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Abstract 

The consumption of fresh produce has increased across the world because of health benefits 

associated with these products. At the same time, the rate of foodborne illnesses caused by 

the consumption of fresh produce, especially leafy greens which are mostly consumed raw, 

continues to be of concern. There are many sources of contaminants during the preharvest 

stages of vegetable production and processing. However, the use of improperly composted 

manure is a primary source of contamination both in conventional and organic production 

systems. Animal manure, particularly chicken manure, is the main environmental source of 

many enteropathogens in Australia. Of these, Salmonella enterica is found to be the main 

bacterial pathogen causing disease outbreaks associated with the consumption of fresh 

produce. In addition, L. monocytogenes is recognised as a soil resident, prevalent coloniser of 

decaying vegetation in agricultural systems and was considered as a second concern of 

bacteria in the present study. 

The present study was conducted to investigate methods for remediating Salmonella 

contaminated soil with the following objectives: (1) to assess the effect of environmental 

factors and soil type on the persistence and survival of Salmonella serovars under controlled 

conditions, (2) to determine the potential of low-residue cover crops to enhance die-off of S. 

enterica in contrasting soils in Australia, (3) to determine if single or combined cover crop-

solarisation treatment facilitate die-off of S. enterica in soil so that there is no contamination 

associated with the re-planting of leafy greens, and (4) to assess the prevalence of Listeria 

monocytogenes in cover crop-amended soils in natural field conditions.  

In the first part of this study a controlled microcosm pot trial was performed where four 

different Salmonella serovars were incubated at three temperatures (5, 21 and 37°C) under 

two moisture regimes (constant and fluctuating) and using two soil types (classified as clay 

loam and coarse sand; referred to as ‘clay’ and ‘sandy’ soils, respectively) with or without 

manure. Sampling was done every week and extraction and enumeration of Salmonella from 

the soil samples followed standard cultural methods. Because of the large number of 

treatments, only two-way interactions between the factors – manure, soil type, temperature, 

moisture, serovars and time – were considered. When there was a significant interaction 

between the factors, Tukeys honest significant difference (HSD) test was performed for 

multiple comparison tests. Most of the interactions analysed were significant (P <0.05). 
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Graph has been included to show the proportion of positive or negative Listeria cells after 

enrichment since the data from Listeria study was not statistically significant. Generally, the 

survival of Salmonella was found to be lower in sandy soil than clay soil, lower at higher 

temperatures than at lower temperatures, greater under constant moisture than fluctuating 

moisture regimes and greater in the presence of manure than in the absence of manure.  

In the field study, a field site (Karalee Farm, sandy soil and Pye Farm, clay soil) was 

deliberately inoculated with Salmonella using chicken manure as the inoculum carrier and 

treated with three cover crops and/or soil solarisation (using black plastic film) to remediate 

the experimentally contaminated soil. The field experiment followed a split-plot design based 

on three cover crops and control treatments. One split-plot was a control without solarisation, 

while the second split-plot was solarisation with black plastic after incorporating the cover 

crop treatments, or during the time of cover crop sowing for the control plots. Soil sampling 

was done on weekly basis at both sites. In addition, soil temperature, moisture, air 

temperature, and precipitation data were measured throughout the course of the field 

experiment. Soil sample extraction, plating, enumeration and enrichment techniques were 

similar to the pot study. The Salmonella count data were log-transformed and analysed as 

described above. The whole-plot, split-plot and sampling time were considered as fixed 

effects, whereas the block was considered as a random effect in the model. Overall, 

Salmonella declined from 4.56 log10 CFU g
-1

 on the day of chicken manure application to 

below the quantitative limit of detection (LOD; 1.18 log10 CFU g
-1

) in the control (fallow-

open) treatment 105 days later, showing the natural die off of the pathogen. Salmonella 

counts in the sandy soil were below the LOD 2 weeks after inoculation. In regards to the 

treatments used to suppress Salmonella in the soil, there was no significant difference among 

either the cover crop (grown for 4 weeks) or cover crop-solarisation (applied for 3 weeks) 

treatments in hastening the decline of Salmonella. However, the application of black plastic, 

alone, significantly influenced the decline of Salmonella in the field. The level of Salmonella 

fell below the LOD after day 56 in the fallow-solarisation treatment whereas, in the fallow-

open treatment, the level fell below the LOD after 91 days. 

Generally, Salmonella survival was better in clay soil than in sandy soil in both experiments, 

which indicated that longer (>90 days) exclusion periods between the application of untreated 

manure and crop harvest is required in clay soil. In addition, the presence of manure 

enhanced survival of Salmonella in both soil types (sandy and clay); however the effect of 

manure was more pronounced in the clay soil. Higher temperatures (>37°C) and fluctuating 



v 

 

moisture levels led to a faster decline of Salmonella in soil, with or without manure 

amendment compared with constant moisture levels. From this result it may be concluded 

that black plastic can be used as a solarisation treatment to remediate Salmonella-

contaminated soil. Further research is required to exploit the potential of cover crops for their 

biocidal activity in suppressing Salmonella in the field.  
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1. General introduction 

The consumption of fruit and vegetables is widely promoted for health and wellbeing (Berger 

et al. 2010). However, uncooked fruit and vegetables have been implicated in a myriad of 

foodborne outbreaks and as a source of foodborne pathogens that have been traditionally 

associated with foods of animal origin (Sivapalasingam et al. 2004; Arthur et al. 2007; 

Berger et al. 2010). Of highest concern are leafy green vegetables such as lettuce, spinach, 

cabbage and salad leaves of all varieties since they potentially harbor microorganisms that 

cause foodborne illness (Dobhal et al. 2014; Mritunjay and Kumar 2015).  

Bacterial pathogens are a major contributor to fresh produce-associated foodborne illnesses 

with Escherichia coli O157:H7, Salmonella enterica and Listeria monocytogenes the most 

common pathogens causing outbreaks (Park et al. 2012; Bradford et al. 2013). Between 

1973–1997 bacteria were responsible for 60% of outbreaks in produce-associated incidences 

in the USA (Sivapalasingam et al. 2004) with Salmonella accounting for nearly half of the 

outbreaks. In the present study, Salmonella is the main focus of study as it was found to be 

the most common pathogen accounting for 53% of outbreaks in the USA, 50% in the 

European Union (Callejón et al. 2015). In Australia it is the second most notified cause of 

foodborne illness (OzFoodNet Working Group 2012a). In particular, numerous incidences of 

Salmonella outbreaks in Australia have occurred in fresh products such as cantaloupes 

(rockmelons), tomatoes and sprouts (OzFoodNet Working Group 2012). 

There has been increasing public interest concerning the safety of foods and environmental 

impacts on food production. This is especially so for organic foods, which are grown from 

crops fertilised only with organic fertilisers or compost, and not chemical fertilisers. While 

non-organic production of leafy greens has moved away from use of organic amendments, 

public interest in consuming organic products has accelerated the use of compost even in 

vegetable crops that are usually consumed raw or without heat processing (Anonymous 

2015b). Compost made from animal waste and other organic refuse can serve as a valuable 

nutrient resource for agricultural fields and decrease the environmental effects of inorganic 

fertiliser if they are treated properly (Gong et al. 2005). In Australia, the total chicken litter 

production is estimated to be over 1 million tonnes per annum and this litter is used in 

production of horticulture, pasture, turf and viticulture crops (Anonymous 2015a).  
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Utilisation of farm-yard manure is a cost-effective and environmenally friendly way to 

improve soil quality and to provide nutrients for plant growth (Semenov 2008). Worldwide 

many horticultural industries typically use animal manures as an organic fertiliser (Franz and 

van Bruggen 2008). In addition, poultry manure is known to contain a higher percentage of 

nitrogen and other elements than cattle manure (Gamliel and Stapleton 1997). Unfortunately 

a  drawback is that untreated manure has the potential to contain bacteria that cause 

foodborne illness, including the serious enterohemorrhagic bacteria such as E. coli O157:H7 

(Semenov 2008).  

Contamination of leafy green vegetables can occur during field production from soil, manure, 

compost and irrigation water containing pathogenic contaminants (Natvig et al. 2002; 

Solomon et al. 2002; Islam et al. 2004c). This is most likely to occur after application of 

organic amendments such as manure to production sites, and from irrigation with water 

containing faecal contaminants (Franz and van Bruggen 2008). Worldwide, many Salmonella 

outbreaks involving fresh fruit and vegetables have been associated with from soil treated 

with contaminated manure (Abd-Elall and Maysa 2015). In addition, soil amendments based 

on untreated chicken manure have been recognised as potential contributors of foodborne 

pathogens in Australia (Chinivasagam 2010).  

Listeria monocytogenes is recognised as a soil resident and is a prevalent coloniser of 

decaying vegetation in agricultural systems and, as such, transfer to fresh produce has 

become an important concern (Hoelzer et al. 2012). This organism is known to have longer 

survival under adverse environmental conditions than other bacterial pathogens that are 

important in causing foodborne illnesses (Fenlon 1999). 

Contamination risk of vegetable crops grown in manure-amended soils depends primarily on 

the ability of pathogens to survive during crop production (Franz and van Bruggen 2008). 

Salmonella has been reported to survive up to 300 days in soil amended with manure (Garcia 

et al. 2010). Salmonella spp. in particular, are adept at withstanding and adapting to severe 

environments (Foster and Spector 1995; Arthurson et al. 2011) with some strains persisting in 

the environment for years, withstanding periods of stress and nutrient depletion (Gorski et al. 

2011). A range of factors have been found to influence the survival of Salmonella in soil. Of 

these, temperature (Ongeng et al. 2015), moisture (Entry et al. 2000; Mubiru et al. 2000), 

manure amendment (Whipps et al. 2008), soil type (van Veen et al. 1997; Danyluk et al. 
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2008; Franz and van Bruggen 2008), interaction and possible antagonism with other soil 

microorganisms and protozoans (Garcia et al. 2010) are the most important. 

To minimise pathogen load on fresh produce, different postharvest sanitising methods have 

been employed. However, many of the methods may not be effective because of the 

characteristics of the product, including the surface which influences microbial attachment. 

Other factors influencing sanitiser efficacy are the length of contact time and potential 

presence of biofilms on the produce surface (Franz and van Bruggen 2008). Industry is 

focused on  intervention strategies to reduce the risk of contamination and combat the recent 

rise in foodborne disease associated with the eating uncooked fruit and vegetables (Semenov 

2008). Therefore, it is necessary to find an effective way to inactivate faecal pathogenic 

bacteria in soil to ensure the biosafety of the soil and the produce grown in it (Wu et al. 

2009). 

For the purpose of this investigation, a collaborative partnership was established between the 

University of Sydney (Australia) and the University of California, Davis (USA) to develop 

remediation and recovery measures for suppressing Salmonella in contaminated soil 

following chicken manure application to the soil under both Australian and USA conditions. 

The measures used for evaluation of effective treatments included solarisation and 

biofumigation using phenolic- and glucosinolate-producing cover crops.  

Solarisation using plastic film over soil amended with chicken manure has been found to 

reduce populations of soil‐borne pathogens (Barbour 2002). It is a cost-effective and 

sustainable option when viewed as a replacement or supplement to biocidal chemical 

treatment such as methyl bromide, and has the added advantage of weed suppression. In 

addition, studies have shown that isothiocyanates (hydrolytic products of glucosinolates) 

from cover crops exhibit biocidal activity against microrganisms including fungi and bacteria 

as well as insects and other pests (Wilson et al. 2013).  

Currently, there are no validated remediation strategies that growers could implement to 

reduce or eliminate the presence of naturally‐occurring human pathogens in soil. In addition, 

there has been little research conducted on allelopatic biochemical plant products and the 

combination of solarisation and biofumigation in enhancing the die-off of Salmonella spp.and 

other pathogenic microorganisms in the soil. The present study investigated practical 

remediation measures (applied to soil contaminated by improper use of chicken manure) to 

minimise the survival of S. enterica and prevent the transfer of pathogens to the edible 
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portions of a harvested crop. The targeted remediation treatments included cover crops 

(‘Terranova’ oilseed radish, ‘Cappuccino’ Ethiopian mustard, ‘Fumig8tor’ sorghum) and soil 

solarisation (using black plastic), alone and in combination, to supress S. enterica in soils 

under conditions typical of Australian production regions. The aims of this research were to: 

1. Assess the effect of environmental factors and soil types on the persistence and 

survival of Salmonella serovars under controlled conditions.  

2. Determine the optimal low-residue cover crop containing glucosinolates or phenolic 

compounds that enhance die-off of S. enterica in contrasting soils in Australia.  

3. Determine which single or combined cover crop-solarisation treatments facilitate die-

off of S. enterica in soil so that there is no re-contamination associated with the re-

planting of leafy greens produce. 

4. Assess the presence of Listeria monocytogenes in cover crop-amended soils in natural 

field conditions. 

 

The overall hypothesis for this study was: 

Single or sequential strategies involving short-duration, low-residue cover crops and 

solarisation will be effective in the practical elimination of residual Salmonella enterica 

contamination.  
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2. Literature review  

2.1 Safety of fresh produce  

Fresh produce is known to confer substantial health and nutritional benefits and their 

consumption is rising (Abadias et al. 2008). However, fruit and vegetables are now 

recognised as common agents for the transfer of human pathogens from animal sources 

(Franz and van Bruggen 2008; Hanning et al. 2009; Berger et al. 2010). It is now well 

accepted that the consumption of fruit and vegetables is a risk factor for infection by enteric 

pathogens (Heaton and Jones 2008) such as bacteria, parasites and viruses, and a number of 

reports refer to raw vegetables harbouring a potential for foodborne pathogens (Abadias et al. 

2008; Olaimat and Holley 2012; Allen et al. 2013; Goodburn and Wallace 2013). Food safety 

in fresh produce has now become a global issue given the large volumes of fresh produce that 

are traded nationally and internationally (Ongeng et al. 2015).  

In the USA, 1990–2004, the number of cases of food borne illness resulting from 

consumption of fresh produce was the second highest out of all foodborne disease incidences. 

During this period fresh produce also had highest number of reported illnesses per outbreak 

compared to beef, poultry, seafood and eggs, (DeWaal and Bhuiya 2007). In the USA, 

between 1973 and 1987, fruit and vegetables were the cause of 2% of the foodborne disease 

outbreaks. However, by the 1990s, fresh produce had risen to be 6% of all reported foodborne 

outbreaks with over 16,000 cases of illness identified. Another study indicated that many as 

13% of disease outbreaks in the USA may be attributed to fresh produce contaminated with 

pathogens (Hanning et al. 2009). The Center for Disease Prevention and Control (CDC) 

reported a substantial increase of outbreaks due to fresh produce in USA between 2006 and 

2011 (Callejón et al. 2015) and the same trend was observed in the European Union where 

produce related outbreaks increased from 29 reports in 2006 to 44 in 2010 (Callejón et al. 

2015).  

There are many pathogens that are associated with foodborne disease outbreaks involving 

fresh produce. The following pathogens of concern have been reported as a source of 

contamination of fruit and vegetables when eaten raw: Salmonella spp., Shigella spp., 

Escherichia coli, Campylobacter spp., Yersinia enterocolitica, Listeria monocytogenes, 

Staphylococcus aureus, Clostridium spp., Bacillus cereus, Vibrio spp. and a number of other 

viruses and parasites (Islam et al. 2004a; Goodburn and Wallace 2013). Of these, bacterial 
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pathogens and their outbreaks are of the utmost concern in terms of illness severity and 

number of persons at risk of infection globally (Beuchat 1996). The bacterial pathogens, 

Salmonella spp. and E. coli O157:H7, are the major enteric pathogens reported to contribute 

to outbreaks of foodborne illness linked to fresh produce (Buck et al. 2003; Franz and van 

Bruggen 2008; Warriner et al. 2009; Olaimat and Holley 2012; Ongeng et al. 2015). These 

two bacterial pathogens are important because they cause disease outbreaks at low infection 

doses and are able to survive at typical home refrigerator temperatures (Ongeng et al. 2015). 

In addition, Salmonella is the second most prevalent causative agent (after norovirus) in 

produce-related outbreaks causing 18% and 20% of infections in the USA and the European 

Union, respectively (Callejón et al. 2015). The other important bacterial pathogen associated 

with fresh produce, especially ready-to-eat vegetables is L. monocytogenes (Little and 

Gillespie 2008; Sant'Ana et al. 2012a; Sant'Ana et al. 2012b). 

2.2 Pathogens of concern: Salmonella spp. and Listeria monocytogenes  

Salmonellae are Gram-negative, facultative anaerobic, non-spore forming and rod-shaped 

bacteria within the family Enterobacteriaceae. Apart from S. Pullorum and S. Gallinarum 

(which lack flagella), the members of this genus have peritrichous flagella which allows 

motility (Agbaje et al. 2011; Abakpa et al. 2015). They are non-lactose fermenting, urease-

negative, oxidase-negative, acetylmethyl carbinol-negative, citrate-utilising and potassium 

cyanide-negative (Holt and Chaubal 1997; Abakpa et al. 2015). Salmonella and L. 

monocytogenes are both commonly encountered in animal manures and are known to survive 

for considerable periods in adverse environments (Himathongkham et al. 1999; 

Himathongkham and Riemann 1999). 

2.2.1 Salmonella nomenclature  

Theobald Smith, who was a pioneer epidemiologist, bacteriologist and pathologist, formally 

discovered Salmonella enterica in the 1880s. The genus Salmonella was named after Smith’s 

chief supervisor and collaborator, Daniel E Salmon (Schultz 2008). The two species of 

Salmonella are S. bongori and S. enterica; the latter having over 2,500 serovars. 

Salmonella serovars identified after 1966 are designated by their antigenic formula, with each 

serovar being considered distinct strains within subspecies. However, frequently encountered 

serovars that were identified before 1966 are still often described by their original names 

rather than antigenic formula, which often indicated the syndrome, host specificity or 
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geographical region where it was first isolated (Brenner et al. 2000; Heyndrickx et al. 2005; 

Mestrovic 2015). 

Over time, many scientists have tried to improve the taxonomy of Salmonella until the 

White-Kauffmann-Le Minor system was established to list all identified Salmonella serovars. 

This list is regularly updated by the World Health Organization (WHO) (Grimont and Weill 

2007). The current nomenclature (Table 2.1) used by the CDC is based on recommendations 

from the WHO Collaborating Center. Salmonella enterica is divided into six subspecies 

(Popoff et al. 2001; Popoff et al. 2003; Ellermeier and Slauch 2006). Nearly all important 

human pathogenic isolates of Salmonella are from S. enterica subsp. enterica, and strains in 

this subspecies cause the majority of Salmonella illness in humans. Serotypes in S. enterica 

subspecies II (S. enterica subsp. salamae), IIIa (S. enterica subsp. arizonae), IIIb (S. enterica 

subsp. diarizonae), IV (S. enterica subsp. houtenae), V (S. bongori), and VI (S. enterica 

subsp. indica) are rarely isolated from humans but are prevalent in the environment (Brenner 

et al. 2000; Ellermeier and Slauch 2006). In comparison, S. enterica subsp. enterica is mostly 

isolated from warm-blooded animals. When describing Salmonella serovars, the species 

name is often dropped; for example, S. enterica subsp. enterica serovar Enteritidis may be 

referred to as S. Enteritidis (Table 2.2). There are more than 1450 serovars within S. enterica 

subsp. enterica (Popoff et al. 2004; Klerks 2007; Agbaje et al. 2011; CDC 2015). 

Table 2.1 Salmonella species, subspecies and serovars according to the White-Kauffmann-Le 

Minor naming system. Adapted from Brenner et al. (2000). 

Salmonella species and 

subspecies  

No. of serovars 

within subspecies 

S. enterica subsp. enterica (I) 1,454 

S. enterica subsp. salamae (II)  489 

S. enterica subsp. arizonae (IIIa) 94 

S. enterica subsp. diarizonae (IIIb) 324 

S. enterica subsp. houtenae (IV) 70 

S. bongori (V) 20 

S. enterica subsp. indica (VI) 12 

Total  2,463 
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Table 2.2 Salmonella nomenclature in use at the Center for Disease Control and Prevention 

(CDC 2000). Adapted from Brenner et al. (2000). 

Taxonomic position Nomenclature  

Genus (italics) Salmonella 

Species (italics)  enterica, which includes subspecies I, II, IIIa, IIIb, IV and 

VI 

 bongori (formerly subspecies V) 

Serotype (capitalised, not 

italicised to avoid confusion 

between serovars and 

species) 

 The first time a serovar is mentioned in the text, the name 

should be preceded by the word “serotype” or “ser” 

 Serovars are named in subspecies I and designated by 

antigenic formulae in subspecies II to IV, and VI and S. 

bongori 

 Members of subspecies II, IV, and VI and S. bongori retain 

their names if named before 1966 

 

2.2.2 Salmonella identification and serotyping 

2.2.2.1 The White-Kauffmann-Le Minor system  

There are more than 2500 serovars in the genus Salmonella based on their antigenic formula. 

According to the White-Kauffmann-Le Minor system, serological groups of Salmonella are 

based on the composition of O-antigens associated with the bacteria surface and the H-

antigens on the threadlike flagella. To date, 57 O-antigens and 117 H-antigens have been 

identified. (Iankov et al. 2002; Fitzgerald et al. 2003). 

The structure of the O-antigen is very variable among strains of Salmonella and subtle 

chemical changes alter O-antigen structure which can have profound effects on antibody 

recognition (Kim and Slauch 1999). Generally, the O-antigen is used to assign the Salmonella 

to a group, while the H-antigen may be used to confirm the serovars within the group. For 

instance, Salmonella serovars Sofia and Typhimurium belong to the same O-antigen grouping 

(group B) but they have different H-antigenic formulae (see Chapter 3, Table 3.1). The H-

antigen, sometimes referred to as the O-group, can exist as two serological formats known as 

phase 1 and phase 2.  A third antigen, known as the Vi-antigen, may occur in other 

Salmonella serovars.  This Vi-antigen has the potential to interfere with the activity of O-

antigens and therefore has to be deactivated to allow accurate serological identification (Cai 

et al. 2005; Sonne‐Hansen and Jenabian 2005; Ellermeier and Slauch 2006).  
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To identify the Salmonella serovar the microorganism in question is exposed to the antiserum 

that contains the characteristic Salmonella antibody. Positive identification occurs when  the 

Salmonella bacteria physically clump together with the homologous antiserum (Cai et al. 

2005; Wattiau et al. 2011). The agglutination reaction or clumping of the antigen-antibody 

can easily be observed within a minute of mixing. A positive result is obtained when one or 

more of the antigens interact with the antiserum. No agglutination indicates a negative result 

and suggests the serovar is from another grouping.  

Serotyping is usually initiated by testing the isolate with polyvalent O-antiserum. The 

majority (about 98%) of Salmonella encountered in warm-blooded animals possess an O-

antigen corresponding to the agglutinins contained in OMA, OMB and OMC sera (Figure 

2.1). The OMA, OMB, OMC and OMD are a pool of groups of sera that are also known as 

polyvalent sera. Polyvalent ‘O’ (somatic) antisera are intended to aid initial serogrouping. For 

example, if a strain tests negatively with OMA (pool sera), then positively with OMB, there 

is no need to check for the other sera, rather, further checking with OMB is required to 

characterise within the OMB group (Hendriksen et al. 2009; Wattiau et al. 2011; CDC 2015). 

In the OMB group, there are a number of sera such as: (i) O:11, (ii) O:6,7,8, (iii) O:13,22,23, 

and (iv) O:6,14,24 which are known as monovalent sera and full identification of the O-

antigens can be achieved using monovalent specific O-antisera. Therefore, if there is no 

agglutination for O:11, the next test will be using O:6,7,8, and if agglutination is obtained, 

checking for the rest of the sera group is not required (Cai et al. 2005; Hendriksen et al. 2009; 

Wattiau et al. 2011; Cox and Pavic 2014). Based on the O-antigen, Salmonellae are 

categorised in group A, B, C1, D, E1, E4 and so on. 

Individual serotypes in each O-group are characterised using polyvalent and monovalent H-

antisera. Each O- and H-antigen has a unique code (CDC 2015). As the antigenic formula 

with O, H-phase 1 and H-phase 2 are identified, the serotyping is confirmed by referring to a 

reference catalogue such as the White-Kauffmann-Le Minor scheme (Anonymous 2013). For 

example, S. Enteritidis belongs to group D (O:9), and is characterised by its O (9,12) and H 

(g, m) antigens. An individual Salmonella cell expresses either phase I or phase 2 H-antigens, 

but not both. Therefore, the format for writing a serovar is: Subspecies [space] O-antigens 

[colon] H-phase 1 antigen [colon] H-phase 2 antigen. S. Typhimurium, for example, belongs 

to subspecies I, group B (O4), has four O antigens (1,4,[5],12), and one H-phase 1 flagellar 
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antigen (i) and two H-phase 2 antigens (1,2). The antigenic formula is 1,4,[5],12:i:1,2 (Cai et 

al. 2005; Grimont and Weill 2007). 

 

 

Figure 2.1 Flowchart showing Salmonella serotyping. From Anonymous (2013). 
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2.2.2.2 Molecular methods 

Molecular identification of serovars can be done by restriction endonuclease digestion, 

nucleic acid amplification, or nucleotide sequencing techniques (Imen et al. 2011). Up until 

the advent of whole genome sequencing, Pulsed Field Gel Electrophoresis (PFGE) was the 

most widely accepted method of identification. The DNA is first cut with restriction enzymes 

and the fragments separated by electrophoresis using multi directional pulsed currents. 

Identification is reliant on characteristic separation patterns of the DNA fragments which can 

be up to 1200 kb (Imen et al. 2011). However, this method takes time, is labour-intensive and 

can produce false positives when compared with other molecular methods (Wattiau et al. 

2011).  

Amplified Fragment Length Polymorphism (AFLP) amplifies adapter-specific restriction 

fragments by Polymerase Chain Reaction (PCR) with specifically designed primers (Imen et 

al. (2011). The disadvantage with this method is the need for considerable technical 

expertise.  

In addition to these two molecular methods, plasmid proofing, ribotyping, insertion sequence 

(IS) typing, randomly amplified polymorphic DNA (RAPA), multilocus sequence typing 

(MLST), and multiplex PCR are also used for Salmonella serotyping.  

2.2.3 Salmonella serovars used in the present study  

All the serovars used in the present study belong to S. enterica subsp. enterica. Because of 

their role in foodborne diseases associated with the poultry and fresh produce industries, 

Salmonella serovars Enteritidis, Infantis, Montevideo, Sofia, Typhimurium and Zanzibar 

were used as test serovars. The increased incidence of S. Enteritidis in poultry since the 1970s 

has made these serovar a particularly prevalent source of food poisoning related primarily to 

poultry products but also including fresh produce (Greig and Ravel 2009; OzFoodNet 

Working Group 2009; Food Satey News 2013). 

From 2008 to 2009, S. enterica serovars Typhimurium, Montevideo and Infantis were among 

the top five listed Salmonella infections in all Australian states except Western Australia 

(OzFoodNet Working Group 2010). S. Enteritidis  is the most common strain of Salmonella 

in the food industry and it is the most frequent cause of human illness internationally. In the 

last 20 years, S. Enteritidis has become the single most common cause of food poisoning in 
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the USA. According to the CDC, 95% of Salmonella infections come from foodborne sources 

and serovars Typhimurium and Enteritidis are associated with over half of the reported 

infections. In addition, these two serovars have a wide host range since they cause disease in 

many animals (Fatica and Schneider 2011). S. Typhimurium, which is almost as common and 

S. Enteritidis, exhibits antibiotic-resistance making it difficult to eliminate in animal 

production systems and when treating affected humans (Food Satey News 2013). In 

Australia, S. Typhimurium is more common than S. Enteritidis. In 2008 more than 40% of all 

notified outbreaks was attributed to S. Typhimurium making it the most common serovar 

(Greig and Ravel 2009; OzFoodNet Working Group 2009). In another report, S. 

Typhimurium accounted for 95% of the Salmonella notifications in Australia in 2014, and 

from the total of 709 notifications, there were 64 and 18 reports for serovars Enteritidis and 

Infantis, respectively (OzFoodNet 2014). S. Sofia is an avirulent form of Salmonella and is 

the most prominent serovar in Australia. It is only found in Australia, and mainly isolated 

from poultry (Mellor et al. 2010). Another serovar, Zanzibar, was reported as a cause of 

foodborne disease outbreaks in New South Wales Australia in 2013 (OzFoodNet 2013). 

2.2.4 Salmonellosis 

Ingesting Salmonella bacteria may cause Salmonellosis. This disease can be manifested in 

two forms; namely typhoid fever or non-typhoidal gastroenteritis. Salmonella normally 

resides in animals and is transmitted to humans either directly or indirectly through soil, 

water or food (Klerks 2007). The dose of Salmonella cells required to cause infection was 

thought to be high,  however for S. Typhimurium, very low amounts (10–100 cells) have 

been reported to cause a number of outbreaks (Jyoti et al. 2016). The dose required to cause 

infection depends on the food type, the serovar, the physiological form of the bacteria and the 

susceptibility of the host (Darwin and Miller 1999). Salmonellosis has an important economic 

and social impact because of its prevalence in most countries, the occurrence of Salmonella 

in farm animals and its transmission to humans (Agbaje et al. 2011). 

2.2.5 Salmonella detection and isolation  

Methods for detecting and isolating Salmonella spp. involve pre-enrichment of the sample in 

nonselective media, enrichment in selective media and plating onto selective/differential agar. 

Individual colonies are then subjected to biochemical/serological confirmations. The culture 

methods used in this study were modified from the Food and Drug Administration (FDA) 
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standards as set out in the Bacteriological Analytical Manual (Andrews et al. 2013) and 

follow Harris et al. (2012). 

 2.2.5.1 Pre-enrichment 

Due to various injuries caused by heating, freezing and drying, Salmonella in food or 

environmental samples has been reduced over time (Wang and Hammack 2014). Bacterial 

numbers may also decrease during storage and transportation. The injured Salmonella cells 

are enriched in a pre-enrichment solution which allows the cells to revive and proliferate 

(Hoorfar and Baggesen 1998; Wang and Hammack 2014). A sequential enrichment in 

nonselective and selective media allows for enhanced detection and recovery of sub-lethally 

injured Salmonella.  

Pre-enrichment media are nonselective and generally contain nutrients required for cell 

growth and multiplication, repair of cell injury, rehydration, and dilution of toxic or 

inhibitory substances. Some pre-enrichment media include nutrient supplements to support 

the resuscitation of injured cells (Wang and Hammack 2014). Buffered peptone water (BPW) 

is one of the most widely used pre-enrichment broths for Salmonella. It is used to buffer the 

pH of the growth medium and support metabolism of microorganisms during the enrichment 

process in addition to providing conditions for the resuscitation and growth of cells prior to 

selective enrichment (Baylis et al. 2000; Wang and Hammack 2014). Pre-enrichment broths 

for Salmonella are generally incubated at 37°C for 18–24 h. After pre-enrichment, a portion 

of the pre-enrichment broth is sub-cultured on selective enrichment media. 

2.2.5.2 Selective enrichment 

Selective enrichment media contain compounds that suppress the growth of competitive 

microorganisms while allowing Salmonella to proliferate. Selective media are routinely used   

in the recovery of Salmonella from a wide variety of environmental and food samples (Wang 

and Hammack 2014).  

Tetrathionate broth base (TTB) is recommended by the FDA as a selective enrichment broth 

to isolate and detect Salmonella spp. When iodine-potassium iodide (I2-KI) solution is added 

in the medium, tetrathionate is formed and this serves a selective agent, combined with 

sodium thiosulfate, to suppress coliforms and other microflora. Calcium carbonate is used to 

neutralise toxic metabolites during the incubation process. The amount of pre-enrichment 
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broth sub-cultured using selective media should be sufficiently small (e.g. 1:9) so that it does 

not interfere with selectivity (Wang and Hammack 2014). 

The second selective enrichment containing nutrients necessary for favourable Salmonella 

growth and flagella development is mBroth (Forsythe and Hayes 1998). Another broth 

recommended by the FDA for enrichment of Salmonella is Rappaport-Vassiliadis (RV). This 

media is a selective enrichment medium that is used after pre-enrichment broths. This 

particular medium was first developed by Rappaport et al. (1956) and modified by 

Vassiliadis et al. (1976; as cited in Vassiliadis (1983)) to selectively enrich Salmonella spp. 

but not other species from other Enterobacteriaceae. Rappaport-Vassiliadis contains tryptone 

to provides amino acids and other nitrogenous substances, potassium dihydrogen phosphate 

as a buffer, magnesium chloride hexahydrate to raise the osmotic pressure of the medium and 

malachite green oxalate to inhibit the growth of microorganisms other than Salmonella spp. 

(Wang and Hammack 2014). 

2.2.5.3 Selective agar for enumeration and enrichment  

To isolate and differentiate Salmonella from other microorganisms either from extracted soil 

samples or from incubated selective enrichment media, samples are plated on selective agar 

media. Selective plating media suppress the growth of some competitive microflora while 

allowing the growth of distinct and well-isolated colonies of Salmonella. Selective media 

usually contain the necessary nutrients for the growth and fermentation of the specific 

bacteria and indicator dyes to show the production of hydrogen sulfide (H2S) and changes in 

pH. They also contain one or more inorganic salts to maintain the osmotic balance in the 

medium (Wang and Hammack 2014). 

Xylose lysine deoxycholate (XLD) agar is used to distinguish Salmonella from competitive 

microflora such as E. coli. It contains sodium deoxycholate as a selective agent to inhibit 

Gram-positive organisms. Production of H2S is mainly detected by the presence of sodium 

thiosulfate and ferric ammonium citrate and any changes from fermentation and 

decarboxylation reactions are detected in the media by phenol red pH indicator (Wang and 

Hammack 2014). Differentiation of Salmonella spp. from nonpathogenic bacteria therefore 

relies on xylose fermentation, lysine decarboxylation and production of H2S. Typical colonies 

on XLD agar appear pink with black centres and many Salmonella cultures are observed as 

colonies with large, shiny black centres or are wholly black (Wang and Hammack 2014; 

Sagar 2015). The other agar media that is used for detection and isolation of non-Typhi 
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Salmonella based on its selectivity and colony characterization is Xylose Lysine Tergitol 4 

(XLT4). It uses the surfactant Tergitol™ 4 to inhibit growth of non-Salmonella species. 

Therefore can be used to differentiate other organisms using the same mode of action as XLD 

agar. Compared to XLD agar, XLT4 markedly inhibits the growth of Enterobacter 

aerogenes, E. coli, Proteus, Pseudomonas, Providencia, Alteromonas putrefaciens, Yersinia 

enterocolitica and Acinetobacter calcoaceticus. Typical colonies on XLT4 agar are black or 

are yellow with a black centre after 18–24 h of incubation. After extended incubation, 

Salmonella colonies on XLT4 agar turn totally black or are pinkish red with black centres. 

H2S-negative colonies of Salmonella are pink to yellow (Wang and Hammack 2014).  

Chromogenic agars differentiate bacterial species on the basis of colour using selective and 

differential agents in the media. Inclusion of X-gal and magenta-caprylate allows for 

identification of Salmonella spp  (Maddocks et al. 2002; Cassar and Cuschieri 2003; Wang 

and Hammack 2014). These chromogenic substrates, together with specified selectivity of the 

medium, are the principle behind chromogenic media. Specific enzymes in the targeted 

organisms are responsible for the production of chromophores which are produced with 

cleavage of chromogen. A distinct colour change is observed in the medium upon the release 

of chromophores (e.g. esterase activity in Salmonella) (Perry and Freydiere 2007). Despite 

the reliability and high sensitivity and specificity of Salmonella chromogenic media, other 

media such as XLD should also be used to evaluate samples for the presence of Shigella spp. 

(Maddocks et al. 2002). 

2.2.6 Listeria monocytogenes 

The second bacterial pathogen investigated in this study, albeit less thoroughly, is L. 

monocytogenes. This bacteria was first described by Everitt Murray and his co-workers in 

1926 (Bisha 2009) after isolating a previously undescribed bacterium from the blood of 

diseased and dead rabbits. The genus Listeria includes several species: L. ivanovii, L. 

seeligeri, L. innocua, L. welshimeri and L. monocytogenes.  Listeria monocytogenes is the 

most common species causing disease in humans and animals although there have been 

sporadic reports of L. innocua and L. seeligeri causing disease in humans (Batt 2014). 

Listeria monocytogenes is thought to consist of four lineages with most isolates and the 

majority of human pathogenic forms belonging to lineages I and II (Orsi et al. 2011). 
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Listeriae are small Gram-positive rods, but they can sometimes appear as cocci. They are 

non-spore-forming bacteria and they do not form capsules. They are urease-negative, 

catalase-positive and oxidase negative and are able to hydrolyse aesculin and exhibit 

tumbling motility at room temperature (Bisha 2009). The temperature range for growth is 

between <1°C to approximately 50°C, with an optimum temperature of 30–37°C. Listeria 

monocytogenes is quite hardy and is frequently found in the environment. The organism can 

withstand freezing, but it is inactivated by heating at 60°C for 30 minutes (Batt 2014). 

Listeria monocytogenes is only considered to be a serious disease of immuno-compromised 

individuals and pregnant women, neonates (Harris et al. 2003). Recent research suggests that 

infectious doses may be higher than previously thought such that infectious does for two 

strains of Listeria (12443 and Scott A) ranged from 7.2 x 10
6 

CFU for strain 12443 to 3.7 x 

10
10 

CFU for Scott A strain in pregnant monkeys (Smith et al. 2003). 

2.3 Incidence of pathogenic Salmonella and Listeria on fresh produce  

As the global dietary intake of fruit and vegetables has risen, so too have the reports of 

foodborne illness outbreaks linked with consuming fresh produce, due to Salmonella, E. coli 

O157:H7 and L. monocytogenes (Warriner et al. 2009; Park et al. 2012). These bacterial 

pathogens are among the most concerning in regards to produce safety (Beuchat 2002; Franz 

and van Bruggen 2008). The present study focuses on Salmonella as it is more often found to 

be the most common pathogenic agent and there are more incidences of disease related to 

fresh produce outbreaks than E. coli O157:H7 ((Sivapalasingam et al. 2004; Klerks 2007). 

The second pathogen of concern in this study is L. monocytogenes, which is found frequently 

in the environment. 

Every year in the USA, Salmonella is throught to cause approximately 1 million foodborne 

illnesses with 19,000 hospitalisations and 380 deaths (CDC 2016). In a review of outbreaks 

of foodborne illness associated with single items of fresh produce from 1990–2004 (Brandl 

2006), E. coli O157:H7 and S. enterica were found to be the most frequent bacteria in these 

outbreaks. The latter group caused 30% of outbreaks linked to fruit and leafy vegetables, 

whereas, E. coli O157:H7 caused 48% of infections (Olaimat and Holley 2012). Evaluation 

of 1,183 fresh fruit and vegetable samples taken from produce grown in Ontario during the 

summer of 2004, showed that Roma tomatoes and organic lettuce tested positive for 

Salmonella (Arthur et al. 2007).  
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In 23 European Union countries in 2005, more than 5,300 foodborne disease outbreaks were 

reported, of which 64% were due to Salmonella (Franz and van Bruggen 2008). In another 

survey, 83 produce-associated outbreaks (5.5% of the total number) were reported in England 

and Wales between 1992 and 2000, with Salmonella having the highest incidence of 

reporting  (Long et al. 2002). In 2002, two notable outbreaks that involved 314 cases of 

Salmonella infections in the United Kingdom were linked to the consumption of lettuce 

(Islam et al. 2004a). More than 50,000 people suffered from Salmonellosis between 1999 and 

2000 in the Netherlands (Bouwknegt et al. 2003) and in 2002, the incidence of Salmonellosis 

was approximately 35,000 cases in the general population (Bouwknegt et al. 2004). In the 

Netherlands, an estimated total cost of €33–91 million is spent annually for Salmonellosis 

(Wannet et al. 2003). In a Spanish survey in 2005–2006, high microbial loads were 

associated with grated carrot, arugula and spinach: 6.2, 5.3 and 6.0 log CFU g
−1

 of 

Enterobacteriaceae compared to 7.8, 7.5 and 7.4 log CFU g
-1

 of aerobic mesophilic 

microorganisms; 6.1, 5.8 and 5.2 log CFU g
−1

 of yeast and moulds; and 5.9, 4.0 and 5.1 log 

CFU g
−1

 lactic acid bacteria (Abadias et al. 2008).  

In Australia and after Campylobacteriosis, Salmonellosis is the most frequently reported 

cause of gastric sickness (Yates 2011). In 2001, 41 cases of Salmonella infection were 

associated with contaminated lettuce (Stafford et al. 2002). The Salmonellosis notification 

rate varies among localities with a low of 31 cases per 100,000 people reported in Victoria to 

a high of 226 cases per 100,000 people in the Northern Territory. Young children under four 

years  usually are the most susceptible, with 300 cases per 100,000 population reported in 

2008 (OzFoodNet Working Group 2009).  

Outbreaks due to L. monocytogenes are mostly associated with ready-to-eat vegetables. In 

2011, an outbreak due to the consumption of Listeria-contaminated cantaloupe that was 

distributed to 28 states in the USA resulted in 146 illnesses, 30 deaths and one miscarriage 

(CDC 2011e). Listeria monocytogenes is commonly found on raw fruit and vegetables and 

plant material (Cordano and Jacquet 2009) and grows at refrigeration temperatures which 

increases the risk to consumers of ready-to-eat foods (Jay-Russell 2013). 

For the period from 2005–2011, Salmonella and E. coli contributed 49 and 47%, respectively, 

of the total cases of illness (9,520) associated with fresh produce in different parts of the 

world (Olaimat and Holley 2012). More than half of the outbreaks reported during this period 

were from the USA. The largest outbreak in terms of human illness occurred in Europe in 
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2011 due to E. coli O104:H4-contaminated vegetable sprouts which led to 3,911 foodborne 

illnesses and 47 deaths (Table 2.3). In Australia in 2006, Salmonella linked with alfalfa 

sprouts and canteloupe, caused 125 and 115 cases, respectively (Table 2.3). Lettuce, spinach 

and alfalfa/mixed sprouts contributed to more than 50% of the foodborne illness outbreaks. A 

Salmonella outbreak in 2013 in the USA caused by contaminated cucumber resulted in 28% 

of ill persons being hospitalised but no deaths were reported. 

2.4 How produce gets contaminated: sources of contamination  

Food safety encompasses food contaminated by physical, chemical or biological hazards. Of 

the three, microbial hazards tend to generate a more negative effect amongst the public. This 

might be due the regular reporting of biological hazards, the fact they tend to affect a large 

number of consumers and because they generally induce instant and severe symptoms (Franz 

and van Bruggen 2008). 

Any disease causing-agent that comes in contact with fresh produce, from the production line 

to the processing chain, has the potential to be a contaminant source. Examples of 

contamination sources include irrigation water, manure, compost, animals and soil (Abadias 

et al. 2006). Many studies have reported that animal manure and irrigation water represent 

the two most important sources of pathogen transmission from animal hosts to fresh produce 

in the preharvest stage (Semenov 2008; Park et al. 2012). Moreover, Franz and Van Bruggen 

(2008) reported that the application of manure or compost is the most important consideration 

for contamination of vegetables in the field. Most produce-associated disease outbreaks in 

Europe were linked to whole products exposed to soil and/or water during production while 

processed fruit and vegetables had fewer outbreaks (Anonymous 2002).  
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Table 2.3 Foodborne illness outbreaks linked to fresh produce from 2005–2011. Adapted 

from Olaimat and Holley (2012) and CDC (2017). USA = United States of America; UK = 

United Kingdom. 

Location Year Pathogen Produce Cases 

(deaths) 

Canada  2005 Salmonella Mungbean sprouts 592 

USA 2005 Salmonella Tomato 459 

USA 2006 E. coli O157:H7 Spinach 199 (3) 

Australia 2006 Salmonella Alfalfa sprouts 125 

USA, Canada 2006 Salmonella Fruit salad 41 

USA 2006 Salmonella Tomato 183 

USA 2006 E. coli O157:H7 Lettuce 81 

Australia 2006 Salmonella Cantaloupe 115 

USA 2006 E. coli O157:H7 Spinach 22 

Europe 2007 Salmonella Baby spinach 354 

USA, Europe 2007 Salmonella Basil 51 

Australia, Europe 2007 Shigella sonnei Baby carrot 230 

Europe 2007 Salmonella Alfalfa sprouts 45 

USA, Canada 2008 Salmonella Pepper 1,442 (2) 

USA, Canada 2008 E. coli O157:H7 Lettuce 134 

UK 2008 Salmonella Basil 32 

USA 2008 Salmonella Cantaloupe 51 

USA 2009 Salmonella Alfalfa sprouts 235 

USA 2010 E. coli O145 Lettuce 26 

USA 2010 Salmonella Alfalfa sprouts 44 

USA 2010 L. monocytogenes Fresh cut produce (celery) 10 (5) 

USA 2011 Salmonella Alfalfa and mixed sprouts 140 

USA 2011 Salmonella Cantaloupe 20 

USA 2011 Salmonella Papaya 106 

Europe 2011 E. coli O104:H4 Vegetable sprouts 3,911 (47) 

USA 2011 L. monocytogenes Cantaloupe 146 (31) 

USA 2011 E. coli O157:H7 Strawberry 15 (1) 

USA 2011 E. coli O157:H7 Lettuce 60 

USA 2011 L. monocytogenes  Cantaloupe 146 (30) 

USA 2013 Salmonella Cucumber 84 

USA 2014 Salmonella Cucumber  275 

USA  2015 Salmonella Bean sprouts  115 

USA 2016 Listeria  Packaged salad  19 (1) 

 

Application of animal manure is encouraged as a sustainable means of adding fertiliser in 

salad production systems and to improve overall soil helath and biodiversity. It is considered 

to be an important component of a globally sustainable agricultural industry (Holley et al. 
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2006; Franz and van Bruggen 2008). The use of manure in organic farming is expected to 

increase with the acceptance of organic produce (Islam et al. 2004a) yet, if any manure 

contains human pathogenic bacteria, it can cause contamination of fresh produce when 

applied to fields (Franz and van Bruggen 2008). The level of pathogens varies based on the 

different manure types and the storage time (Table 2.4). In particular, untreated or partially 

composted manure may contain large numbers of pathogenic organisms, especially 

enteropathogenic bacteria (Semenov 2008).  

It has been reported that poultry are a known vector for Salmonella and while cattle and 

sheep  manure can be a primary sources of Salmonella and E. coli O157:H7 (Olaimat and 

Holley 2012). As a result, the practice of adding manure in leafy vegetable production has 

been questioned with respect to food safety, especially in organic vegetable production, since 

this substrate introduces enteric pathogens into the food chain. 

Contaminated soil can be a reservoir of enteric pathogens with these pathogens cycling 

through the environment and into the food system (Figure 2.2). The transmission of 

pathogens from manure through the production chain has become more frequent (Natvig et 

al. 2002) and is one of the major causes for the increased outbreaks of diseases from the 

consumption of fruit and vegetables (Beuchat 1996; Sivapalasingam et al. 2004). Enteric 

pathogens may transfer to crops through the application of contaminated, fresh or improperly 

composted manure. Soil can be contaminated not only from compost/manure but also directly 

or indirectly by humans, animals, water, and waste (Figure 2.2). 

 

Figure 2.2 Microbial cycle of enteropathogens. From Semenov (2008). 
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Table 2.4 Summary of the levels of zoonotic pathogens observed in livestock manures containing zoonotic agents. Data shown are arithmetic 

(A) mean for positive isolations only and highest levels observed for each pathogen and manure type are also shown (M). The number of 

positive isolations used to calculate each mean is shown (n). Adapted from Hutchison et al. (2004a). ND = not determined. 

 

 

Zoonotic agent  

Amount of pathogens (CFU log10 g
-1

) found in positive livestock waste types 

Cattle  Pig  Poultry  Sheep 

Fresh Stored  Fresh Stored  Fresh Stored  Fresh Stored 

E. coli O157            

A 2.9 x 10
6
 8.6 x 10

3
  6.9 x 10

4
 4.5 x 10

3
     1.1 x 10

4
 2.5 x 10

3
 

M 2.6 x 10
8
 7.5 x 10

4
  7.5 x 10

5
 1.8 x 10

4
  ND ND  4.9 x 10

4
 5.0 x 10

3
 

n 107 39  15 9     5 2 

Salmonella             

A  3.9 x 10
4
 1.9 x 10

5
  9.6 x 10

3
 8.9 x 10

2
  5.0 x 10

3
 4.7 x 10

3
  1.1 x 10

3
 5.8 x 10

3
 

M 5.8 x 10
5
 7.2 x 10

6
  7.8 x 10

4
 2.0 x 10

3
  2.2 x 10

4
 8.0 x 10

3
  2.0 x 10

3
 5.8 x 10

3
 

n 62 43  10 3  12 3  2 1 

Listeria             

A 1.5 x10
4
 2.2 x 10

4
  4.6 x 10

4
 1.6 x 10

4
  3.2 x 10

4
 5.6 x 10

2
  4.5 x 10

2
 2.1 x 10

3
 

M 4.2 x 10
5
 9.8 x 10

5
  9.7 x 10

5
 1.5 x 10

5
  1.9 x 10

5
 1.3 x 10

3
  1.7 x 10

3
 8.1 x 10

3
 

n 241 133  25 11  13 4  7 4 
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2.5 Survival of bacterial pathogens and factors affecting survival 

Long term survival of Salmonella and other enteric pathogens in water, manure or compost, 

soil and sediment has been well documented in many studies (Cools et al. 2001; Gong et al. 

2005; Eamens 2006; Danyluk et al. 2008; Ongeng et al. 2015). An overview of the survival 

time in different matrices, specifically for Salmonella, under different experimental settings is 

shown in Table 2.5.  

In a survival study of E. coli O157:H7 and S. Typhimurium in sandy soil, E. coli O157:H7 

numbers declined faster compared to Salmonella (Franz et al. 2005). S. Typhimurium is 

highly resistant to a range of environmental stresses and adapts readily in the nevironment to 

enable survival for longer periods of time than E. coli O157:H7 (Semenov et al. 2007). In a 

comparative study, E. coli O15:H7 strain B6-914 GFP-91 (where GFP is green fluorescent 

protein) was reported to survive for 154–271 days (Islam et al. 2004a) and for 154–196 days 

(Islam et al. 2005) in cattle manure-amended soil in the field. In a similar study, E. coli 

O157:H7 (strain ACCC 43888) and S. Typhimurium were found to survive (below the limit 

of detection, 2 CFU g
-1

) from 4–12 and 4–6 weeks, respectively, in cattle manure and soils 

amended with cattle manure in greenhouse and field conditions (Ongeng et al. 2011). In 

another field setting, S. Typhimurium was reported to survive (not detected by direct plating) 

for 203–231 days in bovine manure-amended soil (Islam et al. 2004c) and for 161–231 days 

in compost-amended soil (Islam et al. 2004a). 

A multidrug-resistant and a drug-susceptible serovar of S. Newport survived up to 405 days 

at 25°C in bovine manure-amended soil. In another study, a cocktail of five Salmonella 

serovars in hog manure slurry was reported to survive for more than 300 days at 4°C (Table 

2.5). The survival times in Table 2.5 reflect variation in survival in different environments 

and experimental methods (Ongeng et al. 2015). 

Factors such as temperature, pH, salt concentration, soil moisture, soil type, nutrient 

availabilty, microbial species and diversity all influence the survival of human pathogenic 

bacteria introduced into the soil habitat (van Veen et al. 1997; Franz and van Bruggen 2008; 

Fornefeld et al. 2017). This in turn affects the possible contamination of vegetables in the 

field (Semenov 2008).  
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Table 2.5 Overview of studies on survival of Salmonella enterica under different 

experimental conditions. Survival time is taken to be when counts are below the limit of 

detection. Adapted from Ongeng et al. (2015). 

Strain used Matrix used Experimental 

conditions 

Survival 

time (days) 

Reference  

S. Typhimurium 

DT104 (S811/99) 

Bovine manure Field setting 34–120  (Hutchison et 

al. 2004b) 

S. Typhimurium 

DT104 (S10570/99) 

Pig manure Field setting 56–120  (Hutchison et 

al. 2004b) 

S. Enteritidis PT4 

(S8167/99) 

Poultry manure Field setting 56  (Hutchison et 

al. 2004b) 

S. Typhimurium x
3985

 

∆crp- 11 ∆ cya-12 

Bovine manure Field setting 203–231  (Islam et al. 

2004c) 

S. Typhimurium x
3985

 

∆crp- 11 ∆ cya-12 

Compost-

amended soil 

Field setting 161–231  (Islam et al. 

2004b) 

S. Typhimurium 

unspecified strain 

Bovine manure Field setting 32–42  (Hutchison et 

al. 2005) 

S. Typhimurium 

unspecified strain 

Pig manure Field setting 16–32  (Hutchison et 

al. 2005) 

S. Typhimurium 

unspecified strain 

Sheep manure Field setting 16  (Hutchison et 

al. 2005) 

S. Typhimurium 

unspecified strain 

Poultry manure Field setting 63  (Hutchison et 

al. 2005) 

S. Typhimurium 

MAE119–pGFP, 

Typhimurium 

MAE110–pGFP 

Bovine manure Isothermal at 

20°C 

>133 (Franz et al. 

2005) 

S. Newport 

unspecified strains 

Cow manure Isothermal at 

25°C 

184  (You et al. 

2006) 

S. Newport 

unspecified strains 

Bovine manure-

amended soil 

Isothermal at 

25°C 

405 (You et al. 

2006) 

S. Newport 

unspecified strains 

Bovine manure 

slurry 

Storage in steel 

tanks 

90  (Nicholson et 

al. 2005) 

S. Newport 

unspecified strains 

Bovine manure-

amended soil 

Field setting 300  (Nicholson et 

al. 2005) 

Mixture of S. 

Typhimurium, S. 

Agona, S. Hadar, S. 

Oranienburg, all 

unspecified strains 

Hog manure 

slurry 

Isothermal at 

4, 25 and 37°C 

>300 at 4°C (Arrus et al. 

2006) 

S. Typhimurium LT2, 

virulence attenuated 

Bovine manure 

and manure-

amended soil 

Screen house 

and field 

settings 

42–98  (Ongeng et al. 

2011) 
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2.5.1 Soil moisture  

Many studies have indicated that the moisture status of soil is an important factor affecting 

the survival of enteric pathogens (Entry et al. 2000; Mubiru et al. 2000; Holley et al. 2006; 

Lang and Smith 2007) such that low moisture availability in soil adversely affects survival of 

enteric bacterial pathogens in soil or manure-amended soil (Jamieson et al. 2002). In a 

survival study in a soil system held at 25°C, both E. coli O157:H7 and Salmonella was 

affected by moisture content with greater losses in soils adjusted to 40% water holding 

capacity (WHC) compared to soils adjusted to 20% WHC (Erickson et al. 2014). It was also 

reported that drying reduces the number of S. Typhimurium found in manure and litter, 

however, drying is only effective at certain levels of water activity. When most of the water 

has been removed, Salmonella will survive for longer periods of time (Himathongkham and 

Riemann 1999). A study modelling growth and death kinetics of Salmonella as a function of 

water activity (Aw) and pH reported that Salmonella population decreased approximately 5 

log CFU g
-1

 in 9 hours to below detection limits, in chicken litter with a pH of 4 and aw 0.84 

(Payne et al. 2007). 

2.5.2 Temperature   

Salmonella can grow in a wide range of temperature (2–54°C) although in bacteriological 

media, growth below 7°C has been observed, while growth above 48°C is mainly for mutant 

and tempered strains (Cox and Pavic 2014). The optimum temperature for Salmonella growth 

is 37°C (Cox and Pavic 2014). 

Generally, temperature has an important effect on the growth and decay of bacteria in the soil 

(Ongeng et al. 2015). Various studies have indicated that a decline in Salmonella numbers 

occurs with increasing temperature (Wang et al. 1996; Kudva et al. 1998; Himathongkham et 

al. 1999; Arrus et al. 2006; Semenov et al. 2007) in manure or manure-amended soil. In 

addition, Semenov et al. (2007) reported that the decline of the pathogen was high when the 

temperature was increased from 7 to 33°C. On the contrary, Jiang et al. (2002) reported a 

reduced survival at 5°C when compared with 15 or 21°C. In general, for each 10°C increase 

in soil temperature, the die-off rates of bacterial pathogens are doubled (Leifert et al. 2008). 

In Salmonella-contaminated manure stored at different temperatures (4, 20 and 37°C), an 

exponential reduction in numbers was observed and the main effects of time and temperature 

were most pronounced, with the most rapid die-off at 37°C (Himathongkham et al. 1999).  
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Generally, more information is needed on behaviour of human pathogens under natural 

environments and  substrates such as manure and soil under variable temperatures on a daily 

basis. Furthermore, numerous studies indicate that the behavior of bacterial population in soil 

or manure is complex than the earlier assumptions and involves various processes and 

interactions with soil biomass, pH ammonium and nitrate content (Zelenev et al. 2005). 

Through greater understanding of the population changes in enteric pathogens under natural 

conditions we would be better able to predict the risk to human health to foodborne illness in 

the supply chain. 

2.5.3 Soil type  

Environmental soils in which Salmonella is commonly found are from agricultural fields 

(Lim et al. 2014). Soils of different types differ in their physical, chemical and biological 

properties. Most of these properties affect the growth and survival of microorganisms in the 

soil habitat. In general, fine-textured clay soils promote survival of foodborne illness bacteria 

compared to soils with a coarse sandy texture (van Veen et al. 1997; Danyluk et al. 2008; 

Franz and van Bruggen 2008). This is thought to be related to differences in moisture content, 

WHC, carbon source and oxygen availability. Pore size distribution strongly influences the 

survival of bacteria in soil and the turnover of organic matter is slower in fine-textured soils 

than coarser ones (van Veen et al. 1997). Studies have reported longer survival of E. coli 

O157:H7 (Ibekwe et al. 2004) and Salmonella (Natvig et al. 2002) in clay-based soil and in 

soil with higher moisture levels (Mubiru et al. 2000). In contrast, E. coli O157:H7 survived 

longer in sandy soil than in clay soil (Ibekwe et al. 2007; 2009). 

2.5.4 Nutrient status of soil  

Nutrient availabilty is a key factor affecting the survival and growth of bacterial pathogens in 

soil. For example, presence of soil organic matter improves the survival of bacterial 

pathogens due to increased retention of nutrients, by providing a source of carbon and 

improving moisture holding capacity (Jamieson et al. 2002). Most manure sources are known 

for their high organic matter content, and it has been reported that the use of fresh manure 

significantly enhances the survival of S. enterica and E. coli O157H:7 (Ongeng et al. 2015). 

Manure and manure-amended soil, which have enhanced concentrations of carbon serving as 

a source of energy, nitrogen and other nutrients, are expected to support survival and growth 

of bacterial pathogens more than soil with low levels of carbon and nutrients (Ongeng et al. 
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2015). For example, survival of S. Typhimurium was significantly increased in manure-

amended soil compared to non-amended soil (Garcia et al. 2010). Islam et al. (2004c) found 

that soil used to grow parsley and lettuce, which had been amended with composts, supported 

the survival of S. Typhimurium for 232 and 161 days, respectively. In another survival study, 

Salmonella serovars were reported to survive for about 300 days in soil treated with cattle 

manure (Holley et al. 2006). 

In addition to carbon and nitrogen, exchangeable ions are also found to affect the survival of 

E. coli O157:H7 in soil. Survival time to reach the minimum detection limit decreased with 

increasing electrical conductivity and concentrations of individual soil cations (e.g., K
+
, Na

+
, 

Ca
+
 and Mg

2+
). These cations interfere with ion transport, enzyme activity and protein 

synthesis in E. coli O157:H7, which in turn result in reduced survival of the pathogen in the 

soil (Zhang et al. 2013). 

2.5.5 Soil microbiota  

In addition to abiotic stress, enteric bacteria have to compete and interact with endogenous 

microrganisms to survive within the soil environment (Warriner et al. 2009). Some studies 

indicate that enteric pathogens compete poorly for nutrients and are susceptible to inhibition 

generated by soilborne bacteria. For example, in manure-amended autoclaved soil, E. coli 

O157:H7 counts increased from 0.3–2.0 log10 CFU g
-1

 within 3 days at 15 and 21°C, whereas 

the pathogen did not grow in unautoclaved soil likely because of the antagonistic activity of 

soil bacteria that were present (Jiang et al. 2002).  

2.5.6 pH 

Salmonella spp. can grow in substrates with a pH range from 4.5–9.5 but the optimum pH for 

most serovars is within the range 6.5–7.5 (Cox and Pavic 2014). Several reports show that pH 

and soil substrate acidity affected survival of pathogens (Foster and Spector 1995; Lin et al. 

1996). In general, a neutral pH is expected to favour survival and extreme pH negativley 

affect the survival of bacterial pathogens (Ongeng et al. 2015). While most of the 

gastrointestinal tract has a neutral pH, Salmonella is exposed to acidic pH in the stomach of 

animal hosts and may develop a mechanism to resist acidic stress (Lin et al. 1996). In manure 

and soil amended with manure, the survival time of Salmonella is more strongly affected by 

temperature less affected by pH (Semenov 2008) and, overall, survival is expected to be 
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favoured by an acidic pH as the organism seems to have molecular adaptations in response to 

acidic stresses (Ongeng et al. 2015). 

2.6 Survival of bacterial pathogens on fresh produce  

Even though enteric pathogens are not generally considered to be a part of native plant-

bacterial associations, there is emerging evidence that they can to grow and persist both 

externally and internally on edible plants (Harris et al. 2003; Brandl 2006; Gomes et al. 

2009). The points of entry that bacteria utilise to invade plants are stomata, hydathodes, 

nectarthodes, lenticels, germinating roots including points where lateral roots arise (Gomes et 

al. 2009).  

The ability of pathogens to adhere to fresh produce depends on intrinsic and extrinsic factors 

including motility of the pathogen, the total microbial environment of the host plant and 

interaction with these organisms, and availability of nutrient exudates from the plant 

(Aruscavage et al. 2006). The ability of the pathogen to move promotes pathogen entry into 

openings or wounds on the plant. For example, S. Seftenberg has been reported to attach to 

leafy greens such as basil, lettuce, rocket and spinach, and it is believed that the bacterial 

motility play a major role in these interactions (Berger et al. 2009). Salmonella are not 

attracted to open stomata that are not producing sugar, however the presence of nutrients may 

attract bacteria to the stomata openings during photosynthesis (Kroupitski et al. 2009). It has 

been reported that the most common area of bacterial aggregation on plants is the area near 

the trichomes, within the stomates and near veins in the leaves (Aruscavage et al. 2006). 

These regions have high wettability which promotes water availabilty and nutrient leaching 

that, in turn, support microbial growth. 

Pathogen internalisation may be transient and is affected by plant maturity and maturation 

rate. For example, S. Newport invaded aerial sections of romaine lettuce through the roots in 

33 day-old plants but not in 17–20 day-old seedlings (Bernstein et al. 2007b). However, 

internalisation of enteric pathogens was mainly observed in seedlings rather than in mature 

plants (Warriner et al. 2003a; Bernstein et al. 2007a). Major points of microbial entry include 

wounds that naturally occur as roots emerge and branch creating natural entry points 

(Warriner et al. 2003a). A three-phase process of plant internalisation has been proposed in 

roots of hydroponically-grown tomato plants infected with Ralstonia solanacearum: (1) 

colonisation of the root surface and formation of microcolonies at locations with nutrient 
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leakage; (2) infection of the vascular parenchyma as the population number reaches a level 

where plant defense is no longer effective; and (3) invasion of the xylem (Klerks et al. 

2007a). There may be similar mechanisms of entry for Salmonella into tomato roots to that of 

R. solanacearum (Schell 2000; Klerks et al. 2007a) however this has not been confirmed 

(Schell 2000). 

Many studies have indicated the internalisation of human pathogens in or on plants. 

Escherichia coli O157:H7, Salmonella and L. monocytogenes have all been found to colonise 

various vegetables at different growth stages and in different tissues (Table 2.6). For instance, 

Salmonella and L. monocytogenes can be internalised within core tissue of tomatoes and in 

the stomata of lettuce (see Figure 2.3) and spinach (Zhuang et al. 1995; Ölmez and Temur 

2010). In another study, S. Typhimurium was found to colonise roots of carrot and radish, 

grown under field conditions treated with contaminated manure, compost or irrigation water 

(Islam et al. 2004b). Escherichia coli O157:H7 has been reported to enter lettuce plants 

through the root system and move via the vascular system to the leaves above ground 

(Solomon et al. 2002).  

Table 2.6 Internalisation of pathogens within growing plants. Adapted from Warriner et al. 

(2009), Fornefeld et al. (2017) and Nicholson et al. (2015). 

Pathogen Plant Reference 

Escherichia coli O157:H7  Radish sprouts Itoh et al. (1998) 

Salmonella  Tomato stems and blossoms Guo et al. (2001) 

E. coli O157:H7  Lettuce seedlings Solomon et al. (2002) 

Nonpathogenic E. coli  Cabbage seedlings Rafferty et al. (2003) 

E. coli O157:H7 and Salmonella  Arabidopsis plants  Cooley et al. (2003) 

E. coli Spinach plants cultivated in 

soil or hydroponically 

 

Warriner et al. (2003a) 

E. coli and Salmonella  Mung bean sprouts Warriner et al. (2003b) 

E. coli O157:H7, Salmonella 

and Listeria monocytogenes  

Various leaf vegetables Jablasone et al. (2005) 

Salmonella  Parsley stomata and cut 

cuticle cracks 

Duffy et al. (2005) 

Salmonella  4 week-old barley roots Kutter et al. (2006) 

E. coli O157:H7  Mature lettuce  Bernstein et al. (2007a) 
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Pathogen Plant Reference 

E. coli O157:H7 and Salmonella  Hydroponically cultivated 

lettuce 

Franz et al. (2007) 

Salmonella  Tomato blossoms Shi et al. (2007) 

E. coli O157:H7 and Salmonella  Romaine lettuce (Nicholson et al. 2015) 

Salmonella  Lettuce (Zhang et al. 2016) 

 

 

Figure 2.3 Scanning electron microscopy image showing the complex topography of a single 

stomatal region and multiple bacteria (potentially Salmonella) internalising a lettuce leaf 

within the stomatal space. From Kroupitski et al. (2009). 

In contrast to these studies, Fatica and Schneider (2011) reported that Salmonella spp. lack 

the adaptability to survive on plants. Rather, the pathogen attaches to the plant as part of a  

biofilm (Figure 2.4) which enable the bacteria to persist on or within the plant. Biofilms 

protect bacterial cells from adverse environmental conditions such as low humidity and 

bactericidal agents such as sanitisers, commonly used in the industry  (Buck et al. 2003; 

Morris and Monier 2003). 

Upon attachment of Salmonella to leaf surfaces, bacteria exposed to environmental 

conditions such as temperatures below 30°C and low levels of atmospheric oxygen may 

trigger expression of regulatory sRNAs and proteins (e.g. RpoS, CsgD and SirA) (Yaron and 

Römling 2014). Stress signals that are a result of low nutrient availability and the presence of 

antimicrobial compounds produced by the plant or indigenous microorganisms can also 
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enhance the expression of sRNAs and proteins. The genes involved in production of 

components responsible for the biofilm matrix such as cellulose, curli and BapA are activated 

by stimulation of regulatory proteins leading to the development of biofilms on the leaf 

surface. The biofilm components contribute to the induction of local and systemic plant 

defense responses while the biofilm structure stabilises bacterial colonisation on the plant and 

provide protection from various stresses (Yaron and Römling 2014).  

 

Figure 2.4 Biofilm formation on leaves by Salmonella. From Yaron and Römling (2014). 

Many studies indicate that after successful attachment or internalisation, human enteric 

pathogens may survive for long periods. In the field, E. coli O157:H7 and Salmonella were 

detected after 177 and 231 days, respectively, on parsley plants (Islam et al. 2004a; c). In 

addition, 17 weeks after the application of contaminated manure, S. Typhimurium was 

isolated from arugula plants after harvesting (Natvig et al. 2002). However, the long term 

survival of microorganisms on fresh produce is affected by nutrient availability, the presence 

of toxic compounds generated by the plant and antagonistic activity from other 

microorganisms (Whipps et al. 2008).  
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Some studies report that the internalisation of human enteric pathogens within plant tissue is 

not through root hairs; rather, possible contamination of vegetables growing in contaminated 

soil is through splash from irrigation or rain (Natvig et al. 2002). Escherichia coli O157:H7 

was not internalised within intact lettuce leaves and roots after microbial inoculation of the 

leaf surface and soil regardless of the type of lettuce, age of plants or strain of bacteria in 

more than 500 surface-sanitised lettuce leaves and roots (Zhang et al. 2009). Only two of the 

root samples were positive and these two positive samples were likely to have resulted from 

inadequate surface sanitising or infiltration of E. coli O157:H7 through wounds. In similar 

studies, E. coli O157:H7 was not able to colonise spinach plants (Hora et al. 2005) or crisp 

head lettuce (Johannessen et al. 2005). It is evident that plant internalisation by enteric 

pathogens, either through root hairs, wounds or stomatal openings, is not well described in 

the literature and requires further research. 

2.7 Control measures for bacterial pathogens on fresh produce  

Current public health concerns regarding microbiological contamination of fresh produce has  

focused research on reducing or minimising the risk of contamination throughout the 

production system from the paddock to the plate but particularly during the postharvest 

washing stage  (Franz and van Bruggen 2008). Sanitisers such as chlorine, chlorine dioxide, 

bromine, acidified sodium chlorite, iodine, alkaline compounds, organic acids, hydrogen 

peroxide, ozone and irradiation are commonly used (Franz and van Bruggen 2008). In 

addition, preharvest measures may be undertaken to prevent the risk of contamination of 

fresh produce in the field.  

2.7.1 Postharvest measures 

Postharvest washing of produce presents an opportunity for cross-contamination to occur so 

sanitisers are often used, with chlorine being the most common. The use of peroxyacetic acid 

for sanitising specific food products, including fresh produce, at concentrations that do not 

exceed 80 ppm in wash water has been approved in the USA (Olaimat and Holley (2012). 

Regulation of sanitiser use vary from country to country and some may be prohibited in 

organic production (Franz and van Bruggen 2008). 

It may be difficult to clean fresh produce once it is contaminated because the efficacy of 

sanitisers in removing Salmonella depends on its location on the produce. Salmonella on stem 

scars and cracks in the skin survive better than Salmonella on smooth skin (Hanning et al. 
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2009). Furthermore, the ability of Salmonella and other foodborne pathogens to internalise 

creates a significant challenge in eliminating bacteria from these foods. Chlorine and 

treatments such as electrolysed water or ozonated water may eliminate Salmonella from the 

surface of fresh produce but are ineffective at reaching at any internalised plant parts 

(Chaidez et al. 2007; Park et al. 2008). These treatments targeted at enteric pathogens also 

remove and kill native microflora which might otherwise have an inhibitory effect on 

pathogens by competing directly for space and nutrients or by producing antagonistic 

compounds.  

Investigations have shown that ultraviolet (UV) light is effective in reducing microorganisms 

in food products; however, applications remain limited because the poor penetration of UV 

radiation into food matrices can make treatments unreliable. The effectiveness of UV light 

decreases as the amount of suspended particles in the treatment medium increases. In 

addition, some bacteria exhibit enhanced resistance to UV-C when in the stationary phase of 

growth (Child et al. 2002; Bucheli‐Witschel et al. 2010). Some authors have suggested that a 

greater reduction in microbial loads can be achieved by combining UV light with heating to 

temperatures that are lower than those used in pastuerisation (Gayán et al. 2012). A drawback 

associated with use of UV radiation in foods is that high levels of irradiation can produce off-

flavours and discolouration whereas lower levels may not be fully effective in eliminating 

bacteria (Hanning et al. 2009). 

 2.7.2 Preharvest measures  

2.7.2.1 Composting practices 

Generally, composting of manure before application to soil is required to decrease the risk of 

bacterial pathogens. This practice helps to reduce the level of pathogens before application to 

agricultural fields which, in turn, minimises contamination of soil, surrounding water and 

produce (Islam et al. 2004b; Ceustermans et al. 2007). Several factors affect the composting 

process such as pH, particle size, porosity, nutrient balance, temperature and water content. A 

high carbon:nitrogen (C:N) ratio makes the composting process slow as there is an excess of 

degradable substrate as an energy source for the microorganisms. With low C:N ratios, there 

is an excess of N per degradable carbon and inorganic N which is produced in excess, can be 

lost in the form of ammonia or nitrate. Compost with a low C:N ratio can be corrected by 

adding a bulking agent such as straw to provide degradable organic carbon. 
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Proper aeration is an important factor in the composting process as it controls temperature, 

removes excess moisture and CO2 and provides O2 for respiration of aerobic microbes 

(Bernal et al. 2009). The optimum temperature range for composting is 40–65°C and 

temperatures above 55°C are required to kill pathogenic microorganisms (Bernal et al. 2009). 

According to Manyi-Loh et al. (2016), the threshold levels of Salmonella after a composting 

process is <3 most probable number (MPN) g dry matter
-1

 in the USA, 0 per 25 g wet weight
-

1
 in France, <100 MPN g dry matter

-1
 in Italy and 0 per 25 g fresh mass

-1
 in the United 

Kingdom. For fecal coliforms, the maximum level is <1000 MPN g dry matter
-1

 in the USA 

and Canada.  

Bacterial pathogens are occasionally detected in compost products (Pera et al. 1991; Gong et 

al. 2005; Gong et al. 2006). In the United States, a survey of 72 commercial composting 

facilities found that more than half of the facilities were positive for Salmonella spp. Some of 

the products were contaminated despite meeting the time-temperature criteria for 

decontamination (Hay 1996). In an experiment on survival of bacterial pathogens in 

composted products, coliform bacteria and Salmonella were detected in 37 and 16% of 

samples, respectively (Gong et al. 2005; Elving 2009). Pathogenic bacteria in most samples 

were destroyed by the composting process; however, some pathogenic bacteria survived, 

especially in compost derived from organic refuse. This is because the organic waste provides 

a carbon source which enables the pathogen to survive for long periods of time (Gong et al. 

2005; Elving 2009). Three categories of compost products: (i) raw material held at 48°C for 

20 days; (ii) uncompleted compost held at 45°C for 30 days; and (iii) compost product held at 

44°C for 50 days were found to contain more than 10
7
, 3.7 x 10

4
 and 6.0 x 10

3
 CFU g

-1
 of 

Salmonella, respectively (Gong et al. 2005). In addition, it was reported that Salmonella and 

E. coli survived for 95 days at 60°C in industrial compost (Droffner and Brinton 1995). These 

studies indicate that a number of pathogenic bacteria can survive even after being exposed to 

high temperatures for long periods (Gong et al. 2005).  

According to the USDA organic certificate program, harvesting a crop that does not touch the 

soil, may not occur inside a window of 90 days after addition of manure into the soil. For 

crops that do come in contact with the soil, the rule states at least 120 days should elapse after 

manure addition, before harvesting an edible product (Anonymous 2000, as cited in Franz 

and van Bruggen 2008). In the United Kingdom, 6 months is recommended between the time 

of manure application and harvest (Nicholson et al. 2000). According to Australian and New 

Zealand guidelines for food safety of fresh produce, the exclusion period between the 
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application of untreated manure and crop harvest, particularly for lettuce is 90 days (Fresh 

produce safety center 2015). In many countries such regulations do not exist and 

uncomposted manure is still widely used in vegetable production (Semenov 2008). 

2.7.2.2 Soil biofumigation  

Soil pests and pathogens may be suppressed or killed by naturally occurring biocidal 

compounds released after a green manure crops is incorporated into the soil and is termed 

biofumigation (Kirkegaard et al. 1997; Matejiceck et al. 2002; Gimsing et al. 2005). The 

active compounds are typically secondary plant metabolites such as glucosinolates and 

phenolics.  

Glucosinolates (GSLs) are a group of compounds produced by the family Brassicaceae (such 

as broccoli, cabbage, kale, mustard and canola); however, they are not confined to this family 

(Fahey et al. 2001). The properties of GSLs and their degradation products were first 

observed at the beginning of the 17
th

 century while investigating the reason for the sharp taste 

of mustard seeds (Challenger 1959). When tissues of GSL-containing plants are damaged or 

disrupted, GSL comes into contact with the endogenous enzyme myrosinase, which 

hydrolyses the GSL to several biologically active compounds (Delaquis and Mazza 1995; 

Mari et al. 2008; Al-Gendy et al. 2010). Even though there are more than 120 different side 

chains, GSLs are categorised in three groups: aliphatic, aromatic and indolyl (Gimsing et al. 

2005). The differences in chemical properties, biological activity and the hydrolysis products 

of the various GSLs are largely determined by the side chains (Gimsing et al. 2005). 

Glucosinolates are polar and highly water-soluble compounds and when they come in contact 

with myrosinase they hydrolyse relatively quickly, especially if there is water present, with 

isothiocyanates (ITCs) the most common hydrolysis products (Wathelet et al. 2004). 

Concentrations of GSLs vary in different plant species and tissues. For example, in canola, 

the mature aboveground plant tissue has very low concentrations, whereas the roots are the 

principal source of GSLs for biofumigation (Kirkegaard et al. 1997).  

There are many processes following the release of GSLs into soil which influence the 

effectiveness of suppression (Kirkegaard et al. 1997). Some mechanistic studies have 

indicated the antibacterial effects of ITCs even though their mode of action is still unclear. 

This might be through damaging cellular structures, particularly the plasma membrane, which 

led to ATP leakage in E. coli (Lin et al. 2000; Luciano and Holley 2009). It has been reported 
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that Gram-negative bacteria tend to be more sensitive to ITCs than their Gram-positive 

counterparts (Wilson et al. 2013). Preliminary studies in north Queensland, Australia 

indicated that the population of Ralstonia solanacearum, the bacteria responsible for bacterial 

wilt, declined from 10
7
 CFU g

-1
 soil to undetectable levels after incorporation of canola 

residue and incubation for 4 weeks (Akiew and Trevorrow 1997, as cited in Kirkegaard et al. 

1997). 

Many studies have proposed that phenolic compounds from various plants may also have 

biofumigation effects against pathogenic bacteria (Cetin-Karaca 2011). For instance, phenolic 

compounds extracted from mushrooms had antimicrobial activity against both Gram-positive 

and Gram-negative bacteria (Alves et al. 2013). Protocatechuic acid, 2,4-dihydroxybenzoic 

acid, vanillic acid, p-coumaric acid and cinnamic acid derivatives are some common phenolic 

compounds shown to possess antimicrobial activity (Alves et al. 2013). For example, p-

coumaric acid has an antimicrobial effect against Gram-negative bacteria such as E. coli, S. 

Typhimurium and Shigella dysenteriae through changing the permeability of the cell 

membrane. It also has the capacity to bind to DNA, inhibiting general cell function (Lou et 

al. 2012). Chestnut and mimosa tannins were found to reduce the growth rate of E. coli 

O157:H7 with the degree of growth reduction correlated with tannin concentration (Min et al. 

2007). Syringic and ellagic acids (0.5 mg mL
-1

) have an antimicrobial effect against L. 

monocytogenes, while cinnamic acid inhibits Streptococcus agalactiae at the same 

concentration (Alves et al. 2013). In another study, the rate of death of E. coli O157:H7 was 

found to increase 17-fold and 23-fold by the addition of 0.5% trans-cinnamic acid or 0.5% 

para-coumaric acid, respectively, compared to control treatments with no addition (Wells et 

al. 2005). 

2.7.2.3 Soil solarisation  

Soil solarisation is a non-chemical approach (Stapleton and DeVay 1986; Raio et al. 1997) 

which is commonly used to treat soil to reduce microbial activity (Meays et al. 2005). 

Solarisation is achieved by covering the soil with plastic film to retain solar heat energy, 

thereby raising the soil temperature to levels that are lethal to many pathogens (Gamliel and 

Stapleton 1997). Solarisation is usually applied for 4 weeks or longer to suppress soil 

pathogens to depths of 45–60 cm below the soil surface. For example, heating the soil to a 

temperature of 45°C to simulate solarisation was very effective in reducing the viability of 

Pythium ultimum and Sclerotium rolfsii (Gamliel and Stapleton 1997). Soil temperature 
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during solarisation is low compared to artificial heating methods such as steaming. There are 

side effects with soil steaming such as phytotoxicity and pathogen reinfestation due to the 

creation of a biological vacuum; however, this has not been reported with solarisation 

(Gamliel and Stapleton 1997).  

2.7.2.4 Biofumigation with solarisation 

In a soil solarisation experiment where soil was amended with cabbage residue, it was 

reported that the concentration of volatile compounds was higher in heated (solarised) soil 

than in the corresponding unheated soil (Gamliel and Stapleton 1993). The addition of 

broccoli residue to soil at 20°C was not effective in supressing root gall in melon plants; 

however, temperatures of 30–35°C for a period of 10 days almost eliminated the galling on 

the roots after soil amendment with broccoli residues (Ploeg and Stapleton 2001). In a similar 

soil solarisation study, the number of propagules of Pythium ultimum and Sclerotium rolfsii 

were reduced by more than 95% when the propagules were exposed to volatile compounds 

generated from heated cabbage-amended soil but the propagules from both fungi were not 

reduced to this extent when exposed to compounds generated from unnheated cabbage-

amended soil (Gamliel and Stapleton 1993). Other studies involving the combination of 

biofumigation with solarisation have been done for the control of, among other pests and 

diseases, root-knot nematodes (Moura et al. 2012), bacterial spot (Misrak et al. 2014) and 

Phytophthora (Poras et al. 2009) but there are no recent studies using both treatments for 

control of foodborne pathogens. 

2.8 Summary 

Foodborne illness is a serious problem that can affect large numbers of people.  The negative 

publicity associated with food recalls reduces consumer confidence and product demand 

leading to substantial economic losses for all sectors of the supply chain. It is imperative that 

all parts of the supply chain are dedicated to implementing good management practices that 

reduce the risk of contamination (Berger et al. 2010). There is a significant amount of 

research into development of approaches to eliminate or suppress enteric pathogens in both 

preharvest and postharvest stages.  

Many postharvest measures are employed to suppress enteric pathogens associated with fresh 

produce. However, sanitising agents may be ineffective in eliminating pathogens from the 

produce due to internalisation, formation of biofilms or other mechanisms. Therefore, 
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preharvest measures to remediate contaminated soil are critical in maintaining the safety of 

fresh produce. Soil biofumigation and solarisation have been found to suppress some fungal 

and bacterial pathogens in the soil habitat but more research is required in this area.   
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3. General materials and methods  

3.1 Site description 

The two soils used in the microcosm pot trial (Chapter 4) and field experiment (Chapter 5) 

were collected from two properties owned by the University of Sydney. Coarse sand 

(hereafter referred to as ‘sandy soil’) was collected from Karalee Farm near Camden, from an 

area which had previously been used as pasture and for small scale horticultural crop 

production. The site is located approximately 70 km from Sydney (34°00’57.90” S, 

150°40’19.17” E). The predominant soil type is classified as a Rudosol and the climate is 

characterised by warm-to-hot summers and cool-to-mild winters. The annual mean maximum 

and minimum temperatures in this area are 23.7°C and 10.2°C, respectively, with the highest 

and lowest mean temperatures occurring in the months of January and July, respectively. 

Rainfall is approximately 788 mm per annum (Bureau of Meteorology 2016a). 

 Clay loam (hereafter referred to as ‘clay soil’) was collected from John Bruce Pye Farm 

(hereafter referred to as Pye Farm), which is a research facility used for large-scale cereal 

breeding and fungicide trials. Pye Farm is located near Bringelly, approximately 60 km from 

Sydney (33°56’33.92” S, 150°40’06.02” E). The area is dominated by red Sodosol soils and 

the climate is also characterised by warm-to-hot summers and cool-to-mild winters. The 

annual mean maximum and minimum temperatures in the area are 23.8°C and 10.8°C, 

respectively, with the highest and lowest temperatures in the area occurring in the months of 

January and July, respectively. Rainfall is approximately 750 mm per annum (Kehlet 2010; 

Bureau of Meteorology 2016b). 

The two soil types (clay and sandy) were selected to evaluate the die-off of Salmonella in two 

contrasting soil types under Australian conditions. The soils were exposed to similar 

conditions such as temperature, moisture and incubation time for the microcosm pot trial 

whereas for the field experiment, they experienced similar ambient environmental conditions, 

except for date of sampling and irrigation interval. 
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3.2 Soil description 

3.2.1 Microcosm soil pot trial  

Bulk soil used for the microcosm pot trial was sieved to 2 mm and stored until required. For 

preparation of samples for soil analysis, the same masses of soil used in the microcosm pot 

study (see Chapter 4) were placed in incubation vials and chicken manure was added at the 

same rate as that used in the microcosm pot trial (i.e. 0 or 2%, w/w; n = 5 for each treatment). 

Phosphate buffer solution was added (5 mL) to each replicate to imitate addition of inoculum 

in the original microcosm pot trial (see Chapter 4). It was presumed that soil moisture was 

similar as in the original study (i.e. 15.2 ± 0.8% for clay soil and 9.6 ± 0.5% for sandy soil). 

The soil was allowed to equilibrate for 48 h at 5°C prior to analysis.  

3.2.2 Field experiment soil  

Soil samples were randomly taken using soil cores from 10 points across each field (5 cm 

diameter, 10 cm depth), sieved to 2 mm, air dried and bulked to form a single composite 

sample. 

3.2.3 Soil analyses  

The chemical and physical properties of soil from both Karalee Farm and Pye Farm, used for 

the microcosm pot trial and field experiment, were analysed as described below. Some 

analyses (such as soil colour, phosphorus, potassium, sulphur and micronutrients) were 

performed by an analytical services provider accredited by the Australasian Soil and Plant 

Analysis Council. The methods for these analyses are not described in this chapter. 

3.2.3.1 Particle size analysis  

Soil texture was determined using the standard hydrometer method (Bouyoucos 1962). 

Approximately 50 g of soil from the composite sample was shaken with 50 mL of 5% sodium 

hexametaphosphate solution (at pH 8.5) for 48 h. After transferring the soil mixture into a 

large measuring cylinder, a dilution was made up to 1 L using deionised water and stirred 

thoroughly using an agitator. A hydrometer was carefully immersed into the soil mixture and 

a reading was recorded at 5 min and 8 h. After all measurements were taken, the suspended 

clay particles were discarded and the material that had settled was washed by repeating the 

process of stirring with water and decanting the suspended material at least five times.  
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To remove any organic matter, the remaining soil mixture was treated using 30% hydrogen 

peroxide solution. After adding 25 mL of hydrogen peroxide (H2O2) to the soil mixture, it 

was swirled to mix thoroughly. The mixture was then heated at 60°C for 2 h. When 

effervescence occurred, the beaker was removed from the heat until the reaction ceased. More 

H2O2 (5 mL aliquots) was added to the soil mixture and the process was repeated until there 

was no further effervescence. The sample remaining at the end of the treatment was sieved to 

fractions greater than 100 µm and less than 100 µm. Both fractions were oven-dried at 105°C 

for 24 h and dry weights recorded. 

3.2.3.2 Total carbon and nitrogen  

Composites soil samples were ground (53 µm) and analysed for total nitrogen (N) and carbon 

(C) by dry combustion (Elementar, CN Analyzer, Germany).  

3.2.3.3 Ammonium and nitrate  

Soil extracts were prepared by shaking 5 g of fresh soil with 0.05 M potassium sulphate for 1 

h then filtered with ashless filter paper. Using a continuous flow injection system 

(QuikChem®, Lachat Instruments, USA), ammonium and nitrate were determined 

colorimertically based on the standard Lachat method (Hofer 2003; Pritzlaff 2003). To 

describe this process briefly, soil extracts were mixed with salicylate and hypochlorite in an 

alkaline phosphate buffer and heated gently. Ammonium in soil extracts was determined by 

colorimetric analysis at 630 nm. For the determination of nitrite, an aliquot of the soil extract 

was passed through a copperised cadmium column. Nitrate in soil extracts was reduced to 

nitrite, which was then measured by diazotising with sulphanilamide and mixed with N-(1 

naphthyl) ethylenediamine dihydrochloride. The concentration of nitrate was determined 

colorimetrically at 520 nm.  

3.2.3.4 Gravimetric moisture content 

15 g soil samples from the bulk soil used for microcosm pot trial and from soil collected from 

the field (see above) were used to determine moisture content. The weight of soil was 

recorded before and after oven-drying at 105°C for 24–48 h. Gravimetric moisture content 

(%) was calculated as: 
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3.2.3.5 Soil acidity and electrical conductivity 

Electrical conductivity (EC) and pH of soil was measured in a water suspension of 1:5 

soil:H2O. Approximately 5 g of field moist soil was mixed with 25 mL deionised water and 

shaken on a wheel rotator for 15 min. Samples were allowed to settle for 15 min before 

measurement. Values for pH and EC in the water suspension were measured using a pH 

meter (PHM210, MeterLabTM) and an EC meter (CDM210, MeterLabTM), respectively. 

3.2.3.6 Bulk density  

Soil samples for measurement of bulk density were taken from an undisturbed horizontal 

surface after removal of any plant or dead material from the soil surface. A steel core (5 cm 

diameter, 10 cm depth) was hammered into the soil and excavated without disturbing the soil 

within the core. The core was carefully removed keeping the soil intact and any excess soil 

from the outside ring was removed. The soil was transferred to a plastic bag and sealed to 

prevent water loss. The soil was oven dried for 48 h at 105°C and dry weight was measured 

for clay soil (Pye Farm) and sandy soil (Karalee Farm). Soil bulk density was calculated 

using the following formula (n = 5 per site): 

Bulk density (g cm
-3

) = Dry soil weight (g)/ soil volume (cm
3
) 

 

3.3 Preparation of media 

All basal growth media were prepared as per manufacturer instructions (see Appendix 1). 

These include nutrient agar (NA), Trypticase soy agar (TSA), Tryptic soy broth (TSB), 

Xylose lysine deoxycholate (XLD) agar, Xylose-lysine-tergitol 4 (XLT4) with agar 

supplement, phosphate buffer, mBroth, Demi-Fraser broth, and Listeria chromogenic agar. 

The modified media which were prepared by adding sodium pyruvate, iodine supplement and 

rifampicin are presented below. 

Gravimetric moisture content =  
Soil wet weight (g)    –   soil dry weight (g) 

soil dry weight (g) 
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3.3.1 Preparation of trypticase soy agar with sodium pyruvate and rifampicin  

Rifampicin (32 mg) (Biochemicals, Australia) was dissolved in 1 mL of methanol and the 

solution was sterilised by passing through a sterile 0.22 µm syringe filter into a sterile 

centrifuge tube. The stock solution was covered with aluminum foil and stored at 5°C until 

required.  

Trypticase soy agar (TSA) medium was prepared by suspending 16 g dehydrated TSA and 

0.4 g sodium pyruvate (Sigma-Aldrich, USA) in 400 mL distilled water in a bottle and boiled 

until completely dissolved. Sodium pyruvate is added to bacterial media as an additional 

source of energy and it also enhances the recovery of the bacterial cells (Gamer and 

Elsanousi 2016). The medium was sterilised by autoclaving at 121°C for 20 min, then 

allowed to cool to approximately 50°C. Sterile rifampicin (1 mL) was added to the medium 

and mixed using a magnetic stirrer with a sterile stirrer bar prior to pouring into Petri dishes, 

which were stored at 5°C until required. Rifampicin plates were stored in the dark for no 

longer than 14 days to prevent light-mediated degradation of rifampicin prior to use. 

Trypticase soy agar plates amended with rifampicin are abbreviated as TSARP throughout 

the thesis.  

3.3.2 Preparation of xylose lysine deoxycholate agar with sodium pyruvate and 

rifampicin 

The XLD medium was prepared by suspending 22 g dehydrated XLD agar and 0.4 g sodium 

pyruvate in 400 mL distilled water. The medium was heated to boiling as described in 

Appendix 1. The medium was cooled to approximately 50°C and sterile rifampicin was added 

to the medium prior to pouring plates. 

3.3.3 Preparation of Salmonella extraction media 

An extraction solution comprising 0.02 M sodium phosphate solution and 0.1% Tween 20 

was prepared by mixing 38 g sodium phosphate (Chem-Supply, Australia) and 5 mL Tween 

20 (EMD Millipore, USA) in 5 L distilled water. The medium was sterilised by autoclaving 

at 121°C for 20 min and cooled to room temperature before storage at 5°C.  
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3.3.4 Preparation of buffered peptone water 

Buffered peptone water (BPW) was used as pre-enrichment media for detection of low 

numbers of Salmonella in soil samples. This solution was prepared by suspending 20 g of 

dehydrated media (Difco™, BD, Sparks, USA) in 1 L distilled water. The medium was 

heated on a hot plate with a magnetic stirrer until completely dissolved and then sterilised by 

autoclaving at 121°C for 20 min. Double strength BPW was prepared by suspending 40 g of 

dehydrated media in 1 L distilled water and sterilised by autoclaving at 121°C for 20 min.  

3.3.5 Preparation of tetrathionate broth base  

Tetrathionate broth base (TTB) with iodine solution was used as a selective enrichment 

medium for the isolation of Salmonella. The TTB was prepared by suspending 18.4 g of 

dehydrated medium (Difco, BD, Sparks, USA) in 400 mL distilled water. The medium was 

heated to boiling (using a 240 W microwave at medium power for 2 min; high power for 2 

min; medium power for 2 min) with frequent agitation to dissolve completely without 

autoclaving or overheating the medium. The broth base was stored (without iodine solution) 

in the dark at 5°C and 8 mL of iodine supplement was added to 400 mL of TTB broth and 

used immediately.  

The iodine supplement was prepared by dissolving 6 g iodine and 5 g potassium iodide in 20 

mL distilled water. The solution was stored in tightly-sealed amber vials or wrapped in foil 

due to light sensitivity. The solution was sterilised by passing through a sterile 0.22 µm 

syringe filter into a sterile tube and stored at room temperature.  

3.4 Salmonella serotyping 

3.4.1 Slide agglutination test 

Salmonella cultures in this study were serotyped using O-antisera (Statens Serum Institut, 

Denmark) as a confirmatory procedure, since known serovars were being used for inoculum 

preparation (Table 3.1). A colony was isolated from non-selective NA or TSA agar plates and 

smeared on a glass slide containing a drop of antiserum. The slide was rocked back and forth 

for 1 min and observed for agglutination, indicating presence of the specific antigen (Figure 

3.1). 
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Figure 3.1 Slide agglutination test showing a positive (a) and negative (b) result for 

Salmonella samples. 

 

Table 3.1 Salmonella serovars used in the present study and their antigens. Adapted from 

Brenner et al. (2000), Grimont and Weill (2007) and Hendriksen et al. (2009). 

O group Serovar O-antigens H-phase 1 

antigens 

H-phase 2 

antigens 

B  S. Typhimurium 1,4,[5],12 i 1,2 

B  S. Sofia 1,4,12,27 b e, n, x 

C1  S. Infantis 6,7,14 r 1,5 

C1  S. Montevideo 6,7,14 g,m,[p],s [1,2,7] 

D  S. Enteritidis 1,9,12 g,m No phase 2 antigen 

E  S. Zanzibar 3, {15} k 1,5 

 

3.5 Experimental cultures 

3.5.1 Experimental cultures used 

Because of their role in foodborne disease outbreaks associated with poultry and fresh 

produce, Salmonella serovars Enteritidis, Infantis, Montevideo, Sofia, Typhimurium and 

Zanzibar were used in the present study (kindly donated and verified by Birling Avian 

(a) + (b) 

- 
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Laboratories, New South Wales, Australia). The serovars were maintained as glycerol (15% 

+ TSB) stock cultures at -80°C after undergoing serological testing.  

S. Enteritidis and S. Typhimurium, which are used in the present study, are most common 

serotypes in foodborne illnesses. The third serovar used in this study was S. Sofia, which is 

the most prevalent serovar in Australia, though it is not pathogenic in humans. It is a 

geographically unique bacterial species that is consistently and almost solely isolated in 

Australia, mostly from poultry and poultry products (Mellor et al. 2010). S. Sofia and S. 

Typhimurium belong to the same O group (Table 3.1), however, the former is avirulent 

whereas the latter is virulent. The fourth serovar used in the present study, S. Infantis, is 

found to be a prevalent serovar within the poultry industry worldwide. S. Infantis is 

associated with the egg and the chicken meat industry and has been of important public 

health concern in many countries and remains so in some areas (Cox et al. 2002). The fifth 

serovar used was S. Montevideo, which was found to be among the top five serovars causing 

Salmonella infection in Australia in 2008–2009 (OzFoodNet Working Group 2010). The fifth 

serovar used was S. Zanzibar, which was reported as a cause of foodborne disease outbreaks 

in New South Wales, Australia in 2013.  

3.5.2 Salmonella culture maintenance  

To prepare frozen Salmonella cultures, pure serotyped Salmonella serovars were streaked on 

TSA plates and incubated at 37°C for 24 h. Using a sterile loop, five single colonies from the 

TSA plate were used to inoculate 5 mL sterile TSB (thoroughly mixed) and incubated at 

37°C for 24 h. After checking the bacterial growth, which is characterised by cloudy 

suspension in the media, filter-sterilised glycerol (15% v/v) was thoroughly mixed with the 

fresh Salmonella broth culture in a 2 mL cryovial. Duplicate stock cultures were prepared for 

each serovar and all stock cultures were stored at -80°C. 

To prepare a working culture, a small amount of the frozen culture was removed using a 

sterile loop (1 µL), streaked onto XLD agar and incubated at 37°C for 24 h. After incubation, 

a single colony was isolated, streaked on XLD plates and incubated at 37°C for 24 h. A single 

colony was picked from the XLD plates, streaked on TSA and Salmonella CHROMagar 

plates and incubated at 37°C for 24 h. Mauve-coloured colonies on CHROMagar were 

presumptively identified to be Salmonella and further confirmation was performed using 

serological tests as described in 3.4.1. 
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The serotyped pure culture was used as a working culture which was subsequently 

subcultured on a monthly basis. TSA or NA plates were the preferred medium for short-term 

storage (<4 weeks) at 4°C. Pure Salmonella cultures were also grown and maintained on NA 

slants for medium-term storage (<6 months).  

3.6 Experimental procedures  

3.6.1 Inoculum preparation  

A working bacterial culture was prepared as described in Chapter 3.5.2. After serotyping, 

TSA plates were used to prepare a Salmonella suspension in sterile phosphate buffer. The 

suspension was thoroughly mixed for 1 min using a vortex-mixer. To prepare a lawn culture, 

100 µL of the suspension was spread on TSA plates and incubated at 37°C for 24 h. The 

resulting bacterial lawn was collected by adding sterile phosphate buffer to each plate, 

loosening the lawn with a sterile spreader and transferring the suspension into a sterile 

container. After preparing serial 10-fold dilutions using sterile phosphate buffer, the 

concentration of the bacterial cells in the inoculum was measured by plating 50 µL on 

replicate XLD plates using a spiral plater (easySpiral®, Interscience, France). Streaking of 

the same samples was performed on TSA plates and incubated at 37°C for 24 h. Sample 

purity was checked using specific antiserum from TSA plates and the inoculum was then 

ready to inoculate the soil or chicken manure samples. 

3.6.2 Extraction and enumeration of Salmonella from soil or chicken manure samples  

Soil samples (100 g) obtained from the two sites (as described in Chapter 3.2) or chicken 

manure (CM) obtained from a commercial market (Enfield Produce, Pet and Garden 

Supplies, Sydney, Australia) were aseptically transferred to a 400 mL sterile stomacher bag 

(BagSystem®, Interscience, France) using a sterile spoon. The weight of the sample was 

measured by gravimetric dilutor (BabyGravimat®, Interscience, France) and 100 mL (for 

microcosm pot trial) and 150 mL (for field experiment) of extraction solution (as described in 

3.3.3) was dispensed into the sample bag by the gravimetric dilutor. The sample was 

homogenised using a stomacher (BagMixer®, Interscience, France) for 1 min at speed 1 

(low). After mixing, the sample was allowed to settle for 15 min. A 5 mL aliquot was 

aseptically removed using a 5 mL sterile serological pipette and transferred to a sterile 

microcentrifuge tube for subsequent enumeration. Serial 10-fold dilutions of this aliquot (1 

mL) were made using sterile phosphate buffer and an aliquot (100 µL) was spread on XLD 
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agar plates using a spiral plater. All XLD plates were incubated at 37°C for 24 h. At the 

beginning and end of plating, sterile phosphate buffer (100 µL) was spread on TSA plates as 

a quality control check of the spiral plating system. 

After incubation, colonies were counted using an automatic colony counter (Scan®500, 

Interscience, France). Thirty to 300 colonies per plate were considered to be optimal 

countable numbers. For plates with more than 300 colonies, the original suspension, stored 

for 24 h at 5°C, was serially diluted with sterile phosphate buffer and plated on XLD agar, 

incubated at 37°C for 24 h and counted again. Extracts that yielded no Salmonella growth 

(zero count) by direct plating were re-analysed following an enrichment protocol (see 

Chapter 3.6.3). The limit of detection (LOD) was calculated to be 1.18 log10 CFU g
-1

. 

3.6.3 Enrichment steps for Salmonella  

A 95 mL aliquot of the original suspension (remaining after taking the 5 mL aliquot for 

enumeration, Chapter 3.6.2) was enriched with 95 mL of double strength BPW and incubated 

at 37°C for 24 h. After incubation, a 10 mL aliquot was transferred to 90 mL TTB plus iodine 

(88.2 mL TTB + 1.8 mL of iodine and potassium iodide) and incubated at 42°C. After 6 h 

incubation, 10 mL of this solution was transferred to 90 mL mBroth and incubated at 37°C 

for 24 h. To inhibit the growth of other microorganisms, the mBroth sample was stored at 

5°C for 2 days. The mBroth sample was then streaked on XLT4 agar plates and incubated at 

37°C for 24 h. Colonies exhibiting the characteristic Salmonella reaction on the plates were 

streaked on CHROMagar Salmonella (presumptive confirmation) and TSA plates and 

incubated at 37°C for 24 h. Five to 10 colonies typical of Salmonella were picked from the 

TSA plates and confirmed as Salmonella using specific antiserum. 

3.6.4 Enrichment steps for Listeria  

Listeria was detected using the method described in Listeria Chromogenic Agar ISO 

11290:2004. A 25 g composite soil sample was mixed thoroughly with 225 mL of Demi 

Fraser broth and incubated at 30°C for 24 h. A 1 µL aliquot of the enriched sample was 

streaked on Listeria chromogenic agar and incubated at 37°C for 24 h. The formation of blue-

green colonies on Listeria chromogenic agar confirmed the presence of L. monocytogenes.  
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3.6.5 Selection of rifampicin-resistant Salmonella serovars  

Pure serotyped Salmonella serovars were streaked on TSA plates and incubated at 37°C for 

24 h. Five single colonies from the TSA plate were used to inoculate 5 mL sterile phosphate 

buffer and mixed thoroughly using a vortex-mixer. To make a lawn culture, 100 µL of the 

mixture was spread on TSA plates and incubated at 37°C for 24 h. Sterile phosphate buffer 

(10 mL) was used to loosen the lawn culture from the TSA plates and the suspension was 

collected in a sterile tube to make a liquid inoculum. Antibiotic-resistant colonies were 

selected by iterative subculture on TSA that contained increasing concentrations of 

rifampicin (0.2 mL to 1.0 mL stock rifampicin and 0.4 g sodium pyruvate in 400 mL TSA). 

Rifampicin-resistant Salmonella was selected for all tested serovars and stability of all the 

serovars was checked. Glycerol (15% + TSB) stock cultures were prepared for each serovar 

as described in Chapter 3.5.2 and stored at -80°C. All TSA and XLD plates amended with 

rifampicin are referred to throughout this thesis as TSARP and XLDRP plates, respectively.  

3.6.6 Experimental design and statistical analysis  

A factorial design with three replications for each combination of treatments was used for the 

microcosm pot trial. Five factors (temperature, moisture, chicken manure, soil type and time) 

were tested. The microbial count data was log-transformed and a two-way interaction 

between the aforementioned factors was considered. A more detailed description of the 

experimental design and statistical analysis is given in Chapters 4.2.5 and 4.2.10, 

respectively.  

A split-plot block design with the whole-plot treatment being cover crop (mustard, radish, 

sorghum and no cover crop) and the split plot treatment being solarisation or no solarisation, 

were used for the field experiment. As for the microcosm pot trial, the microbial count data 

was log-transformed. The split-plot, whole-plot and time of sampling (weekly) were 

considered as fixed effects, whereas, block was considered as a random effect in the model. A 

more detailed description of the design field experimental and statistical analysis is given in 

Chapters 5.2.5 and 5.2.16, respectively. 
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4. Microcosm pot trial: Salmonella survival under 

controlled conditions 

4.1 Introduction  

Salmonella is more persistent in soil compared to other vegetative bacterial pathogens (Guan 

and Holley 2003; Arthurson et al. 2011), displaying long periods of survival (Zibilske and 

Weaver 1978) and only a slight reduction in cell numbers over time (Guo et al. 2002a). 

Salmonella inoculated in moist soil at 8.0 log10 CFU g
-1

 showed less than 2.0 log reduction 

after 45 days of storage at 20°C (Guan and Holley 2003). Arthurson et al. (2011) reported the 

persistence of Salmonella in soil without showing a significant reduction in bacterial numbers 

over a 4-week period, and it has also been reported that Salmonella survived from a few days 

up to 332 days in manure-amended soils (Islam et al. 2004c; Arrus et al. 2006; Holley et al. 

2006; You et al. 2006). Variation in length of the survival period is attributed to various 

factors such as physical and chemical properties of the soil, temperature, moisture and strain 

type (van Veen et al. 1997). Most studies have investigated soil characteristics independently 

in relation of Salmonella survival, however, it is more likely that it is the interaction of these 

characteristics along with the various environmental factors that affects the survival of 

Salmonella (Semenov 2008). 

Soil properties that affect bacterial survival include pH, organic matter content, nutrient 

availability, moisture, texture and particle size distribution (Chandler and Craven 1980; 

Ongeng et al. 2015). The effect of pH on survival of S. enterica in an agricultural matrix such 

as soil can be estimated from the impact of pH on the physiological and metabolic activities 

of the bacteria (Ongeng et al. 2015). Nutrient availability is found to be an important factor in 

affecting the survival and re-growth of eneteric pathogens in the soil. Since the physical and 

chemical properties of the soil vary with different soil types, the survival of bacterial 

pathogens is also reported to vary based on the properties of different soil types. For example, 

studies on Escherichia coli reported that longer survival was associated with soil with 

relatively more clay particles compared to sand particles (Semenov 2008).  

Contaminated soil may act as a vector and a source of important human disease agents. Many 

diseases associated with soils (e.g. Aspergillus fumigatus, Clostridium botulinum, C. tetani) 

have been described, however survival and behaviour of enteric pathogens in soil is a 
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relatively new area, and as a consequence, the extent of disease transmission has possibly 

been underestimated (Santamaria and Toranzos 2003).  

In regard to temperature, Salmonella is considered to be mesophilic although some strains are 

able to survive at extremely low or high temperatures (2–54°C) (Andino and Hanning 2015). 

However, most Salmonella serotypes grow over the fairly wide temperature range 7–48°C 

(Lawley 2013). Semenov (2008) reported that temperature is a key factor on survival, having 

strong effects on the longevity of enteric pathogens in manure and soil.  

Temperature has a profound effect on the population dynamics of culturable bacteria 

(Ongeng et al. 2015). It influences the movement, survival and passive diffusion of bacteria 

in the soil and bacterial adsorption to soil particles may also be affected which will 

consequently affect retention of microbes within the soil matrix (Kemp et al. 1992). Higher 

temperatures generally induce more activity in bacteria while survival is prolonged at lower 

temperatures. It is also likely that temperature affects the  diversity and behavior of resident 

microbial communities in manure and soil matrices which in turn affect enteropathogen 

survival. 

The other important factor affecting survival of enteric pathogens is the moisture status of the 

soil. For microorganisms to grow and survive, moisture is a primary physiological 

requirement (Holley et al. 2006; Ongeng et al. 2015). Low soil moisture can either reduce the 

survival rates of enteric bacteria or force them into a persister stage (Himathongkham and 

Riemann 1999), although quantitative information is lacking (Jamieson et al. 2002). Most of 

the previous research has focused on the survival of enteric pathogens in moist or dry soil but 

not in different regimes such as constant and fluctuating moisture levels likely to be 

encountered in the field. Lawley (2013) reported that Salmonella is not able to grow in dry 

environments and cells will die in soil with low moisture content (Andino and Hanning 

2015). Many studies have reported  on just the survival times of enteropathogens in manure 

or manure-amended soil, rather than the importance of other factors such as pH, moisture, 

soil classification and presence of nutrients which together may influence human 

enteropathogen survival (McClure and Hall 2000). There are very few studies which show 

the interaction of these various factors in naturally existing in soils on the survival of enteric 

bacterial pathogens (Guan and Holley 2003).  

Microbial responses observed in field situations are subject to intricate multivariate factors 

associated with continuously changing environmental and soil conditions that are often 
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difficult to interpret. However, the effects of specific factors on soil enteric pathogens can be 

studied under controlled conditions in the laboratory (Opperman et al. 1989; Fenlon et al. 

2000). For example, microcosm studies using a consistent, reproducible and contained system 

make it possible to study particular factors that affect the behaviour of bacterial pathogens 

(Kemp et al. 1992). Therefore, microcosms or other controlled studies using soil help us to 

understand how environmental factors affect survival and allow us to create approaches that 

minimise the risk of enteropathogen survival and distribution within the food supply chain, 

commencing on-farm.  

Little research has been conducted in Australia to determine the effect of local soil and 

climatic conditions on the survival of Salmonella in the environment. Because it is difficult to 

analyse all of the possible abiotic and biotic factors affecting the survival of Salmonella in a 

single study, the major factors such as temperature, moisture and soil properties were 

considered under controlled laboratory conditions in a microcosm pot trial in an effort to 

interpret the survival pattern of Salmonella. The results obtained using this strategy will help 

to better predict the survival of Salmonella in natural substrates such as soil or manure-

amended soil under field conditions (see Chapter 5).  

4.2 Materials and methods  

4.2.1 Site description  

Soil was obtained from the 0–10 cm layer from Karalee Farm and Pye Farm at the University 

of Sydney. Detailed descriptions of both research sites and soil collection are presented in 

Chapter 3.1. 

4.2.2 Soil analysis  

The chemical and physical properties of the soil were analysed and as described in Chapter 

3.2.2. 

4.2.3 Baseline characterisation of soil and chicken manure samples  

Pure chicken manure (CM), which had been aged in large piles for up to 6 months, was 

obtained from a commercial source (Enfield Produce, Pet and Garden Supplies, Sydney, 

Australia) and used as a soil amendment for the microcosm pot trial. The presence/absence of 

Salmonella in the chicken manure or soil was tested by the following method before the start 
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of the trial. Replicate samples (100 g) of CM or soil (n = 3) were weighed and transferred to 

400 mL sterile stomacher bags (Interscience, France). Aliquots of 150 mL of buffered 

peptone water (BPW) (Difco, USA) was added to each bag and incubated for 24 h at 37°C. 

This was followed by a second enrichment step (described in Chapter 3.6.3). The soil and 

CM samples used for sample preparation were either negative or below the limit of detection 

(<1 CFU g
-1

 CM) for Salmonella.  

4.2.4 Preparation of soil and chicken manure samples 

Soil samples (approximately 100 kg each of clay and sandy soils) were taken from several 

locations (n = 3) at the farms described above, sieved (2 mm mesh) and mixed thoroughly by 

hand to produce a composite sample. Soil only (100 g) or 98 g soil + 2 g CM for each soil 

was weighed into 120 mL plastic screw-cap pots (Sarstedt, Australia) ready for inoculation. 

The aliquot of chicken manure was mixed into each soil sample by shaking and stirring with 

a thin spatula. 

4.2.5 Treatment and experimental design 

The microcosm pot trial was a factorial design with three replications and five factors. The 

five factors were temperature, moisture, chicken manure, soil type and time. Levels of the 

different factors were (i) 5, 21 and 37°C, (ii) constant and fluctuating moisture, (iii) with and 

without manure, (iv) clay soil and sandy soil, and (v) incubation times of 1, 8, 15, 22, 29, 36 

and 43 days. Salmonella serovars used for this trial were S. Enteritidis, S. Montevideo, S. 

Sofia and a cocktail of serovars including S. Enteritidis, S. Infantis, S. Montevideo, S. 

Typhimurium and S. Zanzibar. Control treatments consisted of 98 g soil + 2 g CM and 100 g 

soil only without addition of bacteria. Table 4.1 shows the arrangement of treatments. There 

were 2016 treatments in total.  
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Table 4.1 Arrangement of treatment factors and levels for the microcosm pot trial. The 

cocktail was comprised of S. Enteritidis, S. Infantis, S. Montevideo, S. Typhimurium and S. 

Zanzibar. 

Factor Levels 

Inoculum  S. Enteritidis, S. Montevideo, S. Sofia, Salmonella cocktail 

Soil type Clay loam (‘clay’) coarse sand (‘sandy’) 

Manure amendment  0%, 2% (w/w) poultry manure in soil  

Incubation temperature  5, 21, 37°C 

Moisture  Constant, fluctuating  

 

4.2.6 Inoculum preparation and inoculation  

S. enterica serovars Enteritidis, Infantis, Montevideo, Sofia, Typhimurium and Zanzibar were 

used in the microcosm pot trial (see Chapter 3.5.1 for source of serovars) and the identity of 

the serovars was checked using Salmonella antisera (see Chapter 3.4.1). From serotyped pure 

cultures, five colonies were taken into 5 mL phosphate buffer (Difco, USA) and mixed by 

vortexing. Each serovar was spread (100 µL) onto TSA plates (Difco, USA) and incubated 

for 24 h at 37°C to make a lawn culture (for lawn culture preparation see Chapter 3.6.5). A 

liquid inoculum (approximately 2.5 L for each serovar from 10 plates) was prepared by 

rinsing the lawn culture from TSA plates with phosphate buffer. The method for producing 

lawn cultures is provided in Chapter 3.6.5. 

An inoculum cocktail was prepared by combining serovars Enteritidis, Infantis, Montevideo, 

Typhimurium and Zanzibar in equal proportions. A liquid inoculum cocktail was prepared in 

the same way as described above for individual serovars and equal proportions of the five 

cultures were adjusted using spectrophotometry at 600 nm. Optical adjustment was also done 

for the individual serovars. To determine a more accurate concentration of Salmonella cells in 

each inoculum (cocktail or individual inoculum), an aliquot from each inoculum was plated 

on XLD agar, incubated for 24 h at 37°C and enumerated. Optical density (OD) from 0.2–0.8 

corresponded with population in the order of magnitude of 10
8
 CFU mL

-1
. The adjusted 

viable count for each serovar is presented in Table 4.2 and the proportion of each Salmonella 

serovars used to prepare cocktail inoculum is presented in Table 4.3. The inoculum level was 

selected to ensure sufficient changes in counts were measured over the life of the trial. 
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An aliquot (5 mL) of liquid suspension of either individual or cocktail cultures was added to 

each of the relevant microcosm pots (3 replications per treatment, 504 pots per serovar, 2016 

samples in total for four inocula). For logistical and time management reasons, the starting 

time of incubation was staggered. Microcosm pots inoculated with S. Montevideo and S. 

Sofia were started first and pots inoculated with S. Enteritidis and the cocktail were initiated 

later. An additional 5 mL sterile water was added to each soil sample to achieve an initial 

moisture content of 15% (w/w) for the sandy soil and 20% (w/w) for the clay soil. The pots 

were labelled from 1–2016 (as pot ID). Control treatments (no inoculum, 100 g soil only or 

98 g soil + 2 g CM) were inoculated with phosphate buffer (without inoculum) and treated in 

the same way as other treatments. 

To get good dispersion of soil and liquid inoculum, the pots were capped and mixed 

thoroughly using a drum-mixer (Baldor, USA) for 20 min. After mixing, the lids remained in 

place for the constant moisture treatments and lids were removed from the tubes for 

fluctuating moisture treatments and covered with cheese-cloth fastened securely with a 

rubber band. Twenty four pots of all treatments in three replications were placed in a 5 L 

plastic box during the incubation period. For the microcosm pots in the fluctuating moisture 

treatments, the containment box was also covered with cheese-cloth secured with tape. All 

the pots in plastic boxes were kept in their respective temperature-controlled chambers (5, 21, 

37°C).  

4.2.7 Incubation conditions 

The 120 mL plastic soil pot including the entire contents was weighed and the mass recorded 

on the container. Changes in moisture content was monitored by periodically selecting and 

weighing random samples. Weight loss from the content of pots was used to maintain the 

preset moisture content (15% [w/w] and 20% [w/w] for sandy and clay soils respectively). 

When the mass of fluctuating moisture samples decreased by 10 g, the moisture content was 

replenished was by adding 10 mL sterile water. Sterile water was added in a similar way to 

the constant moisture tubes to maintain constant moisture levels throughout the incubation 

period. The frequency of water addition was dependent on the storage temperature with more 

water added to microcosm pots held at high temperature (37°C) than low temperature (5°C) 

(Figure 4.1). During the incubation period, temperature was monitored using a minimum-

maximum thermometer positioned inside each incubator. 
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Figure 4.1 The extent of variation in soil moisture (g) in the fluctuating moisture regime at 

different temperatures (5, 21 and 37°C) over 43 days of incubation period of the mesocosm 

pot trial. 

4.2.8 Sampling and enumeration 

For destructive sampling, the entire contents of each microcosm pot (100 g) was aseptically 

transferred to a sterile stomacher bag (Interscience, France). A 100 mL aliquot of extraction 

buffer (Na3PO4 + Tween 20) was added using a gravimetric dilutor (Interscience, France), 

resulting in 1:2 (w/v) solution. The mixture was then extracted and enumerated as for the soil 

samples described in Chapter 3.6.2.  

During enumeration, all XLD plates were checked and sorted into three categories: (i) 

countable plates, (ii) plates with overlapping colonies or crowded plates, and (iii) plates with 

no growth (Figure 4.2). Plates judged to be countable were enumerated using an automatic 

colony counter (Interscience, France). The following day, re-plating was done for plates with 

overlapping colonies after serially diluting the corresponding sample that was kept at 5°C. 

Re-plating (without dilution) was conducted for samples that exhibited no growth after 

dilution. After enumeration (from randomly selected plates), 5–10 colonies typical of 

Salmonella were picked from XLD plates and streaked on TSA plates for confirmation using 

specific antiserum. 

 

105

108

111

114

117

120

123

126
M

as
s 

(g
, 

so
il

 +
 a

d
d
ed

 w
at

er
) 

Incubation time (days) 

5°C

21°C

37°C



56 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Schematic representation of the steps followed for plating and enrichment of 

Salmonella samples. XLD = Xylose lysine deoxycholate.  

 

4.2.9 Enrichment steps for Salmonella  

Samples from the zero-count plates (being spread without dilution) were enriched as 

described in Chapter 3.6.3 to check for the presence of viable Salmonella cells. 

4.2.10 Statistical analysis  

Salmonella count data was log-transformed and a mixed model in JMP Pro version 11 (SAS 

2014, Cary, NC, USA) was used to analyse the data. Because of the large number of 

treatments, only two-way interactions between the factors temperature, moisture, soil, 

manure, Salmonella serovar and time were considered. This facilitated the analysis of the 

data and allowed inspection of two factors at a time. Data was pooled by combining all 

measurements from temperature, moisture, soil type and serovars for statistical analysis. 
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The factors were fitted as a fixed effect in the model whereas pot ID was fitted as a random 

effect. When there were significant interactions between factors, a post-hoc test was 

performed using Tukeys honest significant difference (HSD) to separate the means (an 

example of this method of analysis is given in Appendix 2). Salmonella presence/absence 

data was not statistically analysed since nearly all the results were found to be positive. In 

addition, in order to show the actual rate of Salmonella decline between treatments, an effect 

size was calculated. An effect size is the difference between two group means divided by the 

standard deviation of the two conditions (pooled standard deviation). Effect size 

measurements tell us the comparative magnitude of experimental treatments (Thalheimer and 

Cook 2002). Effect size was calculated using the following formula as described in 

Thalheimer and Cook (2002):  

d = (M1 – M2)/δ 

d = Cohen’s d effect size 

M1= mean of group one 

M2 = mean of group two 

δ = pooled standard deviation. 

When d = 0.2, 0.5, and 0.8 between two treatment groups, the effect size is considered to be 

small, medium and large respectively (Vasilopoulos et al. 2016). 
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4.3 Results 

Prior to inoculation with an individual serovar or a cocktail of Salmonella serovars, chicken 

manure and soil were checked for the presence of naturally occurring Salmonella. Both the 

soil and chicken manure samples were found to be free from Salmonella. 

The starting concentration of each Salmonella serovar or cocktail after enumeration is 

indicated in Table 4.2. The proportion of each Salmonella serovar in the cocktail inoculum is 

indicated in Table 4.3. 

 

Table 4.2 Concentrations (log10 CFU g
-1

) of Salmonella serovar liquid inoculum used in the 

microcosm pot trial. CFU = colony forming unit. 

Inoculum Soil inoculation 

(log10 CFU g
-1

) 

Salmonella cocktail 5.1 ± 0.7 

S. Enteritidis 5.1 ± 0.7 

S. Montevideo 4.8 ± 0.1 

S. Sofia 5.4 ± 0.6 

 

Table 4.3 Concentrations (log10 CFU g
-1

) of Salmonella serovars used to prepare the cocktail 

inoculum. CFU = colony forming unit. 

Cocktail constituents Liquid inoculum 

(log10 CFU g
-1

) 

S. Enteritidis 8.2 ± 0.8 

S. Infantis 8.4 ± 0.5 

S. Montevideo 8.4 ± 0.7 

S. Typhimurium 8.3 ± 0.8 

S. Zanzibar 8.5 ± 0.7 

 

4.3.1 Soil physicochemical properties  

The soil from Pye Farm was described as clay loam (‘clay soil’) and soil from Karalee Farm 

was a coarse sand (‘sandy soil’) (Table 4.4). The total carbon and nitrogen content of the clay 

soil was approximately five and seven times greater, respectively, than the sandy soil. In 

addition, the amount of nitrate and ammonium in the clay soil was at least five times greater 
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than sandy soil. Other analyses including bulk density, soil moisture, pH and EC indicate the 

main differences between the two soil types (Table 4.4). 

Table 4.4 Physicochemical properties of the two soil types from Karalee Farm and Pye Farm 

at the University of Sydney with and without chicken manure amendment. Values are mean ± 

standard deviation. C = carbon, N = nitrogen, EC = electrical conductivity, CM = chicken 

manure, µS = microSiemens, 
1
sandy soil obtained from Karalee Farm, Camden, 

2
clay soil 

obtained from Pye Farm, Bringelly. 

Variables Sandy
1
 Sandy + CM Clay

2
 Clay + CM  

Colour  Brown  Light grey  

Texture  Coarse sand  Clay loam  

Bulk density (g cm
-3

) 1.28 ± 0.09 

 

1.12 ± 0.03 

 Total N (%) 0.053 ± 0.003 0.111 ± 0.008 0.383 ± 0.003 0.436 ± 0.009 

Total C (%)  0.722 ± 0.029 1.099 ± 0.083 4.242 ± 0.087 4.518 ± 0.080 

Ammonium (mg kg
-1

) 1.23 ± 0.42 5.27 ± 0.30 7.66 ± 0.63 10.03 ± 1.14 

Nitrate (mg kg
-1

) 2.54 ± 0.26 2.27 ± 0.37 15.04 ± 2.19 14.70 ± 3.34 

Soil moisture (%) 0.08 ± 0.01 0.08 ± 0.01 0.15 ± 0.01 0.15 ± 0.02 

pH  5.41 ± 0.07 7.53 ± 0.14 5.06 ± 0.04 6.19 ± 0.35 

EC (μS) 85.38 ± 4.19 592.60 ± 74.64 512.40 ± 16.71 907.20 ± 189.61 

 

4.3.2 Effect of temperature and time on survival of Salmonella  

The highest incubation temperature (37°C) led to a more rapid decline in Salmonella numbers 

compared to both lower incubation temperatures (Figure 4.3). As a result, there was a 

significant (P <0.001) difference among the three temperature treatments affecting the 

decline of Salmonella over the 43 day incubation period. 

Throughout the incubation period, there were significant differences in Salmonella numbers 

between lower (5°C) and higher temperatures (37°C) except at day 1 and day 43. Over the 

incubation period, Salmonella counts were reduced on average by 1.30, 0.80 and 0.94 log10 

CFU g
-1

 in samples stored at 37, 21 and 5°C, respectively. Salmonella counts for microcosm 

pots incubated at the intermediate temperature (21°C) were not significantly different from 

either the low temperature (5°C) or high temperature (37°C) throughout the incubation 

period, except at day 8 (Table 4.5). The effect size between intermediate (21°C) and low 

(5°C) temperatures and intermediated (21°C) and high (37°C) temperatures was found to be 
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low whereas, the effect size between low (5°C) and high (37°C) temperatures was found to be 

medium (data not shown).   

 

Figure 4.3 The effect of temperature (°C) and time (days) on the survival of Salmonella 

(log10 CFU g
-1

). Data were pooled from four factors (moisture, soil type, presence/absence of 

manure and serovars). Data points are mean ± standard error, n = 96, P <0.001. The 

quantitative limit of detection (LOD; 1.18 log10 CFU g
-1

) of the viable count was determined 

by direct plating. CFU = colony forming unit. 

 

Irrespective of temperature, a rapid decline in Salmonella numbers of approximately 2.0 log10 

CFU g
-1

 was measured 1 day after inoculation. At 5°C, a subsequent increase in numbers of 

approximately 1.0 log10 CFU g
-1

 occurred (day 7) and thereafter numbers declined linearly. In 

contrast, the response at 37°C was biphasic with the rapid reduction after inoculation 

followed by a linear decrease from 3.10 to 1.90 log10 CFU g
-1

 for the duration of the trial. At 

21°C, an intermediate response was observed with a minor increase of 0.31 log10 CFU g
-1

 

occurring 1 day after inoculation followed by a linear decrease. 
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Table 4.5 Effect of temperature (°C) and time (days) on Salmonella survival (log10 CFU g
-1

). 

Values are mean ± standard error, n = 96. Data were pooled from four factors (moisture, soil 

type, presence/absence of manure and serovar) for statistical analysis. Mean values followed 

by the same letter are not significantly different (Tukeys HSD post-hoc test). CFU = colony 

forming unit. 

Salmonella count (log10 CFU g
-1

) 

Day 

Temperature (°C) 

5 21 37 

1 2.97 ± 0.11
fghij

 3.12 ± 0.11
ghij

 3.17 ± 0.11
hij

 

8 4.00 ± 0.11
k
 3.44 ± 0.11

j
 2.60 ± 0.11

cdefg
 

15 3.28 ± 0.11
ij
 2.87 ± 0.11

efghi
 2.66 ± 0.11

defgh
 

22 3.03 ± 0.11
fghij

 2.55 ± 0.11
bcdef

 2.24 ± 0.11
abcd

 

29 2.54 ± 0.11
bcdef

 2.10 ± 0.11
abc

 1.89 ± 0.11
a
 

36 2.54± 0.11
bcdef

 2.40 ± 0.11
abcde

 1.85 ± 0.11
a
 

43 2.03 ± 0.11
ab

 2.32 ± 0.11
abcde

 1.87 ± 0.11
a
 

 

4.3.3 Effect of soil type and time on survival of Salmonella  

There was a significant difference between clay and sandy soils on the survival of 

Salmonella. Generally, levels of Salmonella decreased with incubation time however, the 

survival of Salmonella in sandy soil was less than that observed for clay soil (Figure 4.4). 

Salmonella survival was higher in clay soil compared with sandy soil at all times except day 

8 which had similar Salmonella counts to those observed in clay soil at day 29 and day 43. 

Salmonella counts in clay soil at the end of the incubation period were the same as the counts 

recorded for sandy soil at the beginning of the incubation period (Table 4.6). In addition, a 

large effect size (d = 1.47) was observed between the two treatments (sandy and clay soils, 

data not shown). 
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Figure 4.4 Effect of soil type and time (days) on survival of Salmonella (log10 CFU g
-1

). Data 

were pooled from four factors (temperature, moisture, presence/absence of manure and 

serovar). Data points are mean ± standard error, n = 144, P <0.001. The quantitative limit of 

detection (LOD; 1.18 log10 CFU g
-1

) of the viable count was determined by direct plating. 

CFU = colony forming unit. 

Table 4.6 The effect of soil type and time (days) on survival of Salmonella (log10 CFU g
-1

). 

Values are mean ± standard error, n = 144. Data were pooled from four factors (temperature, 

moisture, presence/absence of manure and serovar) for statistical analysis. Mean values 

followed by the same letter are not significantly different (Tukeys HSD post-hoc test). CFU = 

colony forming unit. 

Salmonella count (log10 CFU g
-1

) 

Day Clay soil Sandy soil  

1 4.26 ± 0.09
g
 1.92 ± 0.09

bc
 

8 4.22 ± 0.09
g
 2.47 ± 0.09

d
 

15 3.84 ± 0.09
g
 2.03 ± 0.09

c
 

22 3.19 ± 0.09
f
 2.02 ± 0.09

c
 

29 2.65 ± 0.09
de

 1.70 ± 0.09
bc

 

36 2.99 ± 0.09
ef

 1.54 ± 0.09
ab

 

43 2.88 ± 0.09
def

 1.26 ± 0.09
a
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4.3.4 Effect of manure amendments and time on survival of Salmonella  

The effect of manure amendments on Salmonella survival was found to be significant (P 

<0.0001) over the 43 day incubation period. Salmonella survival decreased over time both 

with and without manure amendments. However, the decline in Salmonella counts was found 

to be at least 1.0 log10 CFU g
-1

 greater in the absence of manure when compared to counts 

observed in samples with manure amendments (Figure 4.5). Over the incubation period, the 

average decline of Salmonella was 0.69 and 1.33 log10 CFU g
-1

 in no-manure and manure-

treated samples, respectively. In addition, in order to show the actual rate of decline, effect 

size was calculated and large d-value (0.99) was observed between the two treatments (with 

and without manure amendments) (data not shown).  

 

 

 

Figure 4.5 Effect of manure amendments and time (days) on survival of Salmonella (log10 

CFU g
-1

). Data were pooled from four factors (temperature, moisture, soil type and serovars). 

Data points are mean ± standard error, n = 144, P <0.001. The quantitative limit of detection 

(LOD; 1.18 log10 CFU g
-1

) of the viable count was determined by direct plating. CFU = 

colony forming unit. 
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Salmonella counts were reduced on average by 20% in manure treated samples and 48% in 

samples without manure over the incubation period (Table 4.7). 

 

Table 4.7 The effect of manure amendment and time (days) on survival of Salmonella (log10 

CFU g
-1

). Values are mean ± standard error, n = 144. Data were pooled from four factors 

(temperature, moisture, soil type and serovar) for statistical analysis. Mean values followed 

by the same letter are not significantly different (Tukeys HSD post-hoc test). CFU = colony 

forming unit. 

              Salmonella count (log10 CFU g
-1

) 

 Day  With manure  No manure  

1 3.38 ± 0.09
d
 2.80 ± 0.09

c
 

8 3.80 ± 0.09
e
 2.89 ± 0.09

c
 

15 3.54 ± 0.09
de

 2.33 ± 0.09
b
 

22 3.33 ± 0.09
d
 1.88 ± 0.09

a
 

29 2.66 ± 0.09
bc

 1.69 ± 0.09
a
 

36 2.80 ± 0.09
c
 1.73 ± 0.09

a
 

43 2.69 ± 0.09
bc

 1.45 ± 0.09
a
 

 

4.3.5 Survival of Salmonella serovars over time 

The interaction effect between time and serovars was significant (P = 0.0226) and counts for 

all the Salmonella serovars decreased with incubation time (Figure 4.6). The rate of decline 

for each serovar was similar from day 29 until the end of the incubation period (Table 4.8). 
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Figure 4.6 The effect of time (days) on survival of Salmonella serovars (log10 CFU g
-1

). Data 

were pooled from four factors (temperature, moisture, soil type and presence/absence of 

manure). Data points are mean ± standard error, n = 72, P <0.0226. The quantitative limit of 

detection (LOD; 1.18 log10 CFU g
-1

) of the viable count was determined by direct plating. 

CFU = colony forming unit. 

 

Table 4.8 The effect of time (days) on survival of Salmonella serovars (log10 CFU g
-1

). Data 

were pooled from four factors (temperature, moisture, soil type, and presence/absence of 

manure) for statistical analysis. Mean values followed by the same letter are not significantly 

different (Tukeys HSD post-hoc test). CFU = colony forming unit. 

 Salmonella count (log10 CFU g
-1

) 

Day  Cocktail S. Enteritidis S. Montevideo S. Sofia 

1 3.66 ± 0.13
l
 3.25 ± 0.12

ghijkl
 2.82 ± 0.12d

efghi
 2.62 ± 0.13

cdefg
 

8 3.53 ± 0.12
jkl

 3.57 ± 0.12
kl

 3.41 ± 0.12
ijkl

 2.88 ± 0.13
efghij

 

15 3.30 ± 0.12
hijkl

 2.92 ± 0.12
efghijk

 2.91 ± 0.13
efghijk

 2.63 ± 0.14
cdefgh

 

22 2.59 ± 0.12
bcdefg

 2.98 ± 0.13
fghijk

 2.69 ± 0.12
cdefgh

 2.16 ± 0.12
abcd

 

29 2.30 ± 0.12
abcde

 2.19 ± 0.13
abcd

 2.28 ± 0.12
abcde

 1.93 ± 0.13
ab

 

36 2.50 ± 0.13
abcdef

 2.50 ± 0.13
abcdef

 2.14 ± 0.12
abc

 1.92 ± 0.12
a
 

43 2.30 ± 0.13
abcde

 2.07 ± 0.13
abc

 2.03 ± 0.13
abc

 1.89 ± 0.12
a
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4.3.6 Effect of moisture and time on survival of Salmonella 

Moisture had a significant effect (P <0.001) on the survival of Salmonella over time. After 

inoculation, the rate of decline looked similar for both treatments, albeit at counts of about 

1.0 log10 CFU g
-1

 lower for fluctuating moisture compared to constant moisture. In addition 

to statistical tests of significance, effect size was calculated and large effect size (d = 0.81) 

was observed between the two moisture regimes (data not shown). Since the same amount of 

inoculum was used for both constant and fluctuating moisture, the difference in one order of 

magnitude between the two moisture regimes (Figure 4.7, Table 4.9) might have been due to 

the death of considerably more Salmonella cells in the fluctuating moisture treatments at the 

beginning of the experiment.  

 

 

 

Figure 4.7 The effect of soil moisture and time (days) on survival of Salmonella (log10 CFU 

g
-1

). Data were pooled from four factors (temperature, soil type, presence/absence of manure 

and serovar). Data points are mean ± standard error, n = 144, P <0.001. The quantitative limit 

of detection (LOD; 1.18 log10 CFU g
-1

) of the viable count was determined by direct plating. 

CFU = colony forming unit. 
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Table 4.9 The effect of soil moisture and time (days) on survival of Salmonella (log10 CFU 

g
-1

). Values are mean ± standard error, n = 144. Data were pooled from four factors 

(temperature, soil type, presence/absence of manure and serovar) for statistical analysis. 

Mean values followed by the same letter are not significantly different (Tukeys HSD post-

hoc test). CFU = colony forming unit. 

 Salmonella count (log10 CFU g
-1

) 

Day Constant moisture Fluctuating moisture 

1 3.97 ± 0.09
g
 2.20 ± 0.09

bc
 

8 3.72 ± 0.09
g
 2.97 ± 0.09

ef
 

15 3.16 ± 0.09
f
 2.71 ± 0.09

de
 

22 2.98 ± 0.09
ef

 2.23 ± 0.09
bc

 

29 2.61 ± 0.09
cde

 1.74 ± 0.09
a
 

36 2.69 ± 0.09
de

 1.84 ± 0.09
ab

 

43 2.41 ± 0.09
cd

 1.74 ± 0.09
a
 

 

4.3.7 Effect of temperature and soil type on survival of Salmonella  

The interaction of temperature and soil had a significant effect on the survival of Salmonella. 

Survival was greater in clay soil compared with survival in sandy soil at all temperatures (5, 

21, 37°C) (Figure 4.8). The survival of Salmonella in sandy soil was not affected by the three 

temperature treatments; however the interaction effect of temperature with soil had a 

significant effect on the survival of Salmonella in clay soil (Table 4.10). 
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Figure 4.8 The survival of Salmonella (log10 CFU g
-1

) at the conclusion of the microcosm pot 

trial in two soil types (clay and sandy) at three different temperatures (5, 21 and 37ºC). Data 

were pooled from four factors (moisture, presence/absence of manure, serovar and sampling 

time). Bars are mean ± standard error, n = 336, P <0.001. The quantitative limit of detection 

(LOD; 1.18 log10 CFU g
-1

) of the viable count was determined by direct plating. CFU = 

colony forming unit. 

 

Table 4.10 The effect of temperature (°C) and soil type on the survival of Salmonella (log10 

CFU g
-1

). Values are mean ± standard error, n = 336. Data were pooled from four factors 

(moisture, presence/absence manure, serovar, and sampling time) for statistical analysis. 

Mean values followed by the same letter are not significantly different (Tukeys HSD post-

hoc test). CFU = colony forming unit. 

                    Salmonella count (log10 CFU g
-1

) 

Temperature (°C) Clay soil Sandy soil 

5 3.89 ± 0.06
d
 1.94 ± 0.06

a
 

21 3.48 ± 0.06
c
 1.89 ± 0.06

a
 

37 2.93 ± 0.06
b
 1.72 ± 0.06

a
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4.3.8 Effect of temperature and manure amendments on survival of Salmonella  

The interaction between temperature and manure amendments had a significant effect on the 

survival of Salmonella. The addition of chicken manure significantly improved the survival 

of Salmonella across all temperatures when compared with samples incubated in soil without 

chicken manure amendments (Figure 4.9). 

 

 

Figure 4.9 The effect of temperature (°C) and manure amendments on the survival of 

Salmonella (log10 CFU g
-1

) at the conclusion of the microcosm pot trial. Data were pooled 

from four factors (moisture, soil type, serovar and sampling time). Bars represent mean ± 

standard error, n = 336, P <0.001. The quantitative limit of detection (LOD; 1.18 log10 CFU 

g
-1

) of the viable count was determined by direct plating. CFU = colony forming unit. 

 

In the presence of chicken manure, Salmonella survival was approximately 1.0 log10 CFU g
-1

 

greater at the intermediate (21°C) and high (37°C) temperatures compared to the lower 

temperature (5°C). Similarly, when there was no manure amendment, Salmonella survival 

was about 1.0 log10 CFU g
-1

 greater at the lowest temperature (5°C) compared to the highest 

temperature (37°C) (Table 4.11). 
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Table 4.11 The effect of temperature (°C) and manure amendment on Salmonella survival 

(log10 CFU g
-1

). Values are mean ± standard error, n = 336. Data were pooled from four 

factors (moisture, soil type, serovar and sampling time) for statistical analysis. Mean values 

followed by the same letter are not significantly different (Tukeys HSD post-hoc test). CFU = 

colony forming unit. 

Salmonella count (log10 CFU g
-1

) 

 Temperature (°C) Manure amendment 

 

With manure  No manure  

5 3.07 ± 0.06
d
 2.76 ± 0.06

c
 

21 3.34 ± 0.06
e
 2.03 ± 0.06

b
 

37 3.11 ± 0.06
de

 1.54 ± 0.06a 

 

4.3.9 Effect of temperature on survival of Salmonella serovars 

The survival of Salmonella cocktail, S. Enteritidis and S. Montevideo was better at the lowest 

temperature (5°C) compared to the highest temperature (37°C) (Figure 4.10). There was no 

significant decline of S. Sofia in any of the temperature treatments (Table 4.12). S. Sofia was 

found to be the poorest survivor (Tables 4.12, 4.13) when compared with the other serovars. 

At 5°C, the survival was 40, 58, 64 and 67% for S. Sofia, S. Montevideo, S. Enteritidis and 

cocktail, respectively.  
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Figure 4.10 The effect of temperature (°C) on the survival of Salmonella serovars (log10 CFU 

g
-1

). Data were pooled from four factors (moisture, soil type, presence/absence of manure and 

sampling time). Bars are mean ± standard error, n = 168, P <0.001. The quantitative limit of 

detection (LOD; 1.18 log10 CFU g
-1

) of the viable count was determined by direct plating. 

CFU = colony forming unit. 

 

Table 4.12 The effect of temperature (°C) on survival of different Salmonella serovars (log10 

CFU g
-1

). Values are mean ± standard error, n = 168. Data were pooled from four factors 

(moisture, soil type, presence/absence of manure and sampling time) for statistical analysis. 

Mean values followed by the same letter are not significantly different (Tukeys HSD post-

hoc test). CFU = colony forming unit. 

Salmonella count (log10 CFU g
-1

) 

Temperature (°C) Cocktail S. Enteritidis S. Montevideo S. Sofia 

5 3.40 ± 0.08
e
 3.28 ± 0.08

e
 2.80 ± 0.08

cd
 2.17 ± 0.08

a
 

21 2.81 ± 0.08
cd

 2.85 ± 0.08
d
 2.68 ± 0.08

bcd
 2.40 ± 0.08

ab
 

37 2.43 ± 0.09
abc

 2.22 ± 0.08
a
 2.35 ± 0.08

ab
 2.30 ± 0.08

ab
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Table 4.13 Proportional survival (%) of Salmonella serovars at different temperatures. 

  Salmonella survival (%) 

Temperature (°C) Cocktail  S. Enteritidis  S. Montevideo S. Sofia  

5 67 64 58 40 

21 55 56 56 44 

37 48 43 49 43 

 

4.3.10 Effect of temperature and moisture interactions on survival of Salmonella  

The interaction of moisture and temperature had a significant effect (P <0.001) on the 

survival of Salmonella. A lower incubation temperature and constant moisture favoured 

Salmonella survival (Figure 4.11). Salmonella counts reduced on average by 2.30, 1.08 and 

1.42 log10 CFU g
-1

 in samples stored at 37, 21 and 5°C, respectively, under conditions of 

fluctuating moisture. In the constant moisture samples, the average reduction of Salmonella 

was 0.38, 0.51 and 0.49 log10 CFU g
-1

 in samples stored at 37, 21 and 5°C, respectively.  

At the end of the incubation period, the number of Salmonella cells was found to be 2.61 

log10 CFU g
-1

 at 37°C with constant moisture. This was not statistically different from the 

fluctuating samples incubated at 5°C, which had 2.39 log10 CFU g
-1

 soil (Table 4.14). The 

lowest number of Salmonella cells was in samples incubated at higher temperatures (21 or 

37°C) under fluctuating moisture regimes.  
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Figure 4.11 The effect of temperature (°C) and soil moisture on survival of Salmonella (log10 

CFU g
-1

). Data were pooled from four factors (soil type, presence/absence of manure, serovar 

and sampling time). Bars are mean ± standard error, n = 336, P <0.001. The quantitative limit 

of detection (LOD; 1.18 log10 CFU g
-1

) of the viable count was determined by direct plating. 

CFU = colony forming unit. 

 

Table 4.14 The effect of temperature (°C) and soil moisture on the survival of Salmonella 

(log10 CFU g
-1

). Values are mean ± standard error, n = 336. Data were pooled from four 

factors (soil type, presence/absence of manure, serovar and sampling time) for statistical 

analysis. Mean values followed by the same letter are not significantly different (Tukeys 

HSD post-hoc test). CFU = colony forming unit. 

                               Salmonella count (log10 CFU g
-1

) 

 Temperature (°C) Moisture 

 

Constant Fluctuating 

5 3.44 ± 0.06
e
 2.39 ± 0.06

bc
 

21 3.18 ± 0.06
d
 2.19 ± 0.06

ab
 

37 2.61 ± 0.06
c
 2.04 ± 0.06

a
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4.3.11 Effect of soil type and manure amendments on survival of Salmonella  

The interaction between soil types and manure amendments significantly affected the 

survival of Salmonella. Survival was found to be better in samples with manure amendments. 

The lowest Salmonella count was detected in sandy soil without manure amendments (Figure 

4.12). In soils without added manure, Salmonella survival was greater in clay soil than sandy 

soil. 

 

4.3.12 Effect of soil type and moisture interactions on survival of Salmonella  

The interaction effect of moisture and soil significantly affected the survival of Salmonella. 

Survival was found to be higher in constant moisture conditions followed by fluctuating 

moisture in clay soil. In both soils, constant moisture appeared to favour Salmonella survival 

with the lowest cell count being detected in sandy soil with fluctuating moisture (Figure 

4.13). 

 

Figure 4.12 The effect of soil type and manure amendment interactions on the survival of 

Salmonella (log10 CFU g
-1

). Data were pooled from four factors (temperature, moisture, 

serovar and sampling time). Bars are mean ± standard error, n = 504, P <0.001. The 

quantitative limit of detection (LOD; 1.18 log10 CFU g
-1

) of the viable count was determined 

by direct plating. CFU = colony forming unit. 
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Figure 4.13 The effect of soil type and moisture regime on the survival of Salmonella (log10 

CFU g
-1

). Data were pooled from four factors (temperature, presence/absence of manure, 

serovar and sampling time). Bars are mean ± standard error, n = 504, P = 0.0285. The 

quantitative limit of detection (LOD; 1.18 log10 CFU g
-1

) of the viable count was determined 

by direct plating. CFU = colony forming unit. 

 

4.3.13 Effect of manure amendments and moisture regime on survival of Salmonella 

The interaction effect between moisture and manure amendments significantly affected the 

survival of Salmonella. Survival was improved more in constant moisture conditions 

compared to fluctuating moisture in the presence of manure. The lowest Salmonella count 

was detected in unamended samples with fluctuating moisture (Figure 4.14). Some of the 

interaction effects were not significant such as soil with serovar (P = 0.444), manure with 

serovar (P = 0.250) and moisture with serovar (P = 0.686) (Appendix 2). 
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Figure 4.14 The effect of manure amendments and moisture regimes on the survival of 

Salmonella (log10 CFU g
-1

). Data were pooled from four factors (temperature, soil type, 

serovar and sampling time). Bars are mean ± standard error, n = 504, P <0.001. The 

quantitative limit of detection (LOD; 1.18 log10 CFU g
-1

) of the viable count was determined 

by direct plating. CFU = colony forming unit. 

 

4.3.14 Presence/absence of Salmonella cells after enrichment 

When the detection of Salmonella cells was found to be below the limit of detection (LOD; 

1.18 log10 CFU g
-1

) after direct counting, the corresponding samples were enriched to check 

the presence/absence of viable Salmonella cells. This was done by streaking samples on 

XLT4 agar (Figure 4.15a) and on Salmonella CHROMagar (Figure 4.15b) and confirmed 

using specific antiserum from randomly selected typical Salmonella colonies. Over 43 days 

of incubation, from the total number of samples (504 per serovar), 242, 200, 196 and 194 

samples were enriched from S. Sofia, S. Montevideo, S. Enteritidis and the serovar cocktail 

inoculated soil samples, respectively.  

The data obtained from enrichment (positive or negative) was not analysed because most of 

the enriched samples were found to be positive and, for the analysis of direct counts, 

enrichment data was considered in the overall model as a zero count. The proportion of direct 

count and positive or negative Salmonella cells for Salmonella cocktail is indicated in Figure 

4.16 and represents a similar for the other serovars. The proportion of enriched samples was 
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greater in sandy soil (Figure 4.16b) than in sandy soil with manure amendments (Figure 

4.16a). Similarly, the proportion of enriched samples was greater in clay soil (Figure 4.16d) 

than in clay with manure amendments (Figure 4.16c). 

 

   

Figure 4.15 Black and mauve-coloured colonies formed by Salmonella on (a) XLT4 agar and 

(b) Salmonella CHROMagar, respectively.

 (a)  (b) 
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Figure 4.16 The proportion (%) of direct count and enriched Salmonella cocktail samples in (a) sandy soil with chicken manure, (b) sandy soil, 

(c) clay soil with chicken manure amendments and (d) clay soil. Data were pooled from two factors (temperature and moisture, n = 18). 
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4.4 Discussion 

Salmonella has been reported to survive in soil or manure-amended soil from a few days to 

up to a year, with various environmental factors affecting its survival. In the present study, 

the interaction effects of two factors at a time were evaluated to predict the survival of 

Salmonella serovars in either a clay or sandy soil, with and without chicken manure 

amendments, using different temperatures, moisture regimes and serovars.  

4.4.1 Effect of temperature on Salmonella survival  

Temperature has been shown to be an important factor for the metabolism and survival of 

pathogenic bacteria in environmental samples (Himathongkham et al. 1999; Bovill et al. 

2001; Arrus et al. 2006; Semenov et al. 2007). In the present study, a significant difference in 

Salmonella survival was observed at different temperatures over the 43 day incubation 

period. Generally, the survival of Salmonella at lower temperatures (5 and 21°C) was found 

to be greater than survival at higher temperature (37°C). The rate of Salmonella decline was 

28% and 41% at 5 and 37°C respectively throughout the incubation period. The average rate 

of decline of Salmonella over 43 days of incubation period was 0.84, 0.80 and 1.30 log10 

CFU g
-1

 at 5, 21 and 37°C, respectively. In addition, the effect size between 5 and 21°C and 

21 and 37°C was found to be small but medium effect size was observed between 5 and 

37°C. However, by day 43 there was no significant difference between the two temperature 

treatments with respect to the temperature-time interaction. This result is similar to the 

previous study of Zibilske and Weaver (1978) who reported the rapid decline of Salmonella 

cells in clay soil at 39°C. Semenov et al. (2007) also reported that the decline of bacterial 

pathogens was greater when the temperature was increased from 7 to 33°C. In general, 

survival rates of Salmonella spp. decline as temperatures are increased from 20 to 70°C in 

natural substrates (Kudva et al. 1998; Himathongkham et al. 1999). In the present study, the 

number of bacterial cells was found to be similar after incubation at both higher and lower 

temperatures based on the statistical tests of significance. This may be due to greater rates of 

death and regrowth of bacterial cells at higher temperatures while there was a lower rate of 

decline and less regrowth at the cooler temperature. Some survival studies report the rate of 

decline of bacterial pathogens is greater at lower temperatures (Jiang et al. 2002; Bach et al. 

2005; Mukherjee et al. 2006a).  



80 

 

The interaction of temperature and soil was found to be significant for the survival of 

Salmonella. In all temperature treatments, survival was better in clay soil than sandy soil. In 

clay soil, the survival of Salmonella was better at lower temperature (5°C) than at higher 

temperature (37°C). This is in agreement with Garcia et al. (2010), who reported that the 

greatest decline in bacterial levels in the soil was measured at higher temperature (25°C) and 

corresponds with other publications (Holley et al. 2006; Moynihan et al. 2013; Li et al. 

2015).  

In the present study, for all temperature treatments the survival of Salmonella was better in 

the presence of manure than without manure. However, in the presence of manure, survival 

of Salmonella was better at higher temperature (21°C) than at lower temperature (5°C). On 

the other hand, without manure, survival of Salmonella was better at lower temperature (5°C) 

that at higher temperature (37°C).  

There was a difference in the survival of the individual Salmonella serovars according to 

temperature. The survival of the Salmonella cocktail, S. Enteritidis and S. Montevideo was 

better at lower temperatures compared with higher temperatures. However, there were no 

significant differences between the temperature treatments for S. Sofia. The difference among 

Salmonella serovars may be related to the presence or absence of specific genes related to 

tolerance of environmental stress and their level of expression. It has been reported that 

Salmonella uses cold shock proteins (CSPs) as a response for quick adaptation to temperature 

downshifts in the environment (Craig et al. 1998; Jeffreys et al. 1998; Horton et al. 2000; 

Andina and Hanning 2015). It has also been reported that Salmonella has the ability to 

increase its survival rate by expressing CSPs when treated at low temperatures (5°C to 10°C). 

For example, S. Enteritidis is able to survive in chicken tissues at 2°C (Andino and Hanning 

2015). There may well be a difference among Salmonella serovars in adapting to lower 

temperatures which may result in a difference in their survival pattern. Furthermore, soil type 

may interact with temperature to modify survival. In sandy soils, high temperature would 

hasten moisture loss resulting in an unsuitable environment for the bacteria. In clay soils 

however, the size and nature of the particles and minerals may enhance survival (Brennan et 

al. 2014). 

4.4.2 Effect of soil type on Salmonella survival 

The survival of Salmonella was found to be different between the two soil types (sandy and 

clay) with survival significantly better in clay soil than in sandy soil throughout the 
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microcosm pot trial. In addition, effect size between the two soil types was found to be large 

(d = 1.47). This result is in agreement with previous findings that sandy soils are more hostile 

in terms of survival of enteric organisms compared with clay soils (Lang and Smith 2007). 

Bacterial nutrition and the physical and chemical properties of the soil have been suggested 

as reasons for variation in survival of Salmonella in different soil types (Chandler and Craven 

1980). For example, soils with high organic matter content and a fine texture have been found 

to support three times greater microbial populations than coarse textured soils (Tate 1978; 

Mubiru et al. 2000). In the present study, the amount of total carbon in the clay soil was 

approximately five times greater than in the sandy soil prior to chicken manure amendment. 

The increased organic matter and high water holding capacity could be the reason the clay 

soil resulted in better survival of Salmonella than the sandy soil. 

Another property which has been found to affect the survival of bacterial pathogens is soil 

pH. It has been reported that survival of Salmonella and E. coli O157:H7 was affected by pH 

in which pathogen populations decreased more rapidly in acidic soils than in neutral or 

slightly alkaline soils (Erickson et al. 2014). In addition, Ma et al. (2013) indicated that pH 

was determined to be a major factor affecting the survival of E. coli O157:H7 in a study 

conducted in different soil types having a pH range from 6.7–8.0. In the present study, pH 

ranged from 5.06 (clay soil) to 7.53 (sandy soil with manure amendment) but the relationship 

between pH and Salmonella survival was found to be inconsistent and changes in soil pH 

were not monitored throughout the incubation period. 

Electrical conductivity is another soil property affecting the survival of bacterial pathogens. 

The EC of soil is an indication of ion concentration (dissolved salts) in the soil solution. 

Increasing salinity, which results in an increase in EC, may cause interference in ion transport 

and inhibition of enzyme activity, both of which could lead to reduced survival of enteric 

pathogens in soils (Erickson et al. 2014). Adding manure to both soil types (clay and sandy) 

increased the EC but it cannot be used to account for the difference in survival of Salmonella. 

In the present study, manure amendments improved the survival of bacteria in soil compared 

to non-amended soil samples most likely because of an increase in nutrient availability. Franz 

and van Bruggen (2008) reported that E. coli O157:H7 survival was lower when there were 

lower levels of readily available carbon in both manure and soil. Additionally, Barbour 

(2002) reported that counts of all microorganism increased significantly in soil treated with 

chicken manure. Santamaria and Toranzos (2003) reported that soluble organic compounds 
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increased survival and, in the case of bacteria, were thought to favour their regrowth. Several 

studies have also described the protective effects of moisture and soil organic matter on the 

survival of bacterial pathogens (Dowe et al. 1997; Cools et al. 2001; Holley et al. 2006) and 

soil rich with organic matter has greater capacity to retain other nutrients (Jamieson et al. 

2002). Franz et al. (2008a) compared the survival of E. coli O157:H7 in soil amended with 

farmyard manure (compost) and artificial fertiliser and reported that survival was higher in 

compost-amended soil whereas the pathogen survived for a shorter period of time in soil 

amended with artificial fertiliser. Nutrient availability provided by addition of manure may 

allow cell repair leading to greater numbers of Salmonella (Holley et al. (2006).  

4.4.3 Effect of soil moisture on Salmonella survival 

Another abiotic factor affecting soil microbial communities is moisture. The importance of 

this factor is highlighted as soil moisture content has a greater impact on bacterial comunities 

than soil nitrogen or carbon (Singh et al. 2009). Generally, a decrease in soil moisture has a 

direct effect on pathogen decay due to desiccation and autolysis of bacterial cells (Lang and 

Smith 2007). In the present study, Salmonella survival was found to be better in constant 

moisture conditions than soil exposed to fluctuating moisture levels such that the average 

Salmonella count at the end of the constant moisture incubation period was 2.24 and 3.92 

log10 CFU g
-1

 in sandy and clay soils, respectively. In contrast, the mean Salmonella count at 

the end of the incubation period fluctuating moisture was half these values (i.e. 1.46 and 2.94 

log10 CFU g
-1

 in sandy and clay soil, respectively). In addition to ANOVA, effect size was 

calculated and large effect size (d = 0.81) was observed between constant and fluctuating 

moisture regimes (data not shown). Survival of bacterial pathogens has been reported to 

increase when the soil is moist (Entry et al. 2000) and it has also been shown that bacterial 

survival is greater in finer grained soils, which have an enhanced ability to retain moisture 

and nutrients (Jamieson et al. 2002). The interaction of moisture and temperature was 

significant with better survival at lower temperatures in soil with constant moisture. This 

result is in agreement with Entry et al. (2000) who found that the survival rate of bacterial 

pathogens decreases when higher temperatures are combined with drying.  

The better survival of Salmonella in clay soils is also reflected in the Salmonella 

presence/absence data where the proportion of samples counted by direct plating was 94% 

and 55%, in manure-amended and unamended clay soil, respectively, and only 22% and 11% 

in manure-amended and unamended sandy soil, respectively. Only 6% of the samples were 
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enriched to check the viable residual Salmonella cells in clay soil with manure-amended 

treatments and this pattern was supported by the plate count data in which the survival of 

Salmonella was better in manure-amended clay soils. The low counts for Salmonella in clay 

soil however may not pose a safety risk to human health as 10
-5

–l0
-10

 organisms are required 

as the infection dose depending on serovar and health of the individual (Kothary and Babu 

2001). 

Based on the present study, vegetables growers can expect faster die off of Salmonella in 

contaminated fields, particularly in sandy soil in summer when the soil temperature is higher 

and is coupled with a fluctuating moisture regime. These conditions provide an advantage for 

the growers where the soil temperature, air temperature and evaporation are high. In clay soil, 

a longer period of time between the application of improperly composted or fresh manure and 

planting of vegetables is required to reduce risk of Salmonella contamination of crops, 

particularly in winter when soil temperatures are low. The addition of manure enhanced the 

survival of Salmonella, which is an issue since most growers want to use organic 

amendments (manure or compost) to increase the soil carbon. It is unlikely, however, that 

organic amendments will be replaced with inorganic inputs under sustainable crop production 

systems (Quilty and Cattle 2011). As a result, the different treatments used to suppress 

Salmonella contaminated soil by simulating accidental chicken manure application under 

field condition in relation to soil types, soil and weather conditions will be discussed in 

Chapter 5. 

4.4.4 Summary  

Overall, the survival of Salmonella was found to be better in clay soil than sandy soil. Sand-

based soils are more hostile in terms of survival of enteric organisms. Soil types with 

different physical and chemical properties can also differ in terms of bacterial nutrition which 

contributes to the survival of enteric organisms. The addition of manure to soil increases the 

availability of soil organic carbon, nitrogen and other nutrients which can enhance the 

survival of bacterial pathogens. In the present study, manure amendments improved the 

survival of Salmonella in soil compared with non-amended soils. In addition, environmental 

factors such as temperature and moisture were found to be important in affecting the survival 

of bacterial pathogens in soil and manure-amended soil. Generally, the survival of Salmonella 

was found to be greater at lower temperature (5°C) that at higher temperature (37°C). 
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Regarding moisture, Salmonella survival was found to be better in constant moisture 

conditions compared to the fluctuating moisture regime in both sandy and clay soils.  

Based on the present study, addition of raw manure to clay soil is not recommended with a 

short-cycle vegetable crop due to the slow die off rate of Salmonella, particularly in winter. 

Use of certified composted manure is recommended. 
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5. Field experiment: remediation of Salmonella-

contaminated soil using cover crops and solarisation  

5.1 Introduction  

It is only in the last thirty years that there has been a rise in frequency of Salmonella 

outbreaks linked with the consumption of contaminated fresh produce (Abd-Elall and Maysa 

2015). In the USA, fresh produce is estimated to cause 20 million illnesses costing $38.6 

billion every year (Olaimat and Holley 2012). In particular, lettuce is a commonly reported 

cause of fresh produce disease outbreaks due to enteric pathogen contamination because it is 

consumed raw and is a major component of ready-to-eat salad products (James 2007). In 

Australia in 2001, 41 cases of Salmonella infection were associated with contaminated lettuce 

(Stafford et al. 2002).  

Contamination of salad vegetables may occur either preharvest (Islam et al. 2004c) or 

postharvest (Sánchez et al. 2012), although it has been reported that the most scrutiny of 

microbiological quality and safety of finished products should occur during the preharvest 

stage (Beuchat 1996; Brackett 1999; Beuchat 2002; James 2007). Preharvest causes of 

contamination are the use of raw or partially composted manure, contaminated irrigation 

water or intrusion of animals in the field (Bernstein et al. 2007b; Berger et al. 2010). For 

example, in Australia, poultry litter and raw manure, a by-product of the broiler and egg 

production industries, are widely applied to commercial vegetable production sites as soil 

amendments. Raw or partially composted animal manures are known to harbour enteric 

pathogens such as Salmonella, E. coli and Listeria monocytogenes. So application of these 

manures may introduce pathogens into soils used for vegetable production (Natvig et al. 

2002; Franz et al. 2005). 

Once in the field, bacterial pathogens may survive and multiply if conditions are favourable 

increasing the risk of produce contamination (Park et al. 2012). Abiotic factors such as 

temperature, pH, soil moisture and soil type, together with biotic factors such as microbial 

community affects whether bacteria, originating from manures or composts, will persist (van 

Veen et al. 1997). Soil type has been identified as an important variable in pathogen survival; 

clay soil supports greater survival of enteric pathogens than sandy soils (Danyluk et al. 2008). 

This was also found in the present study (Chapter 4), in which clay soil supported the 
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survival of Salmonella more than sandy soil. In addition, other factors such as low 

temperatures and constant soil moisture favour the long-term survival of Salmonella, thereby 

increasing the risk of vegetable contamination, either through direct contact with the 

contaminated soil, or through irrigation and rain splash.  

Bacterial pathogens in soil or manure-amended soil can be suppressed by biocidal 

compounds that possess antimicrobial activity as described in Chapter 2. Biofumigation is an 

agronomic strategy to control pathogens, whereby green manure crops are incorporated into 

the soil and release biocidal compounds as they degrade (Kirkegaard et al. 1997; Matejiceck 

et al. 2002; Gimsing et al. 2005). Glucosinolates are a group of compounds produced by 

plants in the family Brassicaceae that are responsible for the characteristic pungent flavours 

in crops such as mustard, radish and cabbage (Gimsing et al. 2005). The Brassicaceae plant 

species that are generally considered for biofumigation are Brassica oleracea (broccoli, 

cabbage, cauliflower, kale), Raphanus sativus (radish), and various mustards, such as Sinapis 

alba (white mustard), Brassica carinata (Ethiopian mustard) and Brassica juncea (Indian 

mustard) (Sarwar et al. 1998; Ploeg 2008).  

Isothiocyanates (ITCs) are sulfur-containing hydrolysis products of glucosinolates (Wathelet 

et al. 2004) and are generally considered the most toxic group of secondary metabolites in 

this family (Gimsing et al. 2005). In addition, oxazolidinethiones, nitriles and thiocyanates 

are some of the other products of glucosinolate hydrolysis (Kirkegaard et al. 1997). 

Sulforaphane from Brassica has shown antibacterial activity against a range of both Gram-

negative and Gram-positive bacteria (Aires et al. (2009). Many studies have indicated that 

ITCs exhibit antimicrobial activity against diverse organisms including fungi, bacteria, and 

insect pests. In particular, allyl ITC from sinigrin (2-propenyl glucosinolate), exhibits 

antimicrobial activity against a variety of pathogens at low concentrations (Luciano and 

Holley 2009; Liu and Yang 2010). Similarly, Lin et al. (2000) reported the antibacterial 

activity of methyl ITC against S. Montevideo, E. coli O157:H7 and L. monocytogenes in 

fresh produce.  

Another group of antimicrobial plant compounds possessing a biofumigant effect against 

bacterial pathogens are the phenolics (Cetin-Karaca 2011). For example, the phenolic 

compound, ellagitannin, from red raspberry has antimicrobial properties against the growth of 

human pathogens (Heinonen 2007).  
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In the present study, ‘Terranova’ oilseed radish (Raphanus sativus) and ‘Cappuccino’ 

Ethiopian mustard (Brassica carinata) were used as a source of glucosinolates. ‘Fumig8tor’ 

sorghum was used as a source of phenolics for the biofumigation treatments for suppressing 

Salmonella in the soil. According to Gutierrez and Perez (2004), sap from radish root showed 

antimicrobial activity against Bacillus subtilis, Pseudomonas aeruginosa and Salmonella 

thyphosa. The compound 3-thioxo-3-pyrrolidinecarbaldehyde (TPC) is a major component of 

radish, and possesses antimicrobial activity against fungi and bacteria with a minimum 

inhibitory concentration ranging from 50–400 µg ml
-1

. In one study, S. Typhimurium showed 

a higher sensitivity against TPC at a concentration of 200 µg ml
-1

 (Matsuoka et al. 1997). 

Turgis et al. (2009) reported that an essential oil extracted from mustard has been found to 

reduce intracellular ATP concentration both in E. coli O157:H7 and Salmonella. 

Soil solarisation is a relatively common pre-planting technique used to control pathogens and 

pests. The soil is covered with polyethylene plastic sheeting for a certain period of time and 

the resultant heat can inactivate bacterial and fungal pathogens in the soil (Stapleton 2000; 

Barbour 2002; Berry and Wells 2012). It is practiced mostly in summer when high ambient 

temperatures can exceed 40°C. In Australia, black plastic is widely used for soil solarisation 

and the same was used in the present study as a means to increase soil temperature. Soil 

solarisation in combination with biofumigation may synergistically control microorganisms 

in the soil. For example, according to Gamliel and Stapleton (1993), the amount of volatile 

compounds in soil amended with cabbage residue was higher in heated (solarised) soil than in 

the corresponding unheated soil. However, there has been little research conducted on these 

processes as potential techniques for supressing Salmonella in contaminated fields under 

Australian conditions. Additionally, even though L. monocytogenes is not the primary focus 

of this study, it is critical to determine the potential for the target remediation treatments to 

elevate the population of the other bacterial pathogens in the soil. This pathogen is recognised 

as a soil resident and prevalent coloniser of decaying vegetation in agricultural systems and 

transfer to fresh produce has become an increasing concern (Hoelzer et al. 2012). Therefore, 

the present study was initiated with the following aims: 

1. Determine the optimal low-residue cover crop that will enhance die-off of S. 

enterica in contrasting soils in Australia. 

2. Establish single or combined cover crop-solarisation combinations that will 

facilitate die-off of S. enterica in soil so that there is no re-contamination 

associated with the re-planting of leafy greens.  
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3. Detect L. monocytogenes in cover crop-amended soils under field conditions. 

5.2 Materials and methods 

5.2.1 Site description  

The experiment was conducted at two research sites, Karalee Farm and Pye Farm at the 

University of Sydney. These research sites are described in detail in Chapter 3.1.  

 5.2.2 Soil description  

The chemical and physical properties of the soil were analysed as described in Chapter 3.2.3. 

5.2.3 Baseline characterisation of field soil 

To check for the presence or absence of Salmonella and L. monocytogenes, random soil 

samples were taken from field plots established at Karalee Farm and Pye Farms (n = 10 per 

site, an approximate land area was 15 m wide and 65 m long per site; see Fig. 5.1). For 

detection of Salmonella, 100 g of each soil type was transferred to 400 mL sterile stomacher 

bags and aliquots of 150 mL BPW was added to each bag and incubated for 24 h at 37°C. An 

aliquot (10 mL) of this sample was then transferred to 90 mL of TTB containing an iodine 

supplement and incubated for 6 h at 42°C. Samples were then treated as described in Chapter 

3.6.3. 

To check for the presence or absence of L. monocytogenes, the protocol described in Chapter 

3.6.4 was followed.  

5.2.4 Baseline characterisation of commercial chicken pellet samples  

Chicken manure pellets were obtained from a commercial supplier (as described in Chapter 

3.6.4) and used as an inoculum carrier and as a soil amendment. The chicken manure pellets 

from commercial suppliers are typically composted, heat treated and extruded into pellets. 

Baseline characterisation of the chicken manure pellets for Salmonella was done prior to field 

application. Replicate samples (100 g) of chicken manure pellets (n = 3) were weighed and 

transferred to 400 mL sterile stomacher bags. Aliquots of 150 mL of BPW was added to each 

bag and incubated for 24 h at 37°C. An aliquot (10 mL) of incubated BPW sample was 

transferred to 90 mL of TTB containing an iodine supplement and incubated for 6 h at 42°C. 

Samples were then treated as described in Chapter 3.6.3. 
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The chicken manure pellet samples were also checked for the presence or absence of L. 

monocytogenes following the protocol described in Chapter 3.6.4.  

5.2.5 Preparation of field sites  

The experimental design was a split-plot block design with the whole plot treatment being 

type of cover crop (mustard, radish, sorghum and no cover crop) and the split plot treatment 

being solarisation or no solarisation.  

At both research field sites, five raised beds were formed with a 1.5 m bed width, where the 

central bed was left undisturbed as a buffer zone (see Figure 5.1). The length of each whole 

bed was 12 m with 2 m row breaks and 0.8 m wheel tracks. Plot areas were marked out with 

stakes and marker spray.  

5.2.6 Preparation of inoculum  

Salmonella inoculum was prepared from lawn cultures grown on TSARP at 37°C for 24 h. 

The cultures were washed with 5 mL phosphate buffer, rubbed with an L-shaped spreader 

and the resultant suspension aseptically transferred to a sterile bottle. Initially the inoculum 

was made from 20 lawn cultures, but this was found to provide an insufficient level of 

contamination when applied to chicken manure pellets. Hence, the pellets were inoculated a 

second time using inoculum prepared from 100 lawn cultures. The bottle was stored at 4°C 

until inoculation of the chicken manure pellets on the same day. Approximately 7 log10 CFU 

Salmonella per gram of chicken manure was used to inoculate the pellets which is in the 

range of the reported density of enteropathogens in a natural condition which is from 10
4 

CFU g
-1

 dry-matter to 10
7
 CFU g

-1
 dry-matter of manure (Semenov et al. 2007). 

Rifampicin-resistant Salmonella was used because markers such as antibiotic resistance aid in 

the selection and enumeration of target pathogens from manure-amended soils which 

generally contain high populations of background microorganisms (Harris et al. 2013).  
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Figure 5.1 Field layout and treatment combinations at Karalee Farm, Camden and Pye Farm, 

Bringelly. Field design diagram provided by Dr Kim-Yen Phan-Thien, University of Sydney. 

 

Plot 

coordinates Treatment 

Block Row 
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A 1 Mustard Solar 

A 2 Mustard Open 

A 3 No Cover Solar 

A 4 No Cover Open 

A 5 Sorghum Solar 

A 6 Sorghum Open 

A 7 Radish Open 

A 8 Radish Solar 

B 1 Mustard Open 

B 2 Mustard Solar 

B 3 No Cover Open 

B 4 No Cover Solar 

B 5 Radish Solar 

B 6 Radish Open  

B 7 Sorghum Solar 

B 8 Sorghum Open 

C 1 No Cover Solar 

C 2 No Cover Open 

C 3 Radish Open 

C 4 Radish Solar 

C 5 Mustard Open 

C 6 Mustard Solar  

C 7 Sorghum Solar 

C 8 Sorghum Open 

D 1 No Cover Open 

D 2 No Cover Solar 

D 3 Mustard Open 

D 4 Mustard Solar 

D 5 Radish Open 

D 6 Radish Solar 

D 7 Sorghum Solar 

D 8 Sorghum Open 
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The serovar intended for use in this experiment was rifampicin-resistant S. Sofia because it is 

avirulent and the most prominent serovar in Australia. The identity of the serovar was 

confirmed by a positive agglutination slide test using O:4 (B-group) antiserum. However, at a 

late stage of the field experiment, soil samples were found to react positively with O:7 (C1 

group) antiserum. Genetic sequencing by an analytical service laboratory confirmed that the 

samples contained S. Montevideo and that the original inoculum had contained a mixture of 

S. Sofia and S. Montevideo. This was not ideal and reflects technical inexperience. However, 

the experiment itself followed a robust design, the results remain valid since the difference 

between S. Sofia and S. Montevideo was not statistically significant on time-serovar and 

temperature-serovar interactions except at 5°C and provide insights into Salmonella 

population dynamics in response to the field treatments. 

Before inoculation, the preparation area was cleaned and thoroughly disinfected using 75% 

ethanol and 1% decontaminant (Virkon) solution. The inside of all containers used to mix or 

hold chicken manure pellet with liquid inoculum was disinfected using 75% ethanol and not a 

sanitiser to avoid residues. The plastic boxes used to hold the chicken manure pellets, the 

cement mixer used to mix the liquid inoculum and the chicken manure pellets and the 

watering can used to transfer the liquid inoculum to the cement mixer were all washed using 

tap water, disinfected using 75% ethanol (approximately 2 L) and air-dried before use.  

A total of 160 kg of chicken manure pellets obtained from a commercial market (Enfield 

Produce, Pet and Garden Supplies, Sydney, Australia) were prepared for both farm research 

sites. The pellets were divided into approximately 20 kg lots for ease of management. A 

volume of 625 mL of bacterial suspension was mixed with 2 L dechlorinated tap water. The 

diluted suspension was showered onto 20 kg of chicken manure pellets while rotating in a 

conventional cement mixer. The inoculated pellets were divided into two plastic crates and 

loosely covered with a plastic lid to enable drying.  

There were a total of eight boxes containing inoculated chicken manure pellet and a 

composite sample was taken from each 20 kg pellet mix (per box) to determine the 

concentration of Salmonella cells. The extraction and enumeration (n = 8) were done 

following the protocol described in Chapter 3.6.2. After the initial inoculation, the 

concentration of Salmonella in the chicken manure was approximately 5.0 log10 CFU g
-1

 of 

manure. This was lower than desired, so the manure was inoculated a second time with a 
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more concentrated inoculum to achieve a contamination level of about 7.0 log10 CFU g
-1

 

(Table 5.1). 

 

Table 5.1 Salmonella concentration in inoculated chicken manure pellets enumerated on 

rifampicin-amended trypticase soy agar (TSARP) and xylose lysine deoxycholate (XLDRP) 

plates. Values are mean ± standard error, n = 8. CFU = colony forming unit. 

 

 

During the field experiment the following biosafety practices were performed: 

 Hands (before and after sampling) were wiped with 75% ethanol and working 

areas were disinfected with 1% virkon 

 Placed warning signs of biohazard on equipments, sampling and sample storing 

boxes etc. Salmonella samples were stored in double container and labeled 

properly 

 Wore overalls and use gloves and masks while working with Salmonella cultures, 

inoculated chicken manure pellets and during sampling in the field.  

 After sampling, disinfected the outsole and upper of shoes using 1% virkon or 

wore plastic shoe cover during sampling  

 After sampling, disinfected all sampling equipment using 75% ethanol or 1% 

virkon 

 

5.2.7 Application of chicken manure pellets to the field  

Inoculated chicken manure pellets were applied to the designated treatment plots (2 days after 

inoculating the chicken manure pellet) at a commercial standard rate of 200 g m
-2

 in the top 5 

cm of soil and incorporated manually using hand rakes (Figure 5.2). Samples were collected 

from whole plots immediately following application of the inoculated chicken manure at both 

research sites.  

Media Salmonella count (log10 CFU g
-1

) 

  First inoculation  Second inoculation  

TSARP 5.82 ± 0.10 7.18 ± 0.06 

XLDRP 5.67 ± 0.01 7.07 ± 0.05 
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Figure 5.2 Application of rif-resistant Salmonella-inoculated chicken manure pellets at 

Karalee Farm, Camden.  

 

5.2.8 Planting of lettuce  

Green Oakleaf lettuce seedlings obtained from a commercial supplier were transplanted into 

the field plots one to two days after application of the inoculated manure. The seedlings were 

planted in two rows in each bed (excluding the buffer zone) at a spacing of approximately 30 

cm. A mechanical transplanter was used at Karalee Farm, but seedlings at Pye Farm had to be 

manually transplanted due to the high clay content of the soil. Almost 90% of the seedlings at 

Pye Farm died and were replanted four days after the initial planting. Lettuce seedlings were 

allowed to grow for 4 weeks prior to being ploughed in and incorporated into the soil using a 

rotary hoe.  

5.2.9 Application of cover crop treatment  

Following lettuce incorporation, cover crop treatments were applied. The cover crops used in 

the present study were ‘Terranova’ oilseed radish (Raphanus sativus) and ‘Cappuccino’ 

Ethiopian mustard (Brassica carinata) donated by Seedforce, Australia and ‘Fumig8tor’ 

sorghum donated by Pacific Seeds, Australia. The cover crops were sown by hand at the 

commercially recommended rates (i.e. 1.0, 1.5 and 3.1 g m
-2

 for radish, mustard and 

sorghum, respectively). Plots were irrigated immediately after sowing and thereafter as 
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required. Cover crop treatments were incorporated into the soil 35 days after sowing by 

disking. 

5.2.10 Application of the solarisation treatment  

Black plastic is commonly used in Australian horticultural industries for weed control as well 

as solarisation (Rogers et al. 2002). For this reason, black plastic (Austec Irrigation and 

Garden Supplies Pty Ltd, Narellan, NSW) was used in this experiment, although some 

research suggests that clear plastic is more effective in raising soil temperature (Stapleton and 

DeVay 1986). 

Solarisation treatments were applied by covering the soil surface (after irrigation) with black 

polyethylene sheets (6 x 4 m; 200 µm thickness) and digging in the edges to achieve a tight 

fit (Figure 5.3). In the control whole plots (no cover crop), solarisation was applied at the 

time that cover crops were sown in other whole plots. In the whole plots treated with cover 

crops, solarisation was applied after the cover crops were ploughed in. All whole plots 

comprised a split plot with solarisation treatment and a control split plot without solarisation.  

 

 

Figure 5.3 The soil solarisation treatment and cover crop at Karalee Farm prior to crop 

incorporation into the soil at Karalee Farm, Camden. 
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5.2.11 Weather and soil conditions 

The temperature of the soil (surface and 5 cm depth) was automatically recorded at hourly 

intervals using Thermochron iButton temperature loggers (Thermodata Pty Ltd, Australia) 

throughout the experimental period at both field sites. Temperature was recorded for both 

solarised and non-solarised plots. Soil moisture of both sites was measured every week at the 

time of soil sampling using a soil moisture meter (MP406 Moisture Probe, Instrument 

Choice, Australia). Weather data was obtained from Bureau of Meteorology weather stations 

closest to the field sites (i.e. Camden and Badgerys Creek). 

5.2.12 Soil sampling and transportation 

Soil sampling was performed on a weekly basis during the experiment. Soil was sampled by 

pushing a sterile stainless steel cylindrical core (5 cm diameter, 10 cm depth) into the soil and 

carefully extracting. Before application of treatments (ploughing in of the cover crops and 

covering the soil with black plastic), random sampling was performed on each whole plot 

and, after the treatments started, sampling was performed from each split plot. Sampling from 

solarised plots was performed by cutting the plastic in an L-shape (Figure 5.4), removing the 

soil and sealing the cut using cloth tape. Each soil sample was a composite of three 

subsamples from each plot taken from the middle of the plots. The soil samples were placed 

in sterile 400 mL bags, and thoroughly massaged and mixed by hand to obtain a homogenous 

sample. The remaining soil left in the sampling bag was sealed and kept on ice and 

transported to the laboratory for the extraction of Salmonella and L. monocytogenes the next 

day after sampling.  

5.2.13 Sample extraction and enumeration  

To extract Salmonella, 100 g of soil from the composite sample was aseptically transferred to 

a 400 mL sterile stomacher bag using a sterile spoon, and 100 mL of extraction buffer was 

dispensed into the sample bag using a gravimetric dilutor. All extractions and mixing were 

performed following the steps described in Chapter 3.6.2.  

5.2.14 Enrichment steps for Salmonella  

Soil samples in which Salmonella was undetectable by direct plate count (<15 CFU per g 

soil) were retested following enrichment to determine whether the Salmonella cells survived 

at a very low level in the soil. The minimum level of detection on plates was calculated as the 
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reciprocal of the dilution factor (100 g soil and 150 mL extraction buffer) multiplied by a 

correction factor to report per mL (1 CFU per 100 µL or 10 CFU per mL). A 145 mL aliquot 

of the original suspension remaining after taking the 5 mL aliquot for enumeration was 

enriched with 145 mL of double strength BPW and incubated at 37°C for 24 h. Enrichment 

was done following the steps described in Chapter 3.6.3. 

 

 

Figure 5.4 Tape-sealed L-shape cut after sampling soil from the solarisation plots at Karalee 

Farm, Camden.  

 

5.2.15 Enrichment steps for Listeria monocytogenes  

The presence/absence of L. monocytogenes in the soil sample was detected by following the 

method described in Chapter 3.6.4. 

5.2.16 Statistical analysis 

Microbial count data was log-transformed and analysed using a mixed model in JMP Pro 

version 11 (SAS 2014, Cary, NC, USA). The split-plot, whole-plot and the time of sampling 

were considered as fixed effects, while block was considered as a random effect in the model. 

Because whole-plot and split-plot treatments were applied at different stages of the 

experimental period, the data were analysed as three subsets: (1) before application of any 

treatment (day 0–32); (2) during the cover crop growth period (day 33–67) and application of 
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solarisation for controls; and (3) after the incorporation of the cover crops and application of 

solarisation treatment (day 68–105).  

The first subset was analysed to examine change in Salmonella population over time. The 

second subset was analysed to examine the effects of time, fallow-solarisation and cover crop 

treatments (during their growth) on the Salmonella population. The third subset was analysed 

to examine the effects of time, cover crop treatments (after incorporation), cover crop-

solarisation and fallow-solarisation treatments on the Salmonella population.  

In addition, to compare the two soil types, a subset of data (the first 5 weeks) from Karalee 

Farm (sandy soil) was log-transformed and analysed in the same way as described above. 

When there were significant differences between the factors, a post-hoc test was done using 

Tukeys significant difference test for multiple comparisons. An example of this method of 

analysis is given in Appendix 3. The presence/absence data for Salmonella and L. 

monocytogenes, which were obtained by sample enrichment, were not statistically analysed 

as nearly all the results were found to be positive. 

5.3 Results  

5.3.1 Detection of Salmonella and Listeria in chicken manure pellets and field soil 

The chicken manure pellets and field soil were evaluated to provide a baseline 

characterisation prior to the start of experiments. Neither the chicken manure or soil samples 

contained Salmonella but both sample types were found to be positive for L. monocytogenes 

after enrichment.  

5.3.2 Soil characteristics 

Soil samples from Pye Farm (clay loam referred to as ‘clay soil’) and Karalee Farm (coarse 

sand referred to as ‘sandy soil’) were analysed to determine the physical and chemical 

properties of soil at both field sites (Table 5.2).  

Each soil had a different texture with varying amounts of sand and clay. The clay soil had 

four times more organic carbon than the sandy soil. Similarly, the amount of nitrate in the 

clay soil was seven times greater than the amount present in the sandy soil. In addition, the 

amount of total nitrogen and sulfur in the clay soil was seven and four times greater than the 
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amount found in sandy soil, respectively. Generally, the clay soil was richer than the sandy 

soil in terms of most nutrients (Table 5.2). 

5.3.3 Weather and soil conditions  

Soil moisture fluctuated according to rainfall events (data obtained from Bureau of 

Meteorology) and application of irrigation (Figure 5.5). Soil moisture was significantly (P 

<0.001) higher in clay soil than in the sandy soil for the duration of the experiment except on 

Day 63.  

The relationship between soil moisture, measured on weekly basis during the time of 

sampling and weekly average precipitation, at the research site during the field experiment 

showed a strong correlation (r = 0.6, data not shown) between the soil moisture and 

precipitation. The field experiment started in mid-January which is mid-summer in Australia. 

The maximum daily air temperature reached approximately 36°C at Pye Farm and 37°C at 

Karalee Farm in the month of January (Figures 5.6 and 5.7). The mean maximum 

temperatures were 29°C and 29°C at Karalee and Pye farms, respectively (Table 5.3). The 

extent of day and night air temperature fluctuation ranged from 4–18°C and 3–17°C at 

Karalee and Pye farms, respectively. 
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Table 5.2 Physicochemical properties of soil obtained from the two research field sites. 

Values are mean ± standard deviation, n = 10. Values for which no error is presented were 

obtained from bulked soil samples analysed by a commercial laboratory using standard 

methods. 

Variable Pye farm Karalee farm 

Bulk density (g cm
-3

) 1.12 ± 0.03 1.28 ± 0.09  

Soil moisture (%) 0.19 ± 0.05 0.05 ± 0.02  

Colour Brown Light grey 

Gravel (%)  0 0 

Coarse sand (%) 10 64.5 

Sand:silt:clay 27:27.1:35.9 27.7:2.6:5.2 

Texture  2.0 2.0 

Ammonium (mg kg) 9 1 

Nitrate (mg kg) 98 14 

Total nitrogen (%) 0.369 ± 0.063 0.048 ± 0.009 

Phosphorus Colwell (mg kg) 112 33 

Potassium Colwell (mg kg) 650 91 

Sulfur (mg kg) 9.4 2.1 

Organic carbon (%) 3.80 0.80 

Conductivity (dS m) 0.238 0.037 

pH (CaCl2) 4.8 5.0 

pH (H2O) 5.4 5.8 

Copper (mg kg) 4.17 1.00 

Iron (mg kg) 385.70 84.01 

Manganese (mg kg) 42.13 3.74 

Zinc (mg kg) 12.69 1.97 

Aluminum (meq 100 g)  0.282 0.093 

Calcium (meq 100 g) 8.46 1.40 

Magnesium (meq 100 g)  6.32 0.58 

Potassium (meq 100 g) 1.24 0.22 

Sodium (meq 100 g) 0.33 0.02 

Boron (Hot CaCl2 mg kg)  0.81 0.24 
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Figure 5.5 Soil moisture (%) at Karalee Farm, Camden (sandy soil) and Pye Farm, Bringelly 

(clay soil) over time. Data points are mean ± standard error, n = 20. 

 

 

Figure 5.6 Daily weather conditions at Pye Farm, Bringelly during the field experiment. Data 

from Badgerys Creek weather station, Bureau of Meteorology. The black dotted line is 

minimum daily temperature (°C), the red solid line is maximum daily temperature (°C) and 

the green bars are daily precipitation (mm). 
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Figure 5.7 Daily weather conditions at Karalee Farm, Camden during the field experiment. 

Data from Camden weather station, Bureau of Meteorology. The black dotted line is 

minimum daily temperature (°C), the red solid line is maximum daily temperature (°C), and 

the green bars are daily precipitation (mm). 

 

Table 5.3 Mean maximum and daily minimum temperatures (°C) and rainfall (mm) at the 

two sites (Karalee farm and Pye farm) during the field experiment. 

 

Minimum 

temperature (°C) 

Maximum 

temperature (°C) Total rainfall (mm) 

 Month 

Karalee 

Farm  

Pye 

Farm 

Karalee 

Farm 

Pye 

Farm 

Karalee 

Farm  

Pye 

Farm 

January 17.9 18.2 29.3 29.2 126.6 145.0 

February 16.7 17.3 28.2 28.1 49.0 34.0 

March 14.1 14.8 27.0 27.3 63.8 55.8 

April 11.9 12.7 22.6 22.3 219.8 253.4 

 

The solarisation treatment significantly increased the soil temperature, both at the surface and 

at 5 cm depths compared with the control treatment (Figure 5.8 and 5.9). There was also a 

significant difference in soil temperatures between the surface and 5 cm depths at both sites 

(Table 5.4).  

0

10

20

30

40

50

60

70

80

90

100

0

5

10

15

20

25

30

35

40

R
ai

n
fa

ll
 (

m
m

) 

T
em

p
er

at
u
re

 (
°C

) 

Date 



102 

 

 

Figure 5.8 The effect of solarisation and non-solarisation (control) treatments on the soil 

temperature (°C) at the surface and 5 cm depth at Pye Farm, Bringelly. Data points are mean 

values, n = 4, P <0.001.  

 

 

Figure 5.9 The effect of solarisation and non-solarisation (control) treatments on the soil 

temperature (°C) at the surface and 5 cm depth at Karalee farm, Camden. Data points are 

mean values, n = 4, P <0.001.  
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Table 5.4 Differences in daily minimum, mean and maximum temperatures (°C) between the 

solarisation and control treatments throughout the field experiment at the two sites. Values 

are mean, n = 4. **Highly significant (P <0.001) using paired t-test.  

Site Temperature Temperature difference (°C) 

Soil surface 5 cm depth 

Karalee Farm  Minimum 2.8
**

 2.9
**

 

Maximum 3.6
**

 4.1
**

 

Mean 3.3
**

 3.5
**

 

Pye Farm  Minimum 2.9
**

 4.3
**

 

Maximum 0.7
**

 4.6
**

 

Mean 2.3
**

 4.5
**

 

Statistical analysis provided by Dr Kim-Yen Phan-Thien, University of Sydney. 

 

The number of hours where temperatures exceeded 37°C or 40°C was found to be greater in 

the fallow-control solarisation treatments than the cover crop-solarisation treatments (Tables 

5.5–5.8). Solarisation commenced in mid-February (summer) and was carried out for a period 

of 8 weeks for the fallow-control treatments whereas the cover crop treatment was started in 

late-March (autumn) and remained in place for about 3 weeks.  
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Table 5.5 Soil temperatures in fallow-control solarisation plots at Karalee Farm, Camden. 

The data represents an hourly record of soil temperatures exceeding 37°C or 40°C. Values are 

mean, n = 4. Plas = black plastic treatment, Cont = control, no plastic treatment, T = 

temperature. 

Time after 

commencement of 

solarisation treatment 

Surface temperature Sub-soil (5 cm) temperature 

Hours of T 

≥37°C 

Hours of T 

≥40°C 

Hours of T 

≥37°C 

Hours of T 

≥40°C 

Plas Cont Plas Cont Plas Cont Plas Cont 

Week 1 (16/02–23/02) 6 4 2 2 0 0 0 0 

Week 2 (24/02–2/03) 14 10 7 3 3 0 0 0 

Week 3 (03/03–9/03) 33 8 18 2 15 0 4 0 

Week 4 (10/03–16/03) 14 0 6 0 2 0 0 0 

Duration (17/03–15/04) 14 0 5 0 3 0 0 0 

Total  81 22 38 7 23 0 4 0 

Data provided by Dr Kim-Yen Phan-Thien, University of Sydney. 

 

Table 5.6 Soil temperatures in fallow-control solarisation plots at Pye Farm, Bringelly. The 

data represents an hourly record of soil temperatures exceeded 37°C or 40°C. Values are 

mean, n = 4. Plas = black plastic treatment, Cont = control, no plastic treatment, T = 

temperature. 

Time after 

commencement of 

solarisation treatment 

Surface temperature Sub-soil (5 cm) temperature 

Hours of T 

≥37°C 

Hours of T 

≥40°C 

Hours of T 

≥37°C 

Hours of T 

≥40°C 

Plas Cont Plas Cont Plas Cont Plas Cont 

Week 1 (16/02–23/02) 19 17 11 13 0 0 0 0 

Week 2 (24/02–2/03) 13 14 7 8 0 0 0 0 

Week 3 (03/03–9/03) 30 18 15 7 0 0 0 0 

Week 4 (10/03–16/03) 13 5 4 2 0 0 0 0 

Duration (17/03–15/04) 17 21 4 6 0 0 0 0 

Total 92 75 41 36 0 0 0 0 

Data provided by Dr Kim-Yen Phan-Thien, University of Sydney. 
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Table 5.7 Soil temperatures in cover crop-solarisation plots at Karalee Farm, Camden. The 

data represents an hourly record of soil temperatures exceeded 37°C or 40°C. Values are 

mean, n = 4. Plas = black plastic treatment, Cont = control, no plastic treatment, T = 

temperature.  

Time after 

commencement of 

solarisation 

treatment 

Surface temperature Sub-soil (5 cm) temperature 

Hours of T 

≥37°C 

Hours of T 

≥40°C 

Hours of T 

≥37°C 

Hours of T 

≥40°C 

Plas Cont Plas Cont Plas Cont Plas Cont 

Week 1 (23/03–30/03) 4 0 0 0 0 0 0 0 

Week 2 (31/03–6/04) 1 0 0 0 0 0 0 0 

Week 3 (07/04–13/04) 0 0 0 0 0 0 0 0 

Total  5 0 0 0 0 0 0 0 

Data provided by Dr Kim-Yen Phan-Thien, University of Sydney. 

 

Table 5.8 Soil temperatures in cover crop-solarisation plot at Pye Farm, Bringelly. The data 

represents an hourly record of soil temperatures exceeded 37°C or 40°C. Values are mean, n 

= 4. Plas = black plastic treatment, Cont = control, no plastic treatment, T = temperature.  

Time after 

commencement of 

solarisation treatment 

Surface temperature Sub-soil (5 cm) temperature 

Hours of T 

≥37°C 

Hours of T 

≥40°C 

Hours of T 

≥37°C 

Hours of T 

≥40°C 

Plas Cont Plas Cont Plas Cont Plas Cont 

Week 1 (23/03–30/03) 6 10 0 1 0 0 0 0 

Week 2 (31/03–6/04) 0 0 0 0 0 0 0 0 

Week 3 (07/04–13/04) 0 0 0 0 0 0 0 0 

Total 6 10 0 1 0 0 0 0 

Data provided by Dr Kim-Yen Phan-Thien, University of Sydney. 

 

5.3.4 Survival of Salmonella over time  

Time had a significant effect on the rate of decline of Salmonella. To investigate the decline 

of Salmonella over time regardless of the treatment applied, data only control treatments over 

the period of 14 weeks were compared. Generally, a decreasing trend in the survival of 
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Salmonella was observed between days 0–56 except day 63, in which there was a sharp and 

significant decline in numbers. Between days 70–105 the count declined over time but there 

was no significant difference among the sampling points. The Salmonella count fell below 

the limit of detection after day 91 (Figure 5.10). The initial inoculum level was 7 log10 CFU 

g
-1

. 

 

 

Figure 5.10 Salmonella survival in clay soil amended with chicken manure over time under 

field conditions. Data represents only control treatments. Data points are mean ± standard 

error, n = 4, P <0.001. The quantitative limit of detection (LOD; 1.18 log10 CFU g
-1

) of the 

viable count was determined by direct plating. CFU = colony forming unit. 

 

5.3.5 Survival of Salmonella in clay and sandy soils  

Between day 7 and day 14 the Salmonella count in the sandy soil had dropped by 4 log10 to 

below the LOD (1.18 log10 CFU g
-1

) whereas the rate of Salmonella decline in clay soil was 

considerably slower (Figure 5.11) with the count being 3.24 log10 CFU g
-1

 at day 14. Over the 

35 day experimental period, Salmonella declined by 2.0 log10 CFU g
-1

. 
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Figure 5.11 The survival rate of Salmonella in clay and sandy soils amended with chicken 

manure. The data represent whole plot sample means ± standard error, n = 16, P <0.0001. 

The quantitative limit of detection (LOD; 1.18 log10 CFU g
-1

) of the viable count was 

determined by direct plating. CFU = colony forming unit. 

 

5.3.6 Effect of cover crop treatments on the survival of Salmonella 

After 4 weeks of growth, the lettuce crop was incorporated into the soil and cover crop 

treatments were applied. The cover crop treatments (mustard, radish, sorghum and control or 

fallow) had no significant effect on the survival of Salmonella in the soil. The cover crops 

were sown and incorporated into the soil on day 33 and day 68, respectively of the 

experiment. The rate of decline in Salmonella numbers followed a similar trend in all 

treatment combinations including the control (fallow) (Figure 5.12).  
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Figure 5.12 Salmonella survival in clay soil amended with chicken manure after sowing and 

growing of cover crops (days 33–67) and ploughing in of cover crops (days 68–105). Day 0–

32 are whole plot sample means ± standard error, n = 4, P = 0.587; day 33–105 are split-plot 

sample means ± standard error, n = 8, P = 0.902. The quantitative limit of detection (LOD; 

1.18 log10 CFU g
-1

) of the viable count was determined by direct plating. CFU = colony 

forming unit. 

 

The growth of the cover crop was highly variable and sparse in some areas as observed in the 

overhead photographs of the field plots (data not shown). A crude ground cover index was 

estimated using image manipulation software (Vectorworks 2015 SP1, distributed by OzCAD 

in Australia) (Figure 5.13).  

When considering the four replicate whole plots for each cover crop grown on sandy soil, the 

best coverage was by the mustard treatments (63–85%), followed by radish (43–79%), while 

sorghum resulted in the least coverage (19–58%) (data not shown). For the clay soil site, the 

best coverage was by mustard (75–87%), followed by sorghum (37–78%) and radish (32–

56%). Figure 5.13 depicts the range of cover crop growth at the site with clay soil.  

 

Because of the poor efficacy of the cover crop treatment in the field experiment, the phenolic 

and glucosinolate compounds were not identified or quantified. 
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(a) 

75–

87% 

 

 

(b) 

32–

56% 

 

 

(c) 

37–

78% 

 

 

Figure 5.13 Overhead photographs of field plots at Pye Farm, Bringelly (clay soil) 

demonstrating the variability in groundcover (% estimate) achieved for whole plots of (a) 

‘Cappuccino’ Ethiopian Mustard; (b) ‘Terranova’ Oilseed Radish; and (c) ‘Fumig8tor’ 

Sorghum. Photo provided by Dr Kim-Yen Phan-Thien, University of Sydney.  

 

5.3.7 Effect of soil solarisation treatment on the survival of Salmonella 

Soil solarisation had a highly significant effect on the decline of Salmonella in clay soil (P = 

0.0005). All treatments involving solarisation were found to promote the decline of 

Salmonella numbers, however, there was no significant difference among fallow-solarisation, 

mustard-solarisation and all non-solarised plots (Table 5.9). 
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Table 5.9 Salmonella survival in clay soil with chicken manure amendments with or without 

solarisation treatment. The count data are the pooled means 20 samples (4 replications and 5 

weeks sampling) ± standard error. Mean values followed by the same letter are not 

significantly different (Tukeys HSD post-hoc test). CFU = colony forming unit; open = non-

solarised treatments. 

Split plot treatment  Salmonella count (log10 CFU g
-1

)  

Sorghum-solarisation 0.54 ± 0.22
a
 

Fallow-solarisation 0.56 ± 0.22
a
 

Mustard-solarisation 1.26 ± 0.22
ab

 

Radish-solarisation 1.39 ± 0.26
ab

 

Radish-open 1.43 ± 0.26
ab

 

Mustard-open 1.64 ± 0.22
b
 

Fallow-open 1.68 ± 0.22
b
 

Sorghum-open 1.86 ± 0.22
b
 

 

The effect of solarisation and control (open) treatments on the survival of Salmonella was 

compared by pooling the data between days 70–105. Salmonella exhibited the poorest 

survival in the sorghum-solarisation treatment plots. Fallow-solarisation was the next least 

effective treatment for the decline of Salmonella, even though it was started 5 weeks earlier 

than the sorghum-solarisation treatment (Figure 5.14). However, these two treatments 

(sorghum-solarisation and fallow-solarisation) were not statistically different from the 

mustard and radish solarisation treatments (Table 5.9).  
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Figure 5.14 Salmonella survival in chicken manure-amended clay soil with or without 

solarisation treatments (between days 70–105). Bars are mean ± standard error, n = 20. The 

quantitative limit of detection (LOD; 1.18 log10 CFU g
-1

) of the viable count was determined 

by direct plating. CFU = colony forming unit. 

 

The presence or absence of residual viable Salmonella cells was detected by following 

enrichment steps described in the methods (see Chapter 5.2.14). The presence/absence data 

was not statistically analysed because most of the results obtained after enrichment were 

found to be positive and few were negative (Figure 5.15). Only two examples are presented 

to show the proportion of samples that could be enumerated or detected by enrichment 

(below the LOD). On sampling day 105, in sorghum-solarisation treatment soils (Figure 

5.15a), 100% of the samples were enriched and found to be positive for Salmonella cells, 

whereas, in sorghum-open treatment soils (Figure 5.15b), 75% of the samples were directly 

counted and the remaining 25% of the samples were enriched and all were positive.  
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Figure 5.15 The proportion of Salmonella cells recovered using direct plating and 

enrichment (positive or negative) from (a) sorghum-solarisation and (b) sorghum-open 

treatments at Pye Farm, Bringelly (clay soil).  

 

In the same pattern, on sampling day 105, in fallow-solarisation treatment soils (Figure 

5.16a), 100% of the samples were enriched and found to be positive for Salmonella cells, 

whereas, in fallow-open treatment soil (Figure 5.16b), 50% of the samples were directly 

counted and the remaining 50% of the samples were enriched and all were positive. The 

remaining graphs for each treatment (solarisation or open) are provided in Appendix 4. 
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Figure 5.16 The proportion of Salmonella cells recovered using direct plating and 

enrichment (positive or negative) from (a) fallow-solarisation, (b) fallow-open treatments at 

Pye farm, Bringelly (clay soil).  

 

In the first 28 days under the control treatment in the clay soil (since there was no treatment 

at this stage of the experiment), the reduction of Salmonella cells between day 7 and day 28 

was 40% (Figure 5.17). This coincides with hot summer daily temperatures between 30 to 

40°C. Afterwards, the rate of decline in Salmonella numbers was slower except at day 63 

where an abrupt decrease in cell counts was observed (Figure 5.17). The solarisation 

treatment on day 35 promoted the decline of Salmonella until day 56 when levels fell below 

the LOD (Figure 5.17). In contrast, Salmonella was detected in the control treatment up to 

day 91 post inoculation.  
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Figure 5.17 Salmonella survival in chicken manure-amended clay soil with or without 

(fallow) solarisation treatments between days 33–105. Data points are mean ± standard error, 

n = 4. The quantitative limit of detection (LOD; 1.18 log10 CFU g
-1

) of the viable count was 

determined by direct plating. CFU = colony forming unit.  

 

The sorghum-solarisation treatment was found to be the better in hastening the rate of decline 

in Salmonella survival and there was a highly significant (P = 0.0013) difference between the 

sorghum-solarisation and sorghum control plots (Figure 5.18). After the incorporation of the 

sorghum cover crop and the solarisation treatment, Salmonella counts were below the LOD in 

solarised plots, whereas Salmonella was detected up to 105 days post-inoculation in non-

solarised plots. At the last sampling point (day 105), a count of 1.64 log10 CFU g
-1

 was 

recorded in the sorghum control treatment, whereas the count from the sorghum-solarisation 

treatment plot was below the LOD. 
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Figure 5.18 Salmonella survival in chicken manure-amended clay soil between 56–105. The 

treatment included sowing and growing ‘Fumig8tor’ sorghum cover crop (day 33–67), cover 

crop incorporation (day 68–105) and either left fallow (control) or solarisation treatment. 

Data points are mean ± standard error, n = 4, P <0.001. The quantitative limit of detection 

(LOD; 1.18 log10 CFU g
-1

) of the viable count was determined by direct plating. CFU = 

colony forming unit. 

  

5.3.8 Listeria monocytogenes population during the field experiment 

The presence/absence of L. monocytogenes was monitored throughout the field experiment, 

by enriching and culturing soil samples that were collected and pooled in the same manner as 

for the Salmonella analysis. Viable L. monocytogenes was detected in all of the samples 

tested for all of the treatments (data not shown). This is to be expected as Listeria is a 

common soil microorganism. As there was no difference between treatments, no statistical 

analysis on this data was performed. 
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5.4 Discussion  

In the present study, Salmonella-inoculated chicken manure was applied to sandy and clay 

soils. The decline of Salmonella cells due to soil biofumigation and/or solarisation over time 

was evaluated. The effects of the different treatments used to suppress the survival of 

Salmonella in the study will be discussed below in relation to the effects of soil type, soil and 

weather conditions. 

5.4.1 Soil type effects on Salmonella survival  

Time had a significant effect on the decline of Salmonella in clay soil. There was a 3.0 log 

decline over 105 days compared to a similar decline which occurred over just 14 days in the 

sandy soil. At day 14 the level of Salmonella cells detected in sandy was below the LOD, 

whereas it was still 1.42 log10 CFU g
-1

 (i.e. above the LOD) in clay soil on day 84. The long 

term survival of Salmonella in clay soil during the field experiment was similar to the results 

obtained for the pot experiment in Chapter 4. In the laboratory experiment the same soil types 

were used as for the field trails and the experiment conducted under controlled conditions 

within the temperature and moisture ranges found in the field. In the field experiment 

environmental variables were not controlled however the survival of Salmonella in both 

instances were similar. These results are also in agreement with previous research which 

reported longer term survival of Salmonella in clay soil than in sandy or sandy loam soils 

(van Veen et al. 1997; Danyluk et al. 2008; Franz and van Bruggen 2008).  

Jamieson et al. (2002) reported that the mortality of bacterial pathogens is influenced by soil 

type, with soils that have higher matric potential promoting lower microbial mortality rates. 

Matric potential is defined as adhesion of water molecules to non-dissolved structures of the 

system. Some of the major soil factors that contribute to the difference in survival of 

Salmonella in the two soil types (sandy and clay) are described in Chapter 4. In addition, 

Brennan et al. (2014) reported that an increased surface area, resulting from a smaller average 

particle size in clay soil, will result in the protection of bacterial pathogens from predators, 

desiccation, UV radiation and toxins. Any or all of these factors may have contributed to the 

survival of Salmonella cells for more than 100 days in the clay soil used in this study. In 

addition, different types of clay size fractions consist of different clay mineral types with 

each having its own specific physicochemical and mineralogical properties (i.e. particle size, 

surface area, shape, cation exchange capacity, moisture absorption, elasticity and provision of 
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mineral nutrients) that may affect bacterial pathogen survival (England et al. 1993; Höper et 

al. 1995).  

5.4.2 Effect of soil moisture on Salmonella survival  

Previous studies indicate the significant contribution of soil moisture to the survival of 

bacterial pathogens in soil or manure-amended soil (Chandler and Craven 1980; Hayes et al. 

2000; Lang and Smith 2007; Aislabie et al. 2011; Kim et al. 2012). Lang and Smith (2007) 

reported that the decline of enteric organisms is influenced by soil and environmental factors, 

including soil texture, soil organic matter, pH values, temperature and moisture content. Soil 

moisture is particularly identified as a principal factor affecting pathogen survival in the field. 

In the field, soil moisture content fluctuated with rainfall events and irrigation treatments as 

they would be expected to in a commercial setting. Generally, the soil moisture was 

maintained in the range of 10–20% in the sandy soil and 20–45% in the clay soil. However, 

soil moisture at the clay site decreased to below 20% water by volume when sampled on days 

56 and 63. It is possible that the observed die-off of Salmonella followed a typical trajectory 

or that the die-off was expedited by the unintended dry spell, although many factors 

contributed to die-off. In either case, there was increased recovery of Salmonella on day 70. 

This coincided with the incorporation of cover crops, accompanied by irrigation. As there 

were several confounding factors that may explain the change in microbial population, it is 

not possible to make conclusions about their relative importance. However, in the pot 

experiment (Chapter 4), the survival of Salmonella was found to be better under constant 

moisture regimes rather than fluctuating moisture in both soil types, with or without chicken 

manure amendments. As such, further research would be worthwhile to better understand the 

role and interactions of irrigation/rainfall, temperature and agronomic treatments to control 

Salmonella population in a field production context. 

5.4.3 Biofumigation effects on Salmonella survival  

The Salmonella population in the sandy soil declined to below the LOD prior to the 

application of agronomic treatments (Figure 5.18). Hence, any further discussion of the 

different treatments and their effects on the pathogen will focus on the results obtained with 

the clay soil. 

None of the cover crop treatments (Ethiopian mustard, oilseed radish and sorghum) had a 

significant effect on the Salmonella population of the chicken manure-amended soil when 
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compared with the control (fallow) treatment. It was reported that the glucosinolate 

hydrolysis products, in particular ITCs, are known to have broad biocidal activity (Brown and 

Morra 1997; Kirkegaard et al. 1997; Rosa et al. 1997). The ineffectiveness of the cover crops 

used in the present study may have been due to inadequate growth of the cover crop, leading 

to low levels of biomass being incorporated into the soil, and insufficient release of 

biofumigant compounds. According to Bellostas et al. (2004), optimal biofumigation, 

requires a high production of glucosinolate resulting from high dry matter production towards 

the end of the growing period of cruciferous plants. However, many other factors affect the 

outcome of biofumigation such as temperature and microbiome for example. The timing of 

the incorporation of the cover crop may be another factor that limited any biofumigation 

effects. The cover crops were incorporated into the soil only 4 weeks after sowing in order to 

expedite replanting of the lettuce crop, which would be desirable for a commercial vegetable 

growing scenario. According to Kruger et al. (2013), the flowering stage of the plant results 

in higher glucosinolate content than the vegetative growth stages. In addition, Bellostas et al. 

(2004) indicated that the growth stage of the crop (emergence, rosette, flowering, seed filling, 

ripening), the amount of biomass produced, and the correct incorporation into the soil all 

contribute towards the success of biofumigation. 

Plant age and morphology can be associated with glucosinolate content. Rosa et al. (1997) 

reported that in Brassica napus and B. campestris, the aliphatic glucosinolates showed 

relatively high concentrations at the beginning of the vegetative period, however 

concentrations decreased throughout vegetative development. In the floral parts, 

concentrations increased. In addition, indole glucosinolate content of kale was significantly 

higher in plants with thin stems, whereas plants with thick stems were higher in 

glucosinolates, isothiocyanates and oxazolidinethiones (Rosa et al. (1997). 

Different factors affect the production and degradation of glucosinolates which also influence 

the outcome of biofumigation. For instance, winter and autumn induce lower glucosinolate 

levels due to short days, wetter conditions, cool temperatures and less radiation (Rosa et al. 

1997). In the present study, the cover crop was grown and incorporated in autumn which 

might partly contribute for the ineffectiveness of the cover crops. Water is also another factor 

affecting the level of glucosinolates and as well as their degradation process. For example, 

the concentration of glucosinolate was higher in oilseed rape which was exposed to periods of 

drought at pre- or post-flowering stages (Rosa et al. (1997). In addition, sugars and amino 
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acids in Brassicas that accumulated when the crop was grown under poor conditions were 

differentially converted to secondary metabolites such as glucosinolates, rather than cellulose 

and proteins (Rosa et al. 1997). Brassicas require significantly more sulfur than most other 

crops due the synthesis of glucosinolates and sulfur amino acids and proteins. As a result, 

application of sulfur was shown to increase the glucosinolate content of B. napus (Booth et 

al. 1991; Rosa et al. 1997). Although nitrogen is a constituent of glucosinolate molecules, 

early studies showed that increasing application of nitrogen led to lower glucosinolate levels. 

Boron nutrition was also found to play a significant role in the regulation of glucosinolate 

biosynthesis while copper cations in plant tissues has been linked to a decrease in 

glucosinolate content (Rosa et al. 1997). 

5.4.4 Effect of solarisation treatments on Salmonella survival  

In this study, the combined effect of soil solarisation and biofumigation treatments were not 

significant in suppressing Salmonella survival in chicken manure-amended soil. However, 

Gamliel and Stapleton (1993) reported that the microbial activity in heated soil amended with 

cabbage was reduced rapidly during the first week of incubation at 38°C, when compared 

with heated, non-amended soil. This was due to the combined effects of the heat and the 

toxicity of the volatile compounds from cabbage. In the course of this study, the solarisation 

treatment was applied after summer (in March) and remained for only approximately 3 

weeks; this might be the reason for the ineffectiveness of the soil solarisation-cover-crop 

treatments.  

In contrast, the soil solarisation treatment alone was found to be significant in reducing the 

survival of Salmonella in the soil. Temperatures of more than 37°C were recorded for 92 h 

and 75 h, respectively, for the fallow-solarisation and fallow-control treatments over the 4 

week soil solarisation treatment. Similarly, temperatures greater than 40°C were recorded for 

41 h and 36 h, respectively for fallow-solarisation and fallow-control treatments during the 

solarisation period (Tables 5.5–5.8). The greater reduction in Salmonella populations in 

solarised soil compared with non-solarised soil may well be attributed to the higher 

temperature reached and sustained. In support of this hypothesis, it has been reported that soil 

solarisation during summer in the southern part of Japan was effective in raising the soil 

temperature to more than 40°C resulting in the rapid inactivation of E. coli in an open upland 

field (Wu et al. 2009). It has also been reported that the temperature of soil amended with 

compost or manure increased by 2–3°C, compared with solarised but non-amended soil 
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possibly due to increased soil moisture and thermal conductivity in the compost-amended soil 

and exothermic microbial activity (Gamliel and Stapleton 1997). 

5.4.5 Prevalence of Listeria monocytogenes in field soils 

The purpose of detecting L. monocytogenes in the present study was to observe the potential 

increase in bacteria particularly after incorporation of cover crops since L. monocytogenes is 

commonly found in plants undergoing decay (Fenlon 1999). However, there was no 

difference in the detection of L. monocytogenes in the soil before and after incorporation of 

the cover crops. According to Vivant et al. (2013), L. monocytogenes is a telluric bacterium 

commonly found in soil, water and associated with plants and can survive under adverse 

environmental conditions longer than many other non-spore-forming bacteria that are 

important causes of foodborne disease. This resistance, together with the ability to colonise, 

multiply and persist on processing equipment makes L. monocytogenes a particular threat to 

the food industry (Fenlon 1999). In support of this, the bacteria was detected throughout the 

experiment without being artificially inoculated (data not shown). The persistent nature of 

Listeria in the soil becomes an important factor to consider for the risk of transmission of the 

pathogen from contaminated produce to humans.  

5.4.6 Microbial community analysis  

The microbial community analysis was performed on the field sites as a part of a larger scale 

project and the results are presented in Gonzalez (2015). Microbial community analysis 

indicated that soil texture played a significant role in altering the bacterial and fungal 

communities, and that clay soil had a more consistent microbial composition than the sandy 

soil. In addition, the cover crop treatments led to greater changes in the microbial community 

in the sandy soil compared to the clay soil. Radish and mustard cover crop treatments 

affected the soil microbial community abundance which might be due to a combination of the 

effects of chemical and biological characteristics typical of the Brassica plants. Furthermore, 

neither solarisation nor solarisation-cover crop treatments had a significant effect on soil 

microbial community (Gonzalez et al. 2015). 

5.4.7 Summary 

The results presented in both Chapter 4 and 5 confirm the short-term survival of Salmonella 

in sandy soil either with or without manure amendments. The level of Salmonella present in 
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sandy soil does not pose a food safety hazard but the level in clay soil, particularly under 

circumstances represented by the fallow-control treatment which remained above the LOD 

for more than 90 days, may present a risk for produce contamination. Because of the potential 

for long-term survival of Salmonella in clay soil or manure-amended clay soil, single or 

combined cover crop-solarisation combinations were used in efforts to supress the pathogen 

in the soil. The soil solaristion process was effective in hastening the decline of Salmonella in 

the soil, however the cover crops or cover crop-solarisation treatments were not significantly 

effective in reducing Salmonella survival.  
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6. General discussion and conclusions 

In recent years, a number of foodborne disease outbreaks have been associated with the 

consumption of vegetables, specifically, leafy greens. Contamination of lettuce and other 

leafy green produce may occur either in preharvest (Islam et al. 2004c) or postharvest stages 

(Sánchez et al. 2012); however, preharvest contamination of fresh produce is of the greatest 

concern. Animal manure is commonly used as an organic fertiliser in both organic and 

conventional production systems and it is thought to be the principal source of preharvest 

contaminanation (Franz and van Bruggen 2008; Semenov 2008). In Australia, poultry litter 

and raw manure from broiler chicken and egg growers is widely applied to commercial 

vegetable production sites as a soil amendment and fertiliser.  

Most of the postharvest sanitation methods are not effective for leafy greens and are not 

allowable in organic production system. Postharvest sanitation also removes some of the 

native microflora which in turn has the potential to decrease competitive pressure on any 

pathogenic bacteria that may present on produce. Therefore, prevention of preharvest 

contamination should be the main focus when developing intervention strategies (Franz and 

van Bruggen 2008). 

For the microbiological safety of fresh produce, a thorough understanding of human 

pathogens in manure, soil and crops, their interaction with other microorganisms and risk 

factors is required (Franz and van Bruggen 2008). The information obtained from this study 

has increased our understanding about the behaviour of Salmonella and will assist in the 

development of policies or the modification of existing policies to prevent the spread and 

cycling of pathogens in the environment in which fresh produce is grown (Table 6.1). 

Investigating the different environmental factors that affect the survival of bacterial 

pathogens is essential to understand the preharvest growth of foodborne pathogens. 
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Table 6.1 Summary of key objectives and findings of this study. 

Chapter Key objectives Key findings and outcomes  Future directions 

2. Literature 

review 

1. Document the incidence of foodborne 

illness in relation to fresh produce, 

particularly leafy green vegetables 

2. Review how soil and environmental 

factors affect the survival of Salmonella 

3. Review the effect of biofumigant cover 

crops and solarisation on the survival of 

Salmonella and other pathogenic soil 

microorganisms 

1. Many of the disease outbreaks related to 

contamination of fresh produce by 

pathogenic microorganism have been due 

to Salmonella and Listeria monocytogenes  

2. A number of biotic and abiotic factors can 

affect the survival of microorganisms but 

the evidence for strong patterns is not 

always evident 

3. The effect of biofumigant cover crops and 

solarisation on Salmonella is conflicting 

and evidence for an enhanced effect when 

applied in combination is non-existent 

Further investigations using controlled 

conditions are needed to determine the effects 

of environmental factors on Salmonella 

survival in soil 

 

Test the efficacy of cover crop biofumigation 

and solarisation for remediation of soil 

contaminated with Salmonella 

4. Microcosm 

pot trial 

1. To investigate the effect of environmental 

factors (e.g. moisture, temperature, soil 

type) on the survival of Salmonella 

serovars 

2. To interpret the survival pattern of 

Salmonella serovars for application of 

findings in a field experiment 

 

1. Faster die-off of Salmonella in sandy soil 

compared to clay soil 

2. Decline of Salmonella was hastened when 

high temperature was coupled with 

fluctuating moisture regime  

3. A longer period of time between the 

application of fresh or partially composted 

manure and planting of vegetables is 

required for clay soil 

Soil characteristics should be tested in relation 

to die-off of Salmonella 

 

Assess the relative importance of 

environmental factors for growth among 

Salmonella serovars 

5. Field 

experiment 

1. Determine the optimum low-residue cover 

crop to enhance die-off of Salmonella in 

contrasting soil types 

2. Evaluate the best treatment for facilitating 

die-off of Salmonella (cover crop, 

solarisation or cover crop-solarisation) 

3. Assess to presence of L. monocytogenes in 

the field 

1. The survival of Salmonella in clay soil was 

enhanced when amended with chicken 

manure 

2. Solarisation was effective in enhancing 

die-off of Salmonella in the soil 

3. Cover crop or cover crop-solarisation 

treatments were not effective in enhancing 

die-off of Salmonella in the soil 

Cover crop coverage, plant developmental 

stage and incorporation methods need to be 

further assessed to determine biofumigation 

potential 

 

Biocidal compounds of biofumigant cover 

crops should be identified and quantified  

 

More field studies on Salmonella decline 

should be done in different seasons, regions, 

climates and soil types in Australia 

How biotic control Salmonella decline in soil 

should be investigated 
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Environmental factors 

Variation in the duration of the survival period of bacteria is attributed to various 

environmental factors such as the physical and chemical properties of the soil, temperature 

and moisture (van Veen et al. 1997). Therefore, the first focus of this study (Chapter 4) was 

to identify factors and interactions that may minimise Salmonella survival in soil or chicken 

manure-amended soil. A study using microcosm pots using two different soil types and 

bacterial inocula demonstrated that clay soil supported the survival of Salmonella serovars 

more than sandy soil. With regard to soil type, the results of the microcosm pot trial were 

confirmed in the field experiment (Chapter 5), where Salmonella counts in the sandy soil had 

dropped to below the LOD (1.18 log10 CFU g
-1

, estimates) after 14 days post-inoculation, 

whereas the level of Salmonella detected in clay soil was still 1.42 log10 CFU g
-1

 on day 84. 

This finding is supported by the results of Holley et al. (2006) who found that Salmonella 

survival was generally longer in heavier soils with high moisture and cooler temperatures. 

The possible reasons for the enhanced survival of bacterial pathogens in clay soil are an 

increased surface area due to smaller soil particle size, which protects bacterial pathogens 

from predators, UV radiation and toxins (Brennan et al. 2014). The longer survival time of 

Salmonella in clay soil could lead to product contamination through rain splash (Cevallos-

Cevallos et al. 2012a; Cevallos-Cevallos et al. 2012b; Gu et al. 2013) or internalisation (Guo 

et al. 2002a; Klerks et al. 2007a; Gu et al. 2013) poses a higher risk than when grown 

produce is grown in sandy soils. 

Other soil properties that affect the survival of bacterial pathogens are pH and electrical 

conductivity (EC). In the present study, the relationship of Salmonella survival with both EC 

and pH was found to be inconsistent. Erickson et al. (2014) reported that the influence of pH 

on the persistence of bacterial pathogens may be reliant on factors such as nutrient 

availability and the activity of other biota however, the impact of pH on E. coli 0157:H7 

survival was unclear. However, pH was found to be a major factor affecting the survival of E. 

coli 0157:H7 in another study (Ma et al. 2013). For EC, a negative correlation was reported 

for the survival of E. coli 0157:H7 (Erickson et al. 2014). 

Soil treated with manure amendments was found to improve the survival of Salmonella in the 

present study. Salmonella counts were reduced, on average, by 20% in manure-treated samples 

whereas the reduction was close to 50% in samples without manure. Chicken manure is a source 

of contamination in the field and also provides nutrients for the growth and survival of 
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bacterial pathogens. The addition of manure increases the organic matter content of soil 

(Santamaria and Toranzos 2003; Franz and van Bruggen 2008), which in turn increases the 

retention of other nutrients (Jamieson et al. 2002), provides protective effects (Dowe et al. 

1997; Cools et al. 2001; Holley et al. 2006) and eventually leads to cell repair (Holley et al. 

2006). This effect was observed particularly in the microcosm pot trial where greater 

numbers of Salmonella were recovered (either by direct plating or by detection 

(presence/absence) methods) from manure-amended soils when compared with non-manure 

amended soils. 

The other main environmental factor considered in this study was temperature. As detailed in 

Chapter 4, the survival of Salmonella at lower temperature (5°C) was greater than survival at 

higher temperature (37°C). Similarly, Holley et al. (2006) reported that survival of 

Salmonella was higher at 4°C than 25°C. Generally, temperature has a profound effect on the 

growth and decay rates of bacteria (Ongeng et al. 2015), and survival rates of Salmonella spp. 

decline as temperatures increase from 20 to 70°C in natural substrates (Kudva et al. 1998; 

Himathongkham et al. 1999). However, the adaptation or resistance of Salmonella to lower or 

higher temperatures is strain-dependent. It was found that the combination of high 

temperature and fluctuating moisture hastened the decline of Salmonella in the soil, with or 

without manure amendments (Chapter 4). Similarly, Semenov et al. (2007) showed that 

increased temperatures cause greater decline of both Salmonella and E. coli under a 

fluctuating temperature regime compared to constant temperature. 

In general, a decrease in soil moisture has a direct effect on pathogen decay due to 

desiccation and autolysis of bacterial cells (Lang and Smith 2007). In the field experiment 

(Chapter 5), the decline in Salmonella leading up to day 63 was considered to be a valid 

result and may have been exacerbated due to declining soil moisture. The subsequent rise in 

Salmonella counts on the next sampling date occurred immediately after turning in of the 

cover crop and was followed by irrigation to hasten decomposition of the vegetation. An 

increase in soil moisture was most likely the reason for increased counts. Similarly, in the 

microcosm pot trial (Chapter 4), Salmonella survived better in constant moisture than in 

fluctuating moisture regime. According to Lang and Smith (2007), soil moisture is a major 

factor influencing the survival of pathogens in the field. However, due to confounding 

factors, particularly the incorporation of cover crops (control plots were also ploughed) and 

irrigation, it was not possible to make conclusions about the impact of moisture in this field 



126 

 

experiment. Further studies could help to untangle the relative importance of these 

environmental factors. 

 

Remediation of contaminated soil 

Because of the long-term survival of Salmonella in soil or manure-amended soil, the current 

project investigated practices that could be used for the remediation and recovery of soil 

contaminated by Salmonella following the intentional application of chicken manure as a pre‐

planting fertility management strategy. Single or combined cover crop-solarisation 

combinations were used in efforts to supress the pathogen in the soil (Table 6.1).  

The soil solarisation process was effective in hastening the decline of Salmonella in the soil 

that was left fallow. Soil temperatures greater than 37°C were recorded for extended periods 

for both the fallow-solarisation and fallow-control treatments over a 4-week treatment period 

(92 h and 75 h, respectively), and greater than 40°C (41 h and 36 h, respectively) for the same 

period. The heating effect of the black plastic covering was enough that, on day 70, the 

average Salmonella count from the fallow-control treatment was 2.50 log10 CFU g
-1

 whereas, 

counts from the fallow-solarised treatments was below the LOD. A greater reduction in the 

Salmonella population in the solarised soil compared with the non-solarised soil may be 

attributed to the higher temperature in the solarised treatment plots. 

In contrast, the cover crop-solarisation treatments were not effective in significantly reducing 

Salmonella survival. The number of hours where temperatures exceeded 37°C or 40°C was 

found to be greater in the fallow-control solarisation treatments than the cover crop-

solarisation treatments. Solarisation was started in mid-February (summer) and was applied 

out for a period of 8 weeks for the fallow-control treatments whereas the cover crop treatment 

was started in late-March (autumn) and was applied for only 3 weeks. Increasing the duration 

of the cover crop-solarisation treatment, as well as the timing of its application to match the 

fallow-solarisation treatments is advised before disregarding this as a possible strategy to 

reduce Salmonella survival. 

Even though glucosinolates are generally considered toxic (Wathelet et al. 2004; Gimsing et 

al. 2005) and phenolics possess a biofumigation effect against bacterial pathogens (Cetin-

Karaca 2011), the biofumigant cover crop treatments did not have a significant suppression 

effect on Salmonella. The lack of any antimicrobial effect due to the cover crops used in the 
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present study might be attributed to the sparse growth of the cover crop which may have 

resulted in inadequate levels of biomass being incorporated into the soil, and hence an 

insufficient biofumigation effect. The immaturity of the cover crops at the time of 

incorporation may be another factor that limited the biofumigation effect. The cover crops 

were incorporated into the soil only 4 weeks after sowing in order to expedite replanting of 

the lettuce crop. While this did not allow for full growth of the cover crop during the field 

experiment it is representative of the timeframes used in commercial vegetable growing 

scenarios. 

Factors that could be directly influenced in this study, including the growth stage of the crop 

(i.e. emergence, rosette, flowering, seed filling, ripening), the amount of biomass produced 

(production time), and the method of incorporation into the soil (i.e. ploughed in, rolled and 

irrigated), all contribute towards the success of biofumigation (Bellostas et al. (2004) Figure 

6.1). The efficacy of glucosinolates as a biofumigation technique also depends on various soil 

factors (Kruger et al. 2013). Other factors that cannot be directly manipulated include tissue 

breakdown and release of the biofumigants, side-effects on beneficial microorganisms, and 

interactions with other bioactive compounds present in the plant tissue (Bellostas et al. 2004). 

In the field study, the aim was to simulate expediting return of the field to full production 

after contamination with Salmonella. Therefore, the cover crops were only grown for one 

month and may not have accumulated sufficient biofumigant activity (biomass: quantity and 

growth stage, plant tissue, glucosinolate: quality and type; Figure 6.1). The incorporation 

technique was standard and common soil types were used (clay and sandy soils). As a 

consequence, we were unable to determine the types and level of biofumigant in the cover 

crops themselves as well and the soil. This clearly warrants further investigation. 



128 

 

 

Figure 6. 1 Interlinking of factors affecting the success of soil biofumigation. From 

(Bellostas et al. 2004). GSL – glucosinolates.  
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Recommendations and future research 

The results obtained from the present study can only be used as a preliminary guideline for 

the fresh produce industry in Australia since there is not enough information on the survival 

of different Salmonella serovars in relation to soil types and environmental factors. In 

addition, there are no validated remediation strategies that growers could implement to 

suppress or eliminate the presence of naturally-occurring human pathogens in the soil. 

Regardless of this, important knowledge has been developed and the future research can be 

confidently planned (Table 6.1). Based on the abiotic factors that affect the survival of 

Salmonella in the soil (Chapter 4), the field experiment was conducted to evaluate the 

different treatments (solarisation, biofumigation and solarisation-biofumigation) on the 

suppression of Salmonella in the field together with soil types and climatic factors (Chapter 

5). Solarisation was found to be effective in suppressing the pathogen in the soil and clay soil 

was found to support the survival of Salmonella in the soil as it had been observed during the 

microcosm pot trial. To predict the survival of enteric pathogens in soil, more field studies 

should be undertaken and validated in different seasons, regions, climates and soil types 

under Australian conditions. The findings could then be used as a guide for determining safe 

intervals between the potential contamination of fields with enteric pathogens and the 

planting or harvest of vegetables. The research presented in this thesis therefore represents an 

important outcome for the fresh produce industry. 

Another point to consider is that the field conditions and crops used in this study may not be 

replicated in other production systems. A range of combinations of crops types and different 

soil environments may need to be determined before strict guidelines are developed.  

On the basis of these findings, the following recommendations and future research directions 

can be generated: 

 According to the Freshcare Guidelines (2015), the exclusion period between the 

application of untreated manure and crop harvest is 90 days. In addition, within the 

exclusion period, fertilisers and soil additives containing manure may be used if 

subjected to a treatment verified to achieve the benchmark of ‘Salmonella not 

detected/25 g’. However, in the present study (Chapter 5), Salmonella survived more 

than 100 days in manure-amended clay soil. This suggests that the current guideline 

should be reconsidered according to soil type. 
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 The 90 day exclusion period (which also depends on density of pathogen in the 

manure/compost) between the application of untreated manure and crop harvest 

remains suitable for farms with sandy or, most probably, sandy loam soils. It may be 

possible to revise this exclusion period downward for sandy soil types, based on this 

research but this would need to be verified with further kinetic studies. 

 A rapid decline of Salmonella in soil can be achieved at relatively high temperatures 

(>37°C) and is likely to occur during summer months. It should be noted that at high 

temperatures, a rapid initial decline in Salmonella occurs but, based on the data from 

this study, the rate of inactivation thereafter it is not temperature-dependent and that 

Salmonella can still persist in soil in low numbers for an extended period of time. 

 Moisture fluctuation can lead to a faster decline in Salmonella survival in soil, with or 

without manure amendment, compared with constant moisture conditions. Therefore, 

withholding irrigation before critical period for irrigation that will not affect the crop 

(for instance, before head development in lettuce crop), may hasten die-off of 

Salmonella.  

 Soil solarisation with black plastic may be used to remediate Salmonella-

contaminated soil providing temperatures reach 37°C for extended periods of time. 

The results from this study indicate that further investigation of temperature and time 

relationships for soil solarisation treatment is warranted. 

 Cover crop coverage, stages of incorporation and degree of maceration of the cover 

crops needs to be assessed so that enough biomass production and biofumigation 

potential for the suppression of Salmonella in the soil is achieved. In addition, 

management practices and environmental conditions that maximise total glucosinolate 

production and isothiocyanate efficiency in amended soil need to be investigated.  

 Biocidal compounds produced by biofumigant cover crops need to be accurately 

identified and quantified, and the optimum levels to achieve an antimicrobial effect 

need to be determined.  

 An evaluation of bacterial pathogens and their potential to attach and internalise 

plants through their roots needs to be further investigated, given the pathogen 

remained in the soil throughout the study. 
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8. Appendices 

Appendix 1 Preparation of media  

1.1 Preparation of nutrient agar  

Nutrient agar (NA) medium was prepared by suspending 9.2 g dehydrated NA (Difco™, BD, 

Sparks, USA) in 400 mL distilled water in a bottle and boiled to completely dissolve. The 

medium was sterilised by autoclaving at 121°C for 20 min. The medium was cooled to 

approximately 50°C and poured into sterile Petri dishes which were stored at 5°C until 

required. 

1.2 Preparation of trypticase soy agar  

Trypticase soy agar (TSA) medium was prepared by suspending 16 g dehydrated TSA 

(Difco™, BD, Sparks, USA) in 400 mL distilled water in a bottle and boiled to completely 

dissolve. The medium was sterilised by autoclaving at 121°C for 20 min. The medium was 

cooled to approximately 50°C and poured into sterile Petri dishes which were stored at 5°C 

until required. 

1.3 Preparation of tryptic soy broth  

Tryptic soy broth (TSB) medium was prepared by suspending 30 g dehydrated TSB (BBL™, 

BD, Sparks, USA) in 400 mL distilled water. The medium was heated to completely dissolve 

and sterilised by autoclaving at 121°C for 20 min. The broth was stored at 5°C until required.  

1.4 Preparation of xylose lysine deoxycholate agar 

Xylose lysine deoxycholate (XLD) agar was prepared by suspending 22 g dehydrated XLD 

agar (Difco, BD, Sparks, USA) in 400 mL distilled water. The medium was heated to boiling 

(using a 240 W microwave, medium power 2 min; high power 2 min; medium power 2 min) 

with frequent agitation to completely dissolve all solids without overheating. The medium 

was cooled to approximately 50°C and poured into sterile Petri dishes which were stored at 

5°C until required. 



156 

 

1.5 Preparation of xylose-lysine-tergitol 4 agar and agar supplement  

Xylose-lysine-tergitol 4 (XLT4) with agar supplement was used for presumptive isolation 

and differentiation of Salmonella (Miller et al. 1991). XLT4 agar medium was prepared by 

suspending 23.6 g dehydrated XLT4 (Difco, BD, Sparks, USA) agar and 1.84 mL agar 

supplement in 400 mL distilled water. The medium was heated to boiling as described in 

3.3.5. The medium was cooled to approximately 50°C and poured into sterile Petri dishes 

which were stored at 5°C until required. Typical Salmonella colonies (H2S-positive) appear 

black or black-centered with a yellow periphery after 18–24 h of incubation. Upon continued 

incubation, the colonies become entirely black or pink to red with black centres. Colonies of 

H2S-negative strains appear pinkish yellow. 

1.6 Preparation of phosphate buffer stock solution 

Phosphate buffer, pH 7.2, was used for the preparation of dilution blanks and washing lawn 

cultures. A stock solution was prepared by dissolving 34 g of dehydrated phosphate buffer 

(BBL™, BD, Sparks, USA) in 1 L distilled water. A working solution was prepared by 

diluting 1.25 mL stock solution to 1 L with distilled water in a volumetric flask. The working 

solution was sterilised by autoclaving at 121°C for 20 min and was stored at 5–25°C for use. 

1.7 Preparation of mBroth  

mBroth (Bacto, BD, Sparks, USA) was prepared by suspending 14.5 g dehydrated medium in 

400 mL distilled water. The medium was heated on a hot plate with a magnetic stirrer to 

dissolve completely prior to autoclaving at 121°C for 20 min. The mBroth solution was 

stored at 5°C until required.  

1.8 Preparation of Demi-Fraser broth and Fraser supplement  

Demi-Fraser broth was prepared by suspending 22 g of the dehydrated medium (Accumedia, 

USA) in 400 mL distilled water. The medium was heated on a hot plate with a magnetic 

stirrer to completely dissolve the medium prior to sterilisation by autoclaving at 121°C for 20 

min. Demi-Fraser broth was stored at 5°C and before use, the broth was brought to room 

temperature and 4 mL of Demi-Fraser supplement was added to 400 mL broth. The solution 

was mixed by hand and used immediately.  
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1.9 Preparation of Listeria chromogenic agar 

Listeria chromoagenic agar (Conda, Spain) was prepared by suspending 35.275 g dehydrated 

media in 500 mL of distilled water. The medium was mixed well and dissolved by heating 

with frequent agitation. The medium was sterilised by autoclaving at 121°C for 20 min. The 

medium was cooled to approximately 45–50ºC and 5 mL of Listeria Lipase C supplement 

was aseptically added. Listeria chromogenic selective supplement, which was previously 

reconstituted in 5 mL sterile water/acetone (1:1), was also added to the medium. The medium 

was mixed well and poured into sterile Petri dishes and stored at 5°C until required.  

1.10 CHROMagar Salmonella 

CHROMagar Salmonella, purchased in pre-prepared plates (Micromedia, Edwards, 

Australia), is a chromogenic selective and differential medium for the presumptive 

identification of Salmonella species. Salmonella species produce rose-to-purple colonies that 

are easily differentiated from other bacteria that appear blue or unstained and may resemble 

Salmonella on traditional media.  
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Appendix 2 Method of statistical analysis for the microcosm pot trial 

Fixed effects tests 

Source Nparm DFNum DFDen F Ratio Prob>F 

Week 6 6 1867.0 60.588983 <0.0001* 

Temp 2 2 1867.0 50.539814 <0.0001* 

Soil 1 1 1867.0 1087.6737 <0.0001* 

Manure 1 1 1867.0 492.09063 <0.0001* 

Serovar 3 3 1867.0 28.781184 <0.0001* 

Moisture 1 1 1867.0 333.26252 <0.0001* 

Week*Temp 12 12 1867.0 6.2183167 <0.0001* 

Week*Soil 6 6 1867.0 12.922282 <0.0001* 

Week*Manure 6 6 1867.0 4.7960356 <0.0001* 

Week*Serovar 18 18 1867.0 1.779691 0.0226* 

Week*Moisture 6 6 1867.0 10.838326 <0.0001* 

Temp*Soil 2 2 1867.0 20.197795 <0.0001* 

Temp*Manure 2 2 1867.0 63.478819 <0.0001* 

Temp*Serovar 6 6 1867.0 11.555592 <0.0001* 

Temp*Moisture 2 2 1867.0 9.7095725 <0.0001* 

Soil*Manure 1 1 1867.0 23.279052 <0.0001* 

Soil*Serovar 3 3 1867.0 0.8924306 0.4443 

Soil*Moisture 1 1 1867.0 4.807304 0.0285* 

Manure*Serovar 3 3 1867.0 1.368476 0.2507 

Manure*Moisture 1 1 1867.0 16.205979 <0.0001* 

Serovar*Moisture 3 3 1867.0 0.4938356 0.6866 

 

Example of multiple comparisons for temperature and soil 

Temp Soil Estimate Std Error DF t Ratio Prob>|t| 

5 clay 3.8900020 0.05851399 1867 66.48 <0.0001* 

5 sand 1.9376410 0.05831178 1867 33.23 <0.0001* 

21 clay 3.4826787 0.05910447 1867 58.92 <0.0001* 

21 sand 1.8879526 0.05792588 1867 32.59 <0.0001* 

37 clay 2.9276539 0.05984299 1867 48.92 <0.0001* 

37 sand 1.7239514 0.05895925 1867 29.24 <0.0001* 
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Tukeys HSD All Pairwise Comparisons 

Quantile = 2.8527, Adjusted DF = 1867.0, Adjustment = Tukey-Kramer 

Temp Soil  Temp  Soil Difference Std Error t Ratio Prob>|t| 

5 clay 5 sand 1.95236 0.0826142 23.63 <0.0001* 

5 clay 21 clay 0.40732 0.0831126 4.90 <0.0001* 

5 clay 21 sand 2.00205 0.0823325 24.32 <0.0001* 

5 clay 37 clay 0.96235 0.0836788 11.50 <0.0001* 

5 clay 37 sand 2.16605 0.0830729 26.07 <0.0001* 

5 sand 21 clay  -1.54504 0.0830211  -18.61 <0.0001* 

5 sand 21 sand 0.04969 0.0821937 0.60 0.9907 

5 sand 37 clay  -0.99001 0.0835557  -11.85 <0.0001* 

5 sand 37 sand 0.21369 0.0829189 2.58 0.1034 

21 clay 21 sand 1.59473 0.0827609 19.27 <0.0001* 

21 clay 37 clay 0.55502 0.0840915 6.60 <0.0001* 

21 clay 37 sand 1.75873 0.0835055 21.06 <0.0001* 

21 sand 37 clay  -1.03970 0.0832787  -12.48 <0.0001* 

21 sand 37 sand 0.16400 0.0826557 1.98 0.3518 

37 clay 37 sand 1.20370 0.0840146 14.33 <0.0001* 
 

Example of multiple comparisons for week number  

Week No Estimate Std Error DF t Ratio Prob>|t| 

0 4.4777191 0.13056852 23.417 34.29 <0.0001* 

1 5.4134367 0.13056852 23.417 41.46 <0.0001* 

2 4.5287318 0.13056852 23.417 34.68 <0.0001* 

3 4.1005030 0.13056852 23.417 31.40 <0.0001* 

4 3.4549246 0.13056852 23.417 26.46 <0.0001* 

5 3.2485914 0.13056852 23.417 24.88 <0.0001* 
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Appendix 3 Method of statistical analysis used for the field experiment  

Example of multiple comparisons for split-plot (solarisation and control) 

Split-plot Estimate Std Error DF t Ratio Prob>|t| 

fallow-open 1.6819247 0.21515254 11.346 7.82 <0.0001* 

fallow-solarisation 0.5568268 0.21515254 11.346 2.59 0.0252* 

mustard-open 1.6435892 0.21515254 11.346 7.64 <0.0001* 

mustard-solarisation 1.2582584 0.21515254 11.346 5.85 0.0001* 

radish-open 1.4344389 0.25788405 4.6703 5.56 0.0051* 

radish-solarisation 1.3901180 0.25788405 4.6703 5.39 0.0057* 

sorghum-open 1.8656369 0.22597509 12.288 8.26 <0.0001* 

sorghum-solarisation 0.5397265 0.22597509 12.288 2.39 0.0342* 
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Appendix 4 Proportion of Salmonella cells recovered after direct plating 

and enrichment  

 

Figure A4.1 The proportion of Salmonella cells recovered using direct plating and 

enrichment (positive or negative) from (a) mustard-solarisation and (b) mustard-open 

treatments at Pye Farm (clay soil). 
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Figure A4.2 The proportion of Salmonella cells recovered using direct plating and 

enrichment (positive or negative) from (a) mustard-solarisation and (b) mustard-open 

treatments at Karalee Farm (sandy soil).  
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Figure A4.3 The proportion of Salmonella cells recovered using direct plating and 

enrichment (positive or negative) from (a) radish-solarisation and (b) radish-open treatments 

at Pye Farm (clay soil). 
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Figure A4.4 The proportion of Salmonella cells recovered using direct plating and 

enrichment (positive or negative) from (a) radish-solarisation and (b) radish-open treatments 

at Karalee Farm (sandy soil). 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

42 49 56 63 70 77 84 91 105

P
ro

p
o

rt
io

n
 o

f 
d

ir
ec

t 
co

u
n

t 
an

d
 

en
ri

ch
m

en
t 

 

Time (days post-inoculation) 

(a) 

negative

positive

direct count

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

42 50 57 64 71 78 85 92 105

P
ro

p
o
rt

io
n
 o

f 
d
ir

ec
t 

co
u
n
t 

an
d

 

en
ri

ch
m

en
t 

 

Time (days post-inoculation) 

(b) 

negative

positive

direct count


