

occur with aging (Alliot et al., 2002). Furthermore, their bone 

phenotype, showing the hallmarks of senile osteoporosis, has 

recently been characterized (Duque et al., 2009). 

To correlate between invasive and non-invasive methods, we 

compared histology and image analysis of FV/BV in aging LOU 

rats using the SliceOMatic imaging software. This software is a 

validated, reference standard, and non-invasive tool to measure 

adipose tissue (Demerath et al., 2007; Bonekamp et al., 2008), which 

has not been previously tested in bone. In our analyses, 

hematopoietic volume was not considered due to its inconsistent 

relationship with other volumes (Ogawa et al., 2000; Hirano and 

Iwasaki, 1992) and its variability with age (Burkhardt et al., 1987). 

Therefore, in this study the ratio FV/BV is 
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comparative histomorphometric study. Bone 8, 157–164. 

chosen because these parameters have been widely assessed in biopsy 

specimens and their relationship with age has shown better 

consistency (Justesen et al., 2001; Verma et al., 2002). 

The validity of this method is demonstrated by the high inter- and 

intra-rater reliability, high correlation with histology quantification 

and good agreement with the gold standard. Although this method 

still requires validation in human bone images, the clinical applica- 

bility of noninvasive quantification of marrow fat is on the horizon 

considering the emergence of new imaging methods, such as pQCT in 

bone (Burghardt et al., 2010; Liu et al., 2010; Nishiyama et al., 2010), 

which provides better and more accurate information on bone 

microarchitecture and therefore could increase the usefulness of this 

image analysis method. 

However, there were limitations in this study that must be 

addressed. One difficulty is that there is no established reference 

range of gray scale threshold (GLI) values for marrow fat that can be 

used to determine the region of interest from which volumes were 

calculated. The different threshold ranges obtained by the average of 

20 quantifications per representative areas in 66 images may have a 

degree of error that is not quantifiable. However our concept of 

multiple thresholds is similar to an earlier study (Kuhn et al., 1990), 

which used different thresholds for different tissues in the analysis of 

μCT images and was shown to be accurate compared with histology. 

Another limitation is that, as in histology sections, the volumes 

calculated from the images are not 3D volumes but an average of the 

total volume of three cross sections, thus the true volume may be 

significantly underestimated. 

 
1. Conclusion 

 
In conclusion, non-invasive quantification of FV/BV ratio using 

image analysis software is a useful and reliable tool to quantify one of 

the hallmarks of age-related bone loss and senile osteoporosis. The fact 

that this method is comparable to histology for identifying age related 

changes in marrow adiposity assures the use of this noninvasive 

method for aging bone research in the near    future. 
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4.0 Chapter 4: The effect of Dietary Fatty Acids on Bone Marrow 

Fat in a Murine Model of Senile Osteoporosis 

 

 
Abstract: 

 

Ageing induces high levels of marrow fat infiltration, which has a deleterious effect on bone 

mass. In contrast, dietary fatty acids may exert protective effects on bone. In this study, we 

aimed to analyse the changes in bone parameters and fat distribution induced by different dietary 

fatty acids in a mice model of senile osteoporosis. 

 

4.1 Introduction 
 

 

Although excess adiposity is detrimental to bone, evident by the negative association 

with bone mass and positive correlation with bone fractures,1-4 it has been postulated that fatty 

acid quality may be the real determining factor. The quality is determined in turn by the origin 

of the fatty acids; the structure of the fatty acids; the relative concentration and the metabolic 

context in which the fatty acids are present.5 Indeed, fatty acids in one group may be beneficial, 

while another group may be detrimental to bone.6 Data from in vivo and in vitro studies have 

shown that saturated fatty acids (SFAs) or omega−6 poly-unsaturated fatty acids (-6 PUFAs) 

induce bone loss, while omega−3 poly-unsaturated fatty acids (-3 PUFAs) are believed to 

protect bone health.7-14 However, mechanisms underlying the impact fat intake has in bone 

changes remain quite controversial, and with numerous fatty acids present in the human diet, the 

mechanisms of action are complex and far from being well understood (Fig. 1).5 
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Figure 1. Fatty acids and bone 

remodelling relationships: overview. This 

figure summarizes how fatty acids may 

impact bone remodelling either directly or 

indirectly.5 
 

 

 

 

 

 

The mechanisms by which PUFAs affect bone are complex.  However, it is considered to 

involve the modulation of a number of molecular signalling pathways and fatty acid metabolites, 

including prostaglandins; resolvins and protectins; cytokines and growth factors. With respect to 

𝜔-3 PUFAs, it modulates bone metabolism by releasing less prostaglandin E2 (PGE2), reducing 

receptor-activated nuclear kappa-𝛽 ligand (RANKL); modulating the concentration of 

proinflammatory cytokines; stimulating production and release of IGF1; and enhances calcium 

retention in bone;11, 15 whereas, -6 PUFAs induce osteoclastic activity by attenuating 

OPG/RANKL gene expression in osteoblasts and stimulate MSC to differentiate into adipocytes, 

which ultimately results in a decreased production of osteoblasts.16
 

In general, the metabolites of these two types of PUFAs seem to carry out opposing 

physiological processes. Eicosanoids derived from 𝜔-6 have predominantly 

proinflammatory actions and in contrast, those produced by 𝜔-3 have anti-inflammatory 

actions.16, 17 In addition, metabolites of 𝜔-6 and 𝜔-3 fatty acids act on progenitor cells of 

osteoblast and adipocytes.16 Either the fatty acids themselves or their metabolites can trigger 

the shift from osteoblastogenesis to adipogenesis18 by the binding Peroxisome Proliferator-

Activated Receptors (PPARs).19, 20 In a co-culture model of primary human cells, the 
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presence of mature adipocytes induced a significant inhibition of osteoblastic cell 

proliferation. This effect appeared to be mediated by fatty acids released by the adipocytes- 

mainly docosahexaenoic acid (22:6 (n-3); DHA) and arachidonic acid (20:4 (n-6); AA).21  

To date, animal studies showing the impact of fatty acids on bone have correlated fatty acid 

profile with bone tissue indices and indices of calcium metabolism. Some studies quantified bone 

formation, bone resorption markers and markers of calcium metabolism.22-26 These studies showed a 

positive association between higher n-3 PUFA levels and trabecular surface and tissue level bone 

formation rates22; Serum biomarkers of bone formation (R2 of 0.51 to 0.34)23; and increased 

intestinal calcium absorption (mg/24 h), calcium balance (mg/24 h) and bone calcium (mg/g bone 

ash).26  Some quantified bone morphology, such as areas and cross-sectional moment of inertia25, 27 

and others, have measured BMD28 and bone mineral content.25, 29, 30 Studies looking at bone strength 

outcomes showed low n-6/n-3 PUFA ratio in the femur was negatively correlated with bone mineral 

content (BMC) (r=-.57, P=.01) and peak load at femur midpoint (r=-.53, P=.02) and femur neck (r=-

.52, P=.02). Moreover, long-chain n-3 PUFA, eicosapentaenoic acid and docosahexaenoic acid also 

significantly and positively correlated with BMC and peak load.29  

Only one study examined the direct effects of fatty acid on adipocytes.18This 

study showed that when cells from osteoblastic lineage are grown in free fatty acids 

enriched medium (palmitic and linoleic acids), they develop such features as lipid 

vesicles in the cytoplasm resembling adipocyte. It also showed increased expression of 

aP2, a late adipocytic differentiation marker gene, in both preadipocytes and 

osteoblastic cells.  

However, a direct relationship between dietary free fatty acids concentration and 

the amount of marrow fat have not been described. Given the integral role of adipocytes 

within the bone marrow milieu, and the demonstrated relationship between amount of 
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marrow fat, age, bone quality and importance of dietary interventions in osteoporosis, 

there is a need to examine effects of dietary lipids on marrow fat. Determining the 

amount of marrow fat induced by different dietary lipids is important, as dietary 

interventions are an important part of osteoporosis management. 

This is the first study to quantify marrow fat, and the first to employ a non-invasive imaging based 

technique.  In addition, previous studies did not use animal models that mimic senile osteoporosis 

physiologically.  In this study, senescence-accelerated prone mice (SAMP8) were used to mimic 

senile osteoporosis, as this model features sarcopenia and osteoporosis, and it is consistent with 

clinical features associated with older and ageing adults. Senescence accelerated mice-Resistant 1 

(SAMR1) were used as normal ageing controls. 

Thus, following on from the known relationship between fatty acid and skeletal effects, 

and the relationship between ageing bone and adipogenesis so far, this study’s objective was to 

evaluate marrow adiposity induced by different dietary fatty acids in a mouse model of age related 

osteoporosis. We hypothesise that over 10 months, a sunflower diet (low in n-3 PUFA) will be 

associated with an increase in marrow fat tissue volume in all mice, other than the mice on the 

control diet. The secondary hypotheses are  

 The increase in marrow fat volume will be greater in osteoporotic mice (SAMP 8) 

than non-osteoporotic mice (SAMR1)  

 The effects of sunflower will be altered by the changes in proportion of ω6 and ω3 

fatty acids.  

 

4.2 Materials and methods 
 

The present study was part of a larger study that was designed to evaluate “the impact 

of fatty acid quality on the age related evolution of the locomotor system and to understand 
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which ageing mechanisms are involved.”31  

Two-month-old senescence accelerated P8 (SAMP8) mice and their SAMR1 normal 

controls were allocated into 4 different groups (n=20/group) and administered the following 

diets:  

 Standard “growth”  

 “Sunflower” (high ω6/ω3 ratio)  

 Borage (high γ linoleic acid)  

 “Fish” (high in long ω3).  

Mice were fed ad-libitum for 10 months, and then euthanized for bone and fat investigation 

using pathology and micro-CT technologies. CT scan images were analysed by Tomovision 

SliceOMatic 4.3 Rev-6i software (Tomovision, Montreal, QC, Canada). Images were blind-

assessed by two evaluators. One hundred slices of the region of interest were selected for each 

mouse. A total of 8000 CT scan sections were analysed. Total tissue volume, marrow fat volume 

and bone volume were determined and compared between different dietary groups. 

 

4.2.1 Ethics 

 

The institution's animal welfare committee approved all animal procedures. All procedures 

complied with the National Research Council's guidelines for the care and use of laboratory 

animals. Animals were housed in the animal laboratory of the INRA Research Centre for Human 

Nutrition (http://www1.clermont.inra.fr/unh/telechargementinternet 

/ienplaquette.pdf). A controlled environment housed the animals for the duration of the study 

(12:12 h light–dark cycle, 20–22 °C, 50–60% relative humidity; 5 mice per plastic cage with free 

access to water). Animals were delivered to the facility 1 month before the study for 

acclimatization to the local animal environment. When the protocol ended, blood was drawn on 

http://www1.clermont.inra.fr/unh/telechargementinternet
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anesthetized animals. Then, animals were sacrificed by IP injection of lethal dose of 

pentobarbital sodium (0.1 ml/g of body weight — CEVA Santé Animale, Libourne, France) and 

tissues were harvested, frozen and stocked prior to investigation. 

 

4.2.2 Animals 

 

One- month -old female Senescence accelerated mouse-Prone 8 (SAMP8) and Senescence 

accelerated mouse-Resistant 1 (SAMR1) derived from AKR/J strain were obtained from 

INRA-Dijon (UMR INRAENESAD Flaveur, Vision et Comportement du consommateur, 

21065 Dijon Cedex, France). As an acclimatization period, they were provided with free access 

to a standard growth diet for a month. Subsequently, SAMR1 and SAMP8 animals were 

randomly allocated into different groups and submitted to different diets ad libitum for 10 

months (Fig. 2), after ensuring that daily food intake was not modified significantly by diet 

enrichment. Randomization was conducted using a computer-generated random numbers 

program (http://www.graphpad.com/quickcalcs/index.cfm).  

The experimental procedure was conducted with a total of 20 mice per group to allow 

data analysis on at least 12 mice per group at the end of the protocol. Thus, 40 SAMR1 were 

randomized into the standard growth diet or sunflower diet group, and 80 SAMP 8 mice were 

randomized into one of the four groups as depicted in Figure 2. Further, the experimental 

protocol was designed not to exceed 10 months, to avoid a dramatic increase in SAMP8 

mortality, which is observed from 12 months of age.32 

 

 

 

 

 

http://www.graphpad.com/quickcalcs/index.cfm
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Standard 

Growth diet 

SAMR1 
Standard 

Sunflower 

SAMP8 

Standard  

Sunflower (Sf) 

Sf + Borage 

Sf + Fish 

    2 months -------------------------------- 10 months -------------------------------- 
Figure 2. Schema of diet regimen 

 

4.2.3 Diets 

 

Diets were purchased from INRA (Jouy-en-Josas, France) or Harlan (Ganat France). 

Adjustments were made to all diets to ensure they had similar caloric values (Δb5%). SamR1 

mice received either the control diet, standard growth diet (Harlan Teklad Global 2019) or a 

sunflower oil based diet with a high ω6/ω3 Polyunsaturated Fatty Acid (PUFA) ratio (Tables 1 

and 2). In parallel, SamP8 mice were fed either a standard growth diet (Harlan Teklad Global 

2019), a sunflower oil based diet or an enriched sunflower oil based diet with varying fatty acid 

composition (Table 1). To examine the effects of γ-Linolenic acid (18:3 ω6; GLA) enrichment, 

Borage was used; and to test the effect of lowering ω6/ω3 ratios (by providing Eicosapentaenoic 

acid (20:5 ω3; EPA) and Docosohexaenoic (22:6 ω3; DHA)), fish oils were used.  

 

4.2.4 Bone morphological analysis 

 

 

An eXplore CT 120 scanner (GE Healthcare, Canada) was used to conduct bone 

morphological analysis. Frozen femoras, cleaned of soft tissues, were scanned. Three hundred and 

sixty degree images are acquired in 1° increments, collected in a single complete gantry rotation, 

with a 20ms exposure/ view and X-ray energy settings of 100 kV and 50 mA. A built in modified 

cone beam algorithm was used to reconstruct CT images with isotropic voxels of 

0.045×0.045×0.045 mm3. CT scans were analysed using SliceOmatic (Tomovision™, Montreal, 
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Canada). Images were blind-assessed by two evaluators. Images were manually visually inspected, 

and selected to avoid artefacts and poor quality. The axial slice representing the centre of the femur 

(starting 0.1 mm proximally from the growth plate and extending a further 0.32 mm in the proximal 

direction) was determined manually and was used as the reference slice. Fifty regions of interest 

were selected from both sides of the central axial slice, totalling one hundred axial slices of femur 

being selected as the region of interest for each mouse. A total of 8000 CT scan sections were 

analysed across all mice. Using our previously validated approach,33 bone and marrow tissue (blood 

and fat) were manually assessed and the range of gray-scale density levels were determined. The 

thresholds obtained in the validation study were converted to equivalent gray scale values for the 

device used in this study. Subsequently, to isolate bone, marrow fat and blood tissue respectively, 

the following thresholds were applied: bone ≥1901, -750 ≤ marrow fat ≤450 and 451≤ blood ≤ 1900 

(Fig. 3). In primary analysis, bone marrow fat volumes were then calculated using an automated 

algorithm in SliceOmatic. For secondary analyses, bone volumes and blood volumes were also 

calculated. 

 

Ingredient 

(g/100 g diet) 

Standard diet 

(Harlan 2019) 

Sunflower 

based diet 

Borage enriched 

diet 

Fish enriched 

diet 

Wheat starch 55.24 59.14 56.79 56.79 

Casein 19.00 19.20 19.20 19.20 

Sucrose 4.16 4.16 4.16 4.16 

Fiber cellulose 3.60 3.50 3.50 3.50 

DL méthionine 3.30 0.30 0.30 0.30 

Choline bitartrate 0.20 0.20 0.20 0.20 

Mineral mix 3.50 2.50 2.50 2.50 

Vitamin mix 1.00 1.00 1.00 1.00 

Sunflower oil 0.00 5.45 5.62 6.73 

Canola oil 0.00 2.73 3.37 3.37 

Borage oil 0.00 0.00 2.79 0.00 

Fish oil 0.00 0.00 0.00 1.68 

Oleisol oil 0.00 1.82 0.57 0.57 

Soybean oil 10.00 0.00 0.00 0.00 

Energy (cal) 420 428 440 440 

Table 1. Diet formulations. 
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Fatty acids Standard diet 

(Harlan 2019) 

Sunflower 

based diet 

Borage 

enriched diet 

Fish 

enriched diet 

12:0 0.71 0.00 0.00 0.00 

14:0 0.15 0.05 0.05 0.09 

15:0 0.00 0.00 0.00 0.00 

16:0 11.35 5.11 6.58 5.03 

17:0 0.00 0.02 0.01 0.01 

18:0 3.24 2.75 2.89 2.97 

19:0 0.00 0.00 0.00 0.00 

20:0 0.25 0.19 0.16 0.16 

22:0 0.08 0.24 0.12 0.12 

Total SFA 15.78 8.36 9.81 8.38 

16:1 0.15 0.08 0.14 0.19 

18:1 n−9 23.4 46.89 36.84 37.77 

18:1 n−7 0.00 0.00 0.21 0.52 

20:1 0.54 0.34 1.17 0.73 

22:1 0.05 0.00 0.54 0.00 

24:1 0.00 0.00 0.34 0.00 

Total MUFA 24.14 47.31 39.24 39.21 

18:2 n−6 54.23 42.04 43.40 40.51 

18:3 n−6 0.00 0.00 5.19 0.00 

20:4 n−6 0.00 0.00 0.00 0.31 

Total PUFA ω-6 54.23 42.04 48.59 40.82 

18:3 n−3 5.93 2.29 2.35 2.38 

18:4 n−3 0.01 0.00 0.00 0.52 

20:4 n−3 0.00 0.00 0.00 0.32 

20:5 n−3 0.00 0.00 0.00 6.35 

21:5 n−3 0.00 0.00 0.00 0.22 

22:5 n−3 0.00 0.00 0.00 0.31 

22:6 n−3 0.00 0.00 0.00 1.50 

Total PUFA ω-3 5.94 2.29 2.35 11.60 

Total PUFA 60.16 44.33 50.94 52.4 

LA/ALA 9.14 18.35 18.46 17.02 

n−6/n−3 9.13 18.35 20.67 3.52 

Total percent 100.00 100.00 100.00 100.00 

Table 2. Diets' fatty acid composition (% of total fatty acids). 
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Figure 3. SAMR1 on Growth diet (A&B) and Sunflower diet (C&D). SAMP8 on Growth diet (E&F), 

Sunflower diet (G&H), Fish diet (I&J), and Borage diet (K&L). 

 

 
4.2.5 Data Analysis 

 

Data on all variables are expressed as group means ± standard deviations. An 

initial analysis comparing marrow fat volumes and bone volumes of SAMR1 and SAMP8 

mice on a standard growth diet was carried out using independent t tests. This was to show 

how well the SAMP8 mice phenotype represented the progeria model. Similarly, 

independent t tests were used to compare the effects of a sunflower diet on marrow fat 

volumes inSAMR1 mice (standard growth diet vs sun flower diet), and separately in 

SAMP8 mice (standard growth diet vs sun flower diet). Real differences in marrow fat 

volumes between all four groups on a sunflower diet were then compared (SAMR1 on 

standard growth diet and sunflower diet; and SAMP8 on standard growth and sunflower 

diet) using ANOVA. Finally, the rescue or depressing effects of a fish enhanced diet and 
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Borage enhanced diet respectively were examined by analysing differences between 

SAMP8 groups on different diets using ANOVA and Tukeys post hoc tests (IBM SPSS 

version 20.1). In all of the analyses, P <0.05 was considered to be statistically significant.  

 

4.3 Results 
 

 

4.3.1 SAMP8 mice as a progeria model 

 

Under a growth diet, SAMP8 mice exhibited lower mean fat volume and higher mean 

bone volume (Fig. 4A & 4B respectively) - however, these differences to SAMR1 mice were not 

statistically significant. Similarly, fat volume to bone volume ratio and fat volume fraction overall 

did not differ significantly between the mice (Fig 4E and 4C respectively) - however, SAMP8 

mice on a growth diet showed higher bone volume fraction of 6%, which was significant (Fig 

4D). 

          A                                                                     B 

                   
 

      C                                                                          D 
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Figure 4. [A] Mean marrow fat volume (Mean FV), [B] Mean bone volume (Mean BV), [C] Mean 

percentage of fat volume as a proportion of total tissue volume (TV) (Mean FV/TV), [D] Mean 

percentage of bone volume as a proportion of total tissue volume (Mean BV/TV) and [E] Mean ratio of 

fat volume to bone volume (Mean FV/BV) in SAMR1 (sR1) and SAMP8 (s8) mice on growth diet 

(GRTH) and sunflower diet (SF). Significant different groups are marked with * as analysed by 

Independent Student t Test (p < 0.05). 

 

 

4.3.2 Sunflower diet and marrow fat volumes 

 

 
When SAMP8 mice were fed s sunflower diet, there was an increase in mean bone volume (24% 

 8%) and a reduction in fat fraction (9%  3.5%), compared to SAMP8 on a growth diet (Figs 

4B, & 4C respectively). Although mean fat volume reduced (23%  10%), fat to bone volume 

ratio decreased, and bone volume fraction increased (5%  4%), these did not reach statistical 

significance (Figs. 4A, 4E &4D respectively). In contrast, the effects of a sunflower based diet on 

SAMR1 mice were not statistically significantly different from the effects of a standard growth 

diet on SAMR1 mice on all skeletal variables (Figs.4A-4E). 

 

4.3.3 Fatty acid enriched diets (Borage [ω-6] and Fish oil [ω-3]) and marrow fat volumes 

 

We then set out to analyse the effects of a sunflower oil based diet and other diets that 

modulate the fatty acid composition of Borage and fish. Borage oil was used to test the effect of a 

γ- Linolenic acid (18:3 ω6; GLA) enrichment, and fish oil was used to test the effect of a reduced 
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ω6/ω3 ratio, by enriching ω-3 content with Eicosapentaenoic acid (20:5 ω3; EPA) and 

Docosohexaenoic (22:6 ω3; DHA). A one-way between groups analysis of variance was 

conducted to explore the impact of this variation in dietary fatty acids on marrow fat and bone 

volumes. There were statistically significant differences in the mean bone volume [F (3, 23.7) = 

10, p = .000], fat to bone volume ratio [F (3, 22.8) = 3.6, p = .03] and fat volume fraction [F (3, 

23.2) = 6.1, p = .003] between the groups, as determined by a Welch test (Figs 5B, 5C & 5D 

respectively). 

 

A                                                                                B 

             
 

  C                                                               D 
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Figure 5. Comparisons of skeletal parameters in SAMP8 mice on standard growth diet (GRTH), sunflower 

diet (SF), Borage (BRG) and Fish diet (FSH). [A]: Mean Bone Volume (BV) in µm3, [B] Mean Fat Volume 

(FV) in µm3, [C] Mean ratio of fat volume to bone volume (Mean FV/BV), [D] Mean percentage of fat 

volume as a proportion of total tissue volume (Mean FV/TV), and [E] Mean percentage of bone volume as a 

proportion of total tissue volume (Mean BV/TV). Significant group differences are marked with * as analysed 

by ANOVA (p < 0.05). 

 

 

Post-hoc comparisons using the Games-Howell test indicated that the mean bone volumes of 

SAMP8 mice on the sunflower and fish diet were 34%  10.5% and 25%  5% higher, compared 

to SAMP8 mice on the standard diet (Fig 5B). Although the mean bone volume in the borage 

group was 13.5%  9% higher than the standard diet, this was not statistically significant. Fat 

volume to bone volume ratio was lowered by 29.5 points in the fish diet group, and was 

statistically significant (Fig 5C). The borage and sunflower diets also lowered the ratio by 24 and 

22 points respectively, but were not statistically significant from the growth diet. Fat volume 

fractions were significantly reduced by both the fish and borage diets by 9.5%  2.3% and 7.3%  

2.1% respectively (Fig 5D). Interestingly, the sunflower diet also reduced fat volume fraction 

(8.8%  3.6%), but the effect did not reach statistical significance. Similarly, despite decreases in 

mean fat volume by 14%  15%, 19%  8.5% and 22%  8.4% in the sunflower, borage and fish 

diet groups respectively, these values were not statistically significant (Fig 5B). Likewise, non-

statistically significant increases in bone volume fractions of 5% ± 4%, 3% ± 2% and 4%  2% in 

the sunflower, borage and fish diets respectively, (Fig 5E) compared to growth diet, were also 
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seen. 

The sunflower diet protected bone health through positive effects on bone volume and marrow fat 

fraction. Significantly increasing -3 fatty acids in the diet (Fish) maintained positive effects on 

bone volume, but further lowered fat fraction and fat to bone volume ratio. In addition, increasing 

-6 fatty acids in the diet (Borage) reduces fat fraction, but at the expense of attenuation of bone 

volume. Dietary regulation of bone mass by sunflower, borage and fish oils is independent of an 

effect on marrow fat volume, being most likely associated with their direct effect on other bone 

cells or by regulating fat-secreted factors. Due to their bone-protective effect, sunflower and fish 

diet could constitute a new nutritional strategy to prevent age-related bone loss in the near future. 

 

 

 

4.4 Discussion 
 

 

In this study, we showed that in an osteoporotic bone microenvironment, a sunflower diet 

had no significant effect on fat volumes and most bone indices. Enriching the diet with ω-3 fatty 

acids reduced fat fraction and fat to bone volume ratio, and maintained mean bone volume. On the 

other hand, increasing the proportion of ω-6 fatty acids reduced fat fraction, but did not affect 

other marrow fat volume indices and bone indices. 

Based on previous animal studies, our first hypothesis was that a sunflower diet 

containing less total ω6, less total ω3 fatty acids and a high ω6:ω3 fatty acid ratio compared to a 

standard diet, would be detrimental to bone health and thereby would increase marrow fat. Our 

findings were, however, the opposite. In fact, when SAMP8 mice diet changed from the 

standard growth diet to the sunflower based diet, there was a significant reduction in fat tissue 

fraction (9.7%, p=.001) and an increase in mean bone volume (24%, p =.004). These results 
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differ from previous animal studies, which showed that a higher ω-6 to ω-3 fatty acids ratio is 

detrimental to bone health, and higher ω-3 fatty acids or lower ω-6 to ω-3 ratios are conducive 

to healthy bones.34, 35  

However, many previous studies have not utilized similar animal models of senile 

osteoporosis, so comparisons are difficult. Past studies have included young chicks,22 

ovariectomized rats36 and male rats.23-26 Previous studies also did not directly measure the 

amount of adipose tissue or bone tissue, but markers of bone formation and resorption. In one 

study, young chicks fed a semi-purified diet containing soybean oil high in ω-6 PUFA 

demonstrated a lower rate of bone formation compared with other chicks given a low dietary 

ratio of n-6/n-3 fatty acids.22 In this study, bone ash weight, morphometry and serum alkaline 

phosphatase were used to determine the effects on bone. Another study compared 

ovariectomized rats, fed one of four dietary conditions-  

 Normal diet 

  Low calcium diet (1.5 mg/day)  

  EPA-enriched diet (160 mg/day/kg),  

  EPA-enriched and low calcium diet.36  

Bone weight, serum alkaline phosphatase activity and bone strength were the indices to 

confirm effects of EPA. The results showed that EPA enriched diets were able to prevent the 

reduction in bone mass (as measured directly by weight) and bone strength, caused by calcium 

deficiency. Similarly, Claassen et al26 examined the effects of PFAs, specifically different ratios 

of ω6:ω3, on calcium balance and indices of bone mineralisation. Here, male Sprague-Dawley 

rats were fed diets supplemented with linolenic acid (GLA, n-6) and eicoapentaenioc acid 

(EPA, n-3) in the ratios 3:1, 1:1 and 1:3.  Rats fed diets high in (ω-3) or low (n-6)/ (n-3) ratios 
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displayed higher levels of serum alkaline phosphatase isoenzymes activities, including the 

bone-specific isoenzyme (BALP).  

The ω6:ω3 ratios in these studies ranged from 222,24 to 323,26 and others varied from 

lower25 to slightly higher.27-30 In our study, ω6:ω3 ratio in the sunflower diet was 18, and the 

standard growth diet’s ratio was 9. These ratios are much higher than the dietary ratios in 

previous studies that show detrimental effect. However, the sunflower diet in this study has less 

of the fatty acids that negatively impact bone (half the amount of saturated fatty acids and 12% 

less total PUFA -6). Whether this has an impact on the net outcome of marrow fat and bone 

volume indices is uncertain, and further studies would need to be done to clarify this.  

Our results suggest that more complex interactions are perhaps at play in this model. Is it 

possible that in the setting of age related osteoporotic marrow microenvironment, the 

combination of low levels of saturated fatty acids and moderate level of total PUFA ω-6 have 

independent and positive skeletal effects, augmenting the positive effects of total PUFA and 

total PUFA -3 levels, and thereby negating the negative effects of a high 6/3 ratio? This 

question cannot be answered by the current study and has not been investigated in previous 

studies. Furthermore, considering the fact that mean BV increased significantly with a smaller 

increase in bone volume fraction, whereas FV fraction decreased significantly with a 

proportionately large reduction in mean fat volume, could it be that essential fatty acids act on 

bone marrow cells independently and preferentially on adipogenesis over osteoblastogenesis?  

It is well recognized that mechanisms of age related bone loss are different to those in 

menopause related bone loss, and it is plausible that fatty acids behave differently in different bone 

marrow microenvironments. This is supported by the observation in some human studies of senile 

osteoporosis, that higher ω-3 in take was not associated with higher BMD,37,39or that higher ω-6:ω-3 

ratios were not associated with lower BMD.38,39 In fact, there have been human studies showing that 
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moderately higher dietary ratios of - 6:-3 maintained or enhanced bone health.  

In one study involving pre- and postmenopausal women, supplementation with -6 to -3 

fatty acids in a ratio of 10:1, combined with calcium, had equivalent effect on bone and bone 

markers compared to calcium alone.40  In this randomized clinical trial, 85 healthy premenopausal 

women (aged 25±40 years, n= 43) and postmenopausal women (aged 50±65, n=42) with normal 

BMI (18-32) and normal BMD at baseline were allocated either to a diet supplement containing both 

-linolenic acid and eicosapentaenoic acid (in proportions thought to be optimal for bone tissue) in 

addition to calcium 1.0 gm daily (treatment group), or a usual diet with 1.0 gm calcium only (control 

group). After 12 months of supplementation, a 1% increase in BMD was observed with both 

treatment and control groups in premenopausal women, but these increases were not statistically 

significantly different. Among postmenopausal women, although a decrease in BMD was observed 

within both groups, there was no significant difference with these changes between the groups.  

With bone turnover markers, urinary markers of bone resorption (N-telopeptide and hydroxyproline) 

did not change significantly within groups among the premenopausal women. There were significant 

decreases in the serum markers of bone formation (osteocalcin and bone-specific alkaline 

phosphatase). On the other hand, there were significant increases in parathyroid hormone in the 

treatment group and significant increases in serum Ca in both treatment and control groups, but there 

were no significant differences between the treatment and control groups for any of these changes. 

In comparison, markers for bone formation and bone resorption fell in both treatment and control 

groups among the postmenopausal women, and most of these within-group changes were highly 

significant. However, there were no significant differences between the treatment and control groups 

for any of these changes. 

Whereas, in another study, a similar supplementation given to postmenopausal women with 

low bone mass preserved BMD at the spine and increased BMD at the femoral neck compared to 
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bone loss in the placebo group.41  Sixty-five women (mean age 79.5) with a diet low in calcium were 

randomly assigned to -linolenic acid (GLA) + eicosapentaenoic acid (EPA) + 600 mg/day calcium 

carbonate, or coconut oil placebo capsules + 600 mg/day calcium carbonate. Markers of bone 

turnover and BMD were measured at baseline and at 18 months. Twenty-one patients were 

continued on treatment for a second period of 18 months, after which BMD (36 months) was 

measured again. At 18 months, osteocalcin and deoxypyridinoline levels fell significantly in both 

groups. Lumbar spine BMD did not change in the treatment group, but decreased 3.2% in the 

placebo group; whereas, femoral BMD increased 1.3% in the treatment group, but decreased 2.1% 

in the placebo group. Over the second period of 18 months, lumbar spine BMD increased 3.1% in 

patients who remained on active treatment, and 2.3% in patients who switched from placebo to 

active treatment; whereas, femoral BMD in the latter group showed an increased 4.7%.  

Similar responses were also found in younger men and women on a mediteranean diet high in 

monosaturated fat.42   Monounsaturated fatty acids containing olive oil, with−6 and −3 PUFAs in 

a ratio of ≈10:1, was positively associated with bone mass. 

Currently, which of these marrow variables is the overriding factor that determines the 

final bone outcome in a senile osteoporosis animal model remains unknown. Thus, determining 

which combinations of specific total levels or specific thresholds of saturated fatty acids, PUFA 

-3, PUFA ω-6 and ω-6/ω-3 ratios ultimately affect the skeletal outcome would be the next step 

in future studies. Concurrently, measuring ex vivo prostaglandin E2 production and IGF-1 and 

evaluating the correlations between these mediators and dietary fatty acid levels would also 

assist in answering this question. 

Next, we set out to determine the effects of varying fatty acids proportions on marrow 

fat volume and bone volume. Our results are interesting for two reasons. Firstly, in this mice 

model of senile osteoporosis, moderate levels of total -6 and relatively high -6:-3 ratios 
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demonstrated positive bone effects, as reflected in the enhancement in mean bone volume over 

other variables, suggesting a predominant effect via the osteoblastic pathway. Secondly, for 

each essential fatty acid, there may be a threshold, at which point, opposite effects on 

osteoblasts and adipocytes are seen- that is to say that fatty acids are capable of dual actions. 

These hypotheses will need to be tested in future studies.  

In our study, holding further increasing the total -6 level and thus 6:-3 ratio with 

borage resulted in an increase in fat volume fraction and reductions in mean bone volume and 

bone volume fraction. This suggests that elevated levels of ω-6 and ω-6: ω-3 ratios beyond 

moderate levels in a sunflower diet are detrimental to bone health through activation of 

adipogenesis. We did not measure adipocyte numbers and sizes, and adipokines in this study, 

but an increase in these parameters would be supportive. In contrast, dramatically increasing 

total -3 and correspondingly decreasing -6:3 ratios further reduced mean fat volume and 

fat volume fraction with attenuation of mean bone volume and bone volume fraction. The 

mechanism underlying this outcome is uncertain. Examining for inhibition of adipogenesis at 

the cellular level concurrently would support the possibility that there is a preferential 

inhibition of adipogenesis as the mechanism. 

Thus, overall, the results suggest that both EFAs act on both pathways concurrently but 

that at highly elevated levels, -3 preferentially inhibits adipogenesis and -6 stimulates 

adipogenesis. Furthermore, absolute levels of essential fatty acids seem to be primary 

determinants of net skeletal outcomes and the ratios are secondary determinants. 

Although previous studies have assessed bone outcomes using different indices to our 

study, as previously stated, some animal studies have reported conflicting results in line with our 

findings. One study exploring the effects of different -6 to -3 essential fatty acids ratios 

showed that a low -6 to -3 fatty acids (3:1) dietary ratio did not have a statistically significant 
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effect on bone in growing rats,26 whilst another study showed that lowering the -6:-3 ratio 

from 9:1 to 4.5:1, while SFA and MUFA were held constant, altered the fatty acid profile, but did 

not affect bone mass in rapidly growing piglets.30 Similarly, in a short study of 9 weeks, although 

reducing the (n-6):(n-3) FA ratio using (n-3) PUFA decreased ex vivo PGE2 secretion from bone, 

bone mass was not affected.25 Another study showed that although the activity of bone-specific 

alkaline phosphatase and formation rate were higher in rats fed diets with high amounts of (n-3) 

FAs and a (n-6):(n-3) ratio of 1.2, osteocalcin was not affected.23 In fact, significantly increasing 

-3 has been shown to have either no effect or an adverse effect in some human studies. In a 12-

week n-3 PUFA supplement study, a 150% increase in n-3 PUFA concentration compared with 

baseline by the end of the period was not associated with reduction in bone resorption.43 

Similarly, in longer studies, n-3 PUFA supplementation for 24 weeks was not associated with 

bone turnover markers,44 and n-3 PUFA supplementation for 12 months or more was found to 

have no influence on BMD.40, 45 In fact, in rapidly growing rabbits, 10% fish oil supplementation 

( -6 : -3 [1:21] ) combined with a modest amount of supplemental vitamin E,  affected the 

skeleton negatively.27 

In addition to the possibility that these EFAs may have dual actions depending on their 

levels and the bone microenvironment, three other observations are important to consider that 

may explain the results of our study. It has been shown that resultant plasma GLA (metabolites of 

-6): EPA (metabolites of -3) does not reflect dietary supplementation of GLA: EPA, and that 

-3 EFAs accumulate to a higher percentage in tissues than -6.26, 40 Secondly, bone marrow acid 

profiles of fatty acids in various animal studies are not known. This is important, as although the 

lipid content of dietary treatments significantly influence and is reflected in the fatty acid profile 

of the bone marrow, absolute levels and ratios differ from dietary proportions. In one study46, a 

ratio of ω-6/ω-3 fatty acids in the diet showed negative correlation with the concentrations of EPA 
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and DHA in bone marrow and in fact there were significant differences in the levels of EPA and 

total ω-3 PUFA between male and female rabbits. Compared to males, female rabbits had 

significantly higher concentrations. This finding contradicts another study, where relative to 

female mice, male mice were observed to have higher EPA and total ω-3 PUFA levels in the 

femur.29 These results in animal studies suggest that -6 supplementation does not substantially 

inhibit the -3 pathway, and that the relationship between dietary essential fatty acid profiles and 

corresponding absolute levels and ratios of essential fatty acids in plasma and bone marrow may 

differ significantly, and thus affect bone differently dependent on sex and life stages of the 

animals. Notably, we did not measure bone tissue or marrow fatty acid profiles. Nor did we 

analyse the differences in male versus female mice. These additional analyses would provide 

further insight into the complicated fatty acid interactions. 

It is plausible that not only the plasma ratio of -6:-3 in our sunflower group may be 

significantly lower than the dietary ratio of 18.35:1, but also that the plasma levels of -6 fatty 

acid derivatives may be quite low, and the levels of -3 may be higher, therefore resulting in a net 

positive effect on bone. In future studies, it would be relevant to measure plasma level and bone 

marrow tissue levels of essential fatty acids to determine any metabolic relationships between 

different fatty acids, bone markers and indices. 

In summary, the effects of EFAs on skeletal metabolism remain complex. Fatty acids of both -6 

and -3 origin may give rise to many different metabolites with various effects on bone.5 The 

balance between omega-6 and omega-3 (n-3) PUFA can benefit bone modelling,34 and for the first 

time we demonstrated the possibility of “duality of fatty acids” using a model of senile osteoporosis 

that mimics clinical features of ageing in humans. On one hand, sunflower and fish oil are protective 

of bone loss, while on the other hand, borage with higher -6 fatty acids is less protective of bone 

health. However, the optimal combinations of absolute levels of individual fatty acids and ratios 
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remain to be determined. There is also a need to determine which tissue levels (dietary, serum or 

bone marrow) best predict skeletal outcomes. Indeed, there are many questions that remain 

unanswered, such as what is the volume of distribution of ω3 and ω6 fatty acids? Do they enter bone 

readily and are able to access marrow? At what concentrations do they exist in the marrow? 

Further studies are required to delineate the components responsible for skeletal outcomes, and 

overall biological effects utilizing a similar model of senile osteoporosis. 
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5.0 Chapter 5: Anatomical Differences in Marrow Fat in a Cohort 

of Older Men: Correlation with Body Composition and Calciotropic 

Hormones. 

 

Abstract 

 

A number of MRI studies have shown higher marrow fat concentrations with ageing and 

osteoporosis, but the nature of the relationship between marrow fat tissue and bone tissue; clinical 

surrogates of bone mass and strength; and calciotropic hormones at specific skeletal sites have not 

been previously examined. We conducted a cross sectional study looking at these relationships 

using clinical CTs and the image analysis software, Tomovision Slice O Matic 4.3 Rev-6i 

software (Tomovision, Montreal, QC, Canada), to quantify marrow fat and bone tissue. 

One hundred and twenty male subjects (mean age: 67.7 ± 6) underwent CT imaging of the 

lumbar spine and both proximal femurs, and a complete physical examination. In addition to 

anthropometric parameters, full serum biochemistry panels and BMD via DXA were 

measured. CT axial slices of L2, L3, left and right proximal femur, neck of femur, and 

trochanteric regions were analysed, and fat volumes and bone volumes quantified. 

 

 

5.1. Introduction 
 

 

Senile osteoporosis is associated with increased marrow fat infiltration, which affects bone mass and 

quality. An inverse relationship between marrow fat and bone mass has been demonstrated at a 

cellular level1 and at macroscopic level using magnetic resonance imaging (MRI).2, 3 MRI studies 

have shown both a linear increase in marrow fat content with ageing, and a higher fat concentration 
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in osteoporotic individuals.4, 5  

Indeed, MRI has been the predominant non-invasive modality of marrow fat evaluation. 

Many studies have demonstrated vertebral marrow fat and its relationship with age,3-4,6sex4,7-8,10 and 

disease states.7-12,14 However, few have evaluated marrow fat in the femur and peripheral 

skeleton,13,15-16 and because marrow fat values are location dependent, with variations within 

regions- for example, marrow fat significantly increases from L1 to L412 - whether the inverse 

relationship between marrow fat and bone holds true at these sites remains to be determined.  

Given that osteoporotic fractures at these nonvertebral sites are also associated with significant 

morbidity and mortality, in particular hip fractures, it would seem pertinent to examine marrow fat 

distribution in the regions of the proximal femur, namely the trochanteric and neck of femur.  

Although MRI quantification of marrow fat is considered the gold standard method of noninvasively 

quantifying marrow fat, the method by which marrow fat is quantified is not standardized. With the 

most common MRI technique used to quantify marrow fat, magnetic resonance spectroscopy (1H-

MRS), a single voxel is placed in the region of interest, and based on the water proton peak and 

saturated lipid proton peak, marrow fat is calculated as a percentage, rather than a total volume. 

Marrow fat content is then reported either as a lipid/ water ratio or as a fat fraction (calculated as 

lipid/ (lipid + water). Thus, the quantity of fat reported can be variable and comparisons between 

studies may be challenging. Similarly, there are some limitations with T1-weight MRI. It is semi-

quantitative, and may also have errors due to partial volume effects.17 However, the main limitation 

at this time is that MR assessment of marrow fat is not performed clinically due to its availability 

and cost.  

Over the last decade, the investigations into the role of marrow fat in osteoporosis and 

other related bone conditions have intensified. Studies examining the relationship between marrow 

fat and markers associated with bone metabolism, including vitamin D, PTH, markers of bone 
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formation and resorption, and disease states such as diabetes, are gaining attention. With regards to 

vitamin D, its protective effect on bone by directly influencing osteoblastogenesis is well 

established. Mechanistic studies have shown that it stimulates osteoblastogenesis by enhancing 

MSC differentiation to osteoblasts,18,19but less data is available on its effects on adipogenesis. Cell 

culture studies showed that preadipocytes treated with 1,25(OH)2D inhibit adipognensis20 through 

inhibition of C/EBP and PPARγ, with nuclear vitamin D(3) receptor (VDR) and PPARγ acting 

synergistically to inhibit adipogenesis.21 This is also supported by animal studies- for example, in 

one study, 4-month old SAM-P/6 mice were treated with 1,25(OH)2D3 (18pmol/24 h) or vehicle 

for 6 weeks. Initially, the investigators found that with ageing, the levels of PPARgamma2 

expression increase in bone marrow of SAM-P/6 (P<0.001). However, when the changes in the 

expression of PPARgamma2 were measured by semi-quantitative reverse transcription-polymerase 

chain reactions and immunofluorescence, a significant reduction of PPARgamma2-expressing 

cells in 1,25(OH)(2)D(3)-treated (32% +/-6) as compared to vehicle (76% +/-5) treated mice 

(p<0.01) was found. Human studies quantifying marrow fat have not investigated this relationship 

to support the findings from invitro and animal studies. Our study, to date, is the first to explore 

this relationship using clinical CT. 

In a similar vein, human studies examining PTH’s effect on adipogenesis are lacking. In 

vitro studies have shown that it may have a role in directing the fate of MSCs. When the 

PTH/PTHrP receptor (PTH1R) in mesenchymal stem cells was deleted, low bone formation, 

increased bone resorption and high bone marrow adipose tissue (BMAT) resulted. Bone marrow 

adipocytes traced to Prx1, expressed classic adipogenic markers and high receptor activator of 

nuclear factor kappa B ligand (RankL) expression.22 Translational work showing an increase in 

marrow adipose tissue volume would support in vitro findings; however, only one study has 

measured the amount of marrow fat tissue. Paired bone biopsies from 7 males in a small randomized 
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trial of PTH for male idiopathic osteoporosis found a 27% reduction in adipocyte number at 18 

months in men treated with PTH.23 The size of the adipocytes did not change, however, the trial was 

not powered for change in marrow fat cell volume or number.  

In contrast, changes in marrow fat associated with diabetes have been explored 

mechanistically and in animal studies. Bone loss and increases in BMAT have been consistently 

demonstrated in mice with induced diabetes24-27 and they have shown that the effect of diabetes may 

be location dependent. In a control versus diabetic BALB/c mice (males and females) study, 

increased marrow adiposity was evident in diabetic femurs and calvaria, but not in vertebrae.  

Human studies, on the other hand, have not shown such consistent relationships between marrow 

adiposity and diabetes status, and the observed changes have been smaller and less certain. The 

largest study to date to examine BMAT changes in type 1 diabetics did not show a significant 

difference with their nondiabetic counterparts. This study was cross-sectional and enrolled 30 young 

women with T1DM, with a median age of 22 years, a mean BMI of 25 kg/m2, and average 

haemoglobin A1c of 9.8 %.14 Median L3 marrow fat fraction by 1H-MRS was 4.8% higher in T1DM 

subjects compared to healthy controls (p = 0.20), and the proximal tibia demonstrated lower 

apparent bone volume/total volume; apparent trabecular number; and greater apparent trabecular 

spacing.  

Another cross-sectional study also showed that marrow fat levels were similar between 

T1DM participants and controls.28 Eight T1DM men and women, with mean HbA1c at 7.7 % and an 

average age of 37 years and 40 years respectively, were compared with age and BMI-matched 

controls. Marrow fat levels at L4 vertebra, distal femur and proximal tibia were similar between the 

groups. Furthermore, there was no correlation between marrow fat and HbA1c, or disease duration 

in those with T1DM. 

More relevant to this thesis, marrow fat in subjects with T2DM was found to be significantly 
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higher than those without diabetes. In the Osteoporotic Fracture in Men Study (largest marrow fat 

study in T2DM), 156 men aged 74–96 years of whom 24 % had T2DM, had lumbar spine marrow 

fat measured by 1H-MRS.29 T2DM was associated with higher marrow fat (59 %) compared with 

controls (55 %, p = 0.03), independently of age.  

Two other studies reported conflicting results, however. In one study, 26 postmenopausal 

women without osteoporosis (13 with T2DM and 13 age- and BMI-matched controls) had L1–L3 

marrow fat measured by 1H-MRS. The women with T2DM had a mean age of 59 years, BMI of 27 

kg/m2 and HbA1c at 7.6 %. Marrow fat content at L1-L3 was higher in women with T2DM (69.3 

%) compared with the controls (67.5 %, p = 0.31).30More importantly, within the T2DM women 

group, those with higher HbA1c had higher marrow fat levels (r = 0.83, p < 0.01).  

In the other study, 69 diabetic and non-diabetic postmenopausal women, with and without a 

history of fragility fracture, had L1–L3 marrow fat content quantified by 1HMRS.31 T2DM women 

without a fracture had an HbA1c of 7.6%, and those T2DM women with a fracture had a mean 

HbA1c of 7.8%. After adjustment for age, race, and spinal BMD by QCT, vertebral marrow fat 

content did not correlate with diabetes status (β = 0.02, p = 0.27).  

Another study examined the prediabetes stage, and showed potential association between 

marrow fat and dysglycaemia. Thirty women had L3 vertebral fat content measured by 1H-MRS.32 

Eleven women, who had pre diabetes, had a mean HbA1c of 5.5%, a mean age of 47.8 years and 

BMI of 25.5 kg/m2. Analysis of the entire cohort showed a positive association between marrow fat 

and HbA1c and fasting blood glucose, but not with insulin level or the homeostatic model 

assessment of insulin resistance (HOMAIR). Thus, overall the role of marrow fat and diabetes need 

further work. 

A similar scenario exists with metabolic and inflammatory markers. Although a large body 

of work exists in the literature describing the associations between these markers and marrow fat, 
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this is the first study to examine the relationships with an older cohort. In addition, clinical 

computed tomography (CT) has not been employed to quantify marrow fat in this manner, or to 

explore the relationship between marrow fat and known clinical surrogates of bone mass and 

strength.  

Thus, this cross sectional study aims to (1) quantify marrow fat in different regions of the 

skeleton of older men utilizing CT images and a validated image analysis tool, (2) to examine the 

relationship of marrow fat in these regions of interest with age, bone mineral density (BMD), PTH, 

vitamin D status and diabetes status and (3) to examine associations and correlations of marrow fat 

in different skeletal regions with selected markers of bone metabolism. 

 
 

5.2 Subjects and Methods  
 

5.2.1 Subjects 

 

This is a sub study of a clinical trial investigating the “relationship between visceral adipose 

tissue and metabolic syndrome”. Details of recruitment and procedures have been described 

previously.33 In brief, a total of 120 men (60 Chinese, 60 Indian) aged 60 and over were recruited 

through health check fairs in the community. For this thesis, the whole original cohort of participants 

is included in the analysis. Where results of particular tests are not available, analysis is carried out 

on the available number pf patients and investigations. Participants were consecutively recruited 

from community-based health fairs, based on eligibility and willingness to participate. Informed 

consent was obtained from all the subjects. Every attempt was made to recruit those who were 

apparently healthy and who were not on any medication for hypertension, hypercholesterolemia or 

diabetes. However, given the demographics of the locale where recruitment was taking place, some 

Indians who were taking these medications were recruited. This was not surprising, as it has been 



143 

 

 

shown that compared to Chinese, diabetes, hypertension and dyslipidaemia were more prevalent 

amongIndians.34,35Investigators of the original study interviewed subjects directly to collect data on 

their health background. Medical histories of smoking habits, alcohol consumption, exercise habits, 

diabetes, hypertension, hyperlipidaemia, ischemic heart disease and family history of diabetes or 

hypertension were documented. Fracture history was not available.  

Subjects on antiviral/ anti-obesity/ corticosteroids / anti-osteoporosis drugs, previous 

abdominal surgery, previous cancer, any investigational drugs for the past 3 months or excessive 

weight loss (45% body weight) over the last 3 months were excluded from the study. 

All subjects had anthropometric measurements recorded, and included height to the nearest 

millimetre, and with subjects wearing light clothing and no shoes, weight in kilograms was 

measured by electronic weighing scales (seca 220 - seca deutschland, Hamburg, Germany). Body 

mass index (BMI) was calculated as per convention, weight divided by the square of the height 

(kilograms per meter squared). 

  

5.2.2 Biochemical analysis 

 

Blood lipid profiles, insulin and glucose were drawn in the fasting state (overnight fast of at 

least 10 hours) for all subjects. The glucose oxidase method, which had an interassay CV of 3.3% 

(Beckman Coulter, Inc., Brea, CA, USA), was used to measure plasma glucose level. The 1-step 

immunoenzymatic assay, which had an interassay CV approximately 1.6 to 1.7% (Beckman), was 

used to measure total cholesterol, high-density lipoprotein cholesterol (HDL-c) and triglyceride 

(TG). Low-density lipoprotein cholesterol (LDL-c) was calculated by Friedewald’s equation. Insulin 

resistance was calculated as fasting serum insulin (mUml/1) x fasting plasma glucose 

(mmol/1)/22.5- consistent with the homeostasis model assessment. Insulin resistance (HOMA-IR); 

leptin; resistin and another adipokines; plus adiponectin were measured with commercially available 
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kits (Linco Research, Inc., St Charles, MO, USA).A “highly sensitive near infrared particle 

immunoassay rate technology”, which had an intra- and inter-assay CV of 1.3% and 4.1% 

(Beckman Coulter, Inc.), was used to measure high-sensitivity C-reactive protein levels. Interleukin-

6 was measured by ELISA (in commercially available kits Linco Research, Inc.). 

Total body fat mass was measured with a fan beam DEXA densitometer (Delphi W; 

Hologic, Inc., Waltham, MA) in array mode and was analysed with the manufacturer’s 

software- the coefficients of variation for these measurements reportedly range from 1.2 to 

5%.36
 

 

5.2.3 CT abdomen 

 

Imaging of the abdomen and pelvis was conducted using a 64-slice multi-detector CT scanner 

(Somatom Definition, Siemens AG, Erlangen, Germany). For trans axial views, subjects were in the 

supine position and scanning was done with a 35x35-cm field of view, starting at the dome of the 

diaphragm and down towards the inferior aspect of the pelvis. Scans were non-contrast, but 

enhanced employing scan parameters of kVp (120); effective mAs (210); slice collimation 0.6 mm; 

slice width 5.0 mm; pitch factor 1.4 and increment 5.0mm were acquired. The 1mm sections at zero 

gap intervals were reconstructed from the thin-slice raw data. 

One research assistant performed all image analyses and was supervised by a radiologist. 

The 2D CT image data sets were saved in DICOM format and onto compact discs. These images 

were analysed with the commercial image analysis software, Tomovision Slice O Matic 4.3 Rev-6i 

(Tomovision, Montreal, QC, Canada).  

 
5.2.4 Slice-O-Matic imaging analysis 
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5.2.4.1 Anatomical Regions of interest 

 

Axial slices of L2, L3, left neck of femur, left trochanteric region, right neck of femur and 

right trochanteric region were selected for analysis. Subjects with fractures or prosthesis in the 

regions of interest are excluded from the analysis. Each region of interest was identified in the 

following manner for each subject. The most distinct and easily recognized vertebral landmark, S1 

(the first bone of the sacrum), was first identified by scrolling down the set of images. Scrolling 

through the axial slices proximally, the intervertebral cartilage is next identified. This is the cartilage 

that sits between S1 and L5 and thus, the first vertebra visualized after this cartilage is L5. This 

procedure is repeated to identify the next vertebral body, L4, which is followed by the next 

vertebrae, and so on until L3 and L2 are identified. Similar procedures were followed to identify the 

proximal femur, and the neck of femur and trochanteric regions were defined manually on an image- 

by- image basis, as depicted in Figure 1.  

Each set of axial CT scan images of each anatomical region of interest was further examined 

for adequate quality for inclusion. Presence of artefacts and other poor image quality features 

rendered the slice not suitable, and were excluded, as described in the methodology section of this 

thesis. Ultimately, three contiguous axial slices of L2 and L3, five contiguous slices of the left neck 

of femur and trochanter were selected for each subject. The centre slice is determined by the total 

number of slices divided by 2, and contiguous slices are taken from either side of the centre slice. 

 

5.2.4.2 Thresholds for bone, blood and marrow fat tissue 

 

CT numbers express the measure of the linear attenuation of the x-ray beam through the 

medium in that space, and are defined as cm-1,which are then converted to Hounsfield units (HU) 

by calibration against an air, bone and water phantom (HU), using the linear attenuation 

coefficient of water (HU =0) and air (HU= -1000). Previous published works have correlated 
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mass densities and elemental weights of human tissues with CT numbers in Hounsfield units. CT 

numbers for adipose tissue fell between a range of negative values (-20 to -60) and soft tissues are 

situated within the range of −100 and +100 Hounsfield units, whereas the CT numbers of the 

skeletal tissues take values from 100 up to 1524.37-40 

Invariably, CT numbers for bone marrow also fell in a range. Calculated CT numbers for 

yellow marrow, red marrow, yellow and red marrow mixture of 1:1 and whole blood were -49, 11, 

- 22 and 56 respectively.13 Furthermore, it has been noted that in vivo studies have shown variable 

normal distribution and proportions of both yellow and red marrow depending on age, bone and 

site41, 42. In addition, CT images of marrow from different regions within a bone have different 

appearances and absolute Hounsfield values are location dependent.10For example, Hounsfield 

values in the adult metaphyseal and epiphyseal regions are generally positive, sometimes 

approaching 100 HU; whereas, in the diaphyses of the long bones, the marrow reaches its adult 

pattern by 15 years of age, when it is mostly comprised of fat, and it has generally negative 

Hounsfield values in the order of -100 HU.43
 

Thus, for the purpose of this study, the final threshold ranges of attenuation for the regions of 

interest, namely bone, marrow fat and haemopoietic tissue, were determined in three steps:  

  Automated segmentation;  

 Manual editing of segmented regions to capture additional tissue, plus manual 

segmentation to capture regions not captured during step 1;   

  Manual segmentation in zoom mode to capture pixels which were visually similar to 

those captured in the first two steps, but which have not been captured in the first 2 

steps. 

Step 1: The axial slice was opened in the region growing mode function. Initial CT 

Hounsfield values for bone, marrow fat and haematopoietic volume, based on previous published 
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studies described above, were set using the thresholding function (Fig. 2A). The initial ranges ≥ 

100, 11 to 99 and ≤ 10 for bone, blood and marrow fat respectively were inserted in the range bar. 

For the purpose of quantification of volumes, each depot was assigned the following colours 

arbitrarily: marrow fat (yellow), bone (blue) and blood volume (red) (Fig. 2B) 

Step 2: The threshold ranges for the region of interest from step 1 were set in the range bar 

again, and a painting mode of segmentation was selected. The region of interested was “painted” 

manually by moving the cursor over the region repeatedly to capture all pixels within the region 

(Fig. 2B). 

Step 3: The region of interest was visually inspected. Areas that appear similar to those 

already painted were assumed to have the same CT numbers, and were painted manually over one 

pixel or more at a time (Fig. 2C). 

These steps were carried out for each region of interest, and one region of interest at a 

time. However, the final threshold ranges used for quantification of volumes of the regions of 

interest for the whole study were derived through a similar process to previous techniques for 

delineating tissues of overlapping densities with an image histogram.44 The steps above were 

repeated for 3 axial slices at L3 from 10 different subjects selected randomly from within the study 

cohort. Results were plotted on a histogram and the range of CT number values which best 

approximated the 95% confidence interval was chosen for the final quantification process. Thus, 

the following resultant CT number thresholds for bone (trabecular 130-600, cortical > 601), 

marrow fat ≤ 20, and 21  and blood (≤ 129) were applied throughout the remainder of the thesis. 

 

5.2.4.3 Volume quantifications 

 

Before volume quantifications were carried out, each region of interest was coloured using steps 1 

and 2 as above. Once all regions were coloured in, the volume function was selected and 
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computations of the segmented ROIs were achieved automatically through a built in algorithm 

(Fig. 2D). 

Regions of interest (ROIs) describing the whole axial cross sections of the proximal femur 

were created through the steps described above, and the respective areas were measured. All adipose 

and bone tissue pixels within the bone were measured by a blind examiner (Fig. 3). 

     

Fig 1. ROI selection for lumbar levels and the process of dividing the femur into head, neck, greater 

trochanteric, and lesser trochanteric regions for which the mean was calculated for all output parameters. 

The regions analysed were the femoral neck, trochanteric (greater trochanter plus lesser trochanter) and 

proximal femur (all regions combined). 
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Fig 2 (A-D) CT image analysis of bone using SliceOmatic. (A) Image opened, arbitrary colours chosen to 

represent ROIs and initial thresholds entered for ROI. (B) Autosegmentation of ROIS (C) Thresholds of 

the signal intensity for bone (blue) fat (yellow) and bone marrow (red) were manually adjusted by visual 

inspection of individual pixels (D) Volume was quantified once all regions coloured. 

 

  
Fig 3. Bone image analysis showing high levels of marrow fat (yellow) compared with low levels 

of bone (blue) and bone marrow (red). 

 

 

5.2.5 Statistical analyses 

 

 

Various scatter plots were used to visually confirm linearity of associations.  

Pearson’s and Spearman’s correlations (for normally and abnormally distributed or ordinal 

variables, respectively) were used to investigate the association between regional fat volumes and fat 

volume/bone ratios with age; BMI; diabetes status; PTH; vitamin D; markers of bone resorption; and 

formation and inflammatory mediators. Partial correlation was used to assess the independent 
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associations between variables after adjusting for confounders. Where the results remained 

unchanged, only unadjusted correlations are presented to aid simplicity. 

The linearity of the correlations was checked visually using scatter plots. The IBM SPSS 

statistics for Windows, Version 20.0 (Armonk, NY; IBM Corp.) was used for the analyses. 

Variables were expressed as mean  SD or median (interquartile range). P-values ≤ 0.05 were 

considered as significant. 

 

 

5.3 Results 
 

 

5.3.1 Baseline characteristics 

 

One hundred and twenty men (mean age ± SD = 67.5 ± 5.5; range: 60-87) fulfilled the 

inclusion criteria. Forty eight subjects had DXA reports available. The anthropometric, body 

composition and blood biochemistry profiles of the patients are presented in Table 1. 

 
 

 

Morphometric and bone density characteristics 

Variables Mean (SD) 

Age (years) 67.5 (5.5) 

BMI (kg/m2) 24.6 (4.2) 

Height (cm) 164.7 (6.4) 

Lumbar spine BMD (g/cm2) 1.01 (0.136) 

        T-score 0.143 (1.179) 

        Z-Score 0.958 (1.225) 

Fem Neck BMD (g/cm2) 0.764 (0.092) 

        T-score -1.180 (0.729) 

        Z-Score 0.306 (0.790) 

Biochemistry results 

Analyte Median (IQR) 

Vitamin D (µg/L) 22.4 (19.9, 27) 

Parathyroid Hormone (pmol/L) 3.8 (3.4,4.3) 

Serum albumin (g/L) 39 (37, 40) 

IFN gamma (IU/ml) 18.2 (10.2-28.6) 

IL-6 (IU/mL) 4.6 (2.6, 5.6) 

TNF alpha (ng/mL) 3.14 (2.7, 3.9) 
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OPG (ng/mL) 1.4 (0, 5.8) 

RANKL (ng/mL) 58.4 (47.5, 83.5) 

Osteopontin (µg/L) 4.4 (2.8, 7.7) 

Resistin (ng/ml) 7.4 (5.7, 10.4) 

IGF1 (ng/mL) 116.6 (101.1, 145.7) 

Leptin (µg/L) 4 (3.3, 6.5) 

Adiponectin (ng/mL) 6040 (4368, 7364) 

Osteocalcin (ng/mL) 15 (12, 16) 

CTX (mg/L) 0.26 (0.22, 0.36) 

Glucose (mmol/L) 5.2 (4.9, 5.4) 
 

Table 1. Demographic, Clinical, Body Composition and Serological Characteristics of Participants 

(mean ± SD). BMI: Body mass index; IFN: Interferon; IL: Interleukin; OPG: Osteoprotegerin; 

RANKL: Receptor activator of nuclear factor kappa-Β ligand; IGF: Insulin-like growth factor 1; 

CTX: Collagen type 1 cross-linked C-telopeptide. 

 

5.3.2 Distribution of marrow fat at ROIs with age  

 

Examining marrow adiposity in the neck of the femur, the trochanteric region and L2 and 

L3 vertebrae with increasing age, showed characteristic associations. With each decade from the 

age of 60, there was a corresponding increase in mean volumes of marrow fat in the neck of the 

femur, trochanteric region, proximal femur and the lumbar vertebrae (Figures 4A [i-v]). 

Inversely, the corresponding bone volumes in these skeletal sites decreased with increasing age 

(Figures 4B [i-v]).The marrow fat to bone ratio in these anatomical sites increased with 

increasing age (Figures 4C [i-vii]), however, the greatest proportion of fat volume increase 

occurred within the trochanteric region of the proximal femur (Figure 4C [iv-vii]). 

i                                           ii                                                 iii    
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iv                                                     v                  

                                     
Figure 4A. Increasing age is associated with increasing absolute fat volumes in the neck (i) 

trochanteric (ii), proximal femur (iii), L2 (iv) and L3 vertebra (v).

 

 

i                                                      ii 

              
 

iii                                                    iv 

          

Figure 4B. Increasing age is associated with decreasing bone volume fraction in the neck (i), 

trochanteric region (ii), proximal femur trabecular volume fraction (iii) and total bone volume 

fraction (iv). 
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 i                                               ii                                                   iii 

        
 

 

iv                                                v                                               vi 

        
 

vii 

      
Figure 4C. Marrow fat to bone ratio increases in all sites as a fraction of trabecular bone volume 

in trochanteric regions (i) and (ii), in proximal femur (iii) and as a fraction of total bone volume in 

the neck [(iv), (vi)] and trochanteric regions [(v), (vii)]. Within the same region, the proportions of 

fat increase in trochanteric regions are greater than the neck regions (v) vs. (iv) and (vii) vs. (vi). 
 

 

5.3.3 Associations of ROI fat volume with age, BMI, vitamin D status and glucose 

 

Interestingly, age was the only clinical parameter that significantly correlated with 

marrow fat volume indices in the hip ROIs, but the inverse relationship between marrow fat and 
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bone with increasing age was most consistent in the trochanteric regions (Table 2). Other clinical 

factors, such as BMI, diabetes status and vitamin D levels did not correlate with fat/bone volume 

ratios in the proximal femur ROIs. However, glucose levels highly correlated with all indices of 

marrow adiposity in both lumbar vertebrae.  

 
Variable Left 

trochanteric 

Left 

proximal 

femur 

Right 

trochanteric 

Right 

proximal 

femur 

L2  L3  

Fv NS NS NS NS .6** .5** 

Fv/Tr.Bv 0.2* 0.2* 0.2* 0.2* .6** .3** 

Fv/To.Bv 0.2* 0.2* 0.2* NS .6** .3** 

Fv/T v 0.2* NS NS NS .5** .3** 

Table 2. Correlations between mean fat volume (FV), ratio of fat volume to trabecular bone volume 

(Fv/Tr.Bv), ratio of fat volume to total bone volume (Fv/To.Bv), ratio of fat volume to the total 

tissue volume (Fv/Tv) and clinical parameters. * Pearson’s correlation is significant at the 0.05 level 

(2-tailed). ** Pearson’s correlation is significant at the 0.001 level (2-tailed).  Correlations at the 

trochanteric and proximal femur regions only were found for age and correlations found only in L2 

and L3 for glucose. No correlations found for BMI and Vitamin D at all ROIs. 

In multiple linear regression analyses using age; diabetes status; mean fasting glucose 

levels; BMI and vitamin D status as independent variables, age was the main associating factor 

with fat/bone volume ratios in trochanteric regions of the femur. BMI and diabetes status were 

associated with marrow fat volume in the right trochanteric, but not the left (Table 3A). 

Interestingly, mean fasting glucose levels or diabetic states strongly correlated with marrow 

adiposity indices in the lumbar vertebrae (Table 3B). 

 

Variable 
Left Trochanter Right Trochanter 

Right proximal 

femur 

Fv/Tr.Bv Fv/To.Bv Fv Fv/Tr.Bv Fv/To.Bv Fv/Tr.Bv# Fv 

Age 2.5* 0.7*  2.1* .5* 1.4*  

BMI   .2*    .4* 

Diabetes   -.4*     
Table 3A. Multivariate regression analyses for the prediction of fat volumes indices in the right proximal 

femur and sub regions. Unstandardized β values and level of significance indicated where correlation 

reaches significance. *Correlation is significant at the 0.05 level (2-tailed). Vit D was in all models but 

did not contribute to overall significance of the models. 
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Variables 
L2 
(((
n=
60
) 

L3 

FV L2FV% Fv/Bv FV L3FV% Fv/Bv 

Age                                                         NS 

NS 

NS 

NS 

NS 

NS 

BMI                                                         NS 

NS 

NS 

NS 

NS 

NS 

Vit D                                                         NS 

NS 

NS 

NS 

NS 

NS 

Diabetes 

status/Glucose 

1226** 77** 0.8** 979**                     NS 
 

 

Table 3B. Multivariate regression analyses for the prediction of fat volumes indices of the lumbar 

vertebrae. Unstandardized β values and level of significance indicated where correlation reaches 

significance. **Correlation is significant at the 0.001 level (2-tailed). 

*Correlation is significant at the 0.05 level (2-tailed). NS denotes not statistically significant. 

 

 

5.3.4 Associations of fat volume with bone volume and BMD 

 

All proximal femoral ROIs showed a strong negative correlation between MAT and bone 

volume (BV/TV). This negative correlation was weaker for the L2 and L3 vertebral ROIs (Table 4). 

There was also a consistent negative association between MAT vs DXA-derived BMD of femoral 

neck and total hip (Table 4).  

 

5.3.5 Associations of fat volume with inflammatory cytokines, insulin resistance indicators 

and bone biomarkers 

 

There was no association between marrow fat volume fraction (MAT) and insulin resistance, 

indicators or hormones involved in the metabolism of glucose and fat in any ROI (Table 5). No 

consistent associations were detected for any MAT ROIs with any of the tested inflammatory 

mediators, except a weak negative association between L2 and L3 MAT with IL-6 (Table 5).  

No associations between fat volumes vs. hormones and bone biomarkers (R<0.147, p>0.238) were 

found. 
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 Lt neck 

MAT%  

Rt neck 

MAT% 

Lt troch.  

MAT%  

Rt troch. 

MAT%  

Lt prox 

hip 

MAT%  

Rt prox 

hip 

MAT%  

L2 

MAT%  

L3 

MAT% 

Lt neck 

BV/TV%  
-0.964   -0.892   -0.896   -0.850   -0.942   -0.893   -0.333 

(0.012) 

-0.330 

(0.013) 

Rt neck 

BV/TV%  
-0.884   -0.963   -0.840    -0.883    -0.870   -0.946   -0.376 

(0.004) 

 -0.346 

(0.009) 

Lt troch. 

BV/TV%  
 -0.880    -0.836    -0.966    -0.906    -0.953   -0.892  -0.372 

(0.005) 

 -0.347 

(0.009) 

Rt troch. 

BV/TV%  
 -0.841    -0.886    -0.906    -0.967    -0.893   -0.950   -0.424  -0.386 

(0.003) 

Lt Ttl hip 

BV/TV% ( 
-0.925   -0.865   -0.953   -0.894   -0.969   -0.900   -0.362 

(0.006) 

-0.347 

(0.009) 

Rt Ttl hip 

BV/TV% ( 
-0.884   -0.947   -0.893   -0.947   -0.903   -0.972   -0.409 -0.374 

(0.009) 

L2 BV/TV  

(n=60) 
-0.398 

(0.002)   

-0.336 

(0.010)   

-0.348 

(0.008)   

-0.317 

(0.015)  

-0.375 

(0.004)   

-0.3433 

0.011  

-0.240 

(0.090) 

-0.213 

(0.138) 

L3 

BV/TV%  

(n=60) 

-0.471   -0.409 

  

-0.440   -0.397 

 (0.002) 

-0.460   -0.410  

 

-0.274 

(0.052) 

-0.264 

(0.06) 

Lt neck 

BMD 

(g/cm2, 

n=40) 

-0.370 

(0.031) 

-0.276 

(0.115) 
-0.340  

(0.049) 

-0.284 

(0.103) 
-0.364 

(0.035) 

-0.295 

(0.090) 

-0.282 

(0.23) 

-0.262 

(0.27) 

Lt Ttl hip  

BMD  

(g/cm2, 

n=40) 

LS BMD           

(g/cm2, 

N=40) 

-0.368 

(0.032) 

 

 

-0.161 

(0.28) 

-0.274  

(0.117) 

 

 

-0.177 

(0.23) 

-0.322 

 (0.063) 

 

 

-0.001 

(0.99) 

-0.302 

(0.082) 

 

 

-0.106 

(0.43) 

-0.355 

(0.040) 

 

 

-0.083 

(0.57) 

-0.305 

(0.079) 

 

 

-0.168 

(0.23) 

-0.105 

(0.57) 

 

 

-0.22 

(0.92) 

-0.031 

(0.87) 

 

 

-0.09 

(0.62) 

 

Table 4: Correlations between MAT and BV/TV at several ROIs. Significant associations have been 

highlighted in bold and p-values ≤0.001 have not been displayed. Rt: right, Lt: left; prox: proximal; 

L2 and L3: second and third lumbar vertebra; BV/TV: bone volume fraction; MAT: FV/TV; troch: 

trochanteric 
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Adiponectin 

(ng/mL) 
Leptin 
(µg/L) 

Insulin 
(µU/mL) 

HOMA-

IR 
CRP 
(mg/L) 

IL-1α 
(pg/mL) 

IL-6 

(IU/mL) 
TNF-α 
(ng/mL) 

Lt troch. 

MAT%  

(n=96) 

-0.051 

(0.627) 

-.12 

(0.248) 

0.034 

(0.748) 

0.025 

(0.807) 

-0.128 

(0.22) 

-0.014 

(0.894) 
0.242 

(0.019) 

-0.014 

(0.892) 

Rt troch. 

MAT%  

(n=96) 

-0.002 

(0.985) 

0.151 

(0.145) 

-0.131 

(0.21) 

-0.083 

(0.428) 

0.027 

(0.796) 

0.069 

(0.511) 

0.054 

(0.603) 

-0.105 

(0.316) 

Lt Ttl 

hip 

MAT% 

(n=96) 

-0.065 

(0.532) 

-0.12 

(0.249) 

0.014 

(0.891) 

0.007 

(0.943) 

-0.143 

(0.17) 

0.019 

(0.856) 
0.221 

(0.032) 

0.021 

(0.839) 

Rt Ttl 

hip 

MAT%  

(n=96) 

0.003 

(0.975) 

0.135 

(0.193) 

-0.146 

(0.159) 

-0.106 

(0.308) 

0.016 

(0.875) 

0.036 

(0.731) 

0.024 

(0.819) 

-0.132 

(0.204) 

L2 

MAT%  

(n=57) 

-0.169 

(0.208) 

0.252 

(0.059) 

0.116 

(0.39) 

0.11 

(0.414) 

.075 

(0.578) 

-0.185 

(0.167) 
-0.286 

(0.031) 

-0.217 

(0.105) 

L3 

MAT%  

(n=57) 

-0.123 

(0.363) 

0.204 

(0.127) 

0.088 

(0.517) 

0.076 

(0.575) 

0.147 

(0.276) 

-0.194 

(0.148) 
-0.318 

(0.016) 

-0.204 

(0.128) 

 

 
        

Table 5: Associations between metabolic and inflammatory markers and fat volumes at different 

ROIs. Significant associations are in bold and p-values ≤0.001 have not been displayed. Rt: right, Lt: 

left; Ttl: total; L2, L3: second and third lumbar vertebra, respectively; marrow fat volume 

fraction=MAT; troch: trochanteric 

 

 

Results showed a corresponding increase in mean volumes of marrow fat in the neck of the 

femur, trochanteric region, proximal femur and the lumbar vertebrae with increasing age. The 

change in the trochanteric region was the greatest. Conversely, bone volumes at these sites 

decreased with increasing age. Age, glucose levels and some serum markers of bone turnover 

correlated with marrow adiposity in some skeletal sites and not others. Age was associated with 

fat volume indices in trochanteric regions and the proximal femur, whilst mean fasting glucose 

levels or diabetic states were strongly associated with marrow adiposity indices in the lumbar 

vertebrae. 
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Significant differences in fat to bone volume rations were evident between age, 

vitamin D levels and BMI subgroups, but not diabetes status or T Score status subgroups. 

In conclusion, this study demonstrated some associations between marrow adiposity and 

clinical parameters not previously identified. Findings from this study warrant further 

investigations to clarify the relationships. 

 

 

 

5.4 Discussion 
 

 

As quantified by CT scans, we found that in this cohort of older men, marrow adiposity in 

proximal femora and lumbar vertebrae increased with ageing. Concurrently, bone volume 

decreased with increasing age, however, the inverse relationship between marrow fat and bone at 

these sites is consistently significant only in the trochanteric regions and proximal femora. An 

association between age and marrow fat in L2 and L3 was not detected. 

In contrast, associations between BMI, vitamin D and marrow fat were not detected at all 

ROIs, including the lumbar vertebrae. Glucose was associated in marrow fat L2 and L3 only. 

Similarly, the correlations between markers of bone turnover, adipocyte activity and 

inflammatory mediators with marrow fat volume indices were either absent or inconsistent. 

 

5.4.1 Regional marrow fat depots and age 

 

In the whole study population, we found increased marrow fat with increasing age, which 

was similar to findings from previous studies with MRI4, 45-47 and histology.48 Similar to previous 

MRI studies, we also found an inverse relationship between marrow fat and bone with increasing 

age;49, 50 however, this is limited to the regions of the proximal femur. This significant finding in 

the proximal femur, neck and trochanteric regions, compared to the lumbar vertebrae, may 
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explain a higher incidence of hip fractures, compared to clinical vertebral fractures in some of 

the older population.51 

The lack of a significant inverse relationship in the lumbar vertebrae may relate to the 

smaller sample size, smaller age range of the study population and technical errors in its 

quantification. Nevertheless, as far as we know, this is the first study to show (1) a persistent and 

significant inverse relationship in the trochanteric region and proximal femora (2) that age was 

independently associated with marrow adiposity in the neck, trochanteric and proximal femur 

regions and (3) such relationships using clinical CT. 

Although we confirmed the changes in marrow fat and the inverse relationship between fat 

and bone with increasing age, we were not able to show statistically significant differences in 

marrow fat indices between older men (>65) and younger men (<65) [result of analyses in 

appendix]. The mean marrow fat volumes were greater in the older age group ( 65) compared to 

the younger age group (< 65), but the difference was not significant. Possible explanations for this 

result include:  

  The small sample size did not have enough spread of ages to reflect the difference  

  Variations in skeletal sites lend to errors in quantification and  

  The increment in marrow fat in the vertebrae of men beyond 60 years is slow and small, 

and thus, the difference is small and not significantly different. 

Indeed, a recent MRI study seems to support the last possibility. The study showed that 

male vertebral marrow fat deposition differed from females, in that it tends to rise steadily 

throughout life with this gradual trend continuing into later years.52 It also showed the difference 

in vertebral marrow fat content between men in the age range of 61-90 to be small, and not 

significantly different.  
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5.4.2 Relationship with BMD 

 

Although fat fraction and other ratios of fat to bone volume indices were inversely and 

highly associated, we found inconsistent relationships between these indices and their 

corresponding BMD derived by DEXA. Only the left femoral neck fat fraction correlated with left 

femoral neck BMD and total hip BMD. Lumbar spine fat fraction and volume ratios at both L2 

and L3 did not correlate with BMD.  

The findings at the lumbar spine were not surprising, given the findings by Griffith et al52  

and another study that examined vertebral BMF at L1–L4 measured with MR spectroscopy; and 

BMD of the hip and spine with quantitative computed tomography and DXA scans.53 This cross 

sectional study involved a cohort of older women and men with a mean age of 79, and found an 

inverse association between vertebral marrow fat and BMD in older men compared to women, 

that was not statistically significant. 

One reason that may explain our finding of no statistically significant inverse relationship 

relates to our sample. Our study population consisted of men only from 2 ethnic backgrounds 

(Chinese and Indian); and the spread of age was not even and adequate in size. All these 

deficiencies may lead to small differences being seen within the group. This is consistent with a 

recent study by Griffith et al52 in which an inverse relationship between BMD and vertebral 

marrow fat was not evident and diminished with increasing years. In fact, the association between 

BMF and BMD in this cohort only became significant when the analysis included both men and 

women. In contrast, there was a significant inverse relationship between vertebral marrow fat and 

lumbar spine BMD throughout the 61-90 age range for women. It should be noted that other 

studies using non-invasive imaging methods to assess BMF, which have reported a significant 

inverse association between BMF and BMD, have involved study populations consisting largely 

of pre and postmenopausal women, with and without men.2, 3, 54 Future studies would need to 
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consider a wider age range and each age range should be of adequate size. Furthermore, it may be 

rather informative to study men and women separately. 

A similar result is seen when we compared subjects with osteopaenia and subjects with 

normal BMD by DEXA. Previous studies showed significantly elevated marrow fat content in 

osteoporotic and osteopaenic subjects, compared to normal subjects;1, 55, 56 whereas, even though 

our result demonstrated the inverse relationship, it did not reach significance. However, it should 

be noted that most of these studies combined pre- and postmenopausal women and men in the 

analyses. Only one study examining a cohort of older men specifically showed significantly 

elevated vertebral marrow fat content in osteoporotic and osteopaenic subjects, compared to 

normal subjects.57 In addition, one study, which measured vertebral marrow fat fraction with MR 

spectroscopy and BMD by DEXA in a group of 68 healthy men and women [mean age, 50.7 

years], found no significant correlation between vertebral marrow fat fraction and BMD.68 

Furthermore, it remains to be seen whether the relationship between marrow fat and BMD 

in sub regions of the proximal femur follows what is seen in the vertebrae. To our knowledge, 

our study is the first to examine this relationship at different regions of the hip individually. 

However, our result of a significant association found at the femoral neck needs further 

clarification through adequately powered studies in the future. Such studies would need to 

examine these relationships stratified by age, sex and ethnicity. 

 

5.4.3 Marrow fat and BMI 

 

Our study did not find correlations between marrow adiposity and BMI consistent with previous 

studies, which have also not found an association between BMI and adipocyte tissue volume.55 

We then examined the relationship more closely by dividing the cohort based on BMI, and 

compared subjects with normal BMI and those with higher BMI ( 25) [appendix-chapter 5; 
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table 2).We found no significant differences with all the marrow fat indices in the regions of the 

proximal femur and spine, however, those with higher BMIs overall had greater marrow 

adiposity in terms of mean fat volume and fat/bone ratios, which is consistent with some of the 

existing literature.  

Our result is not unexpected, given that previous studies have shown conflicting results, 

and have compared normal BMI vs. obesity range BMIs compared to our study. The BMI range 

in our study population lies in the normal to overweight and thus, may be too narrow to show a 

difference. Results from previous studies have been conflicting, with some showing negative 

correlations between BMI and pelvic and hip marrow fat but no correlation with vertebral 

marrow fat,59, 60 and some showed no correlations.55,61 In contrast, marrow fat in L4 and the 

femur, and BMI were inversely related consistently in patients with anorexia nervosa.64 We were 

not able to confirm this in our study, as only two subjects had BMIs fitting the criteria. 

 

5.4.4 Marrow fat and Vitamin D 

 

Overall, we did not find correlations between vitamin D levels and marrow adiposity. We 

further compared subjects based on their vitamin D status, and found that subjects with vitamin 

D levels of 21ng/ml or higher, compared to lower vitamin D levels had significantly higher 

marrow adiposity in some trochanteric and proximal femur regions [appendix-chapter 5, table 3]. 

This seemed to go against known mechanisms of vitamin D inhibition of adipogenesis;63, 64 

however, it must be noted that in this study the mean level of vitamin D for the higher vitamin D 

group is only 25ng/ml or 62 nmol/L (and with normal PTH levels) which, in the older 

population, may not be optimal to shift the balance in favour of osteoblastogenesis over 

adipogenesis. Indeed, this is consistent with some studies, which did not show correlations 

between vitamin D status, BMD, bone turnover markers or prevalence of fractures.65 
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5.4.5 Marrow fat and diabetes 

 

We found a strong positive association between mean fasting glucose and absolute fat 

volume and fat/bone volume ratio in the lumbar vertebrae. In fact, glucose accounts for up to 

almost 40% of the variation in fat volume indices in this region, and is associated with marrow 

adiposity in the lumbar vertebrae independent of age, vitamin D levels and BMI.  

To our knowledge, the relationship between glucose and marrow fat has not been 

explored, although bone turnover markers and diabetes/glucose have been examined. Given 

inconclusive data, showing significantly lower osteocalcin and CTX levels in diabetes,66  further 

studies examining the effects of glucose on marrow fat may be reasonable.  

Comparing diabetics versus nondiabetics, our study showed no significant differences in 

the mean fat volume in regions of the proximal femur, in agreement with a recent study.33 

However, overall, diabetic subjects seemed to accumulate greater marrow adiposity, most 

prominently in the lumbar spine, especially at L3. This finding in the spine is consistent with a 

study that compared vertebral bone marrow fat content, quantified with MR spectroscopy, 

between postmenopausal women with and without type 2 diabetes mellitus (T2DM).67 This study 

demonstrated higher vertebral marrow adiposity in diabetic subjects compared to nondiabetics, 

and showed significant correlations of mean vertebral fat content with HbA1c in the diabetic 

group (r = 0.825; P < 0.05). We also found high correlations between vertebral marrow fat indices 

and fasting glucose levels, and diabetes status in the whole study population (appendix- chapter 5; 

Table 4). 

 

5.4.6 Marrow fat and markers of bone turnover and adipocyte activity 

 

The final aim of our study was to examine relationships between marrow fat indices in the 

regions of the femur and spine with blood biomarkers. We did not find significant correlations 
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between regional marrow fat volume indices and bone biomarkers, metabolic and most 

inflammatory markers. It is physiologically plausible that, similar to the conflicting data on the 

association between leptin and BMD,68 - 70 that these markers may exert different effects on the 

bones of different subjects depending on bone tissue, skeletal region, loading, sex and/or 

signalling pathways. 

Regarding inflammation, it has been shown that MAT-released palmitate induces a pro-

inflammatory response.71 Interestingly, in our subjects, the associations between IL-6 and 

marrow fat in femoral and vertebral ROIs had opposite trends (positive and negative 

associations, respectively), and other inflammatory factors in the bloodstream did not show 

associations with marrow fat volumes, thus suggesting that the pro-inflammatory role of marrow 

fat is site-dependent; a hypothesis that should be tested in future human studies. 

 

5.4.7 Study limitations 

 

This study has some limitations relating to the quantification technique and the study design. 

Two technical aspects of CT need to be discussed for the appropriate interpretation of our results. 

First, there was the occurrence of beam hardening, which is a relatively common type of artifact 

seen in CT. In this phenomenon, greater attenuation of lower-energy photons occur as the 

polychromatic x x-ray beam passes through the tissues, compared to higher energy photons which 

may not attenuate. This potentially gives rise to false information about the composition and density 

of tissues, especially when applying the technique of global thresholding to delineate tissues based 

on their relative intensities. Thus, in effect, the degree of marrow fat in the cavity of long bones may 

be underestimated, and it is likely that these errors reduced the strength of the association between 

bone and fat findings in our study.  

Secondly, the much finer size/thickness of the trabeculae greatly exceeded the limited spatial 
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resolution of CT, and thus, limited the accuracy when measuring cancellous bone density. 

Furthermore, the finer the trabeculae, the greater the influence from marrow fat, giving rise to 

volume averaging errors. A similar scenario arises when deriving the Hounsfield threshold range, 

delineating marrow fat from haemopoietic tissue.  Ultimately, pixel density averaging errors will 

influence volume calculation. The degree of this error remains to be determined in future studies. 

Another limitation is the cross sectional design. Further investigations, including 

longitudinal studies, will be needed to confirm the associations. However, the relatively large 

number of subjects; quantification of separate sub regions of the proximal femur; and limiting the 

cohort to older men are the strengths of this study. 

In summary, using clinical CT and quantifying marrow fat contents as volumes and 

volume ratios, we were able to confirm relationships between marrow adiposity and clinical 

parameters, relevant to the pathophysiology of osteoporosis. Our results are consistent with other 

imaging modalities, which are considered gold standards for assessing marrow fat. The findings 

also suggest that this technique may be applicable in future clinical studies. 
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6.0 Chapter 6: Effects of Calcium-Vitamin D3 and Exercise on 

Marrow fat in Older Men: An 18-Month Randomized Controlled 

Trial 

 

6.1 Introduction 
 

Exercise has long been the recommended alternate approach for improving bone density, 

by increasing and/or retarding bone loss during the older years.1 A number of meta-analyses have 

evaluated the effects of exercise on FN and LS BMD in adults.2-19  Physical activity, in general, 

has shown a significant effect on BMD at the lumbar spine (ES 0.8745, p < .05), but not on 

forearm and femoral bone mass.2 In postmenopausal women, impact and non-impact exercise 

increased FN and LS BMD, ranging from 0.7% to 1.6%;3, 7 high-intensity resistance exercise had 

a small statistically significant benefit in LS BMD,13 whereas walking only shows a non-

statistically significant benefit in FN and LS BMD in another meta-analysis.14 Mixed exercise 

programs, consisting of impact loading activity with resistance training, benefited FN BMD and 

total hip BMD, but not LS.15 Low-impact and resistance exercise studies observed increases in 

LS and FN BMD in older adults,18 but a more recent Cochrane systematic review reported a 

small statistically significant BMD increase in LS only with joint and/or ground reaction force 

exercise.16  Nevertheless, the most effective type of exercise intervention on bone mineral density 

(BMD) for the neck of the femur appears to be non-weight bearing high force exercise, such as 

progressive resistance strength training for the lower limbs, and the most effective intervention 

for BMD at the spine was a combination exercise program.16 An updated meta-analysis, which 

also included randomized controlled trials with exercise intervention ≥ 24 weeks; subjects not 

participating in any type of recent exercise and unpublished studies in any language17 confirmed 
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small, statistically significant improvements in BMD for both FN and LS. 

In men, an earlier meta-analysis showed positive effects of exercise on BMD at the femur and 

lumbar spine.8 However, a recent meta-analysis, which included randomized controlled exercise 

trials ≥ 24 weeks, only showed a moderate statistically significant improvement at the FN and a 

small trend towards statistical improvement at the LS.20
 

As for calcium and/or vitamin D supplementation, each one independently or both 

combined, have demonstrated beneficial effects on bone in older men21, 22 and women.23-25 

Calcium, combined with weight bearing exercise, increased BMD in post-menopausal women.26
 

The mechanisms that may explain the effects of exercise on bone have been investigated in mice 

studies. Positive effects of exercise have been shown on bone strength and bone formation.27, 28 

Bone volume and osteoblast numbers significantly increased in mice subjected to climbing 

exercise, while marrow adipocyte volumes and numbers decreased in control mice.29-31 Even with 

low intensity mechanical loading signals (intensity well below the level that would arise during 

walking), Rubin et al32 showed that C57BL/6J mice subjected to brief, daily high-frequency 

mechanical signals for 15 weeks showed inhibition of adipogenesis by up to 27%. In another mice 

study, endurance exercise-trained animals had significantly less total fat in their marrow cavities 

than sedentary control animals.33 Exercise has also been shown to prevent accumulation of 

marrow adipose tissue in mice fed a high fat diet.34
 

There is physiological and clinical rationale to examine the effects of exercise on marrow 

adiposity given the link between marrow adiposity and bone density35-37 and osteoporosis,38 and the 

inverse relationship between osteoblastogenesis and adipogenesis.39, 40 There is in vitro evidence that 

mechanical loading down regulate peroxisome proliferator activated receptor gamma in bone 

marrow stromal cells, favouring osteoblastogenesis over adipogenesis,41, 42 and exercise has been 

shown to mitigate the impact of PPAR agonists on bone and marrow health.43   
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Furthermore, human studies quantifying marrow fat in response to exercise is lacking. In one 

study, healthy young men were subjected to head-down tilt bed rest for 60 days and resistance 

exercises, with or without whole body vibration, and this was shown to prevent vertebral marrow fat 

accumulation quantified by MRI.44 In contrast, the effects of Calcium and Vitamin D alone, or in 

combination on marrow fat, have not been explored. Whether they have suppressive effects on 

marrow fat whilst increasing bone mass remain unknown. Indeed, what effects they have on marrow 

fat when combined with exercise has not been examined. Thus, the objectives for this study are to  

 Determine marrow fat response to calcium, calcium-vitamin D3, exercise and 

exercise supplemented with calcium-vitamin D3 by quantifying the amount of 

marrow fat  

 Assess whether calcium-vitaminD3 fortified milk could enhance the effects of 

exercise on bone marrow fat and indeed whether these effects are neutral, additive or 

opposing in nature.   

Here we report the effects seen with bone volume and marrow fat volume using our 

described marrow fat quantification method.  

 

6.2 Materials and Methods 
 

Note that this is an ancillary study of a larger study, whose original objective was to assess 

whether calcium-vitamin D(3) fortified milk could enhance the effects of exercise on bone 

strength, structure, and mineral density in middle-aged and older men. The methodology for 

this study has been described in detail previously.45 Here a summary is presented. 

 

 
6.2.1 Study design 
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The study was an ancillary analysis of an 18-month factorial 2x2 RCT, which was conducted over 

a 3 year period, from February 2003 to February 2006. There were 4 groups to which 180 subjects 

were randomized. Group 1 (n =45) received exercise, combined with fortified milk; Group 2 (n = 

46) was exposed to exercise only; Group 3 (n =45) received fortified milk only and group 4 (n 

=44) was the control group. Stratification of subjects, based on age under 65 or 65 and older, in 

addition to the amount of calcium consumed in the diet (< 800 or ≥ 800 mg/d), was carried out 

before randomization. 

 

6.2.2 Participants 

 

The study took place in Geelong, a regional city of south-western Victoria (38˚ south 

latitude) with a population of around 220,000. Healthy men aged 50–79 yrs., who were 

living in the community, were recruited.  

Exclusion criteria included:  

 Taking any calcium-vitamin D supplement in the previous 12 months  

 Undertaken resistance training in the preceding 12 months and/or within the last 6 

months have participated in weight bearing activities that are high-impact, and for 

more than half an hour in duration, three times per week  

 Body mass index (BMI) of >35 kg/m2  

 Any previous osteoporotic fracture  

 Any medical condition or taking any medication known to affect bone metabolism  

 Lactose intolerance  

 Current drinker of > 4standard alcoholic drinks daily  

 Current smokers   
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 Any chronic condition limiting the ability to participate in and comply with the 

trial. 

 

6.2.3 Screening and randomization 

 
 

Four hundred and fifty-one men were pre-screened, with 296 suitable to have a dual energy 

x-ray absorptiometry (DXA) scan. Men with an average aBMD that is normal or less (i.e., total hip 

or femoral neck T-score -2.4 SD to +0.4) were included (n =180). Using a computer- generated 

randomization of study numbers, 180 subjects were allocated to one of the four groups. The 

researchers were blinded to the randomization, and subsequent allocation of subjects into groups 

and interventions. Subjects were not blinded to interventions. 

All eligible subjects were medically cleared by their local physicians, to ensure they did not 

have any medical conditions that exercise would be harmful for, “based on the American College 

of Sports Medicine (ACSM) guidelines.”46   

The Deakin University Human Ethics Committee and Barwon Health Human Research 

Ethics Committee approved the study, and all study participants signed their written consent. The 

trial was registered on the 22nd of August 2017, and the trial ID is ACTRN12617001224314. 

 

 

6.2.4 Interventions 

 

 

6.2.4.1 Exercise program 

 

The exercise program was conducted in 4 leisure facilities in the community, and for the 

duration of the study, certified exercise trainers supervised exercise training. Subjects performed 

exercise training for 3 non-consecutive sessions per week (no longer than three days apart 

between each session) with each session lasting 60–75 minutes. Three types of activities formed 

the basis of the exercise program:  
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 Stationary cycling, and stretching for 5- to 10-min for warming-up and cooling-

down  

  6- 8 moderate- to high-intensity progressive resistance training exercises  

 Three moderate impact weight-bearing exercises.  

Table 1 illustrates the exercise schedule. The high intensity progressive resistance training 

involved combining upper and lower body machine, and free weights with core strength 

exercises.  

All subjects performed exercises in a slow and controlled manner for the first 12 months. 

In the remaining 6 months, the program focused on high-velocity power-based training (rapid 

concentric muscle contractions). Compliance with the exercise program was determined by an 

exercise card system. Each subject was required to ‘sign in’ for each session by the gymnasium 

staff, and the completed exercise cards were verified daily by the trainers and returned to the 

research staff monthly. Recording of adverse events and injuries was done by the trainer who was 

supervising the exercise session at the time. 

 

Study Period Exercise Intensity 

Month Week 

1-6 1-12 Progressive resistance training 

 

3 sets of 15–20 repetitions of: 
 

Squats (or leg press), lunges, hip 

abduction/adduction, latissimus dorsa pull down (or 

seated row), back extension, and a combination of 

abdominal and core stability exercises. 

 

 

 

Moderate-impact weight-bearing exercises 

 

Single and double foot landings, bench stepping, and 

jumping off 15- and 30-cm benches. 

 

 

50–60% of one 

repetition maximum 

(1-RM) strength for 

each resistance 

exercise 

 

 

 

 

 

 

3 sets of 10 

repetitions: 
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13-24 Progressive resistance training 

 

2 sets of 8–12 repetitions of: 
 
 

Squats (or leg press), lunges, hip 

abduction/adduction, latissimus dorsa pull down (or 

seated row), back extension, and a combination of 

abdominal and core stability exercises. 

 

 

 

 

 

Moderate-impact weight-bearing exercises 

 

Single and double foot landings, bench stepping, and 

jumping off 15- and 30-cm benches. 

Week 13-16 

 

1) a warm-up set at 

60–65% 1-RM  

 

2) a single training set 

at 60–70% 1-RM  

 

Week 17-24 

 

1) a warm-up set at 

60–65% 1-RM  

2) a single training set 

at 80–85% 1-RM  

 

 

 

3 sets of 10 

repetitions 

 

7-18  Progressive resistance training 

 

2 sets of 8–12 repetitions of: 
 

Squats (or leg press), lunges, hip 

abduction/adduction, latissimus dorsa pull down (or 

seated row), back extension, and a combination of 

abdominal and core stability exercises. 

 

 

 

 

 

 

 

 

Moderate-impact weight-bearing exercises 

 

Single and double foot landings, bench stepping, and 

jumping off 15- and 30-cm benches. 

Week 1-4 of 12 week 

cycle 

 

1) a warm-up set at 

60–65% 1-RM  

2) a single training set 

at 60–70% 1-RM 

 

Week 5-12 of 12 

week cycle 

 

1) a warm-up set at 

60–65% 1-RM  

2) a single training set 

at 80–85% 1-RM 

 

 

3 sets of 10 

repetitions: 

 

Table 1. Exercise program Schedule. The high intensity progressive resistance training involved 

combining upper and lower body machine and free weights with core strength exercises. The weight 

bearing exercises were interspersed between the resistance training exercises. Repetitions 
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progressively increased to a maximum of 20 and varied in magnitude, rate, and distribution 

(direction) by either increasing the height of jumps and/or by introducing more complex movement 

patterns. Peak vertical ground reaction forces (GRFs) for these exercises varied from 1.5 to 9.7 times 

body weight (BW). 

 

6.2.4.2 Calcium-vitamin D3  

 

Calcium and vitamin D was provided as a low fat (~1%) ultra-high temperature milk 

supplement (Murray Goulburn Cooperative, Brunswick, Australia).  Approximately 500 mg 

calcium and 400IU vitamin D3 were contained in each 200ml milk carton. Subjects allocated 

to the fortified milk consumed 400ml/d (2 x 200 ml packs). This provided approximately 

1000mg of elemental calcium and 800IU vitamin D supplement daily, meeting the 

recommendation of the Australian Osteoporosis Guideline.47 For the duration of the study, per 

100 ml (for 6 cartons), the average (±SD) amount of calcium and VitaminD3 levels were 247 

± 17 mg and 190 ± 26 IU respectively.  

 

6.2.5 Measurements 

 

 

6.2.5.1 Anthropometry, diet, and physical activity measurements 

 

A stadiometer was used to measure height and a digital scale was used to measure 

weight. A food diary, recording 3 days of oral intake (two non-consecutive weekdays and one 

weekend day), was used for the assessment of nutritional status. Recordings at baseline, 12 and 

18 months were analysed with the Foodworks nutrient analysis software program (Xyris 

Software, Brisbane, Queensland, Australia). 

The CHAMPS Activity Questionnaire, a validated tool for measuring the physical activity 

in older adults,48was used to assess habitual weight bearing activities that occurred outside of the 

exercise intervention period (approximate hours per week); and medication use- calcium and 
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Vitamin D included. At each visit, the responses to the questionnaire were confirmed by a face- 

to -face interview. 

 

6.2.5.2 Bone mineral density and bone volumes 

 

Lumbar spine (L1–L4) and proximal femur BMD were measured by DXA (Prodigy, 

GE Lunar Corp., Madison, WI, with analysis software version 8.10.027). A Philips Mx8000 

CT scanner (Philips Mx8000 Quad CT scanner, Philips Medical Systems, The Netherlands) 

was used for the quantitative computed tomography (QCT) scans of the mid-femur, mid-tibia 

and lumbar spine (L1-L3). The scan settings were 120 kVp and 50–100 mAs. Axial sections 

through the mid-portion of L1–L3, the left femoral and tibial mid-shafts were obtained as a 

series of four 2.5-mm slices. Scout scans were performed to assess femur and tibia length. The 

mid-point of a line drawn from the midpoint of the intercondylar notch to the midpoint of the 

superior rim of the femoral neck was the mid femur. Similarly, the mid-point of a line drawn 

from the tip of the medial intercondylar tubercle to the mid-point of the interarticular surface 

was the mid tibia. 

Each subject was scanned simultaneously with a bone equivalent calibration phantom, 

containing fluid dipotassium hydrogen phosphate (K2HPO4) of different concentrations (50, 100, 

150, 250 mg/ cm3), air and water. 

Total bone, haemopoietic and marrow fat volumes were assessed in the mid-femur, mid-

tibia and lumbar spine (L1-L3) using the Tomovision SliceOMatic 4.3 Rev-6i software 

(Tomovision, Montreal, QC, Canada). The thresholds used to quantify each of the volume 

parameters have been described in chapter 3 of this thesis. The same thresholds were used for all 

sites and with refinement of initial thresholds. 

Twenty axial sections per subject, with four axial slices per anatomical area, were 
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analysed. Mean volumes of bone (trabecular and cortical), blood and fat were calculated as 

absolute volume (µm3 or mm3), and as percentages of the total tissue volume. Ratios of fat volume 

to bone volume were calculated using absolute volumes, and changes in these tissues over time (12 

and 18 months) were calculated as absolute volume changes and percentage changes. 

Quantifications of marrow fat with Slice O Matic were conducted by the author of this thesis, 

along with an assistant (estimated to be 20% of the total number of scans). Both assessors were 

blind to group allocations. The images, which were identified only with the subject’s ID number, 

were analysed first. For the tabulation of results, subject IDs were then matched to a master file, 

identifying their group allocations. These results were then used for statistical analysis. 

 

6.2.6 Statistical analysis 

 

 

Statistical analyses were conducted using IBM SPSS Statistics for Windows, Version 20.0. 

(Armonk, NY: IBM Corp.). Characteristics at baseline and after 18 months between the groups were 

compared using repeated measures ANOVA. Mixed design ANOVA was used to test for an 

interaction between exercise and calcium-vitamin D3, and if no significant interactions were 

detected, the main effects of exercise (exercise with fortified milk and exercise alone vs. fortified 

milk and control) and calcium-vitaminD3 fortified milk (exercise with fortified milk and fortified 

milk vs. exercise and controls) were examined. Analysis was carried out separately for the mid 

femur, mid tibia, L1, L2 and L3. 

Changes were expressed either as absolute changes or as percentage changes from the 

baseline. Between group differences were calculated by subtracting within-group changes from the 

baseline values in each group for each variable. All data were analysed based on an intention to 

treat. All data were presented as means ± SD or 95% confidence interval (CI), unless otherwise 

stated. Significance is at p = .05 with ANOVA, unless otherwise stated. 
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6.2.7 Study attrition and adherence 

 

The withdrawal rate for the whole study was 4.4% (8 out of 180 or 2 from each group). On 

average, 63% (95% CI: 57, 69) adhered to the exercise program and 90% (95% CI, 87, 93) adhered 

to the fortified milk. The adherence rate did not differ between the two exercise groups, and 

similarly, between the two fortified milk groups, no difference in adherence was evident. The 

exercise program was not associated with any adverse events or serious injuries. 

 

6.3 Results 
 

The effects of interventions on diet, physical activity, and changes in hormonal measures 

were detailed in the results of the original study.45 In summary, subjects in the fortified milk 

group, on average, consumed 688 to 721 mg/d of calcium and 17 to 18 mg/d of vitamin D more 

in their diet than their non-fortified milk counterparts (all P < 0.001). There was an increase of 

8.4 ng/ml in serum 25(OH) D levels after 12 months seen in the fortified milk group, on average, 

relative to the non-fortified milk groups (P <0.001), but not after 18 months. Conversely, after 12 

months, both exercise and fortified milk did not affect serum PTH, but after 18 months PTH 

decreased significantly in the exercise groups compared to non-exercise groups (P <0.05). 

Otherwise, there were no demonstrable effects of exercise on any other hormonal measures, and 

for the duration of the study, there were no changes in habitual activity levels in any of the four 

groups. 

 

6.3.1 Baseline characteristics 
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As shown in Table 2, the baseline characteristics did not differ among the four groups. The average 

dietary calcium intakes of the men in each group ranged from 911 to 1064 mg/d, but 58% had a 

calcium intake below the Australian recommended dietary intake (RDI) of 1000 mg/d for men aged 

50 to 70 yr. Mean baseline serum 25(OH)D levels averaged 34.5 ± 14.4 ng/ml across the groups; no 

participants had severe vitamin D deficiency [25(OH)D <5 ng/ml]; one participant had moderate 

deficiency [25(OH)D 5–10 ng/ml] and 17 participants (9.4%) had mild deficiency [25(OH)D 10–20 

ng/ml]. 

 

Characteristic  
Ex + milk 

(n = 45)  

Exercise (n = 

46)  

Milk (n = 

45)  

Control (n = 

44)  

Age, yr.  61.7 ± 7.6  60.7 ± 7.1  61.7 ± 

7.7  

59.9 ± 7.4  

Height, cm  174.3 ± 6.3  174.2 ± 6.6  174.4 ± 

5.8  

175.0 ± 6.6  

Weight, kg  83.2 ± 11.9  85.2 ± 10.9  84.1 ± 

9.8  

81.9 ± 10.7  

BMI, kg/m2  27.4 ± 3.7  28.1 ± 3.3  27.7 ± 

3.3  

26.7 ± 2.9  

Diet          

Energy intake, kJ/d  9694 ± 

2149  

9884 ± 1948  9761 ± 

1717  

10199 ± 

2201  

Protein intake, g/kg/d  1.26 ± 0.32  1.32 ± 0.32  1.23 ± 

0.28  

1.33 ± 0.31  
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Characteristic  
Ex + milk 

(n = 45)  

Exercise (n = 

46)  

Milk (n = 

45)  

Control (n = 

44)  

Calcium intake, mg/d  911 ± 360  1064 ± 449  1039 ± 

455  

996 ± 293  

Vitamin D intake, μg/d  1.2 ± 2.1  0.8 ± 1.1  1.4 ± 3.0  0.7 ± 1.0  

Physical activity          

 Weight-bearing 

activity, h/wk  

3.7 ± 3.9  3.6 ± 3.4  3.3 ± 3.8  3.4 ± 4.1  

Table 2. Baseline characteristics of the study participants. All values are mean ± SD. BMI, body 

mass index. 

 

As shown in Table 3, at baseline, marrow fat volumes of the mid femur, mid tibia and 

lumbar vertebrae 1-3 did not differ significantly between the four groups. Bone volumes also did 

not differ significantly between the four groups at base line (Appendix-Table 2). Fat volume 

makes up about 12% of total marrow cavity volume in the mid femur. In comparison, the mid 

tibia showed slightly lower fat volumes (Table 3), and bone volume was slightly higher 

(Appendix-Table 3). 

In the lumbar vertebrae (Appendix-Tables 4-6), blood volumes were four fold higher than the 

femur and the tibia, ranging from 18% to 26%, whilst bone volumes were lower, ranging from 

67% to 78%. On the other hand, marrow fat volume demonstrated greater variability, averaging 

under 2% in L1, a little over 2% in L3, rising to an average of 16% in L2 (Table 3). Within each 

group (Table 4), the haemopoietic, bone and fat volumes, expressed as percentages of the total 

marrow cavity volume, were not significantly different between lumbar vertebrae 1 to 3. This was 

the case with absolute volumes of haemopoietic and fat volume between L1, 2 and L3. 
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There was a significant difference in absolute bone and total marrow cavity volumes at 

baseline between the lumbar vertebrae, however. Interestingly, the ratios of fat to bone volumes 

did not differ significantly between the three vertebrae at baseline.  
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Table 3. Mean baseline marrow fat volume values (±SD) and percentage unadjusted changes (95% 

CI) from baseline within each group and the mean differences (95% CI) between the exercise and 

calcium-vitamin D3 fortified milk groups (main effects).  a p ≤.05, b p< .01. 
 

 

Characteristic Ex+milk 

(n _ 45) 

Exercise 

(n _ 46) 

Milk 

(n _ 45) 

Control 

(n _ 44) 

Main effects 

Exercise              Milk 

Mid Femur 

     Fv , mm3 

      

Baseline 218 ± 87 232 ± 97 217 ± 81 231 ± 86   

Change at 18 months -3 ± 18 5 ± 23  4 ± 11  3 ± 22 -3 (-3, 9) -3.8 (-10,2) 

     %Fv       

Baseline 11.9 ± 4.0 12.5 ± 5.0 11.9 ± 3.7 12.4 ± 3.9   

Change at 18 months -.42 ± .83a .03 ± 1.28  .11 ± .67a .12 ± 1.11  -.3 (-.6, 0.0)a -.3 (.0,.6) 

     Fv/Bv       

Baseline .15 ± .09 .16 ± .10 .14 ± .08 .15 ± .05   

Change at 18 months 

-5x10-3 ± 1x10-3 

 

1x10-3 ± 2x10-3 

 

1x10-3 ± 9x10-3 

 

2x10-3 ± 1.5x10-

3 

 

2x10-4 

(2x10-4,-6x10-4) 

-2x10-4 

(-6x10-4,2x10-4) 

Mid Tibia 

     Fv       

Baseline 147 ± 71 157 ± 71 133 ± 66 135 ± 72   

Change at 18 months -1 ± 19 -8 ± 11 -2 ± 10 -6 ± 15 .2 (-4, 5) -6 (-10 , -1)a 

     %Fv       

Baseline 9.3 ± 3.7 10.2 ± 4.3 9.0 ± 4.3 8.8 ± 4.1   

Change at 18 months -.05 ± 1.09 -.50 ± .63 -.15 ± .64 -.40 ± .90 .02 (-.3,.3) -.3 (-.6 , -.1)b 

     Fv/Bv       

Baseline .11 ± .05 .12 ± .06 .11 ± .06 .10 ± .05   

Change at 18 months 

-5x10-4 ± 1x10-3 -6x10-4 ± 8x10-4 -2x10-4 ± 8x10-4 -5x10-4 ±  1x10-3 2x10-4  

(-3x10-3, 3x10-

3) 

-4x10-3  

(-9x10-4, 8x10-

3)a 

L2  

     Fv       

Baseline 102 ± 139 100 ± 106 72 ± 66 75 ± 68   

Change at 18 months -1 ± 100 5 ± 50 14 ± 41a 4 ± 27 7(-12,27) 2 ( -27, 18) 

     %Fv       

Baseline 19.5 ± 27.2 18.6 ± 20.9 12.9 ± 11.9 14.1 ± 12.5   

Change at 18 months 
8x10-5 ± 2x10-2 3x10-4 ± 9x10-3 2x10-3 ± 7x10-3a 2x10-3±7x10-3 2x10-5 

(-2x10-3,6x10-3 

3x10-5  

(-.04, .04) 

     Fv/Bv       

Baseline .03 ± .05 .03 ±.04 .02 ± .02 .22 ± .22   

Change at 18 months 
2x10-4 ± .30 8x10-4 ± .20 4x10-3 ± .01a 2x10-3 ± .01 29x10-4 

(-32, 91)x10-4 

5x10-4  

(-7x10-3, 6x10-3) 

L3  

     Fv       

Baseline 130 ± 183 123 ± 115 145 ± 224 122 ± 98   

Change at 18 months -20 ± 59 11 ± 52 -20 ± 215 4 ± 43 5 (-32, 43) -28 (-65, 9) 

     %Fv       

Baseline 2.2 ± 2.2 2.1 ± 2.2 2.4 ± 3.5 2.1 ± 1.6   

Change at 18 months -.3 ± 1.0 .1 ± .9 -.3 ± 3.4 .1 ± .7 -.03 (-.05, .1) -.1 (-.1 , 0) 

     Fv/Bv       

Baseline .03 ± .05 .03 ± .03 .04 ± .05 .03 ± .02   

Change at 18 months 

-4.8x10-3± 1x10-

3 

1.5x10-3± 

1.4x10-2 

-4.4x10-3± 

4.8x10-2 

1.1x10-3±1.1x10-

2 

-1x10-4 

(-9x10-4, 8x10-

3) 

-5x10-2  

(-.01, 3x10-2) 
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Group Mean Volume 
± SD (95% 

CI) 

L1 L2 L3 p 

Control Fv 87 ± 79  
 

75 ± 68  
 

122 ± 98  
 

.07 

%Fv 1.9 ± 1.7  1.5 ± 1.3 2.1 ± 1.6  .3 

Fv/Bv .027 ± .026 .022 ± .022 

 

.030 ± .024 

 
.4 

 Ca only 

 

Fv 70  ± 79  

 

72 ± 66  

 

145 ± 224  

 

.4 

%Fv 1.4 ± 1.4  

 

1.4 ±1.3  

 

2.4 ± 3.6  

 
.9 

Fv/Bv .022 ± .024 

 

.021 ± .019 

 

.036 ± .051 

 
.9 

Ex only Fv 89 ± 100  

 

100 ± 106  

 

123 ± 115  

 
.4 

%Fv 188.0 ± 216.7 

 

196.3 ±213.3 

 

214.3 ± 202.0 

 
.9 

Fv/Bv .029 ± .038 
 

.030 ± .036 
 

.032 ±.034 
 

.9 

Ex + Ca Fv 100 ± 138  

 

102 ± 139  

 

130 ± 183  

 

.7 

%Fv 21.4 ± 29.1 
 

20.4 ± 26.9 
 

23.0 ± 29.5 
 

.9 

Fv/Bv .032 ± .048 

 

.031± .047 

 

.034 ± .050 

 

.9 

 

Table 4. Within groups comparisons of lumbar vertebrae at baseline. Fv (fat volume) and %Fv of total 

volume. Fv/Bv is ratio of mean absolute fat volume to mean absolute bone volume. # and * are 

significance at .05 level with Robust test equality of means or ANOVA respectively. 

 
 

 

 

6.3.2 Changes in marrow fat volume indices 

 

There were no significant exercise-by-calcium-vitamin D3 interactions for any 

marrow fat volume measurements (mean absolute fat volume, fat volume fraction and Fv/Bv) 

in the mid femur, mid tibia or lumbar vertebrae 2 and 3.  For these regions of interest, we are 

reporting on the main effects of exercise (exercise + calcium and exercise alone vs. calcium 

and control) and calcium supplement (exercise + calcium and calcium alone vs. exercise 
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alone and controls) (Table 3 and Fig 1). After 18 months, exercise resulted in a small, but 

statistically significant, reduction in percentage of marrow fat volume in the mid femur [0.3% 

(95% CI, 0, 0.6)], relative to no exercise. There were no other beneficial effects of exercise on 

any marrow fat measurements in other skeletal regions (Table 3 and Fig. 1). In contrast, 

supplementation with the fortified milk had a significant effect on marrow fat measurements 

in the mid tibia, relative to those assigned to the non-supplemented group. Significant 

reductions were seen in mean fat volume (-6 (-10, -1), p < .05), percentage fat volume (-0.3 (-

0.6, -0.1), p < .01), and marrow fat volume to bone volume ratio (-4x10-3 (-9x10-4, 8x10-3, p < 

.05) (Table 3). 

 

   A                                                                           B                                                                    C 

           

    D                                                                       E                                                                        F 
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   G                                                                           H                                                                   I 

         
     J                                                                        K                                                                        L 

         
Figure 1. Mean unadjusted changes from baseline of mean fat volume, percentage fat volume and 

Fat to Bone Volume ratio (Fv/bv) respectively in mid femur (A-C), in mid tibia (D-F), L2 (G-I) and 

in L3 (J-L) according to treatment group. No exercise-by-calcium/vitamin D3 interactions were 

detected. a, P ≤0.05; b, P ≤ 0.01; c, P ≤ 0.001 for Exercise + milk, Exercise, milk > controls. d, P ≤ 

0.01 for main effect of exercise vs. no exercise. 

 

However, there were significant time group interactions in L1, F (3,139) = 4.6, p = .004, F (3,139) = 

3.5, p = .02, F (3,139) = 4.1, p = .008 for Fv, %Fv and Fv/Bv respectively. Statistically significant 

exercise-by-calcium-vitamin D3 interaction was evident for all marrow fat volume measurements in 

L1 (Figure 2A-C). In following up this interaction, there was an indication that there was no 

significance difference between the groups at baseline and at 18 months. However, the exercise with 

the fortified milk group showed reduction in absolute fat volume (29mm3), percentage of fat volume 

(3.5%) and reduction in Fv/Bv ratio. 
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    A        B        C 

   

Figure 2. Exercise-by-calcium-vitamin D3 interaction in Lumbar vertebrae 1. b p < .01 for change 

in Fv, %Fv and Fv/Bv over time in Exercise + Milk supplement group. 

 

 

 

 

6.4 Discussion 
 

The result of this 2 by 2 factorial design RCT showed that resistance training and weight 

bearing exercises, combined with vitamin D/calcium supplements, produced inconsistent and 

variable effects on marrow fat in different skeletal regions of middle-aged and older men who 

were healthy and living in the community. Our first aim was to determine the response of marrow 

fat to calcium/vitamin D, exercise and the combination of the two. Calcium, as a single 

intervention (Table 2), increased fat volume in the lumbar vertebrae (L1 and L2), and exercise 

alone significantly reduced fat volume in the mid tibia only.  

The second objective was to determine the effects of the combination of exercise and 

calcium/vitamin D3. The main findings suggest a positive interaction between calcium and 

exercise, such that this combination attenuates marrow fat volume over time. When exercise was 

combined with calcium (Table2 and Figure 1), the positive effects on bone volume were observed, 

as fat volume was reduced in the mid femur and L1 and L3. 

However, it is uncertain why the effects differ greatly between different regions. 

Significant reductions in fat were seen in the mid femur and the first lumbar spine, but no 
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significant effects were seen in other areas. A number of possibilities may explain these 

variabilities. Firstly, skeletal loading is greatest in the mid femur and the spine, and hence, effects 

are maximal. These two regions contain the most adipocyte volume in the normal state, and thus, 

any interventions that affect this compartment will likely be associated with greater change 

comparatively. 

Another factor that may contribute to the variable responses seen at these skeletal regions, 

and the lack of more definitive bone and marrow fat response overall, is the calcium intake and 

serum 25(OH) D levels at baseline. In this study, across all groups, the mean dietary calcium 

intake ranged from 911-1064 mg/d and serum 25(OH)D levels ranged between 34 and36 ng/ml.45 

These daily dietary calcium intakes approximated the current recommendation for Australian men 

under 70 years of 1000 mg/d., 49 and similarly, the ‘optimal’ serum 25(OH)D threshold of 30 

ng/ml that confers musculoskeletal benefit50 is lower than the baseline 25(OH)D across the four 

groups. Thus, it was expected that further supplementation of calcium and vitamin D beyond the 

baseline dietary intake for these men would not result in significant differences between exercise 

alone and exercise plus calcium. Nevertheless, the findings of this study indicated that overall, 

exercise and calcium do benefit skeletal health, even if the effects are not consistent throughout all 

skeletal regions. 

Given the close relationship between BMD and marrow adiposity, it is not surprising to see 

inconsistencies paralleling the inconsistent findings of effects of resistance exercise on BMD in prior 

studies. In premenopausal women, efficacy on lumbar spine and femoral neck BMD ranges from 

negative effect,51 no effect at either site, 
11 positive effect on lumbar BMD only,52 to positive effects 

at both sites.53 Differences in types of exercise, exercise prescription in terms of intensity, duration 

and frequency, most likely account for the conflicting results seen with these studies. Studies in 

middle age men showed shorter duration resistance training increased femoral neck BMD, but no 
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other proximal femoral regions, lumbar spine or total body BMD.54, 55 Similarly, in a study of an 

older cohort, 64-75 year old men undergoing 16 weeks of resistance training, only Ward’s triangle 

BMD increased from baseline. Whole-body, lumbar spine, and femoral neck BMD were 

unchanged.56 However, a small study examining the effect of 6 months of whole-body resistive 

training (RT) on regional BMD in a cohort of younger and older men and women showed a 

significant increase in BMD at the femoral neck, ward's triangle and greater trochanter BMD 

overall, but no change in L2-L4 spine BMD.57 

Longer duration of resistance training in an older cohort of 60-80 year olds also did not 

show significant BMD responses. After 10 months, although increases in dynamic muscle 

strength, muscle size, and functional capacity were evident, there were no changes in bone mineral 

density or content in the lumbar spine, proximal femur or whole body.58
 

Studies of resistance training alone, or in combination with other interventions in 

postmenopausal women, have also reported disparate results.58-66 Nine months of resistance 

training maintained lumbar spine BMD, but did not benefit the proximal femur or distal wrist 

site.63 In a longer study of more than 12 months, resistance training in 60-80 year old women did 

not produce positive changes in bone mineral density or content;58 and similarly, no significant 

increase in BMD of (L2-L4), femoral neck, Ward's triangle, and greater trochanter were found 

with a shorter intense training regime in another study.66
 

It is not certain why there are differences between these findings and those of the present 

study, but differences in exercise types, exercise duration and different loading force at each 

skeletal site (despite the same exercise regime) may be important factors. Furthermore, studies 

examining marrow adiposity as an endpoint of exercise effect is lacking; even studies examining 

correlates of marrow adiposity as endpoints of exercise is rare. 

Nevertheless, from a clinical perspective, this study shows that incorporating calcium into 
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a multi-component exercise program, consisting of resistance training and impact weight bearing, 

provides the most benefits to bone health. The changes in marrow content indices are greatest and 

most significant in this combined group. 

The strengths of the original randomized controlled study lies in the factorial trial design, 

with relatively long-term follow-up, and high participant retention and adherence rate.45Also, as 

far as we are aware, although our study uses secondary analysis, it is the first to examine changes 

with marrow fat in response to exercise.  

However, the interpretations of the results of our study are limited by a number of factors. 

This is a secondary analysis study, and the objectives were to explore marrow fat responses and 

generate hypotheses for future studies. The original study was not powered to detect differences in 

marrow fat changes, and furthermore, the impact of these interventions on marrow fat are largely 

unknown. 

Also, the analyses in this study were not prespecified in the original trial; the power is low; and 

inherent bias is unavoidable. 

In addition, before any firm conclusions can be reached, this technique of quantifying 

marrow fat with clinical CT needs to be validated in humans. It is likely the uncertainties in the 

accuracy and sensitivity of this technique more than likely contributed to the inconsistent findings 

in the quantification of marrow fat. Furthermore, currently it is not known which aspect of marrow 

adiposity is the most suitable surrogate for the clinical outcome. Whether the mean absolute 

volume in a region of interest; the percentage of marrow fat over the total tissue volume; or, 

indeed, the ratio of marrow fat to bone volume serves as the marker, remains to be determined. 

In addition, the subjects included in the study were ‘young’ older men with a mean age of only 62; 

healthy; community-dwelling; not osteoporotic; had adequate dietary calcium intake and optimal 

serum 25(OH) D levels. Thus, the effects seen in this population may underestimate the effects 
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that may be seen in older populations with osteosarcopaenia who have significantly higher 

fracture risk.  

Nevertheless, there are both clinical and technical considerations arising from the findings 

of this study. Although the findings from this study are in keeping with current evidence, the 

accuracy and reliability of this technique has not been established. A future study comparing it to 

MRI- a technique that is currently considered the gold standard imaging technique to quantify 

marrow fat- is needed. A study we envisage in the future would involve a cohort of subjects from 

a wide spectrum of ages and both sexes. MRI would be used to quantify fat fraction, along with 

clinical CT.  From this study, the percentage of fat volume seems to be most sensitive to 

intervention, and hence, could be the best variable to compare with fat fraction calculated by MRI. 

Hence, a 2x2 factorial RCT with similar intervention protocol would help to elucidate further the 

effect of exercise on marrow fat, and validate this CT method of quantification. 

In conclusion, the results of this secondary analysis study showed that a community based 

exercise program, consisting of progressive resistance training and weight-bearing impact 

exercise, had inconsistent and variable effects on marrow fat indices. Further study examining the 

impact of exercise on marrow fat indices using both MRI and CT are warranted. 
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7.0 Chapter 7: Conclusions and Future directions 

 
Marrow fat (i.e. adipocytes) has now been shown to have an active and major role in the 

pathophysiology of age related bone loss. Yet, its role in clinical applications is scarce. In fact, its 

quantification in a non-invasive manner is limited exclusively to special MRI techniques, which 

are mainly seen in research settings. 

In the clinical settings, standard MRI is expensive; requires expert interpretation; not readily 

available and not well tolerated by older people. On the other hand, CT is more accessible, 

cheaper, well tolerated by older people and is the imaging modality that practicing clinicians are 

generally more familiar with. A method of quantifying marrow fat that is readily applicable in 

routine clinical care, such as that with CT, is sorely needed and further exploration of the clinical 

applications of marrow fat is warranted. 

Thus, the aims of this thesis were to demonstrate a new technique of marrow fat 

quantification involving CT technology, and using these principles combined with established 

concepts; explore the effects of fatty acids on marrow fat; examine the relationship between 

marrow fat and clinical surrogates of bone mass, strength and calciotropic hormones; and assess 

the effects of exercise, calcium and vitamin D on marrow fat. 

We achieved the first aim by demonstrating that marrow fat can be quantified reliably from 

 

µCT images using an image analysis software, Slice O Matic version 4.1 (Tomovision), and 

compared it to the gold standard method of histology. In the study “Validation of non-invasive 

quantification of marrow fat in aging LOU rats,” volumes of bone, fat and haemopoietic tissue in 

the femoral and tibial marrow cavity of young and old LOU rats were quantified with both 

methods and the results compared. Marrow fat indices quantified from µCT images with Slice O 

Matic showed high levels of agreement with corresponding indices quantified by histology. 
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Furthermore, our results, showing an increase in fat volume with corresponding decrease in bone 

volume with increasing age, were consistent with previous findings utilising MRI and histological 

methods, thus confirming the potential of our technique for applications in future clinical studies. 

To our knowledge, this was the first study to quantify fat using µCT images and imaging software, 

and the first study to validate a non-invasive quantification technique with a gold standard 

invasive method. The novel aspect of our technique lies in the use of density values of tissues 

directly obtained from the CT images to compute volumes of interest. No conversions to other 

units through complicated algorithms or sophisticated procedures to alter the resolution of the 

images were involved. The implication from this is that clinical application in the future is 

achievable. 

Limitations exist however. Given that this validation study was conducted with a specific 

µCT scanner and images were obtained at specific energy settings, the thresholds used in the 

study can only be applied to a similar device scanning at similar energy levels. Changes in 

scanning parameters would require validation in the particular experiment cohort. Another 

limiting factor is observer error in the visual identification of fat depots in regions affected by 

partial volume effects. Marrow fat may be under quantified in areas adjacent to bone structures or 

over quantified in areas adjacent to lower density mediums, such as air. The size of this margin of 

error is uncertain and not within the scope of this body of work. However, we estimate that the 

thresholds which we have validated may be applicable to different µCT scanners, but with similar 

scanning settings.  

Thus, in our next study, “The effect of Dietary Fatty Acids on Bone Marrow Fat in a 

Murine Model of Senile Osteoporosis”, we applied our technique to explore a topic of clinical 

relevance to osteoporosis. We examined the effects of fatty acids on marrow fat with a murine 

model of senile osteoporosis (SAMP8). Consistent with previous studies, our results suggested 
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that ω-3 and ω-6 fatty acids largely act independently. However, in contrast to previous findings, 

the net effect on bone is influenced by the interactions of not only ω-3 level, ω-6 level and ω-6: ω-

3 ratio, but also saturated fatty acid levels, total PUFAs, and the bone microenvironment itself. In 

fact, in an osteoporotic bone microenvironment, a sunflower diet (high ω-6: ω-3 ratio) exerts a 

protective effect on bone, compared to a neutral effect on a non-osteoporotic bone 

microenvironment Decreasing this ratio by more than four fold through enriching the ω-3 fraction 

five fold with a fish diet maintained protective effect on bone through a reduction in marrow fat 

volume. Increasing total ω-6 PUFA, and thus raising ω-6: ω-3 with borage led to negative trends 

on bone health (reduced bone tissue volume with increasing fat tissue volume) consistent with 

previous literature. 

Overall, the results from our study highlighted the complexity of the actions of fatty acids. 

To clarify our results, future studies ideally should adopt a similar animal model. In addition, it 

would be informative to measure levels of individual fatty acids in the diet and in different tissues 

(serum and bone marrow) in order to determine the optimal combinations and proportions to 

achieve heathy bones. Significantly, this study paves the way for future studies to explore other 

nutritional elements that may benefit bone health that have not been possible to study in the past due 

to inability to measure marrow elements non-invasively. However, the findings from this study need 

further clarification. In addition, the technique needs validation, as a number of assumptions have 

been made, such as the application of the same thresholds in different scanners with similar setings. 

The main assumptions made in the study need to be verified in a repeat experiment with multiple 

measurements using different scanners, plus their dedicated phantoms and different energy settings 

need to be compared. Reliability and margin of error also need to be determined.  

We then moved forward from animals to humans. In the study “Anatomical Differences in 

Marrow Fat in a Cohort of Older Men: Correlation with Body Composition and Calciotropic 
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Hormones”, we employed clinical CT to quantify marrow fat and explored the relationship 

between marrow fat; clinical surrogates of bone mass and strength; and calciotropic hormones in a 

population of community-dwelling older men from Singapore. Different Hounsfield units ascribed 

to different tissues, as used in day –to- day clinical settings, were used to compute marrow fat, 

bone and haemopoietic volumes. 

Our results showed that marrow adiposity increased and bone volume decreased in the 

proximal femora and lumbar vertebrae with ageing. Interestingly, the inverse relationship between 

marrow fat and bone in these sites is consistently significant only in the trochanteric regions and 

proximal femora. Other significant findings include: age was mainly associated with marrow 

adiposity in the trochanteric regions, whereas fasting glucose was mainly associated with marrow 

adiposity in the lumbar vertebrae; and vertebral marrow fat indices highly correlated with fasting 

glucose levels and diabetes status in the whole study population. Consistent with this, diabetic 

subjects had higher vertebral marrow adiposity (mean marrow fat volume and Fv/Bv) compared to 

nondiabetics, and vertebral fat content highly correlated with HbA1c in this group. As for the 

calciotropic hormones, higher vitamin D levels were associated with greater marrow adiposity in 

the proximal femora and lumbar vertebrae and, although not statistically significant, higher BMIs 

tended to be associated with higher adiposity indices. Marrow fat volume indices correlated 

positively with cytokines involved in bone resorption (RANKL, leptin, resistin, IL6 and TNFα) and 

negatively with those involved in bone formation (PTH, IFNλ, osteopontin, and IGF1). 

As far as we are aware, this is the first study using clinical CT to examine relationships 

between these clinical risk factors and marrow fat. The findings are significant, and warrant future 

prospective studies to confirm the associations. More importantly, a number of these results are 

consistent with previous studies utilising gold standard modalities, such as MRI and histology. 

This indicates that our technique may be applicable in future clinical studies. However, this 
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method requires validation in humans, and its accuracy need to be compared with MRI methods.  

Another important clinical issue in the field of osteoporosis is the effect of exercise on bone macro 

and micro architecture. Although the effects of exercise, calcium and vitamin D on bone density 

have been well examined, their effects on bone marrow fat have had little attention. In our final 

study “Effects of Exercise and calcium on Bone marrow Contents – A randomised Control Trial”, 

we explored the effects of these interventions on marrow fat indices in a cohort of healthy older 

men.  

The results showed that within a multicomponent strategy to improve bone health, 

combined resistance and weight bearing exercises alone increased bone volumes in the mid femur 

and decreased fat volumes in some lumbar vertebrae, but had no effect in the mid tibia. Conversely, 

calcium/vitamin D3 alone reduced fat volumes and improved the fat to bone volumes ratio in the 

mid tibia only. However, these interventions interacted to primarily affect marrow haematopoiesis 

in the mid femur and marrow fat volume changes in the lumbar vertebrae, but no effect was seen in 

the mid tibia. Despite limited interactions between the interventions, the results from this study 

suggest that as a stand -alone intervention, the combined strategy (exercise plus 

calcium/vitaminD3) had the most widespread positive effects on bone marrow health. It increased 

bone volumes and reduced fat volumes in the mid femur and lumbar vertebrae. Exercise alone was 

the next most beneficial, with bone volume increases in all skeletal regions, but fat volume 

attenuation in the mid tibia only. 

The results for bone tissue parameters were consistent with existing literature, but the 

results for marrow fat were modest. This was not surprising, given that the study was not powered 

to detect marrow fat indices as primary outcomes. Nevertheless, a larger similarly designed RCT to 

further elucidate this relationship is needed to confirm the effects. 
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7.1 Going forward 

 
With the exception of the validation study in chapter 3, the remaining bodies of work 

consist of secondary analyses, addressing gaps in our knowledge of osteoporosis. Although the 

findings from secondary analyses are far from conclusive, they serve as important starting points 

for a number of hypotheses to address in future studies. However, due to the limitation of 

translatability between micro CT and clinical CT, the first step is to validate clinical CT as a tool 

to quantify bone marrow fat in humans.  

As identified in the body of the thesis, the limitation with our technique is the lack of 

validation against a gold standard non-invasive method. Since we used Hounsfield tissue densities 

in the calculations of the bone marrow tissues, the only area of uncertainties are the true densities 

of tissues in areas affected by partial volume effects, such as the interface between cortical and 

trabecular bone; the interface between thin trabeculae bone and haemopoietic tissue; and the 

interface between haemopoietic tissue and adipose tissue. A study quantifying fat fraction using 

MRI spectroscopy, compared to quantification using clinical CT and an image software analysis, 

may be able to resolve this uncertainty to an extent, and determine the reliability and margin of 

error with this method.  

The cohort should consist of a wide range of ages, as well as involve healthy men and women. 

The exclusion criteria would include conditions that may influence bone turnover, such as 

osteoporosis, malignant bone disease and other metabolic bone diseases. Conditions that are 

associated with changes to bone marrow fat- such as anorexia, diabetes, and steroid therapy- should 

also be excluded. From the technical aspect, CT calibrations have to be rigorously performed using a 

number of phantoms, covering air, water, bone and bone marrow of different densities according to 

proportions of red and yellow marrow. The marrow phantoms should cover a range of densities of 

bone marrow, reflecting different proportions of red and yellow marrow as previously published. 
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Following this, a precision error study needs to be undertaken to ensure this clinical CT method is of 

acceptable precision. This can be done with 15 subjects scanned in triplicate or 30 subjects scanned in 

duplicate according to ISCD recommendation. Finally, the statistical analysis validating the technique 

needs to be more comprehensive. That is, the interpretations of Bland Altman need to examine 

additional issues of bias and method error. 

Once the validation of clinical CT is achieved, further studies investigating the associations 

found in this body of work will help address the assumptions and limitations. A study investigating 

“Bone marrow adiposity in the lumbar spine and proximal femur of older men and women with 

varying bone densities” can further clarify the inverse relationship between marrow fat and bone in 

the proximal femur, and whether this is independent of age and sex in older subjects. Another 

objective is to determine the correlation between BMD and marrow fat indices in these regions.  

Similarly, extending the findings from the mice free fatty acids study, a study investigating “The 

effect of dietary fatty acids on bone marrow fat and BMD in older men and postmenopausal 

women” would help further knowledge in this important area of nutritional intervention in 

osteoporosis.  

Finally, a study to elucidate whether exercise significantly influences marrow fat should be 

conducted. The design would have adequate power to detect marrow fat changes, and the primary 

objective is marrow fat volume changes as absolute mean volume change; fat to bone volume ratio 

change; and fat volume to bone volume ratio changes. The hypothesis for this study would be that 

“Exercise reduces bone marrow fat in the proximal femur and lumbar spine in postmenopausal 

women compared to controls without exercise intervention.”  

In conclusion, this body of work has demonstrated a potential method of marrow fat 

quantification using computed tomography, and has generated a number of clinically important 

hypotheses for future clinical studies. Although our technique promises to enable studies 
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examining a number of osteoporosis clinical risk factors and their relationship with marrow fat, 

much work remains to validate its accuracy. Nevertheless, this thesis is the beginning of the 

development of a fat quantification technique that is accessible; feasible; applicable in general 

clinical settings; and reliable as an opportunistic screening tool.  
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8.0 Appendix 

 
8.1 Chapter 5 

 
 

Parameter 

Age Vitamin D BMI 

≤ 65 

(n=56) 

> 65 

(n=64) 
 21 

(n=52) 
 21 

(n=68) 
 25 

(n=74) 
 25 

(n=46) 

Age (Kg) 63*  1 72*  5 66  6 69 5 68  5 68  7 

BMI 26  4 25  5 26  5 25  4 23  2 29  5 

Vitamin D level 

(ng/ml) 
20*  4 23*  6 17  3 25  3 23  5* 20  5* 

Diabetes 12 12 15 9 10 14 

FN T score -0.92  1 

(25) 

-1.04  1 

(23) 

-.79  1.1 

(19) 

-1.1  .9 

(29) 

-1.1  .9 

(32) 

-.69  1.1 

(16) 

LS Tscore .36  1.2 

(25) 

.04  1.3 

(23) 

.42  1.2 

(19) 

.07  1.3 

(29) 

.22  1.2 .191.328 

LNF (mm3) 304  358 353  571 289  306 361  579 334 502 324 456 

LNBC (mm3) 2347 

1535 

2084 

1320 

24401577 2035 

1287 

21291384 2328 1494 

LNBT (mm3) 1358  848 1343  846 1425  864 1296  

830 

1324834 1392 865 

LN Fv/Tr.Bv 26  23 35  50 25  22 35   49 33   45 27  30 

LNFv/To.Bv 10  9 14  19 9  8 13   18 13  17 10  12 

LN Fv/Tv 7  6 9  10 7  6 9 10 9  9 8  8 

RNF (mm3) 339  373 352  5423 318  335 367  549 327  406 377  559 

RNBC (mm3) 22761397 22091414 23411441 21671376 2216

1387 

2279 

1437 

RNBT (mm3) 1355  808 1321  830 1384  808 1302  827 1325  839 1356  788 

RN Fv/Tr.Bv 28  2 35  45 26  22 36  45 33  39 29  34 

RNFv/To.Bv 11  9 13  17 10  8 13  16 12  14 11  13 

RN Fv/Tv 8  6 9  10 8  6 9  10 9  8 8  8 

L2FV (mm3) 214  363 
(n=17) 

293  527 
(n=43) 

97  120 
(n=16) 

333  549 
(n=44) 

220  455 420  552 

L2FV/Bv .1  .2 

(n=17) 

.2  .4 

(n=43) 

.1  .1 

(n=16) 

.2  .4 

(n=44) 
.1  .3 .3 .4 

L3FV (mm3) 283  459 

(n=17) 

371  520 

(n=43) 

166  217 

(n=16) 

411  559 

(n=44) 

279  429 545  651 

L3FV/Bv .2  .3 

(n=17) 

.2  .3 

(n=43) 

.1  .1 

(n=16) 

.2  .3 

(n=44) 
.1  .2* .3  .5* 

Table 5A. Comparisons of means of clinical parameters and marrow fat volume indices in the 

neck of femur regions and lumbar vertebrae between subjects in subgroups according to age, 

en the two groups 

are different and are statistically significant at the 0.05 level (2-tailed). ** Difference is 

statistically significant at the 0.05 level (2-tailed). 
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Parameter 

Age Vitamin D BMI 

 65 

(56) 

 65 

(64) 
 21 

(n=52) 
 21 

(n=68) 
 25 

(n=74) 
 25 

(n=46) 

LTF (mm3) 241  396 400  676 233  295 394  698 322 496 332 669 

LTBC (mm3) 125869 
918698 

2030 
1282 

138368 
963523 

1946 
1237 

96614
802950 

2054
1323 

LTBT (mm3) 1234 

793 

1164 

790 

1306   819 1117 

762 

1180

789 

1223

797 

LT Fv/Tr.Bv 23  33* 50  88* 23   27* 48  87* 40  75 33  60 

LT Fv/To.Bv 8  11* 16  23* 8  9* 15  23* 13  19 11  17 

LT Fv/Tv 6  7* 

(55) 

10  12* 

(63) 

6   6* 
(50) 

10   11* 
(68) 

9  10 7  10 

RTF (mm3) 267  416 371  608 255  333 372  632 285  353 381  722 

RTBC (mm3) 1940  1242 1995 

1246 

2049  1276 1912 

1218 

1924  1212 2041  1291 

RTBT (mm3) 1193  795 1174 

798 

1281  847 1111 

750 

1164  766 1214  843 

RT Fv/Tr.Bv 25*  32 46*  76 25  30 45  74 36  57 38  66 

RT Fv/To.Bv 9  11* 15  21* 9  10 14  20 12  16 12  18 

RT Fv/Tv 7  7 10  11 7  7 10  11 9  9 8  10 

LfFv 535  732 741 
1227 

502  579 755  
1262 

638  977 657  1115 

Lf Fv/Tr.Bv 24  26 41   64 24  23* 40  62* 36  55 29  42 

Lf Fv/ To.Bv 9  9 15  21 9  8* 14  20* 13  18 11  15 

Lf Fv/Tv 7*  6 10*  11 7  6* 10  11* 9  9 8  9 

RfFv (mm3) 596  762 713 

1130 

551  636 739 

1167 

596  732 758  1274 

Rf Fv/Tr.Bv 26  24 39  56 25  24 39  54 33  43 32  46 

Rf Fv/ To.Bv 10  9 134  18 9   9 14  18 12  14 12  16 

Rf Fv/Tv 8  6 10  10 7  6 10  10 9  8 8  9 
 

Table 5B. Comparisons of marrow fat volume indices in the trochanteric regions of the femur and 

proximal femur between subjects in subgroups according to age, Vitamin D, and BMI. Indices are 

means  standard deviations. * Means between the two groups are different and are statistically 

significant at the 0.05 level (2-tailed). ** Difference is statistically significant at the 0.05 level (2-

tailed). 
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8.2 Chapter 6 

 
Parameter Group (n) Mean SD CI p 

Tv 0 (42) 1851 182 1795-1908 0.8 

 1 (41) 1805 186 1746-1864 

 2 (41) 1826 187 1767-1885 

 3 (41) 1825 215 1757-1893 

Hv 0 (42) 91 29 82-100 .04 

 1 (41) 88 29 79-97 

 2 (41) 95 35 84-106 

 3 (41) 108 40 95-120 

Bv 0 (42) 1529 131 1488-1569 .7 

 1 (41) 1500 134 1458-1542 

 2 (41) 1499 155 1450-1548 

 3 (41) 1499 166 1446-1551 

Fv 0 (42) 231 86 205-258 .8 

 1 (41) 217 81 192-243 

 2 (41) 232 97 201-262 

 3 (41) 218 87 191-246 

%Hv 0 (42) 4.8 1.5 4.3-5.3 .02 

 1 (41) 4.9 1.6 4.4-5.4 

 2 (41) 5.1 1.7 4.6-5.6 

 3 (41) 5.9 1.9 5.3-6.5 

%Bv 0 (42) 82.8 3.6 81.6-83.9 .5 

 1 (41) 83.3 3.2 82.2-84.3 

 2 (41) 82.2 5.2 80.6-83.8 

 3 (41) 82.2 4 80.9-83.5 

%Fv 0 (42) 12.4 3.9 11.2-13.6 .8 

 1 (41) 11.9 3.7 10.7-13 

 2 (41) 12.5 5 10.9-14.1 

 3 (41) 11.9 4 10.6-13.1 

Fv/Bv 0 (42) .15 .05 .13-.17 .8 

 1 (41) .14 .08 .13-.16 

 2 (41) .16 .1 .13-.18 

 3 (41) .15 .09 .13-.17 
 

Table 2. Mid femur baseline volumes: Tv (total volume), Hv (haemopoietic volume), Bv (total 

bone volume), Fv (fat volume) and as percentages (%Hv, %Bv, %Fv) of total volume. Fv/Bv is 

ratio of mean absolute fat volume to mean absolute bone volume at baseline. Groups 0 (control), 1 

(Calcium supplement only), 2 (Exercise only) and 3 (Exercise plus Calcium supplement). 

Significance is at p = 0.05. 
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Parameter Group (n) Mean SD CI p 

TV 0 (36) 1520 182 1459-1582 .3 

1 (38) 1455 140 1409-1501 

2 (41) 1511 167 1458-1563 

3 (34) 1524 203 1453-1595 

Hv 0 (36) 67 24 59-75 .1 

1 (38) 62 21 55-69 

2 (41) 58 14 54-63 

3 (34) 68 29 58-78 

Bv 0 (36) 1318 155 1266-1370 .3 

1 (38) 1261 116 1223-1299 

2 (41) 1296 143 1251-1341 

3 (34) 1309 150 1257-1318 

Fv 0 (36) 135 72 111-160 .4 

1 (38) 133 66 111-154 

2 (41) 157 71 134-179 

3 (34) 147 71 122-172 

%Hv 0 (36) 4.4 1.3 4.0-4.9 .2 

1 (38) 4.1 1.2 3.7-4.5 

2 (41) 3.9 0.9 3.6-4.2 

3 (34) 4.5 1.6 3.9-5.0 

%Bv 0 (36) 86.8 4.4 85.3-88.3 .7 

1 (38) 86.8 4.4 85.4-88.2 

2 (41) 85.9 4.2 84.5-87.2 

3 (34) 86.2 3.7 84.9-87.5 

%Fv 0 (36) 8.8 4.1 7.4-10.2 .4 

1 (38) 9.0 4.3 7.6-10.4 

2 (41) 10.2 4.3 8.9-11.6 

3 (34) 9.3 3.7 8.0-10.6 

Fv/Bv 0 (36) .104 .054 .086-.122 .5 

1 (38) .106 .055 .088-.124 

2 (41) .122 .057 .104-.140 

3 (34) .111 .049 .094-.128 
 

Table 3. Mid tibia baseline volumes: Tv (total volume), Hv (haemopoietic volume), Bv (total bone 

volume), Fv (fat volume) and as percentages (%Hv, %Bv, %Fv) of total volume. Fv/Bv is ratio of 

mean absolute fat volume to mean absolute bone volume at baseline. Groups 0 (control), 1 

(Calcium supplement only), 2 (Exercise only) and 3 (Exercise plus Calcium supplement). 

Significance is at p = 0.05. 
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Parameter Group (n) Mean SD CI p 

Tv 0 (36) 7701 17555 1761-13641 .07 

1 (33) 4896 725 4638-5153 

2 (40) 4888 726 4656-5120 

3 (34) 4540 629 4321-4760 

Hv 0 (36) 4037 17435 -1862-9936 .1 

1 (33) 1334 655 1101-1567 

2 (40) 1155 656 945-1364 

3 (34) 972 627 753-1191 

Bv 0 (36) 3577 672 3349-3804 .6 

1 (33) 3491 530 3302-3678 

2 (40) 3643 650 3436-3851 

3 (34) 3469 530 3284-3654 

Fv 0 (36) 88 79 61-114 .7 

1 (33) 70 79 43-98 

2 (40) 89 100 58-121 

3 (34) 100 138 51-148 

%Hv 0 (36) 25.1 15.9 19.8-30.5 .2 

1 (33) 26.4 11.1 22.5-30.3 

2 (40) 22.9 11.5 19.2-26.6 

3 (34) 20.4 11.5 16.4-24.5 

%Bv 0 (36) 73.0 16.2 67.5-78.5 .4 

1 (33) 72.3 11.9 68.1-76.5 

2 (40) 75.2 12.6 71.2-79.2 

3 (34) 77.3 12.9 72.8-81.8 

%Fv 0 (36) 1.8 1.8 1.2-2.4 .4 

1 (33) 1.4 1.5 .8-1.9 

2 (40) 1.8 2.3 1.1-2.5 

3 (34) 2.2 3.0 1.2-3.3 

Fv/Bv 0 (36) .027 .026 .018-.036 .7 

1 (33) .022 .024 .013-.030 

2 (40) .029 .038 .017-.041 

3 (34) .018 .048 .015-.049 
 

Table 4. Baseline mean volumes of L1 lumbar vertebrae: Tv (total volume), Hv (haemopoietic 

volume), Bv (total bone volume), Fv (fat volume) and as percentages (%Hv, %Bv, %Fv) of total 

volume. Fv/Bv is ratio of mean absolute fat volume to mean absolute bone volume at baseline. 

Groups 0 (control), 1 (Calcium supplement only), 2 (Exercise only) and 3 (Exercise plus Calcium 

supplement). Significance is at p = 0.05. 
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Parameter Group (n) Mean SD CI p 

TV 0 (36) 53334 1378 50536-56132 .1 

1 (33) 55231 7842 52450-58012 

2 (40) 55202 1344 52482-57921 

3 (34) 51342 7239 48816-53868 

Hv 0 (36) 1053 598 850-1255 .1 

1 (33) 1335 629 1112-1558 

2 (40) 1180 654 971-1389 

3 (34) 969 662 738-1200 

Bv 0 (36) 3789 681 3558-4019 .6 

1 (33) 3679 513 3497-3861 

2 (40) 3829 640 3624-4034 

3 (34) 3689 516 3509-3869 

Fv 0 (36) 75 68 52-98 .4* 

1 (33) 72 66 49-96 

2 (40) 100 106 66-134 

3 (34) 102 139 53-150 

%Hv 0 (36) 19.3 9.9 15.9-22.6 .1 

1 (33) 23.5 9.6 20.1-26.9 

2 (40) 20.7 10.3 17.4-24.0 

3 (34) 18.0 10.7 14.3-21.8 

%Bv 0 (36) 71.5 10.0 68.1-74.9 .2 

1 (33) 67.3 9.6 63.9-70.7 

2 (40) 70.0 10.4 66.7-73.3 

3 (34) 72.7 10.9 68.9-76.5 

%Fv 0 (36) 14.1 12.5 9.8-18.3 .4* 

1 (33) 12.9 11.9 8.7-17.2 

2 (40) 18.6 20.9 11.9-25.3 

3 (34) 19.5 27.2 10.0-29.0 

Fv/Bv 0 (36) .221 .221 .015-.030 .5* 

1 (33) .0208 .019 .014-.028 

2 (40) .0295 .036 .018-.041 

3 (34) .0305 .047 .014-.047 
 

Table 5. Baseline volumes for L2 lumbar vertebrae: Tv (total volume), Hv (haemopoietic volume), 

Bv (total bone volume), Fv (fat volume) and as percentages (%Hv, %Bv, %Fv) of total volume. 

Fv/Bv is ratio of mean absolute fat volume to mean absolute bone volume at baseline. Groups 0 

(control), 1 (Calcium supplement only), 2 (Exercise only) and 3 (Exercise plus Calcium 

supplement). Significance is at p = 0.05.* Robust tests of Equality of Means. 
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Parameter Group (n) Mean SD CI p 

TV 0 (36) 5726 925 5413-6039 .06 

1 (33) 6007 1445 5495-6520 

2 (40) 5765 872 5486-6044 

3 (34) 5321 805 5040-5602 

Hv 0 (36) 1286 746 1034-1539 .09 

1 (33) 1548 735 1287-1808 

2 (40) 1324 735 1089-1559 

3 (34) 1087 715 838-1337 

Bv 0 (36) 4318 682 4087-4549 .7 

1 (33) 4314 1364 3831-4798 

2 (40) 4317 685 4098-4536 

3 (34) 4104 604 3893-4315 

Fv 0 (36) 122 98 89-155 .9 

1 (33) 145 224 66-225 

2 (40) 123 115 87-160 

3 (34) 130 183 66-194 

%Hv 0 (36) 21.5 10.8 17.9-25.2 .1 

1 (33) 25.7 10.7 21.9-29.5 

2 (40) 22.1 10.8 18.6-25.5 

3 (34) 19.5 10.6 15.8-23.2 

%Bv 0 (36) 76.4 11.8 72.4-80.4 .2 

1 (33) 72.0 11.1 68.1-75.9 

2 (40) 75.7 12.0 71.9-79.6 

3 (34) 78.2 12.2 73.9-82.5 

%Fv 0 (36) 2.1 1.6 1.5-2.6 1.0 

1 (33) 2.4 3.5 1.1-3.6 

2 (40) 2.1 2.2 1.4-2.8 

3 (34) 2.2 2.2 1.2-3.3 

Fv/Bv 0 (36) .030 .024 .022-.038 .9 

1 (33) .036 .051 .018-.053 

2 (40) .032 .034 .021-.043 

3 (34) .034 .051 .017- .052 
 

Table 6. Baseline volumes for L3 lumbar vertebrae: Tv (total volume), Hv (haemopoietic volume), 

Bv (total bone volume), Fv (fat volume) and as percentages (%Hv, %Bv, %Fv) of total volume. 

Fv/Bv is ratio of mean absolute fat volume to mean absolute bone volume at baseline. Groups 0 

(control), 1 (Calcium supplement only), 2 (Exercise only) and 3 (Exercise plus Calcium 

supplement). Significance is at p = 0.05. 

 

 

 

 

 

 

 



219 

 

 

 
Group Mean Volume 

± SD 

(95% CI) 

L1 L2 L3 p 

Control Hv 4037± 17435 ( 1053 ± 598 
(851-1256) 

1286 ± 746 
(1034- 1539) 

.2#
 

Bv 3576 ± 672 

(3349 – 3804) 

3789 ± 681 

(3558-4019) 

4318 ± 682 

(4087 – 4549) 
.000 

Fv 87 ± 79 (61- 
114) 

75 ± 68 (52 - 
98) 

122 ± 98 (89- 
155) 

.07#
 

Tv 7701 ± 17555 

(1761-13641) 

4917 ± 763 

(4659 – 5175) 

5726 ± 925 

(5413 – 6039) 

.001#
 

%Hv 25.2 ± 15.9 

(19.8- 30.6) 

20.8 ± 10.5 

(17.3- 24.4) 

21.6 ± 10.7 

(17.9 -25.2) 

.3 

%Bv 72.9 ± 16.2 

(67.5- 78.4) 

77.7 ± 11.5 

(73.8- 81.6) 

76.4 ± 11.8 

(72.4-80.4) 
.3 

%Fv 1.9 ± 1.7 (1.3- 

2.4) 

1.5 ± 1.3 (1.1 – 

2.0) 

2.1 ± 1.6 (1.5 – 

2.6) 

.3 

Fv/Bv .027 ± .026 

(.018 -.036) 

.022 ± .022 

(.015- .030) 

.030 ± .024 

(.022 - .038) 
.4 

Ca only Hv 1334 ± 655 
(1102 -1567) 

1335 ± 629 
(1112 -1558) 

1548 – 735 
(1287 -1808) 

.5 

Bv 3491 ± 530 
(3303 -3678) 

13351 ± 6290 
(11121- 15582) 

4314 ± 1364 
(3831 -4798) 

.008 

Fv 70  ± 79 (43 - 

98) 

72 ± 66 (49 - 

96) 

145 ± 224 (66 - 

225) 
.4 

Tv 4895 ± 726 

(4638 -5153) 

36793 ± 5130 

(34974 -38612) 

6007 ±1445 

(5495 -6520) 
.000 

 %Hv 26.4 ± 11.1 

(22.5 – 30.3) 

25.5 ± 10.3 

(21.8 -29.1) 

25.6 ± 10.7 

(21.8 -29.4) 
.9 

%Bv 72.2 ± 11.9 

(68.0-76.4) 

73.1± 10.9 

(69.3 ±77.0) 

72.0 ±11.0 

(68.14-75.9) 

1.0 

%Fv 1.4 ± 1.4 (0.9 - 

1.9) 

1.4 ±1.3 (1.0 - 

1.8) 

2.4 ± 3.6 (1.1 - 

3.7) 
.9 

Fv/Bv .022 ± .024 

(.013 -.030) 

.021 ± .019 

(.014 -.028) 

.036 ± .051 

(.018 -.053) 
.9 

Ex only Hv 1155 ± 656 
(945 -1364) 

1180 ± 654 
(971 - 1389) 

1324 ± 735 
(1089 -1559) 

.5 

Bv 3643 ± 650 

(3436 -3851) 

4028 ± 1357 

(3594 -4462) 

4317 ± 685 

(4098 -4536) 

.008 

Fv 89 ± 100 (58 - 

121) 

100 ± 106 (66 - 

134) 

123 ± 115 (87 - 

160) 
.4 

Tv 4888 ± 726 

(4656 -5120) 

5109 ± 777 

(4860 -5357) 

5765 ± 872 

(5486 -6044) 
.000 

%Hv 22.9 ± 11.5 

(19.2 -26.6) 

22.3 ± 10.8 

(18.8 -25.8 ) 

22.1 ± 10.8 

(18.6 -25.5) 
.9 
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%Bv 75.2 ±12.5 

(71.2 -79.2) 

75.7 ± 12.0 

(71.9 -79.7) 

75.8 ± 11.9 

(72.0 -79.6) 
1.0 

%Fv 188.0 ± 216.7 

(118.7 - 257.3) 

196.3 ±213.3 

(128.0 - 264.5) 

214.3 ± 202.0 

(149.7 - 278.9) 
.9 

Fv/Bv .029 ± .038 
(.016 -.041) 

.030 ± .036 
(.018 -.041) 

.032 ±.034 
(.021 -.043) 

.9 

Ex + Ca Hv 972 ± 753 

(753- 1191) 

969 ± 738 (738 

– 1200) 

715 ± 838 (838 

– 1337) 

.7 

Bv 3469 ± 530 

(3284 – 3654) 

3689 ± 515 

(3509 – 3869) 

4104 ± 604 

(3893 – 4315) 
.000 

Fv 100 ± 138 (51 

– 148) 

102 ± 139 (53 – 

150) 

130 ± 183 (66 – 

194) 
.7 

Tv 4540 ± 629 

(4321 – 4760) 

4760 ± 689 

(4520 – 5000) 

5321 ± 805 

(5040 – 5602) 
.000 

%Hv 20.5 ± 11.5 
(16.5 – 24.5) 

19.3 ± 11.3 
(15.4 – 23.3) 

19.5 ± 10.7 
(15.8 – 23.2) 

.9 

%Bv 77.4 ± 12.8 

(72.9 -81.8) 

78.6 ± 12.7 

(74.2 – 83.0) 

78.2 ± 12.2 

(74.0 – 82.5) 
.9 

%Fv 21.4 ± 29.1 
(11.2 -31.6) 

20.4 ± 26.9 
(11.1 – 29.8) 

23.0 ± 29.5 
(12.7 – 33.3) 

.9 

Fv/Bv .032 ± .048 

(.015 - .049) 

.031± .047 

(.014 - .047) 

.034 ± .050 

(.017 - .052) 

.9 

 

Table 7. Within groups comparisons of lumbar vertebrae at baseline. Tv (total volume), Hv 

(haemopoietic volume), Bv (total bone volume), Fv (fat volume) and as percentages 

(%Hv,%Bv, %Fv) of total volume. Fv/Bv is ratio of mean absolute fat volume to mean 

absolute bone volume. # and * are significance at .05 level with Robust test equality of means 

or ANOVA respectively. 

 

Parameter Group (n) Mean SD CI p 

Tv 0 (42) 1858 185 1800 - 1925 .8 

1 (41) 1827 197 1765 - 1889 

2 (41) 1857 192 1797 - 1918 

3 (41) 1865 228 1793 - 1937 

Hv 0 (42)* 95 29 86 - 105 .005 

1 (41)#
 90 32 80 – 101 
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2 (41) 99 36 87 - 110 

3 (41)*#
 117 42 104 - 131 

Bv 0 (42) 1529 138 1486 - 1572 1.0 

1 (41) 1515 145 1469 - 1561 

2 (41) 1522 152 1474 - 1570 

3 (41) 1532 176 1476 - 1587 

Fv 0 (42) 235 86 208 - 262 .7 

1 (41) 221 84 195 - 248 

2 (41) 237 100 205 - 268 

3 (41) 216 90 187 - 244 

%Hv 0 (42)* 5.0 1.6 4.6 – 5.5 .01 

1 (41)#
 5.0 1.7 4.4 – 5.5 

2 (41) 5.3 1.5 4.8 – 5.8 

3 (41)*#
 6.2 2.1 5.6-6.9 

%Bv 0 (42) 82.5 3.7 81.3 - 3.6 .7 

1 (41) 83.1 3.3 82.0 – 84.2 

2 (41) 82.1 5.2 80.5 – 83.8 

3 (41) 82.3 3.9 81.1 – 83.6 

%Fv 0 (42) 12.5 3.9 11.3 – 13.8 .5 

1 (41) 11.9 3.9 10.7 – 13.2 

2 (41) 12.7 5.1 11.1 – 14.3 

3 (41) 11.4 4.3 10.1 – 12.8 

Fv/Bv 0 (42) .15 .05 .14 - .17 .6 
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1 (41) .15 .05 .13 - .16 

2 (41) .16 .07 .13 - .18 

3 (41) .14 .06 .12 - .16 

∆Tv 0 (42) 7* 79 -18 - 31 .05 

1 (41) 22 37 10 - 33 

2 (41) 32 37 20 -43 

3 (41) 40* 58 22 -58 

∆Hv 0 (42) 4 9 2 - 7 .04 

1 (41) 2* 10 -1 - 6 

2 (41) 4 14 -1 - 8 

3 (41) 9* 13 5 - 13 

∆Bv 0 (42) .1 * 68 -21 - 21 .02 

1 (41) 15 35 4 - 26 

2 (41) 23 37 11 - 34 

3 (41) 33* 49 18 - 49 

∆Fv 0 (42) 3 22 -3 - 10 .2 

1 (41) 4 11 1 - 8 

2 (41) 5 23 -2 - 13 

3 (41) -3 18 -8 - 3 

%∆Tv 0 (42) .005* .04 -.009 - .018 .05 

1 (41) .011 .02 .005 - .018 

2 (41) .017 .02 .005 - .018 

3 (41) .022* .028 .013 - .030 
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%∆Hv 0 (42) .20 .43 .06 - .33 .1 

1 (41) .06 .54 -.11 - .23 

2 (41) .10 .77 -.14 - .35 

3 (41) .39 .73 .16 - .62 

%∆Bv 0 (42) -.32 1.2 -.71 - .07 .4 

1 (41) -.16 .52 -.32 - .001 

2 (41) -.13 .95 -.43 - .16 

3 (41) .03 .69 -.19 - .25 

%∆Fv 0 (42) .12 1.11 -.23 - .48 .05 

1 (41) .11* .67 -.10 - .32 

2 (41) .03 1.28 -.37 - .43 

3 (41) -.42* .83 -.68 - -.16 

∆Fv/Bv 0 (42) .002 .015 -.002 - .007 .05 

1 (41) .001* .009 -.001 - .005 

2 (41) .001 .017 -.005 - .006 

3 (41) -.005* .011 -.009 - -.002 

 

Table 8a. Mid femur volumes at 18 months and the changes as absolute changes and percentage 

changes. Tv (total volume), Hv (haemopoietic volume), Bv (total bone volume), Fv (fat volume) 

and as percentages (%Hv, %Bv, %Fv) of total volume. Fv/Bv is ratio of mean absolute fat volume 

to mean absolute bone volume. Changes in absolute total, haemopoietic, bone, fat and fat to bone 

volume ratios are denoted as ∆Tv, ∆Hv, ∆Bv, ∆Fv and ∆Fv/Bv respectively. Percentage changes 

are denoted by %∆ prefixes. # and * are significance at .05 level with Robust test equality of 

means or ANOVA respectively. 
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Parameter Group (n) Mean SD CI p 

TV 0 (36) 1523 182 1462 - 1585 .3 

1 (38) 1455 

 

150 

 

1406 -1504 

 
2 (41) 1509 

 

167 

 

1457 - 1562 

 
3 (34) 1527 206 1455 - 1599 

Hv 0 (36) 71 28 

 

62 - 80 .2 

1 (38) 62 

 

22 55 - 70 

 
2 (41) 61 

 

17 56 - 66 

 
3 (34) 68 30 58 - 78 

Bv 0 (36) 1323 160 1269 - 1377 .3 

1 (38) 1263 

 

124 

 

1222 - 1303 

 
2 (41) 1300 

 

144 

 

1254 - 1345 

 
3 (34) 1312 152 1259 - 1366 

Fv 0 (36) 129 67 106 - 152 .4 

1 (38) 130 

 

64 

 

109 - 151 

 
2 (41) 149 

 

71 127 - 171 

 
3 (34) 147 72 122 - 172 

%Hv 0 (36) 4.6 1.5 4.1 - 5.1 .3 

1 (38) 4.2 

 

1.4 

 

3.7 - 4.6 

 
2 (41) 4.0 

 

1.1 

 

3.7 - 4.4 

 
3 (34) 4.5 1.7 3.9 - 5.1 

%Bv 0 (36) 87.0 4.4 85.6 - 88.5 .7 

1 (38) 86.9 

 

4.1 

 

85.5 - 88.3 
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2 (41) 86.1 

 

4.3 

 

84.8 - 87.5 

 
3 (34) 86.2 3.8 84.9 - 87.5 

%Fv 0 (36) 8.3 4.0 7.0 - 9.7 .4 

1 (38) 8.8 

 

4.0 

 

7. 5 - 10.1 

 
2 (41) 9.8 

 

4.3 

 

8.4 - 11.1 

 
3 (34) 9.4 3.7 8.1 - 10.7 

Fv/Bv 0 (36) .0100 .0051 .0082 – 0.0116 .5 

1 (38) .0104 

 

.0054 

 

.0087 – 0.0122 

. 

.0093 – 0.0127 2 (41) .0116 

 

.0057 

 

0098 – 0.0134 

3 (34) .0110 .0049 .0093 – 0.0127 

∆Tv 0 (36) 2.50 16.43 -3.06 - 8.06 .8 

1 (38) -.16 26.04 -8.72 - 8.40 

2 (41) -1.49 16.08 -6.56 - 3.59 

3 (34) 2.82 24.78 -5.82 - 11.47 

∆Hv 0 (36) 3.82 947.78 62.11 - 703.48 .1 

1 (38) 70 

. 

568.12 

 

-116.74 - 256.74 

2 (41) 2.75 

 

578.45 

 

92.34 - 457.51 

3 (34) .32 832.05 -258.49 - 322.14 

∆Bv 0 (36) 5.1 15.0 5.2 - 1018.46 .8 

1 (38) 1.3 

 

24.1 

 

-6.58.38 - 925.49 

2 (41) 3.6 

 

12.9 

 

-.50.51 - 762.71 

3 (34) 3.0 17.4 -3.08.94 - 907.17 

∆Fv 0 (36) -6.41 15.19 -11.6 - -1.3 .08 
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1 (38) -2.22 

 

9.95 

 

-5.5 – 1.0 

2 (41) -7.80 

 

10.55 

 

-11.1 - -4.5 

3 (34) -.5 19.4 -7.2 – 6.3 

%∆Tv 0 (36) .18 1.07 - .19 - .54 .8 

1 (38) -.06 

 

1.90 

 

- .69 – .56 

 
2 (41) -.09 

 

1.06 

 

- .42 - .24 

 
3 (34) .18 1.56 - .37 - .72 

%∆Hv 0 (36) .24 .66 .02 – .47  

 
.1 1 (38) .04 

. 

.37 

.38 

 

-.08 - .17 

2 (41) 18 .37 

 

.07 –  .30 

3 (34) .37 .52 - .18 - .19 

%∆Bv 0 (36) .16 .46 .39 – .32  

 
.2 1 (38) .11 

 

.48 

 

-.05 – .27 

 
2 (41) .32 

 

.64 

 

.12 – .52 

 
3 (34) .04 .70 -.20 – .29 

%∆Fv 0 (36) -.40 .90 -.71 - -.10 .06 

1 (38) -.15 

 

.64 

 

-.36 - .06 

 
2 (41) -.50 

 

63 

 

-.70 - -.30 

 
3 (34) -.05 . 1.09 -.43 - .33 

∆Fv/Bv 0 (36) -.0005 .0012 -.00090 - -.0001 .08 

1 (38) -.0002 

 

.00079 

 

-.00046 - .000059 

 
2 (41) -.0006 

 

.00081 

 

-.0009 - - .00036 

 
3 (34) -.00005 .0014 -.00054 – .00043 
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Table 8b. Mid tibia volumes at 18 months and the changes as absolute changes and percentage 

changes. Tv (total volume), Hv (haemopoietic volume), Bv (total bone volume), Fv (fat volume) 

and as percentages (%Hv, %Bv, %Fv) of total volume. Fv/Bv is ratio of mean absolute fat volume 

to mean absolute bone volume. Changes in absolute total, haemopoietic, bone, fat and fat to bone 

volume ratios are denoted as ∆Tv, ∆Hv, ∆Bv, ∆Fv and ∆Fv/Bv respectively. Percentage changes 

are denoted by %∆ prefixes. # and * are significance at .05 level with Robust test equality of 

means or ANOVA respectively. 
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Parameter Grou

p (n) 

Mean SD CI p 

TV 0 
(36) 

4765 742 4514 - 5017 
.1 

1 
(33) 4921 

4522 

718 

772 

631 

4667 - 5176 

4606 - 5100 

4301 - 4742 

2 
(40) 4853 

4853 

772 4606 - 5100 

3 
(34) 4522 

4522 

631 4301 - 4742 

Hv 0 

(36) 
1065 611 858 - 1272 

.005 

1 
(33) 1286 

1096 

880 

666 1050 - 1522 

2 
(40) 1096 620 898 - 1294 

3 
(34) 880 627 661 - 1098 

Bv 0 
(36) 3622 693 3388 - 3857 

.4 

1 
(33) 3548 

3664 

3571 

528 

661 

572 

3361 - 3735 

2 
(40) 3664 661 3453 - 3875 

3 
(34) 

3571 572 3372 - 3771 

Fv 0 
(36) 

79 62 58 - 100 
.7 

1 
(33) 87 

93 

71 

99 52 - 122 

2 
(40) 93 119 55 - 131 

3 
(34) 71 93 38 - 103 

%Hv 0 
(36) 

21.8 11.3 18.0 - 25.6 
.01 

1 
(33) 25.2 

21.9 

18.7 

11.1 21.2 - 29.1 

2 
(40) 21.9 10.9 18.5 - 25.4 

3 
(34) 18.7 11.4 14.8 - 22.7 

%Bv 0 
(36) 

76.5 12.2 72.4 - 80.7 
.7 

1 
(33) 73.1 12.2 68.8 - 77.4 

2 
(40) 76.2 12.3 72.2 - 80.1 

3 
(34) 

79.9 12.7 75.5 - 84.3 
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%Fv 0 
(36) 

1.67 1.4 1.2 - 2.1 
.5 

1 
(33) 1.70 1.91 1.0 - 2.4 

2 
(40) 1.85 2.48 1.1 - 2.6 

3 
(34) 1.41 1.86 .8 - 2.1 

Fv/Bv 0 
(36) 

.0244 .0221 .0170 - .0319 
.6 

1 
(33) .0266 .0307 .0157 - .0375 

.0109 - .0348 2 
(40) .0302 .0453 .0158 - .0447 

.0158 - .0447 3 
(34) .0228 .0342 .0109 - .0348 

∆Tv 0 
(36) -29 176 -89 - 30 

-9 - 61 

-103 - 34 

-98 - 60 

.05 

1 
(33) 26 100 -9 - 61 

2 
(40) -35 214 -103 - 34 

3 
(34) -19 226 -98 - 60 

∆Hv 0 
(36) 

-30 176 -89 – 30 
.04 

1 
(33) -48 173 -110 - 13 

2 
(40) -59 166 -112 - -6 

3 
(34) -92 201 -163 - -22 

∆Bv 0 
(36) 

45 

58 

21 

102 

196 -21 – 112 
.02 

1 
(33) 58 154 3 – 112 

2 
(40) 21 274 -67 – 108 

3 
(34) 102 188 37 - 168 

∆Fv 0 
(36) 

-89 50 -26 - 8 
.2 

1 
(33) 17 41 22 - 31 

2 
(40) 4 42 -10 - 17 

3 
(34) -29 74 

-55 - -3 

%∆Tv 0 
(36) 

-.03 

 

.163 -.08 - .0282 
.05 
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1 
(33) .006 .02 -.0009 - .0129 

2 
(40) -.008 .046 -.0228 - .0069 

3 
(34) -.003 .051 -.0207 - 0.0147 

%∆Hv 0 
(36) 

-3.42 16.16 -8.89 - 2.05 
.1 

1 
(33) -1.13 3.04 -2.21 - -.06 

2 
(40) -1.02 3.33 -2.09 - .04 

3 
(34) -1.86 3.79 -3.18 - -.54 

%∆Bv 0 
(36) 

3.61 16.19 -1.86 - 9.09 
.4 

1 
(33) .80 

.96 

2.49 

3.50 -.44 - 2.04 

2 
(40) .96 3.75 -.24 - 2.15 

3 
(34) 2.49 3.65 1.22 - 3.76 

%∆Fv 0 
(36) 

-.20 1.04 -.55 - .16 
.05 

1 
(33) .33 .79 .05 - .61 

2 
(40) .06 .89 -.22 - .35 

3 
(34) -.63 1.58 -1.19 - .08 

∆Fv/Bv 0 

(36) 
-0.0029 .0148 -0.0079 - 0.0021 

.05 

1 
(33) 0.0049 .0137 .0001 - 0.0098 

2 
(40) 0.0016 .0153 -0.0033 - 0.0065 

3 
(34) -0.0093 .0254 -0.0182 - -0.0005 

 

Table 8c. 1st Lumbar vertebrae (L1) volumes at 18 months and the changes as absolute changes 

and percentage changes. Tv (total volume), Hv (haemopoietic volume), Bv (total bone volume), 

Fv (fat volume) and as percentages (%Hv, %Bv, %Fv) of total volume. Fv/Bv is ratio of mean 

absolute fat volume to mean absolute bone volume. Changes in absolute total, haemopoietic, 

bone, fat and fat to bone volume ratios are denoted as ∆Tv, ∆Hv, ∆Bv, ∆Fv and ∆Fv/Bv 

respectively. Percentage changes are denoted by %∆ prefixes. # and * are significance at .05 

level with Robust test equality of means or ANOVA respectively. 
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Parameter Grou

p (n) 

Mean SD CI  p 

TV 0 
(36) 

479594.19 109189.49 442649.79 516538.6

0 

.1 

1 
(33) 510801.70 72433.07 485118.04 536485.3

5 
2 

(40) 511639.93 78771.49 486447.58 536832.2

7 
3 

(34) 471979.56 71041.88 447191.87 496767.2

5 
Hv 0 

(36) 
106909.94 58770.71 87024.80 126795.0

9 

.06 

1 
(33) 129214.55 67261.29 105364.73 153064.3

6 
2 

(40) 110154.15 63520.72 89839.24 130469.0

6 
3 

(34) 86199.09 65669.79 63285.81 109112.3

6 
Bv 0 

(36) 364722.72 90489.08 334105.62 395339.8

3 

.4 

1 
(33) 372916.67 53955.21 353784.98 392048.3

5 
2 

(40) 
391048.38 64626.94 370379.67 411717.0

8 
3 

(34) 375716.18 57567.13 355630.05 395802.3

0 
Fv 0 

(36) 
7961.56 6674.72 5703.15 10219.96 

.8 

1 
(33) 8670.52 9467.51 5313.48 12027.55 

2 
(40) 10437.33 13095.85 6249.07 14625.58 

3 
(34) 10064.29 15347.79 4709.20 15419.39 

%Hv 0 
(36) 

221952.72 101870.00 187484.87 256420.5

7 

.07 

1 
(33) 244723.70 109469.12 205907.63 283539.7

6 
2 

(40) 207641.18 105003.01 174059.58 241222.7

7 
3 

(34) 172860.15 113683.73 133194.02 212526.2

8 
%Bv 0 

(36) 
761013.56 110200.18 723727.18 798299.9

3 

.1 

1 
(33) 738680.91 118017.33 696833.78 780528.0

4 
2 

(40) 772415.50 119948.85 734054.00 810777.0

0 
3 

(34) 806609.29 129283.20 761500.25 851718.3

4 
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%Fv 0 
(36) 

17033.72 13181.99 12573.58 21493.87 
.8 

1 
(33) 16595.39 17316.55 10455.21 22735.58 

2 
(40) 19943.20 24553.78 12090.52 27795.88 

3 
(34) 20530.47 30920.96 9741.64 31319.30 

Fv/Bv 0 
(36) 

246.61 214.35 174.08 319.14 
.8 

1 
(33) 250.36 275.54 152.66 348.07 

2 
(40) 302.75 422.49 167.63 437.87 

3 
(34) 306.74 503.46 131.07 482.40 

∆Tv 0 
(36) 

-12105.64 76038.08 -37833.22 13621.95 
.5 

1 
(33) 2124.36 15919.18 -3520.33 7769.06 

2 
(40) 749.95 15506.99 -4209.43 5709.33 

3 
(34) -4026.26 31820.74 -15129.05 7076.52 

∆Hv 0 

(36) 
15.94 231.94 -62.53 94.42 

.06 

1 
(33) -43.00 164.85 -101.46 15.46 

2 
(40) -78.65 162.52 -130.63 -26.67 

3 
(34) -107.41 229.18 -187.38 -27.45 

∆Bv 0 
(36) 

-141.50 794.40 -410.29 127.29 
.01 

1 
(33) 49.91 207.75 -23.76 123.57 

2 
(40) 81.33 177.74 24.48 138.17 

3 
(34) 68.24 293.07 -34.02 170.49 

∆Fv 0 

(36) 
4.42 26.68 -4.61 13.45 

.8 

1 
(33) 14.33 40.54 -.04 28.71 

2 
(40) 4.73 50.28 -11.36 20.81 

3 
(34) -1.15 100.32 -36.15 33.86 

%∆Tv 0 
(36) 

-255.19 1662.95 -817.86 307.47 
.5 
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1 
(33) 50.24 322.34 -64.06 164.54 

2 
(40) 17.28 295.44 -77.21 111.76 

3 
(34) -68.18 652.69 -295.91 159.56 

%∆Hv 0 
(36) 

13752.28 76587.11 -12161.07 39665.63 
.1 

1 
(33) -9897.67 30962.91 -20876.64 1081.31 

2 
(40) -15257.35 29100.02 -24563.99 -5950.71 

3 
(34) -20520.06 40605.58 -34688.02 -6352.10 

%∆Bv 0 
(36) 

-15625.31 82561.23 -43560.01 12309.40 
.02 

1 
(33) 

7269.18 33662.28 -4666.95 19205.31 

2 
(40) 14939.90 33912.10 4094.28 25785.52 

3 
(34) 20437.09 43966.92 5096.30 35777.87 

%∆Fv 0 
(36) 1873.06 7394.99 -629.05 4375.16 

.8 

1 
(33) 2628.61 7021.53 138.88 5118.34 

2 
(40) 317.58 9576.90 -2745.27 3380.42 

3 
(34) 83.09 20898.93 -7208.89 7375.07 

∆Fv/Bv 0 

(36) 
25.67 118.81 -14.53 65.87 

.8 

1 
(33) 41.94 120.48 -.78 84.66 

2 
(40) 7.53 151.68 -40.99 56.04 

3 
(34) 1.44 306.77 -105.60 108.48 

 

Table 8d. 2nd Lumbar vertebrae (L2) volumes at 18 months and the changes as absolute changes 

and percentage changes. Tv (total volume), Hv (haemopoietic volume), Bv (total bone volume), 

Fv (fat volume) and as percentages (%Hv, %Bv, %Fv) of total volume. Fv/Bv is ratio of mean 

absolute fat volume to mean absolute bone volume. Changes in absolute total, haemopoietic, 

bone, fat and fat to bone volume ratios are denoted as ∆Tv, ∆Hv, ∆Bv, ∆Fv and ∆Fv/Bv 

respectively. Percentage changes are denoted by %∆ prefixes. # and * are significance at .05 

level with Robust test equality of means or ANOVA respectively. 
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Parameter Group (n) Mean SD CI p 

TV 0 (36) 
5663 898 53589 - 5966 

.03 

1 (33) 
5846 803 5561 - 6131 

2 (40) 
5863 892 5578 - 6149 

3 (34) 
5329 748 5068 - 5590 

Hv 0 (36) 
1258 697 1023 - 1494 

.05 

1 (33) 
1481 751 1215 - 1747 

2 (40) 
1297 711 1069 - 1524 

3 (34) 
996 700 752 - 1240 

Bv 0 (36) 
4279 664 4054 - 4504 

.5 

1 (33) 
4240 593 4030 - 4450 

2 (40) 
4432 686 4213 - 4652 

3 (34) 
4223 628 4004 - 4442 

Fv 0 (36) 
125 102 91 - 160 

.9 

1 (33) 
125 131 789 - 172 

2 (40) 
135 138 91 - 179 

3 (34) 
110 152 57 - 163 

%Hv 0 (36) 
21 10 18 - 25 

.07 

1 (33) 
25 11 21 - 28 

2 (40) 
21 10 18 - 25 

3 (34) 
17.82 11 14 - 22 

%Bv 0 (36) 
76 11 73 - 80 

.1 

1 (33) 
73 12 69 - 77 

2 (40) 
76 12 73 - 80 

3 (34) 
80 12 76 - 84 
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%Fv 0 (36) 
2.1 1.6 1.6 - 2.7 

.9 

1 (33) 
2.1 2.0 1.4 - 2.9 

2 (40) 
2.2 2.2 1.5 - 2.9 

3 (34) 
1.9 2.7 .9 - 2.8 

Fv/Bv 0 (36) 
.0311 .0258 .0223 - .0398 

.9 

1 (33) 
.0311 .0313 .0200 - .0422 

2 (40) 
.0333 .0385 .0210 - .0456 

3 (34) .0296 
.0457 .0136 - .0455 

∆Tv 0 (36) 
-63 259 -151 - 24 

.5 

1 (33) 
-161 1079 -544 - 221 

2 (40) 
98 249 19 - 178 

3 (34) 
8 344 -112 - 128 

∆Hv 0 (36) 
-28 292 -127 - 71 

.5 

1 (33) 
-67 151 -121 - -13 

2 (40) 
-28 172 -83 - 27 

3 (34) 
-91 231 -172 - -10 

∆Bv 0 (36) 
-39 381 -168 - 90 

.4 

1 (33) 
-74 1103 -465 - 317 

2 (40) 
115 296 20 - 209 

3 (34) 
119 296 15 - 222 

∆Fv 0 (36) 
4 43 -11 - 18 

.5 

1 (33) 
-20 215 -96 - 56 

2 (40) 
11 52 -5 - 28 

3 (34) 
-20 59 -40 - .7 

%∆Tv 0 (36) 
-.63 2.6 -1.5 - .2 

.5 
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1 (33) 
-1.6 10.8 -5.4 - 2.2 

2 (40) 
1.0 2.5 .2 - 1.8 

3 (34) 
.1 3.4 -1.1 - 1.3 

%∆Hv 0 (36) 
-.2 4.8 -1.8 - 1.5 

.4 

1 (33) 
-1.0 3.4 -2.3 - .2 

2 (40) 
-.8 2.9 -1.7 - .1 

3 (34) 
-1.7 3.8 -3.0 - -.4 

%∆Bv 0 (36) 
.07 5.2 -1.7 - 1.8 

.3 

1 (33) 
1.4 4.5 -.3 - 3.0 

2 (40) 
.7 3.3 -.4 - 1.8 

3 (34) 
2.0 3.8 .7 - 3.3 

%∆Fv 0 (36) 
.1 .7 -.1 - .3 

.6 

1 (33) 
-.3 3.4 -1.5 - .9 

2 (40) 
.1 .9 -.2 - .4 

3 (34) 
-.3 1.0 -.7 - .02 

∆Fv/Bv 0 (36) 
.0011 .0113 -.0028 - .00490 

.6 

1 (33) 
-.0044 .0481 -.0214 - 0.0127 

2 (40) 
.0015 .0139 -.0030 - .0059 

3 (34) 
-.0048 .0154 -.0101 - .0006 

 

Table 8e. 3rd Lumbar vertebrae (L3) volumes at 18 months and the changes as absolute changes 

and percentage changes. Tv (total volume), Hv (haemopoietic volume), Bv (total bone volume), 

Fv (fat volume) and as percentages (%Hv, %Bv, %Fv) of total volume. Fv/Bv is ratio of mean 

absolute fat volume to mean absolute bone volume. Changes in absolute total, haemopoietic, 

bone, fat and fat to bone volume ratios are denoted as ∆Tv, ∆Hv, ∆Bv, ∆Fv and ∆Fv/Bv 

respectively. Percentage changes are denoted by %∆ prefixes. # and * are significance at .05 

level with Robust test equality of means or ANOVA respectively.  




