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Abstract: In 1678, Robert Hooke published a treatise on his metaphysics of vibration.  

Lectures de Potentia Restitutiva or Of Spring contains not only experimental and geometrical 

demonstrations of the spring law (which mutated into Hooke’s law after his time), but also a principle 

at the heart of his dynamic matter theory – Congruity and Incongruity. Namely, that harmonious and 

discordant forces unify, shape and separate vibrating matter.  This thesis reconstructs Hooke’s 

production of congruity and incongruity, and the spring law, analysing the inversions, reversals and 

paradoxes moulding his knowledge-making practices.  I argue that artificial instruments and 

apparatuses capable of magnifying and measuring never-before-seen minute bodies and motions also 

made the creation of a novel geometry necessary.  I attempt to show how Hooke addressed these 

challenges by reassessing and reconfiguring the role of traditional Euclidean geometry, and 

reformulating practical-geometrical definitions to create a geometry that could demonstrate the 

spring law.  Specifically, I focus on Hooke’s studies of vibrating bodies and vibrations, and his 

practical geometry.  By investigating Hooke’s studies within the context of his matter theory, I show 

that, in an epistemological inversion, Hooke used optical instruments to shift frames of reference from 

the microscopic to the celestial and vice versa for his knowledge production.  Further, Hooke’s work 

is a cohesive whole centred on his studies of the similitudes between vibrating phenomena.  Finally, 

his knowledge-making practices are a conflation of his predominant careers as an experimentalist and 

geometer.  By constructing natural laws from physical reality, thereby implying that nature, artificial 

instruments, and laws such as the spring law are related, Hooke legitimised the application of 

instruments and mathematics to the study of nature. This process was far from straightforward or 

self-evident. 
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INTRODUCTION 

‚A SUPERSTRUCTURE OF CONCLUSIONS‛  

‚Saturday April the 10th 1697.  I began this Day to write the History of my own 

Life, wherein I will comprize as many remarkable Passages, as I can now remember 

or collect out of such Memorials as I have kept in Writing,‛ Hooke confided to his 

little pocket diary, ‚or are in the Registers of the ROYAL SOCIETY: together with all 

my Inventions, Experiments, Discoveries, Discourses etc. <‛1  Six years later, he 

would be dead, and his autobiography nowhere to be found.2  Whether he ever 

penned it remains a mystery.  But to get to know Robert Hooke a touch more 

intimately, one might begin by asking his mistresses.  According to his biographer 

Richard Waller, admittedly sometimes a narrator of questionable reliability, but not 

in this instance, Hooke ‚first made himself Master of Euclide’s Elements‛ while at the 

Westminster School, before his time at Oxford, ‚and thence proceeded orderly from 

that sure Basis to the other parts of the Mathematicks, and after thereof to 

Mechanicks, his first and last Mistress.‛3  Here are Hooke’s mistresses, then: 

mechanics and mathematics.  And in late November of 1678, an excellent year for 

Hooke, he published a treatise on his metaphysics of vibration.  Lectures de Potentia 

Restitutiva or Of Spring contains not only experimental and geometrical 

demonstrations of the spring law (which mutated into Hooke’s law after his time), 

but also a principle at the very heart of his dynamic matter theory – the principle of 

‚Congruity and Incongruity‛.  Namely, the concept that congruous, harmonious and 

discordant forces unify, shape and separate vibrating matter.   

Now, although Hooke enjoyed flouting his mistresses around rather flexibly, 

                                                 
1 Robert Hooke cited by Richard Waller, The Life of Dr. Robert Hooke, in Robert Hooke, The Posthumous 

Works, ed. Richard Waller (London: Sam Smith and Benjamin Walford, 1705), i. 
2 Felicity Henderson, "Unpublished Material from the Memorandum Book of Robert Hooke, Guildhall 

Library MS 1758", Notes and Records of the Royal Society 61, no. 2 (2007): 129-175, 131. 
3 Waller, The Life of Dr. Robert Hooke, in Posthumous Works, iii. 
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he kept the heart of his metaphysics cloistered for years, confiding mostly in his 

diary (‚Wrote theory of springs‛4), and in his good friend, fellow Westminster 

Schoolboy and Wadham circle affiliate Sir Christopher Wren.  ‚I told and 

Demonstrated to him the Theory of Springs and vibrations,‛ Hooke almost whispers 

to his diary at the close of 1677, ‚none but he and I there.‛5  But the following year, 

in the months leading up to the publication of the treatise that Hooke referred to 

simply and tellingly as ‚Spring‛, cumulative diary entries reveal his growing, 

palpable excitement.  For example, July 21st: ‚wrote theory of springs, cleerd head‛;6 

August 4th: ‚Thought further of Springs‛; August 10th: ‚told him *Wren, of course+ < 

my equation of springs.‛7  As the dates of Hooke’s diary entries show, he saw Wren 

a few times a week and thought and conversed of very nearly nothing but ‘spring’.  

August 20th: ‚Met Sir Chr. Wren on the water < discoursd about equation of 

Springs, etc.‛  August 21st: ‚To Sir Chr. Wren with him at Mans.  Discoursd much 

about Demonstration of spring motion.‛8   

Indeed, even though Hooke had ‚read *his+ Theory of Springs and shewd the 

experiments to illustrate it‛ to the Society on August 1st, and even though ‚all were 

pleasd‛ – not an observation that Hooke indulges in often – he was anxiously 

seeking Wren’s approval, as an August 28th entry attests.  ‚Dined with Sir 

Christopher Wren.  Could not procure his judgement of springs‛ (there were 

competing spring hypotheses in the air).9  He finally got it on Friday, September 13th: 

‚Sir Chr. Wren approved <.. spring theory.‛10  Wren’s approval seems to have 

helped to set the John Martyn printing press in motion, and at the end of October 

Hooke proclaimed Of Spring ‚almost printed‛.11  It was winter, as he notes in a 

                                                 
4 Robert Hooke, The Diary of Robert Hooke 1672–1680 [henceforth Diary], eds H.W. Robinson and W. 

Adams (London: Wykeham Publications, Ltd., 1968), 214. 
5 Hooke, Diary, 334. 
6 Hooke, Diary, 367. 
7 Hooke, Diary, 370. 
8 Hooke, Diary, 372.  
9 Hooke, Diary, 374, 379. 
10 Hooke, Diary, 376. 
11 Hooke, Diary, 380.  
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December 1st entry, describing a day with ‚cold cleer air, great frost, snow on the 

houses‛, but Hooke burned, handing out marbled and gilt copies of ‚Spring‛ to 

friends and colleagues, gifting his last one to Denis Papin on January 5th the 

following year.12  Hooke had every reason to be excited; his path to a geometrical 

demonstration of the spring law had started as early as 1661 with his first mistress – 

mechanics, and capillary action experiments with Robert Boyle and his famous air-

pump.  The reasons the spring law was and is so important are manifold.  For 

Hooke, reducing spring to an ‚equation‛ was crucial because of his ambition to 

develop a clock for marine navigation – that is, for solving the longitude problem.13  

He also needed to pin down and formulate a spring law because his entire 

cosmology depended on it.  The latter reason is my priority here.      

In this work, I reconstruct Hooke’s production of congruity and incongruity, 

and the spring law, analysing the inversions, reversals, compromises and paradoxes 

shaping his knowledge-making practices.  I argue that artificial instruments and 

apparatuses capable of magnifying and measuring never-before-seen minute bodies, 

their pores and motions, also made it necessary for the creation of a new geometry, 

capable of handling the new objects created by the New Science, and I attempt to 

show how Hooke addressed these challenges by reassessing and reconfiguring the 

role of traditional Euclidean geometry and, more importantly, reformulating 

practical-geometrical definitions in order to create a geometry that could 

demonstrate the spring law.   

I mentioned that Hooke enjoys flouting mechanics and mathematic flexibly.  

Although experimental practices and mathematical analysis are emblems of the New 

Science, Hooke’s work marks an exceptional approach to the legitimation of 

mathematics for studying nature – an effect of the conflation of his sometime 

simultaneous careers as the Curator of Experiments for the Royal Society and the 

                                                 
12 Hooke, Diary, 386, 391. 
13 Ofer Gal, Meanest Foundations and Nobler Superstructures (Dordrecht: Kluwer Academic, 2002), Chapter 

Two. 
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Gresham Professor of Geometry.  Throughout, I underscore his unique way of 

working a problem, moving between the practical and the theoretical with little 

friction and without preamble, often employing one for the other in his knowledge-

making practices, a conflation particular to Hooke, which Ofer Gal described as a 

‚hybrid status between theory and instrumentation‛.14  Consequently, to elucidate 

the relations between the practical and theoretical aspects of Hooke’s way of 

working a problem, this thesis has two inter-related parts. 

The overall structure moves from Hooke’s experimental practices to his 

practical geometry chronologically, with each part and chapter also broken down 

chronologically.  Part I, ‘Congruity and Incongruity’, focuses on his experimental 

procedures, and the practical origins of the creation and development of the dual 

concept of congruity and incongruity as Hooke’s primary theoretical tool, as well as 

its harmonising effect on his work.  Owing to Hooke’s multiple commitments and 

his insatiable interest in all things, several scholars have characterised him as a man 

who stretched himself too thin, leaving behind, for the most part, bits and pieces of 

haphazard work.15  That Hooke and Waller16 corroborated both accounts of this 

persona in what remains of his papers only adds to his image as a man always in a 

rush, out of time, promising to explain the rest later.  But when viewed as a whole 

from the perspective of congruity and incongruity, Hooke’s career can be restated as 

a tireless attempt to understand and explain the harmonies and discords of the 

universe from several facets such as surface tension, acoustics, optics and gravity, 

expressed in phenomena like consonant vs. dissonant vibrating musical strings, 

reflection and refraction and so on.  In this respect, I attempt to show how what 

started off as a way to explain capillary action, itself an explanation of several 

natural phenomena at the time, matured into a generalised theory of matter as 

                                                 
14 Gal, Meanest Foundations and Nobler Superstructures, 59. 
15 Michael Hunter and Simon Schaffer (eds), Robert Hooke: New Studies (Woodbridge, England: Boydell 

Press, 1989), 1–2. 
16 Robert Hooke, The Posthumous Works, ed. Richard Waller (London: Sam Smith and Benjamin Walford, 

1705).   
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inseperable from motion, a theory in which vibrations and ‚all manner of sonorous 

or springing Bodies‛,17 are either congruous or incongruous based on vibrational 

frequency, the backbeat of which is ‘congruity and incongruity’.  Part I also serves as 

a necessary foundation for the longer Part II, on Hooke’s novel ‘Practical Geometry’.   

The way that Hooke taught and practiced mathematics shows that for him 

Euclidean geometry was a tool, created before the invention of optical instruments, 

and like naked eye astronomy was limited by the human senses – by our incapacity 

to sense and resolve constituents.  Nevertheless, it remained an important tool for 

making concepts more comprehensible to the senses, specifically because it was 

limited by them.  In Part II, I will examine Hooke’s development of the spring law 

from the perspective of mathematical bodies and motions by focusing 

predominantly on his practical geometry – the mediator between sensible and 

insensible physical reality and abstractions in his work.  One example, which I only 

mention here, is Hooke’s light strings and sound rays, or his use of ray optics to 

depict and think about insensible sound.  Hooke was adamant that mathematics 

should spring from physical operations, so it became necessary for him to 

reformulate the fundamental definitions of geometry in a way that would 

complement his epistemology; that is, to fashion physicalised definitions for a 

mathematics contingent on the configurations of matter.  For example, a point 

became a body, and instead of assuming a mathematical skeleton, geometry 

respected the material.  He had already undertaken the task in the Micrographia, 

where he studied nature ‚as a geometer‛, structuring his observations according to 

this framework – starting with the simplest bodies and building up to the most 

complex.18  Indeed, the Micrographia’s structure reveals the forethought of an 

epistemological ladder, and I try to outline how Hooke is able to reduce globular 

bodies to points that possess either geometrical congruence or similarity, creating a 

chain of proportionality based on similitude, which allows him to move between 

                                                 
17 Robert Hooke, Of Spring (London: John Martyn, 1678), 7.  
18 Hooke, Micrographia. 
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sensible and insensible realms.  I attempt to show how he forms a relation between 

microscopic and celestial points with the claim that the difference between pinpoints 

and planets is a matter of magnification or diminishment, or proportionality.  To 

achieve this epistemological inversion of the microscopic and celestial, Hooke adopts 

Galileo’s argument that one should replace the senses with instruments,19 which can 

magnify, diminish, quantify and measure points; and he employs Galileo’s maculate 

moon as a trope with which to communicate the inversion.  Yet the observations 

show that instead of reducing nature to its essentials, Hooke’s lenses resolved 

seemingly immeasurable complexity.20   

To the best of my knowledge, a work of this nature and scope on congruity 

and incongruity, as well as the invention of Hooke’s law of springing bodies, has 

never been attempted before (see Literature Review below). 

 

CHAPTERS 

Chapter One, ‘Pressure’, sketches the germination of Hooke’s matter theory by 

introducing his popular explanation for the cause of capillary action – the rise of 

liquid in thin tubes.  Boyle’s praise of the Hooke’s theory of capillarity prompted the 

latter to publish for the first time, penning An Attempt for the Explication of the 

Phaenomena, Observable in an Experiment Published by the Honourable Robert Boyle 

(1661).  In the Attempt, Hooke forges congruity and incongruity as a pair of 

theoretical tools to explain the phenomenon of capillarity, which he claims is caused 

by a difference in air pressure.  However, Hooke’s explanation for the causes of 

congruity and incongruity, in turn, would have to wait for his acoustical 

experiments in the Micrographia (1665), a book that kept the diarist Samuel Pepys up 

till 2 o’clock (‚the most ingenious book that I ever read in my life‛21).   

                                                 
19 Ofer Gal and Raz Chen-Morris, Baroque Science (Chicago: The University of Chicago Press, 2013), esp. 

Chapter Three. 
20 Gal and Chen-Morris, Baroque Science. 
21 Samuel Pepys, The Diary of Samuel Pepys Volume VI. Edited by Robert Latham and William G. 
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Chapter Two, ‘Causes’, begins by analysing how and why Hooke moved from 

the Attempt to its reworked second edition: the Micrographia’s sixth observation.  In 

Observ. VI Of Small Glass Canes, Hooke first ties congruity and incongruity to 

stretched musical strings, vibrations, sound, creating a crucial argument from 

analogy that he would rely on again in Of Spring and indeed throughout his career.  

By studying Hooke’s experimental trials on capillarity for their content on what 

Hooke would eventually come to call a ‘chime of motions’, I try to show that it is 

clear even this early on that congruity and incongruity are the hammer and file not 

only of his theory of capillarity, but of his cosmology.  Further, the chapter is a study 

of the development of Hooke’s string similitudes, during the long duration of time 

from the Micrographia onwards, and reveals three things.  First, that strings remained 

a reliable constant as a material model capable of accounting for all the fundamental 

properties of matter around which Hooke could build his theory.  Second, that music 

provided a way for him to work a problem with instruments designed for human 

senses in order to gain knowledge outside sense limits.  An example is Hooke’s 

sound wheels, invented to demonstrate that sounds are aggregates of pulses which 

continue beyond the limits of human hearing, leading Hooke to turn his back on the 

senses, paradoxically replacing both the eye and the ear with countable pulses and 

musical ratios.22  Third, although mathematics is only touched upon here, I try to 

show, as a prelude to Part II, how music was also a means for Hooke to construct a 

physical matter theory from which mathematics follows. 

Chapter Three, ‘Vibrations’, examines the claim made by Hooke at the start of 

Of Spring that he had already ‚hinted the principle‛ of congruity and incongruity in 

the Attempt.  It highlights his developing notions on particles as well as his 

developing and contradictory notions on the aether.  I follow Hooke’s changing 

early notions on particles and the aether to show that the employment of various 

experiments and observations for the development of his matter theory illuminates 

                                                                                                                                                        
Matthews (California: University of California Press, 2000), 18.  

22 For the optical part of this paradox, also see Gal and Chen-Morris, Baroque Science.  
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how blurred the line between practice and theory is in his work.  I argue that 

Hooke’s ontology is contingent upon his experimental practices, which alter how he 

imagines what insensibles like particles and the aether are, and subsequently also his 

representations of these new objects in his work and to his peers – for example, 

Boyle and Christiaan Huygens.  In this way, I try to explain how and why Hooke 

was, on the one hand, able to conclude that particles are vibrating globular bodies 

even though, on the other hand, his concept of the aether remained contradictory 

and ultimately oxymoronic.  Nevertheless, after reinforcing his description of the 

aether as a dynamic propagator of forces in Of Spring, Hooke could then commit 

himself more to the various vibrations crisscrossing through it, and to his 

geometrical demonstration of the spring law, which is contingent upon the material 

world and its parts. 

Chapter Four, ‘Points,’ is the first chapter in Part II: ‘Practical Geometry’, and 

thus lays some necessary groundwork.  First, it outlines Hooke’s Gresham geometry 

programme to explain Euclidean or speculative vs. practical geometry; the former, 

Hooke teaches, is useful for grounding concepts and making insensibles intelligible 

to the senses; the latter, as far as Hooke is concerned, is the geometry of the New 

Science. From the perspective of Hooke’s practical geometry, starting with a 

theoretical or speculative point when representing nature is to start with an 

instrument as fallible as the bare human eye.  I further attempt to show that the 

Micrographia challenges the Jesuit astronomer Christopher Clavius’s claim that 

geometers should avoid meddling in matters of physics by examining Hooke’s two 

reasons for making his first observation on the point of a needle.  His first reason is 

to erase the divide between art and nature, thereby making the resolved sights and 

textures allowed by his new geometrical tools, the microscope and telescope, as 

ordinary as those experienced by human senses.  His second reason is to fashion an 

analogy about points, and here Hooke employs the Galileo trope mentioned above.  

His use of optical instruments to smudge the edges between microscopic and 

macroscopic worlds both frames the Micrographia and becomes a leitmotif as the 
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ordered observations develop in scope and complexity from the smallest artificial 

point to the moon.  I will deconstruct two diagrams of points in parabolic motion, in 

an attempt to further explain the epistemological inversion and its importance in 

Hooke’s knowledge-making process.  This chapter also introduces Hooke’s crucial 

tool of proportionality, which was glanced at in Part I when discussing music in his 

work, and sketches how Hooke creates a chain of proportionality based on physical 

hence mathematical similitude.  

Chapter Five, ‘Lines’, analyses the mathematisation of Hooke’s stretched 

musical strings (discussed from an experimental and instrumental perspective in 

Part I).  Specifically, Hooke’s subversion of light, which is visually sensible, with 

sound, which is visually insensible, as a means to represent all vibratory phenomena 

with a mixture of practical and abstract ‘ray’ optics.  I attempt to show that Hooke’s 

strings reverse the epistemological role of the Pythagorean monochord; that is, a 

reversal of the idea of harmony as an underlying skeleton of ratios in a perfect 

monochord – since sound, like Hooke’s geometry, is contingent on physical causes.  

For similar reasons, Hooke’s rejection of Isaac Newton’s theory of light and colours, 

during which Hooke stresses how a ray of light is like a stretched string – physically 

hence mathematically, is a defence of his metaphysics of vibration.  Further, to 

underscore the uniqueness of Hooke’s geometry, and how essential it is to his work 

on insensibles and infinitesimals, I also compare Hooke and Leon Battista Alberti 

(1404–1472).  While Hooke’s reformulation of the fundamental definitions of 

geometry resembles Alberti’s, the latter did not consider invisible entities as 

necessary subjects for painters who represent only what they ‘see’; moreover, 

Alberti’s overall concept of geometry is closer to Johannes Kepler’s metaphysical 

assumptions about mathematics.  Finally, I consider the differences between a 

speculative vs. a practical simple line to show why practical geometry is a better 

representation of nature according to Hooke. 

Chapter Six, ‘Superficies’, examines Hooke’s use of scale and proportion in 

detail with a study of how Hooke lifts practical geometry off the faces of crystals, 
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and of his novel use of a scale bar – another new instrument in his practical 

geometry toolbox.  I identify Hooke’s appropriation of Kepler’s semi-thought-

experiment on close-packed lattices, and show how Hooke physicalises the 

revamped experiment by merging crystals with mechanical models from which 

geometry follows, implying that all are integrally related.  Hooke’s experiment re-

involves the senses, which according to him is a crucial step in forming a link 

between insensibles and sensibles, and without which nothing can be understood or 

utilised.  Thus, contrary to Kepler’s metaphysics, Hooke demonstrates that geometry 

is not ‚coeternal with God‛,23 but a cultural product.  At last, I examine Hooke’s 

artificial sections of cork in the Micrographia as resources for the construction of his 

springing particles representation in Of Spring, and I reconstruct his geometrical 

proof of the spring law to analyse how his practical and speculative geometry form a 

new mixed geometry.  Although Hooke borrows the term ‘mixed’ from his mentor 

John Wilkins, and although he is indebted to Wilkins technically and 

philosophically, I argue that Hooke’s new mixed geometry is radically different.  

Hooke’s practice of mixed geometry grounds his mathematics, and his graph of the 

spring law also exhibits his attempt at a solution to the question of infinitesimals. 

Consequently, in Chapter Seven, ‘Solids’, I focus on how real, material lenses 

shift frames of reference, and how it is that a solid, the moon, for example, can be a 

pockmarked superficies like the point of a needle; a smooth globular body; and a 

mathematical point.  By constructing natural laws from physical reality, thereby 

implying that nature, artificial instruments, and laws such as the spring law are 

related, Hooke legitimised the application of instruments and mathematics to the 

study of nature.  The twisty turns explicated throughout attest that the process was 

far from straightforward or self-evident.   

 

                                                 
23 Johannes Kepler, Harmonices Mundi in Gesammelte Werke 3, Axiom 7, 6:104.  Also see Kepler, The 

Harmony of the World, trans. E.J. Aiton, A.M. Duncan, and J.V. Field (Philadelphia: American 

Philosophical Society, 1997), 146–147.  
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LITERATURE REVIEW 

Classics such as E. Williams’s ‚Hooke’s law and the concept of the elastic 

limit‛ and Mary Hesse’s ‚Hooke's Vibration Theory and the Isochrony of Springs‛ 

suffer from anachronism in their quests to uncover why Hooke himself left the law 

that is named after him allegedly incomplete, instead of closely following Hooke’s 

practical and theoretical procedures to ascertain what the ‚Theory of Springs‛ is.24  

Williams was more interested in the Young modulus, but failed to notice that Hooke 

was aware of an elastic limit, which was not important to him because it had little 

impact on his metaphysics.  Meanwhile, Hesse missed the point about the relation 

between the spring law and Boyle’s law, dismissing Hooke’s supportive arguments 

as ‚confused‛.25  Nevertheless, Hesse’s work remains a valuable contribution, and 

parts of chapter sections in my work aim to clarify and explain these problems of 

interpretation with reappraisals of relevant material.  Later, more contextual papers 

such as Albert E. Moyer’s ‚Robert Hooke’s Ambiguous Presentation of ‘Hooke’s 

Law’,‛ still fall into the ambiguity trap by focusing only on small parts of Hooke’s 

extensive material.   

Several scholars have understandably approached Hooke’s vibrations from the 

vantage point of music.  A classic here is Penelope Gouk’s ‚The Role of Acoustics 

and Music Theory in the Scientific Work of Robert Hooke‛.26  Gouk studied the role 

of music in Hooke’s cosmology, but her main concern was from whom Hooke 

acquired his intellectual tools rather than the more interesting question of how he 

applied these tools to create a matter theory.  Moreover, she was confused by 

Hooke’s concept of the aether, though this is not unwarranted, as I will attempt to 

show in Chapter Three, for Hooke tries to maintain two positions at once.  Similarly, 

                                                 
24 Robert Hooke, Lectures De Potentia Restitutiva or Of Spring. London: John Martyn, 1678, 1. 
25 E. Williams, "Hooke's Law and the Concept of the Elastic Limit", Annals of Science 12, no. 1 (1956): 74-

83; Mary Hesse, ‚Hooke’s Vibration Theory and the Isochrony of Springs‛, ISIS 57, no. 4 (1966): 433; 

Albert E. Moyer, ‚Robert Hooke’s Ambiguous Presentation of ‘Hooke’s Law,’ ISIS 68, no. 2 (1977): 

266.   
26 Penelope Gouk, ‚The Role of Acoustics and Music Theory in the Scientific Work of Robert Hooke‛, 

585, in Annals of Science 37, no. 5 (1980): 573–605.   
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Jamie Kassler and David Oldroyd’s ‚Robert Hooke's Trinity College ‘Musick 

Scripts’, his Music Theory and the Role of Music in his Cosmology‛ is a 

comprehensive account of Hooke’s knowledge of music, and how he applied it to his 

matter studies; the ‘Musick Scripts’ transcribed and interpreted by them are valuable 

primary sources.27  Finally, an interpretation of congruity and incongruity, which 

Michael Cooper and Michael Hunter described as an ‘overstated case’, is John 

Henry’s "Robert Hooke, the Incongruous Mechanist."  Henry argues that the terms 

congruity and incongruity are synonymous with sympathy and antipathy in natural 

magic.28  I argue against this thesis.29   

In their recent work Baroque Science, Ofer Gal and Raz Chen-Morris designated 

‚Baroque‛ as a ‚particular set of tensions, anxieties, and paradoxes‛ identifiable in 

early modern science practices, arguing that the new ways of producing knowledge 

were inextricably a part of Baroque culture, which is usually perceived as the 

antithesis of rigour, order, logic.30  Gal and Chen-Morris concentrate on three inter-

related paradoxes embedded in early modern observation, mathematisation and the 

passions, examining what they call radical empirical instrumentalism and the 

rejection of the senses for instrument-mediated knowledge; constructed natural laws 

enforced upon nature; and objective passions, to examine the implications of 

‚instrument-mediated empiricism‛, study the ‚paradoxical compromises‛ involved 

in the mathematisation of nature, and question the consequences of reconfiguring 

                                                 
27 Kassler and Oldroyd, ‚Robert Hooke's Trinity College ‘Musick Scripts’, his Music Theory and the Role 

of Music in his Cosmology,‛ Annals of Science 40, no. 6 (1983): 559–595. 
28 John Henry, "Robert Hooke, the Incongruous Mechanist," in Michael Hunter and Simon Schaffer 

(eds), Robert Hooke: New Studies (Woodbridge, England: Boydell Press, 1989).  Michael Cooper and 

Michael Hunter, Robert Hooke: Tercentennial Studies (Aldershot, England: Ashgate, 2006), xviii. 
29 For an alternative thesis against Henry’s, see also M. E. Ehrlich’s ‚Mechanism and Activity in the 

Scientific Revolution: The Case of Robert Hooke,‛ Annals of Science 52 (1995): 127–151.  In the 

historiography, it is difficult to avoid at least mentioning congruity and incongruity when discussing 

aspects of Hooke’s work such as optics, celestial mechanics and so on.  For example, A.I. Sabra’s, 

Theories of Light (Cambridge: Cambridge University Press, 1981) contains an attempt at summarising 

Hooke’s concept of waves when discussing his theory of light and colours.  I will reference relevant 

and notable summaries in the footnotes throughout.    
30 Ofer Gal and Raz-Chen Morris, Baroque Science, 10, 9.   



Cindy Hodoba Eric 13 

 

 

‚reason and the senses‛.31  I explore similar themes in an attempt to strip away the 

answers, resolutions and self-affirming narratives in Hooke’s ‘completed’ work, and 

follow his contingent, often convoluted and imaginative object- and knowledge-

making practices.    

 

I: CONGRUITY AND INCONGRUITY 

1. PRESSURE     

From 1658 to 1659, Hooke designed a machine for Robert Boyle that could 

pump air out of a ‚receiver‛, in order to stick all manner of things into a big vessel of 

thick glass, such as capillary tubes in a reservoir of red wine, and pump out as much 

air as possible to observe the various effects.  The air-pump needs no introduction.32  

Boyle documented the experimental results in his 1660 New Experiments Physico-

Mechanical, calling Hooke’s conjecture regarding the cause of capillary action in 

experiment XXXV ‚ingenious‛: 

The cause of this ascension of the water appeared to all that were present so 

difficult < Wherefore, in favour of his *Hooke’s+ ingenious conjecture, who 

ascribed the phaenomenon under consideration to the greater pressure made 

upon the water by the air without the pipe, than by that within it<33 

As mentioned, Hooke’s explanation for the cause of capillary action is a difference of 

air pressure.  That is, the greater pressure pressing down upon the cistern of water in 

the vessel outside the pipe than on the water within causes the water inside the 

capillary to rise.  But why was the cause of capillary action important in and of itself, 

without any of the bells and whistles that Hooke attaches to it, to seventeenth-

century savants?  According to Alice Stroup in A Company of Scientists ‚Capillary 

action seemed to seventeenth-century scientists to explain several natural 

                                                 
31 Ofer Gal and Raz-Chen Morris, Baroque Science, 11–12.   
32 For a thorough account, see Steven Shapin and Simon Schaffer’s Leviathan and the Air-Pump 

(Princeton, NJ: Princeton University Press, 1985).   
33 Robert Boyle, The Works of the Honourable Robert Boyle (London: Printed for J and F Rivington, L Davis, 

W Johnston, S Crowder et al., 1772), 81. 
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phenomena‛.34  As Stroup has also noticed, Hooke provides a brief answer in list 

form:  

< the rising of Liquors in a Filtre, the rising of Spirit of Wine, Oyl, melted Tallow 

< in the Week of a Lamp < the rising of Liquors in a Spunge, piece of Bread, 

Sand < perhaps also the ascending of the Sap in Trees and Plants, through their 

small, and some of them imperceptible pores <35 

Viewed in this light, the little pipes or canes that Hooke makes by melting glass ‚in 

the flame of a Lamp, and then very suddenly Draw*ing it+ out into great length‛,36 

some of them cobweb-thin filaments and yet still perforated with pores or channels 

when viewed under a microscope, turn into artificial filters, wicks, sponges and 

stems.  Thus a simple experiment has the potential to account for a wide range of 

phenomena, and elevates Hooke’s artificial tubes to the same status as nature’s 

capillaries.  Acting as if there has been no line drawn between art and nature, Hooke 

replaces ‚imperceptible pores‛ with artificial capillary tubes – objects of his making, 

‘perceptible’ enough for his microscopes.   

A crucial part of any experiment is the move from a local, specific laboratory 

setting to a global or universal generalisation.  That is, from turning a material 

thinking tool, an explanatory model, into a theory.37  Although Boyle proclaimed 

Hooke’s theory ‚ingenious‛, it was not uncontested: nevertheless, it enjoyed a long 

life, which underscores its success in accounting for the phenomenon of capillarity.  

For example, the teacher and textbook compiler Alexander Jamieson, in his 1837 

Dictionary of Mechanical Sciences, cites ‚Dr Hook‛ on three occasions: once under 

‚Capillary Action‛, where he mentions Hooke’s measurements of maximum liquid 

height in capillary tubes, and ‚the diminished pressure of the air on the fluids in the 

tubes‛ as one of the ‚various hypotheses‛.38   

                                                 
34 Alice Stroup, A Company of Scientists: Botany, Patronage, and Community at the Seventeenth-Century 

Parisian Royal Academy of Sciences (Berkeley: University of California Press, 1990), 139.  
35 Robert Hooke, Micrographia (London: Jo. Martin and Jo. Allestry, 1665), 21.  
36 Hooke, Micrographia, 10. 
37 David Gooding, Trevor Pinch and Simon Schaffer (eds), The uses of experiment (Cambridge: Cambridge 

University Press, 1989). 
38 Alexander Jamieson, A Dictionary of Mechanical Sciences, Arts, Manufactures and Miscellaneous Knowledge 
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Hooke demonstrates this ‚diminished pressure‛ by attempting to prove two 

propositions true with arguments from experiment designed to convince his 

audience that his theory has the power to account for all the observable effects of 

capillarity: 

1) ‚The first of which is, That an unequal pressure of the incumbent Air, will 

cause an unequal height in the waters Surfaces‛.39   

2) ‚And the Second is, That in this Experiment there is such an unequal 

pressure‛.40   

It makes sense that Hooke should attribute the cause of the ‚unequal height in 

the waters Surfaces‛ to ‚an unequal pressure‛, considering that he designed Boyle’s 

air-pump, and that the pair conducted capillarity experiments inside it.  It is then not 

surprising that Hooke should try to create a 

difference in air pressure, without the luxury 

of an air-pump, in his own experiments on 

capillary action.  Thus, following the above 

two propositions, Hooke breezes through an 

experiment elegant in its simplicity, turning 

an inverted glass syphon and some water into 

a kind of crude air-pump that also isolates 

one artificial capillary tube (‚Fig: 6‛ in my 

Fig. 1.1).  That the experiment is simple, a 

material Ockham’s razor, and not spectacular 

like Boyle’s hard-to-operate, expensive air-

pump,41 has its advantages.  

 According to Hooke’s friend 

                                                                                                                                                        
(London: H. Fisher, 1829), 146.  

39 Hooke, Micrographia, 11. 
40 Hooke, Micrographia, 11.  
41 Steven Shapin and Simon Schaffer, Leviathan and the Air-Pump. 

Figure 1.1 Schem. 4 (Micrographia).   
Hooke’s accompanying illustrations for the 
experiments in Observ. VI Of Small Glass 
Canes. 
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Christopher Wren, simplicity in experimental and instrumental design is equivalent 

to the seventeenth century definition of ‘ingenuity’: ‚the misapprehending World 

measures the Excellence of things by their Rarity, or Difficulty of Framing‛, whereas 

‚a Master‛ works with ‚a far smaller number of Peeces, & those perhaps of more 

trivial Materials, but compos’d with more Brain & less ostentation, frames the same 

thing in a little Volume‛.42  What Wren means is that if one can demonstrate a 

concept using plain words, and a few simple parts and materials, then one has 

mastered the subject; whereas ostentation masks a misapprehension of the subject at 

hand.  When Boyle refers to Hooke’s theory of capillarity as ‚ingenious‛, he grants it 

the same assessment as Wren does regarding ingenious instruments and 

experiments.   

The syphon in Hooke’s design mimics the air-pump’s glass receiver and a 

capillary tube simultaneously, and Hooke’s lungs take on the role of the pump itself 

by alternatively blowing and ‚gently sucking‛43 on one end of the syphon to pump 

air into the ‘receiver’ (creating compression and an increase in air pressure) as well 

as ‘pumping’ air out (causing rarefaction and a drop in pressure inside the syphon-

receiver).  Before blowing or sucking on the syphon, the height of the water in the 

two vertical sections is equal and at equilibrium (AB).  Blowing at D depresses the 

water on the same side as the compression at B and elevates it to A; sucking the air 

out gently produces ‚clean contrary effects‛.44  In both the Attempt and its expanded 

second edition ‚Observ. VI‛ in the Micrographia, Hooke leaves the wording of this 

experiment unchanged, which indicates his satisfaction with the material model’s 

power to function as an explanatory tool for thinking, and to prove the first 

proposition true.  Namely, ‚That an unequal pressure of the incumbent Air, will 

cause an unequal height in the waters Surfaces‛.  Further, Hooke’s experiment 

                                                 
42 Christopher Wren, cited in Jim Bennett, ‚Instruments and Ingenuity‛, in Michael Hunter and Michael 

Cooper (eds), Robert Hooke Tercentennial Studies, 71.  For a detailed explanation on the early modern 

definition and use of the word ‘ingenious’ in experimental philosophy, see Bennett, ‚Instruments and 

Ingenuity‛, 65–76.  
43 Hooke, Micrographia, 11. 
44 Hooke, Micrographia, 11. 
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doubles as a practical demonstration for one of his later comments: ‚we were able to 

separate the Air from the Aether by glass <‛45 – an obvious reference to his air-pump 

work with Boyle, as well as being a remark on the ability of glass, whether receiver 

or tube, to manipulate pressure by filtering the solute of air out of the solvent 

aether.46   

The second experiment, designed to buttress the second proposition, ‚That in 

this Experiment there is such an unequal pressure‛, involves consecutively thinner 

and thinner capillary tubes, cemented in turn to the open end of a hollow glass bulb 

attached to the bottom of a glass cane, and filled with water (‚Fig: 5‛ in Figure 1.1).47  

When the vertical cane section (AB) is filled with water, the water’s weight presses 

down on the air in the bulb, increasing its pressure and compressing it into the 

attached capillary tube.  Hooke conjectures that the particles of air expend and store 

force to squeeze into the capillary tubes, which have diameters smaller than those of 

the air particles themselves.  Because of this squeezing, the air particles have less 

force or pressure to exert against the water inside the tubes, which is then free to rise 

against gravity due to a lack of atmospheric pressure weighing it down.  That is, the 

proportionally diminishing air pressure on the water inside the consecutively 

thinning tubes, relative to the atmospheric pressure on the reservoir, causes an 

increase in fluid height.48  This is the type of mathematical analysis that Hooke will 

continue to favor throughout his career (see Part II) – in this case the proportions 

between forces.   

Thus, it appears that Hooke has two models in support of the one 

phenomenon.  The first, separating ‚the Air from the Aether by glass‛ which acts as a 

                                                 
45 Hooke, Micrographia, 14. 
46 For a typical Hooke hint on how he perceived both the spring and pressure laws as being two 

phenomena of springing bodies early on in his career, see Hooke, Micrographia, 40–41.   This is, to the 

best of my knowledge, the only instance where Hooke shifts the frame of reference to the solvent 

aether rather than the solute air to describe what he would later refer to as ‚the same proportions one 

to the other‛ (Hooke, Of Spring, 3).  
47 Hooke, Micrographia, 19–20. 
48 Hooke, Micrographia, 19–20. 
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sieve.  The second, the force theory just described, where air particles lose power by 

exerting it against the walls of the capillary tubes, and by storing it in their 

compressed springy parts, as they are pushed and squeezed in.  However, together 

the experiments are complementary, and disclose essential details about Hooke’s 

matter theory.  The inverted syphon experiment shows the pressure law or inverse 

proportion law (nowadays Boyle’s law49), and, according to Hooke proves the first 

proposition of his theory of capillary action true.  The experiment using 

consecutively thinner tubes shows an intuitive understanding of the spring law 

(Hooke’s law), and according to Hooke proves the second proposition true.  

Together the capillary action experiments display an inverse relation because of 

Hooke’s notion of springy air particles (see Chapter 3, Particle).  That is, when 

‚separat*ing+ the Air from the Aether by glass‛, as in the inverted syphon experiment, 

the springy air particles are initially compressed in the syphon until the pressure 

upon them is relieved when they are released.  In contrast, when air is forced into 

consecutively thinner tubes, the air particles contract to fit inside tubes with 

diameters smaller than their own (‚an Hole less in Diameter then it self‛), losing force 

to exert against the water by storing power in their compressed parts.  ‚What 

degrees of force are requisite to reduce them into longer and longer Ovals, or to press 

them into less and less holes, I have not yet experimentally calculated,‛ Hooke 

confesses.50  Over two centuries later, Jamieson, referencing Hooke and his capillary 

tube observations, gives a visual explanation of the ‚reciprocal proportion‛ law or 

Boyle’s law.  The liquid 

will immediately rise in the tubes to a considerable height above the surface of 

that into which they are immersed; these heights varying nearly in reciprocal 

proportion of the diameters; the greatest heights, according to Dr. Hooke, being 

about 21 inches.51               

Now, I mentioned that Hooke coins his theoretical tools ‘congruity’ and 

                                                 
49 For example, given a fixed amount of air at a constant temperature, there is an inverse proportion 

between air pressure and volume.    
50 Hooke, Micrographia, 19.  
51 Jamieson, A Dictionary of Mechanical Sciences, Arts, Manufactures and Miscellaneous Knowledge, 146. 
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‘incongruity’ during these studies on capillarity and pressure.  Having practically 

demonstrated his two propositions, Hooke next needs to account for the differences 

between pressures inside and outside his glass capillary tubes.  He argues that these 

differences can be inferred from the ‚Congruity or Incongruity of Liquids one with 

another‛.  That is, ‚That there is such an unequal pressure, I shall prove from this, 

That there is a much greater inconformity or incongruity (call it what you please) of 

Air to Glass, and some other Bodies, than there is of Water to the same‛. 52  

Although in the Attempt the terms ‘congruity’ and ‘incongruity’ designate little more 

than ‚visible effects‛ – for example, the miscibility and immiscibility of various 

fluids – I have chosen to cite this from the Attempt instead of the Micrographia 

because it is Hooke’s first published statement of what Penelope Gouk claims is ‚the 

most original part of Hooke’s theory < determin*ing+ the way that bodies in motion 

are united or divided from one another‛.53  While I agree with Gouk on this point, it 

is impossible to comprehend the unique aspects of Hooke’s matter theory without 

analysing its construction and development – especially because it was a lifelong 

preoccupation of his, woven through all his work. 

 

2. CAUSES 

In the Attempt, while Hooke confidently attributes the cause of capillary action 

to a difference in air pressure, and is more than happy to attribute the cause of air 

pressure and other phenomena to ‘congruity and incongruity’, when it comes to 

providing causes for congruity and incongruity in turn, he shirks from the challenge, 

and weasel-words his way out of an explanation with an excuse about ‚*it+ being an 

enquiry more proper to be followed and explained among the general Principles of 

                                                 
52 Hooke, Attempt, 7, 9.  To compare the wording in the Attempt with Observ. VI, see also, Hooke, 

Micrographia, 11.  
53 Hooke, Attempt, 10.  Gouk, ‚The Role of Acoustics and Music Theory in the Scientific Work of Robert 

Hooke‛, 585.  
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Philosophy‛.54  In other words, he does not know yet.  Nevertheless, he does 

provide a list of possible causes:  

< whether from the Figure of their constituent Particles, or interspersed pores, or 

from the differing motions of the parts of the one and the other, as whether 

circular, undulating, progressive, etc., whether < from one or more of these 

enumerated causes <55 

Here, Hooke has an idea that is still taking shape with the help of experiments and 

observations – for example, the ‚interspersed pores‛ are material pores that he 

studies when making microscopic observations – though he will refer back to each 

one of these possible causes in Of Spring seventeen years later, integrating them into 

and expounding his matter theory.  However, the main developments concerning 

congruity and incongruity occur in the middle ground between the Attempt and Of 

Spring – the Micrographia.  In the Attempt, Hooke lays the foundations for his matter 

theory, as previously discussed, with definitions and observations of effects of what 

is today called surface tension.  Four years later, in the Micrographia, he relies on the 

same definitions and observations in Observ. VI, but is also comfortable and 

confident enough to discuss causes.  If the addenda of acoustical experiments and 

arguments from analogy are anything to go by, then the core of this new knowledge 

is motion.  Specifically, studies of consonant and dissonant mechanical sound wave 

vibrations.   

 

MUSIC 
Music was not an illustrative analogy for Hooke, but a way for him to work a 

problem with instruments designed for human senses in order to gain knowledge 

outside sense limits.  It was also a means to construct a physical matter theory from 

which mathematics follow (see Part II: Practical Geometry).  Although Hooke began to 

investigate sound at an early age, according to Jamie Kassler and David Oldroyd, 

                                                 
54 Hooke, Attempt, 10.    
55 Hooke, Attempt, 10.    
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this excluded music theory until ‚sometime in the 1660s‛,56 which coincides with 

the start of his experiments on musical strings, and other musical instruments, at 

Royal Society meetings and in the Micrographia.  Hooke played the organ while at 

Westminster School, teaching himself twenty lessons, and entered Christ Church, 

Oxford, as a chorister in 1650.57  Boyle and Hooke were two of few people in the 

world to have witnessed the sound of a ticking watch fading as air was pumped out 

of the receiver only for the ticking to return again gradually as the air was allowed 

back in, which demonstrated that sound needs a medium through which to travel.  

Moreover, Hooke showed that sound travels faster through denser media, and 

hypothesised that condensing the air in the receiver would amplify the sound.58  

During his time as Curator of Experiments, he turned Francis Bacon’s Sound House 

from New Atlantis into a reality by conducting ‚many investigations into sound 

generation, transmission and reception‛.59  He discoursed regularly with a select 

few friends and colleagues, such as Wren, who were also interested in music theory, 

and developed a unique proportional tuning system, and several systems of music 

notation.60  In this vein, his trials with monochords, which allowed him to 

manipulate stretched musical strings and their vibrational frequencies to better 

comprehend consonance, dissonance and tone would prove most crucial to the 

development of his metaphysics of vibration by giving him a means to account for 

all the fundamental properties of matter. 

As mentioned, Hooke conducted trials on the speed of sound in various 

                                                 
56 Kassler and Oldroyd, ‚Robert Hooke’s Trinity College ‘Musick Scripts’, his Music Theory and the 

Role of Music in his Cosmology‛.  Annals of Science 40, no. 6 (1983): 559-595, 574.  
57 Gouk, ‚The Role of Acoustics and Music Theory in the Scientific Work of Robert Hooke‛, 575.  Kassler 

and Oldroyd, ‚Robert Hooke’s Trinity College ‘Musick Scripts’, his Music Theory and the Role of 

Music in his Cosmology‛, 590.    
58 Hooke, Micrographia, Preface.  Gouk, ‚The Role of Acoustics and Music Theory in the Scientific Work 

of Robert Hooke‛, 576.   
59 Kassler and Oldroyd, ‚Robert Hooke’s Trinity College ‘Musick Scripts’, his Music Theory and the 

Role of Music in his Cosmology‛, 583.   
60 Robert Hooke, The Diary of Robert Hooke, 1672–1680 [henceforth Diary], eds Henry W Robinson and 

Walter Adams (London: Wykeham Pub., 1968), 152.  Kassler and Oldroyd, ‚Robert Hooke’s Trinity 

College ‘Musick Scripts’, his Music Theory and the Role of Music in his Cosmology‛.   
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media.  In the Micrographia’s Preface, he describes inflecting sound around corners 

through wires, sending it through rods and walls, and attempts to compare it with 

the speed of light.  Thomas Birch and Richard Waller, the latter witnessing at least 

some of the experiments, provide more detailed descriptions.  Birch recounts that 

Hooke’s primary interest was a ‚way of conveying force to a great distance, which 

he conceived would best be done with some stiff and inflexible rod‛;61 Waller 

testifies that ‚the sound conveyed by the Air [came] a considerable time after that by 

the Wire‛;62 Birch and Waller separately describe an experiment with a great 

monochord, designed to exhibit that each pitch has a unique vibrational frequency.  

According to Waller, 

In July [6] 1664 [Hooke] produced an Experiment to shew the number of 

Vibrations of an extended String, made in determinate time, requisite to give a 

certain Tone or Note, by which it was found that a Wire making two hundred 

seventy two Vibrations in one Second of Time, sounded G Sol Re Ut [middle G] in 

the Scale of all Musick.63 

Birch adds more, explaining that a 136 foot wire (with a diameter of 1/32 inches), 

was stretched by weights (with a total constant tension of roughly 4 3/4 pounds), 

and that although ‚the velocity of the vibration of a string tuned to G. Sol. Re. Ut. 

[was] two hundred seventy-two times in a second *when stopped to 1 foot+‛, the 

musical note was ‚ghessed‛, but confirmed at the next meeting by comparing the 

tone ‚with a pipe‛.64    

In the Micrographia’s Observ. VI, Hooke employs a vibrating strings similitude 

to argue for the causes of congruity and incongruity, because  

                                                 
61 Birch, The History of the Royal Society, Vol. IV, 545.   
62 Waller, ‚The Life of Dr. Robert Hooke,‛ in Hooke, Posthumous Works, xxiv; "Hooke Folio Online", 

livesandletters.ac.uk, 2017, http://www.livesandletters.ac.uk/cell/Hooke/Hooke.html., 29. 
63 Waller, ‚The Life of Dr. Robert Hooke,‛ in Hooke, Posthumous Works, x.   
64 Birch, History of the Royal Society, Vol. I, 446–7, 449; "Hooke Folio Online", livesandletters.ac.uk, 2017, 

<http://www.livesandletters.ac.uk/cell/Hooke/Hooke.html>, 29.  272 Hz corresponds approximately 

to a middle C#/D♭ in today’s equal-tempered scale.  According to Theo. Baker’s Dictionary of Musical 

Terms, 8th ed. (New York: G Schirmer, 1904), 182, G sol re ut was the solmisation term for middle G 

and its octave; for low G, Gamma-ut was favoured.  For an alternative interpretation, see Benjamin 

Wardhaugh, ‚Mathematics, Music and Experiment in Late Seventeenth-Century England‛, in Eleanor 

Robson and Jacqueline A. Stedall (eds), The Oxford Handbook of the History of Mathematics (Oxford: 

OUP, 2009) 639–61.     
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particles that are similar, will, like so many equal musical strings equally stretcht, 

vibrate together in a kind of Harmony or unison; whereas others that are dissimilar 

< like so many strings out of tune to those unisons, though they have the same 

agitating pulse, yet make quite differing kinds of vibrations [so that] they cannot 

agree together, but fly back from each other to their similar particles.65 

Thus, although all matter, such as stretched musical strings, has ‚the same agitating 

pulse‛ (which I will examine in the subsequent section), ‚unison‛ strings that are 

congruent, and harmonious strings (for example, an octave) that are ‚similar‛, 

represent and mechanically demonstrate Hooke’s concept of congruity – a 

sympathetic resonance that causes particles to ‚vibrate together‛ and cohere.  And 

dissonant or ‚dissimilar‛ strings represent incongruity.     

Not satisfied with relying solely on a strings similitude to serve as a model for 

vibrating particles, Hooke employs a drum and sand in an experiment designed to 

make his abstract notion of an ‚agitating pulse‛ concrete and visible to the sense of 

sight.  The experiment emulates particles transitioning from a solid to a fluid state.  

Hooke suspends a dish of sand over a drum, and beats the drumhead with ‚a quick 

and strong vibrating motion‛ to show ‚how a body actually divided into small parts 

becomes a fluid‛; the result is that the agitated sand, which can be imagined as 

magnified particles, displays all the properties of a fluid.66  Moreover, mixing sands 

of various grain sizes produces the same effect as playing dissonant strings together: 

instead of mixing harmoniously and homogenously, the finer sand tosses out the 

coarser sand, which congregates into a congruent pile.  Immediately preceding his 

strings similitude, Hooke connects his percussion and string models thus:  

I suppose the pulse of heat to agitate the small parcels of matter, and those that are 

of a like bigness, and figure, and matter, will hold, or dance together, and those which 

are of a differing kind will be thrust and shov’d out from between them <67 

As Ofer Gal and Raz-Chen Morris explain, ‚For Hooke this comes to mean that the 

very structure of matter is produced by motion < *M+atter is in constant motion, 

and it is this motion and its ‘harmonies’ that create clusters of particles that become 

                                                 
65 Hooke, Micrographia, 15. 
66 Hooke, Micrographia, 12.   
67 Hooke, Micrographia, 15. 
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substances‛.68  Further connecting his vibrating sand to his strings, Hooke adds, ‚To 

which three properties in strings, will correspond three properties also in sand, or 

the particles of bodies, their Matter or Substance, their Figure or Shape, their Body or 

Bulk‛.69  The substance, shape and bulk of all objects determine their natural 

frequency of oscillation.  Thus, by playing with various combinations of these three 

properties, on which the vibrations of all objects depend, one can make just as many 

‚harmonies and discords‛70 as are possible with musical strings.   

Later in life, from his Lectures of Light to his Lectures concerning Navigation and 

Astronomy in the 1680s, Hooke would also employ resonating bells. 

I have already, I think, fully proved in Light and Colour, the Object of Sight, that 

the Motion which is produced in the Eye, proceeds from an internal Motion made 

in the Sun < I could also as easily prove, that Sound in the Ear, which is a real 

Motion in some part thereof, is produced by the internal Motion of the Parts of the 

Bell some Miles perhaps distant.71     

The bell is a good example, he explains, ‚because both the Motion in the Bell, and 

the Motion in the Ear, or some other Body there placed, is discovered by other 

Senses, namely, by the Sight and Touch, as well as by the Ear‛.  Therefore, it is 

‚evident first to the Sense of Seeing, that the Bigger the Body is, the slower its 

Vibrations, and the smaller the quicker.‛  This is true of ‚all pendulous Motions‛, for 

example, ‚in the Recursions and Vibrations of Pieces of Timber, which the longer 

and bigger they are, the more slow are the Vibrations made by them; and the smaller 

and shorter, the quicker.‛72  But when the vibrations are so fast that they blur before 

the eye, the ear proves to be the more sensitive natural instrument: ‚when the eye is 

unable to assist us any further in distinguishing the swiftness of Vibrations, there the 

Ear comes in with its assistance, and carries us much further‛.73   

As I shewed in the Vibrations of Strings, so now I instance further in Bells, where 

we find by the Tone, that the smaller the Bell, the sharper and more shrill its 

                                                 
68 Ofer Gal and Raz Chen-Morris, Baroque Science, 156.  
69 Hooke, Micrographia, 15. 
70 Hooke, Micrographia, 15–16. 
71 Hooke, Of Comets and Gravity, in Posthumous Works, 184. 
72 Hooke, Lectures of Light, in Posthumous Works, 135. 
73 Hooke, Lectures of Light, in Posthumous Works, 135. 
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Sound; and this carries us on to a Sound so sharp, that we can only call it 

screeking, and at length it becomes offensive to the Ear, because beyond that it 

cannot endure the Sense of a shriller note or quicker Vibration <74 

In this way, bells are an important explanatory musical instrument for Hooke, 

because although they still work within the sensible realm, they operate a step 

higher than the sense of sight, showing sensibly and thus imaginably that vibrations 

continue with ‚insensible velocities‛ into the realm beyond the senses.   

Further, Hooke claims that he could ‚more largely explain by particular 

Experiments < that the Motions of several Bodies at a distance, are caused by the 

internal Motion of the sounding Body; and that this Power of moving is every way 

propagated [according to the inverse square law75] by the ambient Medium, which 

excites in solid Bodies at a distance, a similar Motion.‛76  But how these different 

‚Motions of several Bodies at a distance‛ pass like pond ripples through one another 

is a line of thought leading Hooke to a problem that he never seems to solve to his 

satisfaction.  How different vibrations crisscross, ‚confound*ing+ the regular 

propagation of each others Rings‛, he admits, ‚does much confound the 

Imagination‛.77  Yet, Hooke argues, ‚’tis enough for a Principle to build upon, that 

we are assured it is so, and that such and such are the Effects that flow from it‛.78  

And he allows himself to build a solution to the problem by using a ‚Chime of 

Impulses‛ – his term for how various point sources communicate ‚every one of their 

impressions distinct and successively within *the+ Period‛ of a least-sensible 

moment.79  Notice that Hooke instantiates the abstract word ‚Impulses‛, which is 

equivalent with ‚Motion‛ here, by connecting it to the word ‚Chime‛, thereby 

forming an experiment-based metaphor already in the wind owing to his studies of 

bells.  Growing up his metaphysics of vibration a notch, he imagines that, at the 

particle level, ‚there might be found distinct Parts enough, within the orb of this 
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least sensible Point, to propagate every one of those Motions distinct.‛80  That is, via 

sympathetic resonance, which, in the case of light, Hooke describes as a 

‚harmonious Chime, as it were, of the Pulsations of several Luminous Points or 

Bodies‛.  In the case of sound, he explains ‚that the Motions of several Bodies at a 

distance, are caused by the internal Motion of the sounding Body; and that this 

Power of moving is every way propagated‛ and ‚excites in solid Bodies at a 

distance, a similar Motion.‛81  Moreover, the behaviour of drops and pond ripples, 

coupled with a conflation of light and sound studies, and thinking about the 

propagation of powers in terms of chiming bells, leads Hooke to consider the earth 

as such a vibrating point source.  

Suppose that there is in the Ball of the Earth such a Motion, as I, for distinction 

sake, will call a Globular Motion, whereby all the Parts thereof have a Vibration 

towards and fromwards to the Centre, or of Expansion and Contraction.82 

And that the cause of gravity works correspondingly.  ‚For this Power [gravity] 

propagated … does continually diminish according as the Orb of Propagation does 

continually increase‛, namely, ‚always reciprocal to the Area or Superficies of the Orb of 

Propagation, that is duplicate of the Distance‛, or the inverse square law – ‚as we find the 

Propagation of the Media of Light and Sound also to do; as also the Propagation of 

Undulation upon the Superficies of Water.‛83  Thus resonating bells also help Hooke to 

imagine how light, sound, gravity and so on can be described by the same natural 

law, because of his theory of congruity and incongruity, which he consciously weaves 

into all of his work.    

But stretched sounding strings remained Hooke’s favourite tools for congruity 

and incongruity, repeated and expounded upon both in Of Spring, where he would 

strip them of their qualitative properties (see Chapter 5: Lines), and in Lectures of 

Light, where he would use ‚a long String *stretched+ out between two Pins‛ to show 
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that the sense of hearing operates in a region of time that is a rung up from the sense 

of sight.  On the one hand, Hooke explains again, ‚if *the string+ be long and but 

slack, we are able to distinguish it [with our eyes], as it moves from one side to the 

other < because it makes its Vibrations within the compass of several human 

Moments of time‛.84  A ‘human moment’ is, according to Hooke, a unit of measure 

quick as a human thought – the least-sensible moment imaginable.85  On the other 

hand, a tense, plucked string blurs before one’s eyes even as one’s ears take over, 

registering the tone. 

But if *the string+ be strain’d yet straighter, so as to make its whole Vibration 

within one human Moment, we see it as if it were in all parts of its space and in 

the two Termini at once, about which time, and not before, it begins to sound. 86 

Owing to these studies of strings, Hooke takes music theory and vibrations a 

step further, breaking free of the limits of the human senses.  After lamenting the 

limits of the eye to detect vibrations, he rejects the ear as well, which detects only a 

narrow spectrum of frequencies, and so replaces the listener with quantifiable 

vibrations and musical ratios.  Again, Hooke reasons that if there are motions that 

the eye cannot detect, and if sounds are nothing but vibrational frequencies, that is, 

motions, then there must necessarily be harmonious and dissonant frequencies in 

the sonorous silence above human hearing.   

For that the Shrillness of the Note depends upon the quickness of the Vibration, I 

think I need not instance. Hence I conceive that there may be yet beyond the reach 

of our Ears infinite shriller and shriller Notes.87  

 Thus strings are not only a model for congruity and incongruity, but for 

Hooke’s epistemology.  That is, material thinking tools – instruments, apparatuses 

and experiments – constructed to work at the level of the human senses can be used 

to gain reliable knowledge in the realms beyond the senses.  Owing to this 

universality, early on in the Micrographia, where Hooke first introduces his musical 
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strings model, he also introduces his metaphysics of vibration: 

Now that the parts of all bodies, though never So solid, do yet vibrate, I think we need go 

no further for proof, then that all bodies have some degree of heat in them, and that there 

has not been yet found any thing perfectly cold: Nor can I believe indeed that there is any 

such thing in Nature, as a body whose particles are at rest, or lazy and unactive in the 

great Theatre of the World, it being quite contrary to the grand Oeconomy of the 

Universe.88      

  

PULSE 
In the Micrographia stage of his matter theory, Hooke still clings to qualitative 

descriptions and ‚Relative propert*ies+‛ gained from experimental trials and 

observations.89  Congruity is ‚a property of a fluid Body, whereby any part of it is 

readily united with any other part, either of itself, or of any similar, fluid, or solid 

body‛; and its highest property is ‚a Cohesion of the parts of the fluid together, or a 

kind of attraction and tenacity‛.  Incongruity is ‚a property of a fluid, by which it is 

hindered from uniting with any dissimilar, fluid, or solid Body‛.90  For the latter, he 

recycles his examples from the Attempt, listing raindrops in air, bubbles of air in 

water, drops of oil in water and so on.  From microscopic observations, Hooke 

speculates that all smaller parcels of matter with a globular form seem to have been 

in a fluid state first, and applies congruity and incongruity to explain their 

globularity: a congruous body is ‚forc’t into as little space as it can possibly be 

contained in, namely, into a Round Globule‛, against the surrounding incongruous 

fluid.91  But he is quick to point out that if one wishes to understand the cause of 

‘congruity and incongruity’, then one must first ask what is the cause of fluidness.  

This, like the Micrographia’s percussive and string instruments experiments and 

analogies, is a new development, and Hooke answers immediately that the cause of 

fluidness is ‚nothing else but a certain pulse or shake of heat‛.  Further, heat itself is 

‚nothing else but a very brisk and vehement agitation of the parts of a body < *The+ 
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parts of a body are thereby made so loose from one another, that they easily move any 

way, and become fluid‛ – such as the grains of sand vibrating in the dish above the 

drumroll.92   

In a second experiment, which also demonstrates how a body transitions from 

a solid to a fluid state, Hooke sets up an iron block with a pin in it.   The pin cannot 

be unscrewed by hand.  Hooke explains that grating the iron block with a file creates 

vibrations and heat, ‚by which means the agitation of heat so easily loosens and 

unties parts of solid and firm bodies‛, allowing him to unscrew the pin with his 

fingers.93  Since ‚there has not been yet found any thing perfectly cold‛, and Hooke 

supposes that ‚the pulse of heat [will] agitate the small parcels of matter‛, he 

concludes that ‚all bodies have some degree of heat in them‛.  It follows that all 

bodies have a vibrational frequency that changes, becoming faster or slower – 

though never ‚at rest‛ – depending on how much heat is applied or removed.94  In 

this way, Hooke’s concept of ‚pulse‛ is interwoven with his studies of vibrations 

and his metaphysics.   

Yet, Hooke’s use of the word ‘pulse’ depends upon whether the context is 

practical or theoretical, qualitative or quantitative.  Moreover, like his amalgamation 

of careers as Curator and geometry professor, he often moves between practical and 

theoretical knowledge with little display.  As such, ‘pulse’ represents a physical, 

mechanical striking, a quantifiable vibration and aggregates of pulses.  In a diary 

entry dated Saturday 15 January 1676, Hooke succinctly sets the scene: at ‚Sir 

Christopher Wrens‛, discussing ‚my notion of sound‛ with him and ‚Dr. Holder‛.  

Remaining faithful to the results and observations of his 1664 monochord trials, and 

his Micrographia strings similitude, Hooke defines sound as ‚nothing but strokes 

within a Determinate degree of velocity.‛95 
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I told [Wren and Holder] how I would make all tunes by the stroke of a hammer 

< that there was no vibration in a puls of sound, that twas a puls propagated 

forward, that the sound in all bodys was the striking of parts one against the other 

and not the vibration of the whole.96               

Hooke reiterates to Wren and Holder that sound needs a medium through which to 

propagate, ‚that twas a puls propagated forward,‛ because ‚sound in all bodys was 

the striking of parts one against the other and not the vibration of the whole‛.97  In 

other words, the wave or pulse propagates from part to part, and the speed of sound 

is not instantaneous.  Further, ‚the vibrations of a string *are+ not Isocrone‛ but ‚the 

vibrations of particals *are+‛,98 meaning that the string’s amplitude is independent of 

its vibrational frequency.  If this were not the case, there would be no music, only 

noise.  Hooke first demonstrates the isochrony of springing bodies experimentally 

and geometrically in Of Spring.  Almost a decade later, in a lecture on navigation and 

astronomy, he would remind his audience that  

< when the Vibrations are Isocrone, as I have formerly here proved those of 

strained or extended strings to be, which act upon the principle of Spring < they 

are Musical sounds; but when they are not Isocrone they are not Musical.99  

The same year that Hooke discussed sound with Wren and Holder, in a 

successful attempt to mimic, control and manipulate ‘pulse’ or ‚tunes by the stroke 

of a hammer‛,  he invented brass ratchet wheels, or ‚sound wheels‛, which could 

emit tones of various frequencies depending on the number of teeth and how fast 

they struck a metal plate.  A 1676 diary entry reads: ‚Directed Thompion about 

sound wheels‛.100  Today, this invention is known as Savart’s wheel, but over a 

century before Felix Savart (1791–1841), Hooke had showcased sound wheels, in 

between unveiling a telescope aperture and a helioscope, before the Royal Society in 

1681.101    
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Mr. Hooke shewed an experiment of making musical and other sounds by the 

help of teeth of brass wheels; which teeth were made of equal bigness for musical 

sounds, but of unequal for vocal sounds.102 

Kassler and Oldroyd attest that Hooke ‚devised brass wheels fixed to clockwork for 

an experiment on the frequency of vibration – an experiment devised to demonstrate 

the theory of Francis North‛103 who plotted pulses along an axis of time, showing 

frequencies and the rates at which they meet in consonance.  However, Hooke’s 

sound wheels preceded North’s pulse plots by about a year.104  As mentioned, the 

sound wheels worked by having a certain number of teeth per wheel, which could 

be spun at swift speeds to produce measurable periodic vibrations.  Played together, 

the wheels could produce consonants such as the perfect fifth.  In a biography about 

Francis North, authored by his brother Roger, Hooke’s wheels are praised: ‚The 

ingenious Mr. Hook, made an engine of wheels that made pulses in any musical pro-

portion, as 2, 3, 4, 5, or 6 to 1 and so 3 to 2 and the like‛.105   

As a simple explanation of how Hooke’s sound wheels work fundamentally, 

imagine a system of two gears.  The first gear, cranked by hand, has a big diameter 

and 360 ratchets or teeth; the second gear, connected by ratchets to the first, has a 

small diameter and 36 teeth; a 10:1 ratio.  With a 10:1 ratio, if the larger gear is turned 

by hand at 1 revolution per second, then the smaller gear in turn spins at 10 

revolutions per second (that is, ten times faster).  So, with this simple two-gear 

system, if Hooke had wanted to spin a sound wheel at a frequency of 360 pulses per 

second, he would have had to turn the larger wheel one time per second for the 

smaller wheel to sound 360 pulses as its ratchets strike a vibrating, sounding strip of 

metal.  Moreover, by adding wheels with different ratios of teeth to the end of a 

common axle, it would be possible to make consonances or chords by striking more 
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than one wheel’s ratchets simultaneously with a sounding metal strip.  For example, 

by adding a second wheel with 18 teeth, one would hear an octave (1/2); or, as Roger 

North testifies, with a second wheel Hooke could sound a perfect fifth.       

[Hooke] would begin to turne slow, and so long the pulses were distinct, and he 

could discern them, as smiths at anvill, without any other idea; but then coming to 

a might swiftness, the consonance called fifth (for instance), which is 3/2 [would 

sound].106 

According to Benjamin Wardhaugh’s interpretation, North describes how 

Hooke’s sound wheels ‚illustrated that a continuous sensation in general resulted 

from a series of separate events too frequent to be distinguished‛.107  Recall that 

Hooke rejects both the eye and the ear for this very reason, replacing the senses with 

countable pulses and musical ratios that the sound wheels embody.108  Thus, even 

when the distinct pulses blur into a continuous aggregate of sound, Hooke can use 

experiences and knowledge gained in the human-sized realm to scale up the ladder 

of consonances into the realm of insensible bodies and motions.  Late in life, he 

would explain that sense knowledge is ‚of the first and inferior Region, wherein we 

distinguish the parts of Time by Monades or Unites < not considering *moments+ 

singly, but together‛ – just as the sound wheels exhibit.  Yet this knowledge ‚brings 

us to another Region, where we find another prospect of Time, and Partitions thereof 

far differing from that of the first and inferior Region‛.109  Finally, this concept also 

works in reverse; that is, from a continuous aggregate of sound to distinct pulses, 

which means that all pulses – however swift – are calculable, so long as one has a 

sensible starting point.  But it was not enough for Hooke to exhibit only the motion 

part of his matter theory with sounding strings and wheels.  He needed to show that 

                                                 
106 From Roger North’s ‚The World‛, quoted in Wardhaugh, ‚Mathematics, Music and Experiment in 

Late Seventeenth-Century England‛, in Robson and Stedall, The Oxford Handbook of the History of 

Mathematics, 649.  Also see Floris H. Cohen, Quantifying Music (Dordrecht: D. Reidel Pub. Co., 1984), 

96–97, for an explanation of the ‘coincidence theory of consonance’.        
107 Wardhaugh, ‚Mathematics, Music and Experiment in Late Seventeenth-Century England‛, 649. 
108 Also see Gal, ‚Empiricism without the Senses: How the Instrument Replaced the Eye,‛ in Ofer Gal 

and Charles Wolfe (eds), The Body as Object and Instrument of Knowledge (Netherlands: Springer, 2010), 

121–48. 
109 Hooke, Lectures concerning Navigation and Astronomy, in Posthumous Works, 551. 
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isochronous vibrations can and do shape and change material structures in an 

orderly manner.  To do this, he relied once again on musical proportions.   

In July 1680, Hooke and Wren continued their studies on sound and musical 

proportions by considerably improving the ninth experiment in Francis Bacon’s 

Experiments in consort, touching Motion of bodies upon their pressure in a supportive 

move for Hooke’s matter theory.  ‚Take a glass,‛ Bacon instructs, ‚and put water 

into it, and wet your finger, and draw it round about the lip of the glass, pressing it 

somewhat hard; and after you have drawn it some few times about, it will make the 

water frisk and sprinkle up in a fine dew.‛  Although Bacon’s primary concern is to 

demonstrate ‚the force of compression in a solid body‛ owing to ‚an inward tumult 

in the parts thereof, seeking to deliver themselves from the compression‛,110 a little 

later on in the thirteenth experiment, he divulges that an effect of rubbing one’s wet 

finger over the rim of a glass is the production of sound by ‚subtile percussion of the 

minute parts‛.111  Today, this effect is attributed to the phenomenon of slip-stick 

friction.  In Hooke and Wren’s version, 

Mr. Hooke related, that he had observed, that the motion of the glass was 

vibrative perpendicular to the surface of the glass, and that the circular figure [of 

the water inside] changed into an oval one way, and the reciprocation presently 

changed it into an oval the other way; which he discovered by the motion of 

undulation of the rising water in the glass < in four places of the surface, in a 

square posture.112  

Not taking Hooke’s word for it, the experiment was ‚tried before the Society‛, and  

Wren coming in said, that the glass would vibrate much stronger, being struck on 

the edge with a violin-bow.  This was also tried, and then the square undulation 

was extremely plain.113 

It was shown ‚upon further trials‛ that the shape and number of undulations 

corresponds to a specific musical ratio:  
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But there was likewise discovered another undulation, by which the water was 

observed to rise in six places like a hexagon < also in eight places like an octagon.  

Each of these gave their particular and distinct sounds: the 4 and 8 were octaves, 

and the 6 and 4 were fifths. 114     

Notice that the octave and perfect fifth are the same harmonious proportions that 

Hooke favoured when demonstrating his sound wheels, thus forging a relation not 

only between sound and forms of matter, but also between insensible sounds and 

matter.  For if ‚the 4 and 8 were octaves‛, then it is reasonable for Hooke to assume 

that some multiple of four well beyond the limits of human hearing will also shape 

matter.  At another Society meeting, the experiment was repeated on a ‚large glass 

holding about three quarts, almost filled with water‛, and it was concluded by the 

number and shape of undulations formed inside the rim of the glass that ‚some were 

confounded and broad, which seemed to participate of two sounds‛,115 capable of 

more complicated and congruous formations and manipulations.  That the medium 

of choice was water would have only helped to corroborate Hooke’s claims on the 

congruity and incongruity of fluids during his capillarity trials.   

Hooke’s sounding strings, discussed previously, reveal again that he already 

had the epistemological notions in the Micrographia upon which his sound wheels 

are based, and that the motivating questions of his ‘observations’ revolved around 

vibrations.  One interesting instance of Hooke applying insensible pulses to a 

human-sized endeavour is Observ. XXXVIII Of the Structure and Motion of Wings of 

Flies.  In this observation, Hooke wants to find out the frequency of a fly’s beating 

wings in order to calculate their velocity, because he supposes that ‚by the sound, 

the wing seem’d to be mov’d forwards and backwards with an equal velocity‛, or 

isochronous motion.116  Listening to the hum a fly’s wing strokes, Hooke conjectures 

that 
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(from the sound *the fly+ affords, if it be compar’d with the vibration of a musical 

string, tun’d unison to it) it makes many hundreds, if not some thousands of 

vibrations in a second minute of time.117 

And comparing the sound to that of a bee’s, Hooke concludes that the bee’s wing-

strokes are swifter on account of their higher pitch: ‚if we may be allowed to ghes by 

the sound,‛ he says, ‚the wing of a Bee is yet more swift; for the tone is much more 

acute, and that, in all likelihood proceeds from the exceeding swift beating of the air 

by the small wing‛.118   

It may seem an obvious comparison – matching the tone of a fly’s vibrating 

wings with the sound made by an artificial instrument – ‚the vibration of a musical 

string, tun’d unison to it‛ in order to ‚ghes by the sound‛ and hence the number of 

pulses, but a candid conversation recorded by Pepys reveals scepticism on his part, 

and that Hooke’s blurring and conflation of the natural and artificial was not exactly 

a commonplace.  On 8 August 1666, having run into Hooke on the street, Pepys 

records Hooke’s claims ‚about the nature of sounds‛ and ‚how many strokes a fly 

makes with her wings‛:  

< and *Hooke+ did make me understand the nature of musicall sounds made by 

strings, might prettily; and told me that having come to a certain number of 

vibrations proper to make any tone, he is able to tell how many strokes a fly 

makes with her wings (those flies that hum in their flying) by the note it answers 

to in musique during their flying.119 

Yet Pepys ends his diary entry with the remark that Hooke’s relation between the 

humming of strings and the humming of a fly’s wings ‚is a little too much refined‛, 

even if his ‚discourse in general of sound was mighty fine‛.120  

 

SPRING 
Hooke’s strings analogies, far from being merely illustrative, demonstrate his 

dynamic matter theory.  His work on springy bodies and vibrations culminated into 
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a treatise on congruity and incongruity: Of Spring.  Here, Hooke translates pulses to 

powers, and uses the fundamental hypothesis from the Micrographia – again, all 

matter vibrates, all forces are the effects of congruous and incongruous vibrations121 

– to account for the sensible and insensible physical properties of matter.  Taking a 

leaf out of Descartes’s Principles of Philosophy, in preparation for his geometrical 

demonstration of the spring law (see Chapter 6, Mixt), Hooke replaces the 

qualitative and sensual descriptions favoured in the Micrographia with matter, 

motion, and proportion.122  Following this, Hooke’s definitions for congruity and 

incongruity, as well as his strings similitude, undergo the same reduction.  

Remembering his promise in the Attempt, over a decade before, to further explain 

‚what I thereby meant on some other occasion‛, Hooke states: ‚By Congruity and 

Incongruity then I understand nothing else but an agreement or disagreement of 

Bodys as to their Magnitudes and motions.‛123  Expounding each in turn, he 

specifies that  

Bodies then I suppose congruous whose particles have the same Magnitude, and 

the same degree of Velocity, or else an harmonical proportion of Magnitude, and 

harmonical degree of Velocity.  And those I suppose incongruous which have 

neither the same Magnitude, nor the same degree of Velocity, nor an harmonical 

proportion of Magnitude nor of Velocity.124 

To explain, Hooke relies again on his strings similitude, presented as a thought 

experiment that can nevertheless be replicated empirically.  In a separate though 

interrelated move, he abandons the drum-and-sand experiment from the 

Micrographia – which was designed to demonstrate, first, how solids become fluids 

and, second, incongruity – and instead focuses his audience’s attention onto a single 

springing particle.  In this new particle analogy, Hooke instructs the reader to 

imagine a plate of iron with dimensions of 1 foot squared.  When this plate is 

knocked into a ‚Vibrative motion forwards and backwards the flat ways‛, it 
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occupies a volume of 1 cubic foot of what Hooke calls a ‚sensible body‛, which he 

defines as ‚a determinate Space or Extension defended from being penetrated by 

another, by a power from within‛.125  This notion of defence ‘from being 

penetrated‛ is taken directly from Hooke’s observations of drops and surface 

tension;126 however, instead of ‘heat’, as in the drum-and-sand experiment, 

incongruous vibrations now account for the physical aspects of incongruous fluids.  

Thus ‚a determinate Space or Extension‛ results from vibrations; and no two 

vibrating particles can occupy the same space at the same time.  That objects appear 

motionless to the human eye is merely an effect caused by the inability of the sense 

organ to detect vibrations outside a narrow band of frequencies – for recall Hooke’s 

remark that it is possible to observe the vibrations in a slack string, but not in a taut 

one. 

Suppose a number of musical strings, as A B C D E, &c. tuned to certain tones, and 

a like number of other strings a,b,c,d,e, &c. tuned to the same sounds respectively, 

A shall be receptive of the motion of a, but not of that of b, c, nor d; in like manner 

B shall be receptive of the motion of b < And so of the rest.127 

In other words, Hooke’s model of the universe operates on the principle of a 

dynamic balance of consonance and dissonance in sympathetic resonance; not only 

harmony, but a constant collaboration of opposing forces to maintain equilibrium 

within ‘normal’ range.   Finally, more than a decade after having first introduced the 

terms, Hooke proclaims: ‚This is that which I call Congruity and Incongruity.‛128 

Continuing the analogical relation between strings and other springy bodies, 

Hooke repeats his notions on congruous particles from the Micrographia, here 

reduced to matter, motion and proportion.   

Now as we find that musical strings will be moved by Unisons or Eighths 

[octaves], and other harmonious chords, though not in the same degree; so do I 

suppose that the particles of matter will be moved principally by such motions as 
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126 Hooke, Micrographia, 12. 
127 Hooke, Of Spring, 8. 
128 Hooke, Of Spring, 8. 
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are Unisons, as I may call them, or of equal Velocity with their motions, and by 

other harmonious motions in a less degree.129 

Some scholars have suggested that Hooke’s ‘congruity and incongruity’ is 

synonymous with the principle of sympathy and antipathy, and therefore a 

thoroughly anti-Cartesian move not only because of Descartes’s dismissal of 

invisible correspondences and powers between things, but also on account of the 

principle’s component of action at a distance.130  But this interpretation of congruity 

and incongruity ignores an important moment of historical change: how natural 

philosophers like Hooke used Descartes as an intellectual resource in different ways, 

accepting the challenge to explain sympathy and antipathy with a mechanistic (and 

in Hooke’s case also mechanical) account that complemented their own notions on 

matter and motion.131  Descartes argues in Part IV of his Principles that one can 

provide a causal account of sympathy and antipathy – for example, the ‚various 

attractions‛, ‚such as are in amber and in the magnet‛ – ‚from the figure, 

magnitude, situation, and motion of particles of matter‛.132  As I attempt to show 

throughout, this is what Hooke does, albeit with his own version of the mechanical 

philosophy. 

Although Hooke uses ‘sympathy’ and ‘antipathy’ in conjunction with 

‘congruity’ and ‘incongruity’ once in the Micrographia, it is not to tie his terms to an 

Aristotelian concept rejected by the mechanical philosophy, but rather to redefine 

what sympathy and antipathy are according to his new theory of elastic matter-in-

vibration.  Thus, only after explaining ‚Congruity and Incongruity‛ with his first 

                                                 
129 Hooke, Of Spring, 9. 
130 Recently, in the introduction to Sympathy, Eric Schliesser remarked that although Descartes 

dismissed sympathy and antipathy as occult, and although these notions were not part of mainstream 

Cartesian natural philosophy, Hooke and a handful of other early moderns did not reject action at a 

distance (Eric Schliesser, ‚Introduction: On Sympathy‛, 4–5, 13 – in Schliesser, Eric (ed.), Sympathy: A 

History (Oxford: OUP, 2015).  See also Henry, "Robert Hooke, the Incongruous Mechanist," in Michael 

Hunter and Simon Schaffer (eds), Robert Hooke: New Studies (Woodbridge, England: Boydell Press, 

1989), for an alternative interpretation which paints Hooke as a magician.    
131 See also Domenico Bertoloni Meli, Thinking with Objects (Baltimore: Johns Hopkins University Press, 

2009) for the various ways that early modern savants used Descartes as a resource in general.   
132 Descartes, Principles of Philosophy, IV.187. 
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stretched strings similitude does Hooke allow himself to claim, ‚We see therefore 

what is the reason of the sympathy or uniting of some bodies together, and of the 

antipathy or flight of others from each other‛.133  As Domenico Bertoloni Meli 

explained in Thinking with Objects, Hooke’s congruity and incongruity reframes the 

occult notion of action at a distance in ‚mechanical terms by means of analogies with 

simple objects such as springs and strings.‛134  Nevertheless, Hooke criticises 

weaknesses in Descartes’s work, such as his non-experimental hypothesis about 

whether a spark from a fire striker is made from a bit of the flint or steel, his account 

of colours from refraction, and the infamous conatus ad motum, which Hooke argues 

is ‚not so properly a motion, as an action or propension to motion‛.135  Almost two 

decades later, in one of his Lectures of Light, Hooke reveals that he is still bothered by 

conatus: a ‚bare Propension to Motion, is not Motion,‛ he reiterates, ‚and 

consequently cannot propagate Motion < for the Propagation of Motion, Motion is 

necessary.‛136  He goes so far as to accuse Descartes (and Thomas Hobbes) of 

incoherence:  

we may assign to every Propagation of Light through the least sensible space, a 

real temporary local Motion.  And if Mons. Des Cartes by his Propension to 

Motion, and Mr. Hobbs by his Conatus or Endeavour to Motion, do not mean < a 

real local Motion, their Notions are neither of them intelligible to others, nor did 

they really understand them themselves.137   

Hooke attempts to counter Descartes’s conatus by constructing ‚four Considerations‛ 

to convince his audience that ‚we may assign to every Propagation of Light through 

the least sensible Space, a real temporary local Motion".138  That is, as rephrased 

                                                 
133 Hooke, Micrographia, 16.  Italics added. 
134 Domenico Bertoloni Meli, Thinking with Objects, 245. 
135 Hooke, Micrographia, 46, 54, 60.  For an explanation of conatus or striving employed by Descartes in 

his famous and problematic stone-and-sling argument from analogy, see Descartes, Principles of 

Philosophy, III.57. 
136 Hooke, Lectures of Light, in: Posthumous Works, 136.  Hooke was not the only English natural 

philosopher to find Descartes’s conatus ad motum problematic.  For example, Roger North also rejects 

Descartes’s theory of the propagation of light, which he finds ‚not apt‛ because of Descartes’s use of 

conatus as an explanatory device – in Jamie Croy Kassler, Seeking Truth (London: Routledge, 2016), 93–

94.  
137 Hooke, Lectures of Light, in Posthumous Works, 136. 
138 Hooke, Lectures of Light, in Posthumous Works, 136. 
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succinctly by his biographer Waller, ‚Every sensible Moment of Time, as well as 

every Sensible Particle of Matter, [is] composed of infinite lesser‛.139  To summarise, 

Hooke’s four considerations are that 1) insensible points, separated by 2) insensible 

spaces, allow for 3) insensible motions or impulses to traverse these spaces in 3) 

insensible time with 4) insensible velocities.140  Here Hooke’s tools of similitude and 

proportionality prove pivotal for his argument on insensible motions, because 

if therefore I can understand, comprehend, and imagine one Local Motion that 

falls under the reach of my Senses, I can by Similitude comprehend and 

understand another that is ten thousand Degrees below the reach of them, they 

having both the same Properties, and differing only in the Spaces of the times.141 

These considerations were already crucial for Hooke when he demonstrated the 

spring law geometrically as well as with sensible similitudes – various mechanical 

springs – six years before.  Yet the most striking difference between Hooke and 

Descartes is the former’s paramount claim that matter and motion ‚may be one and 

the same‛, because it means that matter and power or force are inseparable, 

complementing Hooke’s theory that there is not a single body in the universe whose 

particles are at rest.142   

‚By Motion,‛ Hooke states in Of Spring, ‚I understand nothing but a power or 

tendency progressive of Body according to several 

degrees of Velocity‛.143  And this power is related 

to the amount of matter making up a body, ‚for a 

little body with great motion is equivalent to a 

great body with little motion as to all its sensible 

effects in Nature.‛  Because of this inverse 

                                                 
139 Hooke, Lectures of Light, in Posthumous Works, 129. 
140 Hooke, Lectures of Light, in Posthumous Works, 134–136. 
141 Hooke, Lectures of Light, in Posthumous Works, 131. 
142 Hooke, Of Spring, 7; Hooke, Micrographia, 16.  One clear example where Hooke and Descartes differ 

dramatically, in this respect, is in their explanations of what a solid is.  In the Principles, Descartes 

states that the particles of solids are ‚all contiguous and at rest‛ because ‚no other mode can be more 

opposed to the movement which would separate these particles other than is their own rest‛ (II.54, 

II.55).  
143 Hooke, Of Spring, 6. 

Figure  2.1  Hooke’s demonstration of 
an idealised springy body of 8 vibrating 
particles, captured in moments of 
equilibrium, compression and extension 
(Of Spring). 
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relation, matter and motion ‚do always counterbalance each other in all effects, 

appearances and operations of Nature, and therefore,‛ Hooke concludes, ‚it is not 

impossible that they may be one and the same‛.144  In his Lectures of Light again a 

few years later, he would summarise this compounding of matter and motion with 

the observation that ‚neither can Matter without Motion, nor Motion without 

Matter, produce any Effect‛.145  As Gal and Chen-Morris elucidated in Baroque 

Science, for Hooke this means ‚that order is created, rather than demolished, by 

motion‛.146   

For example, in Of Spring Hooke captures changes in internal motions when an 

idealised springy body made of eight particles, which represents ‚solid bodies, as 

Steel, Glass, Wood etc., which have a Spring both inwards and outwards‛, is 

compressed and dilated from equilibrium (Figure 2.1; see also Chapter 6, Sections, for 

an analysis of the practical geometry in the figure).147  The particles in the springy 

body at equilibrium ‚perform a million single Vibrations, and consequently of 

occursions with each other in a second minute of time‛; the particles in the stretched 

body perform at a slower 666,666 vibrations per second relative to its natural 

frequency at equilibrium; and the particles in the compressed body perform at a 

faster 1,500,000 vibrations per second.  Relying on the congruity of ordered musical 

harmonies again, Hooke deliberately makes the frequency ratios a perfect fifth in 

each direction. The progression E, B and F# of these insensible vibrations, with B as 

the tonic or springy body at equilibrium, is pulled from the Pythagorean circle of 

fifths, and Hooke uses it to scale up the ladder of perfect fifths into regions of sound 

beyond the range of the human auditory spectrum.148   

That Hooke extended this enforced order into the insensible realm is 

paradoxical because to ‘hear’ consonance and dissonance it became necessary for 

                                                 
144 Hooke, Of Spring, 7. 
145 Hooke, Lectures of Light, in Posthumous Works, 172.   
146 Gal and Chen-Morris, Baroque Science, 156. 
147 Hooke, Of Spring, 13. 
148 Hooke, Of Spring, 13.  Erich Neuwirth, Musical Temperaments (Wien: Springer, 1997).   
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him to replace the senses with strings and sound wheels and proportion, turning his 

back on the ear altogether by reducing tones to pulses that could be ideally counted, 

halved, doubled, compared and so on for the development of his metaphysics of 

vibration.149  He remained committed to developing this metaphysics throughout 

his career.  Hooke’s string similitudes, during the long duration of time from the 

Micrographia onwards, remained a reliable constant, a material model capable of 

accounting for all the fundamental properties of matter, such as solidity and fluidity, 

around which Hooke could build his theory.    

 

3. VIBRATIONS 

In Of Spring, although Hooke claims to have already ‚hinted the principle‛ of 

‘congruity and incongruity’ in the Attempt, specifically ‚in the 31 page thereof in the 

English Edition‛, he is exaggerating.150  Hooke’s excuse for failing to elaborate on 

his vibrating matter theory in 1661 is that he was loath to disclose it due to anxiety 

over attempting to procure a patent for his watch balance spring.151  Page 31 consists 

of typical Hooke ‚hints‛, which are often hypotheses that he promises to test in 

detail in future; and indeed, most hints in the Attempt become the Micrographia’s 

observations.  Nevertheless, comparing a couple of Hooke’s hints, specifically the 

fourth and fifth, with a letter penned by him the following year on his initial concept 

of springy particles reveals that he did have some notion of congruous and 

incongruous pulsations or ‚strokes‛ in mind – although he had not yet conducted 

trials on the sounds and vibrations of giant monochords.  By examining the 

evolution of Hooke’s springy particles, as well as his concept of the aether (different 

from Descartes’s) through which vibrations propagate, I will show how his ontology 

                                                 
149 Gal and Chen-Morris, in Part I of Baroque Science, analyse a similar move in early modern optics, 

which they call ‘the optical paradox’: namely, a rejection of the observer, and empirical science 

turning its back on sense knowledge, in preference for manmade artificial instruments, and thus 

instrument-mediated empiricism and knowledge.      
150 Hooke, Of Spring, 6; Hooke, Attempt, 31.   
151 Hooke, Of Spring, 6. 
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was contingent upon his experimental practices, and as a consequence, how his 

understanding of bodies and motion altered accordingly.    

 

PARTICLE 
In the fourth hint of the Attempt, Hooke wants to know whether sparks ‚struck 

out of a flint‛ are bits of molten flint, steel, or a compounding of both.  Examining 

the cooled ‚parcels‛ of spark residue microscopically, he notes the globularity of the 

bodies, and although he ‚cannot here stay to examine the particular Reasons of it‛, 

he imagines that the flint-and-steel residue is first ‚made so glowing hot, ‘tis melted 

into a Vitrium‛ ‚by the violence of the stroke‛.  Recall from the previous section that 

Hooke uses ‘stroke’ and ‘pulse’ synonymously.  The spark is then ‚driven into a 

round Globul‛ by ‚the ambient Air‛ with which it is incongruous.152  This 

hypothesis resembles Hooke’s Micrographia explanation for a water droplet’s 

globularity, for recall also that a drop of water assumes its shape when a congruous 

body is ‚forc’t into as little space as it can possibly be contained in, namely, into a 

Round Globule‛, against the surrounding incongruous fluid.153  Moreover, Hooke 

deliberately connects ‚the violence of the stroke‛ to his fifth hint in the Attempt:  ‚A 

Fifth thing which I thought worth Examination was, Whether the motion of all kind 

of Springs might not be reduc’d to the Principle whereby the included 

heterogeneous fluid seems to be moved‛, which I will discuss later in the section on 

aether.154  Important here is that Hooke has a springing motion in mind as early as 

1661 – not only for artificial, mechanical springs, but all springy bodies in general.             

In ‚Hooke’s Vibration Theory and the Isochrony of Springs‛, Mary Hesse 

disclosed Boyle’s adoption of Hooke’s particle hypothesis by shedding light on a 

paper trail between Christiaan Huygens, Robert Moray, Boyle and Hooke in July 

1662.  To summarise the convoluted correspondence, after reading Boyle’s Defence of 
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the Doctrine Touching the Spring and Weight of Air, Huygens attacked Boyle’s 

description of air, Boyle admitted that it was Hooke’s hypothesis, and then Huygens 

read Hooke’s ‚more copious explanation‛ via Boyle and retreated satisfied.155  An 

examination of body and motion in Hooke’s letter shows how his theory of matter-

as-vibrations was contingent upon his experimental interests and practices, as well 

as how his notions on vibrations changed with his monochord trials and musical 

strings, which gave him the practical and theoretical tools he needed to provide a 

causal account for congruity and incongruity in the Micrographia. 

According to Hooke’s reply to Huygens, the ‚difficulty lyes‛ in his ‚first 

hypothesis < being Epicurean‛, wherein he supposes ‚an internall motion in the 

particles of bodyes < which therefore though *the motion+ may be retarded by the 

occursion *strokes+ of other bodys < yet those impediments are noe sooner 

remo*v+’d, then the freed particles begin again their natural and congenite *innate+ 

motion‛.156  Hooke further supposes that the motion is ‚circular‛, because of ‚the 

parts *themselves+ being suppos’d much of the shape of a watch-spring, or coyle of 

wire‛.  Providing an illustrative analogy for his particles, Hooke further explains 

that because they possess a circular motion ‚like that of ye meridian of a Globe upon 

it’s poles‛ they ‚thereby become potentiall sphaeres or globules < that is, they 

defend a sphaericall space from being entred into by any other of the like globules, 

[u]nless they be thrust on with a sufficient strength‛ – namely, unless they are 

bent.157   

In contrast, three years later in the Micrographia, having conducted countless 

                                                 
155 Hesse, ‚Hooke’s Vibration Theory and the Isochrony of Springs‛, ISIS 57, no. 4, 1966: 433. doi: 

10.1086/350160;  Huygens, Oeuvres Completes De Christiaan Huygens Correspondence, Vol. IV, 1662–1663.   
156 Huygens, Oeuvres Completes De Christiaan Huygens Correspondence, Vol. IV, 1662–1663, 221.  Hooke 
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notion of an indivisible physical parcel, such as those famously poeticised by Lucretius in his De 

Rerum Natura, to a definition favoured, for example, by early modern chymists such as Daniel Sennert 

who, according to William R. Newman, did not define atoms as indivisible (see William R. Newman, 

Atoms and Alchemy: Chymistry and the Experimental Origins in the Scientific Revolution,  Chicago, 

London: UCP, 2006, xi–xii).  
157 Huygens, Oeuvres Completes De Christiaan Huygens Correspondence, Vol. IV, 1662–1663, 221.  
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and various trials as Curator of Experiments, Hooke would be in a position to 

compare motions other than those of watch springs, and to change his mind about 

the motion of particles being ‚circular‛.158  Instead, having experimented upon a 

variety of motions such as ‚turbinated‛ and ‚any other irregular motion of the parts‛, 

Hooke eliminates them all as ‚improbable‛ because of their irregularity.  ‚It must 

therefore be a Vibrating motion,‛ he concludes, because if particles are globular, then 

a vibrating motion is the only one that accounts for all observable effects.159  

Moreover, this indicates that a particle no longer spins to create the volume of its 

sensible body, but rather that it vibrates in and out periodically like the plate of iron 

becoming a sensible cube of iron in Of Spring.  Indeed, some years after, in a lecture 

Of Comets and Gravity, Hooke solidifies his notion of vibrating bodies, reformulating 

the definition ‚Globular Motion‛, for recall he supposes that the earth has such a 

motion, ‚whereby all the Parts thereof have a Vibration towards and fromwards the Center, 

or of Expansion and Contraction.‛160   

Yet in the Micrographia, even if globular bodies have an ‚orbicular pulse‛ like 

light from a point source, or round pond ripples, Hooke remains reluctant to 

abandon the image of a globular air particle ‚resemble*ing+ a round Spring‛ when 

describing how it contracts into a capillary tube with a diameter less than its own, 

for ‚as in a round Spring there is required an additional pressure against two opposite 

sides‛, ‚an extraordinary and adventitious force‛.161  He resurrects the old analogy not 

for the sake of justification, but provisionally, because it has simplicity, is easier to 

imagine and thus has greater explanatory power.      

The above illustrates that Hooke’s employment of various experiments and 

observations for the development of his matter theory underscores the contingency 

of the relation between practice and theory, and highlights just how blurred the 

boundary is between the two in his work.  Nonetheless, amongst Hooke’s revisions 
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and developments, his notion of particles as globular bodies that powerful enough 

external forces can squeeze into spheroids and ovoids remains constant.  For 

example, in the Micrographia, Hooke insists that particles can be nothing but globular 

(‚neither can it be imagined, how it should otherwise be any other Figure then 

Globular‛) because whether parts or bodies, whether drops or planets, their 

incongruity with the surrounding aether accounts for their sphericity.162  He 

remains committed to developing this physical principle of globularity for the rest of 

his career.163   

Having explained why particles assume a globular form, and how it is that 

they are bent into ovals by ‚additional pressure‛, Hooke next has to account for how 

congruous and similar particles join to form the variety of sensible objects in the 

world.  For this, he relies on pores and the aether, because the aether ‚passes 

between the Particles, that is, through the Pores of bodies‛.164  Namely, all bodies, 

no matter how close-packed their globular particles, are ‚perforated with 

innumerable pores, which are nothing else but the interstitia between those 

multitudes of minute globular particles‛.165  In the Micrographia, Hooke uses his 

experiments on capillary action as well as congruous and incongruous fluids to 

explain changes to a body’s superficies.  Using a wine glass to represent an enlarged 

pore, or an enlarged capillary tube, he pours water into it, and observes that ‚the 

surface of the water‛ is ‚all the way concave, till it rise even with the top, when you 

shall find it (if you gently and carefully pour in more) to grow very protuberant and 

convex‛.166  Hooke argues with the support of his numerous fluid experiments that 

the meniscus inverts because of incongruity:  once the water passes the rim of the 

glass vessel, which it is congruous with relative to the air, the water inverts against 

the air, which it is incongruous with.  Hooke claims that the flattened shape of the 

                                                 
162 Hooke, Micrographia, 19. 
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inverted meniscus is a result of varying proportions of congruity and incongruity.167  

Because the wine-glass is an enlarged capillary tube, one can infer that at the 

microscopic level it is possible to reduce any superficies into a series of concave and 

convex curves.  Now, since the aether pervades all bodies on account of their pores, 

these changes occur not only on outside surfaces, but inside bodies as well; thus, this 

dynamic physical process accounts for the variety of bodies in the world.   

In Of Spring, Hooke reiterates that the aether ‚incompasseth and pervades all 

other bodies‛; that there are perforations even in solid bodies these ‚perforations‛, 

‚which are not defended by the motion of the particles from being pervaded by the 

Heterogeneous fluid menstruum‛; and that these spaces ‚we call the insensible 

pores of bodies‛.168  If the aether could only surround and not pervade other bodies, 

then all bodies would be globular like drops; if the aether could pervade all other 

bodies enough to make their congruous particles separate, then all things would be 

fluid.169  Thus, Hooke explains again that bodies and their particles have ‚peculiar 

and appropriate motions which are kept together by the differing or dissonant 

Vibrations of the ambient bodies or fluid *aether+‛.170  Moreover, ‚*a+ccording to the 

difference of these Vibrative motions < *a+ll bodies are more or less powerful in 

preserving their peculiar shapes.‛171  Finally, the ‚smaller the particles of bodies are, 

the nearer do they approach to the nature of the general fluid [aether], and the more 

easily do they mix and participate of its motion‛.172  In other words, the smaller a 

particle, the closer it is to a particle of aether.  

 

AETHER 

                                                 
167 Hooke, Micrographia, 18–19. 
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Cindy Hodoba Eric 48 

 

 

A Fifth thing which I thought worth Examination was, Whether the motion of all 

kind of Springs might not be reduc’d to the Principle whereby the included 

heterogeneous fluid seems to be moved.173 

Recall that the above citation is from the Attempt.  By ‚included heterogeneous 

fluid‛, Hooke means the aether mixed with other fluids like air, through which all 

unison and harmonious – that is, congruous – vibrations are propagated.  The 

particles of the aether itself, Hooke claims as early as the Attempt, are responsible for 

incongruity, elaborating in the Micrographia that the cause is dissonant or 

incongruous vibrations.  In Observ. XV., concerned again with the ‚porousness‛ of 

bodies just as he was in his capillarity studies, Hooke lays down a series of axiomatic 

statements about all properties of the aether save for its particles.  He refuses to 

‘examine’ the aether’s particles in the Micrographia, instead giving the excuse that 

what he is willing to hypothesise on is ‚sufficient to solve all the Phaenomena‛.174 

Nor do I much concern my self, to determine what the Figure of the particles of 

this exceedingly subtile fluid medium must be, nor whether it have any 

interstitiated pores or vacuities, it being sufficient to solve all the Phaenomena to 

suppose it an exceedingly fluid, or the most fluid body in the world, and as yet 

impossible to determine the other difficulties.175  

Focusing on the aether’s fluidity and the motions it propagates instead, 

‚*propounding his+ conjectures and Hypothesis about the medium and conveyance 

of light‛ Hooke supposes that 

the greatest part of the Interstitia of the world, that lies between the bodies of the 

Sun and Starrs, and the Planets, and the Earth, to be an exceeding fluid body, very 

apt and ready to be mov’d, and to communicate the motion of any one part to any 

other part.176      

Because the aether is ‚so exceeding fluid a body,‛ Hooke reiterates, ‚it easily gives 

passage to all other bodies to move to and fro in it.‛  ‘To and fro’ is meant to convey 

a rocking, rhythmic, periodic motion.  Next, contrary to Descartes, he states that no 

motions pulsating through the aether are instantaneous, even if the motion 

propagated is ‚with an unimaginable celerity and vigour‛, because the aether 
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neither receives nor communicates ‚any impulse, or motion in a direct line, that is 

not of a determinate quickness‛.177  But where the aether becomes heterogeneous on 

account of mixing with other bodies, such as air in the earth’s atmosphere, Hooke 

falls back on his studies of miscible and immiscible fluids for an apt similitude to 

explain the observable effects on light.178  The air is ‚much like those < very deep 

tinging bodies, where by a very small parcel of matter is able to tinge and diffuse it 

self over a very great quantity of the fluid dissolvent‛ aether.179  Applying his newly 

minted chymical similitude to explain the observable effects on a ‚propagated pulse 

of light‛ in the atmosphere, Hooke explains that these ‚solutions and tinctures‛ alter 

the ‚aptness to propagate a motion or impulse through them *like+ the particles of 

the Air, Water, and other fluid bodies < which are commixt with this bulk of the 

Aether‛.180  Yet Hooke grapples with the aether, employing both the notion of it as 

an infinitely divisible vibrating menstruum and as indivisible particles vibrating in a 

vacuum, because he needs to carry both positions.  On account of his aetheral 

problems, he refuses to elaborate on the aether’s particles until Of Spring.   

In Of Spring, after reiterating his definitions for congruity and incongruity, 

Hooke follows with the aether: ‚I do further suppose, A subtil matter that 

incompasseth and pervades all other bodies, which is the Menstruum in which they 

swim < and which is the medium that conveys all Homogenious or Harmonical 

motions from body to body‛.  Next, he is finally ready to introduce ‚the ambient 

bodies‛ of this ‚subtil matter‛ to explain that their vibrations are incongruous with 

the vibrations of other bodies, which is how congruous and harmonious bodies are 

‚kept together‛: 

All bulky and sensible bodies whatsoever I suppose to be made up or composed 

of such particles which have their peculiar and appropriate motions which are 

                                                 
177 Hooke, Micrographia, 96. 
178 Two decades later, in a lecture on a similar topic concerning light and the aether, read in 1685, Hooke 

also resorts to describing the aether as ‚stagnant‛ – although this position deviates from the 

descriptions and explanations that he usually favours (Hooke, Of Light, in Posthumous Works, 197).  
179 Hooke, Micrographia, 96–97. 
180 Hooke, Micrographia, 97. 
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kept together by the differing or dissonant Vibrations of the ambient bodies or 

fluid.181  

Further, ‚all such particles of matter as are of a like nature < strengthen the 

common Vibrations of them all against the differing Vibrations of the ambient 

bodies‛.182  Note that, except for his singling out of the ‚ambient bodies‛, Hooke has 

been repeating this line under one guise or another since at least 1661.  But then he 

makes a new move, informing the reader about the size of the aether’s particles 

relative to all others.  Recall from the previous section that ‚the smaller the particles 

of [other] bodies are, the nearer do they approach the nature of the general fluid 

*aether+‛; the ‚Air then is a body consisting of particles so small as to be almost 

equal to the particles of the *aether+‛.183  Finally, Hooke explains how a body’s size 

affects its vibrational frequency: ‚According to the bigness of the bodies *in general+ 

the motions are, but in reciprocal proportion: that is, the bigger or more powerful the 

body is, the slower is its motion with which it compounds the particles‛.184  If the 

aether’s particles are the smallest, then their vibrations are also the swiftest, and 

since these particles ‚pervade‛ other bodies, it makes sense that they should be the 

smallest.  This inverse relationship also translates across to the fluidity and solidity 

of bodies, for the more incongruous a body’s vibrations are with the aether’s, the 

more solid it is. 185  Moreover, Hooke explains the latter inverse relation by relying 

on the pressure law or ‘Boyle’s law’ again, this time to account for the inverse 

proportion between congruent or harmonious and incongruous vibrations:   

The parts of all springy bodies would recede and fly from each other were they 

not kept together by the Heterogeneous compressing motions of the ambient 

whether fluid or solid.186  

Yet this ‚compressing motion‛ is not new, for recall also that Hooke explained the 

globularity of bodies such as drops and planets in the Micrographia by stating that a 

                                                 
181 Hooke, Of Spring, 9. 
182 Hooke, Of Spring, 9. 
183 Hooke, Of Spring, 10, 15. 
184 Hooke, Of Spring, 10. 
185 Hooke, Of Spring, 10, 12. 
186 Hooke, Of Spring, 13. 
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‚Round Globule‛ is the result of a body that is incongruous with the surrounding 

aether being ‚forc’t into as little space as it can possibly be contained in‛ by it.187  

What is new in Of Spring is the relation between a body’s internal vibrations vs. its 

relation with the incongruous vibrations of the aether and how these shifts in the 

frame of reference incorporate both the pressure law (Boyle’s law) and the spring 

law (Hooke’s law).   

In Meanest Foundations and Nobler Superstructures, Ofer Gal explains the 

difference between solids and the spring law vs. fluids and the pressure law in 

Hooke’s natural philosophy.  Solids have a fundamental state because their particles 

touch, so it follows that they can be compressed or dilated beyond this state of 

equilibrium.188  Since the fundamental state is created by the congruous or 

harmonious vibrations of a body’s particles, ‚which is a strictly internal property‛, 

although solids are better able to resist displacement, their compression or extension 

from equilibrium ‚not only disrupts the balance of internal and external vibrations, 

but also the internal harmony of the natural state‛.  This tension created by distance 

removed from equilibrium follows Hooke’s law.189  The particles of fluids, on the 

other hand, are under constant tension like a balloon underwater, owing to the 

surrounding pressure of the pervading menstruum, and this tension between a 

fluid’s congruous vibrations and the aether’s incongruous vibrations works 

according to Boyle’s law.190  Thus, a fluid’s spring is predicated on total volume, 

while the spring of a solid is predicated on how far it is compressed or dilated from 

its fundamental state.191  To summarise, the aether is responsible for incongruous 

vibrations, for the solidity and fluidity of bodies, and consists of the smallest and 

most agile particles. 

Moreover, because the aether is fluid, and can mix with the air in the earth’s 

                                                 
187 Hooke, Micrographia, 12. 
188 Gal, Meanest Foundations and Nobler Superstructures, 94–95.   
189 Gal, Meanest Foundations and Nobler Superstructures, 94–95.   
190 Gal, Meanest Foundations and Nobler Superstructures, 94–95.   
191 Gal, Meanest Foundations and Nobler Superstructures, 95; Hooke, Of Spring, 4. Quoted in Gal, Meanest 

Foundations and Nobler Superstructures, 95. 
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atmosphere, Hooke is quick to argue that it allows for ‘action at a distance’. 192    

Fluid bodies do not immediately touch each other, but permit the mixture of the 

other Heterogeneous fluid near the Earth, which serves to communicate the 

motion from particle to particle without the immediate contact of the Vibrations of 

the Particles.193  

 After Of Spring, he would also read this notion back into his earlier work with Wren 

by reminding his audience about their trials on the effects of vibrations on water in a 

glass vessel: ‚for the Water it self,‛ says Hooke, ‚by means of a vibrative Motion in 

the Parts of the Glass, acquired a Motion towards the vibrating Parts.‛  ‚Nor is this 

way of working at a distance, by means of the internal Motion of the Particles of the 

Body; so strange a thing in Nature,‛ Hooke adds.194  Recall from his use of bells to 

explain sympathetic resonance that he uses the vibratory phenomena of light and 

sound propagated by ‚the ambient Medium‛ as examples of action at a distance.  

Both light and sound stimulate the sense of sight and hearing respectively by 

causing some part of the organ to vibrate by a ‚Motion made in the Sun‛ or a ‚Bell 

some Miles perhaps distant‛.195 

But does all this imply that the aether’s density is more ‘menstruum’ or void?  

It seems that Hooke is leaning on a plenum crutch, but a few years later in Section VI 

of his Lectures of Light, he forces a compromise between two notions on the aether 

when he provides an argument for its fluidity.  First, Hooke argues that if vibrations 

‚move the whole Expansum of the Ethereal Matter‛, then this ‚make*s+ and 

preserve[s] the perfect Fluidity of the Aether‛.  Moreover, the aether must necessarily 

consist of the smallest, swiftest particles because every point of matter vibrates in 

every direction like light spreading from a point source ‚with incredible Velocity < 

to and fro‛.  Thus, the aether ‚must necessarily have its Parts indefinitely divided, 

                                                 
192 For an alternative interpretation, see Gouk, ‚The Role of Acoustics and Music Theory in the Scientific 

Work of Robert Hooke‛, 585, in Annals of Science 37, no. 5 (1980): 573–605.  Gouk appears more 

concerned with Hooke’s resources rather than how he applied them as intellectual tools.  Further, 

Gouk claims that a ‚reason for *Hooke+ adopting his own concept of the ether was his belief in the 

existence of a vacuum‛, but this is a conflation of reason and conclusion.       
193 Hooke, Of Spring, 12. 
194 Hooke, Of Comets and Gravity, in Posthumous Works, 183–184. 
195 Hooke, Of Comets and Gravity, in Posthumous Works, 184. 
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and loose from one another‛; that is, fluid.196  Notice that Hooke has switched from 

the ‚Epicurean‛ atoms that he favoured in the early 1660s to ‚indefinitely divided‛ 

parts – a consequence of his reformulation of the definition of ‘point’ as a solid body 

in his practical geometry (see Part II).  The compromise comes in Hooke’s 

conclusion.  Instead of a vibrating plenum or ‘menstruum’, his ‘indefinitely divisible 

parts’ are so small and rarefied that they are very nearly a vacuum or ‚almost 

nothing‛:   

and consequently being thus fluid < and these Motions being proportionably 

swifter than the swiftest Motion of the more bulky Mass:  It follows, I say, that the 

Impediment to any bulky Bodies moving through it, must be inconsiderable, or 

almost nothing.197 

The above is what Hooke calls a vacuum, just as what remains in the evacuated 

receiver of the air-pump is what Boyle defines as a vacuum.198  But although Hooke 

remains committed to this construct of the aether hereafter, it suffers from the same 

inconsistency that led him, twelve years earlier, to discard one of two possible causes 

for why the planets move around in curved trajectories.  In a 23 May 1666 Address to 

the Royal Society, Hooke presented a paper on orbits as effects.  A ‚paper < 

concerning the inflection of a direct motion into a curve by a supervening attractive 

principle‛; an ‚introduction to an experiment to shew, that circular motion is 

compounded of an endeavour by a direct motion by the tangent, and of another 

endeavour tending to the center‛.199   

Hooke provides two possible causes for ‚inflection‛.200  But the first, which 

                                                 
196 Hooke, Lectures of Light, in Posthumous Works, 136. 
197 Hooke, Lectures of Light, in Posthumous Works, 136. 
198 For Boyle’s vacuum, see Steven Shapin and Simon Schaffer, Leviathan and the Air-Pump. 
199 Birch, The History of the Royal Society of London, Vol. I, 90, 92; Gunther, Early Science in Oxford, Vol. 6, 

265, 267. 
200 Birch, The History of the Royal Society of London, Vol. I, 90, 92; Gunther, Early Science in Oxford, Vol. 6, 

265, 267.  For a meticulous analysis of how Hooke modifies and employs ‚inflection‛ from the 

Micrographia’s studies of multiple atmospheric refractions of light to the curved and compounded 

trajectories of orbits, see Gal, Meanest Foundations and Nobler Superstructures.  Other scholars, such as 

F.F. Centore in Hooke’s Contribution to Mechanics (The Hague: Nijhoff, 1970), have attempted this 

analysis and failed to notice that Hooke repeatedly underscores the deficiencies in his mechanical 

model, which uses a conical pendulum to represent a planet’s inflected motion.  In fact, Hooke’s 

accompanying geometrical demonstration is designed to illustrate these deficiencies, which he also 
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‚may be from an unequal density of the medium, thro’ which the planetary body is 

to be moved‛, he discards as problematic immediately after introducing it, because 

of ‚improbabilities‛.201  One can infer what the ‚improbabilities‛ are, since the 1666 

concept is inconsistent with Hooke’s developing notions on the aether as a 

propagator of vibrations, because a requirement of this concept of inflection is that 

the aether has a density gradient on account of being rarefied by the heat of the sun.  

Thus, ‚the direct motion *of the planet+ will be always deflected inwards *towards 

the sun], by the easier yielding of the inward, and the greater resistance of the 

outward *condensing+ part of that medium *the aether+‛.202  Here is the 

inconsistency again: on the one hand, Hooke proposes an ‚unequal density of the 

medium‛ to push planetary bodies into areas of less resistance where the aether is 

rarefied; on the other hand, he needs ‚an almost nothing‛ with no ‚Impediment to 

any Bulky bodies‛ which can propagate vibrations at a distance.  Hooke’s 

compromise in Lectures of Light, discussed above, attempts to solve the 

‚improbabilities‛ by assigning to the aether a material state of ‚almost nothing‛ so 

that ‚the Impediment to any bulky Bodies moving through it, must be 

inconsiderable‛.  

It could be that even in 1666 Hooke was attempting to enforce a compromise 

between the menstruum and the void, but it is more likely that he was simply doing 

what he does best – modifying a flexible tool to suit his purposes at the time.  When 

the aether proved to be the wrong tool in 1666, he put it aside.  Thus, whether 

Hooke’s aether compromise coheres is somewhat beside the point.  After he had 

reinforced his description of the aether as the propagator of vibrations in Of Spring, 

he could enforce oxymoronic descriptions such as ‚radiating Vibration of this exceeding 

Fluid, and yet exceeding dense Matter‛, and could then commit himself more to the 

various vibrations crisscrossing through it, or the ‚continued Chime of motions‛ 

                                                                                                                                                        
points out, as well as his new use of ‚inflection‛.        

201 Birch, The History of the Royal Society of London, Vol. I, 91. 
202 Birch, The History of the Royal Society of London, Vol. I, 91. 
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discussed in Chapter 2.203  As mentioned, Of Spring is also where Hooke provided a 

geometrical demonstration of the spring law, contingent upon the material world 

and its parts, and it is to the development of his practical and ‚Mixt‛ geometry that I 

now turn.  

 

II: PRACTICAL GEOMETRY 

In the Micrographia, Hooke employed a musical strings similitude to explain 

his matter-as-vibrations theory, ‚Congruity and Incongruity‛.  I analysed the 

construction of this theory predominantly from the perspective of experiments, 

apparatuses and instruments in Part I.  I showed that Hooke’s strings analogies – far 

from being merely illustrative – demonstrate his dynamic matter theory.  Namely, 

strings were arguments for and models of Hooke’s cosmology, constructed to 

support his claim that matter and motion are ‚one and the same‛.204  His work on 

springy bodies and vibrations culminated in the treatise Of Spring, where he 

provided a refined version of the strings model, rejecting the qualitative and sensual 

descriptions favoured in the Micrographia for ‚Heterogeneous motions‛ and 

‚proportion‛.205  This move underscores Hooke’s epistemological preference for 

pulling mathematics from physics, and hints that it was not enough for him to 

provide a causal account which was just a mechanical model alone.  To produce a 

‚Theory of Springs‛, a ‚Rule or Law of Nature‛, which could be used to improve 

upon nature, he needed to reduce vibrating strings, his matter model, to geometrical 

demonstrations.206  Hooke took this a step further, fashioning a new geometry, with 

new artificial instruments such as the microscope and telescope, capable of 

describing the reality of objects created by the New Science.  Here, as promised in 

the introduction, I will examine Hooke’s development of the spring law from the 

                                                 
203 Hooke, Of Comets and Gravity, and Lectures of Light, in Posthumous Works, 184, 137. 
204 Hooke, Of Spring, 7. 
205 Hooke, Of Spring, 12. 
206 Hooke, Of Spring, 1, 3, 4, 1–6. 
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perspective of mathematical bodies and motions by focusing predominantly on his 

practical geometry – the mediator between sensible and insensible physical reality 

and abstractions in his work.  Points, lines, superficies and solids in Hooke’s 

practical geometry are all three-dimensional, and I will try to explain why and how 

this is his attempt at the question of infinitesimals.   

Studying nature as a geometer presents Hooke with two challenges.  One 

challenge is to create familiarity in this newfound variety.  Hooke’s solution is to 

draw attention to two patterns standing out amongst the Baroque plethora of details, 

which lend themselves to analysis via the language of geometry: globular bodies or 

points in particular, and motions or lines.  Together, points and lines enforce a 

mathematically workable order upon Hooke’s observations – an analogy to 

geometry in nature.  A second challenge is to achieve this physicalisation of 

Euclidean definitions without stepping on the toes of well-established views about 

traditional geometry.  Hooke tackles this difficulty with the claim that, on the one 

hand, Euclidean or speculative geometry, albeit with motion, is necessary for 

understanding concepts and for assisting the imagination.  On the other hand, 

practical geometry, with Hooke’s stipulative definitions, is a better representation of 

nature, because mathematics is an approximation of the world’s workings and is 

dependent on the power, accuracy and precision of artificial instruments.  Moreover, 

unlike traditional geometry, Hooke’s practical geometry is also capable of exhibiting 

nature’s magnified, fundamental, rough surfaces.  Again, traditional geometry is a 

tool, created before the invention of optical instruments, and like naked eye 

astronomy, is limited by human senses – by our incapacity to sense parts.  For 

example, abstractions such as a straight line between two points fail to model what 

experiments and instruments capture, even though our senses ‘see’ and ‘touch’ 

straight lines.  But this does not signify a problem with the material.  Lines are a limit 

of the senses, and Hooke’s reversal reveals that Euclidean geometry is an idealised 

expression of the senses, bounded by them; it is not the language of nature.  Thus 

Hooke often replaces the ruler and compasses with a scale bar and microscope for 
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his practical geometry, and interweaves speculative and practical into a novel ‚Mixt 

geometry‛, capable of simultaneously representing discrete and continuous 

operations, as well as both sensible and insensible phenomena; speculative and 

practical respectively.  The master-class for this new geometry, which exhibits 

Hooke’s infinitesimals, is his geometrical proof of the spring law.207      

 

4. POINTS 

Although experimental philosophy and mathematical analysis were a 

hallmark of the New Science, Hooke’s practical geometry is a unique amalgamation 

of the two; displaying supreme indifference between concrete and abstract, it reflects 

Hooke's dual role as both the Curator of Experiments for the Royal Society and the 

Gresham Geometry Professor.  Gresham College (est. 1597) implemented radical 

educational reforms, eschewing scholasticism in favour of educating each student 

with purpose and for a specific vocation rather than education for its own sake – 

though legislators prevented most of the proposed reforms from being put into 

effect.208  That is, the College exemplified the push to a more practical education 

instead of the scholastic studies still prevalent in the universities at the time.  But this 

is not to say that the Gresham professors concerned themselves only with practical 

matters as a technical college might today; rather, it is a move that is considered to 

be one of the great achievements of 17th century mathematics, for it stimulated new 

mathematical (amongst other) interests, pursuits and practices.209  For example, the 

                                                 
207 Hooke, Of Spring; Hooke, Lectures concerning Navigation and Astronomy, in Posthumous Works, 523. 
208 Jamie C. Kassler, ‚The Science of Music to 1830‛, in: Music, Science, Philosophy (UK: Routledge, 2001), 

184.  
209 Mordechai Feingold, ‚Gresham College and London practitioners: the nature of the English 

mathematical community,‛ in Francis Ames-Lewis (ed.), Sir Thomas Gresham and Gresham College 

(Hampshire: Ashgate Publishing Ltd., 1999), 174–188; see especially p. 179–180.  Feingold provides a 

detailed account of the shift from scholastic to early modern mathematics with Gresham College as 

the epicentre of change, which I lack space to indulge in here.  Wilson, ‚Who invented the calculus?–

and other 17th century topics‛, online Gresham College lecture recording, 1:03:01, 16th November 2005. 

<http://www.gresham.ac.uk/lectures-and-events/who-invented-the-calculus-and-other-17th-century-

topics>.  
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musician Thomas Ravenscroft (c. 1588–1635) claims in his discourse on Measurable 

Musicke published in 1614 that the College stimulated studies in ‚especially the 

Mathematicks, which were somewhat neglected euen in the Universities‛.210  

Ravenscroft’s remark is personified by Thomas Hobbes, who, according to the story 

told by his biographer John Aubrey, studied no mathematics at Oxford, but 

encountered geometry for the first time at age 40 by stumbling upon a copy of 

Euclid’s Elements open at the Pythagorean theorem.211  Jamie Kassler adds that 

Gresham College established the first endowed chairs for music and mathematics.212  

The statute for geometry reads as follows: 

The solemn lectures of astronomy and geometry are to be read < either of the said 

lectures twice every week, on Friday astronomy, on Thursday geometry, between 

the hours of eight and nine in the forenoon, and two and three in the afternoon; 

whereof the lectures in the forenoon to be in Latin, and the lectures in the 

afternoon to be in English.  Touching the matter of said solemn lectures, the 

geometrician is to read as followeth, viz. every Trinity term arithmetique, in 

Michaelmas and Hilary terms theorical geometry, in Easter term practical 

geometry.213 

‘Theoretical geometry’ (also ‘classical’, ‘Euclidean’ or ‘traditional’), which in the 

seventeenth century was semi-official like the curricula, was more commonly known 

as ‚Speculative Geometry‛ amongst Hooke and his peers.  According to Hooke’s 

way of understanding and teaching its worth as a tool for natural philosophy, 

speculative geometry should serve ‚practical geometry‛.  Late in life, during a 

lecture on ‚Navigation and Astronomy‛, Hooke attempts to explain to his audience 

that the   

business of Speculative Geometry being only to demonstrate the propriety of such 

quantities, as Lines, Superficies and Solids from their Definitions or Descriptions; 

it is sufficient to have only a right Conception of what is to be understood by those 

Appellations, and they are things possible to be done, or conceiv’d so to be, for 

grounding the Demonstrations thereupon, and that the actual drawing and 

                                                 
210 Thomas Ravenscroft, A Brief Discovrse of the True (but Neglected) Use of Charact’ring the Degrees of their 

Perfection, Imperfection, and Diminution in Measurable Musicke, against the Common Practise and Custome 
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211 John Aubrey, Brief Lives, Vol. 1, (Oxford: Clarendon Press, 1898), 332.    
212 Kassler, ‚The Science of Music to 1830,‛ in: Music, Science, Philosophy, 184. 
213 John Ward, The lives of the professors of Gresham College (London: John Moore, 1740), Preface, viii. 
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delineating of them there, is only to help the Imagination to conceive the notion of 

them aright.214  

That is, traditional Euclidean geometry is ‚sufficient‛ for teaching rules and 

concepts ‚for grounding the Demonstrations thereupon‛, and hence speculative-

geometrical drawings serve only ‚to help the Imagination‛ to understand these 

concepts, ‚and thereby to exhibit the thing done to Sense, which is one of the ends 

and uses of Speculation‛.215  In contrast, practical geometry is not only 

demonstrated, but ‚experimentally verify’d and exhibited‛.216  Yet one can reduce 

practical points to speculative ones.  From the same lecture as previously cited, 

referring back to his opening observation on the point of a needle in the Microraphia, 

Hooke explains that by  

Point then I do not here understand an imaginary nothing, which, in speculative 

Geometry, is defin’d to be a Negation of Quantity, or an Entity that hath no Part or 

Quantity; but I understand such a Point as hath Quantity and Extension, but yet so 

small and minute, as that the sense cannot distinguish that it hath any Parts; such 

as the Point of a very sharp Needle, or the Point of a very curious pair of 

Compasses; or such a mark with Ink as is made with a very sharp nibb’d Pen 

upon fine smooth Paper, which tho’ it may be easily enough prov’d, either by 

Microscopes and other Glasses and by Reasons too to have breadth, and so both 

Longitude and Latitude, nay, and Profundity too or thickness, yet as to be use, for 

which it is here design’d, it is sufficient, and may pass for a true Mathematical 

Point, if at least we will but suppose the middle of it to be that which is aimed at 

in our Operation.217   

In practical geometry, the tools of which are the microscope, scale bar and so on, a 

point is the smallest body observable by the senses and thus capable of being 

imagined – a point made of insensible, infinitesimal parts.218  In Observ. 1.  Of the 

Point of a sharp small Needle, Hooke opens his first observation in the Micrographia by 

claiming that one should study nature as a geometer.  That is, one ought to begin 

with a body ‚of the most simple nature first‛, the point, and then progress to more 

‚compounded‛ structures.219  This is not exactly a novel concept, but Hooke’s 
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physical frame of reference is.  For example, in 1612, the Jesuit astronomer and 

mathematician Christopher Clavius, whom Hooke read,220 remarked on Euclid’s 

definition of the point that  

[n]o example of this [point] can be found in material things, unless you mean that 

the extremity of the sharpest needle expresses some similitude to a point; which 

nevertheless is wholly untrue, since this extremity can be divided and cut to 

infinity, but a point must be supposed altogether indivisible [individuum 

porsus].221 

Taken in this context, Hooke’s point, indeed his entire Micrographia, is a direct 

challenge to Clavius’s claim that geometers avoid meddling with matters of physics.  

And Hooke’s challenge did not fall on deaf ears.  For example, almost three decades 

after the Micrographia, the naturalist John Ray (1627–1705) would reference ‚Mr. 

Hook‛ on points when discussing ‚Animalcules‛.222  In defence against objections to 

the ‚Doctrine‛ that ‚the Ovaries of one Female should actually include and contain 

the innumerable myriads of Animals‛, for who ‚can conceive such a small portion of 

matter to be capable of such division, and to contain such an infinity of parts‛, Ray 

answers by paraphrasing Observ. I, that ‚our sight doth not give us the just 

magnitude of things, but only their proportion, and what appears to the Eye as a 

Point, may be magnified so, even by Glasses, as to discover an incredible multitude 

of parts‛.223  This idea, that ‚Glasses‛ are tools of practical geometry, which allow 

for shifts in scale or ‚proportion‛, was a crucial methodological maxim for Hooke. 

Before Ray, Hooke, and Clavius, Leonardo conceived of the point as a 

resonating structure between nothing and a line.  It was a paradoxical idea that he 

attempted to realise in his art by creating the technique of sfumato, which builds a 

picture up from translucent layers of thinned oil colours, the edges hazy, the 
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painting constructed of points caught somewhere between nothings and lines.224  

Perhaps the most renowned painting displaying this ambitious attempt to capture 

an in-between structure is the Mona Lisa; with vaporous gradations of light briefly 

caught in between the paint particles in the oil, Mona Lisa appears ethereal and 

ephemeral, a moment of transition captured.  Gal and Chen-Morris observed a 

similarity between Leonardo’s ideas about the point and his hydraulic studies, 

which express nature’s continuous transitions from order to destruction as a chaotic 

process of creation, and his frustrating attempt to capture these motions with 

geometry.225  Closer to Hooke on the timeline, Kepler also argued for beginning 

with a mathematical point, which would transform into a physical body by 

expanding into a sphere via lines: ‚< a geometrical figure constructed through 

constant [insensible] motion from the centre toward the surface‛.226   

Yet both Leonardo and Kepler’s points originate from ‚speculative 

geometry‛227 or Euclidian, where the definition of ‚a Point is that which hath no 

part‛,228  and thus can only be described by a negative.  It is not like the point of a 

needle, or the Earth, which are reducible to infinitesimal parts.229  During this 

swathe of time, Euclidean definitions were routine, and remained so in the 

seventeenth century.  The Greek Neo-Platonist Proclus (410–485 CE), a commentator 

of Euclid, and an important resource for scholastic mathematicians, argued that 

separating geometric forms from matter increases precision: ‚the ideas of the 

boundaries exist in themselves and not in the things bounded < Matter muddies 
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their precision <‛230  Hooke, as noted earlier, with Clavius as his unnamed 

interlocutor, challenges this view vehemently.  Whereas for Leonardo ‚the very 

regularity of geometrical figures generated transformation and change,‛231 and for 

Kepler mathematics was necessary, ideal, ‚coeternal with God‛,232 for Hooke it is 

contingent on physical reality.  That is, mathematics follows from physics, the 

abstract dependent on physical processes, lest we should ‚quickly lose Nature our 

Guide, and our selves too < left to wander in the labyrinth of groundless 

opinions‛.233  In other words, Hooke believes that beginning with a ‚true 

Mathematical Point‛ instead of a physical one risks building a faulty model on 

which to force physical data.  That is, if imaginable points are sensible, and a 

mathematical point is unimaginable, then a mathematical point is speculative and 

can only be made sense of with a physical representation.  Even the geometrical 

representation of nothing needs a point.  But it is this very demarcation between 

abstract and concrete that allows Hooke to conflate mathematics and physics.  If the 

practical point produces the speculative one, and the speculative point describes 

actual physical processes derived from empirical observations, assisting the 

imagination to make sense of the physical because the speculative point captures the 

limits of the senses, then Hooke can trust the physical-mathematical model to 

provide causal explanations.  Moreover, this is why it is important that a practical 

point ‚may pass for a true Mathematical Point, if at least we will but suppose the 

middle of it to be that which is aimed at in our Operation‛.  Practical geometry is, as 

Hooke states in his Lectures of Light, ‚Physicks Geometrically handled‛, and as such, 

‚as in pure Geometry nothing is to be let pass for a Truth, whose Cause and 

Principles are not so clearly shown by the Progress of Reasoning, and the Process of 

                                                 
230 Proclus, A Commentary on the First Book of Euclid’s Elements, 87, cited in Douglas Michael Jesseph, 
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Demonstration‛.234  Understanding concepts is obviously necessary for grounding 

demonstrations.235  But by beginning with practical geometry grounded by 

traditional geometry’s constraints – ‚by the help of the Instruments and Methods 

that are hitherto us’d to make Observation on which to ground Calculation‛236 – 

Hooke paradoxically frees himself from the worry of fallacies committed by weak 

human senses, which ‚cannot distinguish that it *a point+ hath any Parts‛ although 

‚it may be easily enough prov’d, either by Microscopes and other Glasses‛.  From 

the perspective of Hooke’s practical geometry, starting with a speculative point 

‚which hath no part‛ when representing the material is to start with an instrument 

as fallible as the human eye.  

This mingling of mathematics with microscopes and other instruments was 

not wholeheartedly embraced by all.  On the one hand, Descartes defends and 

practices the use of instruments other than the traditional ruler and compasses.  In 

Book 2 of his Geometry, Descartes argues that if one were to call complex curves, like 

those drawn by his proportional compass, ‚mechanical rather than geometrical‛, 

‚because it is necessary to use a certain instrument to describe them‛, then it would 

be ‚necessary to reject, for the same reason, circles and straight lines, seeing that they 

can only be described on paper with a compass and ruler, which we can also call 

instruments.‛237  He accuses the ‚ancients‛ of this fallacy, speculating that   

since as yet they knew only a few things about conic sections, and there was even 

much that they did not know about what could be done with the ruler and 

compass – they believed they should not approach more difficult material.238 

Like Hooke after him, for Descartes so-called ‚mechanical‛ curves are the ‚more 

difficult material‛.  That the instruments ‚used to trace‛ complex curves are 

themselves ‚more complex than the ruler and compass‛ means not that they are in 
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any way inferior or ‚not as exact‛ – quite the contrary, and for practical reasons of 

practical origin.  If this were ‚the case‛, Descartes argues, then ‚it would be 

necessary to exclude them from mechanics, where exactness of works made by hand 

is desired, rather than from Geometry, where one seeks only exactitude in 

reasoning‛.239  On the other hand, Newton’s teacher Isaac Barrow, in his Euclide’s 

Elements compendiously demonstrated, relies unsurprisingly on a ruler and compasses 

for his constructions; but when demonstrating proposition XVI from the fourth book 

of the Elements, Barrow betrays an aversion to the use of non-traditional instruments:  

Any other way of dividing the circumference into any parts given, is as yet 

unknown, wherefore in the construction of ordinate figures, we are forced to have 

recourse to mechanick artifices, concerning which you may consult the Writers of practical 

Geometry.240   

Hooke seems to take the middle ground, for he is careful not to enforce his 

predilection for the practical upon his speculative geometry lectures, where he 

teaches ‚right Conception*s+‛ of ‚things possible to be done, or conceiv’d so to be‛, 

because it is necessary to learn the concepts first.241  The worst crime that he 

commits in the only extant lecture on the subject, which Waller was kind enough to 

provide a sample of in Hooke’s Posthumous Works, is to  

show that innumerable Points do make a Mathematical Line, innumerable Lines 

do make a Mathematical Superficies, innumerable Superficies do make a 

Mathematical Body, innumerable Moments make a Velocity, innumerable Instants 

make a Mathematical Time, by supposing Motion joyn’d to them < and contrary 

Motion reduce them back again, which is exprest, or perform’d by Multiplication 

and Division.242 

By ‚supposing Motion joyn’d to‛ Euclidean geometry, Hooke eschews Euclid’s 

definition of line – ‚A line is a breadthless length‛243 – for an interpretation 

favoured by, for example, Aristotle, Clavius, Descartes, Hobbes, and most practical 
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geometers.244  ‚For a Point moved,‛ says Hooke, ‚makes a Line in a Mathematical 

Sense‛.245  This allows him to consider locations, or the motion or trace of a body 

rather than the body itself; or to consider a line constructed of physical points, again 

without having to consider bodies; and is fitting for a new science where order is in 

motion, not rest.246  According to Douglas Jesseph citing Proclus, Proclus rejected 

this interpretation because it ‚appears to explain *the line+ in terms of its generative 

cause and sets before us not line in general, but the material line‛247.  Although ‚line 

in general‛ is ambiguous, Proclus’s rejection of this definition of line is the reason 

why Hooke adopts it for his lectures on speculative geometry.  Hooke does not 

employ the definition ‚a Point moved makes a Line in a Mathematical Sense‛ for 

practical geometry, unlike other ‚Writers of practical Geometry‛ before, during, and 

well after his time; to the best of my knowledge at this time, most practical 

geometers were content to begin their textbooks and manuals with Euclid’s 

definitions – albeit with Hooke’s preferred speculative definition of line – or to avoid 

them altogether as self-evident.248  More in the style of Gresham College, although 

Barrow had taught there too for a spell, Hooke uniquely embraces the ‚mechanic 

artifices‛ disdained by Barrow, fusing them with his physicalised definitions to 

serve as tools of his radical instrumental empiricism for a geometry that does not 
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structure matter, but whose structure is matter. 

 

INTERWEAVING   
Hooke begins his Micrographia observations not with nature, but with the point 

of a needle.  This is a significant move for two reasons.  First, it collapses the walls 

between art and nature, naturalising the microscope by making the magnified and 

resolved sights and textures as ordinary as those experienced by human senses.  In 

this way, Hooke replaces the senses of sight and touch with the instrument: for 

example, ‚the roughness and smoothness of a Body is made much more sensible by 

the help of a Microscope then by the most tender and delicate Hand‛.249  Second, 

beginning with an artificial point creates a new set of mores for instruments, shifting 

worth from natural organs such as the human eye to the microscope, telescope and 

other instruments of vision.  Catherine Wilson points out that Hooke’s drawings in 

the Micrographia, and genre paintings like Vermeer’s, which cast light on the beauty 

of mundane moments in seventeenth century Dutch life, mirror this change in 

values.250  As discussed in Part I, like his friend Wren, Hooke prefers simplicity in 

experimental design, instruments and explanations.  This preference carries over to 

the objects under his microscope lenses, such as common and ordinary needles and 

flies, which his hand-drawn micrographs depict as intricately beautiful and complex.  

Yet, and perhaps similarly to Vermeer’s use of a camera obscura, Hooke could not 

reveal the often surprising complexity in the minute details of the everyday without 

lenses.  Thus, by beginning with the point of a needle in his first major publication, 

and his most famous one, Hooke picks up Galileo’s mantle of radical 

instrumentalism, replacing natural organs with artificial ones.251   

Within the limits of the human senses, the needle point is ‚made so sharp, that 
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the naked eye cannot distinguish any parts of it < But if view’d with a very good 

Microscope, we may find that the top of a Needle (though as to the sense very sharp) 

appears a broad, blunt, and very irregular end; not resembling a Cone, as imagin’d, 

but onely a piece of a tapering body, with a great part of the top remov’d, or 

deficient.‛252  Yet even though Hooke’s ‚very good Microscope‛ is good enough to 

reduce a seemingly sharp needle to a ‚blunt and very irregular end‛, Hooke sees that 

his lenses lack the power to reduce nature’s points to blunt ends; that is, the 

microscope is not good enough to distinguish the parts of nature as it does the parts 

of art.  Instead of revealing nature’s fundamentals, his lenses magnify seemingly 

infinite complexity.  ‚*B+ristles‛ and ‚claws‛ remain sharp even under the 

microscope, and insensible points such as the ‚hairs of leaves‛253 become visible.  

Hooke’s problem is that the needle fails to live up to his ‚imagin’d‛ expectations.  As 

a crude instrument of art, designed to work at the level of the senses – which it does 

well as anyone who has ever been pricked by a needle will attest – the needle 

nevertheless shows how far instruments of art have to go before they can be like 

nature’s needles – its ‘bristles’ and ‘claws’ – under the microscope.  Hooke is also 

aware that even his best optical instruments allow only for both qualitative and 

quantitative approximations.  Yet he never doubts that ‚were we able practically to 

make Microscopes according to the theory of them‛, we would be able to reduce even 

nature’s sharpest points to ‚broad, blunt and very irregular‛ needles.254  Also 

similarly to Wren, though more radically perhaps, Hooke is aware that instruments 

used to be the characteristic tools of mathematics and that the new instruments of 

practical geometry are optical ones.255 

Later, in a preface To the Reader of his Attempt to Prove the Motion of the Earth 

by Observations, Hooke would claim that nature and art are interwoven in a fabric 

                                                 
252 Hooke, Micrographia, 1–2. 
253 Hooke, Micrographia, 2. 
254 Hooke, Micrographia, 2. 
255 Bennett, ‚Christopher Wren’s Greshamite history of astronomy and geometry‛, in Francis Ames-

Lewis (ed.), Sir Thomas Gresham and Gresham College, 193. 



Cindy Hodoba Eric 68 

 

 

that clothes natural philosophy.  ‚I design always to make them *art and nature+ 

follow each other by turns, and as ‘twere to interweave them, being apart but like 

the Warp or Woof before contexture, unfit either to Cloth, or adorn the Body of 

Philosophy‛.256  Later still, when arguing for the benefits of practical over 

speculative geometry, Hooke would state similarly to the above quote, although less 

poetically, ‚that tho’ Science can easily suppose and conceive things as possible to be 

done, yet Art doth find many difficulties in the actual performance of them, and both 

ought to be call’d in for assistants in the prosecution of experimental Philosophy‛.257  

So, representing natural points with artificial ones renders art and nature as parts of 

a whole.  Moreover, Hooke is quick to point out the advantages of his ‘practical or 

mechanical geometry’258 over the abstractions of ruler and compasses.  ‚The Points 

of Pins are yet more blunt, and the Points of the most curious Mathemati[c]al 

Instruments do very seldome arrive at so great a sharpness; how much therefore can 

be built upon demonstrations made onely by the productions of the Ruler and 

Compasses, he will be better able to consider that shall but view those points and 

lines with a Microscope‛.259  The crucial difference is that technological advancements 

can improve microscopes, which as optical instruments embody nature, 

manipulating points and ‘lines’ of light that follow natural laws; whereas the ruler 

and compasses are instruments of art, only as nice as the human realm for which 

they were created.  Again, rulers and compasses are instruments made to measure 

only at the level of the naked human eye.  Nevertheless, because of this instrumental 

limitation, traditional or speculative geometry remains an important tool for 

drawing concepts that can be comprehended at the level of the sense of sight.  Thus, 

the limitation allows for the integration of speculative geometry and Hooke’s new 

practical geometry. 
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The shift in mores created by elevating the status of artificial instruments over 

natural ones is exemplified by Hooke’s integration of nature and art in his 

experimental philosophy.  First, as Gal and Chen-Morris argue, ‚Hooke’s 

instruments embody Kepler’s optics: they manipulate light.  They have no recourse 

to visual rays or species because they do not defer to the human observer < in 

Hooke’s ‚Scheme‛ there is no eye.  His instruments are not meant as aides to a weak 

human organ, they are meant to replace it‛.260  Further, instruments that succeed in 

fully achieving this status are automatic, and ‚interweave‛ art and nature.  Hooke’s 

wheel barometer, created to ‚shew all the minute variations in the pressure of the Air‛ 

needs no human intervention to convert those ‚minute variations‛ into readable 

measurements.  But the barometer is not only an instrument for reading 

measurements off a dial – it is the first step in creating an artificial organ for 

detecting ‚all those steams, which seem to issue out of the Earth, and mix with the Air (and 

so to precipitate some aqueous Exhalations, wherewith ‘tis impregnated … before they 

produce the effect‛.261  In contrast, an example of an instrument that does not embody 

nature is Hooke’s refractometer: although it is based on Kepler’s optics, it merely 

traces light with linkages that must be manipulated.  The refractometer legitimises 

the use of instruments in natural philosophy by demonstrating that mathematics 

‚can vouch for the ability of optical constructs to represent physical reality 

accurately‛;262 but the barometer is a perfect tool for natural philosophy, better than 

nature, better than human senses, and better than instruments of art that require 

constant fiddling because it ‚interweave*s+ them‛.  Finally, examining instruments 

of art with a microscope, ‚an organ more acute th*a+n that by which they were 

made‛,263 reveals ‚the rudeness and bungling of Art‛264 compared with nature’s 

creations, which are ‚able to include as great a variety of parts and contrivances in 
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the yet smallest Discernible Point, as in the vaster bodies (which comparatively are 

called also Points) such as the Earth, Sun, or Planets‛.265  Yet, although nature seems 

to possess complexity all the way down, Hooke yearns to build an instrument 

capable of reducing nature to the rudeness of art, and superseding it with art.266  

Hooke designs artificial instruments, compounded of art and nature, to replace 

natural ones like the eye, which makes it possible for him to make sensible 

experiments and predictions about insensible phenomena.  In his Lectures of Light, 

Hooke repeats his microscope dream: 

Now we are sensibly informed by the Microscope, that the least visible Space 

(which is that which appears under an Angle of half a Minute of a Degree) may be 

actually distinguished into a thousand sensible Spaces: And could we yet further 

improve Microscopes, ‘tis possible we might distinguish even a thousand more 

Spaces in every one of those we can now see by the help of those Microscopes we 

have already.267 

 

TROPE 
Hooke’s second reason for beginning with the point of a needle is to fashion an 

analogy about points.  The analogy demonstrates that the microscopic implies the 

macroscopic. 

Nor need it seem strange that the Earth it self may be by an Analogie call’d a 

Physical Point: For as its body, though now so near us as to fill our eyes and 

fancies with a sense of the vastness of it, may by a little Distance, and some 

convenient Diminishing Glasses, be made vanish into a scarce visible Speck, or 

Point (as I have often try’d on the Moon, and (when not too bright) on the Sun 

itself.)  So, could a Mechanical contrivance successfully answer our Theory, we 

might see the least spot as big as the Earth it self; and Discover, as Des Cartes also 

conjectures [Diop. ch. 10. § 9.], as great a variety of bodies in the Moon, or Planets, 

as in the Earth.268   

This use of instruments to smudge the edges between microscopic and macroscopic 

worlds both frames the Micrographia and becomes a leitmotif as Hooke’s 

observations develop in scope and complexity.  Just as his lenses show the parts of a 
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pin point, and just as the telescope shows a moon that ‚Diminishing Glasses‛ turn 

into a ‚scarce visible Speck‛, if one could construct microscopes ‚according to the 

theory of them‛, then 

we might find hills, and dales, and pores, and a sufficient bredth, or expansion, to 

give all those parts elbow-room, even in the blunt top of the very Point of any of 

these so very sharp [natural] bodies.  For certainly the quantity or extension of any 

body may be Divisible in infinitum, though perhaps not the matter.269 

This telling metaphor of ‚hills, and dales, and pores‛ plays a significant 

explanatory role in Hooke’s final observation, Observ. LX. Of the Moon,270  where he 

takes the metaphor literally, converting his fancies about the surface of a pin point 

into descriptions of the superficies of a celestial body.  That Hooke chooses to 

expand the analogy by comparing the pin point with the moon in Observ. I, and 

then the moon with the earth as a final observation in the Micrographia is no 

coincidence.  It is a clever way to employ a trope created by Galileo in his Sidereus 

Nuncius (1610), a description of the maculate superficies of the moon which had 

some forty-five years later become a commonplace conceptual idiom.271  Hooke uses 

the trope to shift the point of reference.  Galileo blazons that  

we have been led to the conclusion that we certainly see the surface of the Moon to 

be not smooth, even, and perfectly spherical < but on the contrary, to be uneven, 

rough, and crowded with depressions and bulges.  And it is like the face of the 

Earth itself, which is marked here and there with chains of mountains and depths 

of valleys.272   

Hooke applies Galileo’s word-painting interchangeably for a needle point and a 

planet.  Focusing a ‚thirty foot Glass‛ on ‚a small spot‛ of the moon, he describes 

the spot as ‚a very spacious Vale, incompassed with a ridge of Hills < the Vale may 

have Vegetables analogus to our Grass, Shrubs, and Trees‛.273  This creates a relation 

between micro- and macroscopic points, easing Hooke’s struggle to communicate 
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his claim that the difference between points and planets is a matter of magnification, 

hence observations of one may be used to gain knowledge about the other.  This 

further legitimises his use of the microscope to produce macroscopic and celestial 

knowledge.  The trope mirrors this epistemological inversion, since the hills, valleys 

and pores create physical patterns in Hooke’s observations.  These patterns are 

toeholds of order and familiarity in nature’s variety, whether microscopic, bare eye, 

or telescopic.  They range from a simple point, the smallest imaginable one, to 

planets.  Instruments extend Hooke’s imagination in both directions, and 

mathematics derived from physics prevents flights of fancy.  

 

GRANADOES 
Hooke’s architecture of 

matter presents particles as 

springy globular bodies 

(points).  Here I will examine 

two figures that illustrate 

Hooke’s points in application, in an attempt to further explain the epistemological 

inversion and its importance in Hooke’s knowledge-making process.  The figures, 

and Hooke’s wording, disclose his indebtedness to Galileo;274 yet Hooke’s figures 

are dynamic.  The first is an inconspicuous little diagram from Of Spring (1678), 

labelled ‚Fig 5.‛ (Figure 4.1) squeezed into the upper right-hand corner of a plate of 

realistic engravings of various spring scales conflated with accompanying practical-

geometrical demonstrations.  ‚Fig 5.‛ falls into the latter category: it is both a 

theoretical explanation of projectile motion (gravity compounded with a projectile’s 

‚oblique motion‛275), and a ‚Scale‛.276  The scale is bipartite, separated by a 
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Figure  4.1  “ Fig 5.”  or Hooke’s “Scale”  for projectile  motion (Of 
Spring). 
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common vertical line ab, and the two parts on either 

side allow for the calculation of velocities and 

distances of projectiles.   

Having shown ‚how the Velocity of a Spring 

may be computed‛ in ‚Fig 4.‛ (see Figure 4.2), 

Hooke’s demonstration of the spring law (which I 

will return to later), Hooke claims ‚it will be easie to 

calculate to what distance it will be able to shoot or 

throw any body that is moved by it.‛277  The part to 

the right of line ab in ‚Fig 5.‛ is for the calculation of 

the distance travelled by a projectile shot from the 

ground at a given angle of inclination and with a 

known velocity, and the time taken to cover that distance, or ‚the length of the 

Tactus or shot, and the time it will spend in passing that length‛.278  ‘Tactus’ is a 

conductor’s tempo, or a 16th century term for a beat or pulse of one second279 – the 

fundamental unit of time in ‚Fig 5.‛ – and seems to be a deliberate word choice 

meant to form a relation between the pulse of the spring which causes the ‚shot‛ 

and Hooke’s other musical analogies for springy bodies and vibrations, since Hooke 

thinks of bows, cannon fire and so on as springs.280  Suppose a spring of air shoots 

the heavy body upwards, for ‚of all springy bodies there is none comparable to the 

Air for the vastness of its power of extension and contraction‛.281  Since ‚the Tactus 
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Printed for L. Wilcox, at Virgil’s Head opposite the New Church up in the Strand, 1740), 268, 127.  
280 Hooke, Of Spring, 21–23; Hooke, Lampas, 33, in Cutlerian Lectures. 
281 Hooke, Of Spring, 23 in Cutlerian Lectures.  Hooke further remarks upon a fountain made by his 

mentor John Wilkins in the latter’s gardens at Wadham College, Oxford, which works on the ‚the 

Principle‛ of spring: ‚a Fountain so contrived, as by the Spring of the included Air to throw up to a 

great height a large and lasting stream of water‛ (Of Spring, 23–24).  A year before Hooke’s Of Spring, 

the naturalist Robert Plot had praised Wilkins’s ‚Water-works of Pleasure‛ in his The Natural History of 

Oxford-shire, 235.  But where Hooke was enamoured by the ‚Leaden Cisterns‛ and ‚two force Pumps‛ 

Figure  4.2  The main plate from 
Hooke’s Of Spring (1678). 
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given by this Scheme or Scale [is] appropriated to the particular [known] Velocity‛ 

of a projectile, the distance travelled by the projectile ‚is found by comparing the 

time of its ascent with the [known] time of descent of heavy bodies‛ or the ‚true 

Velocity of a falling body‛.282  The ‚time of descent of heavy bodies‛, according to 

Hooke’s examples, is 16 feet per second, and is represented by line ab and thus other 

equal parallel lines in the diagram.  ‚The ascent of any body is easily known by 

comparing its Velocity with the [known] Angle of Inclination‛, the latter represented 

by the three diagonal lines to the right of ab, such as line bf.   

The part to the left of line ab is for the calculation of ‚the whole Velocity of the 

ascent of a body by an equal motion [that is, uniform velocity, as if the body does not 

decelerate+‛ and ‚the whole Velocity of the accelerated descending motion‛, as well 

as ‚space ascended‛ and ‚space descended‛.283  Subtracting lines of descending 

velocity from lines of ascending velocity along stu (that is, st minus tu) with respect 

to time, gives the mixed motion at each moment as the point labelled ‘t’ moves along 

the line pq.  By the proportionality of lines, when st equals tu, point t is ‘at rest’.  

Subtracting the resultant areas descended from the areas ascended, in aggregates of 

slices that represent equal units of time as stu rises from pb to rqa, gives the 

projectile’s altitude, plotting ‚the points it passeth through in all the intermediate 

spaces‛.284  In other words, the left-hand side of Hooke’s range and velocity finder is 

a coordinate system.   

The area pbqa represents constant ascending velocity because pb, and so st, 

remains unchanged; the area pqr represents the effect of gravity upon the projectile, 

and by the similarity of triangles, the ratio of descending space subtracted from the 

ratio of ascending space gives the altitude.  By beginning with a known angle of 

inclination, and a velocity of spring expressed in feet per second, the left-hand side 

                                                                                                                                                        
of the ‚Engine‛, Plot marvelled at the rainbows in the mist, with a nod at Descartes, but ‚what kind 

of Instrument it was that forced the water, I dare not venture to relate‛ (Robert Plot, The Natural History 

of Oxford-shire [Oxford and London, 1677], 235). 
282 Hooke, Of Spring, 23, 22, in Cutlerian Lectures.   
283 Hooke, Of Spring, 22-3, in Cutlerian Lectures.   
284 Hooke, Of Spring, 22, in Cutlerian Lectures. 
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of Hooke’s scale plots a parabola with height on the vertical axis and time in seconds 

on the horizontal axis, and the projectile’s velocity at any point.  However, the height 

vs. time graph that results, while tracing a parabola in time, traces only the motion of 

point t ascending (and descending) along the line pq in space.  It is like observing the 

projectile’s motion from the perspective of a bombardier with no depth perception 

standing directly behind the flight path.  Nevertheless, Hooke has already explained 

how to find the range, with reference to the spring’s tactus.  Moreover, 

having the tactus given by this Scheme, or Scale, appropriated to the particular 

Velocity, wherewith any body is moved in this or that line of Inclination, it will be 

easie to find what Velocity in any Inclination will throw it any length; for in any 

Inclination as the square of the Velocity thus found in this Scale for any inclination 

is to the square of any other Velocity, so is the distance found by this Scale to the 

distance answering to the second Velocity.285   

This is because power, as Hooke has shown with a section of ‚Fig 4.‛ on the same 

plate, is proportional to velocity squared.  Indeed, ‚Fig 5.‛ may be viewed as a slice 

of ‚Fig 4.‛ made particular for projectiles propelled by spring.  Thus, just as with a 

section of ‚Fig 4.‛, which is for calculating infinitesimal points of a spring’s ‚power‛, 

because ‚every point of the flexure hath a peculiar power, consequently there being 

infinite points of the space, there must be infinite degrees of power‛,286 according to 

Hooke, one can approximate the velocity and displacement of any point of an ideal 

projectile’s path in ‚Fig 5.‛  Recall that Hooke’s explanation for this has grounds in 

the simple points of Observ. I in the Micrographia: ‚For certainly the quantity or 

extension of any body may be Divisible in infinitum, though perhaps not the matter‛.  

Indeed, what makes this kind of geometry useful is that Hooke’s points and lines are 

infinitesimally divisible.  Thus, perhaps the most interesting point in ‚Fig 5.‛ is t: it 

ascends along the vertical line pq to trace the projectile’s trajectory, ‚allowance being 

made for the Resistance and impediment of the medium through which it 

passes‛.287  In this way, and typical of Hooke’s preferred way of working, t 

                                                 
285 Hooke, Of Spring, 23, in Cutlerian Lectures. 
286 Hooke, Of Spring, 17. 
287 Hooke, Of Spring, 21. 
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represents both the physical point of, for example, a stone shot from a sling, and its 

mathematical trace, the parabola.288  That is, Hooke’s practical geometry stems from 

his insistence on constructing mathematics from the observable physical properties 

and processes of natural phenomena. Again, Hooke’s diagram also functions to 

make the insensible sensible. 

Published in the same year as Of Spring, ‚Fig. 22‛ in Hooke’s Cometa illustrates 

perhaps his most imaginative application of points in parabolic motion and their 

traces.  The plate of observations in Cometa (Figure 4.3) shares the deliberate layout of 

the Of Spring plate.  That is, proceeding from left to right as though reading, Hooke 

breaks down his observations from a naked eye drawing of the comet of April 1677, 

to a drawing of its appearance through the telescope, and then finally to physical-

mathematical analysis.  ‚Fig. 22‛ on the far right represents a three-dimensional 

section of the comet, ‚a solid parabolical conoeid‛,289 ‚the Nucleus or Ball in the 

middle of the head‛290 and its upper body, constructed with a reticulation of 

parabolic traces.  The ‚Nucleus or Ball‛, Hooke ‚conceive*s+ to be dissolved equally 

on all sides, 

And the parts which are dissolved 

or separated from it < fly every 

way from the center of it, with 

pretty near equal celerity or power, 

like so many blazing Granadoes or 

Fire-balls, they continue their 

motion so far toward the way they 

are shot, till < the Sun deflect them 

upwards, or in opposition to the 

Sun into a Parabolick curve, in 

which Parabolick curve, every 

single particle continues  its motion 

till it be wholly burnt out, or 

dissolved into the Aether.291     

Hooke claims that he has 

                                                 
288 For a comprehensive account of Hooke’s way of working, see Ofer Gal, Meanest Foundations and 

Nobler Superstructures.  
289 Hooke, Cometa, 48, in Cutlerian Lectures. 
290 Hooke, Cometa, 48, in Cutlerian Lectures. 
291 Hooke, Cometa, 48, in Cutlerian Lectures. 

Figure  4.3  The main plate from Hooke’s Cometa (1678). 
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compared the points to ‚blazing granadoes‛292 simply for explication’s sake, though 

he thinks that they are not ‚of any large bulk‛ for he sees ‚no necessity to suppose 

them bigger than the Atoms of smoke, or the particles of any other steaming body, 

or than the parts of Air <‛293  On the one hand, this motion picture of ‚fire-balls‛ 

flowing spherically from the nucleus before the sun pushes them into parabolic 

paths serves to make Hooke’s explanation sensible and imaginable, that is, to pull it 

within the limits of the human senses.  On the other hand, Hooke’s atomic 

description functions similarly to his projectile motion scale, where the angle of 

inclination, combined with the projectile’s initial velocity, change the shape of the 

parabola, but the natural laws describing its trajectory remain consistent irrespective 

of size.  Factoring in the flights of granadoes by formulating them as points in 

motion – in other words, as lines – and adjusting the scale’s parameters produces 

their trajectories.  Thus the behaviour of granadoes forms a bridge of knowledge 

between the insensibly small and the insensibly big.  Four years later, in his Lectures 

of Light, Hooke would explain it thus: 

I cannot have an imagination of a Space, but the thousandth Part of the breadth of 

a Hair, yet, by my Reason, I can be certainly informed that such a Space there is, 

and even by Microscopes we can make such a Space visible, and yet our fancy will 

diminish no farther than the least sensible Point to the naked Eye; as the point of a 

sharp Needle or the like: But we are not less certain of it, though we cannot 

imagine it, that is, make an Image or Representation of it to the Mind.294 

It is the danger of making a ‚Representation of it to the Mind‛ not grounded in 

physical reality that Hooke attempts to avoid with practical followed by speculative 

geometry.  Only by beginning with simple points can one then ‚draw single 

strokes‛295 such as parabolic paths, and only after this should one consider more 

complicated bodies.   

 

                                                 
292 For more details on granadoes, see: CHAP. XVIII. ‚How to make Hand-Granadoes to be Hove by 

Hand‛, in John Seller’s The Sea Gunner (London: H Clark, 1691). 
293 Hooke, Cometa, 49, in Cutlerian Lectures. 
294 Hooke, Lectures of Light, in Posthumous Works, 131. 
295 Hooke, Micrographia, 1. 
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5. LINES 

‚The sharpest Edge hath the same kind of affinity to the sharpest Point in 

Physicks, as a line hath to a point in Mathematicks; and therefore the Treaty 

concerning this, may very properly be annexed to the former.‛296  It should come as 

no surprise that Hooke opens his second Micrographia observation, Of the Edge of a 

Razor, with this passage.  Hooke explains that the line of a razor’s edge follows the 

same fate as a point under the microscope: it appears rough and wide, not sharp.  

But, ‚since as we have just now shew’d that a point appear’d a circle, ‘tis rational a 

line should be a parallelogram‛.297  Hooke reminds the reader that his observations of 

pins, needles and razors apply also to nature’s points and lines, the smoothness and 

sharpness of which could be reduced to ruggedness with powerful enough 

instruments.  For ‚perhaps future observators may discover even these *fluid bodies, 

which appear smooth] also rugged; it being very probable, as I elsewhere shew [in a 

later observation on pigment particles], that fluid bodies are made up of small solid 

particles variously and strongly moved <‛298   

Since light and sound share observable physical similitudes, Hooke expects 

that his geometrical optics will describe the mechanism of all vibratory phenomena.  

In Observ. VI Of Small Glass Canes, to which Hooke’s remark on how ‚solid bodies‛ 

are ‚strongly moved‛ to fluid states refers, he fuses his studies of sound and light to 

describe with ray optics how it is possible to learn from refraction-traces whether 

media are congruous or incongruous, as well as what happens when rays of 

vibrations, or the ‚Chime of Impulses‛ discussed in Part I, in general interact with 

points of matter at interfaces.  This learning is crucial for the construction of Hooke’s 

matter theory, ‘congruity and incongruity’. 

Upon consideration of the congruity and incongruity of Bodies, as to touch, I found 

also the like congruity and incongruity < as to the Transmitting of the Raies of Light 

< whence an oblique Ray out of Glass, will pass into water with very little refraction 

                                                 
296 Hooke, Micrographia, 4. 
297 Hooke, Micrographia, 4. 
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from the perpendicular, but none [of the rays] out of Glass into Air, excepting a 

direct, will pass without a very great refraction from the perpendicular, nay any 

oblique Ray under thirty degrees, will not be admitted into the Air at all < So also 

as to the property of cohesion or congruity, Water seems to keep the same order, 

being more congruous to Glass th[a]n Air.299     

The term ‘congruity and incongruity’ is an explanatory tool fashioned to explain 

how and why congruent and similar bodies attract and stay together while 

dissimilar bodies repel.  Equivalently, congruent geometrical figures share the same 

shape and size, and similar figures share the same shape or angles, but not the same 

size – like Hooke’s concept of globular bodies, or particles.  This concept enables 

Hooke to make his microscopic and macroscopic inversions, since points and planets 

become a matter of scale, and some of Hooke’s scale bars in the Micrographia are 

designed with this in mind.  To put it another way, since ‚particles that are similar, 

will, like so many equal musical strings equally stretcht, vibrate together in a kind of 

Harmony or unison‛,300 as discussed in Part I, one can infer that particles vibrating 

together in unison are congruent, whereas particles that vibrate together ‚in a kind 

of Harmony‛ are ‚similar‛.  This enforces physical patterns of order within nature’s 

variety, and these patterns are necessary for sympathetic resonance to occur, because 

particles that are congruent share the same vibrational frequencies, whereas the 

vibrational frequencies of similar particles are in ratios such as the perfect fifth – 

Hooke’s favourite.  Moreover, the similar points and planets are proportional, 

forming a chain of ratios from the microscopic to the macroscopic, which creates a 

constant of proportionality that becomes important for Hooke’s formulation of the 

spring law later on.  This is important because the spring law is perhaps the best 

demonstration of how his concept of geometry works in practice as well as why he 

needs it for his physics.  Indeed, in Of Spring, Hooke provides a refined version of 

the above citation, rejecting descriptions of quality such as ‚Light‛, ‚Glass‛ and 

‚Air‛ in favour of ‚Heterogeneous motions‛ and ‚proportion‛: 
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Heterogeneous motions from without are propagated within the solid in a direct 

line if they hit perpendicular to the superficies or bounds, but if obliquely in ways 

not direct, but different and deflected according to the particular inclination of the 

body striking, and according to the proportion of the Particles striking and being 

struck.301   

Here Hooke generalizes particular substances to ‚Particles striking and being 

struck‛, and replaces visible light with insensible sound vibrations, that is, of 

frequencies well above the limits of human hearing, which travel in straight lines.  A 

reader familiar with the earlier Micrographia paragraph may expect a reference to the 

refraction of light again owing to his diction, but in Of Spring, Hooke subverts light 

with ‚motions‛, employing the same practical geometry for both light and sound. 

This adaption of optics to acoustics maps onto Hooke’s ambition to extract 

knowledge beyond sense limits.  Light rays are sensible: they can be manipulated, 

traced and measured – but Hooke lacks this luxury with sound.  Where in the 

Micrographia Hooke treated light as sound, here in Of Spring his solution is to treat 

sound as though it were light geometrically to ‘see’ constructions of sound which 

can thus be manipulated like light.  It is a way to 

construct a theoretical framework that breaks the 

boundaries between sensibles and insensibles by 

mathematising the interactions of vibrational 

frequencies with matter.  Thus a line, in addition to 

allowing Hooke to analyse a point in motion, such as a 

flaming granado – for recall that ‚a Point moved makes 

a Line in the Mathematical Sense‛ – also enables him to 

geometrically describe points strung together into 

physical lines in nature and art, and motions (the 

propagation of ‚power‛ or ‚force‛) from one point to 

another.   

 

                                                 
301 Hooke, Of Spring, 12. 

Figure 5.2 A plate of Hooke’s 
optical instruments; “Fig. 2”  
depicts the refractometer 
(Micrographia). 
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RAYS 
Drawing lines as representations of physical motions and forces is not novel, 

but Hooke’s matter-as-vibrations aspirations are.  By putting a line or ray under the 

microscope, turning it into a ‚parallelogram‛, Hooke can describe and discuss these 

motions in two dimensions.  He can then make conjectures on refraction and motion 

in the magnified area between a pair of parallel lines.  When it comes to further 

developing his metaphysics of vibration, especially mathematically, this is beneficial 

because applying ray optics and the laws of reflection and refraction to his theory of 

congruity and incongruity allows Hooke to analyse more complicated matters such 

as how the attractive power of congruity diminishes with distance, the reflection of 

incongruous vibrations, the refraction of similar ones, and so on.  

For example, in the Micrographia’s ninth observation, Of the Colours observable in 

Muscovy Glass …, Hooke claims that an ‚exceeding quick‛ and ‚very short vibrating 

motion‛ is necessary ‚to produce the effect call’d Light in the Object‛.  A ‚Diamond 

[which shines more when struck] being the hardest body we yet know in the World, 

and consequently the least apt to yield or bend, must consequently also have its 

vibrations exceeding short.‛302  Hooke will shift 

reference frames for his explanation of what light is.  

Here, his first frame of reference is vibrations; his second 

is the ‚Object‛, which is compounded of bodies or points 

‚susceptible‛ to this kind of motion.  When this vibration 

propagates from susceptible point to point, ‚through the 

interpos’d pellucid body to the eye‛, it produces the 

effect of light in these objects, which is observed as a ray.  

The ‚motion is propagated every way through an 

Homogeneous medium by direct or straight lines extended 

every way like Rays from the centre of a Sphere < with 

                                                 
302 Hooke, Micrographia, 55, 56. 

Figure 5.1 Hooke’s refractive 
index, enclosed in a letter sent 
to Robert Boyle (Gunther, 
Early Science in Oxford, Vol. 
6, 1930 [1664]). 
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equal velocity,‛ and similarly to water ripples, ‚all parts of these Spheres undulated 

through an Homogeneous medium cut the Rays at right angles‛ to the direction of 

propagation.  He would later reiterate this concept in Lampas.303   

‚But because all transparent mediums are not Homogeneous to one another,‛ 

Hooke wants to better explain ‚how this pulse or motion will be propagated 

through differingly transparent mediums.‛  He states ‘Descartes’s law’ of refraction as 

a preliminary,304 supposing ‚the sign *sine+ of the angle of incidence in the first 

medium to be to the sign of refraction in the second.‛305  But Hooke does not simply 

take the sine law on authority.  Rather, in the Micrographia’s preface, he agrees with 

‚the Laws of refraction‛, again, ‚that the lines of the angles of Incidence are 

proportionate to the lines of the angles of Refraction‛, because he has experimentally 

verified them – finding that the angles and proportions of the ‚hypothetical sines‛ 

correspond closely to the respective angles and proportions found by experiment.306  

In a 1664 letter to Boyle, Hooke encloses his tabulated results (Figure 5.1), which 

show that empirical trials support the ‚hypothesis of sines‛.307  Consequently, 

Hooke describes in painstaking detail how to build and use a refractometer of his 

own invention (Figure 5.2, ‚Fig: 2‛).308  Thus, with the ‚hypothesis of sines‛ as his 

theoretical foundation, he constructs ‘parallelograms’ to represent a ray ‚refracted 

towards the perpendicular‛ of a ‚plain surface NO‛ as it moves from a 

‚Homogeneous transparent medium LLL‛ into ‚the medium MMM‛ (Figure 5.3, ‚Fig: 

                                                 
303 Hooke, Micrographia, 56.  Later, in Lampas, Hooke reiterates that this ‚motion we suppose to be 

propagated by a Pulse or Wave in all uncoloured Rays at Right Angles with the Line of Direction‛ 

(Hooke, Lampas, in Cutlerian Lectures, 39). 
304 Although the law of refraction was first published by Descartes, Willebrord Snellius (Snell) worked 

on the same law simultaneously, and it is possible that Descartes saw Snell’s papers.  Though there is 

evidence that Thomas Harriot had established the same law, and so on.  See A.I. Sabra, Theories of 

Light, especially pp. 99–100; and for a thorough account of Harriot’s work on refraction, see Amir R. 

Alexander, Geometrical Landscapes (Stanford, California: Stanford University Press, 2002), 128, 112–125. 
305 Hooke, Micrographia, 57. 
306 Hooke, Micrographia, Preface.  Hooke, in R.T. Gunther, Early Science in Oxford, Vol. 6, (Oxford: Oxford 

University Press, 1930), 211–212. 
307 Hooke, in R.T. Gunther, Early Science in Oxford, Vol. 6, 212. 
308 Hooke, Micrographia, Preface.   
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I‛).309   

Suppose, Hooke says,  

AFCD to be the physical Ray, or ABC and DEF to be two Mathematical Rays, 

trajected from a very remote point of a luminous body through an Homogeneous 

transparent medium LLL, and DA, EB, FC, to be small portions of the orbicular 

impulses which must therefore cut the Rays at right angles[.]310 

The ray is either a ‚physical Ray‛ ‚of some Latitude‛, or ‚two Mathematical Rays‛, 

and these two types of geometry – practical and speculative – serve different though 

inter-related explanatory functions.311  Because Hooke has magnified a ray segment, 

the physical ray is not a line, but a parallelogram – a superficies, one level up in 

geometrical complexity; and it is cut at ‚right angles‛ by ‚small portions of the 

orbicular impulses‛, the lines DA, EB and FC, like the wave-fronts in Hooke’s water 

ripples analogy.  In Lampas, Hooke again clarifies that ‚the stroke of the Pulse *is+ the 

length of the space between‛ the lines cutting the ray at right angles.312  Or the ray is 

‚two Mathematical Rays‛, namely, the bounding parallel lines of the physical ray, 

which are abstractions of it, and which therefore make the concept of refraction more 

intelligible to the senses according to Hooke’s use of speculative geometry.  Before 

refraction, the segments of these lines are equal, representing ‚equal velocity‛, but 

after refraction, the line segments on the left-hand side mathematical ray, which 

strikes the interface first, change in length to reflect a change in velocity.  According 

to Hooke, ‚the medium MMM‛ ‚is more easily trajected then the former by a third‛, 

so when the incident ray strikes the interface ‚obliquely‛ first with ‚point C of the 

orbicular pulse FC‛, it ‚will be mov’d to H four spaces in the same time that F the 

other end of it is mov’d to G three spaces‛.  Note that, according to Hooke, if the ray 

moves ‚more easily‛ through the medium MMM, then that medium is the denser, 

not the rarer, one.  That is, he believes light travels faster in a denser medium – like 

sound; this is an interesting error for it traces, again, Hooke’s developing 

                                                 
309 Hooke, Micrographia, 57. 
310 Hooke, Micrographia, 57. 
311 Hooke, Micrographia, 57; Hooke, Lampas, in Cutlerian Lectures, 39. 
312 Hooke, Lampas, in Cutlerian Lectures, 39. 
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metaphysics of vibration to his sound studies, and I will return to it in the 

subsequent section.  Now, that the ray of light is propagated by ‚orbicular pulses‛ 

like water ripples is crucial because it determines how Hooke constructs the 

refracted ray.313       

The smaller pricked circle arc reveals Hooke’s construction lines for obtaining 

the pricked tangent line GT.  GT is perpendicular to the refracted ‘mathematical 

lines’, and gives the direction of the refracted ray according to ‘Descartes’s law’, 

which proposes an inverse relation between the velocities and sines to allow for the 

notion of light speeding up in a denser medium.314  Thus, FG/CT = sin(i)/sin(r) = 4/3 

= vr/vi, where vr represents the velocity of the refracted ray, and  vi, the velocity of the 

incident ray, using the radial distances already 

specified by Hooke.315  After obtaining the 

radius of the smaller pricked line by taking ¾ of 

the line segment FG with his compasses – the 

radius of the incident ‘orbicular pulses’ – Hooke 

uses point C as his new centre, and draws the 

smaller pricked arc,  

for the sign [sine] of the inclination is to be the sign 

of refraction as GF to TC the distance between the 

point C and the perpendicular from G on CK, 

which being as four to three, HC being longer then 

GF is longer also then TC, therefore the angle GHC 

is less than GTC.316 

The larger pricked circle arc, around centre C, 

reveals how Hooke obtains the length of what he 

imagines to be the refracted ray’s faster 

                                                 
313 Hooke, Micrographia, 57. 
314 Sabra, Theories of Light. 
315 See Sabra, Theories of Light, 194, 195 (fn. 30) for a more technical as well as hypothetical analysis that 

compares Hooke and Huygens’s treatment of waves; however, note that Sabra is confused about 

Hooke’s statement concerning the direction of the pulses relative to the propagation of light in a 

homogeneous medium.       
316 Hooke, Micrographia, 57. 

Figure  5.3  “Fig: 1”  represents Hooke’s 
concept of optical refraction; “Fig: 4” , 
his hypothesis on colour formation. “Fig: 
7”  illustrates Hooke’s notion of particles 
in a quincunx formation (Micrographia). 
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‚orbicular pulse‛.  With the line segment FG as the radius of the incident ray’s 

‚orbicular pulse‛, and knowing that medium MMM ‚is more easily trajected then 

the former by a third‛, Hooke gets the line CH: he takes the length or distance FG, 

the incident pulse’s velocity multiplied by the time taken for it to traverse from F to 

G, and then further opens his compasses by one third of FG’s length to represent the 

increase in ‚velocity‛ of the refracted impulse line CH.  With this new radius, he 

draws part of ‚orbicular pulse‛ CH, which represents the velocity multiplied by the 

time taken for the refracted pulse to spread from C to H.  This makes sense 

according to Hooke’s description of the changes in velocity that occur from medium 

LLL to medium MMM upon refraction.317   

Focusing now on the ‘physical ray’ and ‚the pulses themselves‛, which ‚by 

refraction acquire another propriety,‛ Hooke draws a tangent line from point G to H, 

and concludes that ‚the whole refracted pulse GH shall be oblique to the refracted 

Rays CHK and GI‛.318  That is, according to Hooke, the refracted pulses represented 

by the parallel lines GH and IK are not perpendicular to the refracted ray’s direction 

of propagation, as in the incident ray, but are ‚oblique‛.  ‚So that henceforth the parts 

of the pulses GH and IK are mov’d ascew, or cut the Rays at oblique angles.‛319  This 

obliquity occurs whether the ray refracts into a denser or rarer medium, as the 

second refracted ray with pulses GS and QR illustrates – by moving away from the 

normal or perpendicular.  Hooke is aware that obliquity is a strange idea, an ‚odd 

propriety‛ ‚of a refracted Ray‛;320 he is also proud of it, claiming that it also 

‚conduces to the production of colours‛.321  Why should refraction change the 

direction of the pulses so that they are no longer perpendicular to the ray’s direction 

of propagation, but are instead ‚oblique‛ to it?  Or to borrow from Hooke, why 

should ‚the pulse *be+ made oblique to the progressive, and that so much more, by 
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how much greater the refraction is‛?322  One answer is that the pulses are oblique 

because angle GTH is ninety degrees;323 this is a purely mathematical explanation, 

which works well at the level of the senses to make the concept more 

comprehensible and imaginable.  But Hooke’s mathematics stems from the physical 

world, not the other way around, just as his use of ‘Descartes’s law’ stems from 

results obtained during his refractometer trials.  Hooke building the instrument, 

filling the box with liquid, adjusting the rulers to trace the ray, looking through the 

sights and measuring angles of ‚inclination‛ and ‚refraction‛ with ‚cross threads‛ is 

what makes the geometry taken from this process meaningful to him, and what 

gives the natural law its power.324  Hooke’s hypothesis on ‚the production of 

colours‛, which uses this notion of oblique or deflected pulses as its foundation, 

provides a physical answer for how and why vibrating lines of light display this 

‚odd propriety‛ when moving through transparent media with different refractive 

indices.  

 

STRINGS 
A few years after the Micrographia, in his 1672 critique of Isaac Newton’s ‚New 

Theory About Light and Colors‛ (henceforth New Theory), Hooke takes care to explain 

his light strings and sound rays: 

 [the] string (by the way) is a pretty representation of the shape of a refracted 

[light] ray to the eye; and the manner of it may be somewhat imagined by the 

similitude thereof: for the ray is like the string, strained between the luminous 

object and the eye, and the stop or fingers is like the refracting surface <325   

This loaded aside, typical of Hooke, gives away his real concerns.  Hooke’s critique 

is more than a defence of his own hypothesis of light and colours; it is a defence of 

his matter theory, for which he constructed an ontological and epistemological 
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framework in the Micrographia with a musical strings analogy, and from which 

natural laws, such as the inverse square law, and Hooke’s law, follow.  In his critique 

of Newton’s New Theory, Hooke defends the ideas on light and colour that he 

developed in the Micrographia: he maintains that light and colour are effects, and 

attempts to explain how these effects are produced from two different frames of 

reference: vibrations and susceptible vibrating bodies.326  Most importantly, Hooke 

begins and ends his critique with the ‚supposition‛ that light  

is nothing but a pulse or motion, propagated through an homogeneous, uniform 

and transparent medium: and < colour is nothing but the disturbance of that 

light, by the communication of that pulse to other transparent mediums, that is, by 

the refraction thereof.327   

And ‚so long as those motions remain distinct in the same part of the medium or 

propagated ray, so long they produce the same effect, but when blended by other 

motions, they produce other effects [that is, colours+‛.  A ‚direct contrary motion‛ 

‘destroys’ and ‘reduces’ a colour ‚to the first simple motion *white light+‛.328  This is 

his particular yet general version of the ‘modification hypothesis’ of light and colour, 

popular in the seventeenth century,329 and to explain, Hooke refers back to his work 

in the Micrographia.  For example, ‚Fig: 4‛ (see Figure 5.3) is an attempt to capture 

congruous and incongruous vibrations, their parts represented by lines as refracted 

rays superimpose and blend to produce colours.  In this way colours, similarly to 

visibly refracted rays, are a visibly sensible representation of congruity and 

incongruity.  And in his analysis of colours Hooke expects that the reader takes his 

previous statements on optical refraction, examined in the last section, as axioms – 

especially the ‚odd‛ idea that ‚the pulse is made oblique to the progressive‛ line of 

direction of a refracted ray, which contributes ‚to the production of colours‛.   

As before, thinking of magnified lines – or more appropriately rays – as 
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parallelograms, Hooke reasons that if the ray strikes a refractive superficies 

obliquely, then ‚that part or end of the pulse which precedes the other‛ must be 

‚impeded by the resistance of the transparent *denser+ medium, then the other part or 

end of it which is subsequent, whose way is, as it were, prepared by the other‛.330  

In addition, the preceding end of the ray will be ‚especially [impeded] if the adjacent 

medium‛ is not ‚agitated‛ ‚in the same manner‛ – in other words, if the vibrations of 

its particles are incongruous with the ray’s pulses.  And colours are not produced 

because of innate properties that compound to create white light; rather, colours 

result when an ‚infinite‛ number of refracted ‚Rays collateral‛ superimpose with 

their pulses deflected from the perpendicular331 – Hooke’s ‚odd propriety‛.  Thus, 

for colours to form in accordance with Hooke’s matter theory there needs to be a 

relation between the refracted rays with their oblique pulses, which are analogous to 

stretched musical strings ‚strained between the luminous object and the eye‛ and 

bent by refracting ‚fingers‛, and the physical, ‚agitated‛ or vibrating medium 

through which these rays transmit.  To put it more in terms of ‘congruity and 

incongruity’, colour is produced amongst the more or less incongruous vibrations of 

the light-refracting medium when the oblique pulses of refracted rays superimpose.  

Geometrically (Figure 5.3, Fig: 4‛), 

the Ray AAAHB will have its side HH more deadned by the resistance of the dark 

or quiet medium PPP, whence there will be a kind of deadness superinduc’d on the 

side HHH, which will continually increase from B, and strike deeper and deeper 

into the Ray by the [hatched] line BR[.]332      

To explicate with blue, ‚all the parts of the triangle, RBHO will be of a dead Blue 

colour, and so much the deeper [blue] by how much nearer they lie to the 

*mathematical+ line BHH‛.  Recall from Hooke’s refraction diagram (Figure 5.3, ‚Fig: 

1‛) that the mathematical line on the left-hand side, labeled here as BHH, strikes the 

refractive surface first; and thus it is the faster yet weaker part of the pulse, or the 

part ‚which is most deaded or impeded‛.  Consequently, the deep blue, formed on 
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the extremity of this line where its vibrations are most ‘in contact’ with the 

incongruous vibrations of the surrounding and penetrating medium, become ‚so 

much the more dilute, by how much nearer it *the medium+ approaches the line BR‛, 

where blue finally overlaps into the oblique pulses that produce the hues of green.  

Examining the diagram from left to right, the greens run into yellows and oranges; 

the latter are ‘dilutions’ of red, or the stronger yet slower extremity of the ray AAN.  

Next on the other side of the [mathematical] Ray AAN, the end of A of the 

[physical] pulse AH will be promoted, or made stronger, having its passage 

already prepar’d as ‘twere by the other parts preceding *that is, line BHH+, and so 

its impression will be stronger <333 

In other words, red results from the stronger yet slower portion of the pulse 

succeeding the part BHH, the vibrations of which penetrate into the medium.  

Hooke explains it thus:  

because of its obliquity to the Ray, there will be propagated a kind of faint motion 

into [the medium] QQ < which faint motion will spread further < into QQ as the 

Ray is propagated further < from A, namely, as far as the line MA, whence all the 

triangle MAN will be ting’d with a Red, [which] will be the deeper the nearer it 

approaches the line MA, and the paler or yellower the nearer it is the line NA.334   

It is evident, from Hooke’s attempt to capture parts of these spherically 

spreading motions geometrically, that his theory of congruity and incongruity is 

woven inextricably into his hypothesis on light and colours.  And that his 

constructions of ‘mathematical and physical rays’, with lines cutting across 

parallelograms to represent parts of ‚orbicular pulses‛, are a means for him to make 

these ‚parts‛ and ‚portions‛ of the natural world more comprehensible both to the 

senses and the imagination.  Defining white light as an undisturbed ‚pulse‛ 

propagated through a  

homogenous < transparent medium‛, and colour as ‚the disturbance of that light‛, 

accordingly defines the epistemological significance of light for Hooke.  He rejects 

Newton’s ‚connate [innate] properties‛335 of light because if all sounds are already 
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in any string,336 whether ‚strained‛ like a ray ‚between the luminous object and the 

eye‛ or like a monochord distended by weights – as Newton claims about all colours 

in any ‘string’ or ray of white light – then all matter, irrespective of size, shape, 

density and tension, can be congruent or incongruent.  Moreover, any ‚Object‛, 

body or point could propagate light.  But according to Hooke’s notion, when 

explaining to Newton how the effects of light and colour are produced from the 

reference frame of ‚susceptible‛ bodies, ‚as many colours as degrees thereof as there 

may be, so many sorts of bodies there may be‛, though he doubts that all the bodies 

in the world compounded would make white light.337  Hooke also grants that ‚all 

luminous bodies are compounded of such substances condensed‛;338 recall from 

Part I that this supposition forms part of his explanation for what he would later dub 

a ‘chime of motions’ in his Lectures of Light; that is, how different waves can cross.  

What Hooke refuses to allow is that white light is made of ‚connate properties‛.   

Forced to summarise the main points from several of the Micrographia’s 

observations in his 1672 critique of Newton’s hypothesis, such as the structural 

colours observable in Muscovy glass as well as peacock feathers and butterfly wings, 

Hooke reiterates that 

The motion of light in an uniform medium, in which it is generated, is propagated 

by simple and uniform pulses or waves, which are at right angles with the line of 

direction; but falling obliquely on the refracting medium, it receives another 

impression or motion, which disturbs the former motion, somewhat like the 

vibration of a string < 339  

Now, according to Newton’s New Theory,  

Light is not similar, or homogeneal, but consists of difform Rays, some of which 

are more refrangible than others: So that of those, which are alike incident on the 

                                                                                                                                                        
Newton's Papers and Letters on Natural Philosophy, 53. 
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same medium, some shall be more refracted than others, and that not by an virtue 

of the glass, or other external cause, but from a predisposition, which every 

particular Ray hath to suffer a particular degree of Refraction.340 

Based on prism experiments begun in 1666, Newton argues that seven of these 

‘particular degrees of Refraction’ are crucially not altered by a second refraction, 

leading him to conclude that these angles produce primary colours or rays.341  

Therefore, colours are ‚not Qualifications of Light, derived from Refractions, or 

Reflections < (as ‘tis generally believed,) but Original and connate properties‛.342  

Newton’s concept of light ‚not similar, or homogeneal‛, not refracted by an ‚external 

cause‛, but with ‚a predisposition‛ where some rays ‚shall be more refracted than 

others‛ is the antithesis of all seventeenth century modification hypotheses of light 

and colours, including Hooke’s wave hypothesis.343  Acceptance of Newton’s 

ontology of light, namely, that ‚Light it self is a Heterogeneous mixture of 

differently refrangible Rays‛, ‚a confused aggregate < indued with all sorts of 

Colours‛344, would destroy Hooke’s continuous efforts to develop and establish his 

cosmology, because it is incommensurable with his epistemological need to show 

that matter is either congruous or incongruous based on vibrations, the latter 

represented geometrically with parallelograms and lines. 

After reading Hooke’s critique of his New Theory, Newton seems to have 

picked up on Hooke’s primary anxiety – his protectiveness of his metaphysics of 

vibration, for Newton attempts not only to subvert Hooke’s stretched musical strings 

analogy, but to convince his readers that Hooke’s ‘congruity and incongruity’ is 

‚impossible‛.  Newton had pored over Hooke’s Micrographia in 1665,345 and 

possessed intimate knowledge of its contents, as is further evidenced when he 

seemingly (at first) tries to convince Hooke that their competing hypotheses cohere 
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by showing him that it is possible to wed the theory of congruity and incongruity, as 

concerns light (and sound), to the ‚New Theory‛ on light and colours.  The 

‚Objectors *Hooke’s+ Hypothesis,‛ Newton claims, ‚as to the fundamental part of it, is 

not against me.‛346  According to Newton’s interpretation, the ‚Fundamental 

Supposition‛ of Hooke’s work on light in the Micrographia consists of what happens 

to it before it is incident upon the surface of a denser medium and then afterwards 

when it strikes the retina: 

That the parts of bodies, when briskly agitated, do excite Vibrations in the Aether, 

which are propagated every way from those in straight lines, and cause a 

Sensation of Light by beating and dashing, against the bottom of the Eye, 

something after the manner that Vibrations in the Air cause a Sensation of Sound 

by beating against the Organ of Hearing.347   

This summary leaves out Hooke’s ideas on refraction and colour so that Newton can 

replace them with his ‚New Theory‛, carefully modified to mesh with obviously 

paraphrased parts of the Micrographia.   

For example, Newton begins his first statement by borrowing from Hooke’s 

stretched musical strings analogy for congruity and incongruity.  In his rendition, he 

breaks apart the strings argument from analogy by leaving the metaphor behind, 

taking only its meaning as concerns sizes of particles vs. their vibrations: ‚That the 

agitated parts of bodies, according to their several sizes, figures, and motions, do 

excite Vibrations in the aether of various depths or bignesses,‛ Newton claims, 

sounding like Hooke, before adding his own twist, ‚which being promiscuously 

propogated through that Medium to our Eyes, effect in us a Sensation of Light of a 

White colour‛.348 

But if by any means those of unequal bigness be separated from one another, the 

largest beget a Sensation of Red colour, the least or shortest, of a deep Violet, and 

the intermediates, of intermediate colors[.]349 

Newton ends by qualifying the insertion of his own ideas amongst Hooke’s – in this 
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case by returning to a musical analogy.  These bodies of light, separated, act ‚much 

after the manner that bodies, according to their several sizes, shapes, and motions, 

excite vibrations in the Air of various bignesses, which, according to those bignesses, 

make several Tones in Sound‛.350  He employs this rhetorical device of separation 

(of Hooke’s text), replacement and insertion (of his own text) throughout his reply, 

progressively adding more of his own ideas and less of Hooke’s, first, to convince 

his readers that his ‚New Theory‛ improves Hooke’s ‚insufficient‛ wave 

‚hypothesis‛, which is ‚in some respects to me (at least) un-intelligible‛, and second, 

to argue that his abstracted presentation of light needs no hypothesis.351  It becomes 

clear as the text proceeds that Newton makes use of musical analogies specifically in 

response to Hooke’s comparison of a ray of light with a tense musical string in the 

latter’s critique, which Newton attempts to subvert by abstracting the string into 

several ‚false‛ strings: ‚For if light be consider’d abstractedly without respect to any 

Hypothesis, I can as easily conceive, that the several parts of a shining body may emit 

rays of differing colours < *like+ the several parts of a false or uneven string‛,352   

since (even by the Animadversor’s concessions) there are bodies apt to reflect rays of 

one colour, and stifle or transmit those of another; I can easily conceive, that those 

bodies, when illuminated by a mixture of all colours, must appear of that colour 

only which they reflect.353   

In this way, Newton performs a hostile reformulation and abstraction of Hooke’s 

concept of congruity and incongruity – for example, ‚bodies apt to reflect‛ are 

incongruous with the reflected ‚rays‛ – with his own ‚Doctrine‛ of seven primary 

rays of colour.  Thus, according to him, Hooke’s single-string analogy is untenable in 

the case of light because ‚when the Objector would insinuate a difficulty in these 

things, by alluding to Sounds in the string of a Musical instrument before percussion 

< I must confess, I understand it as little, as if one had spoken of Light in a piece of 
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Wood before it be set on fire <‛354  Here, instead of separating the analogy from its 

metaphor as before when he pulled apart Hooke’s vibrating strings model of 

congruity and incongruity, Newton takes the single string metaphor literally to 

make it seem ridiculous, and in doing so purposely misses Hooke’s point.  But recall 

that for Hooke white light is not corpuscles, but vibrations, and colour is caused 

when this vibration is modified upon refraction, and ‚mixt‛ or ‚blended‛ with at 

least one other colour-producing wave, which is what Hooke’s single-string analogy 

describes.  Yet Hooke’s fusion of light and sound does come with an intellectual cost, 

if not exactly the one envisioned by Newton.   

Although Hooke’s conclusions on refraction result from experiments that 

manipulate light in a controlled, artificial environment, and the angles and ratios 

taken with his refractometer, Hooke’s initial observations stem from studying the 

transmittance of light through porous and pellucid bodies with his microscopes.  

Like the ‚Interstitia of the world, that lies between the bodies of the Sun and Starrs, 

and the Planets, and the Earth‛,355 close-packed microscopic points form ‚pores‛ 

through which ‘lines’ of vibrations may transmit.  For example, during Hooke’s 

experiments on ‚kettering stone‛ (a globular body composed of microscopic 

globules, known today as ‚Ketton stone‛356), he claims that ‚the smaller those pores 

are, the weaker is the Impulse of light communicated through them, though the more 

quick be the progress‛.357  As mentioned earlier, Hooke’s error regarding the 

quickening of light in a denser medium results from a confusion of light and sound – 

that is, a mistake of similitude.   

In the Micrographia’s preface, Hooke recounts acoustical experiments where he 

bends sound around corners with wires, sends sound through thick walls, and very 

roughly compares the speed of sound with the speed of light.  Birch and Waller 
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provide better descriptions of some of these experiments.  According to Birch,  

Mr Hooke read a discourse concerning the way of conveying force to a great 

distance, which he conceived would best be done by some stiff and inflexible rod 

*in Hooke’s words, a material line+, as a Wire, or long pole, or the like and shewed 

the experiment communicating a force given in the inner hall of Gresham-college 

across the quadrangle by means of a packthread, which was found to perform to 

satisfaction.358   

Waller adds his own summary in the Posthumous Works, stating, ‚it was observed, 

that the sound was propagated instantaneously, even as quick as the motion of 

Light, the sound conveyed by the Air coming a considerable time after that by the Wire‛.359  

Thus sound moves faster in a denser medium, and because of similitude, Hooke 

concludes that light does too.  Hooke never changes his mind about this, reiterating 

and arguing the point in various phases of his career.360  Yet the properties shared 

by light and sound allow Hooke to apply practical-geometrical optics to the study of 

acoustics for the development of his dynamic concept of matter-as-vibrations, which 

sits on foundations of resonance, as demonstrated well by the musical strings 

analogy. 

 

MONOCHORD 
The power of Hooke’s practical geometry is uniquely demonstrated in 

reversing the epistemological role of the Pythagorean monochord.  As I have shown, 

Hooke’s strings account for all the fundamental properties of matter, such as the 

differences between solids and fluids; and his mathematics is contingent upon 

physical reality.  As a consequence, he reverses the epistemological role of the string 

by exhibiting that all sounds, including consonant chords, are dependent not on an 

underlining structures of simple ratios but on physical causes. 

The monochord is an instrument as old as Pythagoras, a device designed to 

inspire awe over the simple, perfect, harmonic ratios of nature, and to study these 
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proportions by manipulating the length of a string.361  Abstracted and idealised, the 

string as a line allowed Platonist mathematicians to enforce the idea that 

mathematical harmonies precede, underlie and are independent of nature’s material 

infrastructure.  But recall that Hooke’s concept of sound is that it is ‚nothing but 

strokes within a determinate degree of velocity‛,362 and that sound is musical when 

these strokes – vibrations – are isochronous,363 because if they were not isochronous 

then the pitch would change.  Thus for Hooke, consonance and dissonance depends 

not on abstractions, but on the material structure of the string.  

This order of discussion in Hooke’s text – that is, starting with strings – creates 

an appearance of order.   Namely, each tone has a unique vibrational frequency based 

on the size, shape, density and tension of its parts, independent of all harmonies.364  

Hence the physical string, an elastic body, provides ontological illustration, whereas 

the string abstracted multiplies entities without necessity; and harmonies such as the 

perfect fifth are not pleasing because of a mathematical substrate, but are simply 

pleasing to human ears, because their vibrations are congruous.  Indeed, Hooke’s 

sound wheels, examined in Part I, demonstrate the isochrony principle even better 

than his strings.  But Hooke is aware that the sound wheel is a new instrument, and 

so lacks the mathematical history necessary to role of the monochord, which he takes 

full advantage of with his strings analogies, employing consonances such as the 

octave and the perfect fifth as explanatory tools for congruity. 

As discussed, in the second half of the 17th century and a little into the 18th, 

Hooke lectured arithmetic, theoretical and practical geometry for 37 year while 

simultaneously ensuring that Gresham College became an epicentre of experiments 
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because of his position in the Royal Society.365  Yet the type of teaching and practice 

of practical geometry that Hooke lectures, where a vibrating point is defined as 

having extension and a line is defined as ‚Physical < of some Latitude‛, is to the 

best of my knowledge uniquely his.366  The Renaissance humanist Leon Battista 

Alberti made a similar attempt at physicalising practical geometry.  In his 

trailblazing De Pictura, Alberti writes: ‚*the mathematicians+, in fact, measure figures 

and shapes of things with the mind only, without considering the materiality of the 

object‛367.  Alberti’s aim was to present a new materialised geometry for a particular 

vocation; as such, at first glance it may appear as if Alberti and Hooke stand on 

common ground where practical geometry is concerned; that is, the physicalisation 

of abstract definitions.  Yet the fundamental difference is that Alberti’s geometry, 

designed to instruct painters in the art of linear perspective, is static – the vanishing 

point and the viewer are always at rest.  Moreover, it is necessary for Alberti to stress 

the ‚materiality‛ of his geometry because he does not consider parts of nature 

insensible to the naked eye as objects hence as subjects of painting.368  Although this 

permits the painter to ‚represent the dead to the living many centuries later‛,369 it 

still allows only sensible representation, not the materialisation of imaginary 

‚invisible elements‛370 such as particles, for instance.  Hooke’s practical geometry is 

designed for natural philosophising, and is dynamic because rest is ‚quite contrary to 
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the grand Oeconomy of the Universe‛;371 his points, which represent all globular bodies 

from particles to planets, belong to this physical reality.  The seeming geometrical 

comradeship between Alberti and Hooke cracks with the former’s definitions for 

point and line:  

Before anything else, therefore, one must have understood that the point is a sign, 

so to speak, that in no way can be divided into parts.  By sign, here I mean anything 

that rests on a surface so that it can be observed by the eye < The points will 

certainly make a line if they are joined without interruption, according to a 

sequence. Consequently, for us [painters], the line will be a sign, the length of 

which is certainly possible to divide into parts, but [its] width will be so thin that it 

[the width] can never be divided.372 

Thus, although Alberti’s attempt is similar to Hooke’s, the latter’s practical geometry 

is crucially different at a fundamental level: Hooke’s points and lines are 

infinitesimally divisible.  And although Alberti and Hooke agree on the notion that 

observation of nature ought to precede imagining nature, in his Basel version of De 

Pictura (the final 1540 Latin draft),373 Alberti states in his prologue to Filippo 

Brunelleschi that the first book is ‚entirely on mathematics, [and] causes this 

pleasant and most noble art *painting+ to spring from its roots in Nature‛.374  This 

declaration, that the art of painting has ‚roots in Nature‛ owing to the underlying 

mathematics shared by both, has more in common with Kepler’s harmonies of the 

world than Hooke’s approximations, pulled from physics and dependent on the 

power, accuracy and precision of artificial instruments. 

Indeed, Hooke’s practical geometry creates a tense dichotomy that is both 

caused and resolved by approximation.  To recapitulate, on the one hand, Hooke is 

disappointed by the limitations imposed upon him by technology, and by extension 

by his understanding that both practical and theoretical tools are approximations; on 

the other hand, Hooke is also excited at the prospect of building a microscope 

powerful enough to reduce nature to the rudeness of art, to reveal that its sharp lines 

                                                 
371 Hooke, Micrographia, 16. 
372 Alberti, On Painting, l. 446.  Italics added. 
373 Rocco Sinisgalli, ‚Introduction‛, in Alberti, On Painting, l.182. 
374 Alberti, On Painting, l. 426. 
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are rugged as razors;  additionally, translating insensible knowledge back to human-

sized limits is necessary if it is to have utility.  In other words, knowledge of nature 

must necessarily remain a human approximation if it is to be of practical and 

intellectual value to us.  For example, and as discussed in Part I, enforcing an 

ordered musical scale onto the relatively novel idea of vibrational frequencies creates 

a ladder of pitches and consonances capable of descending into infrasound and 

ascending into ultrasound silences while at the same time remaining grounded by 

the limited keyboard of a harpsichord and its twelve notes.   

Hooke teaches from as early as 1665 that not only should the practical precede 

the speculative, but also that practical geometry is a better representation of art and 

nature than speculative geometry.  In his 1685 Lectures concerning Navigation and 

Astronomy, Hooke explains this by asking his audience to consider the line, which he 

defines as ‚not a length without bredth, as in pure and speculative Geometry, but a 

length that hath the least sensible bredth that can be describ’d, such as a Line drawn 

with the point of a very sharp Needle‛375 – such as the very sharp Needle in the 

beginning of the Micrographia.  Hooke next instructs his audience to consider the 

simplest line: ‚the shortest that can be drawn between two Points‛,376 to pronounce 

how straight lines are ‚taken for granted‛ in speculative geometry, exemplifying the 

ease of defining them theoretically vs. the difficulty of drawing straight lines 

practically in art and in nature.  He complains that 

in speculative Geometry, ‘tis put for a Postulatum, that such a Line may be 

suppos’d drawn, or is easy to be drawn; but in practical Geometry we must 

consider of the means how to draw it actually, which in some cases is not so easily 

perform’d, if extraordinary truth and exactness be requir’d.377   

Rulers bend, needles blunt, the human hand often fails to follow a perfectly straight 

line.  And it is next-to-impossible to find a perfect plane to, for example, construct an 

‘ideal’ ruler.  Gravity and the air also bend lines into curves: evoking an image of 

Galileo’s chain line drawing, a catenary curve which Galileo incorrectly devised as a 

                                                 
375 Hooke, Lectures concerning Navigation and Astronomy, in Posthumous Works, 521. 
376 Hooke, Lectures concerning Navigation and Astronomy, in Posthumous Works, 521. 
377 Hooke, Lectures concerning Navigation and Astronomy, in Posthumous Works, 521. 
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way to draw parabolas for studies of projectile motion, and ‚(which has of late Years 

much exercised the Speculative Geometers to contemplate, and they have given it 

the name of the catenaria)‛,378 Hooke shows that ‚streigning a fine Wire, or Hair, or 

fine Silken Clew between two Points‛ significantly also does not describe a straight 

line, because even though a ‚Hair, or fine Silken Clew‛ may be considered virtually 

weightless, on account of its own physicality 

such a Line can never be streign’d strait whatever strength it be streign’d withal; 

for its own weight shall make it bend down in the middle, as has been sufficiently 

demonstrated by the ingenious Galileo, and Mersennus, and divers others; 

especially if there be any considerable distance between the two Points.379   

Finally, Hooke generalises the particular scenario of the silk line pinned between 

two points by applying his arguments concerning it to the ‘straightest’ line 

observable in nature: light.   

[F]or not again to mention the bending of Rulers or Line, which ‘tis impossible to 

prevent, even the sight itself, that is the Ray of Light, passing from Point to Point 

through the Air, is not a strait Line as to its Position, by reason of the differing 

Refraction which is in the Medium of the Air, which I my self have very often 

prov’d by Observation, finding the same three Points [of position used to measure 

changes over time,] which appear at one time in a straight Line, at another time, 

sometimes within half an hour, have appear’d out of it very considerably, which I 

have very often diligently remark’d.380 

Light has no truly homogeneous medium through which to propagate;381 thus, just 

                                                 
378 Hooke, Lectures concerning Navigation and Astronomy, in Posthumous Works, 531.  Gal and Chen-

Morris, Baroque Science, 128; Tito M Tonietti, And yet it is heard, Vol. 2 (Basel: Birkha  user, 2014), 215–

216. 
379 Hooke, Lectures concerning Navigation and Astronomy, in Posthumous Works, 521. 
380 Hooke, Lectures concerning Navigation and Astronomy, in Posthumous Works, 522.  For an illustration of 

Hooke’s points of position, see ‚Fig: 1‛ in the 37th scheme of the Micrographia, which pertains to 

Observ. LVIII ‚Of a new Property in the Air, and several other transparent Mediums nam’d Inflection …‛  

In Observ. LVIII, Hooke superimposes imaginary points and lines over a drawing of an experimental 

apparatus – a glass tank filled with a supersaturated and gradational solution of brine – in order to 

refract a sunbeam and create an artificial environment of atmospheric refraction. The points in ‚Fig: 

1‛, similar to the points of position here, serve as locations for comparison between the inflected 

physical ray and an imaginary rectilinear pricked line above it, which represents how the ray would 

have appeared without being refracted in the atmosphere.  Relative to the imaginary line of the 

incident ray, the inflected ray proves bent, satisfying the requirements of Hooke’s ‚ocular 

demonstration‛ that ‚the parts of the medium being continually more dense the neerer they were to 

the bottom, the Ray < was continually more and more deflected downwards from the streight line‛ 

(Hooke, Micrographia, 220).   
381 See also, for example, Hooke, Micrographia, 56–7, 220 and 228. 
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as lines of art prove bent or rough when viewed with a powerful enough instrument, 

and just as this can be mimicked macroscopically with chain lines, there are no 

straight lines in nature; and speculative geometry is an abstraction and hence cannot 

represent physical reality more precisely, which recall was Proclus’s claim.  This 

conclusion relieves Hooke of some of his anxieties about the technological limits of 

artificial instruments as mediators between nature and ‘human approximations’382 

enforced upon it, because nature is not in lines drawn between two points; nature is 

approximations.   

 

6. SUPERFICIES 

A point is a body with latitude and longitude.  A line is ‚a length that hath the 

least sensible bredth that can be describ’d‛.  In addition, ‚innumerable Lines do 

make a Mathematical Superficies‛383 in Hooke’s speculative geometry, so lines with 

breadth and depth make a physical surface in his practical geometry.  The first 

superficies that Hooke presents as his third observation in the Micrographia is ‚fine 

Lawn, or Linnen Cloth‛ – ‚another product of Art‛. 384  He notes that ‚the threads 

were scarce discernible by the naked eye‛, but more importantly how ‚an ordinary 

Microscope‛ exposes the proportionality of the threads in the lawn’s warp and weft, 

which when magnified look like ropes: ‚what proportionable cords each of its threads 

are, being not unlike, both in shape and size, the bigger and coarser kind of single 

Rope-yarn, wherewith they usually make Cables.‛385  A second feature that Hooke 

confirms is the cause of the lawn’s diaphanous appearance: a ‚multitude of square 

holes which are left between the threads,‛ which appear ‚to have much more hole in 

respect of the intercurrent parts‛ – like ‚a lattice-window, which it does a little 

                                                 
382 Also see Gal and Chen-Morris, Baroque Science, Part II. 
383 Hooke, The Method of Improving Natural Philosophy, in Posthumous Works, 66–67. 
384 Hooke, Micrographia, 5.  
385 Hooke, Micrographia, 5.  Italics added.   
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resemble, onely the crossing parts are round and not flat.‛386  These two details, the 

‚proportionable cords‛ and the ‚holes‛ in the weaving, preview the various surfaces 

studied in the Micrographia; namely, bodies and their parts and pores.  When Hooke 

compares lawn flax with natural silk one page later, he declares that he can probably 

find a way to make artificial silk that is even better than nature’s,387 despite his 

disappointment with artificial superficies, which ‚when view’d with a Microscope, 

there is little else observable, but their deformity‛.388  This frustration with things 

that are ‚design’d for no higher a use, then what we *are+ able to view with our 

naked eye‛389 further fuels Hooke’s ‚radical instrumentalism‛,390 for recall that if 

one could build microscopes ‚according to the theory of them‛, then one would 

perhaps be able to – in this case – reduce natural silk to the ‘rudeness’ of lawn.  

Better instruments also allow for a more accurate and precise practical geometry, 

and the proportionality that Hooke notices and pays attention to when viewing the 

magnified warp and weft and comparing it to ‚Rope-yarn‛, the structure of which is 

easily noticeable with the naked eye, further helps him to develop his geometry.  

First, it shows him that one ‘rope’ may be substituted for the other – so long as the 

proportionality holds.  Although Hooke has no need to do that here, the idea serves 

him well in a related, later observation, which I will analyse in the subsequent 

section, when he is forced to swap ‘flint’ for larger ‘Cornish Diamants’ because the 

former are too tiny to be viewed with ease under any of his microscopes.  Second, 

the comparison to a ‚lattice-window‛ is no throwaway simile.  Not only does the 

warp and weft ‚resemble‛ the crisscrossing of leadlight cames (the lead frames that 

hold panes together), but the points of crossing form a geometric quincunx pattern 

(four points forming a quadrilateral with a fifth point in its centre), which Hooke 

employs for particles in his studies of refraction and colour (Figure 5.3, ‚Fig: 7‛): 

                                                 
386 Hooke, Micrographia, 5. 
387 Hooke, Micrographia, 7. 
388 Hooke, Micrographia, 8. 
389 Hooke, Micrographia, 8. 
390 Gal and Chen-Morris, Baroque Science, 203.  
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[The particles] (whether round, or some other determinate Figure is little to our 

purpose) are first of a determinate and equal bulk < *and+ are rang'd into the 

form of Quincunx, or Equilaterotriangular order, which that probably they are so, 

and why they are so, I shall elsewhere endeavour to shew.391 

By ‚elsewhere‛, Hooke means ‘Observ. XIII‛, ten levels up in complexity from lawn 

cloth, where he examines the structure of the ‘flints’ and ‘Cornish diamants’ I 

mentioned above, and puts his interest in proportionality to intellectually profitable 

use.  Indeed, examining the Micrographia through lenses of geometry reveals the 

forethought of an epistemological ladder, the meticulousness with which the 

observations are structured, and the consistency in their variety, owing to Hooke 

linking everything to his matter theory.  

 

SCALE 
Several observations after the ‘lattice windows’ of lawn, Hooke moves from 

examining discrete points to figures composed of the coagulation of several 

congruous points.  Namely, substances.  This lifts his observations up a metaphysical 

level to the inanimate natural bodies in ‚Observ. XIII Of the small Diamants, or 

Sparks in Flints‛, and further illustrates some basic mathematical operations 

embedded in his practices.  The association between lawn and crystals is intentional: 

the ordered motions traced by the warp and weft of weaving in linen or silk surfaces 

share a physical hence geometrical similitude with the order in the ‚Diamants‛ and 

‚Flints‛ – both are ‚rang’d into the form of *a+ Quincunx, or Equilaterotriangular 

order‛.392  In between observations on lawn and Diamants, Hooke explicated a 

theory for how the point or globular body ‚proceeded from a propriety of fluid 

bodies, which I have call’d Congruity, or Incongruity‛.  I analysed this in detail in Part 

I; however, it is worth repeating that a ‚body encompast with a Heterogeneous fluid 

must be protruded into a spherule or Globe‛393 because of the incongruous ‚fluid 

                                                 
391 Hooke, Micrographia, 68. 
392 Hooke. Micrographia, 68. 
393 Hooke, Micrographia, 85.  
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forcing equally against every side of it‛394.  Here, in Observ. XIII, Hooke examines the 

lattices or ‚texture‛ of quartz crystals, specifically ‚the regularity of their Figure‛, 

which he claims ‚is the most worthy, and next in order to be considered after the 

contemplation of the Globular Figure‛.  So, next to the globular figure or point, ‚the 

most simple principle that any kind of form can come from‛, arise ‘flints’ and 

‘diamants’, and    

only from three or four several positions or postures of Globular particles, and 

those the most plain, obvious, and necessary conjunctions of such figur’d particles 

that are possible <395 

In other words, Hooke claims that all crystals of this kind can be built up from 

several of ‚the most plain‛ lattices of globular bodies.  He will support this 

mechanically and geometrically.     

Now, the title of this observation is somewhat misleading, as Hooke admits in 

his third introductory paragraph.  The observation is not exactly of flint, because the 

crystals are too tiny even for his compound microscope, so he substitutes them with 

bigger ‚Cornish Diamants *Cornwall quartz+:‛ 

these being very pellucid, and growing in a hollow cavity of a Rock < much after 

the same manner as these do in the Flint; and having besides their outward 

surface very regularly shap’d, retaining very near the same Figures with some of 

those I observ’d in the other, became a convenient help to me for the Examination 

of the proprieties of those kinds of bodies.396       

Again, Hooke’s explanation for the substitution implies the imperative presence of 

proportionality: that is, that ‚Flint‛ crystals and ‚Cornish diamants‛ possess 

geometrical similarity, ‚having besides their outward surface very regularly shap’d, 

retaining very near the same Figures with some of those I observ’d in the other‛.  

This similarity also allows Hooke to replace the particles of flint or quartz with 

‚bullets‛ in a mechanical model designed to demonstrate the claim that these 

particular forms ‚arise only from three or four several positions or postures of 

Globular particles, and those the most plain‛.  To make the mechanical model, Hooke 

                                                 
394 Hooke, Micrographia, 17. 
395 Hooke, Micrographia, 85.  
396 Hooke, Micrographia, 82.  
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appropriates and adapts parts of a semi-thought-experiment suggested by Kepler in 

Strena, seu De nive sexangula, translated as The Six-Cornered Snowflake (1611).397   

In the Snowflake, Kepler studies, amongst other things, beehives, pomegranate 

seeds, mineral crystals and close-packed spheres.  He composed the treatise as ‚a 

most desirable New Year’s gift for the lover of Nothing‛ – his Epicurean398 friend 

and patron Wacker von Wackenfels, and devotes most of it trying to convince 

Wackenfels, also his interlocutor, that ‚the material is certainly not a factor‛ of the 

cause of a snowflake’s form.399  Likewise, upon noting that small pomegranate seeds 

are round, and become rhombi only when squashed together for lack of room, 

Kepler argues that this shape-shift is due to ‚material necessity‛ and not a ‚formal 

property‛ hence it cannot be the ‚real cause of the shape‛, which according to him 

must necessarily be a formal property.400  Similarly, with his studies of beehives, 

even though ‚the *hexagonal+ archetype was imprinted upon it *the bee+ by the 

creator‛, the hive and its individual cells owe their structure to utility, ‚because 

straight frames are stronger‛ and so on.401  Although Kepler’s work is another way 

to put mathematics into physics, from his claim about the material it is obvious that 

Kepler and Hooke have differing worldviews, and thus they represent different 

approaches to the relations between mathematics and physics.  Indeed, Kepler’s 

explanation for the regularly repeating patterns of quartz crystals is their ‚plan‛, 

‚formative faculty‛, or ‚archetype‛; Kepler insists, just as he would eight years later 

in Harmonices Mundi, that geometry is ‚coeternal with God‛.  

In the first place, the entire category of souls is kindred to the regular geometric 

figures from which the universe is constructed, as can be shown by many 

examples.  For since souls are, one might say, likenesses of God the Creator, 

                                                 
397 Johannes Kepler, The Six-Cornered Snowflake, trans. Jacques Bromberg (Philadelphia: Paul Dry Books, 

2010 [1611]); Johannes Kepler, The Six-Cornered Snowflake, trans. Colin Hardie (Oxford: The Clarendon 

Press, 1966 [1611]).  I cross-reference both translations, though I cite the Paul Dry Books first edition.    
398 I am indebted to Raz Chen-Morris for this insight.   
399 Kepler, The Six-Cornered Snowflake, 33, 49. 
400 Kepler, The Six-Cornered Snowflake, 53. 
401 Kepler, The Six-Cornered Snowflake, 61, 63. 
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assuredly the truth of these figures exists in the mind of God the Creator and is 

coeternal with Him.402 

He rejects that physical microstructure causes the naked eye appearance of 

snowflakes and so on, and explains away the problem of ‚material necessity‛ by 

claiming that a drop, a seed, or a crystal’s ‚purpose‛ must have been taken into 

account when deciding its geometry.  In other words, a predetermined ‚plan‛.403  

Kepler ends his snowflake ruminations on a humorously melancholic note.  After 

first mentioning the element of earth in the beginning, he diverts to fire, air and 

water in turn (with an interlude on animals), expanding on earth and mineral 

crystals in closing.  This is because ‚Rock crystal *quartz+, for example, is always 

hexagonal < But the formative faculty of the earth does not embrace one figure: It is 

practiced and well-versed in the whole of geometry.‛404  By concluding with ‚the 

whole of geometry‛, Kepler risks making everything of nothing; that is, by ending 

on ‚the whole of geometry‛, ‚*he has+ very nearly recreated the entire universe, 

which contains everything!‛, and skirts on the edge of gifting Wacker von 

Wackenfels with everything instead of nothing.405        

In his own meditations on frozen figures, Hooke marvels at the ‚infinite 

variety‛ of snowflakes, and states ‚that it would be as impossible to draw the Figure 

and shape of every one of them, as to imitate exactly the curious and Geometrical 

Mechanisme of Nature in any one‛;406 that is, material causes, and mechanical ‘rules’.  

Unlike Kepler, for whom geometry is ‚coeternal with God‛, Hooke’s instruments 

reveal that geometry is a tool, a cultural product created before the invention of 

optical instruments, limited by the senses.  In Hooke’s metaphysics, geometry is not 

‘coeternal with God’, but is akin to naked eye astronomy, or observations restricted 

by the eye’s incapacity to resolve parts.  Thus, in the Snowflake, physics depends 

upon geometry; in the Micrographia, geometry depends upon physics.  Furthermore, 

                                                 
402 Kepler, The Six-Cornered Snowflake, 95.  
403 Kepler, The Six-Cornered Snowflake, 61, 89. 
404 Kepler, The Six-Cornered Snowflake, 112. 
405 Kepler, The Six-Cornered Snowflake, 99.  
406 Hooke, Micrographia, 91. 
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the former employs what Hooke and his peers call ‘speculative geometry’, and the 

latter, a geometry with practical origins.  Finally, Kepler’s worry – to show that 

mathematics can be trusted to provide causal explanations – is not a worry shared 

by Hooke.407  Thus, by recasting Kepler’s experiment in a flipped mould of 

mathematics lifted off the surfaces of physics, Hooke forces his readers to see the 

world anew again; yet in drawing the mathematical always from the physical, he 

nevertheless legitimises the application of mathematics to the study of nature by 

interweaving crystals with artificial models and geometry, implying that all are 

fundamentally related.   

The way that Hooke uses Kepler’s 

experiment as a resource is telling because he 

modifies it to suit his different approach to the 

relationship between mathematics and 

physics.  Following his beehive studies, Kepler 

begins to experiment with soft beads, which 

for him represent the smallest part of a 

substance, its ‚element‛, ‚just as water has a 

smallest natural part, which is the drop‛.408 

And if someone were to take many round little 

beads of equal size and of the same soft 

material, put them in a round vessel, and begin 

to compress it from all sides with bronze rings, 

many of the beads would be squeezed into a 

rhombic shape, especially if by carefully 

shaking the container you first allowed them to 

settle into narrower spaces by their own free 

rotation.409 

In addition, Kepler finds that ‚spheres of equal size will arrange themselves in one 

of two ways when placed in a container, corresponding to the two ways [triangular 

                                                 
407 For a thorough analysis, and reappraisal, of Kepler’s optical geometry and metaphysics, see Chen-

Morris, Measuring Shadows. 
408 Kepler, The Six-Cornered Snowflake, 77. 
409 Kepler, The Six-Cornered Snowflake, 53.  Italics added. 

Figure  7.1  Hooke’s drawings of 
microscopic crystals and their mean forms 
and lattice structures under scale bars 
(Micrographia). 
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and square+ in which they can be arranged on a plane‛.410  That is, his beads 

illustrate the differences between cubic and hexagonal packing, and that hexagonal 

packing provides the tightest arrangement possible – even though he makes 

‘nothing’ of the matter.411  Hooke, taking Kepler’s remark on ‚someone‛ to heart, 

but neglecting to cite him, sets up a revamped reconstruction, rolling congruent 

bullets down the inside of ‚a round vessel‛ to model how congruous particles attract 

to form shapes imitating the ‚outward surface*s+‛ or faces of flints and Cornish 

diamants.  He wants to see whether he will obtain the same faces and interfacial 

angles.  ‚I have ad oculum demonstrated with a company of bullets <‛412 

so that there was not any regular Figure, which I have hitherto met withal, of any 

of those bodies that I have above named, that I could not with the composition of 

bullets or globules < imitate, even almost by shaking them together.‛413   

‘Shaking them together’ provides another clue that Hooke’s bullets were rolled 

inside ‚a round vessel‛, even though he neglects to say, and that he picked this tip 

up from Kepler who advises ‚carefully shaking the container‛ after first allowing the 

bullets ‚to settle into narrower spaces by their own free rotation‛.  ‚And thus for 

instance we may find,‛ observes Hooke,  

that the Globular bullets will of themselves, if put on an inclining plane, so that 

they may run together, naturally run into a triangular order, composing all the 

variety of figures that can be imagin’d to be made out of æquilateral triangles <414  

The results of Hooke’s experiment with ‚Globular bullets‛ confirm Kepler’s 

conjecture, not by ‘compressing' the ‚round vessel‛ ‚from all sides with bronze 

rings‛, but from a ‚company of bullets‛ ‚naturally‛ running into ‚all the variety of 

figures that can be imagin’d to be made out of æquilateral triangles‛.   

The first lattice is the ‚æquilatero-triangular form‛ labelled ‚A‛ in Hooke’s 

drawing (Figure 7.1), represented by three equal circles or globular bodies inscribed 

                                                 
410 Kepler, The Six-Cornered Snowflake, 55. 
411 Kepler, The Six-Cornered Snowflake, 45, 57.  This observation on the density of packed equal spheres is 

nowadays known as the ‘Kepler conjecture’. 
412 Hooke, Micrographia, 85. 
413 Hooke, Micrographia, 85. 
414 Hooke, Micrographia, 85. 
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in an equilateral triangle.  Hooke provides descriptive geometrical details for all 

seven lattices.  For example,    

[i]f a fifth *globule+ be joyn’d to them on either side in as close a position as it can, 

which is the propriety of the Texture, it makes a Trapezium, or four-sided Figure, 

two of whose angles are 120, and two 60. degrees, as C.  If a sixth be added, as 

before, either it makes an aequilateral triangle, as D, or a Rhomboeid, as E, or an 

Hex-angular Figure, as F, which is compos'd of two primary Rhombes.415    

Moreover, he has been taking for granted his new theoretical tool of ‘congruity and 

incongruity’ since Observ. VI, and he reinforces it here in this controlled trial: both 

‚shaking *the bullets+ together‛ and their ‘running’ together represent congruity.  

This, as well as rolling balls down an inclined plane – a practice immortalised by 

Galileo during his studies of free-falling bodies – is not surprising since Hooke’s 

second query towards the end of Observ. VI was whether gravity might not be 

explained by congruity.416  Finally, because the bullets ‘attract’ in imitation of the 

‚outward surface*s+‛ of quartz, by visually representing his results, Hooke can 

measure them with a new device in microscopy – a scale bar.   

He provides hand-drawn realistic micrographs of the ‘diamants’,417 followed 

by an innovative abstraction: seven close-packed lattices or superficies under a scale 

bar, the mean of multiple ‚trials‛.418  By adding a scale bar to his hand drawn 

micrographs and lattices, Hooke again employs the geometrical concepts of 

congruence and similarity in a powerful way.  He uses similar figures to forge links 

of proportionality between the micrographs and scale bar, as well as the scale model 

of rolling bullets, to theorise how congruent crystal ‘parts’ compound.  Like Hooke’s 

                                                 
415 Hooke, Micrographia, 85–6. 
416 Hooke, Micrographia, 22.  
417 Scheme VII (Figure 7.1) is typical of what would become Hooke’s preferred layout of conveying 

visual information in the next decade, during his Cutlerian Lectures, which I previously described with 

a comparison of his main plates from Cometa and Of Spring.  That is, beginning with naked eye 

observations, followed by replacing the eye with instruments, ending with a reduction to physico-

geometrical abstraction.  However, here, owing to the small size of the ‘Cornish diamants’, a naked 

eye representation would be unnecessary.      
418 See Figure 0-2 in the Appendix for the results from my reconstruction of this experiment.  For an 

alternative interpretation, with a very similar reconstruction, see also Matthew C. Hunter, 

‚Experiment, Theory, Representation: Robert Hooke’s Material Models.‛  In: R. Frigg and M. Hunter 

(eds), Beyond Mimesis and Convention (Dordrecht: Springer-Verlag, 2010).    
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mechanical model, the scale bar builds a relation from the microscopic to the 

macroscopic that re-involves the senses: it allows for the measurement of 

microscopic crystal shapes drawn around ‘parts’ found by rolling bullets down an 

‘inclined plane’.  More important, it turns Hooke’s diagrams, of how many equal 

circles or spheres are necessary to construct the equilateral triangle ‚D‛ and so on, 

into forms with physicality, which can be measured as not only wholes, but also 

divisible and multipliable aggregates.     

For example, in the interrelated observation preceding ‚Cornish diamants‛, 

upon examining ‚for the most part flat‛ urine crystals (Figure 7.1, ‚Fig: 2‛), Hooke 

geometrically reconstructs their four mean forms under a scale bar (‚line E‛) and 

states: ‚The line E which was the measure of the Microscope [the diameter of the 

microscope’s field of view], is 1/32 part of an English Inch, so that the greatest bredth 

of any of them [the urine crystals+, exceeded not 1/128 part of an Inch.‛419  Apart 

from providing measurements of the crystals, left unsaid is that the scale bar allows 

one to measure the radius of the hypothetical bodies too.  To obtain the mean 

measurement of a urine crystal’s width, or a Cornish diamant’s face, one would 

simply divide the length of the scale bar by the number of crystals represented under 

it.  The scale bar for the seven ‚diamants‛ in Figure 7.1 measures 1/16 of an inch 

across, and thus the ‚greatest bredth‛ of any diamant face is roughly 1/112 of an inch 

(approximately 200 microns).  Using this estimate, one could work out the radius of 

a point in a diamant lattice by knowing the properties of equilateral triangles, of 30-

60-90 triangles, and the Pythagorean theorem.420  But the most important part of 

these considerations is that by first measuring the dimensions of a quartz face, and 

then working out the fewest number of ‘points’ necessary for close-packing 

according to the dimensions and face shape, Hooke’s conception of practical 

geometry allows him to employ proportionality to scale down into the insensible 

                                                 
419 Hooke, Micrographia, 81. 
420 For one way to approach this, reverse engineer the construction of equal circles drawn inside an 

equilateral triangle in ‚Quest. 45‛ of Rudd, Practical Geometry, 63–67.  
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realm of a particle or up into the sensible realm of a round bullet or even a planet.  

To recapitulate, for his observations of ‚Cornish diamants‛ (stand-ins for 

‚flints‛), taking ‘congruity and incongruity’ as a self-evident explanation, and 

replacing his ruler and compasses with a microscope and a scale bar, Hooke 

attempts to show that the practical geometry lifted off these particular crystal facets 

is contingent upon the microstructure of vibrating matter, which produces these 

particular shapes of substances.  Furthermore, because of a chain of proportionality, 

and the constancy of interfacial angles (Steno’s law nowadays) represented by the 

bounding lines of ‚angles of which will be either 60. Degrees, or 120‛, Hooke can 

make predictions about minute bodies with mechanical models on a macro scale.421  

Hooke explains it thus:   

And though there be never so many [globules] placed together, they may be 

range’d into some of these lately mentiond Figures, all the angles of which will be 

either 60. Degrees, or 120.  as the figure K. [Figure 7.1, ‚Fig: 2‛+ which is an 

aequiangular hexagonal Figure is compounded of 12. Globules, or may be of 25, or 27, 

or 36, or 42 &c. and by these kinds of texture, or position of globular bodies, may 

you find out all the variety of regular shapes <422     

That is, ‚all the angles‛ between the faces ‚will be either 60 Degrees or 120‛ degrees, 

because of ‚the position of the globular bodies‛, or how the ‚Globules‛ are 

‚compounded‛ into a ‚texture‛ (lattice), irrespective of size, which might be ‚25, or 

27, or 36‛ or greater globules; and since this is constancy of angles is a defining 

characteristic of crystals of this kind regardless of size and growth, whether tiny 

‚flints‛ or bigger ‚Cornish diamants‛ and so on, one may ‚find out all the variety of 

regular shapes‛.    

Further, like Thomas Harriot’s cannon balls and Kepler’s beads, Hooke 

concludes ‚it’s obvious‛ that stacking globular bodies with respect to the angles 

mentioned above turns a superficies into a solid: 

                                                 
421 For a comparison with Steno, see Drake, ‚The Geological Observations of Robert Hooke (1635–1703) 

on the Isle of Wight‛, Geological Society, London, Special Publications, 287, 19-30, 1 January 2007, 26; for 

Hooke and crystallography in general, see, Hammond, The Basics of Crystallography and Diffraction, 3rd 

ed. (Oxford: Oxford University Press, 2009).  
422 Hooke, Micrographia, 85–6. 
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nor does it hold only in superficies, but in solidity also, for it’s obvious that a 

fourth Globule laid upon the third in this texture, composes a regular 

Tetrahedron, which is a very usual Figure of the Crystals of Alum.  And (to hasten) 

there is no one Figure into which Alum is observ’d to be crystallized, but may by 

this texture of Globules be imitated, and by no other‛.423     

Finally, just as Kepler comes close to creating everything from nothing, Hooke 

boasts that had he enough leisure time on hand for further observations and 

experiments, he 

could instance also in the Figure of Sea-salt, and Sal-gem, that it is compos'd of a 

texture of Globules, placed in a cubical form, as L, and that all the Figures of those 

Salts may be imitated by this texture of Globules and by no other whatsoever. And 

that the forms of Vitriol and of Salt-Peter, as also of Crystal, Hore-frost, &c. are 

compounded of these two textures, but modulated by certain proprieties <424 

 

 

SECTIONS 
Hooke’s studies of superficies in 

the Micrographia are a crucial step in his 

geometrical representation of springy 

bodies and his demonstration of the 

spring law in Of Spring – in particular, 

and perhaps surprisingly, his 

observations on cork.  Not content with 

nature’s surface appearances, and 

wanting to understand the function of 

various ‚pores‛ as intimately as bodies – 

for example, to explain how pores play an important role in the internal motions of 

the parts of bodies – Hooke turns to creating new artificial surfaces of nature by 

sectioning and fracturing stuff such as petrified wood, charcoal, fossils and cork.   

I took a good clear piece of Cork, and with a Pen-knife sharpen'd as keen as a 

Razor, I cut a piece of it off, and thereby left the surface of it exceeding smooth < 

                                                 
423 Hooke, Micrographia, 85–6. 
424 Hooke, Micrographia, 86. 

Figure 7.2  A detail of Hooke’s drawing of cork cells 
turned anticlockwise to show how closely his drawing 
of cork (Micrographia) resembles his diagram of an 
eight-particle springy body captured in stages of 
equilibrium, compression and rarefaction (Figure 7.3) 
in Of Spring  
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and casting the light on it with a deep plano-convex Glass, I could exceeding plainly 

perceive it to be all perforated and porous <425 

‚Observ. XVIII. Of the Schematisme or Texture of Cork, and of the Cells and Pores 

of some other such frothy Bodies‛ is one of the most famous observations in the 

Micrographia, mostly because it is where Hooke allegedly coins the word ‚cell‛, 

though it is not his first mention of cells.  Since the observations are ordered by 

growing physical hence geometrical complexity rather than chronologically, though 

Hooke mentions ‚cells or Boxes‛426 in the seventh observation, and compares a 

petrified shell’s (fossil) ‚diaphrams or partitions‛ to ‚a multitude of very 

proportionate regular cells or caverns‛ in the seventeenth observation,427 in Observ. 

XVIII he states that the cells or ‚pores‛ of cork were his first: ‚I no sooner discern'd 

these < which were indeed the first microscopical pores I ever saw, and perhaps, that 

were ever seen <‛428  Hooke also notes that cork cells are similar to honeycomb 

cells in structure, 

in that these pores, or cells, were not very deep, but consisted of a great many little 

Boxes, separated out of one continued long pore, by certain Diaphragms, as is 

visible by the Figure B [Figure 7.2], which represents a sight of those pores split the 

long-ways.429 

Examining his overall use of the word 

‘cell’ provides a definition of what he 

means by it.  A cell according to Hooke is 

any compartmentalisation that segments 

‚one continued long pore‛ into 

proportional spaces.  An example of a 

‚long pore‛ is Hooke’s microscopic glass 

capillary tubes from Observ. VI (discussed in Part I).  Today’s use of ‚cell‛ in 

histology has little in common with Hooke’s meaning, or his observations of ‚the 

                                                 
425 Hooke, Micrographia, 112–3.  
426 Hooke, Micrographia, 46. 
427 Hooke, Micrographia, 111. 
428 Hooke, Micrographia, 113. 
429 Hooke, Micrographia, 113. 

Figure 7.3  Hooke’s diagram of an eight-particle 
springy body captured in stages of equilibrium, 
compression and rarefaction (Of Spring).  
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Schematisme or Texture of Cork‛, and thus only serves to mask his actual meaning.  

Recall that he uses the word ‚texture‛ for lattice, such as the crystal lattices 

examined in the previous section; that is, a particular geometrical arrangement of the 

structure of cork, which is contingent upon how the particles of cork compound.  

Moreover, the microscope ‚easily informs us‛ that the material structure of cork 

‚consists of an infinite company of small Boxes‛ of springy air, which Hooke confirms 

by mechanically manipulating a piece of cork to test its elasticity, finding that with 

his ‚hands‛ alone he can compress it ‚into less then a twentieth part of its usual 

dimensions neer the Earth‛.430   

Our Microscope will easily inform us, that the whole mass consists of an infinite 

company of small Boxes or Bladders of Air, which is a substance of a springy nature, 

and that will suffer a considerable condensation (as I have several times found by 

divers trials, by which I have most evidently condens'd it into less then a twentieth 

part of its usual dimensions neer the Earth <) <431  

Hooke’s use of quasi-mathematical language in these descriptions is deliberate – for 

example, ‚proportionate regular cells‛, ‚proportional spaces‛, ‚infinite company of 

small Boxes‛.  Cork is a natural spring of microscopic boxes, and sectioning it – 

creating new artificial surfaces of nature for study – gives Hooke a way to represent 

springy bodies geometrically, and a way to think about how and why to section a 

geometrical spring of ‘infinite boxes’ to calculate either discrete boxes or aggregates 

of boxes of power and so on.    

By way of visual comparison, let us examine a detail from Hooke’s hand-

drawn micrograph of a longitudinal section of cork in the Micrographia (Figure 7.2) 

with his Of Spring constructions of an eight-particle springing body – ‚a line of such 

a body compounded of eight Vibrating particles‛ (Figure 7.3).432  To summarise from 

Part I, in Figure 7.3, the line AB represents the body at equilibrium, vibrating 

1,000,000 times per second; the line EF represents the body compressed, vibrating 

1,500,000 times per second; the line CD represents the body extended, vibrating 

                                                 
430 Hooke, Micrographia, 114. 
431 Hooke, Micrographia, 113–114. 
432 Hooke, Micrographia, Scheme XI between pages 114 and 115; Hooke, Of Spring, 13. 
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666,666 times per second.  The vibrational frequencies are in intervals of a perfect 

fifth in each direction – 2/3 moving up a fifth in insensible pitch from AB to EF and 

3/2 dropping down a fifth in insensible pitch from AB to CD – and the line lengths 

illustrate this harmonious ratio.  In addition, Hooke designs Figure 7.3 with two 

types of lines used in practical geometry: 1) finite apparent lines for the edges or 

interfaces A and B, E and F, and C and D (which are the same interfaces), and for the 

partitions between the boxes or springy particles; and 2) finite occult or pricked lines 

for the changing length of the eight-particle spring, which he ignores when 

explaining how the incongruous vibrations of the aether affect the vibrating solid.  

He ignores the long sides because the pricked lines indicate that the vibrating solid is 

an extracted part of a whole, as if he sliced out a long pore of cork from Figure 7.2, 

and so the longer sides are not ‘real’ physical edges.433   

Thus, from the detail of the longitudinal section combined with Hooke’s 

experiments on the spring of cork in the Micrographia, and his choice of lines when 

drawing the eight-particle diagrams in Of Spring, one can infer that the latter are 

‚experimentally verify’d and exhibited‛434 representations of a springing strip of 

cork generalised to represent any vibrating solid captured in moments of 

equilibrium, compression, and extension.  The ability of Hooke’s geometry to 

capture nature in action with slices and sections is epitomised in his demonstration 

of the spring law, which I will expound upon next.  

 

MIXT 
Analysing Hooke’s diagram of ‚a Body moved by a Spring‛ earlier (Figure 7.5, 

‚Fig 5‛), I showed how Hooke slices areas into infinitesimal sections to make better 

approximations, the trace of a projectile’s trajectory becoming smoother and 

smoother with each section.  Here I will explicate ‚Fig 4‛ from the same, main plate 

                                                 
433 For an explanation of the different types of lines used in practical geometry, see, for example, Le 

Clerc, Practical Geometry.   
434 Hooke, Lectures concerning Navigation and Astronomy, in Posthumous Works, 525. 
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of Of Spring to study how and why Hooke delineates the spring law with his ‚Mixt 

geometry‛ – a term and technique that he picked up from his mentor John Wilkins, 

and then developed and refined.  Hooke himself personified ‘mixed’ during his dual 

roles as the Society’s Curator of Experiments and Gresham’s geometry professor, 

and mixed geometry is an indispensible tool for his unique way of practicing natural 

philosophy.  But before delving into Hooke’s graph of the spring law, a slight detour 

on his technical and philosophical indebtedness to Wilkins is necessary to emphasise 

Hooke’s improvements, for although Hooke’s eight-particle springing body 

diagrams are in the style of Wilkins, his geometrical generalisation of the spring law 

is radically different.   

Wilkins was Warden of Wadham College in Oxford.  He recruited Hooke into 

‚Warden Wilkins’s club‛, a philosophical circle whose members would in the start 

of the 1660s begin to meet in Gresham College, forming the Royal Society.435  The 

title page of Wilkins’s Mathematical Magick: or the Wonders That may be perform’d by 

Mechanical Geometry boasts that it is on ‚mixed Mathematicks‛, ‚Being one of the 

most Easy, Pleasant, Useful (and yet most Neglected) Part of the Mathematicks‛, and 

‚Not before treated of in this Language‛.  By ‘Magick’ Wilkins means ‘wonder’, and 

Magick is comprised of two books: the first is on mechanical powers; the second, on 

mechanical motions.  Wilkins further subdivides the 

subject matter into two kinds of mixed mathematics: 

‚Rationall‛, ‚which treats of those principles, and 

fundamentall notions, which may concern these 

Mechanicall practices‛; and ‚Cheirurgicall‛, or ‚the 

making of these instruments, and the exercising of 

such particular experiments‛.  Magick concerns the 

‚Rationall‛ kind of mixed mathematics – that is, the 

                                                 
435 A. Chapman, "Fly Me to the Moon", Astronomy & Geophysics 55, no. 1 (2014): 1.26-1.31, 1.31. 

Figure 7.4 Wilkins’s 
representation explaining the law 
of the lever for even weight 
distribution on a carriage 
(Mathematical Magick). 
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principles of mechanics.436   

The fundamental distinction between Wilkins and Hooke is that the 

‚Rationall‛ kind of mixed mathematics taught and practiced by Wilkins is concerned 

only with making already established natural laws intelligible via examples of 

everyday applications, whereas Hooke uses mixed geometry, both ‚Cheirurgicall‛ 

and ‚Rationall‛ to create laws of nature.  Wilkins’s work differs from other practical 

geometry manuals and ‘textbooks’ in that instead of beginning with the essentials of 

geometry, he first illustrates mechanisms, reduces them to geometrical constructions, 

and then shows how the geometry can be modified to accommodate a variety of 

similar practical problems: for example, using the law of the lever for even weight 

distribution when fastening horses or oxen to a carriage with a heavy burden (Figure 

7.4).   

Let the line DB, represent the Pole or Carriage on which the burden is sustained, 

and the line AC, the crosse barre; at each of its extremities, there is a severall 

spring-tree GH, and IK, to which either horses or oxen may be fastned. Now 

because A, and C, are equally distant from the middle B, therefore in this case the 

strength must be equall on both sides < Whence it is easie to conceive how a 

husbandman < may proportion the labour of drawing according to the severall 

strength of his oxen.437 

Hooke’s indebtedness to Wilkins here is clear, and is also obvious when the latter 

launches into a diatribe against abstract mathematics, claiming that 

these Mechanicall disciplines, which in this respect are by so much to be preferred 

< by how much their end and power is more excellent. Nor are they therefore to 

bee esteemed lesse noble, because more practicall, since our best and most divine 

knowledge is intended for action, and those may justly be counted barren studies, 

which doe not conduce to practise as their proper end.438 

Wilkins points an admonitory finger at ‚the ancient Mathematicians [who] did place 

all their learning in abstracted speculations, refusing to debase the principles of that 

noble profession unto Mechanicall experiments‛, and states that because of this 

obsession with ‚abstracted speculations‛ divorced from reality, ‚it came to passe 

                                                 
436 John Wilkins, Mathematical Magick, in John Wilkins, The Mathematical and Philosophical Works of the 

Right Reverend John Wilkins ... (London: Printed for J. Nicholson, 1707 [1648]), 5. 
437 Wilkins, Mathematical Magick, Book I, in Wilkins, The Mathematical and Philosophical Works, 15. 
438 Wilkins, Mathematical Magick, Book I, in Wilkins, The Mathematical and Philosophical Works, 2. 
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that the science of Geometry was, so universally neglected, receiving little or no 

addition for many hundred years <‛439  Hooke’s reversal, that speculative 

geometry is subservient to practical geometry, with his instruments that interweave 

art and nature into a fabric fit to clothe natural philosophy, is a radical reparation of 

this ‘neglect’ and more.  Although Hooke learnt how to represent instruments and 

apparatuses geometrically from Wilkins, a crucial skill for Hooke’s way of working a 

problem, this is where his indebtedness to his mentor ends.   

Wilkins admits that Magick contains nothing new on mechanics or natural 

philosophy; he turns reductions of stick figure mechanisms into geometrical 

representations with manipulable variables – such as ‚how a husbandman < may 

proportion the labour of drawing according to the severall strength of his oxen‛ – to 

teach artificers and artisans geometrical reasoning and mathematical problem-

solving.440  Similarly, when Wilkins applies his geometry to natural-philosophical 

questions, it is not so much to develop something new as it is to support existing 

work.  For instance, in his The Discovery of a World in the Moone, Wilkins represents 

suppositions about the moon along the lines of Kepler in Somnium and Galileo in 

Sidereus Nuncius with quasi-geometrical explanatory drawings, but makes few 

original observations and experiments.441  By comparison, Hooke’s ‚Mixt geometry‛ 

is a conflation of realistic drawings illustrating his observations and experiments, 

accompanied by practical and speculative geometry within the same diagram; and it 

is designed for the creation and dissemination of new natural knowledge; and, in Of 

Spring, a natural law. 

 

PRELIMINARIES   

                                                 
439 Wilkins, Mathematical Magick, Book I, in Wilkins, The Mathematical and Philosophical Works, 2–3.  
440 Wilkins, Mathematical Magick, Book I, in Wilkins, The Mathematical and Philosophical Works, epistle To 

the Reader, 15. 
441 Wilkins, The Discovery of a World in the Moone, in Wilkins, The Mathematical and Philosophical Works. 



Cindy Hodoba Eric 119 

 

 

It now remains that I shew how the constitutions of springy bodies being such, the 

Vibrations of a Spring, or a Body moved by a Spring, equally and uniformly shall 

be of equal duration whether they be greater or less.442 

After constructing a framework on ‚the constitutions of springy bodies‛ such as cork 

– that is, Hooke’s ‘principles of congruity and incongruity’ with harmony, 

dissonance and resonance as key explanatory devices443 – his main aim here is to 

prove that any spring has vibrations of equal time independent of amplitude; and he 

does so with a geometrical demonstration, ‚Fig 4‛ (Figure 7.5).  But for the readers to 

be able to comprehend ‚Fig 4‛, Hooke assumes that they are familiar with what 

experiments the illustrations on the left-hand side of the graph help to explain (Fig’s 

1, 2 and 3); the detailed accounts of experimental procedures preceding the 

demonstration, which ‚have here already shewed < that the power of all Springs is 

proportionate to the degree of flexure‛ or the spring constant; as well as a few 

mathematical preliminaries.  In Hooke’s diction, ‚degree of flexure‛ is synonymous 

with ‚space bended‛.  In other words, all bodies bend, compress and extend 

proportionally to the applied external force.  Thus ‚one degree of flexure, or one 

space bended hath one power, two hath two, and three hath three, and so 

forward‛.444   

From which it is very evident that the Rule or Law of Nature in every springing 

body is, that the force or power thereof to restore it self to its natural position is 

always proportionate to the Distance or space it is removed therefrom < Respect 

being had to the particular figures of the bodies bended, and that advantagious or 

disadvantagious ways of bending them.445 

The relations that Hooke forms between experimental records, realistic 

drawings of sensible, mechanical springs, a practical-geometrical construct of an 

eight-particle vibrating line and so on under the theme of ‘spring’, are designed to 

support his ‚Rule or Law of Nature‛, priming his reader for the ‚Mixt‛ geometry 

                                                 
442 Hooke, Of Spring, 16. 
443 Hooke, Of Spring, 6. 
444 Hooke, Of Spring, 16. 
445 Hooke, Of Spring, 4.  Scholars in the past have neglected to notice the final line in the citation, where 

Hooke mentions (because it is not important for his metaphysics) his awareness of an elastic limit.  

See, for example, E. Williams, "Hooke's Law and the Concept of the Elastic Limit", Annals of Science 12, 

no. 1 (1956): 74-83. 
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generalisation.  He further expects that the reader accepts the critical principle that 

‚every point of the space of flexure hath a peculiar power, and consequently there 

being infinite points of space, there must be infinite degrees of power‛.  Notice that 

Hooke is referring to any springing body, so by ‚point‛ he means not only a location, 

but a physical ‘part’ of the springing body, such as the parts of the solid eight-

particle line (Figure 7.3).  Again, Hooke’s mathematics is contingent upon the 

material world and its ‚infinite‛ parts.  

Thus his first declaration based on the preliminaries is that 

all those powers beginning from nought, and ending at the last degree of tension 

or bending, added together into one sum, or aggregate, will be in duplicate 

proportion to the space bended or degree of flexure <446 

That is, let P = ‚power‛, and s = space or length. 

P0 + P1 + P2 + < + Pn ∝ s2.   

Notice that power comes from an external source, whereas tension is the spring’s 

strain.  To expound, the total tension in a spring at whatever point of extension or 

length  

is equal, or in the same proportion to the square of one (supposing the said space 

infinitely divisible into the fractions of one;) to two, is equal, or in the same 

proportion to the square of two, that is four < and so forward <447    

Just as he did in the Micrographia with an observation of a single point closely 

followed by observations of crystals compounded of an aggregate of points or 

globular bodies, Hooke builds up his explanation from a simple point of power to a 

more complex springing body with an infinite aggregate of points and their 

corresponding powers.  Moreover, since he uses ‘space’ and ‘length’ 

interchangeably, by space Hooke means the physical space or length taken up by the 

spring.  Therefore, ‚the sum of the first space will be one, of the second space, three, 

of the third space will be five < in Arithmetical proportion, being the degrees or 

excesses by which these aggregates exceed one another‛.  So the sums of the spaces 

                                                 
446 Hooke, Of Spring, 17.  
447 Hooke, Of Spring, 17. 
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follow the odd number rule made famous by the Merton calculatores from Hooke’s 

alma mater Oxford, Nicole Oresme, and in particular Galileo after them.  Briefly, 

about three centuries before Galileo, the Merton calculatores were interested in 

explaining any change itself, and applied this as a query to studies of the uniform 

and ‘nonuniform’ motion of bodies.  The geometrical proof of the odd number rule, 

which is attributed to Oresme, bears striking similarity to Galileo’s proof for his law 

of free-falling bodies on the Third Day in his 

Two New Sciences – though according to the 

literature, the Merton scholars never 

attributed uniform acceleration as a property 

of free-falling bodies.448  Hooke refers to this 

‚traditional Merton-style formula for the 

accumulation of ‘degrees of motion’‛449 

repeatedly as ‚the General Rule of 

Mechanicks‛; that is, ‚the proportion of the 

strength or power of moving any Body is 

always in a duplicate proportion of the 

Velocity it receives from it;450 however, the 

more important point to notice is that for 

Hooke it is ‚General‛ because it is contingent 

on physical reality and hence the 

mathematics stems from a physical hypothesis. 

Hooke’s second declaration based on the preliminaries concerns the ‚degrees 

of impulse‛ that the spring expends in its return from ‚any degree of flexure‛ to 

which it was ‚bent by any power‛.  Again, Hooke begins with a single point, 

changing his diction from the pulses of ‚power‛ put in during stretching to 

                                                 
448 Galileo, Dialogues Concerning the Two New Sciences, 203–208; Michael J Crowe, Mechanics from Aristotle 

to Einstein (Santa Fe, NM: Green Lion Press, 2007), 12–14.  
449 Gal, Meanest Foundations and Nobler Superstructures, 97, citing Hooke in Of Spring, 18–19.   
450 See, for example, Hooke, Lampas, 32–33, in Cutlerian Lectures.  

Figure 7.5 Hooke’s  demonstration of the spring 
law (Of Spring).  
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‚impulse‛ in order to reflect the opposite motion of the spring released from tension, 

though the impulse at any point of the spring is equal to ‚the power of the Spring in 

that *physical+ point of Tension‛.  Next, considering the springing body as an 

aggregate of compounded parts or points, such as the vibrating eight-particle line 

restrained by the surrounding pressure of the incongruent aether, Hooke explains 

that the whole spring receives ‚the whole aggregate of all the forces belonging to the 

greatest degree of Tension from which it returned‛.  Finally, combining impulses 

and spaces, Hooke explains that 

a Spring bent two spaces in its return receiveth four degrees of impulse, that is, 

three in the first space returning, and one in the second < So bent ten spaces it 

receives in its whole return one hundred degrees of impulse, to wit, nineteen in 

the first, seventeen in the second [etc.].451 

This allows him to transform external power into internal tension released as 

impulse, and claim that the springing body’s tension is proportional to its power, 

which he had published two years before in an encrypted anagram at the end of his 

Cutlerian lecture Helioscopes (1676). 

The true Theory of Elasticity or Springiness, and a particular Explication thereof in 

several Subjects in which it is to be found: And the way of computing the velocity 

of Bodies moved by them.  ceiiinosssttuu.452   

The unencrypted anagram spells out ‚ut tensio sic uis‛: as the tension so the force, 

and Hooke will fashion a force vs. distance graph, where distance equals the length 

of a stretched spring, to illustrate this concept.   

To complete the necessary preliminaries before explaining the geometrical 

generalisation proper, Hooke turns his attention from power to velocity and 

isochronous vibrations, stating that  

the comparative Velocities of any body moved are in subduplicate proportion to 

the aggregates of sums of the powers by which it is moved, therefore the 

Velocities of the whole spaces returned are always in the same proportions with 

those spaces, they being both subduplicate to the powers, and consequently all the 

times shall be equal.453  

                                                 
451 Hooke, Of Spring, 17–8. 
452 Hooke, Of Spring, 1; Hooke, Helioscopes, 31, in Cutlerian Lectures. 
453 Hooke, Of Spring, 18. 
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That is, the power of the vibrating spring is proportional to velocity squared; hence, 

the square root of power is proportional to velocity; and the velocity of ‚the whole 

spaces returned‛ from ten spaces is √(19 + 17 +15 + 13 + 11 + 9 + 7 + 5 + 3 + 1) = 10.454  

Reversing from wholes to parts, Hooke continues with his example of a spring ‚bent 

ten spaces‛, explaining that ‚the Velocities of the parts of the space returned < will 

always be proportionate to the roots of the aggregates of the powers impressed in 

every of these spaces;‛ for example, in the 9th space of pulsation, the velocity would 

equal √(19 + 17) = √36 = 6.  

Now since the Velocity is in the same proportion to the root of the space, as the 

root of the space is to the time, it is easie to determine the particular time in which 

every one of these spaces are passed for dividing the spaces by the Velocities 

corresponding the quotients [proportions] give the particular times.455 

In other words, an increase in stretch or displacement is proportional to an increase 

in the spring’s velocity when released from strain, thus the spring’s vibrations are 

isochronous and independent of amplitude.  ‚*P+articular time‛ concludes the 

preliminaries necessary to produce a generalised ‚Theory of Springs‛.  The fact that 

Hooke inextricably interweaves ‘general rules of mechanics’ with his new spring law 

reinforces his epistemological conviction that mathematics should be pulled from 

physics, since the ‘rules’ are related because of matter’s uniformity.  To ‚explain this 

more intelligibly‛, he unleashes ‚Fig 4‛ – his unique ‚Mixt‛ geometrical proof.    

 

POWER 

The horizontal line AC, both a trace of the vibrating motion of the end of a 

physical spring and the displacement of the stretched spring itself, cuts the graph in 

half; power is represented or ‚exhibited‛ (Hooke’s term for practical-geometrical 

constructions) by the top half; the bottom half represents velocity.  Beginning with 

power as before, to show ‚an Image to represent the flexure and the powers, so as to 

                                                 
454 Note that in Of Spring, ‘10’ is written as ‘100’, though this typo is corrected in the errata at the end of 

the book.  
455 Hooke, Of Spring, 18.   
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plainly solve and answer all Questions and Problems concerning them‛,456 

let A in the fourth figure represent the end of a Spring not bent, or at least 

counterpoised in that posture by a power fixed to it, and movable with it, draw a 

line ABC, and let it represent the way in which the end of the Spring by additional 

powers is to be moved <‛457    

Again, starting with a single point just as in the Micrographia, the point A in ‚Fig 

4‛,458 Hooke represents ‚the end of a Spring not‛ compressed, extended or ‚bent‛, 

or a spring ‚counterpoised in that posture by a power fixed to it‛.  A readily 

available example of ‚a power fixed to it‛ is a weight, such as the proportional 

weights represented by the circles F, G, H, I, K, L, M and N in the mechanical spring 

and balance of ‚Fig 1‛.  Although Hooke does not refer to weights in his geometrical 

explanation of power, it is obvious by comparing Fig.’s 1 and 4 that weights extend 

the mechanical springs in Fig.’s 1, 2 and 3, and as such that these schemes illustrate 

‚Ut pondus sic tensio‛ (as the weight so the tension) whereas Fig. 4 represents ‚Ut 

tensio sic vis‛.  Most scholars ignore the former, focusing on the latter, but ‚Ut 

pondus sic tensio‛ is metaphysically as important as ‚Ut tensio sic vis‛, since it is 

both a mechanism and a theory for describing how congruent or similar parts added 

to a springing body increase its magnitude and slow its vibrations, but that is 

beyond the scope of this section.   

Next, moving from a point to a line, Hooke draws the line AC, segmented by 

points B1, B2 and B respectively, which represent the spring stretched or ‚moved‛ 

‚by additional powers‛.459  He draws an ordinate CD orthogonal to AC, and lets it 

‚represent the power that is sufficient to bend or move *stretch+ the end of the 

Spring A to C‛.460  Drawing a third line from point A to point D represents what 

would today be called the slope of the spring constant or linear relationship of force 

                                                 
456 Hooke, Of Spring, 19.  
457 Hooke, Of Spring, 18–19.   
458 For alternative analyses of Fig. 4, see Gal, Meanest Foundations and Nobler Superstructures; and 

Bertoloni Meli, Thinking with Objects. 
459 Hooke, Of Spring, 18–19.  See Figure 0-1 in the Appendix for my reconstruction of ‚Fig 4‛, which 

shows possible construction lines not in Hooke’s graph.  
460 Hooke, Of Spring, 19. 
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CD vs. displacement AC, and forms the right-angled triangle ACD – a superficies.  

Hooke drops three ordinates from AD (EB1, EB2, and EB) that are parallel to CD and 

segment AC, explaining that 

from any point of the Line AC *the stretched spring+ < the lines BE < represent 

the respective powers requisite to bend the end of the Spring A to B, which lines 

BE < CD will be in the same proportion with the length of the bent of the Spring 

AB < AC.461   

In modern terminology, stress is proportional to the strain of the spring, and this is 

further demonstrated by the geometrical similarity of what Hooke calls the ‚lesser 

triangles‛ ABE, AB2E, and so on, which are parts of the triangle ACD.  Likewise, 

when the spring is ‚let go‛ from ‚any point *B+ of the Line AC‛, it ‚will exert in its 

return to *point+ A all those powers which are equal to the respective ordinates BE < 

the sum of all which make up the Triangles ABE‛.  Moreover, 

the aggregate of the powers with which it returns from any point, as from C to any 

point of the space CA as to BB, is equal to the Trapezium *of whichever+ CDEB < 

or the excesses of the greater Triangles above the less.462        

That is, the areas of the right-angled triangles represent ‚the aggregate of all the 

Powers of the Spring bent from A to *whichever+ B‛.  So, sectioning the area of the 

triangle ACD with vertical ordinates provides power at any particular point of a 

spring’s stretch or release from strain; adding the ordinates together into areas of 

‚lesser triangles‛ provides an aggregate of power when the spring is stretched; and 

solving for the ‚Trapezium < or the excesses of the greater Triangles above the less‛ 

provides a sum of impulses when the spring is released from strain at point C to 

some particular point B. 

This may sound like a switch from practical to speculative geometry within the 

same construction, because Hooke moves from the line AC, a real springing body, to 

abstractions of its power represented by perpendiculars for particular points and 

integrations of perpendiculars as triangles and trapeziums for aggregates of points 

or lines.  But it is in fact a fine example of Hooke’s mixed geometry, and his erection 
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of theoretical entities from the structures and motions of matter with combinations 

of arithmetic and geometry, where mathematical lines drawn from infinite physical 

points can paint surfaces, allowing for the calculation of discrete or continuous 

powers and velocities.  Hooke takes care to explain that ‚because the Spring hath in 

every Point of the line of bending AC, a particular power, therefore imagining 

infinite Lines drawn from every point of AC parallel to CD till they touch the Line 

AD, they will all of them fill and compose the triangle ACD‛.463  First, the triangle 

ACD, a representation of the spring’s total accumulated power at point C, is a 

mathematical surface.  Secondly, Hooke’s description of ‚infinite lines *which+ fill 

and compose the triangle ACD‛ with vertical ordinates to calculate finer 

approximations of points of power along the vibrating spring resembles his 

definition of a speculative-geometrical ‘superficies’, for recall that ‚innumerable 

Lines do make a Mathematical Superficies < by supposing Motion joyn’d to them‛.  

Yet the triangle is erected from the springing body.   

To summarise, Hooke’s geometrical proof of spring power arises from the 

physical structuring of matter.  Hooke begins with practical geometry: the point A, 

which represents the end of a physical spring, and then constructs a horizontal line 

of the stretched spring with a second point C; point C represents the end of the 

spring at a new point of strain, and therefore the line AC is both the stretched spring 

itself as well as a trace of the oscillating end of the physical spring upon release from 

tension.  Following this, Hooke forms a right-angled triangle superficies ACD to 

represent the stretched spring’s aggregate of powers at point C – fashioning a new 

mixed geometry that allows for both magnifying and resolving its infinitesimal 

points with each ordinate as if it were a section of cork; the ordinates originate 

perpendicularly from the points to ‚make a Mathematical Superficies‛ – the triangle 

ACD, the similar or ‚lesser triangles‛ and their excesses the trapeziums.  This 

process of always beginning with physical reality and lifting geometry from nature, 
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like a stone rubbing, grounds Hooke’s mathematics.  

        

VELOCITY 

[I]n the next place I come to represent the Velocities appropriated to the several 

powers.464   

I explained that the horizontal line AC is both a trace of the motion of the end of a 

physical spring returning to equilibrium from flexure and a representation of the 

displacement of the stretched spring itself.  I also mentioned that AC cuts the graph 

in half, and that the lower half represents velocity.  Here I will analyse the lower half 

of the graph ‚Fig 4‛: Hooke’s construction of a springing body’s velocities and 

isochronous times.  Nothing in Hooke’s graph is arbitrary, and his geometry in the 

lower half is particularly interesting because of an idiosyncratic use of curves for the 

proportional segmentation of the velocity and time ordinates: BG and BI 

respectively.  Moreover, the lower half of ‚Fig 4‛ reinforces Hooke’s epistemological 

predilection for drawing the abstract from the concrete, and why his particular 

brand of mixed geometry is appropriate and necessary for the way he plows a 

problem.  Namely, because traditional or speculative geometry relies on the ruler 

and compasses, instruments made to measure at the level of the bare eye, Hooke 

refuses to count on it to represent natural knowledge accurately; nevertheless, 

because of its very limitations, traditional geometry remains an indispensible tool for 

drawing concepts that the senses can comprehend.    

Hooke begins with point A again, the end of the spring at rest, followed by the 

strained spring line AC.  In the lower half of the graph, he moves from a line to a 

surface by taking a pair of compasses and drawing a quarter arc of a circle from 

point C to point F with a radius equal to the length of the stretched spring, that is, 

the line AC.  This creates the new superficies – the circle sector ACGGGF.  And now 

AC = AF = CD.  Next he pulls perpendiculars down from points B segmenting AC to 

points G segmenting the arc.  These perpendiculars BG represent velocity because 
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they are proportional to the square ‚Root of the powers impressed‛465 – any square 

root of BE or square root of CD – Hooke’s ‚General Rule of Mechanicks‛, reworked 

to solve for velocity instead of power.466  Hooke switches to describing the 

relationship between power and velocity by imagining the physical spring line AC 

released from its end point of strain at C, accelerating as it flies through ‚infinite‛ 

points B back to equilibrium at A.  Again, points ‚CG*G+GF‛ describe the quarter arc 

of a circle; and dropping perpendiculars from whichever point B of the spring line 

radius AC to the arc, Hooke segments the arc between C and F with infinite 

mathematical points G.  Since the springing body is composed of infinite physical 

points B, one could colour in the sector ACGGF, forming aggregates with the lengths 

of the ‚Lines BG‛, which as mentioned represent the spring’s velocity as it returns to 

equilibrium at A.   

The said ordinates [BG] being always in the same proportion with the Roots of the 

Trapeziums CDEB, CDEB <467   

This is yet another example of Hooke drawing the abstract from the concrete, and is 

also an excellent example of mixed geometry.  The reasons why the lines BG 

represent velocity are both physical and mathematical: Hooke’s ‚General Rule of 

Mechanicks‛ on the one hand, which is  

true of the motion of < Slings; of Pendulums moved by Gravity or Weights; of 

Musical Strings; of Springs, and all other vibrating Bodies < and in a word, of all 

other Mechanical and Local motions, allowance only being made for the 

impediment of Air or other Fluid Medium through which the Body is moved[;]468   

and on the other, Pythagoras’s theorem.   

In his preliminaries, recall Hooke states that the spring line AC equals 10 

spaces of distance, so one can use this arbitrary number to find all the unknowns in 

the graph, which is helpful for analysing its construction.  If the line AC = 10 spaces, 

then the segment AB2 is 5 spaces, and the equal segments AB1 and B1B2 represent 2 ½ 

                                                 
465 Hooke, Of Spring, 20.  
466 Hooke, Of Spring, 20. 
467 Hooke, Of Spring, 20.  
468 Hooke, Lampas, 32–3, in Cutlerian Lectures. 
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spaces each respectively, because point B2 bisects the line AC, and point B1 bisects 

the segment AB2.  Further, to find the space represented by the line segment B2B, and 

hence the line segment AB, Hooke bisects the right angle of triangle AB2E to obtain 

half the hypotenuse, which equals B2B.   

By Pythagoras’s theorem and using the values obtained from Hooke’s 

preliminary AC equals 10 spaces, the hypotenuse of AB2E equals √50, and so half of 

this value is B2B.  That is, let the hypotenuse of AB2E = c, and let AB2 = a = 5, and let 

B2E = b = 5 according to the spring law (and the construction), which states that AB2 

is proportional to B2E – the other leg of the right angled triangle AB2E.  Hence, c = 

√50, and √50/2 gives half the hypotenuse or the line segment B2B.  It follows that the 

segment AB equals (5 + *√50/2+) or 8 ½ spaces.  By rearrangement of Pythagoras’s 

theorem, Hooke can calculate the spring’s velocity lines BG at any point B in its 

return to equilibrium from flexure at C, by ‚putting AC = a, and *any+ AB = b, *any+ 

BG will always be equal to *√(a2 - b2)], the square of the ordinate being always equal 

to the Rectangle of the intercepted parts of the Diameter *radius+‛.469 

Hooke’s instrument of mixed geometry imagined as if in motion works 

because of his ruler and compasses construction; thus it shows why speculative 

geometry is necessary albeit compliant to practical geometry approximated from the 

physical formations and motions of matter.  Later in Lectures of Light, Hooke would 

explain that ‚because nothing is so well understood or apprehended, as when it is 

represented under some sensible Form, I would, to make my Notion the more 

conceivable, make a mechanical and sensible Figure and Picture thereof‛.470  

Moreover, in building a mixed geometry for the spring law, Hooke also succeeds in 

strengthening the relations between vibratory phenomena that were previously held 

together only by similitudes, or what he referred to back in the Micrographia’s 

observations of cork as groping around in the dark: 

                                                 
469 Hooke, Of Spring, 20. 
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but till such time as our Microscope, or some other means, enable us to discover the 

true Schematisme or Texture of all kinds of bodies, we must grope, as it were, in the 

dark, and onely ghess at the true reasons of things by similitudes and 

comparisons.471   

Using a microscope and a scale bar together with a ruler and compasses as tools for 

his new mixed practical-speculative geometry gives Hooke ‚other means‛ alongside 

the ‚similitudes and comparisons‛ that he nevertheless remains fond of, committed 

to and defensive of throughout his career.  ‚But I know it may be said, that Omne 

simile non est idem <‛ Hooke complains, ‚*but+ in a subject where we cannot obtain 

such sufficient Proofs as we can desire, we must be contented with what we can 

obtain‛.472  Comparison, as I will show in detail in the subsequent section, remains 

an important reasoning tool for Hooke. The microscope and scale bar make it 

possible for him to zoom in on and quantify congruous and harmonious, or 

geometrically congruent and similar, parts; the ruler and compasses, instruments 

fashioned to function within the limits of the naked eye, allow him to exhibit this 

knowledge in a way comprehensible to human senses.   

 

TIME 

 ‚Having thus found the Velocities‛ of the springing body, Hooke moves on to 

the corresponding times by instructing his readers to ‚draw a Parabola CHF whose 

Vertex is C, and which passeth through the point F,‛ followed by dropping 

ordinates from the springing body AC to the parabolic section.   

The Ordinates of this Parabola BH, BH, AF, are in the same proportion with the 

Roots of the spaces CB, CB, CA <473 

What Hooke means is that by definition of a parabola,474 point H is the square of 

CB2: using point B2 for example, line segment B2H is ‚in the same proportion with‛ 

the square root of the line segment CB2, because B2H squared equals CB2 (Hooke 

draws the pricked line segment KH, forming the rectangle KHB2A, to show this 

                                                 
471 Hooke, Micrographia, 114. 
472 Hooke, Of Comets and Gravity, in Posthumous Works, 167.   
473 Hooke, Of Spring, 20. 
474 The equation of a parabola contains a squared term.   
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relation.)  Next, for any point B, the velocity ordinate GB is proportional to the 

square root of the corresponding power line (by the spring law) CB.   

[T]hen making GB to HB as HB to IB [GB is proportional to HB as HB is 

proportional to IB, or GB:HB::HB:IB+ < and through the points CIIF drawing the 

curve CIIIF, the respective ordinates of this curve shall represent the proportionate 

time that the Spring spends in returning the spaces CB, CB, CA.475 

The key word here is ‚proportionate‛.  Because of proportionality, GB is 

proportional to the square root of CB, as the square root of CB is proportional to IB 

(or GB:√CB::√CB:IB), and equivalently, via the vertical line segments or ‚Ordinates of 

this Parabola BH‛ in the lower half of the graph, GB:HB::HB:IB.  Hence, by 

rearrangement, the line segment GB (velocity) multiplied by the line segment IB 

(time) is proportional to the line segment HB squared; and by further rearrangement 

HB2/GB ∝ IB; and IB gives the ‚proportionate time‛.   

Hooke takes it as self-evident that the reader comprehends his curves, such as 

‚the S-like Line‛ of ‚proportionate time‛ CIIIF, in the lower half of the graph.  He 

seems to construct CIIIF by shifting or reflecting segments of the quarter circle arc up 

into the parabolic section, thereby maintaining the proportionality of the vertical 

ordinates; because the circle’s radius AC is the parabola’s axis of symmetry, and 

since by definition of a circle the arc maintains constant curvature at all points, this 

translation (of the circle segment into the curve CIIIF) creates a constant line of times 

for the respective powers and velocities.  One can confirm that this is so because if 

GB:HB::HB:IB, as Hooke claims, then the ordinate segments GH and HI, which 

Hooke neglects to mention, are in proportion, which they are.476  In general terms, 

the proportionality agrees with Hooke’s claim in his preliminaries: ‚the Velocities of 

the whole spaces returned are always in the same proportions with those spaces, 

they being both subduplicate to the powers, and consequently all the times shall be 

equal‛.  This is represented by ‚the S-like Line‛ CIIIF, whose ‚respective ordinates 

[IB] represent the proportionate time that the Spring spends in returning from the 

                                                 
475 Hooke, Of Spring, 20. 
476 Except for the line BG, where the ordinate segments GH and HI are not in proportion, on account of 

what appears to be an engraver’s error. 
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spaces CB, CB, CA‛.477     

Hooke’s graph works because of the similarity of right-angled triangles and 

quadrilaterals in its construction.  But this is not a construction choice with 

Euclidean or speculative foundations; rather, the geometrical similarity in the graph 

originates from practical geometry founded on an intimate scrutiny and 

quantification of nature’s parts, pores and motions with artificial instruments.  For 

example, Hooke’s studies of the ‘texture’ or lattice structure of quartz and his 

observations of cork.  Moreover, since the spring law is the keystone of Hooke’s 

metaphysical principle of matter-as-vibrations, Fig. 4 exhibits that his idiosyncratic 

mixed geometry is a novel, necessary and appropriate tool ‘to make this the more 

intelligible’ (as Hooke is fond of saying).  That is, for plaiting a proof that can make 

sense of a body’s insensible vibrations by describing them with tools made to work 

within the limits of the human eye – compasses and a ruler, points and lines and so 

on.  Recall that this is ‘the business of Speculative Geometry’ – to represent a concept 

in a form that is comprehensible to the senses.  Hooke makes an ‚Image to represent 

the flexure‛478 of matter by literally drawing the abstract from the practical parts of 

the graph – the springing body.  Just as he creates instruments that ‚interweave‛ art 

and nature, Hooke interweaves different geometries into a new one with new 

instruments like microscopes and scale bars, telescopes, sextants with telescopic 

sights and micrometers.  Indeed, later on in life during a lecture on practical 

geometry for the art of navigation, Hooke differentiates between tools of speculative 

and practical geometry, stating that 

by the help of Ruler and Compasses, [a problem can] be truly protracted and 

measur’d upon a Plain, with as great exactness as ‘tis possible, by the help of the 

Instruments and Methods that are hitherto us’d to make Observation on which to ground 

the Calculation.479  

Paradoxically, by creating a point ‚such as *with+ < the Point of a very curious pair 

of Compasses‛, Hooke turns the point into a practical one, in that it has ‚Quantity 

                                                 
477 Hooke, Of Spring, 20–21.   
478 Hooke, Of Spring, 19. 
479 Hooke, Lectures concerning Navigation and Astronomy, in Posthumous Works, 520.  Italics added. 
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and Extension, but yet so small and minute, as that the sense cannot distinguish that 

it hath any Parts‛.480  Although this once again reinforces Hooke’s view that the 

theoretical stems from the practical, his practical geometry creates the supposed 

conundrum that a body can be once a point, once a solid. 

        

7. SOLIDS 

Solid figures, composed fundamentally of points, represent the highest level of 

complexity in Hooke’s physical reality and geometry.481  In Of Spring, Hooke 

imagines how a thin iron plate of one square foot, a superficies in practical geometry, 

becomes a solid, occupying a volume of one cubic foot with the addition of a 

‚Vibrative motions forwards and backwards the flat ways‛482 (Part I).  Because of 

Hooke’s metaphysics of vibration, which supposes motion joined inseparably to 

matter just as in his geometry, points, lines, superficies and solids are all three-

dimensional bodies in his practical geometry.  So, all parts of a solid possess the 

same dimensionality as the solid – the difference is not the number of dimensions 

but the level of magnification or diminishment coupled with the frame of reference.  

Later, in Lectures concerning Navigation and Astronomy, he magnifies a ‚Prism of the 

Air‛ to hypothesise how one might calculate the power of the wind reflecting off an 

incongruous body, and describes the air prism’s parts, explaining that it is  

to be consider’d as made up of an indefinite number of small Cylinders, Prisms, 

Wires or Strings lying close together <483  

It may seem strange that Hooke imagines the air as a prism, but it is a choice 

with practical origins – his observations and experiments on light and atmospheric 

refraction, the air bending rays of light like so many lenses or prisms.484  The 

remaining solids that Hooke lists – ‚Cylinders‛, ‚Wires or Strings‛ – are lines, 

                                                 
480 Hooke, Lectures concerning Navigation and Astronomy, in Posthumous Works, 520. 
481 Hooke, Lectures concerning Navigation and Astronomy, in Posthumous Works, 451. 
482 Hooke, Of Spring, 8. 
483 Hooke, Lectures concerning Navigation and Astronomy, in Posthumous Works, 565. 
484 Hooke, Micrographia, 233. 
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similar to the sound-carrying rods previously discussed.  Thus the prism of air is 

composed of clusters of compounded solids reducible to superficies that are made 

up of lines ‚lying close together‛, which are in turn reducible to their constituent 

points or globular bodies:  

each of these small Prisms or Wires may be suppos’d as made up of an indefinite 

number of small Beads or Dies lying one behind another, and so following each 

other immediately in the same Line, and with the same Velocity of motion, and 

every one of these compounding Beads or Dies coming to beat or strike against the 

Body that lieth in the way <485 

Moreover, ‚Beads‛ or points, as has been shown, are also infinitesimally 

divisible.  When it comes to navigating the earth, this concept further allows Hooke 

to contemplate how one might ‚find out some means to distinguish every Point or 

Part of the Surface of this Globular Body *the earth+ in respect of any other‛,486 but 

the same applies to any solid and its points.  Therefore, just as a line representing a 

stretched springing body such as in Fig. 4 of the spring law is divisible into its parts, 

so too is a planet. 

And like Fig. 4, which depicts both discrete points and continuous aggregates 

of power and velocity because a spring line is infinitesimally divisible into 

compoundable parts, Hooke’s representation of practical-geometrical bodies as 

points, circles, or spherical or other solid figures depends upon magnification and 

diminishment.  That is, on shifts in the frame of reference.  Recall that from as far 

back as the Micrographia, Hooke explains that he uses magnifying and ‚Diminishing 

Glasses‛487 as a means to manipulate these perspective shifts, that is, as intellectual 

instruments that show, in a radical epistemological inversion of the microscopic and 

the celestial, how the moon can be a pockmarked superficies like the point of a 

needle; a smooth globular body; and a point. 

Carrying over into Hooke’s diagrams, magnification and diminishment by 

real, material lenses are used together as tools that represent shifts in perspective 
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based on whether a body is the primary subject of enquiry, and on whether a self-

similar part vs. a compounded whole is under scrutiny.  In this way, Hooke’s 

practical geometry is also capable of exhibiting nature’s rough surfaces as 

magnification, as well as the smoothness of diminishment.  

 

GLASSES 
To recapitulate, the Micrographia’s ‘observations’ open with points and 

conclude with solids.  Hooke could have chosen to end with any solid compounded 

of points, but because of their sphericity, the stars in Observ. LIX and the moon in 

the final Observ. LX complement the magnified point of a needle and the fullstop or 

period in Observ. I, and frame the text with Hooke’s epistemological inversion.  The 

frame controls how the text as a whole is perceived.  According to Hooke, the point 

of a needle is usually taken to be the smallest imaginable point; and the moon, a 

planet, is one of the largest imaginable points.  

Applying Galileo’s trope of the maculate moon 

to describe the surfaces of both a needle point 

and a planet increases the communicability of 

Hooke’s inversion and forges an analogical 

relation between bodies at the very limits of the 

human senses.  Moreover, the recognition of 

globular bodies as repeating and compounded 

patterns enforces order upon nature’s variety.   

Hooke’s microscopes, telescopes, scale 

bars and micrometers are the necessary 

instruments of his practical geometry.  They 

become his senses, and expand the edges of the 

imagination by, for example, revealing that the surface of the moon – a crucially 

huge hence already magnified and natural globular solid – is rough, not smooth.  

Indeed, just as Hooke often refers to pores between microscopic globular bodies as 

Figure 7.1 Hooke’s representation of a part 
of the moon (“Fig: 2” ), illustrating the 
superior level of detail revealed by his  
better telescope (Micrographia). 
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‘interstitia’, he recycles the term for ‚the Interstitia of the world‛, that is, the spaces of 

aether ‚between the Bodies of the Sun and Starrs, and the Planets, and the Earth‛.488  

The earth, a bigger planet than the moon and even more ‘naturally’ magnified by 

virtue of Hooke being on its surface, further supports his concept that nature’s 

fundamentals are physically rough as instruments of art are under the microscope.  

Taking pages out of both Kepler and Wilkins’s works,489 Hooke imagines looking at 

the earth from the moon, and postulates 

that could we look upon the Earth from the Moon, with a good Telescope, we might 

easily enough perceive its surface to be very much like that of the Moon.490 

A ‚good Telescope‛ is what allows Hooke to reach this conclusion, as he 

illustrates by comparing his drawing of ‚one small Specimen of the appearance of the 

parts of the Moon‛ (Fig. 2 or ‚Z‛) with renditions attributed to ‚Hevelius‛ (Fig. X) 

and ‚Ricciolus‛ (Fig. Y) of the same area of the moon, but with a smoother, less 

detailed surface (Figure 7.1).  Hooke complains that  

though taken notice of, both by the Excellent Hevelius < and also by the Learn’d 

Ricciolus < yet how far short both of them come of the truth, may be somewhat 

perceiv’d by the draught, which I have here added of it, in the Figure Z <491 

Because of their inferior instruments, both Johannes Hevelius and the Jesuit 

astronomer Giovanni Battista Riccioli’s ‘specimens’ lack several hemispherical pits in 

the ‘vale’ and surrounding ‘pear-shaped’ elevation of Hooke’s drawing, 

(which I drew by a thirty foot Glass, in October 1664. just before the Moon was 

half inlightned) but much better by the Reader’s diligently observing it himself, at 

a convenient time, with a Glass of that length, and much better yet with one of 

threescore foot long[.]492 

Nine years later, Hooke would publish Animadversions on the first part of the 

Machina coelestis <, openly attacking Hevelius’s preference for making 

measurements with big instruments and plain (naked eye) sights after Tycho Brahe 

                                                 
488 Hooke, Micrographia, 95–6. 
489 Kepler, Somnium: the Dream, or Posthumous Work on Lunar Astronomy, trans. Edward Rosen (New 

York: Dover, 2003).  Wilkins, The Discovery of a World in the Moone. 
490 Hooke, Micrographia, 245. 
491 Hooke, Micrographia, 242. 
492 Hooke, Micrographia, 242. 
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over instruments mounted with telescopic sights and reticules – an attack that was 

already brewing in the Micrographia.493  For example, early on in the Preface, Hooke 

explains that ‚some parts of [Nature] are too large to be comprehended, and some too little 

to be perceived.  And from thence it must follow, that not having a full sensation of the 

Object, we must be very lame and imperfect in our conceptions about it, and in all the 

propositions which we build upon it‛.  This is because of ‚the disproportion of the 

Object to the [sense] Organ[s], whereby an infinite number of things can never enter in to 

them‛, but ‚artificial Instruments and methods‛ provide ‚an inlargement of the 

dominion, of the Senses‛, expanding the limits of the imagination and hence our 

ability to reason.494  Hooke’s intolerance towards naked eye observations further 

underscores his preference for practical geometry as a theoretical tool, and the above 

manoeuvres allow Hooke to make the bold claim quoted at the start of Part II: if one 

could build microscopes practically according to the theory of them, then one would 

be able to reduce all of nature’s sharpest points to the rudeness of art – that is, to the 

rough and approximate point of a needle. 

Hooke’s ontology and epistemology depend upon these shifts in perspective, 

and knowledge gained telescopically is applicable to both the macroscopic and the 

microscopic realms, and vice versa.  Again, the difference between a point and a 

solid is not a difference in the number of dimensions, for both are three-dimensional, 

but in the physical complexity of the body.  The countless experimental and 

theoretical tools and techniques, observations, analogies and hypotheses involving 

discrete points or compounded solids form a complicated argument as Hooke’s 

studies of what there is develop in complexity.  Here, from inception, Hooke’s 

distinction between ‘point’ and ‘solid’ is that points are the most ‚simple and 

uncompounded bodies‛, whereas solids are ‚bodies of a more complicated 

                                                 
493 For a comprehensive account of the dispute between Hooke and Hevelius, and Hooke’s radical 

instrumentalism, see Gal and Chen-Morris, Baroque Science.  For further details on the ensuing 

controversy, and on Hooke’s telescopic sights and micrometers, see Nakajima, ‚Robert Hooke as an 

Astronomer: Hooke’s Optical Research and Instruments in their Historical Context‛, in Hunter, Robert 

Hooke: Tercentennial Studies, 49–62.   
494 Hooke, Micrographia, Preface. 
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nature‛.495  The optical-instrumental relations between magnifying and 

‚Diminishing Glasses‛ translate mathematically to congruent solids, similar solids 

and proportionality.  Later in his career, Hooke further employs this concept of 

practical-geometrical similarity to explain how what is sensed and imagined affects 

one’s ability to reason:   

For neither can we form a simple Idea of any thing that is a Million of Millions of 

times less than the Idea of the least visible Point; nor can we form an Idea of a 

Maximum which is Millions of Millions bigger than the imaginary bigness of the 

Heavens we see; but by Composition, and Comparisons, and Proportion, we make 

the compounded Ideas, which suffice for a Material to be made use of in 

Reasoning.496  

Here is Hooke’s novel yet situated, physicalised, practical-geometrical attempt 

at the problematic question of infinitesimals, which engaged his contemporaries.  In 

Hooke’s rendition, infinitely small practical-geometrical parts possess the same 

dimensionality as solids, thus they can be treated as small as one wishes yet still 

finite.  By choosing to order the Micrographia’s observations according to their level 

of geometrical complexity, a practical geometry lifted off nature’s parts with new 

instruments, Hooke dictates the relations between the observations, and gives his 

arguments greater authority.  By reformulating the common definitions of point, 

line, superficies and solid for practical geometry, he creates a new language capable 

of describing the ‚texture‛ of physical reality beyond the senses, because it is 

contingent upon it.  Euclidean or speculative geometry, fashioned long before the 

invention of artificial instruments such as the telescope, is incapable of describing 

the reality of objects created by the New Science, though it is nevertheless a 

necessary tool for grounding concepts by making the insensible sensible.  Thus the 

moon represents not the smooth perfection of speculative geometry, but rough 

approximations; the agent of this enforced order is Hooke, making the 

approximations human-sized with his new instruments and the geometry that they 

allow.  This justifies calling both Hooke’s practical and mixed geometry new. 

                                                 
495 Hooke, Micrographia, 1. 
496 Hooke, Of Comets and Gravity, in Posthumous Works, 176. 
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CONCLUSION 

Hooke’s unique way of working a problem reflects the synergy of his 

sometimes simultaneous careers as the Curator of Experiments for the Royal Society 

and the Gresham Professor of Geometry.  To produce a generalised ‚Theory of 

Springs‛, a ‚Rule or Law of Nature‛, which could be used to improve upon nature, 

Hooke needed to reduce his vibrating strings similitudes to a geometrical 

demonstration.  He also needed to formulate a spring law because his entire matter 

theory, Congruity and Incongruity, present in all his work, hinged on it.  Artificial 

instruments and apparatuses capable of magnifying and measuring never-before-

seen minute bodies, their pores and motions, not only allowed for the creation of a 

new geometry from nature, but made it necessary.  Because the process of 

magnification is indefinite in principle, there are no dimensionless points or 

perfectly straight lines.  Rather, these are fictions of an imagination circumscribed by 

human senses.  Thus, a necessary and useful geometry is one that is capable of 

sliding back and forth from physical points to circles and spheres, from lines to 

parallelograms, and so on.  As a result of these challenges, Hooke had to reassess 

and reconfigure the role of traditional Euclidean geometry.  The inversions, reversals 

and the subversion explicated throughout attest that the process was far from 

straightforward or self-evident.  Moreover, Hooke and his contemporaries had to 

justify and legitimise newly minted mathematical practices, showing them to be 

capable of handling the constellation of natural laws governing the objects produced 

by the instruments of the New Science.  Hooke’s reformulation of practical 

geometry, that for him is the mediator between sensible and insensible physical 

reality, originated from his epistemological preference of lifting mathematics off the 

many facets of nature’s points, lines, surfaces and solids.  It is a mathematics pulled 

from physics and dependent on the power, accuracy and precision of artificial 

instruments.  And the process of always beginning with physical reality also 
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grounded Hooke’s novel mixed geometry, as shown in the analysis of ‚Fig 4‛ – 

Hooke’s exhibition of the spring law.   

As I have also shown, Hooke achieves the above in three artful moves.  

Reversing the traditional roles of speculative and practical geometry, he teaches that 

the former is subservient to the latter.  Giving examples of how and why traditional 

geometry is an ancient instrument as fallible as the human eye, Hooke 

experimentally supports his claim that it is incapable of analysing the objects 

detected and measured by the new instruments of the New Science.  For example, 

there are no ‘ideal’ rulers or needle points with which to inscribe a ‘straight’ line.  

Even rays of light, the straightest lines in nature, are bent by refraction because no 

medium is truly homogeneous.  Speculative geometry is an abstraction and, contrary 

to Proclus’s claim, cannot represent physical reality more precisely than practical 

geometry.  Because of its primacy of the physical over the mathematical, Hooke 

concludes that his practical geometry is a better representation of art and nature than 

speculative geometry;  this relieves him of some of his anxieties about the 

technological limitations of artificial instruments as mediators between nature and 

human approximations enforced upon it.  Thus, Hooke’s reformulation of practical-

geometrical definitions constructs a theoretical tool from physical reality. Replacing 

the ruler and compasses with instruments such as microscopes and telescopes allows 

him to make his microscopic and macroscopic epistemological inversions by shifting 

frames of reference.  When the difference between points and planets becomes a 

matter of scale, Hooke can reduce globular bodies to points or circles that possess 

either geometrical congruence or similarity, welding links into a chain of 

proportionality from the microscopic to the celestial realms.  The changing scales, 

made possible by new instruments, create the need for a more flexible geometry; and 

the instruments are embodiments of geometrical scaling.  Nevertheless, speculative 

geometry and its ancient instruments remain necessary: they are theoretical and 

practical tools for grounding concepts, for making insensibles intelligible to the 

human senses.   
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To ease the communicability of his inversion, Hooke employs Galileo’s trope 

of the maculate moon, forming an analogical relation between bodies of art and 

bodies of nature at the opposite limits of the human senses: the point of a needle and 

the moon.  By using the needle point as a gauge, Hooke turns the Micrographia into a 

direct challenge against Clavius’s claim that geometers ought not to meddle in 

matters of physics.  Moreover, just like Hooke’s instruments, which he designs by 

interweaving art and nature, his argument from analogy smudges the line between 

art and nature, bolstering his conjecture that with powerful enough instruments, one 

could reveal nature to be like art – rough and approximate.  The surface of the moon 

is as rough as the surface of the point of a needle.  It also enforces an order of points 

as repeating and compounded patterns upon nature’s variety.  Thus, Hooke’s 

practical geometry creates a tense distinction between sensibles and insensibles that 

is both caused and resolved by approximation, since knowledge gained in insensible 

realms must necessarily be pulled back within sensible limits if it is to have utility. 

Finally, practical geometry demonstrates its power with Hooke’s theory of 

matter-as-vibrations.  Hooke’s replacement of the epistemological status of light, 

which is visually sensible, with sound, which is visually insensible, paves the way 

for the mathematisation of his vibrating strings model.  Because the sense of hearing 

registers the isochronous vibrations of a musical string as a particular pitch, and 

because these same motions prove too fast for the sense of sight, which registers only 

a blur of movement or none at all, Hooke chooses to study sound instead of light as 

a route to developing a general law of vibratory motion.  Yet because pond ripples, 

light and sound share observable physical similitudes, Hooke expects that 

representing his matter-as-vibrations theory of ‘congruity and incongruity’ with 

geometrical optics will describe the mechanism of all vibratory phenomena.  That is, 

by drawing both ‘mathematical lines’ and magnified ‘physical lines’ 

(parallelograms) to demonstrate the rectilinear propagation of ‚orbicular pulses‛ 

from faraway point sources, Hooke can describe the reflection of a ray against an 

incongruous surface, the refraction of rays and the obliquity of their pulses through 
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incongruous or similar media, and the congruity of an undisturbed ray in a 

homogeneous medium.  Hooke’s conflation of light strings and sound rays is viable 

because congruity and harmony, transmission and refraction, and congruence and 

similarity offer different ways of representing the same characteristics of ‘congruity’.  

Consequently, Hooke replaces all qualitative descriptions of light and sound with 

bodies and motions in Of Spring, and succeeds in constructing a geometrical 

demonstration of the spring law with his new mixed geometry in the graph, ‚Fig 4‛.  

Like his geometry, Hooke’s metaphysics of vibration supposes motion joined 

inseparably to its objects.  Thus, the graph also exhibits his solution to the question 

of infinitesimals: one-dimensional lines with length and no breadth cannot aggregate 

into a surface; but by origin, definition and use, points, lines, superficies and solids 

are all physically three-dimensional in Hooke’s practical geometry.   

 

 

 

 

APPENDIX 

 



Cindy Hodoba Eric 143 

 

 

 

‎0-1A reconstruction of “Fig 4”, Hooke’s demonstration of the spring law (Of Spring), to show possible ruler and 

compasses construction lines. 

 

 

 

‎0-2 A reconstruction of Hooke’s rolling bullets experiment (Micrographia, “Observ. XIII Of the small Diamants, or 

Sparks in Flints”, “Fig: 2”) using marbles and a parabolic bowl.  The labels correspond to Hooke’s in his “Fig: 2’; “E” 
is missing from my figure because I did not obtain it after repeating the experiment four times.  “D” was obtained 

during the second attempt.  All other shapes were obtained during all four attempts. 
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