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Abstract

The multivariate skewed variance gamma (VG) distribution is useful for modelling

data with heavy-tails and high density around the location parameter. When the

shape parameter is sufficiently small, the density function is unbounded at the location

parameter. Not much research have been conducted to deal with distributions with

unbounded density at the location parameter especially under the multivariate case.

In this thesis, we proposed three modifications to appropriately bound the likelihood

function so that the maximum is well-defined. These modified likelihoods are the

capped, leave-one-out (LOO), and weighted LOO likelihoods. Moreover, we present

expectation/conditional maximisation (ECM) algorithms to accurately estimate pa-

rameters of the VG distribution using its normal mean-variance mixture representation

and the three proposed likelihoods.

Apart from parameter estimation, we also calculate standard errors (SEs) to assess the

significance of the parameter estimates. However, the SE calculation requires calcula-

tion of the observed information matrix for the VG distribution which is tedious as it

involves the second order derivative of the log-likelihood function with respect to vec-

tor/matrices. We derive these formulas to efficiently compute the observed and Fisher

information matrices for the VG distribution by applying new matrix differentiation

formulas.

These SE calculations rely on asymptotic properties of the maximum likelihood esti-

mator (MLE) which have been extensively studied under the smooth likelihood case.

For the cusp/unbounded case, proving these asymptotic properties are a challenge as

they do not satisfy the smoothness regularity condition. We numerically investigate

these asymptotic properties for the location estimator when the likelihood function has

cusp or unbounded points. We demonstrated its super-efficient rate of convergence and

found the double generalised gamma distribution provides a good approximation to the

asymptotic distribution of the location parameter.
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Lastly, the ECM algorithms are applied to vector autoregressive moving average model

with VG and Student’s t innovations to capture serial correlation, leptokurtosis, skew-

ness, and cross dependence of return data from high frequency stock indices and cryp-

tocurrencies.
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CHAPTER 1

Introduction

1.1 Background

The Variance gamma (VG) distribution (also called generalised Laplace distribution

[60]) proposed by Madan and Seneta [71] is widely used to model financial time series

data. This distribution is particularly useful to model the increment of log-prices (also

called returns) which often display high concentration of data points around the centre

and occasional outliers. However, to accommodate for the extreme kurtosis, the density

function of the VG distribution can be cusp or even unbounded. As a result, the

likelihood function may contain many unbounded points which poses great difficulties

in the estimation procedure, especially since many popular estimation techniques relies

on the smoothness of the likelihood function.

There is a rich literature in estimation methodologies for the VG distribution. These

include Chebyshev polynomial expansion of characteristic function [70], method of mo-

ments [71, 102], product-density maximum likelihood estimator [34], minimum χ2 es-

timator, Bayesian approach using WinBUGS [35] and expectation/maximisation (EM)

algorithms [51, 75]. However, these methods encounter some significant issues when the

density of the VG distribution becomes unbounded, so the literature typically avoid the

cases of cusp and unbounded densities in their simulation studies and real applications.

The problem of unbounded density does not only exist in the VG distribution. Other

examples includes the finite mixtures of normals [4, 100] and mixtures of two Weibull

distributions [3] when one of the scale parameters approaches to zero. More examples

includes the three-parameter lognormal [24, 36] and gamma distribution with threshold

1
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parameter [21]. Cheng and Traylor [22] and Liu et al. [67] attempted to classify these

models with unbounded likelihoods into different categories. The development of the

maximum likelihood (ML) estimation methods for these examples are still limited and

so further research is required in this area.

The ML estimation methodology has been extensively studied in literature and it pos-

sesses many desirable asymptotic properties under some regularity conditions. However,

most of these properties rely on the assumption that the likelihood function is differen-

tiable but this assumption might be violated. For the case when the density has a cusp

at its mode with respect to the location parameter, Rao [91] and Ibragimov and Khas-

minskii [53, 54] showed that under some regularity conditions, the ML and Bayesian

estimators of the location parameter are consistent, super-efficient, and have a limiting

distribution with no simple expression. They also showed that this estimation prob-

lem is asymptotically equivalent to the estimation of the location of a non-stationary

process.

For the case when the likelihood is unbounded, many of the desirable properties does

not hold and even the maximum likelihood estimator (MLE) is not well-defined. Specif-

ically, the likelihood becomes unbounded whenever the location parameter approaches

to any data point and this problem is exacerbated when there are repeated data points.

This unbounded likelihood is the source of many numerical errors and can hinder the

performance of an estimator when such problem is not properly handled. Some exam-

ples of these numerical issues include failing to converge to the local maximum as many

algorithms rely on the derivative of the likelihood function which becomes problematic

if the likelihood is unbounded. Another numerical issue is the overflow (or underflow)

when calculating the ratio of some extremely large (or small) values arised from the

unbounded likelihood.

Apart from the ML approach, the Bayesian paradigm is getting popular in recent years

as it has some advantages over the ML approach. Firstly, it replaces the problem of

maximising a log-likelihood function for some complicated models by posterior sam-

pling making use of some hierarchical structures. Secondly, it can incorporate external

information in form of priors in the estimation. Lastly, it provides a posterior distri-

bution for all parameters of interest. However, it also holds some drawbacks like the

choice of priors and the expensive numerical computation. In applications, Bayesian

models are implemented by performing posterior simulation using sampling techniques
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such as Markov chain Monte Carlo (MCMC) and Gibbs sampler. When the likelihood

function is unbounded with respect to the location parameter, its posterior distribution

may also be unbounded and multimodal which can cause slow convergence [17, 42] or

even non-convergence as well as other numerical instabilities issues especially if there

is no simple sampling scheme for the posterior distribution.

As running Bayesian MCMC is known to be computationally expensive, some re-

searchers have directed their efforts to solve the unbounded likelihood problem in the

ML approach by modifying the likelihood function so that the maximum is well-defined.

Giesbrecht and Kempthorne [36] and Cheng and Iles [21] proposed the rounded like-

lihood approach by discretising the continuous density function so that the densities

become probabilities. Cheng and Amin [20] considered the maximum product of spac-

ings method to replace the likelihood function by the product of spacings where the

spacing is defined by the integral of the density function between two data points.

Lastly, Seo and Kim [100] proposed the k-deleted likelihood method by removing the

k largest terms in the likelihood. Although these three methods can deal with the

unbounded likelihood, they are prone to the following minor drawbacks. The rounded

likelihood and maximum product spacing methods require integration of the density

function which can be computationally inefficient. Additionally, the rounded likelihood

depends on some arbitrary chosen parameters while the maximum product of spacing

and k-deleted likelihood methods may encounter problems when there are many re-

peated data points. Moreover, these likelihood methods only deal with the univariate

case and some of these methods do not have a simple multivariate extension.

To address this unbounded likelihood problem for the multivariate case, we propose

three different modifications to the classical likelihood function. The first modifica-

tion is to bound the density function whenever a data point falls within some small

neighbourhood around the location parameter. The second modification is to extend

the leave-one-out likelihood (LOO) proposed by Podgórski and Wallin [89] to the multi-

variate case where it leaves out a data point that causes the singularity in the likelihood

function. The third modification adds weights to the LOO likelihood to deal with re-

peated data points. To demonstrate the implementation of our proposed likelihood

modifications, we present the EM algorithm [27] and its various extensions [65, 78] to

estimate parameters of the multivariate skewed VG distribution.
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As previously mentioned, the VG distribution is relevant in modelling the high kurtosis

in financial time series. In addition, there are two more important reasons for study-

ing the VG distribution. Firstly, it is an important limiting case that corresponds to

the unbounded density case of the generalised hyperbolic (GH) distribution [6]. When

the GH distribution approaches the VG distribution, one of its shape parameters ap-

proaches to the boundary of the parameter space potentially causing the density to

become unbounded. Hence, the regular EM algorithm proposed by Protassov [90] for

the GH distribution does not truly capture the unbounded density. Secondly, the VG

distribution has a normal mean-variance mixture representation [7] that facilitates the

implementation of the expectation-conditional maximisation (ECM) algorithm and its

extensions.

Different extensions to the ECM algorithm have been proposed to improve the computa-

tional efficiency. One such extension is called the alternating ECM (AECM) algorithm

proposed by Meng and van Dyk [79] where the data is allowed to vary within each

iteration to improve the convergence rate. Moreover, Liu [63] applied the algorithm

to multivariate symmetric Student’s t distribution. We extend the application of the

AECM algorithm to multivariate asymmetric distributions using the VG distribution

as an example.

Apart from deriving estimation methods to obtain parameter estimates, it is also im-

portant to assess the significance of these parameter estimates by calculating their

standard errors (SEs). This requires calculating the observed information matrix which

is obtained from the second order derivative of the observed log-likelihood function.

Many authors such as He [46] and Tsay [104] have provided formulas for calculating

the second order derivatives for the multivariate Student’s t and multivariate time series

models. However, none of them have verified these derivative formulas using simula-

tions. Furthermore, they incorrectly differentiated the log-likelihood with respect to

the scale matrix Σ by not incorporating its symmetric structure into the calculation.

Details of the corrected derivative formula with respect to a symmetric matrix is pro-

vided in the appendices. Additionally, we also provide the matrix representation of

the derivative formulas to enable efficient implementation in programming, and ver-

ify these SE calculations using numerical simulation. All details of these calculations

are provided in the appendices and are applicable to both the VG and Student’s t

distribution.
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Apart from the observed information matrix, the Fisher information matrix is also

considered as it can provide more stable SE estimates. However, its derivation is ex-

tremely tedious for the VG distribution. Kawai [57] derived an asymptotic formula for

the Fisher information matrix for the univariate VG distribution as the shape param-

eter tends towards zero. To the best of our knowledge, there were no formulas derived

to numerically compute the Fisher information matrix for the multivariate skewed VG

distribution as it requires multidimensional integration which is often numerically in-

feasible. We take this challenge to derive the formula by taking expectation of Louis’

formula [68] and utilising the normal mean-variance mixture structure of the density

function for the VG distribution to reduce the multidimensional integral down to one-

dimensional integral which is much easier to compute. Additionally, we verify the

formulas to numerically calculate the Fisher information matrix of the VG distribution

using numerical simulations. Our method to derive these formulas for the observed

and Fisher information matrices can also be applied to other distributions with normal

mean-variance mixture representation such as the GH distribution. These formulas

will sure provide a significant contribution to the literature on normal mean-variance

mixture distributions.

As previously mentioned, the second modification to the likelihood function adopts the

LOO likelihood from Podgórski and Wallin [89] where they proved the consistency and

super-efficiency of the location estimator that maximises the LOO likelihood when the

density is unbounded at data points. More precisely, under mild regularity conditions,

they found a lower bound for the rate of convergence for the estimator of the location

parameter. We extend the AECM algorithm to incorporate the LOO likelihood and

perform numerical simulations to investigate the asymptotic properties of the parameter

estimates that maximise the LOO likelihood. Currently, there is no literature which

provide theoretical results regarding the optimal rate of convergence and asymptotic

distribution for the location parameter estimates when the density is unbounded or even

cusp at the mode. We believe that this pioneer work will provide insight for further

theoretical development.

For the case when there are repeated data points, the LOO likelihood becomes un-

bounded at these points since leaving out a single data point is not enough to remove

the unbounded likelihood. This problem can be circumvented by applying suitable

weights to the LOO likelihood so that it leaves out multiple data points if they all
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contribute to the unbounded likelihood. Our weighted LOO (WLOO) likelihood not

only smooths out the likelihood caused by these unbounded points with data multi-

plicity but also preserves the overall structure of the likelihood in comparison to the

original unbounded likelihood. We perform some simulation studies to compare the

performance of different likelihood methods with data multiplicity.

Solving all the previously mentioned technical problems allows for real applications of

the VG distribution to high frequency financial time series that often exhibits large

kurtosis with some skewness which is difficult to model using the multivariate nor-

mal distributions. To also capture the persistence of these time series, we propose the

vector autoregressive moving average (VARMA) model with multivariate skewed VG

innovations. This flexible distribution can capture some important features such as se-

rial correlation, cross-correlation, heavy-tailedness, positive skewness and high kurtosis.

Heracleous [47] and Wang and Tsay [105] have studied multivariate time series models

with symmetric Student’s t innovation. However, not much research have been directed

to the VARMA model with skewed innovations. We derive an AECM algorithm to effi-

ciently estimate parameters for VARMA models with VG and Student’s t innovations

using the WLOO likelihood and provide formulas to calculate SEs using Louis’ method.

We also demonstrate applications by analysing returns from high frequency market in-

dices and cryptocurrency market prices including Bitcoin as they both exhibit large

kurtosis in the error distribution while comparing the model performance of VARMA

models between VG and Student’s t innovations.

This chapter is devoted to provide some background information for the topics in this

thesis. We begin by providing some basic theories on the ML estimation in Section 1.2.

Under the ML approach, Section 1.3 gives an overview of the EM algorithm which is

the methodological focus for this thesis. Section 1.4 describes the various extensions

of the EM algorithm to improve convergence rate and accuracy. Section 1.5 introduces

distributions with normal mean-variance mixture representation which includes the GH,

Student’s t and VG distributions which can facilitate the implementation of the the EM

algorithm. Lastly, Section 1.6 states the contributions and structure of this thesis.
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1.2 Maximum likelihood estimation

Maximum likelihood estimation is an estimation method which involves finding the

parameter values that maximises the likelihood function given the data. Under the

Bayesian context, this is equivalent to finding the maximum of the posterior distribution

based on non-informative priors.

In this section, we present some basic theories of the ML estimation for the case where

there are no cusp nor unbounded points in the likelihood function so that all the regu-

larity conditions are satisfied.

1.2.1 Likelihood function

Suppose there is no missing data so that y = (y1, ... ,yn) represents the complete

data, and let f(y;θ) be the joint density function for some parameter vector θ in the

parameter space Θ. Assuming that y1, ... ,yn are independent, the likelihood function

is given by

L(θ;y) := f(y;θ) =
n∏
i=1

f(yi;θ).

Equivalently, we can also consider the log-likelihood function defined by

`(θ;y) := logL(θ;y) =
n∑
i=1

log f(yi;θ). (1.1)

The likelihood function gives a criterion for parameter estimation whereby L(θ1;y) >

L(θ2;y) indicates that the data y is more likely to follow the model with parameter

θ1 than θ2, so the parameter θ1 is preferred over θ2. From this interpretation, it

makes sense to choose the parameter that “best” represents the data. We refer to this

parameter which maximises `(θ;y) over the whole parameter space Θ as the maximum

likelihood estimator (MLE) and it is defined as

θ̂MLE = argmax
θ∈Θ

`(θ;y).
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Under certain regularity conditions and assuming the likelihood function is differen-

tiable, the MLE can be obtained by solving the likelihood equation

S(θ;y) = 0 (1.2)

where the score function is defined by

S(θ;y) =
∂

∂θ
`(θ;y) (1.3)

which is the first order (vector) derivative of the log-likelihood function.

A nice property of the score function is that

Eθ[S(θ;Y )] = 0

where the expectation is taken with respect to random variables Y = (Y1, ... ,Yn) which

is distributed based on a certain statistical model with parameters θ.

1.2.2 Information matrix

Assuming the likelihood function is twice differentiable, the (observed) information

matrix is defined by

I(θ;y) = − ∂2

∂θ∂θ′
`(θ;y) (1.4)

which is the negative of the second order derivative of the log-likelihood function, and

the Fisher information matrix is defined by

I(θ) = Eθ[S(θ;Y )S(θ;Y )′]. (1.5)

If `(θ;y) is twice differentiable with respect to θ, and satisfies certain regularity con-

ditions, then the Fisher information matrix can be written as

I(θ) = Eθ[I(θ;Y )].

The information can be thought of as the amount of curvature around the MLE. So

a large amount of information gives a sharp peak around the maximum, whereas less

information indicates that the peak is more flat.

The asymptotic covariance matrix of the MLE θ̂ can be approximated by inverting the

Fisher information matrix evaluated at θ = θ̂. Hence, the SE of parameter estimates
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can be approximated by

SE(θ̂i) ≈
√[
I(θ̂)−1

]
ii

where θ̂i = [θ̂]i, and [A]ij represents the (i, j)th entry of a matrix A.

Typically, calculating the Fisher information matrix is more tedious. So instead, we

may use the observed information matrix

SE(θ̂i) ≈
√[
I(θ̂;y)−1

]
ii

based on the data, avoiding the evaluation of expectation analytically.

1.2.3 Newton-Raphson method

Under certain regularity conditions, the MLE is unique and may even have closed-form

solution. However, for most cases, the MLE is not unique and can only be defined

locally. Moreover, it may not have a closed-form solution.

In the case where there are no closed-form solution, the Newton-Raphson (NR) method

can be used to numerically solve for the likelihood equation in (1.2) by iteratively

computing

θ(t+1) = θ(t) + I
(
θ(t);y

)−1
S
(
θ(t);y

)
at iteration t where the iteration is initialised by some suitable starting value θ(0).

If the likelihood function is concave and unimodal, the iterative sequence
{
θ(t)
}

con-

verges to θ̂MLE. On the other hand, if the likelihood function is not concave, then the

iterative sequence is not guaranteed to converge for arbitrary starting values. Thus

certain assumptions needs to be checked to ensure the validity of the estimates using

the NR method.

The main advantage of the NR method is its quadratic rate of convergence which is

relatively fast for a general optimisation problem. However, there are several major

drawbacks. Firstly, the derivatives in (1.3) and (1.4) for the computation of S(θ;y)

and I(θ;y) respectively may not be obtained analytically, and so the derivatives need to

be approximated numerically. See [19] for an example. Secondly, the inverse of I(θ;y)

needs to be computed at each iteration which can be computationally demanding for
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large parameter vector. Thirdly, the method heavily relies on a good starting value as

it has the tendency to converge towards a saddle point or a local maximum.

Extensions to the NR method have been proposed to mitigate some of these drawbacks.

Böhning and Lindsay [10] demonstrated how the NR algorithm can be monotonic with

some modification. Shanno [101] proposed a quasi-Newton method where the Hessian

matrix is approximated using updates specified by gradient evaluations. Labelle [61]

extended the method to have cubic rate of convergence. See Deuflhard [28] and Nocedal

and Wright [84] for more information on NR methods.

1.2.4 Properties of MLE

The MLE possesses many desirable properties which is presented in this section. See

Robert V. Hogg [94] and Newey and McFadden [83] for more information.

Theorem 1.2.1 (Functional invariance). Suppose θ̂ is the MLE of θ, and let g(·) be

a vector function (not necessarily one-to-one) from Rd to a subset of Rk. Then g(θ̂) is

the MLE of g(θ).

In other words, the MLE does not depend on the parametrisation of θ.

Theorem 1.2.2 (Consistency). Under some regularity conditions, the MLE is consis-

tent. That is,

θ̂
p→ θ

where
p→ represents convergence in probability.

The regularity conditions in Theorem 1.2.2 refer to the identification, compactness,

continuity and dominance conditions [83, Theorem 2.5] which are also sufficient condi-

tions to establish consistency. The interpretation is that as the sample size gets larger,

there is a larger certainty that the MLE will get closer towards the true parameter.

Additionally, we can obtain information about the variability of the estimator for large

sample of size n using the following theorem.

Theorem 1.2.3 (Asymptotic Normality). Under some regularity conditions, the MLE

is asymptotically normally distributed. That is,

√
n
(
θ̂ − θ

) d→ N
(
0, I(θ)−1

)
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where
d→ represents convergence in distribution and I(θ) is the Fisher information

matrix defined in (1.5).

The regularity conditions [83, Theorem 3.3] in Theorem 1.2.3 essentially requires the

log-likelihood to be smooth enough so that the Fisher information matrix is well-defined.

In particular, f(y;θ) needs to be at least twice differentiable with respect to θ. The

theorem essentially states that the MLE asymptotically follows a normal distribution

and the variance decays at the rate of 1/n.

1.3 EM algorithm

The expectation/maximisation (EM) algorithm formalised by Dempster et al. [27] is

a general iterative algorithm for calculating the ML estimates of a statistical model

involving missing data. In this section, we give a brief summary of the EM algorithm

while also stating its convergence properties, formulas for calculating the observed in-

formation matrix, and some of its extensions. For further information, see McLachlan

and Krishnan [74].

1.3.1 Introduction

For the case when there is missing data, let ycom = (yobs,ymis) be the complete data

where yobs and ymis represent the observed and missing data respectively. We assume

that the missing mechanism is missing at random [96] so that

f(ycom;θ) = f(yobs,ymis;θ)

= f(yobs;θ) f(ymis|yobs;θ).

Taking logarithm and rearranging gives us the observe data log-likelihood

`obs(θ;yobs) = `com(θ;ycom)− `mis|obs(θ;ymis|yobs)

where `com(θ;ycom) represents the complete data log-likelihood, and `mis|obs(θ;ymis|yobs)

represents the conditional log-likelihood of the missing data given the observed data.
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The usefulness of the EM algorithm comes in when maximising `obs(θ;yobs) is challeng-

ing since it involves integrating out the missing data whereas maximising `com(θ;ycom)

is much simpler. The general idea of the EM algorithm is to iteratively compute the

MLE by the following procedure:

Step 1: Replace the missing data in the complete data likelihood by their condi-

tional expectations.

Step 2: Estimate the parameters by maximising this conditional expectation of the

complete data likelihood.

Step 3: Repeat steps 1 and 2 until parameter estimates converge.

More formally, suppose that θ(t) is the current parameter estimate, then the EM al-

gorithm is composed of the expectation step (E-step) and maximisation step (M-step)

which is described as follows:

E-step: Calculate the expected conditional log-likelihood defined as

Q
(
θ;θ(t)

)
= Eθ(t) [`com(θ;ycom)|yobs] (1.6)

=

∫
`com(θ;ycom)f

(
ymis|yobs;θ

(t)
)
dymis

where the expectation is computed with respect to conditional distribution ymis|yobs

given our current estimate θ(t). This function is also referred to as the Q-function.

M-step: Update the parameter estimate to θ(t+1) by choosing the parameter that

maximises Q
(
θ;θ(t)

)
. That is,

θ(t+1) = argmax
θ∈Θ

Q
(
θ;θ(t)

)
. (1.7)

Convergence criterion: These two steps are repeated until the difference of successive

log-likelihood values becomes sufficiently small. That is,

`obs

(
θ(t+1);yobs

)
− `obs

(
θ(t);yobs

)
≤ δ (1.8)

where we choose δ = max
{

10−7, 10−8
∣∣`(θ(t);yobs

)∣∣} for the rest of this thesis. Note

that other convergence criterion can be used for the EM algorithm.
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Algorithm 1: EM algorithm

Input: Initial value θ(0)

while `obs(θ
(t+1);yobs)− `obs(θ

(t);yobs) > δ do
Q(θ;θ(t))← Eθ(t) [`com(θ;ycom)|yobs];

θ(t+1) ← argmax
θ∈Θ

Q(θ;θ(t));

end

1.3.2 Convergence of EM algorithm

The EM algorithm provides a convenient way to maximise `obs(θ;yobs) by instead max-

imising the conditional expectation of `com(θ;ycom). In this section, we show that under

some regularity conditions, this algorithm produces iterative values θ(t) such that it in-

deed converges to the parameter that maximises `obs(θ;yobs). To show this, we need

the following two fundamental results:

Lemma 1.3.1.

`obs(θ;yobs) = Q
(
θ;θ(t)

)
−H

(
θ;θ(t)

)
where Q

(
θ;θ(t)

)
is defined earlier in (1.6), and

H
(
θ;θ(t)

)
=

∫
log f(ymis|yobs;θ) f

(
ymis|yobs;θ

(t)
)
dymis.

Proof. The idea is to decompose the complete data log-likelihood into two parts, then

apply conditional expectation. This decomposition can be done by applying the Bayes’

rule

f(ycom;θ) = f(yobs;θ)f(ymis|yobs;θ).

Taking logarithm of both sides, we obtain

`com(θ;ycom) = `obs(θ;yobs) + log f(ymis|yobs;θ).
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Applying conditional expectation over ymis given yobs at current estimate θ(t), and

rearranging gives us

`obs(θ;yobs) =

∫
`com(θ;ycom) f

(
ymis

∣∣yobs;θ
(t)
)
dymis

−
∫

log f(ymis|yobs;θ) f
(
ymis

∣∣yobs;θ
(t)
)
dymis

= Eθ(t) [`com(θ;ycom)|yobs]− Eθ(t) [log f(ymis|yobs;θ)|yobs]

= Q
(
θ;θ(t)

)
−H

(
θ;θ(t)

)
which completes the proof. �

Lemma 1.3.2. Given θ(t), then for any θ ∈ Θ

H
(
θ;θ(t)

)
≤ H

(
θ(t);θ(t)

)
.

Proof. We want to show that

H
(
θ;θ(t)

)
−H

(
θ(t);θ(t)

)
≤ 0.

Simplifying the left hand side gives us

Eθ(t) [log f(ymis|yobsθ)|yobs]− Eθ(t)
[
log f

(
ymis|yobsθ

(t)
)
|yobs

]
= Eθ(t)

[
log

(
f(ymis|yobsθ)

f(ymis|yobsθ(t))

)∣∣∣∣yobs

]
.

By Jensen’s inequality, we have that

Eθ(t)
[
log

(
f(ymis|yobsθ)

f(ymis|yobsθ(t))

)∣∣∣∣yobs

]
≤ logEθ(t)

[
f(ymis|yobs;θ)

f(ymis|yobs;θ(t))

∣∣∣∣yobs

]
.

Expressing the expectation as integrals

Eθ(t) [log f(ymis|yobsθ)|yobs]− Eθ(t)
[
log f

(
ymis|yobsθ

(t)
)
|yobs

]
≤ log

∫
f(ymis|yobs;θ)

f(ymis|yobs;θ(t))
f
(
ymis|yobs;θ

(t)
)
dymis

= log

∫
f(ymis|yobs;θ) dymis︸ ︷︷ ︸

=1

= 0

which gives us the result. �
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We now have the results to prove the monotonic convergence of the EM algorithm.

Theorem 1.3.3.

`obs

(
θ(t+1);yobs

)
≥ `obs

(
θ(t);yobs

)
.

Proof. We want to show that

`obs

(
θ(t+1);yobs

)
− `obs

(
θ(t);yobs

)
≥ 0.

Applying Lemma 1.3.1 to both terms on the left hand side gives us

= Q
(
θ(t+1);θ(t)

)
−Q

(
θ(t);θ(t)

)︸ ︷︷ ︸
≥0

−
[
H
(
θ(t+1);θ(t)

)
−H

(
θ(t);θ(t)

)]︸ ︷︷ ︸
≤0

where the first inequality is from the definition of θ(t+1), and the second inequality is

from Lemma 1.3.2. Thus applying these inequalities completes the proof. �

This theorem states that the likelihood is non-decreasing after each iteration of the

EM algorithm. Additionally, assuming that L(θ(t)) is bounded from above, then this

theorem implies that L(θ(t)) converges monotonically to some fixed point L(θ∗).

To prove that θ(t) indeed converges to θ∗ and that θ∗ are local maximas of L, the

following regularity conditions are necessary:

(i) Θ is a subset in Rd,

(ii) {θ ∈ Θ : L(θ) ≥ L(θ0)} is compact for any θ0 ∈ Θ such that L(θ0) > −∞,

(iii) L is continuous in Θ and differentiable in the interior of Θ.

See Wu [109] for further details on the convergence properties of the EM algorithm.

Generalised EM algorithm:

In the M-step (1.7), the parameter estimate is chosen such that it globally maximises the

Q-function which can be difficult for complicated Q-function. Instead, we can choose

θ(t+1) such that it increases the Q-function. That is,

Q
(
θ(t+1);θ(t)

)
≥ Q

(
θ(t);θ(t)

)
. (1.9)

From Lemma 1.3.2, we see that this condition is sufficient to ensure the monotonic con-

vergence of the EM algorithm. We refer to this algorithm as the GEM (i.e. generalised
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EM) algorithm. This algorithm also shares similar convergence properties as the EM

algorithm and was discussed by Wu [109].

Algorithm 2: GEM algorithm

Input: Initial value θ(0)

while `obs(θ
(t+1);yobs)− `obs(θ

(t);yobs) > δ do
Q(θ;θ(t))← Eθ(t) [`com(θ;ycom)|yobs];

θ(t+1) ← Any θ ∈ Θ such that Q
(
θ;θ(t)

)
≥ Q

(
θ(t);θ(t)

)
;

end

1.3.3 Score function with missing data

We already looked at the score function in (1.3) under the case where there is no missing

data. Under the EM algorithm framework, we have the complete data score function

Scom(θ;ycom) =
∂

∂θ
`com(θ;ycom)

and the observed data score function

Sobs(θ;yobs) =
∂

∂θ
`obs(θ;yobs).

The observed data score function can be expressed by the conditional expectation of

the complete data score function given y. That is,

Sobs(θ;yobs) = Eθ[Scom(θ;ycom)|yobs]

where the condition for interchanging the operations of differentiation and integration

hold. A sufficient condition for the interchangeability is using the dominating conver-

gence theorem.

1.3.4 Information matrix with missing data

The precision of the estimators can be estimated by calculating the observed information

matrix using the estimates from the EM algorithm. However, this calculation involves

the second order derivatives of the observed log-likelihood which can be extremely

complicated when there are missing data. Instead, one can use the complete data log-

likelihood to calculate the complete data information matrix as well as the missing data
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information matrix. This is more preferable if the EM algorithm is already implemented

in the first place.

Louis [68] derived a formula that allows the observed data information matrix to be ex-

pressed in terms of the complete data information matrix and missing data information

matrix.

Iobs(θ;yobs) = Icom(θ;yobs)− Imis(θ;yobs) (1.10)

where the conditional expectation of complete data information matrix is

Icom(θ;yobs) = −Eθ
(

∂2

∂θ∂θ′
`com(θ|ycom)

∣∣∣∣yobs

)
(1.11)

and the missing data information matrix is

Imis(θ;yobs) = covθ

(
∂

∂θ
`com(θ|ycom)

∣∣∣∣yobs

)
(1.12)

= Eθ
(
∂

∂θ
`com(θ;ycom)

∂

∂θ′
`com(θ;ycom)

∣∣∣∣yobs

)
− Eθ

(
∂

∂θ
`com(θ;ycom)

∣∣∣∣yobs

)
Eθ
(
∂

∂θ
`com(θ;ycom)

∣∣∣∣yobs

)′
assuming the conditions for interchanging the operations of expectation and differenti-

ation hold. See [74, equations 3.51, 4.1 and 4.3] for reference.

The equation (1.12) is referred to as the missing information principle [86] and intu-

itively can be thought of as

Observed Information = Complete Information− Missing Information.

Other methods to calculate SEs includes Bootstrap [29, 30], Baker’s [5] and Oakes’

method [85], as well as supplementary EM [77] and conditional normal approximation

algorithm [64]. Also see [18] for an application.

1.3.5 Rate of convergence

It is clear that there is a loss of information due to missing data in the calculation of

the information matrix. This also affect the convergence rate of EM algorithm. Given

the tth iteration of the EM algorithm, the iterative step θ(t) → θ(t+1) can be thought of
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as a mapping

θ(t+1) = M
(
θ(t)
)
, t = 0, 1, 2, ... (1.13)

for some vector function M : Θ→ Θ. Let θ∗ be a fixed point such that θ∗ = M (θ∗).

Expanding (1.13) around θ∗ using the Taylor expansion gives us

θ(t+1) − θ∗ ≈ J(θ∗)
(
θ(t) − θ∗

)
(1.14)

where J(θ) represents the Jacobian matrix of M(θ). Then around the neighbourhood

of θ∗, the EM algorithm is essentially a linear iteration with (matrix) rate of convergence

J(θ∗).

The global rate of convergence also called the fractional missing index is given by

r := lim
t→∞

∥∥θ(t+1) − θ∗
∥∥

‖θ(t) − θ∗‖
(1.15)

where ‖·‖ represents a norm in the Euclidean space. Under certain regularity conditions,

r = λmax := the largest eigenvalue of J(θ∗). (1.16)

Note that larger values of r implies slower convergence.

Dempster et al. [27] showed that the Jacobian in (1.14) can be written as

J(θ∗) = I−1
com(θ∗;y) Imis(θ

∗;y). (1.17)

The result in (1.16) implies that the rate of convergence of the EM algorithm is given

by the largest eigenvalue of the ratio of information matrices. This ratio can be thought

of as the proportion of missing information over complete information. In other words,

the higher the fraction of missing information, the slower the convergence rate.

The fraction of missing information may vary depending on θ which suggests that the

algorithm converges rapidly to θ∗ for some regions in Θ and converges slowly for other

regions.

1.4 Extensions to EM algorithm

For some problems, the M-step can be difficult to compute as it may involve compli-

cated models with many parameters. A natural extension is to partition the M-step
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into several conditional maximisation (CM) steps. This extension is referred to as the

expectation/conditional maximisation (ECM) algorithm proposed by Meng and Rubin

[78]. This algorithm simplifies the maximisation step for the NMVM model (in Sec-

tion 1.5) by utilising some standard results of the normal distribution given the mixing

variables. As a consequence, although it typically requires more iterations for each

CM-step as compared with the EM algorithm, the computation within each iteration

can be more efficient.

Meng [76] considered a variation of the ECM algorithm called multicycle ECM (MCECM)

algorithm which inserts extra E-steps before each CM-step. Liu and Rubin [65] ad-

vanced the ECM algorithm to ECM either (ECME) algorithm by maximising the ob-

served likelihood rather than the expected conditional likelihood to improve the speed

of convergence by reducing the number of iterations. Liu and Rubin [66] applied the

MCECM and ECME algorithms to obtain the ML estimates for multivariate Student’s

t distribution with incomplete data. They also found that the ECME algorithm con-

verges much more efficiently than the EM and ECM algorithms in terms of computa-

tional time. Hu and Kercheval [52] used the MCECM algorithm with the Student’s t

distribution for portfolio credit risk measurement. These extensions, namely the ECM,

MCECM and ECME algorithms are discussed in Sections 1.4.1 to 1.4.3, respectively.

1.4.1 ECM algorithm

As mentioned in the previous section, the EM algorithm maximises the conditional ex-

pectation of the complete data log-likelihood instead of the observed data log-likelihood

which is often simpler to compute. For some models, this maximisation can still be

computationally challenging. In spite of that, it can be simplified by partitioning the

parameter vector and performing several conditional maximisation (CM) steps with

over some smaller parameter space. These partitions are typically chosen so that some

CM-steps have closed-form solution while the others require numerical optimisation

methods. This ECM algorithm can improve the numerical efficiency and stability than

the EM algorithm.

Suppose we partition the parameter vector into S subvectors θ = (θ1, ... ,θS), and the

M-step is replaced by S ≥ 1 CM-steps, and θ(t+s/S) represents the parameter estimate

after the sth CM-step during the tth to (t + 1)th iteration of the ECM algorithm. The
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parameter θ(t+s/S) is estimated by maximising Q
(
θ;θ(t)

)
for some sub-vector of θ when

other parameters are kept fixed. More formally, this can be written as

θ(t+s/S) = argmax
θ∈Θs

Q
(
θ;θ(t)

)
(1.18)

where the expected conditional log-likelihood Q
(
θ;θ(t)

)
is defined in (1.6),

Θs :=
{
θ ∈ Θ : gs(θ) = gs

(
θ(t+(s−1)/S)

)}
and gs(·) represents the vector function that consists of all subvectors of θ except θs.

Specifically, gs(·) represents the pre-selected vector functions of θ (see [78]). For the Sth

CM-step, θ(t+S/S) = θ(t+1) is taken to be the final estimate for the (t + 1)th iteration,

and used for the next iteration. The following theorem shows that the ECM algorithm

preserves the monotonic convergence property as described in Section 1.3.2.

Theorem 1.4.1. The ECM algorithm is a GEM algorithm described in Algorithm 2.

Proof. From the definition of θ(t+s/S) in equation (1.18), this can also be written as

Q
(
θ(t+s/S);θ(t)

)
≥ Q

(
θ;θ(t)

)
for all θ ∈ Θs. Applying this for each CM-step during the tth to (t+1)th iteration gives

us,

Q
(
θ(t+1);θ(t)

)
≥ Q

(
θ(t+(S−1)/S);θ(t)

)
...

≥ Q
(
θ(t);θ(t)

)
.

This implies the ECM is a GEM algorithm since it satisfies equation in (1.9). �

In other words, the ECM algorithm preserves the monotonic convergence properties

from the GEM algorithm. Similar arguments for the GEM algorithm can be applied to

each CM-step as well. Instead of globally maximising the Q-function from (1.18), we

can instead choose any θ ∈ Θs such that

Q
(
θ(t+s/S);θ(t)

)
≥ Q

(
θ(t+(s−1)/S);θ(t)

)
(1.19)

which is computationally more feasible if the CM-step is complicated.
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Algorithm 3: ECM algorithm

Input: Initial value θ(0)

while `obs(θ
(t+1);yobs)− `obs(θ

(t);yobs) > δ do
Q(θ;θ(t))← Eθ(t) [`com(θ;ycom)|yobs] ;

θ(t+1/S) ← argmax
θ∈Θ1

Q(θ;θ(t)) ;

...
θ(t+1) ← argmax

θ∈ΘS

Q(θ;θ(t+(S−1)/S)) ;

end

1.4.2 MCECM algorithm

For the case when the E-step is easy to compute, additional E-steps can be added before

each CM-step to potentially speed up the convergence rate of the ECM algorithm. This

procedure proposed by Meng and Rubin [78] is called the multicycle ECM (MCECM)

algorithm. In general, the E-step can be added to selected CM-steps. For simplicity,

we consider the case when the E-step is performed before each CM-step

During the sth CM-step of the tth to (t+1)th iteration of ECM algorithm, θ(t+s/S) is cal-

culated by maximisingQ
(
θ;θ(t)

)
. However, for the MCECM algorithm, Q

(
θ;θ(t+(s−1)/S)

)
is maximised instead. Since theQ-function is changing after each CM-step, the MCECM

algorithm may not be a GEM algorithm. Instead we have that

Q
(
θ(t+s/S);θt+(s−1)/S

)
≥ Q

(
θt+(s−1)/S;θt+(s−1)/S

)
which is a sufficient condition to prove that

`
(
θ(t+s/S);yobs

)
≥ `
(
θ(t+(s−1)/S);yobs

)
.

Thus the MCECM monotonically increases the log-likelihood after each iteration.

Additionally, the convergence result applies since the MCECM algorithm can be thought

of as S different EM algorithms combined into one big algorithm. More generally, for

the case when the E-step is added to selected CM-steps, then the MCECM is just a

combination of R different ECM algorithms where R is the number of E-steps in the

MCECM algorithm.

One iteration of MCECM requires more computation than one iteration of ECM due

to the extra E-steps. Intuitively, one might expect the MCECM algorithm to converge
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faster than ECM since the missing values (or Q-function) are constantly being updated.

However, Meng and Rubin [78] remarked that in some cases when applied to real data,

the MCECM algorithm may in fact converges slower than ECM algorithm. Despite

this, the MCECM algorithm usually converges faster than ECM algorithm.

Algorithm 4: MCECM algorithm

Input: Initial value θ(0)

while `obs(θ
(t+1);yobs)− `obs(θ

(t);yobs) > δ do
Q(θ;θ(t))← Eθ(t) [`com(θ;ycom)|yobs] ;

θ(t+1/S) ← argmax
θ∈Θ1

Q(θ;θ(t)) ;

...
Q(θ;θ(t+(S−1)/S))← Eθ(t+(S−1)/S) [`com(θ;ycom)|yobs] ;

θ(t+1) ← argmax
θ∈ΘS

Q(θ;θ(t+(S−1)/S)) ;

end

1.4.3 ECME algorithm

The ECM either (ECME) algorithm is an extension to the ECM algorithm proposed

by Liu and Rubin [65] where the “either” refers to either maximising the Q-function or

the observed log-likelihood `obs(θ;yobs) for the CM-step.

Typically, the maximisation of the observed log-likelihood is more complicated. How-

ever, the reward is dramatically faster convergence rate. This is because calculating

the observed log-likelihood does not require estimating the missing values, and that

the speed of convergence is inversely proportional to the fractional missing index in

(1.15). As a result, each iteration of the ECME algorithm is computationally slower

than the ECM algorithm. However, the faster convergence rate dramatically reduces

the overall computation time. In the example of Liu and Rubin [65], the computation

time is reduced by a factor of seven.

The monotonic convergence for the ECME algorithm was proved by Liu and Rubin [65],

but was later noted by Meng and van Dyk [79] that the monotonic convergence holds

only if all the CM-steps applied to the Q-functions are performed before the CM-step

applied to the observed log-likelihood (see [74] in §5.7). Liu and Rubin [65] studied

the ECME algorithm and found that it has faster global speed of convergence than the
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ECM algorithm. Moreover, they noted that there are some rare situations when the

global speed of convergence is slower than the ECM algorithm.

Algorithm 5: ECME algorithm

Input: Initial value θ(0)

while `obs(θ
(t+1);yobs)− `obs(θ

(t);yobs) > δ do
Q(θ;θ(t))← Eθ(t) [`com(θ;ycom)|yobs] ;

θ(t+1/S) ← argmax
θ∈Θ1

Q(θ;θ(t)) ;

...
θ(t+1) ← argmax

θ∈ΘS

`obs(θ;yobs) ;

end

1.5 Normal mean-variance mixture representation

The EM algorithms in Sections 1.3 and 1.4 can be applied to the VG distribution via

the normal mean-variance mixture (NMVM) representation where the mixing variable

can be treated as unobserved data. This representation can also be interpreted as a

hierarchical state-space model which facilitates the Bayesian approach.

The NMVM representation preserves some nice properties from the normal distribution

such as closure under linear transformation and infinite divisibility. Other types of

mixtures include the scale mixture of uniform. See [14] for more examples of variance

mixture distributions.

In this section, we discuss about the generalised inverse Gaussian (GIG) distribution

which is the mixing distribution of the GH distribution. We note that the VG distri-

bution is the limiting case of the GH distribution that can have unbounded density.

1.5.1 Generalised inverse Gaussian distribution

The GIG distribution [8, 31, 56] is the mixing distribution of the GH distribution in the

NMVM representation. Properties of the GIG distribution is presented in this section.

Definition 1.5.1 (Generalised Inverse Gaussian Distribution). The random variable

U follows a generalised inverse Gaussian (GIG) distribution if its probability density
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function (pdf) is

f(u) =
(ψ/χ)λ/2

2Kλ

(√
χψ
)uλ−1 exp

(
−1

2

(χ
u

+ ψu
))

, x > 0 (1.20)

where Kλ(·) represents the modified Bessel function of the second kind with index λ (see

Appendix C1) and the parameters (λ, χ, ψ) satisfy the conditions
χ > 0, ψ ≥ 0 if λ < 0,

χ > 0, ψ > 0 if λ = 0,

χ ≥ 0, ψ > 0 if λ > 0.

The GIG random variable is denoted by U ∼ GIG(λ, χ, ψ).

The pdf is unimodal and the mode is located at
λ−1+
√

(λ−1)2+χψ

ψ
if ψ > 0,

χ
2(1−λ)

if ψ = 0.

In other words, λ can be considered as a parameter that controls the location of the

mode, and focuses the weighting on specific regions on the real line.

Looking at the tail of the pdf in (1.20) as u → ∞, the factor exp
(
− χ

2u

)
becomes

negligible, and the factor uλ−1 exp
(
−ψu

2

)
dominates when ψ > 0. So smaller values of

ψ puts more weight at the tail probability while the other parameters are fixed.

Approaching the lower region as u → 0, the factor exp
(
−ψu

2

)
becomes negligible, and

the factor uλ−1 exp
(
− χ

2u

)
dominates when χ > 0. So smaller values of χ puts more

weight at the zero probability while the other parameters are fixed. In fact, the pdf is

unbounded when χ = 0 and 0 < λ < 1.

A useful parametrisation is given by

ω =
√
χψ, η =

√
χ

ψ
.

Setting ω = 0 encaptures the limiting cases of either χ → 0, ψ > 0 and ψ → 0, χ > 0.

For the case when ω > 0, then the pdf in (1.20) takes an alternate form of

f(u) =
η−λ

2Kλ(ω)
uλ−1 exp

(
−ω

2

(
η

u
+
u

η

))
.
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Increasing ω increases the probability around the mean while also decreasing the vari-

ance. For this reason, ω is referred to as the concentration parameter while η is referred

to as the scale parameter.

The general moments and log-moments of the GIG random variable for the non-limiting

case (χ > 0 and ψ > 0) is given by

E[Um] = ηm
Kλ+m(ω)

Kλ(ω)
, (1.21)

E[Um logU ] =
d

ds
E[U s]

∣∣∣
s=m

= ηm
Kλ+m(ω) log η +K

(1,0)
λ+m(ω)

Kλ(ω)
, (1.22)

E
[
(logU)2

]
=

d2

ds2
E[U s]

∣∣∣
s=0

= (log η)2 +
2K

(1,0)
λ (ω) log η +K

(2,0)
λ (ω)

Kλ(ω)
(1.23)

form ∈ R whereK
(1,0)
λ (ω) = ∂

∂α
Kα(ω)

∣∣
α=λ

andK
(2,0)
λ (ω) = ∂2

∂2α
Kα(ω)

∣∣
α=λ

. The moment

generating function (MGF) is given by

MU(t) = E
[
etU
]

=

(
1− 2t

ψ

)Kλ

(
ω
(

1− 2t
ψ

))
Kλ(ω)

for ψ > 2t. (1.24)

The GIG distribution contains the following special cases:

(i) Inverse Gaussian distribution when λ = −0.5,

(ii) Inverse gamma distribution when ψ = 0 and λ < 0 such that by setting λ = −α,

χ = 2β, the pdf becomes

f(u) =
βα

Γ(α)
u−α−1 exp

(
−β
u

)
for u > 0, (1.25)

and is denoted by IG(α, β).

(iii) Gamma distribution when χ = 0, λ > 0 such that by setting λ = α, ψ = 2β,

the pdf becomes

f(u) =
βα

Γ(α)
uα−1 exp(−βu), for u > 0 .

and is denoted by G(α, β). Note that the pdf is unbounded at 0 for 0 < α < 1.
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The general moments and log-moments of U ∼ G(α, β) are given by

E[Um] =
Γ(α +m)

βm Γ(α)
for α +m > 0, (1.26)

E[Um logU ] =
Γ(α +m)

βmΓ(α)

(
ψ(α +m)− log β

)
for α +m > 0, (1.27)

E[(logU)2] =
(
ψ(α)− log β

)2
+ ψ′(α) (1.28)

where ψ(x) = d
dx

log Γ(x) represents a digamma, and ψ′(x) represents a trigamma

function.

We remark that G(α, β) and IG(α, β) are the mixing distributions of VG and Stu-

dent’s t distributions respectively from the NMVM representation. See Jørgensen [56],

Embrechts [31], and Barndorff-Nielsen and Stelzer [8] for other properties of the GIG

distribution.

1.5.2 Generalised hyperbolic distribution

Definition 1.5.2 (Normal Mean-Variance Mixture). A random variable Y is said to

have a normal mean-variance mixture (NMVM) representation if it can be expressed as

Y
d
= µ+ Uγ +

√
UAZ, (1.29)

where Z ∼ Nk(0, Ik), U is a non-negative random variable independent of Z, µ ∈ Rd,

γ ∈ Rd and A ∈ Rd×k.

The random variable U is referred to as the mixing variable, µ as the location parameter,

γ as the skewness parameter and A as the scale parameter. When A is a square

matrix, it can be thought of as the Cholesky decomposition of the scale matrix Σ (i.e.

AA′ = Σ).

Another interpretation of the mixture representation is that the conditional distribution

of Y given U is

Y |U ∼ Nd(µ+ Uγ, UΣ). (1.30)

Thus, this mixture representation allows us to easily generate random variables Y by

first generating U , then generating Y from the conditional normal distribution.
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We also can easily obtain the following formulas for the mean and covariance matrix

using the mixture representation

E(Y ) = µ+ E(U)γ, (1.31)

cov(Y ) = E(U)Σ + var(U)γγ ′. (1.32)

It is common to set E(U) = 1 so that the scale parameter Σ corresponds to the

covariance matrix for the symmetric case.

The expression for the MGF can be easily obtained from the mixture representation

with

MY (t) = EU
[
EY |U [exp(t′Y )|U ]

]
= et

′µ EU
[

exp
(
U
(
t′γ + 1

2
t′Σt

))]
= et

′µMU

(
t′γ + 1

2
t′Σt

)
where MU represents the MGF of the mixing variable. Similarly, the expression for the

characteristic function is given by

φY (t) = eit
′µMU

(
it′γ + 1

2
t′Σt

)
.

Another useful property is that

E
[

1

U
(Y − µ)

]
= E

[
γ +

1√
U
AZ

]
= γ. (1.33)

See Barndorff-Nielsen et al. [7] for other properties of distributions with NMVM repre-

sentation.

Definition 1.5.3 (Generalised Hyperbolic Distribution). The random variable Y has a

d-dimensional generalised hyperbolic (GH) distribution if it has a normal mean-variance

mixture representation with mixing variable U ∼ GIG(λ, χ, ψ), and has pdf

fY (y) =

(
ψ
χ

)λ
2
(ψ + γ ′Σ−1γ)

d
2
−λ

(2π)
d
2 |Σ| 12Kλ

(√
χψ
) × Kλ− d

2

(√
(χ+ z2)(ψ + γ ′Σ−1γ)

)
e(y−µ)′Σ−1γ(√

(χ+ z2)(ψ + γ ′Σ−1γ)
) d

2
−λ

(1.34)
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where

z2 = (y − µ)′Σ−1(y − µ) (1.35)

is the Mahalanobis distance, and is denoted by Y ∼ GHd(λ, χ, ψ,µ,Σ,γ).

The GH distribution is closed under linear transformations which can be expressed

using the following proposition.

Proposition 1.5.4 (Linear Transformation). If Y ∼ GHd(λ, χ, ψ,µ,Σ,γ), then

BY + a ∼ GHk(λ, χ, ψ,Bµ+ a,BΣB′,Bγ)

where B ∈ Rk×d and a ∈ Rk.

The parametrisation used in the pdf in (1.34) has an identification problem since

GH(λ, χ, ψ,µ,Σ,γ) and GH(λ, χ/k, kψ,µ, kΣ, kγ) both produce the same pdf for k >

0. This becomes problematic when estimating the parameters of the GH distribution

using this parametrisation, and so extra constraints are needed resulting in multiple

parametrisations. See Breymann and Lüthi [16], McNeil et al. [75] for other parametri-

sations of the GH distribution.

The GH distribution contains the following special cases:

(i) Hyperbolic distribution when λ = d+1
2

,

(ii) Normal inverse Gaussian distribution when λ = −1
2
,

(iii) Multivariate skew Student’s t distribution when λ = −υ/2, χ = υ, and ψ = 0

(see Appendix C2),

(iv) Multivariate skew VG distribution when λ = ν, ψ = 2ν, and χ = 0.

1.5.3 Variance gamma distribution

Definition 1.5.5 (Variance Gamma Distribution). The pdf of a d-dimensional multi-

variate skewed variance gamma (VG) distribution is given by

fVG(y) =
2νν

(2π)
d
2 |Σ|

1
2 Γ(ν)

×
Kν− d

2

(√
(2ν + γ ′Σ−1γ)z2

)
e(y−µ)′Σ−1γ(√

z2/(2ν + γ ′Σ−1γ)
) d

2
−ν

(1.36)

where ν > 0, z2 in (1.35), and the distribution is denoted by VGd(µ,Σ,γ, ν).
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Using the NMVM representation, the VG distribution can be represented by

Y |U ∼ Nd(µ+ γU,UΣ), U ∼ G(ν, ν) (1.37)

and so the mean and covariance matrix of a VG random vector Y are given by

E(Y ) = µ+ γ and cov(Y ) = Σ + 1
ν
γγ ′ (1.38)

respectively from the mean and covariance formulas in (1.31) and (1.32).

Using the asymptotic properties of the modified Bessel function of the second kind in

Appendix C1, the pdf in (1.36) as y → µ is given by

fVG(y) ∼


2−νπ−

d
2 νν

|Σ|
1
2 Γ(ν)

(
22ν−dΓ

(
ν − d

2

)
(2ν + γ ′Σγ)ν−

d
2

+ Γ
(
d
2
− ν
)
z2ν−d

)
if ν 6= d

2
,

2−νπ−
d
2 νν

|Σ|
1
2 Γ(ν)

(−2 log(z)) if ν = d
2
.

(1.39)

Looking at the index of z in the asymptotic expressions above, the pdf is

Case 1: differentiable when 2ν − d > 1⇒ ν > d+1
2

,

Case 2: cusped when 0 < 2ν − d < 1⇒ ν ∈ (d
2
, d+1

2
], and

Case 3: unbounded when 2ν − d ≤ 0⇒ ν ≤ d
2
.

To visualise the shape of a bivariate VG distribution, Figure 1.1 gives four pairs of

contour and three-dimensional plots for various parameters of the bivariate VG distri-

bution. The first pair of plots is based on parameters

µ =

(
0

0

)
, Σ =

(
1 0.4

0.4 1

)
, γ =

(
0.2

0.3

)
, and ν = 3. (1.40)

Based on the distribution for the first pair of plots, three other pairs of plots demonstrate

the changes in pdf when the shape parameter decreases to ν = 0.6, the skewness

parameter increases to γ = (0.5, 2), and the correlation coefficient in Σ increases to 0.8,

respectively, while keeping other parameters fixed. Plots (b) and (d) display high central

density indicating unbounded density when the shape parameter drops to ν = 0.6 (since

ν ≤ d
2
). Plots (e) and (g) show that the centres of the contours are skewed to one side

and move away from the origin of (0,0) when the two skewness increase and differ more.

Lastly, plots (f) and (h) show that the contours are more elliptical than rounded as the

correlation between the two dimensions increases.
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Figure 1.1. Various contour and 3D plots of bivariate skewed VG distribu-
tion for different parameters. In the contour plots, the bold lines repre-
sent level sets {0.1, 0.2, 0.3, 0.4}, and the dashed lines represent level sets
{0.05, 0.15, 0.25, 0.35}. The density for the 3D plots is kept between 0 and
0.4
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1.6 Contributions and structure of the thesis

As discussed in Section 1.1, there are a number of significant research gaps that this

thesis aims to address and are summarised below.

Our first and most important contribution is to derive an efficient estimation method

to implement the VG distribution. It is the limiting case of the GH distribution when

the parameter χ approaches to zero which lies on the boundary of the parameter space.

In general, the density of the GH distribution in (1.34) with shape parameter χ > 0

is bounded since χ + z2 > 0 is always satisfied. However when χ = 0, the pdf can

be unbounded and it involves a ratio which has the form of ∞∞ when y approaches to

µ, and so the VG distribution behave differently from the GH distribution. Thus the

VG distribution is not a simple sub-member of the GH distribution, so methodologies

developed for GH distribution cannot simply be applied to the VG distribution. We

present different estimation methods within the EM framework that address the cusp

and unbounded density problem associated with the VG distribution.

Our second contribution is to develop EM algorithms to address specifically the issue

of unbounded likelihood with respect to the location parameter. We review in Section

1.2 desirable properties of MLE and remark that these properties fail for the location

estimates when the likelihood is cusped or unbounded. Furthermore, even the estimator

become problematic as the derivatives of the likelihood may also be unbounded. We

present three modifications to the classical likelihood, namely the capped, LOO and

weighted LOO likelihoods. For the capped likelihood method, we study the optimal

choice of capping level for different shape parameters of the VG distribution and propose

an algorithm where the capping level updates after each iteration. We compare the

performance of these methodologies in the simulation study in Section 4.4. To the best

of our knowledge, there is no literature that has successfully developed and implemented

methods to estimate parameters when the likelihood is unbounded with respect to the

location parameter and so this work is pioneer in the field.

Our third contribution is to study the properties of the LOO estimator for the location

parameter designed to solve the problem of unbounded likelihood. As previously men-

tioned, research on the parameter estimation involving cusp and unbounded likelihood

is very limited. Podgórski and Wallin [89] proved the consistency and the lower bound
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on the rate of convergence for the location estimate using the LOO likelihood for the

unbounded likelihood case. To get a better understanding of the behaviour of the loca-

tion estimator that maximises the LOO likelihood, we find that the double generalised

gamma distribution seems to provide a good approximation to the distribution of the

location estimator. We believe that our findings provides useful insight for further the-

oretical development for the properties of the location estimator when the likelihood

has cusp or unbounded points at the mode.

Our fourth contribution is to provide efficient methods to compute the SEs of the VG

distribution. Currently, there are no explicit formulas available for the SE calculation

for the VG distribution. We derive formulas to calculate the observed and Fisher in-

formation matrices for all parameters using Louis’ method in (1.10). These formulas

are expressed in matrix form to facilitate implementation through programming. Our

empirical result from the simulation study is able to demonstrate the successful imple-

mentation of these methods to calculate SE estimates for the VG distribution and its

extension to multivariate time series models.

Our fifth contribution is to extend the VARMA model to have VG or Student’s t inno-

vations to model multivariate financial time series. Data sets such as Bitcoin and high

frequency financial returns display large kurtosis with some skewness and persistence.

This suggest the need to adopt a time series model like the VARMA with VG innova-

tions. We first extend the VAR model to adopt VG or Student’s t innovations which

is called the VAR-VG and VAR-t model respectively. This extension can be easily

implemented utilising the NMVM representation to obtain a closed-form solution for

the CM-step. However, upon adding MA terms into the model, there is no close-form

solution for the CM-step. So instead, we consider an approximation using a higher

order VAR type model for the CM-step. This model is applied to fit high frequency

financial stocks and daily cryptocurrency return series. Model performance is assessed

and forecast is performed. To the best of our knowledge, there is no research work on

multivariate financial time series models with VG or Student’s t innovations to capture

the extreme kurtosis. We believe that this work makes a significant contribution to the

time series modelling and investment portfolio settings.

The remaining part of the thesis is structured in the following way: Chapter 2 develops

the ECM algorithm to estimate parameters of the VG distribution for the unbounded

density case. We propose the likelihood with an optimal capping level and present
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the alternating ECM (AECM) algorithm along with the calculation of SEs. Chapter 3

introduces the LOO likelihood method and present the theory for the maximum LOO

likelihood estimators. Moreover, we discuss some approximation methods for the im-

plementation of the AECM algorithm when using the LOO likelihood, and numerically

investigate asymptotic properties of the location estimator using the LOO likelihood

when the density of VG distribution is cusped or unbounded at the mode. Chapter 4

motivates the weighted LOO likelihood to deal with repeated data points and compares

different likelihood methods when applied to data sets with data multiplicity. Chap-

ter 5 extends the AECM algorithm to accommodate the VARMA-VG and VARMA-t

models, and applies the algorithm to model daily and high frequency stock indices, and

daily cryptocurrency returns including the emerging Bitcoin index. Finally, a brief con-

clusion with discussion of future research is given in Chapter 6. The appendices present

details about the derivatives of the log-likelihood applied to calculating the observed

and Fisher information matrices. It also summarises results on related functions and

distributions.





CHAPTER 2

EM Algorithms for Variance Gamma Distribution

The VG distribution has applications in many areas such as finance, signal processing

and quality control. See Kotz et al. [60] and Madan and Seneta [71] for other applica-

tions. This chapter aims to develop ECM algorithms to estimate parameters of the VG

distribution.

An outline of the MCECM algorithm for estimating the parameters of the GH dis-

tribution have been presented by Hu [51] and McNeil et al. [75]. They claimed their

algorithm applies to the VG distribution as it is a limiting case of the GH distribution

when the shape parameter χ approaches zero. However, they did not address two issues

in their algorithm. Firstly, the VG distribution can have unbounded density which can

lead to instabilities in the ECM algorithm since some expectations in the E-step diverge

to infinity. Secondly, there is no guarantee that the ECM algorithm monotonically con-

verge since the unbounded likelihood violates the differentiability regularity condition

as discussed in Section 1.3.2. Moreover, the compactness regularity condition is also

violated, particularly, if we set θ0 to be any point in Θ such that µ is at any data point.

Our extensive literature review found limited research on methodologies addressing the

unbounded likelihood problem. Podgórski and Wallin [89] considered this problem by

developing the leave-one-out (LOO) likelihood where the likelihood is unbounded with

respect to the location parameter. They showed the consistency and super-efficiency of

the maximum LOO likelihood estimator for the location parameter and discussed the

applicability of the LOO likelihood method using the EM algorithm. However, their

focus was not on the numerical implementation of their algorithm. We see the need to

address this issue by providing computationally efficient and accurate methodology for

parameter estimation applied to a wide range of data sets.

35
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For the remaining part of this chapter, Section 2.1 constructs an ECM algorithm for the

VG distribution. Section 2.2 extends the ECM algorithm to the AECM algorithm to

improve computational efficiency. Section 2.3 analyses issues regarding the unbounded

likelihood and proposes the capped likelihood method. Section 2.4 illustrates the cal-

culation of the observed information matrix using Louis’ method, Hessian matrix using

second order numerical differentiation and Fisher information matrix. Section 2.5 con-

ducts three different simulation studies: the first one evaluates the performance of three

ECM algorithms; the second one studies the optimal choice of capping level ∆ and the

last one compares the SE calculation using the three methods. Section 2.6 presents an

application to daily financial returns, and finally the chapter is concluded in Section

2.7.

2.1 ECM algorithm for VG distribution

The MLE of parameters θ = (µ,Σ,γ, ν) from the VG distribution in the parameter

space Θ maximises the observed data log-likelihood function

`(θ;y) =
n∑
i=1

log fV G(yi;θ) (2.1)

where we let fV G(·) be the pdf of the VG distribution in (1.36) and y = (y1, ... ,yn) be

the observed data. Using the NMVM representation of the VG distribution in (1.37)

and letting u = {u1, ... , un} to represent the unobserved or missing data and {y,u} to

represent the complete data, the complete data likelihood function can be written as

L(θ;y,u) = f(y,u;θ) =
n∏
i=1

fN(yi|ui;µ,Σ,γ)fG(ui; ν). (2.2)

The complete data log-likelihood function can be factorised into two distinct log-

likelihood functions

`(θ;y,u) = `N(µ,Σ,γ;y,u) + `G(ν;u) (2.3)
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where the log-likelihood of the conditional normal distribution ignoring additive con-

stants is given by

`N(µ,Σ,γ;y,u) (2.4)

= −n
2

log |Σ| − 1

2

n∑
i=1

1

ui
(yi − µ− uiγ)′Σ−1(yi − µ− uiγ)

= −1

2

[
n log |Σ|+

n∑
i=1

1

ui
(yi − µ)′Σ−1(yi − µ) +

n∑
i=1

uiγ
′γ

−
n∑
i=1

(yi − µ)′γ −
n∑
i=1

γ ′(yi − µ)

]
and the log-likelihood of the gamma distribution is given by

`G(ν;u) = nν log ν − n log Γ(ν) + (ν − 1)
n∑
i=1

log ui − ν
n∑
i=1

ui. (2.5)

The idea of the estimation procedure of the ECM algorithm is to first estimate the

mixing variables u by its conditional expectation given the observed data y. Then

condition on u, the estimation of the parameters (µ,Σ,γ, ν) can be separated in two

blocks: the conditional maximisation of the conditional normal log-likelihood function

with respect to (µ,Σ,γ) and the conditional maximisation of the gamma log-likelihood

function with respect to ν. Details of the estimation procedures are described below.

2.1.1 E-step

Suppose θ(t) = (µ,Σ,γ, ν) are the current parameter estimates, then the calculation

of the Q-function in (1.6) requires taking the conditional expectation of (2.4) and (2.5)

given y. Equivalently, it is sufficient to calculate the following conditional expectations:

Eθ(t)
[

1

ui

∣∣∣∣yi], Eθ(t) [ui|yi], Eθ(t) [log ui|yi].

To derive the conditional expectations of ui given yi, we need the conditional distribu-

tion of ui given yi which has density function as:

f
(
ui|yi;θ(t)

)
∝ f

(
ui,yi;θ

(t)
)

∝ u
ν− d

2
−1

i exp

[
− z2

i

2ui
− ui

2

(
2ν + γ ′Σ−1γ

)]
(2.6)
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where z2
i = (yi−µ)′Σ−1(yi−µ) which corresponds to a GIG(ν − d/2, z2

i , 2ν + γ ′Σ−1γ)

distribution (1.20). Using this distribution, we can calculate the following conditional

expectations:

ûi = Eθ(t) [ui|yi] =
ηiKν− d

2
+1(ωi)

Kν− d
2
(ωi)

, (2.7)

1̂/ui = Eθ(t)

[
1

ui

∣∣∣∣∣yi
]

=
Kν− d

2
−1(ωi)

ηiKν− d
2
(ωi)

, (2.8)

l̂og ui = Eθ(t) [log ui|yi] = log ηi +
K

(1,0)

ν− d
2

(ωi)

Kν− d
2
(ωi)

(2.9)

where ηi = zi/
√

2ν + γ ′Σ−1γ, ωi = zi
√

2ν + γ ′Σ−1γ and K
(1,0)
λ (z) = ∂

∂α
Kα(z)

∣∣
α=λ

which can be approximated using the second order central difference approximation

K
(1,0)
λ (z) ≈ Kλ+h(z)−Kλ−h(z)

2h

where we let h = 10−5.

2.1.2 CM-step for µ,Σ and γ

Suppose u is given, the MLE of (µ,Σ,γ) is obtained by maximising `N(µ,Σ,γ;y,u)

in (2.4) with respect to (µ,Σ,γ) by equating each component of the partial derivatives

of `N(µ,Σ,γ;y,u) to zero. This gives us the following estimates:

µ̂ =
Sy/uSu − nSy
S1/uSu − n2

, (2.10)

γ̂ =
Sy − nµ̂

Su
, (2.11)

Σ̂ =
1

n

n∑
i=1

1

ui
(yi − µ̂)(yi − µ̂)′ − 1

n
γ̂γ̂ ′Su (2.12)

where the complete data sufficient statistics are

Sy =
n∑
i=1

yi, Sy/u =
n∑
i=1

1

ui
yi, Su =

n∑
i=1

ui, S1/u =
n∑
i=1

1

ui
. (2.13)
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2.1.3 CM-step for ν

Given the mixing variables u, the MLE of ν can be obtained by maximising the log-

likelihood of the gamma distribution,

`G(ν;u) = nν log ν − n log Γ(ν) + (ν − 1)Slog u − νSu (2.14)

with respect to ν using numerical optimisation techniques where

Slog u =
n∑
i=1

log ui. (2.15)

This maximisation corresponds to the MCECM algorithm in Section 1.4.2. Alter-

natively, maximising the observed log-likelihood `V G(θ;y) in (2.1) with respect to ν

corresponds to the ECME algorithm in Section 1.4.3 and can dramatically improve the

convergence rate of the algorithm.

Algorithm 6: MCECM algorithm for VG distribution

Input: Initial value θ(0)

while `(θ(t+1);y)− `(θ(t);y) > δ do
Q
(
θ;θ(t)

)
← Eθ(t) [`(θ;y,u)|y] ;

θ(t+1/2) ← argmax
θ∈Θ1

Q
(
µ,Σ,γ, ν(t);θ(t)

)
;

Q
(
θ;θ(t+1/2)

)
← Eθ(t+1/2) [`(θ;y,u)|y] ;

θ(t+1) ← argmax
θ∈Θ2

Q
(
µ(t+1/2),Σ(t+1/2),γ(t+1/2), ν;θ(t+1/2)

)
;

end

Algorithm 7: ECME algorithm for VG distribution

Input: Initial value θ(0)

while `(θ(t+1);y)− `(θ(t);y) > δ do
Q(θ;θ(t))← Eθ(t) [`(θ;y,u)|y] ;

θ(t+1/2) ← argmax
θ∈Θ1

Q(µ,Σ,γ, ν(t);θ(t)) ;

θ(t+1) ← argmax
θ∈Θ2

`(µ(t+1/2),Σ(t+1/2),γ(t+1/2), ν;y) ;

end
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2.2 Alternating ECM algorithm for skewed VG dis-

tribution

The ECM algorithm utilises the NMVM representation in (1.37) as a conventional data

augmentation scheme. To improve the rate of convergence of the ECM algorithm, we

consider a more general data augmentation scheme called the alternating ECM (AECM)

algorithm [79] which is a generalisation of the ECME algorithm. Let ui = vi/a(θ) where

a(θ) is any positive function of θ. Then (1.37) becomes

yi|ui ∼ Nd
(
µ+ vi

γ

a(θ)
, vi

Σ

a(θ)

)
,

vi
a(θ)

∼ G(ν, ν). (2.16)

The purpose of the data augmentation is to choose a positive function a(θ) such that

it allows the fractional missing index in (1.15) to vary according to a(θ). One pop-

ular choice is a(θ) = |Σ|α where α is a working parameter [79]. However, for a

general function a(θ), the parameters θ = (θ1,θ2) in the factorisation f(yi, ui|θ) =

f(yi|ui,θ1)f(ui|θ2) in (2.2) may be dependent, making the implementation complicated

with possibly no closed-form solution. To simplify the implementation procedure, Liu

[63] considered a(θ) itself as a parameter denoted by κ where κ = 1 corresponds to the

conventional data augmentation. He proposed an updating formula for κ by maximis-

ing the observed log-likelihood of the multivariate symmetric Student’s t distribution

given ν as well as a procedure that estimates (κ, ν) together. In this thesis, we consider

updating κ for the multivariate skewed VG distribution by choosing

κ̂ = argmax
κ>0

`V G

(
µ̂,

Σ̂

κ
,
γ̂

κ
, ν̂

)
(2.17)

using numerical optimisation techniques given the current estimates (µ̂, Σ̂, γ̂, ν̂). Then

we update the new parameter estimates as

γ̂∗ =
γ̂

κ̂
, and Σ̂∗ =

Σ̂

κ̂
. (2.18)

In summary, the AECM algorithm involves the following steps:

Initialisation step: Choose suitable starting values (µ0,Σ0,γ0, ν0) . It is recom-

mended to choose starting values (ȳ, cov(y),0, d + 3) where ȳ and cov(y) denote the

sample mean and sample covariance matrix of y respectively.
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At the tth iteration with current estimates (µ(t),Σ(t),γ(t), ν(t)):

E-step 1: Calculate ûi and 1̂/ui for i = 1, ... , n in (2.7) and (2.8), respectively, using

(µ(t),Σ(t),γ(t), ν(t)). Calculate also the sufficient statistics Sy/u, Su and S1/u in (2.13).

CM-step 1: Update the parameters (µ,Σ,γ) in (2.10) to (2.12) respectively using the

sufficient statistics.

CM-step 2: Estimate κ to update the parameters (Σ,γ) using (2.18).

CM-step 3: Update the parameter ν by maximising the observed log-likelihood `(θ;y)

in (2.1).

Stopping rule: Repeat the procedures until the relative increment of log-likelihood

function is sufficiently small as in (1.8).

Algorithm 8: AECM algorithm for VG distribution

Input: Initial value θ(0)

while `(θ(t+1);y)− `(θ(t);y) > δ do
Q(θ;θ(t))← Eθ(t) [`(θ;y,u)|y] ;

θ(t+1/3) ← argmax
θ∈Θ1

Q(µ,Σ,γ, ν(t);θ(t)) ;

θ(t+2/3) ← argmax
θ∈Θ2

`(µ(t+1/3), 1
κ
Σ(t+1/3), 1

κ
γ(t+1/3), ν(t+1/3);y) ;

θ(t+1) ← argmax
θ∈Θ3

`(µ(t+2/3),Σ(t+2/3),γ(t+2/3), ν;y) ;

end

2.3 Capped likelihood method for dealing with un-

bounded likelihood

Numerical problems may occur when dealing with small shape parameter such that

ν ≤ d
2

since fV G(y) in (2.1) at µ is unbounded which was shown in (1.39). See Figure

3.1 for a graphical illustration of the unbounded log-likelihood function with respect to

the location parameter. Using the asymptotic properties of the modified Bessel function
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of the second kind in Appendix C1, we can show that as µ→ yi,

Eθ[ui|yi] ∼



2ν−d
2ν+γ′Σ−1γ

if ν > d
2
,

− 1

(2ν+γ′Σ−1γ) log
(√

2ν+γ′Σ−1γzi

) if ν = d
2
,

Γ(ν− d
2

+1)

Γ( d
2
−ν)

22ν−d+1(2ν + γ ′Σ−1γ)
d
2
−ν−1zd−2ν

i if ν ∈
(
d
2
− 1, d

2

)
,

− log
(√

2ν + γ ′Σ−1γzi

)
z2
i if ν = d

2
− 1,

z2i
d−2(ν+1)

if ν < d
2
− 1,

Eθ
[

1

ui

∣∣∣∣yi] ∼



2ν+γ′Σ−1γ
2ν−d−2

if ν > d
2

+ 1,

−(2ν + γ ′Σ−1γ) log
(√

2ν + γ ′Σ−1γzi

)
if ν = d

2
+ 1,

Γ(1−ν+ d
2

)

Γ(ν− d
2

)
21−2ν+d(2ν + γ ′Σ−1γ)

ν− d
2 z2ν−d−2
i if ν ∈ (d

2
, d

2
+ 1),

− 1

log
(√

2ν+γ′Σ−1γzi

)
z2i

if ν = d
2
,

d−2ν
z2i

if ν < d
2
,

Eθ[log ui|yi] ∼


ψ(ν − d

2
)− log

(
2ν+γ′Σ−1γ

2

)
if ν > d

2
,

log zi − 1
2

log(2ν + γ ′Σ−1γ) if ν = d
2
,

−ψ(d
2
− ν)− log 2 + 2 log zi if ν < d

2
.

where zi =
√

(yi − µ)′Σ−1(yi − µ). Thus for the case when ν ≤ d
2
, the main source

of numerical problem for the ECM algorithm comes from calculating Eθ[ 1
ui
|yi] since it

diverges to infinity at a hyperbolic rate as the estimate for µ approaches to one of the

data points which is where the maximum of the likelihood function occur. This leads

to numerical problems when calculating µ̂ and Σ̂ in (2.10) and (2.12) respectively.

One solution to this problem is to bound the conditional expectations around µ by a

region such that if

zi < ∆ (2.19)

where ∆ is some small fixed positive constant and zi is defined in Section 2.1.1, then

we compute the conditional expectations in (2.7) to (2.9) by replacing zi with z∗i =

max(zi,∆) which helps mitigate numerical problems. Moreover, this method can be
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applied to the observed log-likelihood function to avoid the unbounded likelihood. We

denote the region in (2.19) to be the capping region and ∆ to be the capping level. We

perform simulation studies in Section 2.5.1 to assess the performance of the capping

approach and choose a suitable value of ∆.

2.4 Observed information matrix

The observed information matrix can be calculated using these three methods:

Method 1: Hessian matrix by direct numerical differentiation,

Method 2: Louis’ method, and

Method 3: Fisher information matrix.

We describe each of these methods in more detail and compare their accuracy later

using Monte Carlo simulations in Section 2.5.3.

2.4.1 Hessian matrix by numerical differentiation

The Hessian matrix defined as the second order derivative of the observed log-likelihood

function in (2.1) can be computed directly by numerical differentiation. This can be

implemented using the hessian function in the R package called numDeriv which uses

Richardson extrapolation method [93].

2.4.2 Louis’ method

Let ycom = (y,u) be the complete data, and yobs = y be the observed data. Then the

observed information matrix can be expressed in terms of the conditional expectation of

the derivatives of the complete data log-likelihood using Louis’ formula in (1.10) which
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is given by

Iobs(θ;yobs) = −Eθ[`′′(θ;ycom)|yobs]− cov[`′(θ;ycom)|yobs]

= Eθ
[
− ∂2

∂θ∂θ>
`com(θ;ycom)

∣∣∣∣yobs

]
− Eθ

[
∂

∂θ
`com(θ;ycom)

∂

∂θ>
`com(θ;ycom)

∣∣∣∣yobs

]
+ Eθ

[
∂

∂θ
`com(θ;ycom)

∣∣∣∣yobs

]
Eθ
[
∂

∂θ
`com(θ;ycom)

∣∣∣∣yobs

]>
(2.20)

where the first order and second order derivatives of the complete data log-likelihood

of the VG distribution are given in Appendix A8.

Calculating the second term in (2.20) directly is not straight forward since it requires

taking expectation of the product of two summations. This calculation can be simplified

by representing the summations of the first order derivatives in terms of matrices in

Appendix B2 and using the mutual independence of the ui’s to simplify the missing

information matrix in Section B3. This matrix representation allows the second and

third term to be easily calculated using (B.14) and (B.15) respectively.

Since the conditional distribution of ui given yi follows GIG(ν − d
2
, z2
i , 2ν + γ ′Σ−1γ),

the conditional expectations is given by

Eθ[umi |yi] = ηmi
Kλ+m(ωi)

Kλ(ωi)
, (2.21)

Eθ[umi log ui|yi] = ηmi
Kλ+m(ωi) log ηi +K

(1,0)
λ+m(ωi)

Kλ(ωi)
, (2.22)

Eθ
[
(log ui)

2|yi
]

= (log ηi)
2 +

2K
(1,0)
λ (ωi) log ηi +K

(2,0)
λ (ωi)

Kλ(ωi)
(2.23)

where λ = ν − d/2, ηi = zi/
√

2ν + γ ′Σ−1γ, ωi = zi
√

2ν + γ ′Σ−1γ, and K
(2,0)
λ (z) =

∂2

∂α2Kα(z)
∣∣
α=λ

which is approximated using second order approximation

K
(2,0)
λ (z) ≈ Kλ+h(z)− 2Kλ(z) +Kλ−h(z)

h2
(2.24)

and setting h = 10−5.

Since the expectations in (2.21) to (2.23) have the same numerical problem as in Section

2.3, we bound these conditional expectations using the same capping region as in (2.19).
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2.4.3 Fisher information matrix

The Fisher information matrix of the VG distribution can be obtained by integrating

the observed information matrix in (2.20) with respect to yi over Rd which is evaluated

in Appendix B. The first and second term of (2.20) can be simplified by swapping the

order of integration using Lemma B1.1, then equating the higher order moments of the

conditional normal distribution given the missing variables in B4. This procedure is

then applied to each block of the matrix for the first and second term in Appendix B6.1

and B6.2 respectively.

The third term of (2.20) is the most challenging as order of integration cannot be in-

terchanged, and so we are required to integrate over Rd with respect to yi. However,

the integral can be partitioned into its spherical and radial parts using spherical coordi-

nates. The spherical integral consists of spherical moments of the VG distribution which

can be derived exactly using Theorem B5.1 and matrix derivative results in Appendix

A. What remains is the integral of the radial part which can be evaluated numerically

using the integrate function in R. This construction essentially reduces the dimension

of the integral evaluated on R+ instead of Rd which is much more feasible to compute.

The formulas for the first, second and third term are given in Sections B6.1, B6.2 and

B6.3 respectively. Combining these terms together gives us Fisher information matrix

for the VG distribution.

2.4.4 Singularity of the information matrix

The asymptotic covariance matrix of θ̂ can be approximated by the inverse of the

observed information matrix Iobs(θ̂). This gives us a way to approximate the SE of

θ̂i = (θ̂)i by calculating

SE(θ̂i) ≈
√[
Iobs(θ̂;yobs)−1

]
ii
. (2.25)

However, the observed information with respect to µ is not well-defined for ν < d
2

due to the unbounded likelihood. This issue has been discussed by Kawai [57] for the

univariate VG distribution where he showed that for ν < 1/2,

Eθ

[(
∂

∂µ
log f(Y ;θ)

)2
]

=∞ (2.26)
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where Y is an univariate VG random variable with density function f , and the expec-

tation is taken with respect to Y which depends on θ. Thus for the unbounded density

case, we omit the location parameter in the information matrix and SE calculation.

2.5 Simulation studies

2.5.1 Comparing EM algorithms

To assess the performance of our proposed algorithms, we compare the accuracy and

computational efficiency of the MCECM, ECME and AECM algorithms for two differ-

ent choices of ∆:

(i) ∆ = sqrt(.Machine$double.xmin) ≈ 1.5e-154 where double.xmin repre-

sents the smallest non-zero normalised floating-point number in R.

(ii) ∆ = sqrt(.Machine$double.eps) ≈ 1.5e-8 where double.eps represents the

smallest positive floating-point number x such that 1+x6=1 in R.

The procedure for the simulation study is described below:

Step 1: We set the dimension d to be one of the values from 1 to 5. For each

dimension, we choose some parameter value for µ, Σ and γ. For example, the true

values are µ = (0, 0), Σ =
(

1 −0.4
−0.4 1

)
and γ = (−1.2,−0.2) when d = 2.

Step 2: For each dimension, we set the shape parameter ν to be either one of the

smaller values {0.01, 0.02, 0.03, 0.04} or regular values {0.05, 0.1, ... , 1.95, 2}.
Step 3: For each pair of (d, ν), we generate M = 200 different sets of sample each

from VG distribution with dimension d, shape parameter ν, and sample size n = 2000.

We present the accuracy of each parameter by reporting the median of the sum of the

absolute errors (SAE) over all elements in a vector or lower triangular matrix. We

also present the median computation time and number of iterations required for the

convergence of the EM algorithms. The results are tabulated in Table 2.1 and 2.2 when

the shape parameters are ν = 0.5 and ν = 0.04 respectively for d = 2.

From Table 2.1 and Table 2.2, each of the EM algorithms gives fairly similar results for

the two levels of ν. Generally, the AECM algorithm requires less number of iterations

and computation time while it can still give reasonably accurate estimates. However,
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Table 2.1. Median of SAE, computation time, and number of iterations for
each ECM algorithm when applied to simulated VG samples with d = 2 and
ν = 0.5.

Capping level ∆ ≈ 1.5e-154 ∆ ≈ 1.5e-8

Algorithm MCECM ECME AECM MCECM ECME AECM

SAE(µ̂) 4.2e-3 3.4e-3 3.4e-3 4.2e-3 3.4e-3 3.4e-3

SAE(Σ̂) 0.15 0.17 0.17 0.12 0.11 0.11
SAE(γ̂) 0.05 0.05 0.05 0.05 0.05 0.05
ν̂ 0.39 0.39 0.39 0.50 0.50 0.50
Time (sec) 1.5 1.4 1.6 0.4 0.7 0.5
Iterations 62 41 33 43 43 17

Table 2.2. Median of SAE, computation time, and number of iterations for
each ECM algorithm when applied to simulated VG samples with d = 2 and
ν = 0.04.

Capping level ∆ ≈ 1.5e-154 ∆ ≈ 1.5e-8

Algorithm MCECM ECME AECM MCECM ECME AECM

SAE(µ̂) 1.4e-38 2.5e-38 1.6e-38 6.2e-11 6.2e-11 6.5e-11

SAE(Σ̂) 0.22 0.23 0.21 2.20 2.20 2.21
SAE(γ̂) 0.09 0.10 0.10 1.11 1.11 1.12
ν̂ 0.040 0.040 0.040 0.047 0.047 0.046
Time (sec) 8.8 13.8 3.0 3.8 6.8 1.2
Iterations 274 259 65 314 318 20

as the trade-off, the computational time of the ECME algorithm is higher than the

MCECM algorithm as each iteration requires more numerical computation. When

comparing the performance of the capping levels, we see that ∆ ≈ 1.5e-154 performs

better for ν = 0.04, while ∆ ≈ 1.5e-8 performs better for ν = 0.5.

In summary, the AECM algorithm performs better than the MCECM and ECME

algorithms in terms of accuracy and computational efficiency. Additionally, smaller

∆ performs better for smaller ν which suggests that choosing suitable ∆ can improve

accuracy for different ν.
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Algorithm 9: AECM algorithm for VG distribution with adaptive ∆

Input: Initial value θ(0), and ∆(0) = ĝ(1, d)
while `(θ(t+1);y)− `(θ(t);y) > δ do

Q(θ;θ(t))← Eθ(t) [`(θ;y,u)|y] ;

θ(t+1/3) ← argmax
θ∈Θ1

Q(µ,Σ,γ, ν(t);θ(t)) ;

θ(t+2/3) ← argmax
θ∈Θ2

`(µ(t+1/3), 1
κ
Σ(t+1/3), 1

κ
γ(t+1/3), ν(t+1/3);y) ;

θ(t+1) ← argmax
θ∈Θ3

`(µ(t+2/3),Σ(t+2/3),γ(t+2/3), ν;y) ;

∆(t+1) ← ĝ(ν(t+1), d) ;
end

2.5.2 Optimal choice of capping level

To determine the optimal capping level for a wide range of shape parameters, we perform

the following simulation study:

Step 1: Choose ν out of {0.02, 0.04, ... , 1.18, 1.2}, and d out of {1, ... , 30}.
Step 2: Apply the R function optimise to find the optimal ∆ such that it minimises

f(∆; ν, d) =
∑r

k=1

∣∣log ν̂∆
k,d − log ν

∣∣ where for each k = 1, ... , r (where we set r = 50),

we simulate from standard VG distribution (µ = 0,Σ = Id,γ = 0) with chosen ν and

sample size n = 2000 and estimate ν̂∆
k,d by maximising the observed likelihood (with

capping level ∆) with respect to ν while fixing all other parameters.

Step 3: Repeat step 2 to obtain 200 optimal ∆ estimates for each ν and d.

The results depicted in Figure 2.1 shows that as the shape parameter decreases, the

median of the optimal ∆ decreases and the variability of the optimal ∆ increases. As

we increase the dimension, the median of the optimal ∆ slightly increases. This optimal

∆ can be applied in the AECM algorithm by first fitting the median of the optimal ∆

in Figure 2.1 with a cubic spline represented as ĝ(ν, d), then after the t 7→ t+1 iteration

of the AECM algorithm, update ∆(t+1) = ĝ
(
ν(t+1), d

)
.

Since ∆ changes after each iteration, the log-likelihood also changes. Thus the conver-

gence results in Section 1.3.2 does not apply for this algorithm. Nevertheless, as long as

the likelihood improves after each iteration, then the AECM algorithm with adaptive

∆ in each iteration can still be implemented. We refer this algorithm as the AECM

algorithm with adaptive ∆.
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Figure 2.1. plotting the median (thick solid), 95% quantile (dotted) and 5%
quantile (dashed) of the optimal log ∆ estimates for each ν and dimensions 1
(red), 5 (green), and 30 (blue).

2.5.3 Comparing standard error calculations

The aim of this section is to verify the calculation of SE by comparing the estimated

SE from simulated data sets with the theoretical SE from Fisher information matrix

and the following two methods for calculating SE:

Numerical Hessian method: calculate the Hessian matrix using numerical differen-

tiation evaluated at θ̂ in Section 2.4.1.

Louis’ method: calculate the complete and missing information matrices evaluated at

θ̂ using the formulas (2.20) in Section 2.4.2. See Appendix A8 for the derivatives.

We calculate the theoretical SE based on the Fisher information matrix evaluated at

the true parameter values in Section 2.4.3. See Appendix B6 for the calculation of the

Fisher information matrix for the VG distribution.
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For this simulation study, the true parameter values are chosen to be

µ =

(
0

0

)
, Σ =

(
1 0.8

0.8 1

)
, γ =

(
0.8

1

)
. (2.27)

Then the procedure of the simulation is as follows:

Step 1: Choose ν out of {0.7, 1.2, 1.7, 3, 5}.
Step 2: Sample n = 1000 data points from the VG distribution with parameters in

(2.27) and ν chosen in step 1.

Step 3: Apply the AECM algorithm with adaptive capping level to obtain param-

eter estimates for the VG distribution.

Step 4: Use the parameter estimates to calculate the SEs using numerical Hessian

and Louis’ methods.

Step 5: For each ν, repeat steps 2 and 4 to get 500 different SEs.

The median of the SE estimates based on simulation along with the SEs from Louis’

method, numerical Hessian method and Fisher information matrix are displayed in

Table 2.3. The first column labelled “Simulated” is the standard derivation of estimates

over r = 500 replications. The last column labelled “Fisher” is calculated using the

formulas in Appendix B6. Since the information corresponding to µ̂ is not well-defined

when ν < 1, we write NA. For each ν, the SE estimates based on simulation is consistent

with the SEs from numerical Hessian and Louis’ methods. The SE from the Fisher

information matrix evaluated at the true parameters is consistent with the other SEs

for each ν except for ν = 5. This slight inconsistency possibly suggests that the

performance of the algorithm can be improved for larger ν. Note that many authors

such as in [46, 104] do not provide simulation results to confirm the consistency of the

SE estimates since they do not account for the correction factor for derivatives involving

Σ which is discussed in Section A7.1.

In conclusion, the numerical Hessian and Louis’ methods both provide accurate SE

estimates for each parameter. While both methods use second order numerical differ-

entiation for Kλ(z) such as (2.24), Louis’ method is often more numerically stable as

the differentiation is evaluated to each term of the log-likelihood of the conditional nor-

mal and gamma distribution which has closed-form expression, whereas for numerical

Hessian method, it was applied to the observed log-likelihood directly. The SE from
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Table 2.3. Median SE estimates based on various SE methods for comparison.

true ν SE Simulated Louis Hessian Fisher

ν = 0.7

SE(µ̂′)
(
0.014 0.014

)
NA NA NA

SE(Σ̂)

(
0.08 0.07

0.8

) (
0.08 0.07

0.07

) (
0.08 0.07

0.07

) (
0.07 0.07

0.08

)
SE(γ̂ ′)

(
0.05 0.05

) (
0.05 0.04

) (
0.05 0.04

) (
0.04 0.05

)
SE(ν̂) 0.035 0.035 0.035 0.035

ν = 1.2

SE(µ̂′)
(
0.04 0.04

) (
0.05 0.05

) (
0.05 0.05

) (
0.03 0.03

)
SE(Σ̂)

(
0.07 0.06

0.07

) (
0.08 0.07

0.07

) (
0.08 0.07

0.07

) (
0.07 0.06

0.07

)
SE(γ̂ ′)

(
0.06 0.05

) (
0.06 0.06

) (
0.06 0.06

) (
0.05 0.06

)
SE(ν̂) 0.09 0.09 0.09 0.09

ν = 1.7

SE(µ̂′)
(
0.07 0.06

) (
0.07 0.06

) (
0.07 0.06

) (
0.06 0.06

)
SE(Σ̂)

(
0.08 0.06

0.07

) (
0.08 0.07

0.07

) (
0.08 0.07

0.07

) (
0.07 0.07

0.07

)
SE(γ̂ ′)

(
0.08 0.07

) (
0.08 0.07

) (
0.08 0.07

) (
0.07 0.07

)
SE(ν̂) 0.18 0.17 0.17 0.16

ν = 3

SE(µ̂′)
(
0.14 0.13

) (
0.13 0.12

) (
0.13 0.12

) (
0.12 0.13

)
SE(Σ̂)

(
0.08 0.07

0.07

) (
0.08 0.07

0.07

) (
0.08 0.07

0.07

) (
0.07 0.06

0.07

)
SE(γ̂ ′)

(
0.15 0.13

) (
0.14 0.12

) (
0.14 0.12

) (
0.12 0.13

)
SE(ν̂) 0.51 0.49 0.49 0.46

ν = 5

SE(µ̂′)
(
0.26 0.22

) (
0.26 0.23

) (
0.26 0.23

) (
0.20 0.22

)
SE(Σ̂)

(
0.08 0.07

0.07

) (
0.08 0.07

0.07

) (
0.08 0.07

0.07

) (
0.07 0.06

0.07

)
SE(γ̂ ′)

(
0.26 0.23

) (
0.26 0.23

) (
0.26 0.23

) (
0.20 0.22

)
SE(ν̂) 1.49 1.44 1.44 1.17

the Fisher information matrix evaluated at true parameters are consistent with the

simulated results, and also indicate that the AECM algorithm with adaptive capping

level performs well for smaller ν. Moreover, these results verify the matrix derivatives

in Appendix A8 and multidimensional integration results in Appendix B6 used to cal-

culate the observed information matrix from (2.20) and the Fisher information matrix

respectively. The formulas for Louis’ and Fisher’s methods can also be used to calcu-

late the SE of other distributions with NMVM representation such as the multivariate

Student’s t and GH distributions.
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Table 2.4. Summary statistics for DAX, S&P 500, FTSE 100, AORD and CAC
40 daily return series.

Indices Mean SD Skewness Kurtosis Correlation matrix

DAX 2.9e-4 0.015 0.02 9.5


1 0.64 0.87 0.37 0.36
1 0.61 0.15 0.63

1 0.41 0.31
1 −0.01

1


S&P 500 1.1e-4 0.014 −0.29 12.9

FTSE 100 1.2e-4 0.013 −0.09 11.0
AORD 1.6e-4 0.011 −0.73 10.5
CAC 40 1.8e-4 0.029 0.15 11.7

2.6 Application

To illustrate the applicability of the AECM algorithm using VG distribution, we con-

sider the returns of the five daily closing price indices, namely, Deutscher Aktien (DAX),

Standard & Poors 500 (S&P 500), Financial Times Stock Exchange 100 (FTSE 100), All

Ordinaries (AORD) and Cotation Assistée en Continu 40 (CAC 40) from 1st January

2004 to 31st December 2012. The return of market indices is defined as

rt = log(pt)− log(pt−1) (2.28)

for t = 2, 3, ... where pt refers to the closing price at time t. After filtering the data

with missing closing prices, we obtain the data size of n = 2188. Plots of the five time

series are given in Figure 2.2. They all show low autocorrelation and high volatility

during the financial crisis in 2008. As the summary statistics in Table 2.4 show that

the data exhibit considerable skewness and kurtosis, we begin our analysis with the VG

distribution to capture the skewness and kurtosis.

The results for the estimated parameters and their SEs using Louis’ method are given

in Table 2.5 as well as the estimated correlation matrix ρ based on the estimated

covariance of Y given by Σ̂ + 1
ν̂
γ̂γ̂ ′.

Not surprisingly, the scale estimate of Σ for CAC 40 is the largest as it has the largest

sample standard derivation. Moreover, the positive skewness estimate is also in agree-

ment the sample skewness. After allowing for the skewness, the location estimate of

CAC 40 is lower compared with other indices. Regarding the correlation based on the

model, the pair of DAX and FTSE 100 has the strongest whereas AORD and CAC 40

has the lowest. This seems to agree with the geographical locations for these indices.
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Figure 2.2. Time series plots for the five daily return series
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Table 2.5. Parameter estimates and its SEs using Louis’ method of the VG
model using DAX, S&P 500, FTSE 100, AORD and CAC 40 daily return
series.

Estimates Standard errors

µ′ 10−4
(
18.3 9.6 12.1 20.1 −7.4

)
NA

Σ 10−5


18.8 9.7 13.5 4.5 11.7

13.9 7.9 1.6 17.3
13.3 4.2 8.8

11.7 0.5
65.9

 10−6


7.4 4.9 5.6 3.8 9.0

5.4 4.0 3.1 8.8
5.2 3.3 7.5

4.7 6.6
26.0


γ ′ 10−4

(
−15.4 −8.5 −10.9 −18.6 9.1

)
10−4

(
4.5 3.7 3.8 3.6 8.4

)
ν 1.40 0.054

ρ


1 0.60 0.86 0.31 0.33

1 0.58 0.13 0.57
1 0.35 0.29

1 0.01
1


In summary, our proposed AECM algorithm can be applied to fit the VG distribution

and the SE can be calculated using Louis’ method in Section 2.4. We note that the

SE for µ̂ is not provided when ν̂ < d/2 since the information is not well-defined from

(2.26) which is the case for this analysis. This motivating analysis illustrates the need

to consider LOO and WLOO likelihoods in Chapters 3 and 4 to improve the parameter

estimation and SE approximation for µ̂ when the likelihood becomes unbounded.

2.7 Conclusion

We proposed various extensions to the ECM algorithm to estimate parameters of the

VG distribution. We improve the efficiency and stability of the ECM algorithm by

implementing the AECM algorithm. This algorithm with the capped likelihood method

can also deal with the unbounded density of the VG distribution when ν < d/2 which

may arise when fitting it to high frequency data with high kurtosis. Further details on

fitting high frequency data is explored in Section 5.6.

The challenge from unbounded density is that it gives numerically unstable conditional

expectations in the E-step when the location parameter tends towards an observation.
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We resolved the problem by imposing a bound as in (2.19). From the simulation studies,

the effect of bounding the conditional expectations allows for more numerically stable

parameter estimates and AECM algorithm with adaptive capping level also performs

better than MCECM and ECME algorithms in terms of accuracy and computational

efficiency. We also studied the optimal choices of ∆ for dimensions d = 1, ... , 5 using

the AECM algorithm. We propose the adaptive ∆ method to update ∆ after each

iteration. The third simulation study also confirms the accuracy of the SE calculation

using both numerical Hessian and Louis’ methods when comparing to the estimates

based entirely on simulation as well as the theoretical Fisher information matrix using

true values.

However, despite the good performance of the AECM algorithm and SE calculation,

there are some limitations. Both numerical Hessian and Louis’ methods fail to provide

SE estimates for the location parameter when ν < d/2 since the likelihood function is

unbounded and so the information matrix is not well-defined from (2.26). Moreover,

the choice of ∆ may subject to debate and the optimal ∆ needs to be estimated using

simulations such as in Section 2.5.2. In the next chapter, we explore the properties of the

LOO likelihood method as an alternative way to deal with the unbounded likelihood and

numerically investigate the distribution of the location estimator using LOO likelihood

which can be applied to calculate the SE of location estimates.





CHAPTER 3

Estimation using Leave-one-out Likelihood

3.1 Introduction

In Chapter 2, we propose a method by choosing the optimal capping level to bound the

density in order to avoid the unbounded likelihood. A major drawback to this method

is that simulations are required to estimate the optimal capping level. Furthermore, the

optimal capping level can change for different dimensions and different distributions.

In this chapter, we consider the leave-one-out (LOO) likelihood to leave out the data

point that causes the likelihood to become unbounded. This construction removes the

dependency of an arbitrary capping level which is a desirable property.

The main objective of this chapter is three-folded. Our first objective is to extend

the definition of the LOO likelihood in [89] to accommodate for multivariate data sets

while also dealing with the unbounded likelihood. Our second objective is to propose

an AECM algorithm to obtain the maximum LOO estimates for the parameters of

the VG distributions when densities are cusped or unbounded with respect to the

location parameter. We also remark that our methodology is general enough to apply

to other distributions with NMVM representation including the Student’s t and GH

distribution. Our third objective is to analyse the asymptotic behaviour including the

optimal convergence rate and asymptotic distribution of the maximum LOO likelihood

estimator for the location parameter through simulation studies using data simulated

from the VG distribution with different samples sizes and shape parameters.

The remaining chapter is structured as follows. Section 3.2 formulates the maximum

LOO likelihood framework for parameter estimation of multivariate distributions with

57
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unbounded densities with respect to the location parameter and states some properties

of the estimator. Section 3.3 introduces the AECM algorithm using the LOO likelihood

to estimate parameters of the VG distribution. Section 3.4 presents two simulation

studies. The first study assess the accuracy of our estimator while the second study

analyse the asymptotic behaviour of the maximum LOO likelihood estimator for the

location parameter of the VG distribution. Lastly, Section 3.5 concludes the chapter

with some remarks.

3.2 Maximum leave-one-out likelihood

Let y = (y1, · · · ,yn) be observed data from the VG distribution with corresponding

mixing variables u = (u1, · · · , un), and θ = (µ,Σ,γ, ν) be parameters of the VG

distribution in the parameter space Θ. The density of the VG distribution is unbounded

at µ when ν ≤ d
2
. Consequently, the MLE is not well-defined since there are multiple

unbounded points at each data point in the likelihood function. Kawai [57] has shown

that for the univariate case, and the Fisher information matrix with respect to µ is also

not well-defined which was briefly discussed in Section 2.4.4.

3.2.1 Leave-one-out likelihood

The classical likelihood function needs to be modified so that the maximum is well-

defined even with the unbounded likelihoods. Podgórski and Wallin [89] proposed the

observed leave-one-out (LOO) likelihood function defined as

LLOO(θ;y) =
∏

i 6=k(µ)

f(yi;θ) (3.1)

for some density function f where the LOO index is defined as

k(µ) = argmin
k∈{1,...,n}

(yk − µ)′Σ−1(yk − µ). (3.2)

Note that we slightly modify the convention in Podgórski and Wallin [89]: “if there are

two indices we take the one for which corresponding yk(µ) is on the right side of µ” as

it only deals with the univariate case and cannot be easily extended to the multivariate

setting.
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We remark that when considering asymmetric distributions, the LOO likelihood func-

tion is discontinuous. For the VG distribution with skewness, the discontinuity is not

an issue since the density is asymptotically symmetric as y → µ from (1.39), and so

the effect of the discontinuities is minimised for larger sample size. On the other hand,

when using other distributions with different skewness behaviour, the LOO index can

alternatively be defined as

k(µ) = argmax
k∈{1,...,n}

f(yk;θ). (3.3)

In this thesis, we simply adopt the LOO index in (3.2).

Let the observed LOO log-likelihood function be defined as

`LOO(θ;y) = logLLOO(θ;y) (3.4)

and the maximum LOO likelihood estimator which maximises the LOO likelihood func-

tion with respect to θ be denoted as θ̂n.

The unbounded density problem is illustrated with a data of 10 observations simulated

from the standard VG distribution (µ = 0, σ = 1, γ = 0) with shape parameter

ν = 0.2. In Figure 3.1, we plot both the full (or classical) log-likelihood function along

with the LOO log-likelihood function with respect to the location parameter. We see

that leaving the data point out essentially removes the unbounded points of the log-

likelihood function so that the maximum can be well-defined. Additionally, if we zoom

in at around µ = 0, we observe that non-differentiable points tend to occur between

data points. We describe in more detail in Section 3.3.2.3 on how to deal with these

non-differentiable points when estimating parameters.

3.2.2 Properties of maximum LOO likelihood estimator

The following proposition shows that the LOO likelihood indeed attains maximum at

the midpoints for the cusp or unbounded density cases which was seen from Figure

3.1(b),

Proposition 3.2.1. Let y = (y1, ... , yn) be univariate symmetric VG random variables,

y(1) < ... < y(n) be ordered values of y, and xi =
(
y(i) + y(i+1)

)
/2 for i = 1, ... , n − 1.

Then the LOO likelihood attains its maximum at one of the {xi} for ν < d
2

+ 1
2
.
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Figure 3.1. Left: Comparing full log-likelihood (solid grey) vs. LOO log-
likelihood (dashed black) of simulated data from standardised VG distribution
with ν = 0.2 and sample size of ten with vertical dotted grey lines denoting
the positions of data points. Right: Close-up of the left figure at around µ = 0
focusing on the LOO log-likelihood.

Proof. The idea of the proof is similar to Hossain et al. [50, Proposition 4.6]. �

For the one-dimensional case, some asymptotic properties of the estimator for the loca-

tion parameter µ̂n such as consistency and super-efficient rate of convergence are proved

by Podgórski and Wallin [89]. We state both the assumptions and theorem relating to

these asymptotic properties:

Assumptions:

(A1) The pdf f(y) = p(y)|y|α where α ∈ (−1, 0), p has bounded derivative on R\{0}
and, for some ε > 0, f is non-zero and continuous either on [−ε, 0] or on [0, ε].

(A2) There exist ρ > 0 such that f(y) = O(|y|−ρ−1) when |y| → ∞.

(A3) For all ε > 0, the incomplete Fisher information is finite. That is,

Iε(θ) := Eθ

[(
∂

∂θ
log f(Y ;θ)

)2
∣∣∣∣∣ |Y | > ε

]
<∞.
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Theorem 3.2.2. Let f satisfies the assumptions (A1) to (A3) and let µ̂n be the max-

imiser of LLOO(µ;y). Then µ̂n is consistent estimator of µ and for any β < 1/(1 + α),

nβ(µ̂n − µ)
p→ 0

where α is defined in (A1).

Proof. See Podgórski and Wallin [89]. �

This theorem states the lower bound for the rate of convergence n−β for the maximum

LOO likelihood location estimator. For univariate VG distribution, α = 2ν − 1 from

(1.39). Hence setting β = 1/(1 + α) = 1/(2ν) possibly gives us the index for the

optimal rate of convergence (or the proposed optimal rate) for ν < 1/2. Additionally,

nβ(µ̂n−µ) will converge to some asymptotic distribution for some suitable choice of β.

We investigate these asymptotic properties in Section 3.4 using simulations from uni-

variate symmetric VG distribution. We remark that currently, there is no multivariate

extension of Theorem 3.2.2 and further research is needed to investigate such extension.

3.3 AECM algorithm using LOO likelihood

Directly finding the maximum LOO likelihood estimator θ̂n of VG distribution can be

difficult as the observed LOO likelihood function has many non-differentiable points

when ν ≤ d/2, and the LOO index k(µ) makes derivatives tedious to work with since

the summation and the differential with respect to µ can not be interchanged due to

the dependency of the summation index on µ in (3.1). Alternatively, we can implement

the AECM algorithm to not only maximise the conditional expectation of the complete

data LOO likelihood, but also improve convergence and computational time.

Given the complete data (y,u), we can use the NMVM representation in (1.37) to

represent the complete data LOO log-likelihood as

`LOO(θ;y,u) = `LOO
N (µ,Σ,γ;y,u) + `LOO

G (ν;u) (3.5)
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where the LOO log-likelihood of the conditional normal distribution ignoring additive

constants is given by

`LOO
N (µ,Σ,γ;y,u) = −n− 1

2
log |Σ| − 1

2

∑
i 6=k(µ)

1

ui
(yi − µ− uiγ)′Σ−1(yi − µ− uiγ)

(3.6)

and the LOO log-likelihood of the gamma distribution is given by

`LOO
G (ν;u) = (n− 1)(ν log ν − log Γ(ν)) + (ν − 1)

∑
i 6=k(µ)

log ui − ν
∑
i 6=k(µ)

ui. (3.7)

We have proposed the AECM algorithm for the VG distribution using the full likelihood

in Section 2.2. However, modifications to the algorithm are necessary when using the

LOO likelihood. We discuss new techniques to maximise the LOO likelihood while

avoiding some numerical issues. We remark that the E-step using the LOO likelihood

is the same as with the full likelihood in Section 2.1.1.

3.3.1 E-step

Refer to the E-step in Section 2.1.1 for the conditional expectations. Recall from Section

2.3 that for the unbounded density case, Eθ
[

1
ui

∣∣yi] diverges to infinity at a hyperbolic

rate as µ→ yi. This leads to numerical problem when the maximum of the likelihood

becomes unbounded at the data points. The LOO likelihood avoids this by preventing

the location estimate to converge towards the data points as it was shown that the

maximum of LOO likelihood tends to be between data points from Figure 3.1(b) and

Proposition 3.2.1.

3.3.2 CM-step

We encounter two types of difficulties in calculating the derivative of `N with respect

to µ for the CM-step.

Firstly, even when the LOO likelihood removes the unbounded points from the full

likelihood, there still exist non-differentiable points in the LOO likelihood function.

Consequently, we cannot completely rely on derivative based methods to find the max-

imum of the LOO likelihood with respect to the location parameter µ.
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Secondly, given the unobserved data u, the first order derivative of the complete data

LOO log-likelihood in (3.6) with respect to µ is

∂

∂µ
`LOO
N = −1

2

 ∂

∂µ

∑
i 6=k(µ)

1

ui
(yi − µ− uiγ)′Σ−1(yi − µ− uiγ)

. (3.8)

Since the summation index depends on µ, the differential and the summation cannot

simply be interchanged. Thus the CM-step for µ does not have a closed-form solution.

To solve these two problems, we propose the local midpoint search and local point search

algorithms for the first problem, and the approximate derivative of the complete data

LOO log-likelihood for the second problem.

3.3.2.1 Local midpoint search (for one-dimensional case)

As seen in Figure 3.1(b) and Proposition 3.2.1, the maximum of the LOO log-likelihood

tends to occur at the non-differentiable points which are located between data points

for the one-dimensional case. So ideally we want to search along these midpoints to

maximise the LOO log-likelihood with respect to µ. This leads to the local midpoint

search. The idea is to search for midpoints around the current iterate µ(t) and choose

the one that maximises the LOO log-likelihood.

Local midpoint search algorithm: Let (µ(t),Σ(t), γ(t), ν(t)) be our current estimates, and

y(i) be the ordered data. The procedures are:

Step 1: Calculate Euclidean distances
∣∣xi − µ(t)

∣∣ for i = 1, ... , n − 1 where xi :=

(y(i) + y(i+1))/2, choose the least m Euclidean distances with corresponding midpoints

xi1 , ... , xim and let xi0 = µ(t).

Step 2: Update the location estimate by choosing µ out of {xi0 , ... , xim} such that

it maximises the LOO likelihood in (3.4). That is,

µ̂ = argmax
µ∈{xi0 ,...,xim}

`LOO
(
µ,Σ(t), γ(t), ν(t);y

)
.

Step 3: Repeat steps 1 and 2 until the location estimate converges.

In practice, we search over data points with the least m Euclidean distances from the

midpoints and setm = max{20, n/100} in this simulation study given that n ≥ 20. This
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choice of m was defined to balance the computational time and accuracy since small

m results in the algorithm being incapable of escaping the local maximum, whereas

large m results in slower computational time. Finding out the optimal choice of m

requires further research and is not considered in this thesis. Hence we simply take

m = max{20, n/100} as an ad hoc choice.

3.3.2.2 Local point search (for higher dimensional case)

In general, finding the maximum in higher dimensions is more computationally de-

manding. For two-dimensional data, the maximum occurs at the non-differentiable

lines which is demonstrated later in Figure 3.3. For d-dimensional data, the maximum

occur on the (d− 1) dimensional non-differentiable manifolds.

So for simplicity, we propose to search for data points around the current iterate µ̂(t)

and choose the one that increases the LOO log-likelihood.

Local point search algorithm:

The algorithm is similar to the local midpoint search algorithm in Section 3.3.2.1 except

we search over the data points instead of the midpoints, and replace the Euclidean

distance with the Mahalanobis distance

(yi − µ(t))′(Σ(t))−1(yi − µ(t))

for i = 1, ... , n. For the rest of this thesis, we simply refer to these two algorithms as

the local point search (LPS) algorithms.

3.3.2.3 Approximated derivative of the complete data LOO log-likelihood

To evaluate the first order derivative in (3.8), we propose to approximate the derivative

by considering the LOO index in (3.2) to be fixed at the current estimate µ(t) so that

we leave out the data point closest to µ(t) instead of µ. This gives us an approximation

to the derivative of the LOO log-likelihood for the conditional normal distribution with
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respect to µ from (3.8) given the mixing variables u,

∂

∂µ
`LOO
N ≈ −1

2

 ∂

∂µ

∑
i 6=k(µ(t))

1

ui
(yi − µ− uiγ)′Σ−1(yi − µ− uiγ)


= Σ−1

∑
i 6=k(µ(t))

1

ui
(yi − µ− uiγ).

Similarly, applying the approximate partial derivative to `LOO
N and `LOO

G with respect to

other parameters and solving the approximate derivatives at zero gives us the following

CM-steps.

CM-step for µ, Σ and γ:

Suppose that the current iterate is θ(t) and u is given. After equating each component

of the approximate partial derivatives of `LOO
N (µ,Σ,γ;y,u) to zero, we obtain the

following estimates:

µ̂ =
Sy/uSu − (n− 1)Sy
S1/uSu − (n− 1)2

, (3.9)

γ̂ =
Sy − (n− 1)µ̂

Su
, (3.10)

Σ̂ =
1

n− 1

∑
i 6=k(µ(t))

1

ui
(yi − µ̂)(yi − µ̂)′ − 1

n− 1
γ̂γ̂ ′Su (3.11)

where the sufficient statistics to the approximate LOO log-likelihood are:

Sy =
∑

i 6=k(µ(t))

yi, Sy/u =
∑

i 6=k(µ(t))

1

ui
yi, Su =

∑
i 6=k(µ(t))

ui, S1/u =
∑

i 6=k(µ(t))

1

ui
. (3.12)

For the AECM algorithm, the CM-step for κ and the CM-step for ν using the LOO

likelihood are similar to Section 2.2 and 2.1.3 respectively.

3.3.2.4 Line search

The estimates in (3.9) to (3.11) using approximate derivatives will not guarantee the

LOO likelihood to increase. In this regard, we propose to apply a line search to ensure

the LOO likelihood increase after each CM-step. This line search is part of a class of

adaptive over-relaxed methods which can also improve the efficiency of EM algorithm

[97]. Let θ(t) be the current estimate and θ(t+1) be the updated estimate after the
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CM-step in Section 3.3.2. We propose to construct a direct line search by defining

θ∗ = θ(t) + ξ
(
θ(t+1) − θ(t)

)
where ξ ∈ I ⊂ R and the interval I is chosen so that θ∗ remains in the parameter space.

Using the optimise function in R, ξ is estimated to be ξ∗ such that it maximises the

LOO log-likelihood

ξ∗ = argmax
ξ∈I

`LOO(θ∗).

Since finding the maximum of a non-differentiable function is difficult, we can alterna-

tively choose θ∗ such that it improves the LOO likelihood over the previous estimate

such that

`LOO(θ∗;y) ≥ `LOO(θ(t);y).

3.3.3 AECM algorithm

Combining the steps we introduced earlier gives us the ACME algorithm for the VG

distribution using the LOO likelihood:

Initialisation step: Choose suitable starting values (µ0,Σ0,γ0, ν0) . It is recom-

mended to choose starting values (ȳ, cov(y),0, d+ 3).

At the tth iteration with current estimates (µ(t),Σ(t),γ(t), ν(t)):

Local Point Search: Update the parameter µ using local midpoint or point search

in Sections 3.3.2.1 and 3.3.2.2 respectively.

E-step 1: Calculate ûi and 1̂/ui for i = 1, ... , n in (2.7) and (2.8) respectively using

parameters from the local point search. Also calculate the sufficient statistics Sy/u, Su

and S1/u in (3.12).

CM-step 1: Update the parameters (µ,Σ,γ) in (3.9) to (3.11) using the sufficient

statistics in E-step 1. Then apply the line search in Section 3.3.2.4 to ensure monotonic

convergence.

CM-step 2: Estimate κ to update the parameters (Σ,γ) using the data augmentation

scheme similar to Section 2.2.
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CM-step 3: Update the parameter ν by maximising the observed LOO log-likelihood

with respect to ν while keeping the other parameters fixed.

Stopping rule: Repeat the procedures until the relative increment of LOO log-

likelihood function is sufficiently small as in (1.8).

We remark that the LPS algorithm ensure the location estimate does not get stuck

around the local maximas whereas the line search in Section 3.3.2.4 is applied after

each CM-step that maximise the Q-function to ensure monotonic convergence of the

AECM algorithm.

We numerically verify the accuracy of this algorithm in Section 3.4.1 using Monte Carlo

simulations.

Algorithm 10: AECM algorithm for VG using LOO likelihood

Input: Initial value θ(0)

while `LOO(θ(t+1);y)− `LOO(θ(t);y) > δ do
θ(t+1/5) ← argmax

θ∈Θ1

{
`LOO(µ,Σ(t),γ(t), ν(t);y) : µ ∈ {yi0 , ... ,yim}

}
;

QLOO(θ;θ(t+1/5))← Eθ(t+1/5)

[
`LOO(θ;y,u)|y

]
;

θ(t+2/5) ← argmax
θ∈Θ2

QLOO(µ,Σ,γ, ν(t+1/5);θ(t+1/5)) ;

θ(t+3/5) ← argmax
θ∈Θ3

{
`LOO(θ;y) : θ = θ(t+1/5) + ξ(θ(t+2/5) − θ(t+1/5))

}
;

θ(t+4/5) ← argmax
θ∈Θ4

`LOO(µ(t+3/5), 1
κ
Σ(t+3/5), 1

κ
γ(t+3/5), ν(t+3/5);y) ;

θ(t+1) ← argmax
θ∈Θ5

`LOO(µ(t+4/5),Σ(t+4/5),γ(t+4/5), ν;y) ;

end

3.3.4 Convergence of AECM algorithm using LOO likelihood

The AECM algorithm described in Section 3.3.3 can be thought of as an ECME al-

gorithm with additional CM-step for κ. So for this case, it is sufficient to prove the

monotonic convergence of the ECME algorithm using the LOO likelihood.

Let the approximate LOO log-likelihood be defined as

˜̀LOO(θ;y) =
∑

i 6=k(µ(t))

log f(yi;θ) (3.13)
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with the LOO index fixed at k(µ(t)). To show the convergence of the ECME algorithm

using approximate LOO log-likelihood, we first prove the convergence of the ECME

algorithm with one CM-step for the approximate LOO log-likelihood and then extend

the proof for multiple CM-steps. For the case with one CM-step, we apply the idea in

Section 1.3 to the LOO log-likelihood and state two fundamental results below:

˜̀LOO(θ;y) = Q̃LOO(θ;θ(t))− H̃LOO(θ;θ(t))

and

H̃LOO(θ;θ(t)) ≤ H̃LOO(θ(t);θ(t))

where we let

Q̃LOO(θ;θ(t)) =

∫
˜̀LOO(θ;y,u)f(u|y;θ(t)) du

with f(u|y;θ(t)) =
∏n

i=1 f(ui|yi;θ(t)), ˜̀LOO(θ;y,u) =
∑

i 6=k(µ(t)) log f(yi, ui;θ), and

H̃LOO(θ;θ(t)) =

∫
˜̀LOO(θ;u|y)f(u|y;θ(t)) du

with ˜̀LOO(θ;u|y) =
∑

i 6=k(µ(t)) log f(ui|yi;θ). The idea of the proof are exactly the same

as in Lemma 1.3.1 and 1.3.2 by replacing the full likelihood with the LOO likelihood.

However, choosing θ(t+1) such that

Q̃LOO
(
θ(t+1),θ(t)

)
≥ Q̃LOO

(
θ(t),θ(t)

)
guarantee that ˜̀LOO

(
θ(t+1);y

)
≥ ˜̀LOO

(
θ(t);y

)
but not `LOO

(
θ(t+1);y

)
≥ `LOO

(
θ(t);y

)
.

For this reason we perform a line search in Section 3.3.2.4 so that the LOO log-likelihood

improves and thus guarantee the monotonic convergence of the LOO log-likelihood.

For the case with multiple CM-steps, the monotonic convergence of the ECME algo-

rithm only applies if all the CM-steps applied to Q-functions are performed before the

CM-step applied to the observed LOO log-likelihood (see Section 1.4.3). Thus for this

case, we apply the line search to the CM-steps involving the Q-function to ensure that

the observed LOO log-likelihood increase after each CM-step. Thus this guarantees the

monotonic convergence of the LOO log-likelihood in Section 3.3.3.
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3.4 Simulation studies

3.4.1 Accuracy of estimates for AECM algorithm

To demonstrate the accuracy of the proposed AECM algorithm, we simulate n = 1000

bivariate skewed VG samples with parameter values

µ =

(
0

0

)
, Σ =

(
1 0.7

0.7 1

)
, γ =

(
0.8

1

)
, and ν = 0.15 (3.14)

and estimate the parameters using the AECM algorithm in Section 3.3.3. We repeat

this experiment 1000 times and present the results in Figures 3.2 and 3.3.

Figure 3.2 shows the violin plots implemented using the caroline package [99] in R

which presents the density estimate of the parameter estimates using a Gaussian kernel.

The medians of the estimates are very close to the true parameters of the distribution

implying that the algorithm gives consistent estimates for these parameters, even when

ν < d
2

leads to unbounded likelihood. Moreover, the distribution of the parameters Σ̂,

γ̂, and ν̂ appears to approximately follow a normal distribution. On the other hand, the

distribution of µ̂ is non-Gaussian with high density around 0 and extreme heavy-tails.

Figure 3.3(a) gives a contour plot of the LOO log-likelihood for one set of simulated

data while tracking the path of the location parameter for each iterate from the LPS

algorithm, CM-step for (µ,Σ,γ) and line search. The estimate converges to the final

estimate which is close to the local maximum, lying roughly between the data points

and along the non-differentiable lines as discussed in Section 3.3.2.2. Furthermore, in

Figure 3.3(b), we provide a three-dimensional plot of the LOO log-likelihood which

is viewed from the bottom side of the contour plot. The maximum lying along the

non-differentiable lines makes the computation more demanding as we cannot purely

rely on derivative based methods. The LPS algorithm along with the line search serve

as efficient iterative methods to obtain parameter estimates. The idea behind these

search methods is that the estimate from the LPS jumps to the point broadly close to

the maximum, while the CM-step and line search improves the estimates so that they

converge closer towards the maximum which lie on the non-differentiable lines.
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Figure 3.2. Vioplots of the parameter estimates. The median is displayed as a
grey box which is connected by a crimson line. Also the true parameter values
represented by the blue lines is drawn for comparison.
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Figure 3.3. Contour and 3D plot of the LOO log-likelihood for one set of
simulated data: (a) Contour plot with the path of the algorithm’s iterated
values (solid black from local point search, and dashed black from CM-step
and line search) converging towards the final estimate (blue square). This
estimate is close to the local maximum (gold triangle) obtained by fine grid
search, and is roughly between the data points (red open circles). (b) 3D plot
viewed from roughly the bottom side of the contour plot. It can be observed
that the local maximum is visible at the peak, and that it lies on the cusp
lines which is generated from two closest points. For both plots, the subdued
blue-pink palette is used to represent lower (blue) and higher (pink) values.
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3.4.2 Asymptotic properties for the location estimates of VG

distribution

Podgórski and Wallin [89] proved the consistency and super-efficiency of the location

estimator using the LOO likelihood as stated in Theorem 3.2.2. They also stated the

upper bound for the index of the rate of convergence β < 1/(1 + α) where α = 2ν − 1

for the univariate VG distribution with unbounded density. The aim of this section is

to determine these optimal rates through Monte Carlo simulations, and to analyse the

asymptotic distribution of the location parameter estimator for the cases of cusp and

unbound densities.

We present the set-up of the simulation study below:

Step 1: Set the true shape parameters ν to be one of the 50 shape parameters

{0.02, 0.04, ... , 0.98, 1}.
Step 2: For each shape parameter, set the sample size n to be one of the 41 sample

sizes

{500, 1000, ... , 19500, 20000} ∪ {100000}.
Step 3: For each (ν, n), generate 20000 different sets of samples, each set from

standardised univariate symmetric VG distribution with shape parameter ν and sample

size n.

Step 4: For each set of samples, estimate µ̂n by searching through the midpoints and

choosing the one that maximises the LOO log-likelihood where the other parameters

(σ2 = 1, γ = 0, ν) are fixed.

This gives us 20000 µ̂n’s for each (ν, n).

3.4.2.1 Optimal Convergence rate of µ̂

Since the scale of asymptotic distribution of µ̂n increases according to a power law with

respect to n, we fit a power curve to estimate the optimal rate. To measure the spread

of µ̂n centred from the true parameter value µ = 0, we choose a robust measure of

spread called the median absolute deviation from 0 (MAD0) defined by

MAD0(x) = median(|x|)

for some univariate data set x = (x1, ... , xn).
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For each (ν, n), we calculate the MAD0 of the 20000 µ̂n’s. Then for each ν, we fit

a power curve to the MAD0 against n. In other words, we find parameters a and b

such that MAD0 = anb. This is equivalent to fitting a simple linear regression model

log MAD0 = log a + b log n to obtain the estimates (̂log a, b̂). Then an estimate of the

optimal rate for a given ν is obtained by setting β̂ = −b̂. We repeat this process for

the other choices of ν.

Figure 3.4 plots the relative error of β̂ against ν along with its confidence intervals.

From this figure, β̂ appears to follow the proposed optimal rate of 1
2ν

when 0 < ν ≤ 0.4.

However, when 0.4 < ν < 1, β̂ appears to be different from 1
2ν

and the relative error

follows a wave-like pattern. In fact, for 0.4 < ν < 0.76, β̂ appears to be greater than the

proposed optimal convergence rate index whereas for 0.76 < ν < 1, β̂ appears to be less

than the proposed optimal convergence rate index. As ν approaches to 1, β̂ approaches

the convergence rate for asymptotic normality. Overall, the estimated optimal rate is

consistent with Theorem 3.2.2 in the range ν < 0.5 for unbounded density. As for

0.5 ≤ ν ≤ 1, more theoretical studies is needed to understand the behaviour of the

location estimate µ̂n of distribution with cusp density. To investigate this peculiar

behaviour of µ̂n, we further examine the asymptotic distribution using our simulated

results.

3.4.2.2 Asymptotic distribution of µ̂

We begin by plotting a Gaussian kernel density estimate in Figure 3.5 of the simulated

estimates µ̂n with its scale standardised using MAD0 when n = 10000. We note that the

estimated density exhibits heavier tails and sharper peaks at the expense of intermediate

tails as ν decreases. We transform the µ̂n’s by considering log |µ̂n| in order to observe

the behaviour on a more appropriate scale, and plot the kernel density estimates in

Figure 3.6 for various (ν, n). Generally, as the sample size increases, the location of the

distribution shifts to the left. The scale and shape roughly stay the same with ν = 0.8

as an exception since the scale gets slightly larger while the shape becomes more left

skewed.

Comparing these plots with Figure C.1, we see that the density of log |µ̂n| resembles that

of a generalised Gumbel (GG) distribution which is discussed in more detail in Appendix

C3. To investigate this further, we first fit the 20000 log |µ̂n|’s to a GG distribution
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Figure 3.4. Plots of the relative error of β̂−β
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horizontal solid grey line indicates agreement of β̂ with the proposed optimal
rate β = 1
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Figure 3.5. Density plots of the simulated µ̂n with its scale standardised using
MAD0 for each ν where n = 100000. We use a rainbow colour scheme ranging
from red (ν = 0.02) to magenta (ν = 1).
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Figure 3.6. Kernel density estimates of log |µ̂n|’s for ν = 0.02, 0.2, 0.4, 0.6, 0.8, 1
and n = 1000 (dash-dotted light grey), 5000 (dotted grey), 20000 (dashed dark
grey), 100000 (solid black) with each n being combined into a single plot for
comparison.
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for each (ν, n). The parameter estimates of a GG distribution are represented by

(µ̂GG, σ̂GG, m̂GG).

We plot the parameter estimates against ν in Figure 3.7, while also combining the

plots for different n for comparison. We also plot the transformed parameter estimates

to identify the behaviour across ν. In Figures 3.7(a) and 3.7(b), as ν decreases, the

µ̂GG appears to decrease roughly at a hyperbolic rate curve with some minor curvature

for larger values of ν. In Figures 3.7(c) and 3.7(d), as ν decreases, σ̂GG increases at

a hyperbolic rate with two bumps. One major bump occurs around ν = 0.2 and a

minor bump around ν = 0.7. For the major bump, there is no clear distinction between

each n due to the fluctuation with σ̂GG. The source of the fluctuation is possibly due

to sampling error. For the minor bump, the distinction between each n is more clear

especially when the estimates for n = 100000 are distinct from the other n. This seems

to suggest that the asymptotic distribution for µ̂n has yet to converge. How large

should n be so that the asymptotic distribution converges is unclear for 0.4 ≤ ν ≤ 0.9.

Moreover, the minor bump falls into the range 0.4 < ν < 0.76 in which the estimated

convergence rate index β̂ is larger than 1
2ν

, as shown in Figure 3.4. In Figures 3.7(e)

and 3.7(f), m̂GG also has a major and minor bumps similar to σ̂GG. Unlike µ̂GG and

σ̂GG, m̂GG tends to some constant value as ν approaches to 0.

Lastly we provide the P-P plots in Figures 3.8 and 3.9 to check the goodness-of-fit for the

GG distribution. The P-P plots are generated by applying the cumulative distribution

function (CDF) of the GG distribution in (C.3) fitted to the 20000 log |µ̂n| against the

ordered sequence {i/(20001)} for i = 1, ... , 20000. For comparison, we also combine all

the sample sizes analysed into one plot for each ν = 0.02, ... , 1. From the P-P plots,

it appears that the GG distribution fit the simulated log |µ̂n| really well since the plots

roughly follow a straight line, although there are some small deviation from the straight

line for 0.22 ≤ ν ≤ 0.34. Note that fitting the GG distribution to log |µ̂n| corresponded

to fitting a double generalised gamma (DGGamma) distribution to µ̂n from Theorem

C4.1.

Thus we can perform statistical inference on µ̂n using the DGGamma distribution as

an approximation. To briefly demonstrate this, we apply the approximate distribution

to estimate the variability of µ̂ in Section 3.4.1. Using the true parameter ν = 0.15

with n = 1000 to extrapolate values (−1/µ̂GG = 0.0466,−1/σ̂GG = −0.1291, log m̂GG =

1.8733) by applying the spline function in R to Figures 3.7(b), (d), and (f), this gives
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Figure 3.7. Plot of estimates of GG distribution fitted to the distribution
of log |µ̂n| against ν. On the left column, we plot the (µ̂GG, σ̂GG, m̂GG)
against ν respectively while on the right column, we plot the transformation
(−1/µ̂GG,−1/σ̂GG, log m̂GG) against ν respectively to enlarge certain portion
of the plots. A rainbow colour scheme ranging from red (n = 500) to ma-
genta (n = 20000) is used to denote sample size. In addition, the black line
represents n = 100000.
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Figure 3.8. P-P plots for 0.02 ≤ ν ≤ 0.5 where the x-axis represent the em-
pirical CDF i/(20001), i = 1, ... , 20000, and y-axis represents the ordered
FGG(log |µ̂n|) where FGG is the CDF of GG distribution based on the fitted
parameters (µ̂GG, σ̂GG, m̂GG). For comparison, we also combine the sample
sizes n = 500, 1000, ... , 19500, 20000 and n = 100000 into one plot for each
ν = 0.02, ... , 1. The same rainbow colour scheme is used from Figure 3.7.
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Figure 3.9. P-P plots for 0.52 ≤ ν ≤ 1.
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the values for the GG parameter estimates (µ̂GG = −21.4431, σ̂GG = 7.7431, m̂GG =

6.5098). Applying these estimates to equation (C.6) with Σ11 = 1 and Σ22 = 1 gives us

the approximation based on the DGGamma distribution

MADDGGamma(µ̂) =

(
MADDGGamma(µ̂1)

MADDGGamma(µ̂2)

)
≈

(
3.25× 10−10

3.25× 10−10

)
,

whereas the sample median absolute deviation (MAD) applied to each element of the

1000 replicates of the location estimate µ̂ gives us

MADsam(µ̂) =

(
3.16× 10−10

2.85× 10−10

)
where the sample MAD is defined by MADsam(x) = median(|x−median(x)|) for some

univariate data x. Since the MAD using the DGGamma distribution is similar to the

MAD from the simulated location estimates, we conclude that the DGG distribution

can provide reasonably accurate estimates for the SE of the location parameter. In con-

clusion, we can construct confidence intervals and approximate the SE for the location

parameter, especially when the shape parameter falls into the range that gives rise to

the unbounded or cusp density (ν ≤ d+1
2

).

3.5 Conclusion

We propose an AECM algorithm to estimate parameters of the VG distribution using

the LOO likelihood when the density is unbounded. Our first simulation study shows

that all parameters for the VG distribution are estimated to a high level of accuracy.

Looking at the first simulated data, we also demonstrate how the AECM algorithm

estimates the location parameter which lies along the non-differentiable lines of the

LOO likelihood.

We conduct our second simulation study to empirically explore the optimal conver-

gence rate and asymptotic distribution for the location parameter estimator using the

maximum LOO likelihood method. Results show that the index for the optimal rate

of convergence follows 1
2ν

when 0 < ν ≤ 0.4. However, when 0.4 < ν < 1, the index

appears to be slightly different from 1
2ν

with a wave-like pattern for the relative error.

As ν approaches to 1, the optimal rate approaches the convergence rate for asymptotic
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normality. Furthermore, we demonstrate how the asymptotic distribution for µ̂n can be

approximated using the DGGamma distribution for all ν. Hence we can approximate

the SE for µ̂ and construct confidence intervals based on the DGGamma distribution.

However, we see some limitations in the simulation study such as the assumption of

univariate symmetric VG distribution and the ignorance of dependency of location

parameter with other parameters. This is discussed in Chapter 6. In terms of model

applicability, there are two issues. The first issue is that the LOO likelihood method

fails where there are repeated data points. The second is that the VG distribution fails

to capture the high persistence and time series data structures often present in financial

return series. The next two chapters deal with these two issues.



CHAPTER 4

Weighted Leave-one-out Likelihood for data

multiplicity

4.1 Introduction

The LOO likelihood in Chapter 3 performs well when there are no repeated data points

since the contribution of the unboundedness for each data point occurs once. Thus

leaving out a single data point removes the unboundedness in the LOO likelihood.

When there exist repeated data points, then even if we leave out one of the data points,

the LOO likelihood would still blow up to infinity. Data multiplicity is common when

the measurements have limited level of accuracy.

One method to circumvent the problem is to leave out multiple data points depending

on the multiplicity of the data point in the likelihood function. This modified likelihood

is called the leave-multiple-out (LMO) likelihood. However, the number of data points

to leave out is not fixed but instead varies depending on the data multiplicity. For the

LOO likelihood, there are always (n − 1) data contribution from a sample of size n

whereas the LMO likelihood have varied data contribution across the parameter space

if there are varied data multiplicities. Moreover, there are discontinuities between data

points for the LMO likelihood which is described in more detail in Section 4.3.

The aim of this section is to modify the LOO likelihood by adding weights so that the

likelihood not only prevent the unboundedness of the LOO likelihood in the case of

data multiplicity, but also have the number of data contribution consistent with the

LOO likelihood as well as no discontinuities for the symmetric case.

81



82 Weighted Leave-one-out Likelihood for data multiplicity

For the rest of the chapter, we begin with defining the LMO and WLOO likelihoods

in Section 4.2. Then Section 4.3 gives three simple examples to illustrate the data

multiplicity problem and find the weights to ensure consistent data contribution and

continuity between data points for the WLOO likelihood. A simulation study is con-

ducted in Section 4.4 to compare the performance of the WLOO likelihood method

with other likelihood methods, and lastly, a conclusion is drawn in Section 4.5.

4.2 Leave-multiple-out and weighted LOO likelihoods

When there are data multiplicity, one way is to leave out data points with data mul-

tiplicity to avoid the unbounded density. The leave-multiple-out (LMO) likelihood is

defined as

LLMO(θ;y) =
∏

i 6=K(µ)

f(yi;θ)

where

K(µ) =
{
i ∈ {1, ... , n}|yi = yk(µ)

}
(4.1)

represents the LMO indices which corresponds to the data points identical to yk(µ), and

k(µ) represents the LOO index defined in (3.2) in Section 3.2.1.

When there are no data multiplicity in the data set, the LMO likelihood reduces to

the LOO likelihood function. However, when there are data multiplicity, the LMO

likelihood leaves out all those data points which contribute to the unbounded likelihood

whereas the LOO likelihood leave out just one data point which is not enough to remove

the unbounded likelihood.

A major drawback of the LMO likelihood is that the number of data contribution is not

consistent throughout the parameter space when there is data multiplicity resulting in a

discontinuous LMO likelihood. To remedy this, we consider the weighted LOO (WLOO)

likelihood defined as

LWLOO(θ;y) =
n∏
i=1

f(yi;θ)wi (4.2)
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for i = 1, ... , n where we choose the weights to be

wi =


0 , if i ∈ K(µ)

|K(µ)|+|J(µ)|−1
|J(µ)| , if i ∈ J(µ)

1 , otherwise

(4.3)

such that |K(µ)| represents the cardinality of the set K(µ),

J(µ) =
{
i ∈ {1, ... , n}\K(µ) : yi = yj(µ)

}
(4.4)

where K(µ) is defined in (4.1), and

j(µ) = argmin
i∈I\K(µ)

(yi − µ)′Σ−1(yi − µ)

represents the secondary LOO index. Similarly, the WLOO log-likelihood is defined as

`WLOO(θ;y) =
n∑
i=1

wif(yi;θ). (4.5)

It is clear that for the case with no data multiplicity, the WLOO likelihood is equivalent

to the LOO likelihood whereas for the classical likelihood, the weights are chosen to be

wi = 1.

The following section demonstrate with three examples on how the weights in (4.3) are

derived based on the criteria that the WLOO likelihood removes the unbounded point

with data multiplicity, the likelihood is continuous (for the symmetric case) and the data

contribution is consistent with the LOO likelihood, or in other words,
∑n

i=1wi = n− 1.

When the density function is skewed, both the LOO and WLOO likelihoods are not

continuous between data points. Nevertheless, the density function for the VG distri-

bution in (1.39) as µ approaches any data point is approximately symmetric. So by

having more data points, the effect of the discontinuities due to skewness is negligible.

Moreover, the alternate LOO index in (3.3) can also be adopted to make the WLOO

likelihood continuous, even for the skewed case, though this alternate LOO index is not

considered in this thesis.
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4.3 Examples

Three examples are considered in this section. The first example considers the case

with data multiplicity at a single location whereas the second example considers the

case with data multiplicity at two different locations. The last example considers a

general case with multiple data multiplicities at two different locations and verifies the

formula for the weights in (4.3) which satisfy the three previously mentioned conditions

that the WLOO likelihood prevents the unbounded likelihood from data multiplicity,

data contribution is consistent with the LOO likelihood such that
∑n

i=1wi = n−1, and

has no discontinuities at the midpoints for the symmetric case. For the figures in each

example, we consider the symmetric VG distribution with shape parameter ν = 0.4

which is in the region that causes the unbounded likelihood.

4.3.1 Example 1: data multiplicity at a single location

In this first example, the data set {−1, 0, 1, 0} of size 4 contains a data multiplicity at

0. Figure 4.1 plots the LOO log-likelihood across location parameter µ. In plot (a), we

observe that the LOO log-likelihood is unbounded at 0 even after leaving out one of the

problematic data point. The LMO log-likelihood in plot (b) is bounded after leaving

out multiple data points at 0 that cause the unboundedness but it also produces some

discontinuities at the midpoints of -0.5 and 0.5. This behaviour of the log-likelihood is

undesirable.

To this end, we consider the WLOO log-likelihood given by

`WLOO(µ) =
4∑
i=1

wi log f(xi;µ)

with some suitably chosen weights such that the WLOO log-likelihood is bounded,

continuous and data contribution consistent with the LOO log-likelihood. This means

the weights need to satisfy the condition
∑n

i=1 wi = n−1. For this example, the WLOO

log-likelihood becomes

`WLOO(µ) = w1 log f(−1) + 2w2 log f(0) + w3 log f(1)
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(a) Plot of full (solid red) and LOO (striped blue) log-likelihoods.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
10

−
8

−
6

−
4

−
2

0

log−likelihoods wrt mu

µ

(b) Plot of LMO (dotted green) and WLOO (dot and striped magenta) log-
likelihoods.

Figure 4.1. Plots of full, LOO, LMO, and WLOO log-likelihoods of univariate
symmetric VG distribution with ν = 0.4 for data set {−1, 0, 1, 0} represented
by light grey vertical strips.
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where we let w2 = w4 due to the data multiplicity at 0. Since the density function is

assumed to be symmetric, we define

gi(|xi − µ|) = f(xi;µ).

To find the appropriate weights, we analyse the WLOO log-likelihood around the mid-

points where the discontinuities occur. In particular, we look at the small neighbour-

hood around the midpoints located at -0.5 and 0.5. It is sufficient to look at one of the

midpoints by the symmetry of the data.

Midpoint of 0 and 1: Let ε > 0 be a small constant. On the right hand side of 0.5,

the data point x3 = 1 is closest to µ. So we leave out that data point in the WLOO

likelihood by setting w3 = 0. This gives us

`WLOO(0.5 + ε) = w1 log g1(1.5 + ε) + 2w2 log g2(0.5 + ε) + 0 log g3(0.5− ε).

Since the data point x1 = −1 has a single contribution to the likelihood, we set w1 = 1.

This leaves the other weights w2 = w4 = 1 so that
∑4

i=1wi = 3.

On the left hand side of 0.5, the data points x2 = x4 = 0 is closest to µ. so we set

w2 = w4 = 0 which gives us

`WLOO(0.5− ε) = w1 log g1(1.5− ε) + 0 log g2(0.5− ε) + w3 log g3(0.5 + ε). (4.6)

Also since the data point x1 = −1 has a single contribution to the likelihood, we set

w1 = 1. This leaves w3 = 2 so that
∑4

i=1wi = 3. Choosing these weights gives us a

continuous likelihood at the midpoint 0.5 with WLOO likelihood at µ = 0.5

`WLOO(0.5) = log g1(1.5) + 2 log g2(0.5) (4.7)

where g2(|0− 0.5|) = g3(|1− 0.5|).

One way to think about the chosen weights for the WLOO likelihood is that after leaving

out data points with data multiplicity, extra weight is added to the neighbouring data

points to compensate for the missing weights. The next example considers a data set

with data multiplicities at two different data points.
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4.3.2 Example 2: data multiplicities at two locations

In this second example, the data set {−1, 0, 1, 0, 0, 1} have size 6 with data multiplicities

at 0 and 1. As before we want to choose the weights so that the WLOO log-likelihood

`WLOO(µ) = w1 log f(−1) + 3w2 log f(0) + 2w3 log f(1)

is bounded, continuous at the midpoints and has data contribution such that
∑n

i=1wi =

n− 1.

Midpoint of -1 and 0: Using the same argument as in the first example, the choice

of weights should satisfy the bounded, continuity and
∑n

i=1wi = n−1 conditions. This

gives us the WLOO log-likelihood

`WLOO(−0.5) = 3 log g1(0.5) + 2 log g3(1.5).

Midpoint of 0 and 1: Unlike the previous midpoint, this midpoint is between two

data points with different data multiplicities. On the right hand side of 0.5, the data

point x3 = x6 = 1 is closer to µ, so we leave out these data points by setting w3 = w6 =

0. This gives us the WLOO log-likelihood

`WLOO(0.5 + ε) = w1 log g1(1.5 + ε) + 3w2 log g2(0.5 + ε) + 0 log g3(0.5− ε).

Based on the single contribution of x1 = −1, we set w1 = 1, and w2 = w4 = w5 = 4/3

for the remaining weights so that
∑6

i=1wi = 5.

On the left hand side of 0.5, we leave out the data points x2 = x4 = x5 = 0 by setting

w2 = w4 = w5 = 0. This gives us the WLOO log-likelihood

`WLOO(0.5− ε) = w1 log g1(1.5− ε) + 0w2 log g2(0.5− ε) + 2w3 log g3(0.5 + ε).

We set w1 = 1 for the single contribution, and w3 = w6 = 4/2 for the remaining weights.

In the end, this gives us the WLOO log-likelihood of

`WLOO(0.5) = log g1(1.5) + 4 log g2(0.5)

where g2(0.5) = g3(0.5).
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(a) Plot of full (solid red) and LOO (striped blue) log-likelihoods.
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(b) Plot of LMO (dotted green) and WLOO (dot and striped magenta) log-
likelihoods.

Figure 4.2. Plot of the full, LOO, LMO, and WLOO log-likelihoods of sym-
metric VG distribution with ν = 0.4 for data set {−1, 0, 1, 0, 0, 1} represented
by light grey vertical strips.



4.4. Simulation study 89

4.3.3 Example 3: general data multiplicities at two locations

For the general case, we consider without loss of generality, the neighbourhood around

the midpoint which is between two data points xi, xj with data multiplicities mi,mj.

Data points that are not around the neighbourhood of the midpoint have the same

contribution to the WLOO likelihood regardless of whether the right or left side of

the midpoint is considered, so these data points not around the neighbourhood of the

midpoint always have weight of 1. Next, we consider the side closer to xj. The data

points with the same value as xj would be left out. This is done by setting the weights

for mj data points of xj to be 0. The weights corresponding to xi is then set to be

wi = (mi +mj − 1)/mi

so that
n∑
i=1

wi = n− 1. This gives us the formula for the weights in (4.3).

4.4 Simulation study

To assess the performance of the WLOO likelihood for data sets with data multiplicity,

we conduct a simulation study to compare the WLOO likelihood method with several

other likelihood methods proposed or discussed in Chapters 2 and 3, including the R

package called ghyp. Some of these likelihood methods depend on different chosen cap

regions called ∆ as defined in (2.19) in Section 2.3.

The following likelihood methods are considered in this study:

(i) ghyp package: MCECM algorithm in Section 2.1 using the full likelihood with

∆ set to .Machine$double.eps^0.25 ≈ 1.2e-4 that is a tolerance level many

R functions use.

(ii) Full likelihood: AECM algorithm in Section 2.2 using the full likelihood with

the smallest positive ∆ defined in Section 2.5.1 for some numerical stability.

This method resembles the classical likelihood.

(iii) Adaptive ∆ likelihood: AECM algorithm using the full likelihood with adaptive

∆ as described in Section 2.5.2.
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(iv) LOO likelihood: AECM algorithm using the LOO likelihood along with the local

point search (LPS) 3.3.2.2 and line search 3.3.2.4 with the smallest positive ∆.

The ∆ is relevant when there is data multiplicity.

(v) WLOO likelihood: AECM algorithm using the WLOO likelihood, LPS and line

search with smallest positive ∆. This ∆ is irrelevant since the WLOO takes

care of the unbounded likelihood caused by data multiplicity.

Details of these five likelihood methods are summarised in Table 4.1.

Table 4.1. Summary of ghyp, full, adaptive ∆, LOO and WLOO likelihood
methods.

Names ECM algorithm likelihood ∆

ghyp package MCECM full 1.2e-4

Full AECM full 1.5e-154

Adaptive ∆ AECM full adaptive
LOO AECM with LPS & line search LOO 1.5e-154

WLOO AECM with LPS & line search WLOO 1.5e-154

To conduct the simulation study, we create data multiplicity in two ways: replicate

each data point R times or round each data point to D decimal places. The procedure

for the simulation study are summarised below:

Step 1: Choose ν = 0.05, 0.1, ... , 1.45, 1.5 and R = 1, ... , 5 or D = ∞, 8, 6, 5, 4 for

Sections 4.4.1 and 4.4.2 respectively. We remark that ν ≤ 1 gives rise to unbounded

density and 1 ≤ ν ≤ 1.5 is cusped for dimension d = 2.

Step 2: Simulate n = 1000 data from the bivariate VG distribution with true pa-

rameters µ, Σ and γ given in (3.14) and the chosen ν. Then repeat each data point R

times, or round each data point to D decimal places.

Step 3: Apply the five different likelihood methods to the data sets to obtain five

different sets of estimates.

Step 4: Repeat these steps until we have 1000 replicates for each method, each level

of ν, and each level of R or D.

Likelihood methods are compared based on some measures of accuracy for parameters

µ, Σ, γ and ν. For vectors on Rd such as µ, the accuracy is measured by |µ̂−µ|. For

positive scalars such as ν, the accuracy is measured on the logarithmic scale by | log ν̂−
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log ν|. For positive definite matrices such as Σ, we can consider the determinant | · |
which becomes a positive scalar, and so the accuracy is measured by

∣∣ log |Σ̂|− log |Σ|
∣∣.

The median of these measure of accuracy are reported in Table 4.2 only for the regular

case with no replication or rounding.

To visualise the differences in performance across different likelihood methods, we con-

sider some transformations of the accuracy measures reported in Table 4.2 and are given

by:

µ̂: − log
[

log
(
− log |µ̂− µ|

)]
,

Σ̂: log
∣∣ log |Σ̂| − log |Σ|

∣∣,
γ̂: log |γ̂ − γ|,
ν̂: |log ν̂ − log ν|.

We remark that since the results for µ̂ vary substantially in Table 4.2, we adopt the

transformation f(x) = − log[log(− log x)] which is a monotonically increasing function

defined on f : (0, 1/e) → R. These transformed accuracy measures are graphed in

Figures 4.3 and 4.4 for replicated and rounded data points respectively. For some ν

and parameter estimate, smaller transformed accuracy measures indicate better accu-

racies. So the likelihood method that comparatively have smaller transformed accuracy

measures for a wide range of ν and parameter estimates are preferred.

4.4.1 Results for data multiplicity due to repetition

Figure 4.3 presents these accuracy measures onto a transformed scale as previously

mentioned to facilitate comparison. These figures show that the WLOO likelihood

generally performs better than other likelihoods for different levels of ν. The adaptive

∆ and ghyp seem to provide reasonable accuracy when ν > 0.2. When ν is small, the

accuracy of ghyp becomes very poor as expected since the ∆ is fixed to a relatively

higher level of 1.2e-4 as reported in Table 4.1. The full and LOO likelihoods has the

worst performance showing that they are sensitive to data multiplicity.

Comparing across likelihood methods, there is not much variation in the performance

of µ̂ and γ̂ except when ν is very small. For Σ̂ and ν̂, the variations of the median

estimates between each likelihood method are much greater. As ν approaches 1.5, Σ̂

and ν̂ roughly approach the same value for each likelihood method. The accuracy for
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Table 4.2. Median of 500 accuracy measures of parameter estimates across five
likelihood methods with no data multiplicity (R = 1).

Measures Likelihoods ν = 0.05 ν = 0.1 ν = 0.2 ν = 0.5 ν = 0.75 ν = 1 ν = 1.5

|µ̂− µ|

ghyp 1.2e-10 9.3e-10 7.7e-7 0.0067 0.020 0.031 0.050

Full 3.5e-28 7.1e-14 6.8e-7 0.0054 0.017 0.030 0.049

Adaptive ∆ 3.8e-28 7.7e-14 6.8e-7 0.0036 0.012 0.026 0.049

LOO 1.6e-28 1.5e-14 1.1e-7 0.0014 0.012 0.027 0.050

WLOO 1.6e-28 1.5e-14 1.1e-7 0.0014 0.012 0.027 0.050

log |Σ̂| − log |Σ|

ghyp −3.943 −0.601 −0.038 −0.016 0.009 0.023 −0.013

Full −0.103 0.010 0.117 0.339 0.472 0.549 −0.012

Adaptive ∆ −0.143 −0.059 −0.048 −0.027 −0.010 −0.007 −0.012

LOO −0.231 −0.126 −0.074 −0.026 −0.015 −0.009 −0.011

WLOO −0.232 −0.126 −0.074 −0.026 −0.015 −0.009 −0.011

|γ̂ − γ|

ghyp 0.243 0.060 0.038 0.038 0.043 0.048 0.059

Full 0.048 0.043 0.038 0.037 0.039 0.048 0.059

Adaptive ∆ 0.048 0.042 0.039 0.037 0.038 0.045 0.059

LOO 0.061 0.050 0.041 0.036 0.038 0.045 0.059

WLOO 0.061 0.050 0.041 0.036 0.038 0.045 0.059

log ν̂ − log ν

ghyp 0.1376 0.0368 0.0067 −0.0047 −0.0418 −0.0809 0.0033

Full −0.0259 −0.0667 −0.1571 −0.4636 −0.7097 −0.9199 0.0022

Adaptive ∆ 0.0052 0.0055 0.0091 0.0103 0.0024 0.0010 0.0033

LOO 0.0092 0.0093 0.0110 0.0123 0.0142 0.0090 0.0167

WLOO 0.0092 0.0093 0.0110 0.0123 0.0142 0.0090 0.0167

the full and LOO likelihoods are generally quite poor when there are repeated data

points since they both adopt a fixed capping level. The only difference is that the LOO

likelihood leaves out a data point while the full likelihood does not. However, as the

repetition of data points increases, leaving a data point out becomes insignificant and

so the results of the LOO likelihood converge to the full likelihood.



4.4. Simulation study 93

Comparing across different R, the graphs look similar. In fact, repeating data points

only changes the scale of the classical log-likelihood, that is,

n∑
i=1

R log f(xi) = R

n∑
i=1

log f(xi).

So the estimates using the classical likelihoods such as the full and ghyp should not

change for different R. Similarly, the WLOO likelihood should not change for different

R since it leaves out data points based on its data multiplicity. However, small changes

in the figure for each R are possibly due to sampling errors.

In practice, it is unclear the range ν will fall into in real application. Hence, it is better

to use the WLOO likelihood which provides the best overall performance.

4.4.2 Results for data multiplicity due to rounding

By rounding the data, we have effectively changed the data distribution. Nevertheless,

the accuracy measures still serves as a guide to assess the performance of the likelihood

methods. The trends in Figure 4.4 are somewhat similar to those in Figure 4.3 in

general but there are also some clear differences. The LOO likelihood is now much

better than the full likelihood when ν > 0.3. While the WLOO likelihood is generally

still better for most cases, it is generally less accurate than the ghyp package when

ν < 0.5 and is also less accurate than the adaptive ∆ likelihood when ν > 0.5.

We remark that for larger ν, the data rounding is insignificant because of the lower

peak and hence less data multiplicity around µ̂. For µ̂, the behaviour is similar across

likelihoods for each rounding when ν > 0.3. However when ν < 0.3, the accuracy of

WLOO likelihood stabilises while other likelihoods improve substantially as rounding

increases.

For Σ̂, all the likelihood methods apart from the full likelihood appear to be similar and

perform reasonably well whereas the full likelihood performs worse. With rounding, the

ghyp package and adaptive ∆ likelihood performs similarly and the WLOO likelihood

performs slightly better for ν < 0.2.

For each parameter estimate, the LOO and WLOO likelihoods are similar for larger

ν but vary for smaller ν. The LOO and full likelihood also performs similarly for

smaller ν. The full likelihood performs well at around ν = 1.4, whereas the adaptive
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Figure 4.3. Plot of transformed accuracy measures for ghyp package (red solid
line), full and smallest ∆ (light green striped line), full and adaptive ∆ (dot-
ted green line), LOO (blue dot & striped line), and WLOO (dash magenta
line). The columns from left to right represents the median parameter ac-

curacy measures for (µ̂, Σ̂, γ̂, ν̂) respectively. The rows from top to bottom
represents R = 1, ... , 5 respectively where R is the number of times each data
point is repeated.
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Figure 4.4. Plot of transformed accuracy measures for ghyp package (red solid
line), full and smallest ∆ (light green striped line), full and adaptive ∆ (dot-
ted green line), LOO (blue dot & striped line), and WLOO (dash magenta
line). The columns from left to right represents the median parameter ac-

curacy measures for (µ̂, Σ̂, γ̂, ν̂) respectively. The rows from top to bottom
represents D = ∞, 8, 6, 5, 4 respectively where D is the number of decimal
places to be rounded off.
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∆ likelihood performs well in the mid-range at around 0.6 < ν < 1.2 and the ghyp

package performs well at around 0.2 < ν < 0.5.

Overall, for both simulation studies with data multiplicity due to repeated values or

rounding, we have demonstrated in Section 2.5.1 that capping the density for the cusp

and unbounded density cases improves the performance of the AECM algorithm. The

fact that the full likelihood generally performs worse in this simulation study suggests

that the full likelihood with a fixed capping level only provides a temporary solution to

deal with the unbounded likelihood with data multiplicity. This full likelihood method

can be improved by providing an adaptive capping level in Section 2.5.2. On the other

hand, the LOO likelihood method provides a better alternative for dealing with cusp

and unbounded density. Moreover, the LOO likelihood method can be extended to the

WLOO likelihood to prevent the unbounded likelihood due to data multiplicity.

4.5 Conclusion

We propose the WLOO likelihood to estimate the parameters of the VG distribution

when the likelihood function is unbounded and the data set has repeated data points.

Without data multiplicity, the WLOO likelihood is equivalent to the LOO likelihood.

When there are repeated data points, then leaving out a single data point in the LOO

likelihood is not enough to remove the unbounded likelihood as there are still other

data points that contribute to the unbounded likelihood. We illustrate through three

examples the way to choose suitable weights for the WLOO likelihood so that it does not

only remove the unbounded likelihood, but also preserves continuity at the midpoints as

well as data contribution consistent with the LOO likelihood. In the simulation study,

we compare the WLOO likelihood with other likelihoods using the AECM algorithm for

data sets where we artificially create data multiplicity by either repeating or rounding

each data point. Overall, the WLOO likelihood gives the most stable and accurate

results.

In summary, it is important to address the data multiplicity issue when applying the

LOO likelihood as the issue is likely to occur for three reasons. Firstly, data rounding

is common in practice simply for convenience or for reducing data storage. To fit this

kind of discretised data, one may consider the order probit or logit models but for
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a continuous model like the VG distribution, there are non-ignorable chance of data

multiplicity. Secondly, as high frequency data are more prevalence in these recent

years, the larger data size also increases the chance of data multiplicity. Lastly, as the

measurement is made more instantaneously for high frequency data, the price changes

will be minimal and hence return will be extremely small or even zero again giving rise

to data multiplicity. We demonstrate the applicability of WLOO likelihood through two

real applications in Chapter 5 when the model parameters with time series structure

are estimated using the WLOO likelihood. Although the chance of data multiplicity is

actually lower when using returns for time series models, when the means from the time

series model change over time and when using multi-dimensional models, one will never

be sure in practice if data multiplicity exists and so it is always advisable to consider

using the WLOO likelihood to provide numerically stable estimates.





CHAPTER 5

Applications to Financial Time Series

5.1 Introduction

After proposing various methodologies for the estimation of the VG distribution, this

chapter focus on applications to solve real financial problems. As financial time series

often display autocorrelation and high kurtosis, we address these issues by extending the

VG distribution with constant mean in Chapter 2 to adopt some time series structures.

From a modelling perspective, the vector autoregressive moving average (VARMA)

model have been widely considered in many fields such as econometrics, dynamical sys-

tems, and finance (see [32, 87] for other examples) as it allows for a parsimonious descrip-

tion of stationary stochastic processes while also modelling the dependence structure

between different components. The subclasses of the VARMA model such as the vector

autoregressive (VAR) and the univariate autoregressive moving average (ARMA) model

are also popular due to its simplicity and easy interpretability along with many other

desirable properties. There are a rich literature analysing properties of the VARMA

model, including identifiability, causality and invertibility. We provide a review of

these properties in Section 5.3.2. See also [44, 69, 103, 104] for a brief overview of these

models.

A common assumption with these models is that the innovations follow a Gaussian

distribution. Estimation methods of the VAR model with normal innovations include

the generalised least squares (GLS) [110] and Bayesian methods [103]. However, in

financial markets, the distributions of asset prices tend to have kurtosis much higher

than the Gaussian distribution [25, 33, 73]. This feature is especially prominent when

99
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looking at high frequency returns data [57]. Not capturing the extra leptokurtosis

can seriously affect the prediction of risk in asset forecasts. To account for the extra

leptokurtosis, we propose the VARMA model with VG innovations called the VARMA-

VG model. We also discuss the challenges faced by implementing the VARMA-VG

model, in ways similar to the VARMA model. In addition, we also consider VARMA

model with Student’s t innovations as the Student’s t distribution is very popular in

financial time series modelling. This allows comparison of performance between the

two models in Section 5.6.

There are many problems when implementing the MLE for the VARMA model as there

is no closed-form solution making the maximisation more complicated. This has led

many researchers to find various approximation techniques to remedy this problem.

One popular technique is the two-stage approximation method to first estimate the

error terms by fitting the series with a high order VAR model and then use these fitted

errors to estimate the model parameters using the GLS method. See [26, 45, 59, 92, 107]

for the approximate MLE based on the GLS method and its extensions. Other methods

include the EM algorithm using a state-space representation [80], and the structured

matrix norm optimisation method for the stochastic multivariate ARMA model to

approximate the VARMA model [106].

Apart from the various ML approaches, the Bayesian paradigm is getting popular in

recent years. Particularly, for some complicated models such as the VARMA-VG and

VARMA-t, it can avoid the problem of maximising the log-likelihood function and

replace it with posterior sampling. However, it also has several disadvantages in esti-

mating the VARMA-VG and VARMA-t models. Firstly, the running of MCMC can be

very computationally demanding with slow convergence for some complicated models.

Secondly, the specification of the prior distributions is not straight forward and maybe

subject to debate. Lastly, there is no guarantee that the parameters sampled from

MCMC satisfy the causality and invertibility conditions.

In this chapter, we choose to adopt the EM algorithm and extend it to estimate the

additional parameters involving the ARMA mean structure. One challenge in this

extension is the non-existence of a closed-form solution. To handle this problem, we

follow the idea of [104] to adopt the two-stage approximation method, based on the

ML method instead of the GLS method. This method works well for the case when the
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true parameters are far from the non-causal, and non-invertible region. Further details

are given in Section 5.3.3.

We illustrate the applicability of the VARMA-VG and VARMA-t models by analysing

returns of high frequency market indices as well as returns of cryptocurrency exchanges.

Due to the advances in computer capacity and storage, price movements in stock mar-

ket are captured nearly instantaneously. Cryptocurrency market recently received a lot

of attention and thus it has very limited market share in the currency exchange market.

Currently, studies into the characteristics of cryptocurrency are very limited. In par-

ticular, factors such as high observed frequency and small market share may give rise

to volatile returns. We investigate how the VG innovations can describe the features

of the volatile returns by lowering the shape parameter to capture high kurtosis. We

also compare the performance of the VARMA-VG model to the VARMA-t model and

highlight the advantages of the VARMA-VG model.

In summary, this chapter provides a useful illustration of the applicability of our pro-

posed VARMA-VG model and its implementation using the AECM algorithm. Sections

5.2 and 5.3 report these details for the VAR-VG and VARMA-VG models and how the

ECM algorithm developed in the previous chapters can be extended to estimate the

additional parameters in the ARMA mean function. Section 5.4 extends the method-

ologies for Student’s t innovations. Section 5.5 assess the performance of the AECM

algorithm for VARMA-VG though simulation studies with various choices of skewness

and shape parameters including cases when the density is unbounded. We also study

the identifiability issue with the AR and MA parameters and provide the SE calculation

for all parameters. Section 5.6 demonstrates the application of the VARMA-VG model

by empirically studying the stock indices and cryptocurrency returns and compare the

performance with the VARMA-t model. We conclude our contribution and discuss

further extensions in Section 5.7.

5.2 Estimation of VAR-VG model

In this section, we introduce the VAR-VG model and develop the AECM algorithm to

estimate parameters of the model.
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5.2.1 VAR-VG model

Suppose the d-dimensional time series {yt} follow a VAR-VG model of order p denoted

by VAR(p)-VG. Then we can represent the series as

yt = c+A1yt−1 + . . .+Apyt−p + εt (5.1)

for t = 1, ... , n where the previous observations {y1−p, ... ,y0} are assumed to be ob-

served, εt ∼ VGd(−γ,Σ,γ, ν) so that E(εt) = 0, c ∈ Rd, and A1, ... ,Ap are d × d

matrix coefficients for the AR terms. Alternatively, equation (5.1) can be rewritten as

y′t = x′tβ + (εt + γ)′ (5.2)

where

x′t =
(

1 y′t−1 · · · y′t−p
)

is a (dp+ 1) vector,

β′ =
(
µ A1 · · · Ap

)
is a d× (dp+ 1) matrix, and

µ = c− γ .

Equivalently, we can also write model (5.1) as

yt|Ft−1 ∼ VGd(β′xt,Σ,γ, ν) (5.3)

where Ft = {ys : s ≤ t} represents the filtration (or information) up to time t.

To represent the model (5.1) using matrices, we first define the following matrices

X =

x
′
1
...

x′n

, Y =

y
′
1
...

y′n

, E =

ε
′
1
...

ε′n

 (5.4)

where X has dimensions n× (dp + 1), whereas Y and E has dimensions n× d. Then

with these matrices, we can write the whole model as

Y = Xβ + 1nγ
′ + E (5.5)

where 1n is a n-dimensional column vector of ones.
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5.2.2 Likelihood functions for VAR-VG model

Let θ = (β,Σ,γ, ν) and y = (y1, ... ,yn), then the (conditional) observed log-likelihood

function

`(θ;y|F0) =
n∑
t=1

log fV G(yt|Ft−1;θ) (5.6)

where F0 = {ys : 1 − p ≤ s ≤ 0} and fV G(·) denotes the pdf of the VG distribution

in (1.36). Using the NMVM representation of the VG distribution in (1.37), we can

decompose the (conditional) complete data log-likelihood (ignoring additive constants)

as follows

`(θ;y,u|F0) = `N(β,Σ,γ;y,u|F0) + `G(ν;u) (5.7)

where u = {u1, ... , un} and the (conditional) log-likelihood for the conditional normal

distribution is given by

`N(β,Σ,γ;y,u|F0) = −n
2

log |Σ| − 1

2

n∑
t=1

1

ut
(yt − β′xt − utγ)

′
Σ−1(yt − β′xt − utγ)

(5.8)

and the log-likelihood for the gamma distribution is given by

`G(ν;u) = nν log ν − n log Γ(ν) + (ν − 1)
n∑
t=1

log ut − ν
n∑
t=1

ut . (5.9)

This decomposition allows for the implementation of the EM algorithm that is discussed

in the later sections.

5.2.3 E-step

The conditional distribution of ut given Ft has pdf

f(ut|Ft) ∝ u
ν−d/2−1
t exp

(
− 1

2ut
z2
t −

ut
2

(
2ν + γ ′Σ−1γ

))
(5.10)

for t = 1, ... , n which corresponds to the GIG(ν − d/2, z2
t , 2ν + γ ′Σ−1γ) distribution

in Section 1.5.1 with

z2
t = (yt − β′xt)′Σ−1(yt − β′xt) . (5.11)

Refer to the E-step in Section 2.1.1 for the relevant conditional expectations.
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5.2.4 CM-step for β, Σ and γ

In order to obtain the parameter estimates that maximise the complete data log-

likelihood function in (5.8) we differentiate the conditional normal log-likelihood us-

ing the matrix derivative results in Section A9. This gives us the following first order

derivatives for the conditional normal log-likelihood

∂`N
∂β′

= Σ−1

n∑
t=1

1

ut
(yt − β′xt − utγ)x′t , (5.12)

∂`N
∂γ

= Σ−1

n∑
t=1

(yt − β′xt − utγ) , (5.13)

∂`N
∂Σ

= D>d

(
−n

2
Σ−1 +

1

2
Σ−1Sỹỹ/uΣ

−1

)
, (5.14)

where Dd represents the duplication matrix (A.7) and

Sỹỹ/u =
n∑
t=1

1

ut
(yt − β′xt − utγ)(yt − β′xt − utγ)

′
. (5.15)

Setting
∂`N
∂β

= 0, and
∂`N
∂γ ′

= 0 gives us

n∑
t=1

1

ut
xtx

′
tβ +

n∑
t=1

xtγ
′ =

n∑
t=1

1

ut
xty

′
t , (5.16)

and
n∑
t=1

x′tβ +
n∑
t=1

utγ
′ =

n∑
t=1

y′t . (5.17)

Alternatively, representing (5.16) and (5.17) as matrices gives us(
X ′U−1X X ′1n

1′nX 1′nu

)(
β

γ ′

)
=

(
X ′U−1Y

1′nY

)
(5.18)

where u = (u1, ... , un) and U−1 =


1
u1

0
. . .

0 1
un

.
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Thus, solving for the first derivative gives us(
β̂

γ̂ ′

)
=

(
X ′U−1X X ′1n

1′nX 1′nu

)−1(
X ′U−1Y

1′nY

)
. (5.19)

Next, solving for
∂`N
∂Σ

= 0 gives us

Σ̂ =
1

n

n∑
t=1

1

ut
(yt − β′xt)(yt − β′xt)′ −

1

n
γγ ′

n∑
t=1

ut . (5.20)

5.2.5 CM-step for ν

Estimation for ν can be obtained in the same way using the log-likelihood of the gamma

distribution in (5.9) or the observed log-likelihood in (5.6). For further details, see

Section 2.1.

5.2.6 Summary of ECME algorithm

We present here the ECME algorithm to estimate parameters of the VAR-VG model

using the classical likelihood. Other extensions such as the AECM algorithm in Section

2.2 or the LOO log-likelihood in Section 3.3 can be adopted into the algorithm.

Initialisation step: We first initialise the algorithm by choosing suitable initial pa-

rameter estimates(
c(0),A

(0)
1 , ... ,A(0)

p ,Σ(0),γ(0), ν(0)
)

= (ȳ,0, ... ,0, cov(y),0, d+ 3). (5.21)

At the kth iteration with current estimates (β(k),Σ(k),γ(k), ν(k)):

E-step: Calculate E(ut|Ft) and E( 1
ut
|Ft) for t = 1, ... , n using the conditional distri-

bution in Section 5.2.3.

CM-step 1: Update the parameters (β,Σ,γ) using (5.19) and (5.20).

CM-step 2: Update the parameter ν by maximising (5.6).

Stopping rule: Repeat the procedure until the algorithm converges.
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Algorithm 11: ECME algorithm for VAR-VG model

Input: Initial value θ(0)

while `(θ(k+1);y|F0)− `(θ(k);y|F0) > δ do
Q(θ;θ(k))← Eθ(k) [`(θ;y,u)|Fn] ;

θ(k+1/2) ← argmax
θ∈Θ1

Q(β,Σ,γ, ν(k);θ(k)) ;

θ(k+1) ← argmax
θ∈Θ2

`(β(k+1/2),Σ(k+1/2),γ(k+1/2), ν;y|F0) ;

end

5.3 Estimation of VARMA-VG model

In this section, we generalise the VAR-VG model by including moving average (MA)

components into the mean function. Unlike the VAR-VG model, the CM-step for

(β,γ) in general does not have closed-form solution, and model non-identifiability can

occur which may cause problems in the estimation procedure, statistical inference and

interpretability of the model. Here we provide a brief overview of the properties of

VARMA model and the ways to handle these problems.

5.3.1 VARMA-VG model

Let {yt} be a d-dimensional time series. It follows a VARMA(p, q)-VG process if it has

the following structure,

yt = c+A1yt−1 + · · ·+Apyt−p −B1εt − · · · −Bqεt−q + εt (5.22)

for t = 1, ... , n where the previous observations {y1−max(p,q), ... ,y0} are assumed to be

observed, εt ∼ VGd(−γ,Σ,γ, ν), c ∈ Rd, A1, ... ,Ap are the AR coefficient matrices

with dimensions d×d, and B1, ... ,Bq are the MA coefficient matrices with dimensions

d× d. We can summarise the model in (5.22) as

A(L)yt = B(L)εt (5.23)

where L represents the lag operator, andA(z) andB(z) are matrix polynomial functions

defined by

A(z) = Id −A1z − ...−Apz
p, (5.24)

B(z) = Id −B1z − ...−Bqz
q, (5.25)
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respectively, for any complex number z with no common factors.

Similar to the VAR-VG model, the VARMA-VG model can be alternatively expressed

as

y′t = x′tβ + (εt + γ)′ (5.26)

for t = 1, ... , n where

β′ =
(
c A1 · · · Ap B1 · · · Bq

)
is a d× (d(p+ q) + 1) matrix, (5.27)

x′t =
(

1 y′t−1 · · · y′t−p −ε′t−1 · · · −ε′t−q
)

is a (d(p+ q) + 1) vector, (5.28)

and so (5.22) admits a matrix representation

Y = Xβ + 1nγ
′ + E (5.29)

similar to (5.5), except that β is defined in (5.27) and X =
(
x1 · · · xn

)′
where xt is

defined in (5.28). Although the error terms in X depends on β, the linear regression

form in (5.27) facilitates the use of the linear approximation by estimating the error

terms using a high order VAR-VG model as a proxy. More specifically, we use the

Akaike information criterion (AIC) to select a suitable order p for the VAR(p)-VG

model which is described in Section 5.3.3.3.

5.3.2 Properties

We give as brief summary of some important properties of the VARMA model where the

innovations do not necessarily follow a Gaussian distribution. Hence, these properties

also apply to the VG innovations. See Gouriéroux and Zaköıan [40] and Tsay [104].

5.3.2.1 Causality and Invertibility

Definition 5.3.1 (Causality). The process {yt} in (5.23) is said to be a causal if it

can be expressed in the form of

yt =
∞∑
k=0

Ψkεt−k (5.30)

for a sequence of coefficient matrices {Ψk} such that
∑∞

k=0 Ψk <∞.
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In terms of the polynomial functionA(z), the process is causal if and only if det(A(z)) 6=
0 for all z ∈ C such that |z| ≤ 1.

This is a desirable property as it has a natural interpretation that the process is inde-

pendent of the future values, thus allowing the process to be forecasted using current

and past values. Another desirable property is invertibility.

Definition 5.3.2 (Invertibility). The process {yt} is said to be invertible if the error

terms can be expressed in the form of

εt =
∞∑
k=0

Πkyk

for a sequence of coefficient matrices {Πk} such that
∑∞

k=0 Πk <∞.

In terms of the polynomial function B(z), the process is invertible if and only if

det(B(z)) 6= 0 for all z ∈ C such that |z| ≤ 1.

5.3.2.2 Identifiability Issue

Unlike the VAR-VG model, the VARMA-VG model faces model identification problem

which can lead to wrong interpretation of the model. So additional assumptions needs

to be imposed to the model to avoid identification problem. We refer to the assumptions

by Gouriéroux and Monfort [38].

Assumptions:

(i) εt are independent and identically distributed such that E(‖εt‖s) <∞ for some

s > 0, and there exist matrix C such that the components of Cεt are mutually

independent.

(ii) If A(L) and B(L) have left common factor C(L) such that A(L) = C(L)Ã(L)

and B(L) = C(L)B̃(L) for some polynomial functions Ã(L) and B̃(L), then

|C(L)| is independent of L.

(iii) The process {yt} is causal and invertible.

The first assumption is based on the choice of error distributions. By choosing the

distribution to have a NMVM representation, this allows for the first assumption to be
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satisfied. Thus, choosing the error terms to follow the VG or Student’s t distribution

takes care of this assumption.

The second assumption is based on a property called left coprimeness. This assumption

states that the polynomials A(z) and B(z) in equations (5.24) and (5.25) respectively

have no common factors. Essentially, this assumption ensures the representation of

the VARMA model is minimal in the sense that all possible simplifications have been

performed. Checking this assumption is equivalent to checking if the two polynomials

have at least one common eigenvalue [58]. These eigenvalues can be found by solving the

scalar polynomials |A(L)| = 0 and |B(L)| = 0. Directly calculating these eigenvalues

can be complicated especially for higher orders of p and q. See Gourieroux et al. [39] for a

hypothesis test of common root for the univariate ARMA process. Also see Gouriéroux

and Monfort [38] and Hannan and Deistler [45] for a treatment of the identification

issue using the structural VARMA model under a non-Gaussian framework.

Gohberg and Lerer [37] proved that the Fisher information matrix becomes singular if

and only if the matrix polynomialsA(L) andB(L) have at least one common eigenvalue.

Similarly, Klein et al. [58] proved that this is equivalent to the singularity of the tensor

Sylvester matrix defined by

S⊗(−B,A) =



(−Id)⊗Id (−B1)⊗Id ... (−Bq)⊗Id 0d2×d2 ... 0d2×d2

0d2×d2
... ... ... ...

...
...

... ... ... ... 0d2×d2
0d2×d2 ... 0d2×d2 (−Id)⊗Id (−B1)⊗Id ... (−Bq)⊗Id
Id⊗Id Id⊗A1 ... Id⊗Ap 0d2×d2 ... 0d2×d2

0d2×d2
... ... ... ...

...
...

... ... ... ... 0d2×d2
0d2×d2 ... 0d2×d2 Id⊗Id Id⊗A1 ... Id⊗Ap


(5.31)

which is a d2(p + q) × d2(p + q) matrix and ‘⊗’ is the Kronecker product defined in

(A.2). From a statistical point of view, testing for common roots between the AR and

MA polynomials is equivalent to testing the determinant of the tensor Sylvester matrix

(which is called the resultant) is equal to zero. However, formulating such a test requires

further research.
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5.3.3 ECM algorithm for VARMA-VG model

The structure of the ECM algorithm is similar to the VAR-VG model in Section 5.2.6

except some modifications are needed for the CM-step since the solution for (β,γ)

generally does not have closed-form. Rather than maximising the conditional normal

log-likelihood function directly, some approximate techniques consider fitting the resid-

uals εt using some higher order VAR-VG models as a proxy model. Then parameter

estimates are obtained using the ML method with the fitted residuals. Thus, for the

ECM algorithm of the VARMA-VG model, we only need to adjust the CM-step for

(β,Σ,γ) which is described later in this section.

5.3.3.1 Likelihood functions

Since the initial residuals εt are not observed in (5.22), we make additional assumptions

to these residuals before initialising the estimation procedure. This gives rise to the

conditional likelihood and exact likelihood methods.

For the conditional likelihood method, the initial observations are considered to be ob-

served. More formally, we observe {ys : 1 −max(p, q) ≤ s ≤ 0} but only observations

{ys : s > 0} contributes to the likelihood function. On the other hand, the initial ob-

servations and residuals under the exact likelihood method are considered to be random

variables. As a result, these initial observations and residuals need to be estimated as

additional parameters.

Since estimation of parameters via exact likelihood is more computationally intensive,

we focus on the conditional likelihood method. Note that for large sample size n, the

two likelihood methods provide similar results, especially when parameters lie further

away from the non-invertible region. On the other hand, if the parameters lie close to

the non-invertible region, then the exact likelihood method is preferred [48].

5.3.3.2 CM-step for β, Σ and γ

Unlike the VAR-VG model, the CM-step for parameters (β,γ) in the VARMA-VG

models does not have closed-form solution since the residuals εt depends on these pa-

rameters. One way to address this issue is to use numerical optimisation techniques
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such as the NR algorithm to maximise the conditional normal log-likelihood function

directly. However, due to the large number of parameters involved with the optimisa-

tion, the algorithm is computationally intensive and may not always lead to convergent

estimates. Moreover, it relies heavily on the starting values.

Alternately, we use a higher order VAR-VG model given u and ν as a proxy model

to approximate εt. Specifically, we first choose an appropriate order for the VAR-VG

model based on the AIC to obtain the fitted residuals ε̂t. Then estimate parameters of

the new approximate model

yt = φ0 +A1yt−1 + · · ·+Apyt−p −B1ε̂t−1 − · · · −Bqε̂t−q + εt (5.32)

for t = 1, ... , n using the estimation procedures in Section 5.2.4. This is equivalent to

fitting β from the linear equation in (5.29).

Roy et al. [95] mentioned that unlike the MLE of VAR model which is causal and

invertible, there is no guarantee the MLE of VARMA model is causal and invertible. So

for our proposed ECM algorithms, the estimate of β after the CM-step is not guaranteed

to be in the causal and invertible region for the VARMA-VG model. Thus, we apply

line search in Section 3.3.2.4 to ensure the parameter estimates stays within the causal

and invertible region of the parameter space.

5.3.3.3 Order Selection of VAR-VG models

The information criteria method is used to select the order for the VAR-VG model

given u and ν in order to approximate εt in the CM-step for (β,Σ,γ). The maximised

conditional normal likelihood for the VAR(p)-VG model is essentially equivalent to the

determinant of the covariance matrix of the innovations since

L(β̂, Σ̂p, γ̂;y,u|F0) =
n∏
t=1

fN(yt|ut,Ft−1; β̂′xt + utγ̂, Σ̂p)

= |Σ̂p|−n/2(2π)−nd/2 exp

(
−1

2
tr
(
Σ̂−1
p Ŝỹỹ/u

)) n∏
t=1

u
−d/2
t

= |Σ̂p|−n/2(2π)−nd/2 exp

(
− n

2
tr(Id)︸ ︷︷ ︸

d

) n∏
t=1

u
−d/2
t

∝ |Σ̂p|−n/2
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where F0 = {ys : 1 − P ≤ s ≤ 0}, P is the maximum AR order considered for the

approximation, fN represents the density function of the multivariate normal distri-

bution, (β̂, Σ̂p, γ̂) are the estimates of (β,Σp,γ) for the VAR(p)-VG model which are

obtained using (5.19) and (5.20), and Ŝỹỹ/u is defined as

Ŝỹỹ/u =
n∑
t=1

1

ut

(
yt − β̂′xt − utγ̂

)(
yt − β̂′xt − utγ̂

)′
.

Thus, the AIC can be constructed as

AIC(p) = log
∣∣Σ̂p

∣∣+
2

n
pd2.

When implementing the order selection procedure to the CM-step of (β,Σ,γ) for

the VARMA(p, q)-VG model with filtration {ys : 1 − max(p, q) ≤ s ≤ 0}, the ini-

tial summation indices needs to be adjusted so that y1−P in this section aligns with

y1−max(p,q) in (5.22). This alignment leads to summation indices t = R+ 1, ... , n where

R = P −max(p, q) with filtration {ys : 1−max(p, q) ≤ s ≤ R} which can then be used

to implement the order selection in the CM-step.

In this thesis, We choose P = 13 when implementing the order selection in the ECM

algorithm for VARMA-VG model.

5.3.4 Forecasting using VARMA-VG model

One of the main purpose of financial time series modelling is to provide forecasts for

trading strategy formulation.

5.3.4.1 l-step ahead forecast

Let Ft = {ys : s ≤ t}, suppose that parameter estimates θt for the VARMA-VG model

are obtained through some in-sample model fittings using Ft and it is used to forecast

l time points ahead. Then the one-step ahead forecast is

yt(1) = E[yt+1|Ft] = c+

p∑
i=1

Aiyt+1−i −
q∑
j=1

Bjεt+1−j
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where E[εt+i|Ft] = 0 for i > 0, the associated forecast error is

et(1) = yt+1 − yt(1) = εt+1

and the covariance of the forecast is

cov[et(1)] = cov(εt+1) = Σ.

For the two-step ahead forecast, we have that

yt(2) = E[yt+2|Ft] = c+A1yt(1) +

p∑
i=2

Aiyt+2−i −
q∑
j=2

Bjεt+2−j.

In general, the l-step ahead forecast is given by

yt(l) = c+

p∑
i=1

AiE[yt+l−i|Ft]−
q∑
j=1

BjE[εt+l−j|Ft]

where

E[yt+i|Ft] =

yt+i if i ≤ 0,

yt(i) if i > 0,
and E[εt+i|Ft] =

εt+i if i ≤ 0,

0 if i > 0.

The l-step ahead forecast error is

et(l) = εt+l + Ψ1εt+l−1 + ...+ Ψl−1εt+1

where {Ψk} represents the coefficients from the MA representation. Thus the covariance

of the l-step ahead forecast error is

cov[et(l)] = Σ + Ψ1ΣΨ′1 + ...+ Ψl−1ΣΨ′l−1.

This means that the stationary VARMA-VG process is mean-reverting. That is, yt(l)→
E[yt] as l→∞. Additionally cov[et(l)]→ cov[yt] as l→∞.
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5.3.4.2 Updating the forecast

When new information arises, the previous VARMA-VG forecast can be easily updated

in the following way. Using the MA representation, the l-step ahead forecast at t is

yt(l) =
∞∑
k=1

ΨkE[εt+l−k|Ft]

= Ψlεt + Ψl+1εt−1 + ... (5.33)

and the (l − 1)-step ahead forecast at t+ 1 is

yt+1(l − 1) = Ψl−1εt+1 + Ψlεt + Ψl+1εt−1 + ... . (5.34)

Subtracting (5.33) from (5.34) gives us the formula for updating the VARMA-VG fore-

cast

yt+1(l − 1) = yt(l) + Ψl−1εt+1

where εt+1 is observed since the new information is available at time t+ 1.

5.4 Estimation of VARMA-t model

Another important extension worth considering is the VARMA-t model where instead

the innovations follow the Student’s t distribution.

5.4.1 VARMA-t model

The d-dimensional time series {yt} follows a VARMA(p, q)-t process if it has the

VARMA structure as in (5.22) where instead εt ∼ td(−γ,Σ,γ, υ) for υ > 2 which

has density function in (C.1). This parametrisation is chosen so that the mean is well-

defined, and the mixing variable which follows IG(υ
2
, υ

2
− 1) for υ > 2 such that it has

expectation of one.

The estimation procedure is similar to the VARMA-VG model in Section 5.3, except

the E-step and CM-step for υ needs to be modified. Details of these steps is presented

in the following sections.
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5.4.2 E-step

The conditional distribution of ut given Ft has pdf

f(ut|Ft) ∝ u
−(υ+d)/2−1
t exp

(
− 1

2ut
(υ − 2 + z2

t )−
ut
2
γ ′Σ−1γ

)
(5.35)

for t = 1, ... , n which corresponds to the GIG(−(υ + d)/2, υ − 2 + z2
t ,γ

′Σ−1γ) distri-

bution with z2
t defined in (5.11). Let θ(k) = (µ,Σ,γ, υ), then we have the following

conditional expectations:

ût = Eθ(k) [ut|Ft] =
ηtKυ+d

2
−1(ωt)

Kυ+d
2

(ωt)
, (5.36)

1̂/ut = Eθ(k)

[
1

ut

∣∣∣∣∣Ft

]
=
Kυ+d

2
+1(ωt)

ηtKυ+d
2

(ωt)
, (5.37)

l̂og ut = Eθ(k) [log ut|Ft] = log ηt −
K

(1,0)
υ+d
2

(ωt)

Kυ+d
2

(ωt)
(5.38)

where ηt =
√
υ − 2 + z2

t /
√
γ ′Σ−1γ, ωt =

√
(υ − 2 + z2

t )γ
′Σ−1γ.

Symmetric Student’s t distribution case:

For the case when γ → 0,

Eθ(k) [ut|Ft] ∼


Γ(1−υ+d

2 )
Γ(υ+d2 )

21−d−υ(γ ′Σ−1γ
)υ+d

2
−1(

υ − 2 + z2
t

)υ+d
2 if υ < 2− d,

− log(γ ′Σ−1γ)
(
υ − 2 + z2

t

)
if υ = 2− d,

υ−2+z2t
υ−2+d

if υ > 2− d,

Eθ(k)

[
1

ut

∣∣∣∣∣Ft

]
∼ υ + d

υ − 2 + z2
t

,

Eθ(k) [log ut|Ft] ∼ log

(
υ − 2 + z2

t

2

)
− ψ

(
υ + d

2

)
.
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5.4.3 CM-step for υ

Given the mixing variables u, the MLE of υ can be obtained by maximising the log-

likelihood of the inverse-gamma distribution

`IG(υ;u) =
nυ

2
log
(υ

2
− 1
)
− n log Γ

(υ
2

)
−
(υ

2
+ 1
) n∑
t=1

log ut −
(υ

2
− 1
) n∑
t=1

1

ut

and it has derivatives

∂`IG
∂υ

=
n

2

(
1 +

2

ν − 2
+ log

(υ
2
− 1
)
− ψ

(υ
2

))
− 1

2

n∑
t=1

log ut −
1

2

n∑
t=1

1

ut
(5.39)

∂2`IG
∂υ2

=
ν − 4

2(ν − 2)2
− 1

4
ψ′
(υ

2

)
(5.40)

for derivative-based optimisation methods. For the ECME algorithm, the MLE of υ

can be obtained by maximising the observed log-likelihood which involves the log of

the Student’s t density in (C.1).

5.5 Simulation study

In order to evaluate the performance of the AECM algorithm proposed in Section 5.3.3,

we conduct two simulation studies where the first one considers the two-dimensional

VARMA(1,1)-VG model when the AR and MA parameters fall into the identifiabil-

ity region with different sets of values for the skewness and shape parameters. The

second one considers the case when the true AR and MA parameters fall outside the

identifiability region and describes ways of dealing with the non-identifiability issue.

5.5.1 Identifiable VARMA-VG model

We consider the two-dimensional VARMA(1,1)-VG model with the following true pa-

rameters

c =

(
0

0

)
, A1 =

(
0.5 −0.25

0.3 0.4

)
, B1 =

(
0.2 −0.1

0.05 0.3

)
, Σ =

(
1 0.7

0.7 1

)
. (5.41)

As for the skewness and shape parameters, we consider four different sets of parameters.



5.5. Simulation study 117

γ = (0.2, 0.3) γ = (1, 2)

ν = 3 Case 1 Case 3

ν = 0.7 Case 2 Case 4

We remark that when ν < 1, the density function of the VG distribution becomes

unbounded. This corresponds to cases 2 and 4.

We simulate data sets each consisting of a time series of 4000 data points, then discard

the first 2000 data points to ensure convergence of the process. Then we use the remain-

ing 2000 data points to implement the AECM algorithm with the WLOO likelihood

extended from the ECM algorithm in Section 5.3.3. This procedure is replicated 1000

times to obtain 1000 parameter estimates.

5.5.1.1 Parameter estimates

In Figures 5.1 to 5.4, we plot the 1000 parameter estimates using violin plots from the

R package called Caroline. The true parameter value represented by a blue horizontal

line are also included to facilitate comparison. For all four cases, the algorithm seems

to perform reasonably well as the medians are very close to the true values. For case 1

when ν = 3 and γ = (0.2, 0.3), each of the parameters seems to be normally distributed

which suggests that the algorithm is numerically stable in this region of the parameter

space. However, for case 2 when ν = 0.7, most parameters still seem to follow nor-

mal distributions but µ2 and γ2 have heavier tails to one side. For case 3 when the

skewness increases to γ = (1, 2) but ν = 3, the distributions for µ2, Σ22, γ2 and ν

have even heavier one-side tail and this phenomenon gets even more severe for case 4

when ν = 0.7. Nevertheless, since medians of all distributions match closely with the

true parameter values, we conclude that the ECM algorithm performs well even when

the shape parameter falls into the unbounded range. Not only is the algorithm able

to estimate parameters of the VARMA(1,1)-VG model to a high level of accuracy but

it is also able to demonstrate a high level of computational efficiency. Specifically, the

median time it takes to run the algorithm for case 1 to 4 is 63, 75, 142 and 82 seconds

respectively.
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5.5.1.2 Standard error calculation

We test the performance of SE calculation for the four cases. For each parameter, we

calculate the standard deviation (SD) of 1000 parameter estimates and report the SD

under the column called “Simulated” in Tables 5.1 and 5.2. The SD of the simulated

estimates are compared with the SE calculated using the Louis’ method described in

Section 1.3.4 and equation (1.10). Results show that they are highly consistent for ν = 3

and with slight discrepancy for ν = 0.7 since there are a few outliers with the simulated

estimates. We remark that for the unbounded cases (case 2 and 4 with ν = 0.7), we use

the double generalised gamma approximation to calculate the SE for µ. See Section

3.4.2.2 and appendix C4 for details.

Table 5.1. SEs based on simulated estimates and calculation using Louis’
method for cases 1 and 3.

case parameter Simulated Louis

Case 1:
γ = (0.2, 0.3)

ν = 3

µ′
(
0.067 0.070

) (
0.069 0.071

)
A1

(
0.098 0.061
0.090 0.053

) (
0.102 0.063
0.099 0.056

)
B1

(
0.104 0.068
0.101 0.063

) (
0.108 0.072
0.111 0.069

)
Σ

(
0.0.38 0.033

0.039

) (
0.038 0.032

0.039

)
γ ′

(
0.071 0.073

) (
0.073 0.075

)
ν 0.368 0.375

Case 3:
γ = (1, 2)
ν = 3

µ′
(
0.082 0.127

) (
0.106 0.206

)
A1

(
0.083 0.046
0.088 0.047

) (
0.085 0.048
0.094 0.051

)
B1

(
0.090 0.051
0.101 0.055

) (
0.092 0.054
0.108 0.061

)
Σ

(
0.052 0.064

0.099

) (
0.059 0.086

0.158

)
γ ′

(
0.086 0.131

) (
0.108 0.206

)
ν 0.278 0.283
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Figure 5.1. Case 1: Vioplots for parameter estimates of VARMA(1,1)-VG
model with γ = (0.2, 0.3) and ν = 3.



120 Applications to Financial Time Series

−0.30

−0.25

−0.20

−0.15

●●

●
●

µ1 µ2

(a) true µ = (−0.2,−0.3)

−0.4

−0.2

0.0

0.2

0.4

0.6
●●

●●

●●

●●

A11 A12 A21 A22

(b) true A1 =( 0.5 0.3
−0.25 0.4 )

−0.2

0.0

0.2

0.4

●●

●●

●●

●●

B11 B12 B21 B22

(c) true B1 =( 0.2 0.05
−0.1 0.3 )

0.6

0.7

0.8

0.9

1.0

1.1

1.2

●●

●●

●●

Σ11 Σ12 Σ22

(d) true Σ =( 1 0.7
0.7 1 )

0.10

0.15

0.20

0.25

0.30

0.35

●●

●
●

γ1 γ2

(e) true γ = (0.2, 0.3)

0.65

0.70

0.75

0.80

0.85

●●

ν

(f) true ν = 0.7

Figure 5.2. Case 2: Vioplots for parameter estimates of VARMA(1,1)-VG
model with γ = (0.2, 0.3) and ν = 0.7.
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Figure 5.3. Case 3: Vioplots for parameter estimates of VARMA(1,1)-VG
model with γ = (1, 2) and ν = 3.
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Figure 5.4. Case 4: Vioplots for parameter estimates of VARMA(1,1)-VG
model with γ = (1, 2) and ν = 0.7.
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Table 5.2. SEs based on simulated estimates and calculation using Louis’
method for (Σ̂, γ̂, ν̂) and the double generalised gamma approximation in Sec-
tion 3.4.2.2 for µ̂.

case parameter Simulated Louis

Case 2:
γ = (0.2, 0.3)

ν = 0.7

µ′
(
0.006 0.009

) (
0.015 0.032

)
A1

(
0.028 0.017
0.028 0.017

) (
0.053 0.032
0.057 0.030

)
B1

(
0.030 0.019
0.031 0.020

) (
0.055 0.035
0.062 0.038

)
Σ

(
0.049 0.040

0.050

) (
0.050 0.041

0.052

)
γ ′

(
0.023 0.024

) (
0.027 0.046

)
ν 0.028 0.035

Case 4:
γ = (1, 2)
ν = 0.7

µ′
(
0.005 0.020

) (
0.027 0.061

)
A1

(
0.019 0.009
0.023 0.011

) (
0.030 0.014
0.030 0.014

)
B1

(
0.021 0.010
0.026 0.013

) (
0.032 0.015
0.039 0.019

)
Σ

(
0.051 0.049

0.065

) (
0.062 0.088

0.189

)
γ ′

(
0.036 0.059

) (
0.045 0.084

)
ν 0.022 0.041

5.5.2 Non-identifiable VARMA-VG model

We now consider the case when the true parameters of the VARMA(1,1)-VG model fall

into the non-identifiable region of the parameter space. It is important to address the

effect of non-identifiability with parameter estimation.

We adopt similar true parameters as in (5.41) except that we modify the parameters in

A1 and B1 so that they together fall into the non-identifiable region of the parameter

space. In particular, we choose parameter values

A1 =

(
0.8 2

0 0

)
and B1 =

(
0.3 0

0 0

)
(5.42)

which is the set of parameters taken from example 3.5 in [104].
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5.5.2.1 Model identification

It can be shown that the model parameters are identical to

A1 =

(
0.8 2 + α1

0 α2

)
and B1 =

(
0.3 α1

0 α2

)
. (5.43)

Looking at the two polynomial matrices A(L) and B(L) for equation (5.23), we can

show that there exist a left common factor that is a non-zero constant such that for

matrix polynomial function A(L)(
1− 0.8L −(2 + α1)L

0 1− α2L

)
=

(
1 −α1L

0 1− α2L

)(
1− 0.8L −2α2

0 1

)
,

and for matrix polynomial function B(L)(
1− 0.3L −α1L

0 1− α2L

)
=

(
1 −α1L

0 1− α2L

)(
1− 0.3L 0

0 1

)
.

Since the determinant of the left common factor depends on L, then the second as-

sumption in Section 5.3.2.2 is clearly violated for the model parameters in (5.43). In

the light of this, the model parameters in (5.42) can be thought of as the parametrisa-

tion in its most simplest form. Additionally, B1 in (5.42) corresponds to a pure white

noise process in the model (5.23).

Furthermore, we only consider the following parameter values

γ =

(
0.2

0.3

)
, ν = 3,

for the skewness and shape parameters. Similar to the previous simulation study, we

repeat the experiment 1000 times with a sample size of 2000 for each experiment fixing

α1 = α2 = 0. This allows for a more parsimonious description of the process. Then we

apply the ECM algorithm in Section 5.3.3 to fit the data in each experiment.

Again we use violin plots to present the distributions of the parameter estimates in

Figure 5.5. A key feature to point out is that the variabilities for some of the AR and

MA parameters are extremely large in comparison to the results in Figures 5.1 to 5.4.

These large variabilities are due to their non-identifiable nature when α1 and α2 can

take any arbitrary value. However, due to the sampling error in the simulations, these

parameter estimates are distributed around zero.



5.5. Simulation study 125

−0.6

−0.4

−0.2

0.0

0.2

●●

●●

µ01 µ02

(a) true µ = (−0.2,−0.3)

−
1

0
1

2
3

●●

●●

●●

●●

A11 A12 A21 A22

(b) true A1 =( 0.8 2
0 0 )

−
3

−
2

−
1

0
1

2

●●
●●

●●
●●

B11 B12 B21 B22

(c) true B1 =( 0.3 0
0 0 )

2

4

6

8

10

12

14

●● ●● ●●

Σ11 Σ12 Σ22

(d) true Σ =( 1 0.7
0.7 1 )

−0.2

0.0

0.2

0.4

0.6

●●

●●

γ1 γ2

(e) true γ = (0.2, 0.3)

5

10

15

●●

ν

(f) true ν = 3

Figure 5.5. Non-identifiable case: Vioplots for parameter estimates of non-
identifiable VARMA(1,1)-VG model with γ = (0.2, 0.3) and ν = 3.
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5.5.2.2 Test for identifiability

As discussed in Section 5.5.1, one way to detect non-identifiability problem is to test if

there is a common eigenvalue for the two matrix polynomials using the resultant which

is the determinant of the tensor Sylvester matrix in (5.31). Theoretically, the resultant

is zero when there is a common eigenvalue. Taking into account the random nature

of the sampling error, we instead get values of the determinant following a certain

distribution.

To investigate the characteristic of the resultant, we plot the kernel density estimate

of the square root of the resultant in Figure 5.6. For the identifiable cases in Section

5.5.1, the square root of the resultant seems to follow some symmetric distribution

with non-zero mean. On the other hand, for the non-identifiable case in this section, it

seems to follow roughly a chi-squared distribution. In summary, the large variabilities

in the AR and MA parameter estimates as well as in the root of the resultant give

some indication whether there is common eigenvalue in the two matrix polynomials.

These characteristics motivate one to construct a hypothesis test for the existence of

a common eigenvalue. However, more research is required to develop such test for

VARMA related models.
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Figure 5.6. Density plots of the square root of the resultant applied to
VARMA-VG model with parameters from Case 1 in Section 5.5.1 (identifi-
able) and in Section 5.5.2 (non-identifiable).
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5.5.2.3 Results and remarks

The proposed AECM algorithm described in Section 5.3.3 not only provides accu-

rate results but also computationally efficient procedure to estimate parameters of the

VARMA-VG model. The main extension of the ECM algorithm in this chapter is

the application of the approximation technique discussed in Section 5.3.3 to estimate

the MA parameters. This approximation technique is useful especially for lower order

VARMA-VG process. For higher order process, one needs to take some precautions in

applying this approximation technique due to the extreme non-linear behaviour of the

log-likelihood function, thus resulting in estimation procedures which are highly reliant

on the starting values. Nevertheless, experience shows that only low orders of AR and

MA terms are necessary in most real applications.

5.6 Applications

We illustrate the practical application of the VARMA-VG model through real data

analyses for two return series, cryptocurrency exchange rates and stock market indices.

The first analysis investigates the features of the newly emerged cryptocurrencies. The

second analysis aims to study the effect of increasing sampling frequency on the char-

acteristics of returns and hence the choice of model. For our statistical analysis, the

returns of the time series is defined in (2.28).

5.6.1 Application to cryptocurrency

Bitcoin is the first decentralised cryptocurrency which is a digital payment system using

blockchain technology allowing direct peer-to-peer transactions without a central repos-

itory or single administrator. The idea of this direct peer-to-peer transaction system

without an intermediary was first proposed by Nakamoto [82]. These transactions are

verified by network nodes and recorded in a public distributed ledger. Thus, Bitcoin

as well as other cryptocurrencies display features distinct from ordinary fiat currencies

traded in the market.



128 Applications to Financial Time Series

Since cryptocurrencies emerged only very recently, there are very limited studies analysing

their market behaviour. Due to their short life period, many people do not fully under-

stand their features of wild volatility and hence doubt their roles as currencies rather

than merely some speculative investment assets. As cryptocurrencies are still on their

early stages of development, the volatilities of their returns are higher than ordinary

currencies. This poses great challenges when it comes to modelling and forecasting

cryptocurrency as typically the innovations are assumed to follow a normal distribu-

tion. Instead, we see great opportunities for applying our proposed VARMA-VG model

to study cryptocurrencies while also comparing the performance with the VARMA-t

model in Section 5.4.1.

From the Brave New Coin (BNC) Digital Currency indices database, we obtained the

closing price from 21st May 2014 to 17th July 2017 for the global weighted average of

Bitcoin, Ripple, Litecoin, and Dash which are some of the most popular cryptocurren-

cies to date. Extracting the closing prices for each day gives us a sample size of 1154

for each component and returns are calculated using (2.28) and are plotted in Figure

5.7.

5.6.1.1 Numerical summary and statistical tests

Numerical summaries of the returns are presented in Table 5.3. The SD for the returns

of Bitcoin is slightly larger than other cryptocurrencies. Moreover, all cryptocurrencies

have kurtosis much larger than the normal distribution and have some positive skewness.

Table 5.4 reports the correlation coefficient between each pair of cryptocurrencies. It is

clear that the returns of cryptocurrencies are not strongly correlated though Dash and

Litecoin exhibit some level of positive correlation.

All these features indicate that the distribution of the returns should have heavier tails

and sharper peak than the normal distribution. Thus the multivariate skewed VG and

Student’s t distributions are suitable for this data set as they can capture the positive

skewness and the large leptokurtosis of the data. These model choices do not pose any

problem to our proposed ECM algorithms as our simulation studies have confirmed the

accuracy of the VG parameter estimates even when the shape parameter falls into the

unbounded density region and the Student’s t distribution does not have any unbounded

density issue. In this case, we use WLOO likelihood methodologies developed in Section
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4.2 to overcome this unbounded density problem from the VG distribution while also

allowing comparison with other models adopting the Student’s t distribution.

Table 5.3. Numerical summaries of the daily returns of cryptocurrencies along
with p-values of Box-Pierce test for serial correlation.

Cryptocurrency median mean SD skewness kurtosis Box-Pierce

Bitcoin −0.0018 0.0013 0.133 1.25 37.6 3.6e-9
Ripple −0.0022 0.0029 0.076 1.68 41.7 0.0015
Litecoin −0.0003 0.0012 0.055 0.40 23.7 0.1992
Dash −0.0021 0.0027 0.070 1.19 17.9 0.6779

Table 5.4. Correlation matrix of the daily returns of cryptocurrencies.

Correlation Bitcoin Ripple Litecoin Dash

Bitcoin 1.000 0.088 0.131 0.010
Ripple 1.000 0.146 0.029
Litecoin 1.000 0.279
Dash 1.000

The Box-Pierce test [15] is used to test whether there is serial correlation in a return

series. The p-values of the test reported in Table 5.3 show significant serial correlations

for both Bitcoin and Ripple and suggest the suitability of fitting the returns with time

series models. Moreover, the Box-Pierce test in Table 5.3 also shows that Litecoin

and Dash have no significant serial correlation. However, the autocorrelation functions

(ACF) of the returns in Figures 5.8 show short memory feature of the four return series.

In conclusion, it is suitable to use VARMA-VG and VARMA-t model with low orders

of p and q to describe the short memory feature.

The Box-Pierce test can also be used to test if there is serial conditional heteroscedas-

ticity and serial conditional correlation between the return series by considering the

Table 5.5. P-values for the Box-Pierce test of serial conditional heteroscedas-
ticity (diagonal entries) and serial conditional correlation (off-diagonal entries)
for the series {ytiytj} for i, j = 1, ... , 4.

Bitcoin Ripple Litecoin Dash

Bitcoin 1.4e-7 0.4756 0.0240 0.0001
Ripple <2.2e-16 0.0016 0.0276
Litecoin 0.0003 1.7e-15
Dash 6.7e-16
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Figure 5.7. Time series plots for the returns of cryptocurrencies.

series {yt,iyt,j} for i, j = 1, ... , 4. The p-values displayed in Table 5.5 show that each

return series have serial conditional heteroscedasticity, and most of them have serial

conditional correlation. However, current models do not consider these features as they

assume that these volatilities and correlations do not depend on time. Though they

can be extended to adopt a GARCH-type volatility and dynamic correlation model for

future research.

5.6.1.2 Model fitting

To determine the order of the VARMA-VG (or VARMA-t) model, we use the corrected

AIC (AICc) based on the WLOO log-likelihood to choose the appropriate orders for

the models where the AICc is defined by

AICc = AIC +
2K(K + 1)

n−K − 1
, (5.44)
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Figure 5.8. ACF plots of returns of cryptocurrency

K represents the number of parameters and the AIC is defined as

AIC = −2`(θ̂;y) + 2K. (5.45)

The estimation procedures for determining the order of p and q are given as follows:

Step 1: Remove the first few data points so that each estimation procedure contains

the same number of data points. This enables model comparison using AICc. In our

analysis, we choose to remove the first five data points.

Step 2: Start the estimation procedure choosing p = 0 and q = 0, then fit the

VARMA(0,0)-VG model to the return series and calculate the AICc.
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Step 3: For k 7→ k + 1 iteration, fit VARMA(p, q)-VG model to the return series

for all p and q such that p+ q = k. Then calculate the AICc.

Step 4: Repeat step 3 until the AICc no longer decreases.

Table 5.6 and 5.7 reports the AICc for the VARMA-VG and VARMA-t models respec-

tively where the AICc are based on the WLOO log-likelihood to facilitate comparison

between the VG and Student’s t distributions for the innovations when using the ECM

algorithm with CM-step for κ in Section 2.2 and the observed log-likelihood in the CM-

step for ν for the VG distribution (or υ for the Student’s t distribution). Results show

that the best p and q are 2 and 0 respectively for both VARMA-VG and VARMA-t

models, that is, the best models are VARMA(2,0)-VG and VARMA(2,0)-t respectively

as they give the smallest AICc which are bolded in these tables.

Comparing the AICc for these two models, one finds that overall VARMA(2,0)-t model

gives a better model fit than VARMA(2,0)-VG model. Although the VG distribution

captures the behaviour around the peak better than the Student’s t distribution as

demonstrated by comparing Figures 5.9 and 5.10, the Student’s t distribution captures

the heavy-tailed behaviour better than VG distribution which is the dominating factor

in the AICc for the cryptocurrency data.

Apart from comparing model fit, Table 5.8 compares computational time and number of

iterations using various estimation methods for the VARMA(2,0) model using the two

distributions. Using the first method in the table, the computational efficiency for VG

versus Student’s t innovations differ by a factor of 77 times in terms of both computation

time (15 vs 1152) and number of iterations (12 vs 925). These trends roughly apply

to other methods involving other combination of steps in the ECM algorithm such

as the full log-likelihood with adaptive ∆ for the maximisation and the Q-function in

the CM-step for ν (or υ). One possible reason for the faster convergence and shorter

computational time is due to the super-efficiency property for the location estimate of

VG distribution using the LOO or WLOO log-likelihood which assists the convergence

of the ECM algorithm.

Comparing with the full likelihood methods, the WLOO likelihood converges faster

and is computationally more efficient than the full likelihood with adaptive ∆. The

improvement in computational efficiency can range up to a factor of seven for the VG

distribution and a factor of three for the Student’s t distribution. Moreover, when
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comparing the accuracy of these likelihood methods, Section 4.4 shows that WLOO

likelihood method overall performs better than full likelihood method. Thus, in this

case, the WLOO likelihood is more preferable than the full likelihood method with

adaptive ∆.

The parameter estimates and SE estimates using the first method in Table 5.8 are

reported in Tables 5.9 and 5.10 for the VARMA(2,0)-VG and VARMA(2,0)-t model

respectively. Looking at the scale and skewness parameter estimates, the fact that

Σ̂1,1 is higher than other diagonal entries of Σ̂ and all elements of γ̂ are positive for

both models are consistent with the observations that Bitcoin has higher SD and each

cryptocurrencies is slightly positively skewed as shown in Table 5.3. Moreover Σ̂3,4 is

most significant whereas Σ̂1,4 is least significant for VARMA-VG model. These results

also agree with the observation in Table 5.4. In fact, estimates in Σ̂ and γ̂ are all

significant for VARMA-VG model and mostly significant for VARMA-t model which

again testify the suitability of the VARMA(2,0) models.

Looking at the persistence parameters, the diagonal entries of Â1 and Â2 show that the

persistence is generally negative and it is much weaker for Litecoin and Dash compared

with Bitcoin and Ripple. These results are consistent with the Box-Pierce test in Table

5.3. For the off-diagonal entities, most of the cross-persistence are not significant. Since

the shape parameter estimate for VG innovations falls inside the unbounded density

region (ν̂ ≤ d
2
), it suggests the high density of points about the centre of the distribution.

So we apply the WLOO likelihood methodology in Section 4.2 to remove the data point

that gives rise to unbounded density so that the ML estimation is well-defined. The

small Student’s t shape parameter lying very close to the boundary of the parameter

space also suggest the extreme heavy-tailness of the cryptocurrency returns.

The SE estimates for VARMA-VG model can be calculated using Louis’ method in

(2.20) except the SE for µ̂ is obtained using the double generalised gamma approxima-

tion for WLOO likelihood method as described in Section 3.4.2.2 and the derivatives

are given in Appendix A9. Louis’ method also applies to the VARMA-t model with

adjustments made to the conditional expectations using the conditional distribution in

(5.35) and the inverse-gamma log-likelihood using the derivatives in (5.39) and (5.40).
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Table 5.6. AICc of VARMA-VG model for different p’s and q’s.

AICc q = 0 q = 1 q = 2 q = 3

p = 0 −13287 −13325 −13374 −13357
p = 1 −13314 −13328 −13188
p = 2 −13384 −13187
p = 3 −13356

Table 5.7. AICc of VARMA-t model for different p’s and q’s.

AICc q = 0 q = 1 q = 2 q = 3

p = 0 −13344 −13411 −13432 −13412
p = 1 −13400 −13387 −13331
p = 2 −13432 −13205
p = 3 −13420

Table 5.8. Computational time and number of iterations until convergence us-
ing different ECM algorithms for VARMA(2,0)-VG and VARMA(2,0)-t mod-
els.

VG Student’s t

Log-likelihood CM-step for κ CM-step for ν (or υ) Time (s) iter Time (s) iter

WLOO X `WLOO
obs 15 12 1152 925

WLOO X QWLOO 11 17 402 721

WLOO `WLOO
obs 40 27 3608 2579

WLOO QWLOO 38 38 1989 2513

adaptive ∆ X `obs 93 67 1679 2072

adaptive ∆ X Q 85 88 1166 1299

adaptive ∆ `obs 66 53 5922 4679

adaptive ∆ Q 108 98 3514 4745

5.6.1.3 Model fit assessment

To assess the performance of the VARMA(2,0)-VG and VARMA(2,0)-t models, we

plot the density of the errors using Gaussian kernel density estimation in Figure 5.9

and 5.10 respectively. For comparison, we also include the marginal pdfs for VG and

Student’s t distributions respectively and each plot also includes a univariate normal

pdf to show the high level of kurtosis for each component of the errors. These plots

show that these models capture the overall shape of the density especially the high peak
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Table 5.9. Parameter estimates and SEs for the VARMA(2,0)-VG model using
the first method in Table 5.8.

parameter estimate SE

µ>
(
−0.004 −0.003 −0.001 −0.003

) (
0.002 0.001 0.001 0.001

)
A1


−0.191 0.063 0.054 0.079
−0.003 −0.131 0.013 0.004
−0.007 0.003 −0.072 0.007
−0.010 −0.039 −0.048 −0.013




0.031 0.043 0.059 0.083
0.010 0.026 0.036 0.036
0.011 0.014 0.026 0.011
0.014 0.024 0.026 0.018


A2


−0.069 0.075 −0.037 0.016
−0.026 −0.028 0.003 −0.038
0.003 0.043 −0.129 0.022
−0.049 0.077 −0.030 −0.084




0.006 0.034 0.048 0.037
0.002 0.022 0.025 0.014
0.002 0.012 0.021 0.010
0.002 0.021 0.025 0.010


Σ


0.0138 0.0010 0.0008 0.0004

0.0038 0.0005 0.0006
0.0021 0.0008

0.0051




0.0009 0.0002 0.0002 0.0003
0.0002 0.0001 0.0001

0.0001 0.0001
0.0003


γ>

(
0.007 0.006 0.002 0.006

) (
0.003 0.002 0.001 0.002

)
ν 0.7447 0.0333

Table 5.10. Parameter estimates and SEs for the VARMA(2,0)-t model using
the first method in Table 5.8.

parameter estimate SE

µ>
(
−0.004 −0.003 −0.001 −0.002

) (
0.002 0.001 0.001 0.001

)
A1


−0.219 0.033 0.055 0.060
−0.008 −0.131 0.025 −0.013
−0.003 0.006 −0.064 0.014
0.011 −0.046 −0.030 −0.035




0.027 0.042 0.054 0.042
0.012 0.026 0.026 0.020
0.009 0.016 0.020 0.015
0.015 0.026 0.032 0.029


A2


−0.056 0.080 −0.076 −0.021
−0.017 −0.049 0.022 −0.049
0.005 0.028 −0.104 −0.002
−0.032 0.030 −0.024 −0.076




0.025 0.036 0.052 0.041
0.012 0.022 0.027 0.020
0.009 0.013 0.022 0.016
0.015 0.022 0.031 0.028


Σ


0.0929 0.0065 0.0056 0.0032

0.0242 0.0031 0.0043
0.0135 0.0056

0.0355




0.0126 0.0017 0.0024 0.0070
0.0030 0.0185 0.0334

0.0200 0.0109
0.0201


γ>

(
0.040 0.033 0.012 0.025

) (
0.048 0.004 0.003 0.003

)
υ 2.0805 0.0441
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for the errors of Bitcoin and Dash. For Ripple and Litecoin, the peaks using the VG

and Student’s t distribution is lower than the kernel density estimate suggesting that

the shape parameter for the VG and Student’s t distributions is not small enough for

these two cryptocurrencies. This is expected as the model assumes a common shape

parameter for all four cryptocurrencies. In all cases, the normal distribution can not

capture the behaviour of the peak, intermediate tails and extreme tails.

In summary, the VARMA(2,0) model captures the short memory feature with weaker

persistence, cross-correlation, positive skewness as well as high kurtosis. For the fea-

tures of high kurtosis, the VG distribution describes the high concentration of data

points around the centre better whereas the Student’s t distribution models the heavy

tails better. Although Student’s t model is preferred in terms of AICc which is often

dominated by fitting better the few outliers at the cost of fitting the peak behaviour,

VG model demonstrates high computational efficiency due to its super-efficiency prop-

erty for its location estimate. This is particularly an advantage when analysing high

frequency financial time series data which is the focus for the next application. The

next section aims to study the effects of increasing sampling frequency on the kurtosis,

in particular, the peak of the data distribution and the ability for the shape parameter

of the VG distribution to capture the varying levels of peakness. In this regard, the

VARMA-t model is not considered.

5.6.2 Stock market indices

This analysis is divided into two parts. The first analysis considers the VAR(1)-VG

model fitted to the same daily return data in Section 2.6. This analysis demonstrates

the improvement in model performance of VAR-VG model over the VG model in Section

2.6. The second analysis studies how the sampling frequency affects the characteristics

of the return series.

5.6.2.1 Daily stock indices

The description of the data can be found in Section 2.6, the time series plots are

displayed in Figure 2.2, the summary of the data are given in Table 2.4, and the plots
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−0.4 −0.2 0.0 0.2 0.4

0
2

4
6

8
10

GWA_DASH
D

en
si

ty

(d) density plot of errors for Dash

Figure 5.9. Density plots (black solid line) of the errors of the VARMA(2,0)-
VG model for Bitcoin, Ripple, Litecoin and Dash returns. The density for VG
(green dashed line) and univariate normal (red dotted line) are included for
comparison.

of the autocorrelation function (ACF) are given in Figure 5.11. Results for fitting

VAR(1)-VG model is reported in Table 5.11 based on the AECM algorithm using the

full likelihood with adaptive ∆ to facilitate comparison with the VAR(0)-VG results in

Section 2.6.

The VAR(1)-VG model provides good performance as illustrated in the density plots

of the residuals in Figure 5.12 after filtering out the AR(1) term. Fitted marginal
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(d) density plot of errors for Dash

Figure 5.10. Density plots (black solid line) of the errors of the VARMA(2,0)-t
model for Bitcoin, Ripple, Litecoin and Dash returns. The density for Student’s
t (cyan dashed-dotted line) and univariate normal (red dotted line) are included
for comparison.

pdfs of the VG distribution are added to the figure to facilitate comparison. However,

occasionally the peaks of the density estimates and fitted pdfs does not match, for

example, the peaks of S&P 500 and CAC 40 are underestimated whereas the peak for

AORD is overestimated. This is due to the rather strong assumption of a common

shape parameter ν across all components. We also note that AICc is not adopted for

model fit comparison because the capping level differ between the two models making

the two capped likelihoods incomparable.
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Figure 5.11. Plot of ACF for DAX, S&P 500, FTSE 100, AORD and CAC 40
daily returns.
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Table 5.11. Estimates, SEs and correlation matrix ρ for the VAR(1)-VG model
using DAX, S&P 500, FTSE 100, AORD and CAC 40 daily return series

Estimates Standard errors

µ′ 10−4
(
16.0 13.0 9.6 13.7 2.1

)
10−4

(
3.4 2.8 2.7 2.3 6.3

)
A1 10−2


−8.2 34.7 −18.0 −1.4 2.1
7.5 −10.7 −3.6 −6.8 −0.6
−13.9 36.8 −12.9 −1.2 −0.4
−3.9 43.1 23.7 −20.8 −2.0
10.3 −27.3 0.9 −9.3 −4.6

 10−2


3.7 3.3 4.6 2.6 1.1
3.0 2.8 3.9 2.3 1.0
2.5 2.7 3.5 2.1 1.0
2.4 2.3 3.0 1.8 0.8
5.7 6.3 8.0 4.9 2.3



Σ 10−5


17.3 9.9 12.1 3.2 12.6

13.5 8.1 2.1 16.5
11.9 3.1 9.6

7.4 2.0
64.1

 10−6


6.8 5.4 5.3 3.7 10.9

5.2 4.4 3.2 9.9
4.6 3.1 9.0

2.9 6.9
24.9


γ ′ 10−4

(
−13.0 −11.9 −8.2 −12.4 −0.2

)
10−4

(
5.2 3.7 4.3 2.3 8.5

)
ν 1.45 0.057

ρ


1 0.65 0.85 0.29 0.38

1 0.64 0.22 0.56
1 0.33 0.35

1 0.09
1



Comparing the estimates of the VAR(0)-VG model in Table 2.5 with the VAR(1)-VG

model in Table 5.11, the estimate Σ̂ are very similar while γ̂ are also quite similar.

Since the second column of the Â1 matrix has relatively larger values, all five stocks

are strongly cross-correlated (of lag one) with S&P 500. It is not surprising to know

that the returns in S&P 500 has the most impact on each of the five returns the next

day because S&P 500 has been shown to be a strong predictor for a number of market

indices. This is due to its large market share and its minimal real time difference with

lag-one return on the other markets.

In addition, by observing that the first and third rows of Â1 matrix in Table 5.11 are

similar, both market indices DAX and FTSE 100 have similar cross-persistence with the

other stocks. Moreover, the correlation matrices of the two models in Tables 2.5 and 5.11

respectively show that DAX and FTSE 100 are highly correlated (ρ̂13 ' 0.85). These

strong cross persistence and correlation are possibly due to the strong competitiveness

of the German and UK markets as they are the major stock markets in Europe.
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To visualise the strong correlation, Figure 5.13 gives the scatter plot of the residuals

of DAX and FTSE 100 returns along with the fitted contour plot using estimates from

the VAR(1)-VG model. It shows high density of points in the central region as well as

strong linear dependence between the two market indices. In summary, the VAR(1)-VG

model can capture the strong cross-persistence between the four stocks with S&P 500

as well as between DAX and FTSE 100.

5.6.2.2 Forecast

To demonstrate the forecast ability of the VAR-VG model, we consider the VAR(1)-VG

model and forecast yT+s for T = 2000 and s = 1, . . . , 188 via a sequence of 1-step ahead

forecasts by fitting repeatedly to the sliding window Fs:T+s−1 = (ys, . . . ,yT+s−1) to

obtain parameter estimates θ̂s = (ĉs, Âs,1, Σ̂s, γ̂s, ν̂s). The forecasts ŷT+s are obtained

by

ŷT+s = E(yT+s) = ĉs + Âs,1yT+s−1 + γ̂s (5.46)

using (5.46) and (5.26) such that E(εs,t) = 0. We note that E(yT+s) aims to capture

the general trend of the process excluding noises. The forecasts as plotted in Figure

5.14 can capture the general trends of all return series, especially for AORD and FTSE

100 daily stock indices. Results agree with the in-sample filtered residuals in Figure

5.12 that the VAR(1)-VG model can capture the kurtosis and dynamics of AORD and

FTSE 100 indices better than to other indices. After demonstrating the improvement

of model performance with the AR time series structure, we show in the second analysis

how the more general VARMA model can accommodate increasing kurtosis level due

to increasing sampling frequency for these market indices.

5.6.3 High frequency stock indices

Again, we consider the returns of four different stock market indices, namely, Australian

Securities Exchange 200 index (ASX 200), Cotation Assistée en Continu 40 index (CAC

40), Financial Times Stock Exchange 100 index (FTSE 100) and Standard and Poor

500 index (S&P 500) which are based on the Australian, French, London, and U.S.

stock exchange respectively. We take the closing prices from 29th August 2016 to 29th

August 2017 with sampling frequencies of 1 hour, 15 minutes, 5 minutes and 1 minute.
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Figure 5.12. Density plots of VAR(1)-VG residuals (solid black line), pdf of
the VG distribution after filtering the mean function (green dash line) and pdf
of fitted univariate normal (red dotted line) for the daily returns of DAX, S&P
500, FTSE 100, AORD and CAC 40.
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Figure 5.13. Fitted contour plot of VAR(1)-VG for DAX and FTSE 100 data
sets after filtering the mean function.

The series are adjusted so that the prices are aligned based on time from the stock

market opening times for each day. The sample sizes are 1606, 5604, 16523 and 79814

for the sampling frequencies of 1 hour, 15 minutes, 5 minutes and 1 minute respectively.

From the numeric summaries in Table 5.12, as the sampling frequency increases, the

mean, SD and correlation decrease while the skewness and kurtosis increase. The

large increase in skewness and kurtosis are due to the large number of outliers along

with the increasing sampling frequency. To mitigate the effect of the outliers, robust

estimation of moments is included in Table 5.13 using the sample median, median

absolute deviation (MAD), Bowley’s skewness and Moors’ kurtosis [13]. Based on these

new robust estimates, as the sampling frequency increases, the overall magnitude of the

skewness decreases, the kurtosis remains roughly constant but the serial correlation as

well as heteroscedasticity increases. So we expect estimates for the skewness and shape

parameter to exhibit behaviours in agreement with the robust estimates. The only

exception to the decreasing trend of correlation is the correlation between CAC 40 and

FTSE 100 indices which stays strong across increasing sampling frequencies.

The Box-Pierce test in Table 5.13 is applied to test if there is autocorrelation in the

high frequency returns for each index and sampling frequency. From this test, there is

no autocorrelation for 1 hour returns, whereas there is autocorrelation for all except

FTSE 100 indices for 1 minute returns. In general, there is a trend of increasing

autocorrelation with sampling frequency. From the autocorrelation plots in Figure



144 Applications to Financial Time Series

2000 2050 2100 2150

−
0.

02
0.

00
0.

02
0.

04

time

(a) forecasting DAX

2000 2050 2100 2150

−
0.

03
−

0.
01

0.
01

0.
03

time

(b) forecasting S&P 500

2000 2050 2100 2150

−
0.

02
0.

00
0.

02

time

(c) forecasting FTSE 100

2000 2050 2100 2150

−
0.

02
0.

00
0.

02

time

(d) forecasting AORD

2000 2050 2100 2150

−
0.

05
0.

00
0.

05

time

(e) forecasting CAC 40

Figure 5.14. Observed (black line) and predicted (red line) returns for Bitcoin,
Ripple, Litecoin and Dash using VAR(1)-VG model.
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Table 5.12. Numerical summaries of 1 hour, 15 min, 5 min and 1 min sampling
frequencies of ASX 200, CAC 40, FTSE 100 and S&P 500 returns.

Freq Index Mean SD Skewness Kurtosis Correlation

1 hr

ASX 200 2.8e-5 2.7e-3 0.11 20.0


1 0.31 0.30 0.23
1 0.76 0.25

1 0.22
1

CAC 40 8.4e-5 3.3e-3 0.66 20.3
FTSE 100 5.0e-5 2.6e-3 −0.16 11.4
S&P 500 6.9e-5 1.9e-3 0.63 12.8

15 min

ASX 200 0.8e-5 1.4e-3 0.67 57.7


1 0.32 0.30 0.22
1 0.79 0.20

1 0.22
1

CAC 40 2.5e-5 1.7e-3 1.36 64.7
FTSE 100 1.4e-5 1.3e-3 0.28 38.0
S&P 500 2.0e-5 1.0e-3 1.28 38.2

5 min

ASX 200 2.8e-6 7.3e-4 0.87 68.5


1 0.18 0.17 0.13
1 0.79 0.20

1 0.21
1

CAC 40 8.7e-6 10.6e-4 3.10 181.6
FTSE 100 4.9e-6 7.9e-4 0.94 101.6
S&P 500 6.7e-6 5.9e-4 2.42 98.9

1 min

ASX 200 0.6e-6 2.9e-4 5.16 343.3


1 0.11 0.12 0.08
1 0.76 0.20

1 0.20
1

CAC 40 1.8e-6 4.7e-4 8.14 1107.8
FTSE 100 1.0e-6 3.5e-4 2.51 620.3
S&P 500 1.4e-6 2.6e-4 4.69 460.2

Table 5.13. Robust numerical summaries for different sampling frequencies and
indices. P-values of the Box-Pierce test on the returns and returns squared are
also included.

Freq Index Median MAD Bowley’s Moors’ BP BP
skewness kurtosis {yt,j} {y2

t,j}

1 hr

ASX 200 8.7e-5 1.0e-3 −1.2e-2 0.24 0.49 0.00
CAC 40 3.9e-5 1.2e-3 4.4e-2 0.12 0.47 0.00

FTSE 100 3.1e-5 1.0e-3 5.9e-2 0.19 0.64 0.00
S&P 500 0.0e-5 6.6e-4 7.6e-2 0.95 0.62 0.00

15 min

ASX 200 1.7e-5 5.0e-4 −0.2e-2 0.13 0.23 0.00
CAC 40 0.7e-5 5.6e-4 −1.1e-2 0.25 0.53 0.57

FTSE 100 1.7e-5 4.6e-4 −4.4e-2 0.25 0.01 0.14
S&P 500 0.0e-5 2.7e-4 7.9e-2 0.99 0.84 0.36

5 min

ASX 200 0 2.6e-4 2.0e-2 0.20 0.00 0.00
CAC 40 0 3.0e-4 −1.3e-2 0.22 0.55 0.00

FTSE 100 0 2.5e-4 −0.4e-2 0.18 0.00 0.00
S&P 500 0 1.5e-4 5.7e-2 0.99 0.89 0.13

1 min

ASX 200 0 1.0e-4 4.1e-3 0.19 0.00 0.00
CAC 40 0 1.1e-4 4.4e-3 0.34 0.03 0.00

FTSE 100 0 1.0e-4 −0.4e-3 0.22 0.36 0.00
S&P 500 0 0.6e-4 31.5e-3 1.04 0.00 0.00
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Figure 5.15. ACFs of the returns for the 1 hr, 15 min, 5 min and 1 min (rows)
of ASX 200, CAC 40, FTSE 100 and S&P 500 returns (columns).
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5.15, all the autocorrelations except for 1 minute ASX 200 decay very quickly to 0

suggesting a low order VARMA-VG model is suitable for this data set.

Using the model fitting procedure in Section 5.3.3 to estimate the orders of VARMA(p, q)-

VG model, we obtained the results in Tables 5.14, 5.15 and 5.16. As ν̂ < d/2 for all

sampling frequencies, the VG distribution has unbounded density indicating the high

level of kurtosis in the data.

Table 5.14. AICc of VARMA-VG model for different p and q’s and different
sampling frequencies.

1 hour

q = 0 q = 1[ ]
p = 0 −62166 −62157
p = 1 −62157

15 min

q = 0 q = 1[ ]
p = 0 −252346 −252341
p = 1 −252342

5 min

q = 0 q = 1 q = 2 q = 3
p = 0 −825114 −825231 −825238 −825234

p = 1 −825232 −825192 −825025
p = 2 −825237 −825031
p = 3 −825231

1 min

q = 0 q = 1 q = 2 q = 3 q = 4 q = 5


p = 0 −4559145 −4560916 −4561001 −4561028 −4561042 −4561067
p = 1 −4560918 −4560962 −4561022 −4561034 −4561031
p = 2 −4561005 −4561022 −4561018 −4560246
p = 3 −4561031 −4561028 −4561001
p = 4 −4561045 −4561006
p = 5 −4561071

For the order of VARMA model, results show that indices with both 1 hour and

15 minute sampling frequencies have no time series structure while VMA-VG(2) and

VAR(5)-VG provide the best fit for 5 minute and 1 minute respectively which is con-

sistent with the autocorrelation plots in Figure 5.15 and the p-values from Box Pierce

test in Table 5.13. As the sampling frequency increases, the means decrease, diagonals

of the scale matrix decrease, the correlations in ρ̂ drop slightly, and the magnitude of
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Table 5.15. Parameter estimates and correlation matrix ρ of VARMA(p, q)-VG
model for 1hr and 15min high frequency returns.

estimates 1 hour 15 min

(p, q) (0,0) (0,0)
µ′ 10−4

(
1.2 1.0 1.6 0.2

)
10−5

(
1.3 0.8 2.7 −0.2

)
Σ 10−6


5.6 0.8 0.7 0.5

8.5 4.6 0.6
5.7 0.3

2.9

 10−7


14.0 1.1 0.9 0.6

18.1 9.8 0.3
11.8 0.4

6.4


γ ′ 10−4

(
−1.0 0.1 −1.0 0.5

)
10−5

(
−0.4 1.6 −1.3 2.2

)
ν 1.0254 0.9196

ρ


1 0.11 0.12 0.12

1 0.66 0.11
1 0.08

1




1 0.07 0.07 0.07
1 0.67 0.02

1 0.04
1


γ̂ decreases. All these phenomena agree with the numerical summaries in Tables 5.12

and 5.13.

Comparing the shape parameter estimate, it drops from ν̂ = 1.40 for the daily returns

to ν̂ = 1.0254 for 1 hour returns (over different sampling period). However, as the

sampling frequency continues to increase, the shape parameter varies between 0.9 to

1. This can be explained from the fact that although the robust kurtosis of CAC 40

and S&P 500 show increasing trends, the other two indices do not show such trend.

As a result, the shape parameter does not drop with sampling frequency to indicate a

consistent trend for all four indices.

To check the model performance, we display in Figure 5.16 density plots of errors

given in (5.26). For comparison, we also include the pdfs of marginal VARMA(p, q)-

VG model and univariate normal distribution to each component of the errors. The

plots demonstrate good fit of VARMA(p, q)-VG model except S&P 500 for all sampling

frequencies. It shows clearly that S&P 500 has higher kurtosis than the shape parameter

can allow for as the peak of the pdf is lower than the peak of the residual density due

to again the assumption of consistent shape parameter across all components.

In summary, the VG distribution fits the four indices well for all sampling frequencies

as it can capture adequately the peak of each distribution. Due to the constraint of

a common shape parameter, it was incapable to capture the extreme leptokurtosis of
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Table 5.16. Parameter estimates and correlation matrix ρ of VARMA(p, q)-VG
model for 5 min and 1 min high frequency returns.

estimates 5 min 1 min

(p, q) (0,2) (5,0)
µ′ 10−6

(
3.3 −7.3 −5.8 1.4

)
10−6

(
0.8 −2.0 −0.7 0.1

)

B1 = 10−2


−3.3 −3.0 −0.6 −5.3
1.0 4.7 −6.4 0.7
0.9 2.5 −2.6 0.3
−0.3 0.4 −0.4 1.7



B2 = 10−2


−0.5 0.2 −1.1 −0.1
−1.6 0.5 1.2 2.8
−0.9 0.0 1.3 0.0
−0.3 0.2 −0.3 0.9



A1 = 10−2


2.3 −0.2 0.5 1.3
−0.8 −5.4 18.0 −1.0
−0.2 −1.8 5.8 −0.6
0.3 0.0 0.2 0.4



A2 = 10−2


1.5 0.6 0.4 −0.2
−0.2 0.2 −1.0 1.2
−0.1 0.9 −0.2 0.8
0.1 0.0 0.1 −1.2



A3 = 10−2


1.0 −0.2 0.0 0.3
−0.2 −0.2 −0.5 1.0
0.4 0.1 −0.3 0.4
0.3 0.0 0.0 −0.8



A4 = 10−2


−0.2 0.4 −0.2 −0.1
0.2 0.1 −0.4 −0.9
−0.2 −0.1 −0.2 −0.2
0.1 −0.2 0.2 −1.1



A5 = 10−2


0.6 1.0 −0.5 0.6
0.4 −0.5 1.2 −0.2
0.4 −0.9 1.6 −0.3
0.0 0.0 −0.1 −0.3


Σ 10−8


38.5 1.2 0.9 0.6

52.2 26.8 1.1
33.3 0.8

18.8

 10−9


61.1 0.6 0.7 0.1

75.4 31.8 0.8
49.9 0.7

31.2


γ ′ 10−6

(
−0.7 15.7 10.7 5.4

)
10−6

(
−0.4 3.7 1.7 1.3

)
ν 0.9591 0.9962

ρ


1 0.03 0.02 0.02

1 0.64 0.03
1 0.03

1




1 0.01 0.01 0.00
1 0.52 0.02

1 0.02
1
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Figure 5.16. Density plots of the residuals (solid black line), pdf of VARMA-
VG after filtering the mean function (green dash line) and fitted univariate
normal (red dotted line) for the 1 hr, 15 min, 5 min and 1 min (rows) of ASX
200, CAC 40, FTSE 100 and S&P 500 returns (columns).
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S&P 500. Nevertheless, the VARMA-VG model has demonstrated its applicability to

capture the important features of the high frequency returns.

5.7 Conclusion

In this chapter, we extend the VG distribution in Chapter 1.5.3 to VAR-VG and

VARMA-VG models with additional AR and MA parameters to model a wide range

of persistence structures in financial time series. We also extend the AECM algorithm

developed in Chapters 2 to 4 to estimate the additional AR and MA parameters. We

note that there is no closed-form expression for the AR, MA and skewness parame-

ters for the VARMA-VG model, and the optimisation techniques such as NR method

may be problematic due to the large number of parameters. Instead, we consider the

approximation method to first fit a suitable order VAR-VG model and estimate the

parameters based on the fitted residuals.

We test the performance of the AECM algorithm in the first simulation study for four

cases: low or high level of skewness as well as small or large shape parameter. Results

show that the AECM algorithm provides sufficiently accurate parameter estimates even

when the density is unbounded in which case the WLOO likelihood method of Chapter

4 is applied. We also demonstrate that the SE estimates using Louis’ method give

reasonably accurate results and the SE calculation is computationally efficient.

Apart from the levels of skewness and kurtosis, other factors that may affect the per-

formance of AECM algorithm include the model identifiability issue. We discuss the

properties of the VARMA-VG model and the conditions when the model identification

problem arises. The second simulation study is designed so that the AR and MA pa-

rameters are subject to such problem. We demonstrate that parameter estimates are

subject to extra variabilities due to the redundant variables in the AR and MA param-

eters. Nevertheless, parameter estimates under such condition are still reasonable.

After checking the model performance, we demonstrate the applicability of VARMA-VG

model through analysing two return series both displaying distinct characteristics. We

find that the AECM algorithm provides reasonable estimates which agree closely with

the observed characteristics. The first type of return series we consider is cryptocurrency

returns which is less stable than the common stock indices due to its short life period.
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We find that the cryptocurrency daily returns have kurtosis even higher than the high

frequency stock index returns. Nevertheless, these behaviour of the cryptocurrency

daily returns can be captured with the VARMA(2,0)-VG and VARMA(2,0)-t models

where the latter model performs better in model-fit in terms of AICc but it converges

much slower than the former model using the AECM algorithm. For the second type

of stock index returns, we consider daily returns as well as high frequency returns at 1

hr, 15 min, 5 min and 1 min sampling frequencies. We find the shape parameters for

both types of return series are lower than d/2 which signifies unboundedness for the

VG density. This confirms the usefulness of VARMA-VG model to capture the high

level of kurtosis for various financial time series. Moreover SEs are also calculated using

Louis’ method to allow us to assess the significance of each parameter estimate. For

the location parameters, SEs are approximated using the double generalised gamma

distribution.



CHAPTER 6

Conclusion

This thesis is the first of its kind to develop ECM algorithms for VG distribution with

unbounded density. Various improvements have been made to the ECM algorithm

to improve numerical stability, computational efficiency and accuracy to estimate the

parameters, particularly, the location parameter of the VG distribution. Model perfor-

mance is verified using simulation studies. This chapter concludes the contributions in

each chapter and proposes future research directions.

In Chapter 2, the AECM algorithm is derived to provide efficient estimators for the VG

distribution and the capped likelihood method is proposed to deal with the numerical

issues for the location parameter estimate when the density is unbounded. Simulation

studies confirm the good performance of the AECM algorithm, determine the optimal

choice of capping level and test the three methods for calculating SE. A comprehensive

set of formulas are derived for calculating the observed and Fisher information matrix

in the appendices. These formulas also apply to other distributions with NMVM rep-

resentations such as the Student’s t and GH distributions. Application to stock index

returns shows that the VG model can capture high kurtosis and some skewness in the

stock index returns.

Chapter 3 considers the LOO likelihood methods and extends the AECM algorithm to

accommodate the LOO likelihood. Simulation studies again confirm the good perfor-

mance and further investigate the optimal convergence rate and asymptotic distribution

for the location parameter estimator. We further demonstrate how the double gener-

alised gamma distribution can describe the distribution of the location estimator for

cusp and unbounded densities and hence the SE can be calculated, even when the

information for the location parameter is not well-defined.
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In case there are data multiplicity, the LOO likelihood method for location estimate

may fail. Chapter 4 proposes the WLOO likelihood method and compares it with four

other estimators proposed in Chapters 2 and 3. Results show that the AECM algorithm

with WLOO likelihood provides good estimates for all parameters. Nevertheless, the

adaptive capped likelihood method also provides reasonably good accuracy.

With an aim to provide real financial applications, the constant mean VG model in

Chapter 2 is found to be inadequate to describe the persistence in most financial return

series. Chapter 5 extends the model to VARMA-VG model and modifies the AECM

algorithm using WLOO likelihood to estimate additional AR and MA parameters.

Simulation studies confirm the performance of the AECM algorithm with accurate pa-

rameter and SE estimates. In case of non-identifiable model, it still provides reasonable

estimates with enlarged variability for some AR and MA parameters. Two exten-

sive real data analyses are performed with returns from cryptocurrency daily exchange

and high frequency stock indices. Characteristics of these two markets are extracted

showing that smaller market share like cryptocurrency and higher sampling frequency

may increase the kurtosis of a data to a level that most distributions fail to capture.

The VARMA-VG and VARMA-t models can capture extreme kurtosis and so are very

favourable to model these types of data. Their ability to capture the cross-correlation

between assets is also useful in portfolio setting and trading strategy formulation for

financial institutions. These analyses are very new in the modelling and finance lit-

erature and provide great contribution to the understanding of the properties of high

frequency index and cryptocurrency returns.

There are many promising area to pursue in the future.

Firstly, the proposed AECM algorithm in Chapters 2 and 3 can be applied to estimate

parameters for other distributions with cusp or unbounded densities. When the NMVM

representation is unknown for some distributions such as exponential power and double

generalised gamma distributions, numerical optimisation techniques such as NR method

with local point search and line search can be applied to maximise directly the WLOO

likelihood. The estimation of these distributions with extreme leptokurtosis is very

significant in the methodological development for models to describe the increasingly

prevalent high frequency data.
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Secondly, the simulation study for the optimal convergence rate and asymptotic distri-

bution of the location estimate in Chapter 3 should be extended. Currently, we consider

only the univariate symmetric VG distribution. For future work, it is worth studying

these properties for the multivariate skew case while allowing for dependence between

the location and other parameters from VG distribution. In addition, we suspect that

the range 0.4 < ν < 1 corresponds to the transition range when the optimal rate of con-

vergence changes from 1/2 (when ν ≥ 1) to 1/(2ν) (when ν < 0.4), and the asymptotic

distribution converges more slowly in this transition range. More numerical studies as

well as theoretical developments should be directed to extract more distinct behaviours

when ν lies within this transition range. Although proving these asymptotic results

analytically is still an open question, our numerical results provide useful insight for

the theoretical development of properties of the location estimate when the density is

cusped or unbounded.

Thirdly, statistical test should be developed to see if the VARMA type models such as

the VARMA-VG have a common root. This is equivalent to testing if the resultant

defined by the determinant of the tensor Sylvester matrix in (5.31) is equal to zero

which indicates that the model is non-identifiable. This is important as it causes the

information matrix to be singular and gives unstable parameter estimates. Once the

model is classified to be non-identifiable, the model can then be further simplified by

setting some of the elements in the AR and MA matrices to be zero or incorporate

structural specification into the VARMA model [104].

Fourthly, the VARMA-VG model should be further extended to adopt more advanced

time series features. This includes extending the mean function to adopt the autore-

gressive fractional integrated moving average (ARFIMA) [43] and its generalisation

called Gegenbauer autoregressive moving-average (GARMA) [49] structures to describe

the strong and possibly periodic persistence that are present in some financial time se-

ries. Moreover, as Figure 2.2 displays some volatility clustering, the variance-covariance

matrix Σ can be assigned a dynamic rather than static structure such as the popular

GARCH-type volatility structure [12] and the covariance regression structure [111].

Lastly, the VG distribution should be extended to allow multiple shape parameters. As

demonstrated in all applications, the VG distribution with one consistent shape param-

eter for all components is very restrictive. To improve the model flexibility, one may

consider a modified VG distribution, similar to the modified multivariate Student’s t
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distribution in Choy et al. [23] or the multiple scaled distribution in Wraith and Forbes

[108] so that each marginal distribution has a separate shape parameter. More generally,

we can group sets of marginal distributions to have group-specific shape parameters.

The ACME algorithm can be extended to estimate these additional shape parameters.

We expect the conditional expectations for the mixing variables of VG distribution

with different ν to have a more complicated functional form and so further research is

required to develop estimation methods to implement these extended distributions.



CHAPTER A

Matrix Differentiation

A1 Introduction

Evaluating derivatives of the log-likelihood function is important for maximisation in

the ML approach and calculation of the the information matrix to obtain standard er-

rors. As the log-likelihood function commonly involves multiple parameters, the max-

imisation requires differentiation with respect to each of these individual parameters.

Moreover, the second order derivatives required in the calculation of the information

matrix is even more tedious to evaluate as it requires differentiation with respect to

numerous parameter pairs. Hence, the element-wise differentiation becomes inefficient

particularly for multivariate models like the VAR-VG or VARMA-VG. In this section,

we introduce the theory of matrix differentiation where the log-likelihood function can

be differentiated with respect to matrix arguments. This approach can greatly simplify

the amount of computation when designing a computer program to evaluate derivatives.

See Boik [11], Petersen and Pedersen [88], Lütkepohl [69], Schonemann [98], Minka [81]

for more information on matrix differentiation.

A2 Matrix operators

Let X be a m× n matrix. We define the following functions to obtain dimensions of a

matrix X:

dimX = (m,n), rowX = m, colX = n.

We then define the following constant vectors and matrices:
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(i) IcolX represents an n× n identity matrix,

(ii) 1rowX represents a m-dimensional vector of ones, and

(iii) 1dimX represents a m× n matrix of ones.

If Y has the same dimension as X, then the Hadamard product X ◦ Y is a matrix of

same dimension with elements given by

(X ◦ Y )ij = Xij × Yij . (A.1)

If Y is a p× q matrix, then the Kronecker product is defined as

X ⊗ Y =

X11Y · · · X1nY
...

...

Xm1Y · · · XmnY

 (A.2)

which is a mp× nq matrix.

If X =
(
x1 · · · xn

)
, then the vectorisation of X stacks the columns into a vector.

That is,

vec(X) =

x1

...

xn

 (A.3)

is a mn-dimensional vector.

If Σ is a d × d symmetric matrix, then the half-vectorisation of Σ stacks the columns

of the lower triangular matrix of Σ into a vector. That is,

vech(Σ) =
(

Σ11 · · · Σd1 Σ22 · · · Σd2 · · · Σdd

)>
(A.4)

is a d(d+ 1)/2-dimensional vector.

A commutation matrix denoted by K(m,n) is a mn×mn permutation matrix such that

K(m,n)vec(X) = vec(X>). (A.5)

See [72] for properties of the commutation matrix.

An elimination matrix denoted by Ld is a d(d+ 1)/2× d2 matrix such that

Ldvec(Σ) = vech(Σ) . (A.6)
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A duplication matrix denoted by Dd is a d2 × d(d+ 1)/2 matrix such that

Ddvech(Σ) = vec(Σ) . (A.7)

A3 Definitions and basic rules

Let the m × n matrix X be a general matrix with no particular structure (such as

symmetric, Toeplitz, etc.) so that the elements of the matrix are mutually independent,

we write

X =

X11 · · · X1n

...
...

Xm1 · · · Xmn

,
and f(X) is a scalar differentiable function with respect to X. Then the first order

partial derivative of f with respect to X is defined as

∂f

∂X
=


∂f
∂X11

. . . ∂f
∂X1n

...
...

∂f
∂Xm1

. . . ∂f
∂Xmn


which is a m× n matrix.

Let Y (x) be a p × q matrix function with each element Yij(x) a function of a scalar

variable x. Then

∂Y

∂x
=


∂Y11

∂x
. . . ∂Y1q

∂x
...

...
∂Yp1
∂x

. . . ∂Ypq
∂x


is a p× q matrix.

If f(x) = (f1(x), . . . , fp(x))′ is a p-dimensional vector function with respect to m-

dimensional vector x, then

∂f

∂x′
=

(
∂f

∂x1

. . .
∂f

∂xm

)
which is a p×m matrix.



160 Matrix Differentiation

More generally, if Y (X) is a matrix function depending on matrix X, then

∂Y

∂X
=

∂

∂X
⊗ Y =


∂Y
∂X11

. . . ∂Y
∂X1n

...
...

∂Y
∂Xm1

. . . ∂Y
∂Xmn


which is a pm× qn matrix.

Using this notation, we can represent the Hessian matrix as

∂2f

∂x∂x′
=

∂2f

∂x′∂x
=


∂2f

∂x1∂x1
· · · ∂2f

∂x1∂xm
...

. . .
...

∂2f
∂xm∂x1

· · · ∂2f
∂xm∂xm


where x is a m-dimensional vector.

The following rules are useful to derive many differential results [81]:

∂A = 0 for some constant matrix A, (A.8)

∂(αX) = α ∂X for some scalar constant α, (A.9)

∂(X + Y ) = ∂X + ∂Y , (A.10)

∂(tr(X)) = tr(∂X), (A.11)

∂(XY ) = (∂X)Y +X(∂Y ), (A.12)

∂(X ◦ Y ) = (∂X) ◦ Y +X ◦ (∂Y ), (A.13)

∂(X ⊗ Y ) = (∂X)⊗ Y +X ⊗ (∂Y ), (A.14)

∂
(
X−1

)
= −X−1(∂X)X−1, (A.15)

∂(detX) = det(X) tr
(
X−1∂X

)
, (A.16)

∂(log detX) = tr
(
X−1∂X

)
, (A.17)

∂X ′ = (∂X)′ . (A.18)

The following theorem is a direct application of (A.18).

Theorem A3.1 (Transpose of derivative). Let Y be a matrix function with respect to

matrix X, then (
∂Y

∂X

)′
=
∂Y ′

∂X ′
. (A.19)
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Other differential properties can be obtained from the rules above,

∂Ax

∂x′
= A, (A.20)

∂Ax

∂x
= vec(A), (A.21)

∂x′A

∂x
= A, (A.22)

∂x′A

∂x′
= vec(A′)′, (A.23)

∂ log |X|
∂X

= X−>, (A.24)

∂tr(Y )

∂X
=
∂tr(Y ′)

∂X
, (A.25)

∂tr(AX)

∂X
=
∂tr(X ′A′)

∂X
= A′. (A.26)

The aim of this appendix is to present some matrix derivative results useful to dif-

ferentiate the log-likelihood of many different statistical models for the maximisation

likelihood approach.

A4 Derivative of products

In this section, the following product rules are considered: Matrix product rule, Hadamard

product rule and Kronecker product rule. Other product rules regarding the trace and

vectorisation is given in the later sections.

Theorem A4.1 (Matrix product rule). Let U and V be matrix functions with respect

to X such that UV is conformable, then

∂(UV )

∂X
=
∂U

∂X
(IcolX ⊗ V ) + (IrowX ⊗U)

∂V

∂X
(A.27)

where Id represents an d× d identity matrix.

Proof. Consider the derivative with respect to the (i, j)th component of X, using the

differential property ∂(UV ) = (∂U)V +U (∂V ) from equation (A.12),

∂(UV )

∂Xij

=
∂U

∂Xij

V +U
∂V

∂Xij

.
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Extending this to the whole matrix,

∂(UV )

∂X
=


∂U
∂X11

V · · · ∂U
∂X1n

V
...

...
∂U
∂Xm1

V · · · ∂U
∂Xmn

V

+

U
∂V
∂X11

· · · U ∂V
∂X1n

...
...

U ∂V
∂Xm1

· · · U ∂V
∂Xmn

.
Using block matrix multiplication, we can write it as

=


∂U
∂X11

· · · ∂U
∂X1n

...
...

∂U
∂Xm1

· · · ∂U
∂Xmn


V 0

. . .

0 V

+

U 0
. . .

0 U




∂V
∂X11

· · · ∂V
∂X1n

...
...

∂V
∂Xm1

· · · ∂V
∂Xmn


=
∂U

∂X
(IcolX ⊗ V ) + (IrowX ⊗U)

∂V

∂X
.

�

Theorem A4.2 (Hadamard product rule). Let U and V be matrix functions with

respect to X such that U ◦ V is conformable, then

∂(U ◦ V )

∂X
=
∂U

∂X
◦ (1dimX ⊗ V ) + (1dimX ⊗U) ◦ ∂V

∂X
(A.28)

where 1dimX represents a matrix of ones with same dimensions as X.

Proof. Consider the derivative with respect to the (i, j)th component of X, using the

differential property ∂(U ◦ V ) = (∂U) ◦ V +U ◦ (∂V ) from equation (A.13),

∂(U ◦ V )

∂Xij

=
∂U

∂Xij

◦ V +U ◦ ∂V

∂Xij

.

Extending this to the whole matrix,

∂(U ◦ V )

∂X

=


∂U
∂X11
◦ V · · · ∂U

∂X1n
◦ V

...
...

∂U
∂Xm1

◦ V · · · ∂U
∂Xmn

◦ V

+

U ◦
∂V
∂X11

· · · U ◦ ∂V
∂X1n

...
...

U ◦ ∂V
∂Xm1

· · · U ◦ ∂V
∂Xmn



=


∂U
∂X11

· · · ∂U
∂X1n

...
...

∂U
∂Xm1

· · · ∂U
∂Xmn

 ◦
V · · · V

...
...

V · · · V

+

U · · · U
...

...

U · · · U

 ◦


∂V
∂X11

· · · ∂V
∂X1n

...
...

∂V
∂Xm1

· · · ∂V
∂Xmn


=
∂U

∂X
◦ (1dimX ⊗ V ) + (1dimX ⊗U ) ◦ ∂V

∂X
.



A4. Derivative of products 163

�

Theorem A4.3 (Kronecker product rule). Let U and V be matrix functions with

respect to X, then

∂(U ⊗ V )

∂X
=
∂U

∂X
⊗ V +

(
IrowX ⊗K(rowV ,rowU)

)(∂V
∂X
⊗U

)(
IcolX ⊗K(colU ,colV )

)
(A.29)

where K(m,n) is defined in (A.5).

Proof. Consider the derivative with respect to the (i, j)th component of X, using the

differential property ∂(U ⊗ V ) = (∂U)⊗ V +U ⊗ (∂V ) from equation (A.14),

∂(U ⊗ V )

∂Xij

=
∂U

∂Xij

⊗ V +U ⊗ ∂V

∂Xij

=
∂U

∂Xij

⊗ V +K(rowU ,rowV )

(
∂V

∂Xij

⊗U
)
K(colV ,colU)

where the last equality holds using the commutation property. Extending this to the

whole matrix,

∂(U ⊗ V )

∂X

=


∂U
∂X11
⊗ V · · · ∂U

∂X1n
⊗ V

...
...

∂U
∂Xm1

⊗ V · · · ∂U
∂Xmn

⊗ V

+

K
(rowU ,rowV ) 0

. . .

0 K(rowU ,rowV )




∂V
∂X11
⊗U · · · ∂V

∂X1n
⊗U

...
...

∂V
∂Xm1

⊗U · · · ∂V
∂Xmn

⊗U


K

(colV ,colU) 0
. . .

0 K(colV ,colU)


=
∂U

∂X
⊗ V +

(
IrowX ⊗K(rowU ,rowV )

)(∂V
∂X
⊗U

)(
IcolX ⊗K(colV ,colU)

)
.

�

Corollary A4.4. Let f be a scalar function and V be a matrix function with respect

to X, then

∂(f V )

∂X
=

∂f

∂X
⊗ V + f

∂V

∂X
. (A.30)
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Using these product rules, we have the following differentiation formulas:

∂xx′

∂x
= Id ⊗ x+ vec(Id)x

′ , (A.31)

∂x⊗ xx′

∂x′
= Id ⊗ xx′ + x⊗ Id ⊗ x′ + (x⊗ x)vec(Id)

′ . (A.32)

where x is a d-dimensional vector.

A5 Derivative of trace

Theorem A5.1 (Product rule with trace). Let U and V be matrix functions depending

on matrix X such that UV and V U are conformable, then

∂tr(UV )

∂X
=

∂

∂X
tr(UcV ) +

∂

∂X
tr(UVc) (A.33)

where a matrix with subscript “c” is treated as a constant matrix inside the differential

operator.

Proof. See equation 14, page 122 of Schonemann [98]. �

Theorem A5.2 (Derivative of Inverse with Trace).

∂

∂X
tr
(
Y −1

)
= − ∂

∂X
tr
(
Y −2
c Y

)
. (A.34)

Or more generally

∂

∂X
tr
(
Y −1A

)
= − ∂

∂X
tr
(
Y −1
c Y Y −1

c A
)
. (A.35)

Proof. See equation 15, page 123 of Schonemann [98] �
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Using these differential results, we have the following differentiation formulas:

∂

∂x
(a− x)′W (a− x) = −2W (a− x), (A.36)

∂

∂x
(a−Bx)′W (a−Bx) = −2B′W (a−Bx), (A.37)

∂

∂X
tr
(
AX−1B

)
= −

(
X−1BAX−1

)′
, (A.38)

∂‖x‖
∂x

=
∂
√
x′x

∂x
=

x

‖x‖
(A.39)

where a is a constant vector, W is a constant symmetric matrix, and A and B are

constant matrices.

A6 Derivative of vectorisation

Theorem A6.1 (Product Rule with vectorisation). Let U and V be matrix functions

depending on vector x such that UV are conformable, then

∂vec(UV )

∂x′
= (IcolV ⊗U)

∂vecV

∂x′
+ (V ⊗ IrowU )

∂vecU

∂x′
. (A.40)

Proof. See equation 7, page 668 of Lütkepohl [69]. �

Corollary A6.2. Let Y be a matrix function depending on vector x, and A and B

are constant matrices such that AY B are conformable. Then

∂vec(AY B)

∂x′
= (B′ ⊗A)

∂vecY

∂x′
. (A.41)

Proof. See equation 7, page 668 of Lütkepohl [69]. �

Theorem A6.3 (Derivative of Inverse with vectorisation).

∂vecY −1

∂x′
= −

(
Y −> ⊗ Y −1

)∂vecY

∂x′
. (A.42)

Proof. Suppose Y is a d× d matrix that depends on vector x. We can represent the

derivative as
∂vec(Y −1Y Y −1)

x′
. Using the product rule in (A.27) on this representation
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gives us

∂vec(Y −1Y Y −1)

∂x′
=
(
Id ⊗ Y −1

)∂vec(Y Y −1)

∂x′
+
(
Y −>Y > ⊗ Id

)︸ ︷︷ ︸
Id2

∂vec(Y −1)

∂x′
. (A.43)

For the first term, we can use the product rule again

∂vec(Y Y −1)

∂x′
= (Id ⊗ Y )

∂vec(Y −1)

∂x′
+
(
Y −> ⊗ Id

)∂vec(Y )

∂x′
.

Applying this to equation (A.43) and expanding gives us

∂vec(Y −1Y Y −1)

∂x′
= (Id ⊗ Id)︸ ︷︷ ︸

Id2

∂vec(Y −1)

∂x′
+
(
Y −> ⊗ Y −1

)∂vec(Y )

∂x′
+
∂vec(Y −1)

∂x′
.

Note that the left hand side was originally ∂vec(Y −1)
∂x′

, rearranging the terms gives us the

required result. �

Using these vectorisation differential results, we have the following differentiation for-

mulas:

∂vecAXB

∂vec(X)′
= B′ ⊗A, (A.44)

∂vecX−1

∂vec(X)′
= −

(
X−> ⊗X−1

)
, (A.45)

∂vecX−1AX−1

∂vec(X)′
= −

(
X−> ⊗X−1AX−1

)
−
(
X−>A>X−> ⊗X−1

)
, (A.46)

∂vecX−1B

∂vec(X)′
= −

(
B>X−> ⊗X−1

)
, (A.47)

∂vecAX−1B

∂vec(X)′
= −

(
B>X−> ⊗AX−1

)
, (A.48)

(A.49)

where we let A and B constant matrices, and Y be a function of matrix X. See

Lütkepohl [69] and Petersen and Pedersen [88] for more results on derivatives with

vectorisation.
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A7 Derivative with respect to structured matrix

In the previous section, we assumed the matrix to have no particular structure. How-

ever, for the case when the matrix X has some structure (eg. symmetric, Toeplitz etc.),

then the results presented in the previous section does not apply in general. Modifica-

tions is required if a structured matrix is considered for differentiation. Here we focus

on derivatives with respect to a symmetric matrix. Our aim is to obtain results on

derivatives with respect to symmetric matrices based on unstructured matrices. We

first introduce the chain rule from multivariable calculus.

Theorem A7.1 (Chain rule). Suppose f(X) is a scalar function that depends on matrix

X, then [
∂f

∂X

]
ij

= tr

(
∂f

∂X>
∂X

∂Xij

)
. (A.50)

Note that the term ∂X
∂Xij

is referred to as the structure matrix of X. For the case when

X has no structure, then the structure matrix ofX is simply given by ∂X
∂Xij

= J ij, where

J ij represents a single-entry matrix with one in the (i, j)th entry and zeroes everywhere

else.

Now suppose Σ is a d × d symmetric matrix, then the structure matrix of Σ is given

by

∂Σ

∂Σij

= J ij + J ji − J ijJ ji . (A.51)

A7.1 Derivatives with respect to symmetric matrix

Applying the structure matrix of Σ in (A.51) to the chain rule in (A.50), this gives us

the derivative formula with respect to symmetric matrix Σ

∂f

∂Σ
=

∂f

∂Σu

+
∂f

∂Σ>u
− diag

(
∂f

∂Σu

)
(A.52)

where Σu represents an unstructured matrix version of Σ, and diag(X) is diagonal

matrix with diagonal entries from square matrix X and zeroes everywhere else.
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If ∂f
∂Σu

= ∂f
∂Σ>u

or equivalently f(Σu) = f(Σ>u ), then the derivative of f with respect to

symmetric matrix Σ can be represented as

∂f

∂Σ
= C ◦ ∂f

∂Σu

(A.53)

where C = 2(1dimΣ)− Id. Applying the vectorisation and half-vectorisation operation

∂f

∂vecΣ
= vec(C) ◦ ∂f

∂vecΣu

,

∂f

∂vechΣ
= Ld

(
vec(C) ◦ ∂f

∂vecΣu

)
where Ld represents an elimination matrix defined in (A.6). Alternatively, we can write

∂f

∂vechΣ
= D>d

∂f

∂vecΣu

(A.54)

where Dd represents a duplication matrix defined in (A.7).

A7.2 Second order derivatives with respect to symmetric ma-

trix

Here we represent the second order derivatives with respect to symmetric matrix which

includes ∂2

∂Σ⊗∂Σ
, ∂2

∂vecΣ ∂vec(Σ)′
, ∂2

∂vechΣ ∂vech(Σ)′
, and the cross derivatives ∂2

∂vecΣ ∂x′
, ∂2

∂vechΣ ∂x′
:

∂2f

∂Σ ∂Σ
=

(
∂

∂Σ

)
⊗
(
∂

∂Σ

)
f

=

(
C ◦ ∂

∂Σu

)
⊗
(
C ◦ ∂

∂Σu

)
f

= (C ⊗C) ◦
(

∂2f

∂Σu∂Σu

)
using (B.1) for the last equality and

∂2f

∂vecΣ ∂vec(Σ)′
= vec

(
∂

∂Σ

)
vec

(
∂

∂Σ

)′
f

= vec

(
C ◦ ∂

∂Σu

)
vec

(
C ◦ ∂

∂Σu

)′
f

=

(
vecC ◦ ∂

∂vecΣu

)(
vec(C)′ ◦ ∂

∂vec(Σu)′

)
f

= (vecC vec(C)′) ◦
(

∂2f

∂vecΣu ∂vec(Σu)′

)
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using the property vec(A ◦B) = vec(A) ◦ vec(B) for the third equality, and (B.2) for

the last equality.

Similarly, we have

∂2f

∂vechΣ ∂vech(Σ)′
= D>d

∂2f

∂vecΣu ∂vec(Σu)′
Dd (A.55)

and

∂2f

∂vecΣ ∂x′
= (vecC 1′d) ◦

(
∂2f

∂vecΣu ∂x′

)
,

∂2f

∂vechΣ ∂x′
= D>d

∂2f

∂vecΣu ∂x′
. (A.56)

A8 Derivatives of complete data log-likelihood for

VG distribution

In this section, we present the derivatives of the log-likelihood for the VG distribution.

These techniques can be applied to other models with NMVM representation such as

the GH distribution.

Recall from (2.3) the complete data log-likelihood function of the d-dimensional VG

distribution is given by

`(θ;y,u) = `N(µ,Σ,γ;y,u) + `G(ν;u)

where

`N(µ,Σ,γ;y,u) = −n
2

log |Σ| − 1

2

n∑
i=1

1

ui
(yi − µ− uiγ)′Σ−1(yi − µ− uiγ)

and

`G(ν;u) = nν log ν − n log Γ(ν) + (ν − 1)
n∑
i=1

log ui − ν
n∑
i=1

ui .
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A8.1 First order derivatives

The first order derivatives of the complete data log-likelihood for the VG distribution

is given by

∂`N
∂µ

= Σ−1

n∑
i=1

1

ui
(yi − µ− uiγ), (A.57)

∂`N
∂γ

= Σ−1

n∑
i=1

(yi − µ− uiγ), (A.58)

∂`N
∂vechΣ

= D>d
∂`N

∂vecΣu

, (A.59)

∂`G
∂ν

= n+ n log ν − nψ(ν) +
n∑
i=1

log(ui)−
n∑
i=1

ui (A.60)

where (A.36) is used for the first equation, (A.37) for the second equation, and (A.54)

for the third equation with

∂`N
∂vecΣu

= vec

(
∂`N
∂Σu

)
= vec

(
−n

2
Σ−1 +

1

2
Σ−1Sỹỹ/uΣ

−1

)
(A.61)

which follows from (A.24) and (A.38), and

Sỹỹ/u =
n∑
i=1

1

ui
(yi − µi − uiγ)(yi − µi − uiγ)′.

A8.2 Second order derivatives

The second order derivatives of the complete data log-likelihood for the VG distribution

is given by

∂2`N
∂µ∂µ′

= −Σ−1

n∑
i=1

1

ui

∂2`N
∂γ ∂γ ′

= −Σ−1

n∑
i=1

ui

∂2`N
∂vechΣ ∂vech(Σ)′

= D>d
∂2`N

∂vecΣu ∂vec(Σu)′
Dd

∂2`N
∂ν2

=
n

ν
− nψ′(ν)
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where (A.20) is used for the first and second equation, (A.55) for the third equation

with

∂2`N
∂vecΣu ∂vec(Σu)′

=
n

2

(
Σ−1 ⊗Σ−1

)
− 1

2

(
Σ−1 ⊗Σ−1Sỹỹ/uΣ

−1
)
− 1

2

(
Σ−1Sỹỹ/uΣ

−1 ⊗Σ−1
)

which follows from (A.45) and (A.46).

A8.3 Cross derivatives

The cross derivatives of the complete data log-likelihood for the VG distribution is given

by

∂2`N
∂vechΣ ∂µ′

= D>d
∂2`N

∂vecΣu ∂µ′
,

∂2`N
∂vechΣ ∂γ ′

= D>d
∂2`N

∂vecΣu ∂γ ′
,

∂2`N
∂µ ∂γ ′

= −nΣ−1

where (A.56) is used for the first and second equation, and (A.20) for the third equation

with

∂2`N
∂vecΣ ∂µ′

= −Σ−1

n∑
i=1

1

ui
(yi − µ− uiγ)⊗Σ−1,

∂2`N
∂vecΣ ∂γ ′

= −Σ−1

n∑
i=1

(yi − µ− uiγ)⊗Σ−1

which follows from (A.47). Note that the other cross derivatives are just a zero matrix.

A9 Derivative of complete data log-likelihood for

VARMA-VG model

The derivatives for `G(ν;u) is the same as in Section A8. So it is sufficient to focus

on the the (conditional) log-likelihood of the conditional normal distribution for the
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d-dimensional VARMA-VG model in Section 5.3 which is given by

`N(β,γ,Σ;y,u|F0) = −n
2

log |Σ| − 1

2

n∑
t=1

1

ut
ε̃′tΣ

−1ε̃t (A.62)

= −n
2

log |Σ| − 1

2

n∑
t=1

1

ut
(εt + γ)′Σ−1(εt + γ)

− 1

2

n∑
t=1

utγ
′Σ−1γ +

n∑
t=1

(εt + γ)′Σ−1γ

where F0 represents the filtration up to time t and

ε̃t = εt + γ − utγ (A.63)

= yt − β′xt − utγ

for t = 1, ... , n.

A9.1 First order derivatives

Since the method to obtain the first order derivatives with respect to vechΣ and ν are

similar to the previous section, we only need to focus on derivatives with respect to

vec(β′) and γ.

Derivative with respect to vec(β′):

The first derivative of `N with respect to vec(β′) is given by

∂`N
∂vec(β′)

= −
n∑
t=1

1

ut

∂ε̃t
′

∂vec(β′)
Σ−1ε̃t (A.64)

where differentiating the transpose of ε̃t in (A.63) with respect to vec(β′) gives us

∂ε̃t
′

∂vec(β′)
=

∂ε′t
∂vec(β′)

= − ∂(x′tβ)

∂vec(β′)
= −∂vec(β′xt)

′

∂vec(β′)
= −

(
∂x′t

∂vec(β′)

)
β − ∂vec(β′)′

∂vec(β′)︸ ︷︷ ︸
I

(xt ⊗ Id)

(A.65)
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with Theorem A6.1 applied to the last equality.

∂ε̃t
′

∂vec(β′)
= −

(
∂x′t

∂vec(β′)

)
β − ∂vec(β′)′

∂vec(β′)︸ ︷︷ ︸
I

(xt ⊗ Id)

For
∂x′t

∂vec(β′)
, recall that

x′t =
(

1 y′t−1 · · · y′t−p −ε′t−1 · · · −ε′t−q
)

defined in (5.28). So differentiating with respect to vec(β′) gives us

∂x′t
∂vec(β′)

=
(

0 0 · · · 0 − ∂ε′t−1

∂vec(β′)
· · · − ∂ε′t−q

∂vec(β′)

)
=
(

0 0 · · · 0 − ∂ε̃′t−1

∂vec(β′)
· · · − ∂ε̃′t−q

∂vec(β′)

)
where and

∂ε′t
∂vec(β′)

= ∂(ε̃t−γ+uγ)′

∂vec(β′)
=

∂ε̃′t
∂vec(β′)

.

Note that
∂ε̃′t

∂vec(β′)
and

∂x′t
∂vec(β′)

can be computed iteratively by calculating,
∂x′t

∂vec(β′)
, then

∂ε̃′t
∂vec(β′)

for t 7→ t+ 1 iteration where we assume εt = 0 for t ≤ 0.

Algorithm 12: Computing
∂x′t

∂vec(β′)
and

∂ε̃′t
∂vec(β′)

for t = 1, ... , n

Input: Initial value εt = 0 for t ≤ 0
for t = 1, ... , n do

∂x′t
∂vec(β′)

←
(

0 0 · · · 0 − ∂ε̃′t−1

∂vec(β′)
· · · − ∂ε̃′t−q

∂vec(β′)

)
;

∂ε̃′t
∂vec(β′)

← −
(

∂x′t
∂vec(β′)

)
β − (xt ⊗ Id) ;

end

Derivative with respect to γ:

The first derivative of `N with respect to γ is given by

∂`N
∂γ

= −
n∑
t=1

1

ut

(
∂ε′t
∂γ

+ Id

)
Σ−1(εt + γ) +

n∑
t=1

(
∂ε′t
∂γ

+ Id

)
Σ−1γ (A.66)

−
n∑
t=1

utΣ
−1γ +

n∑
t=1

Σ−1(εt + γ)
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where

∂ε′t
∂γ

= −∂(x′tβ − γ)

∂γ
= −

(
∂x′t
∂γ

)
β − Id

and

∂x′t
∂γ

=
(
0 0 · · · 0 −∂ε′t−1

∂γ
· · · −∂ε′t−q

∂γ

)
.

The first and second term of (A.66) in probability goes to zero as n→∞ since E[ 1
ut

(εt+

γ)] = γ which follows from (1.33) and
∂ε′t
∂γ

does not depend on εt. So the derivative in

(A.66) can be approximated by

∂`N
∂γ
≈ −

n∑
t=1

utΣ
−1γ +

n∑
t=1

Σ−1(εt + γ) (A.67)

= Σ−1

n∑
t=1

ε̃t

A9.2 Second order derivatives

In this section, we focus on the second order derivatives that involves derivatives with

respect to vec(β′) and γ.

Second order derivative with respect to vec(β′):

Differentiating (A.64) with respect to vec(β′)′ gives us

∂2`N
∂vec(β′)∂vec(β′)′

= −
n∑
t=1

1

ut

∂

∂vec(β′)′

[
∂ε̃′t

∂vec(β′)
Σ−1ε̃t

]

= −
n∑
t=1

1

ut

 ∂ε̃′t
∂vec(β′)

Σ−1 ∂ε̃t
∂vec(β′)

+
(
Σ−1ε̃t ⊗ I

)∂vec
(

∂ε̃′t
∂vec(β′)

)
∂vec(β′)′


where (A.40) was used for the last equality. Note that the second term in probability

goes to zero as n→∞ since E[ε̃t] = 0 and ∂ε̃t
′

∂vec(β′)
is independent of ε̃t where the idea

of the proof is similar to [69, Lemma 12.1]. Then
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∂2`N
∂vec(β′)∂vec(β′)′

≈ −
n∑
t=1

1

ut

∂ε̃′t
∂vec(β′)

Σ−1 ∂ε̃t
∂vec(β′)

.

Second order derivative with respect to γ:

Differentiating (A.66) with respect to γ gives us

∂2`N
∂γ∂γ ′

= −
n∑
t=1

1

ut

(
∂ε′t
∂γ

+ Id

)
Σ−1

(
∂εt
∂γ ′

+ Id

)
−

n∑
t=1

1

ut

[
Σ−1(εt + γ)⊗ Id

]∂vec
(
∂ε′t
∂γ

+ Id

)
∂γ ′

+
n∑
t=1

(
∂ε′t
∂γ

+ Id

)
Σ−1 ∂γ

∂γ ′
+
∑
t=1

(Σ−1γ ⊗ Id)
∂vec

(
∂ε′t
∂γ

+ Id

)
∂γ ′

−Σ−1

n∑
t=1

ut +
n∑
t=1

Σ−1

(
∂ε′t
∂γ

+ Id

)
.

Since E[ 1
ut

(εt + γ)] = γ and
∂ε′t
∂γ

does not depend on εt, this gives us

∂2`N
∂γ∂γ ′

= −
n∑
t=1

1

ut

(
∂ε′t
∂γ

+ Id

)
Σ−1

(
∂εt
∂γ ′

+ Id

)
−Σ−1

n∑
t=1

ut

+
n∑
t=1

(
∂ε′t
∂γ

+ Id

)
Σ−1 +

n∑
t=1

Σ−1

(
∂ε′t
∂γ

+ Id

)
.

A9.3 Cross derivatives

In this section, we focus on the cross derivatives that involves derivatives with respect

to vec(β′), γ and vech(Σ)

Cross derivative with respect to (vec(β′),γ):

To obtain the cross derivative with respect to (vec(β′),γ), note that (A.64) can be

represented as

∂`N
∂vec(β′)

= −
n∑
t=1

1

ut

∂ε′t
∂vec(β′)

Σ−1(εt + γ) +
n∑
t=1

∂ε′t
∂vec(β′)

Σ−1γ. (A.68)
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Taking derivative with respect to γ ′ gives us

∂2`N
∂vec(β′) ∂γ ′

= −
n∑
t=1

1

ut

∂ε′t
∂vec(β′)

Σ−1

(
∂ε′t
∂γ

+ Id

)
+

n∑
t=1

∂ε′t
∂vec(β′)

Σ−1

where
∂ε′t

∂vec(β′)
in (A.65) does not depend on γ.

Cross derivative with respect to (vec(β′),vechΣ):

To obtain the cross derivative with respect to (vec(β′), vechΣ), differentiate (A.68) with

respect to vec(Σu)
′ by using formula (A.48) gives us

∂2`N
∂vec(β′) ∂vec(Σu)′

=
n∑
t=1

1

ut

[
(εt + γ)′Σ−1 ⊗ ∂ε′t

∂vec(β′)
Σ−1

]
−

n∑
t=1

[
γ ′Σ−1 ⊗ ∂ε′t

∂vec(β′)
Σ−1

]
.

Thus

∂2`N
∂vec(β′) ∂vech(Σ)′

=
∂2`N

∂vec(β′) ∂vec(Σu)′
Dd.

Cross derivative with respect to (γ,vechΣ):

To obtain the cross derivative with respect to (γ, vechΣ), differentiate (A.66) with

respect to vec(Σu)
′

∂2`N
∂γ ∂vec(Σu)′

=
n∑
t=1

1

ut

[
(εt + γ)′Σ−1 ⊗

(
∂ε′t
∂γ

+ Id

)
Σ−1

]
+

n∑
t=1

ut
[
γ ′Σ−1 ⊗Σ−1

]
−

n∑
t=1

[
γ ′Σ−1 ⊗

(
∂ε′t
∂γ

+ Id

)
Σ−1

]
−

n∑
t=1

[
(εt + γ)′Σ−1 ⊗Σ−1

]
.

Thus,

∂2`N
∂γ ∂vech(Σ)′

=
∂2`N

∂γ ∂vec(Σu)′
Dd .
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Fisher Information Matrix of VG Distribution

The Fisher information matrix measures the amount of information a random variable

Y has about a parameter θ, and it can be used to obtain SEs of a parameter estimate

θ̂. However, it is typically more difficult to calculate as it requires taking expectations

of the observed information matrix, and so numerical integration techniques needs to be

employed to perform the calculation. For higher dimensional models, this computation

is infeasible. In this appendix, we provide formulas that can accurately and efficiently

compute the Fisher information matrix of the VG distribution by algebraically integrat-

ing out the first and second term of (2.20), and reduce the dimensions of the integral of

the third term down to one which can be numerically integrated much more efficiently.

We first present some preliminary results necessary for the calculation of the Fisher

information matrix in the next section.

B1 Preliminary results

To simplify the calculation of the first and second term of the Fisher information matrix,

we introduce the expectation result.

Lemma B1.1. Let X and Y be dx-dimensional and dy-dimensional random vectors

respectively such that

EX,Y

∣∣g(X,Y )
∣∣ <∞

177
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for some scalar function g, then

EX,Y

[
g(X,Y )

]
= EY EX|Y

[
g(X,Y )

]
= EXEY |X

[
g(X,Y )

]
where we simplify the notation for conditional expectation EX|Y

[
h(X)

]
= EX|Y

[
h(X)|Y

]
for some scalar function h.

Proof. By definition of the expectation and using Bayes rule, we get that

EX,Y

[
g(X,Y )

]
=

∫
Rdy

∫
Rdx

g(x,y)fX,Y (x,y) dx dy

=

∫
Rdy

∫
Rdx

g(x,y)fX|Y (x|y)fY (y) dx dy

= EY EX|Y
[
g(X,Y )

]
.

Swapping the order of integration using Fubini’s theorem, similarly we get that

EX,Y

[
g(X,Y )

]
= EXEY |X

[
g(X,Y )

]
.

�

Theorem B1.2. Let A and B be matrices of same dimension, and C and D be

matrices of same dimension. Then

(A ◦B)⊗ (C ◦D) = (A⊗C) ◦ (B ⊗D) . (B.1)

Proof. Consider the (i, j)th entry of (A ◦C), and (k, l)th entry of (C ◦D). Then from

the left hand side of (B.1),

(A ◦B)ij ⊗ (C ◦D)kl

= (AijBij)⊗ (CklDkl)

= AijBijCklDkl

where the last equality holds since it only involve scalars, rearranging the terms and

adding the Hadamard and Kronecker product gives us

= (Aij ⊗Ckl) ◦ (Bij ⊗Dkl) .

Since the equation holds for arbitrary i, j, k, l, we proved the result. Note that the

dimensions of the result is consistent since the position of the terms with respect to the

Kronecker product is kept consistent. �
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Corollary B1.3. Let a and b be vectors of same length, and c and d be vectors of

same length. Then

(a ◦ b)(c′ ◦ d′) = (ac′) ◦ (bd′) . (B.2)

The following theorem facilitates the matrix representation of the first order derivatives

in Section B2 especially for the derivative of vecΣu in equation (B.10).

Theorem B1.4. Suppose that A′ =
(
a1 · · · an

)
and B′ =

(
b1 · · · bn

)
are d× n

matrices where ai and bi are both d-dimensional vectors for i = 1, ... , n. Additionally,

let vc = (c1, ... , cn). Then

vec

(
n∑
i=1

ciaib
′
i

)
= [(1d ⊗A′) ◦ (B′ ⊗ 1d)]vc . (B.3)

Proof. By definition of matrix multiplication, we can represent the right hand side of

equation (B.3) as

=
n∑
i=1

ci
[
(1d ⊗A′) ◦ (B′ ⊗ 1d)

]
·i

=
n∑
i=1

ci
[
(1d ⊗A′)·i ◦ (B′ ⊗ 1d)·i

]
=

n∑
i=1

ci
[
(1d ⊗ ai) ◦ (bi ⊗ 1d)

]
where X·i represents the ith column of a matrix X. Using Theorem B1.2 gives us

=
n∑
i=1

ci
[
(1d ◦ bi)⊗ (ai ◦ 1d)

]
=

n∑
i=1

ci(bi ⊗ ai) .
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Using the vectorisation property vec(ABC) =
(
C> ⊗A

)
vec(B),

=
n∑
i=1

ci(bi ⊗ ai)vec(1)

=
n∑
i=1

civec(aib
′
i)

= vec

(
n∑
i=1

ciaib
′
i

)
.

�

Theorem B1.5 (Isserlis’ theorem for odd moments). Suppose that (X1, ... , X2d) is a

zero mean multivariate normal random vector where d is some positive integer, then

E[X1X2...X2d−1] = 0 .

Proof. See Isserlis [55]. �

Theorem B1.6. Suppose that X ∼ Nd(0,Σ), then

E[XX ′ ⊗XX ′] = K(d,d)(Σ⊗Σ) + vec(Σ)vec(Σ)′ + (Σ⊗Σ). (B.4)

Proof. See Magnus and Neudecker [72, Theorem4.1(i)]. �

B2 Matrix representation of first order derivatives

Using the first order derivatives in Section A8.1 to calculate the observed information

matrix in (2.20) directly is tedious as it requires taking expectation of the product of

two summations which is difficult to implement. To simplify the computation, we first

introduce the matrix representation of the first order derivatives.

For this appendix, let Y be a n× d data matrix such that

Y =

y
′
1
...

y′n

. (B.5)
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Consider the derivative of the complete data log-likelihood with respect to µ.

∂`N
∂µ

= Σ−1

n∑
i=1

1

ui
(yi − µ− uiγ)

=
n∑
i=1

1

ui
Σ−1(yi − µ)−

n∑
i=1

Σ−1γ. (B.6)

By defining the vector v1/u = ( 1
u1
, ... , 1

un
), and representing the sum using matrices,

the derivative of the log-likelihood in (B.6) gives us the following representations:

∂`N
∂µ

= Σ−1(Y − 1nµ
′)
′
v1/u + (−nΣ−1γ)

= Cµ
1/uv1/u + cµ (B.7)

whereCµ
1/u = Σ−1(Y −1nµ′)′, and cµ = −nΣ−1γ. Representing the sum using matrices

to the other derivatives in Section (A8.1) gives us

∂`N
∂γ

= Cγ
uvu + cγ (B.8)

where Cγ
u = −Σ−1γ1′n and cγ = Σ−1(Y − 1nµ

′)′1n, and

∂`N
∂vechΣ

= D>d
∂`N

∂vecΣu

(B.9)

such that

∂`N
∂vecΣu

= CvecΣu
1/u v1/u +CvecΣu

u vu + cvecΣu (B.10)

and

CvecΣu
1/u =

1

2

(
1d ⊗Σ−1(Y − 1nµ

′)′
)
◦
(
Σ−1(Y − 1nµ

′)′ ⊗ 1d
)
,

CvecΣu
u =

1

2
vec
(
Σ−1γγ ′Σ−1

)
1′n , and

cvecΣu = −1

2
vec
[
nΣ−1 + Σ−1

(
(Y − 1nµ

′)′1nγ
′ + γ1′n(Y − 1nµ

′)
)
Σ−1

]
where CvecΣu

1/u follows from Theorem B1.2. Moreover,

∂`G
∂ν

= Cν
uvu +Cν

log uvlog u + cν (B.11)

where Cν
u = −1′n, Cν

log u = 1′n, and cν = n(1 + log ν − ψ(ν)).
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By combining these matrices together, the derivatives of the complete data log-likelihood

can be written in the form of

∂

∂θ
`(θ;y,u) = Cθ

1/uv1/u +Cθ
uvu +Cθ

log uvlog u + cθ (B.12)

where Cθ
g(u) =


Cµ
g(u)

Cγ
g(u)

CvecΣu
g(u)

Cν
g(u)

, vg(u) =

g(u1)
...

g(un)

, and CvechΣ
g(u) = D>d C

vecΣu
g(u) for some scalar

function g.

B3 Simplification of missing information matrix cal-

culation

The missing information matrix (1.12) in our context becomes

Imis(θ;yobs) = covu|Y

(
∂

∂θ
`(θ;Y ,u)

)
where the covariance is taken with respect to u given data matrix Y . Using the matrix

representation of the first derivative in (B.12), this gives us

= covu|Y
(
Cθ

1/uv1/u +Cθ
uvu +Cθ

log uvlog u + cθ
)

= C1/ucovu|Y (v1/u)C
>
1/u +Cucovu|Y (vu)C

>
u +Clog ucovu|Y (vlog u)C

>
log u

+C1/ucovu|Y (v1/u,vu)C
>
u +Cucovu|Y (vu,v1/u)C

>
1/u

+C1/ucovu|Y (v1/u,vlog u)C
>
log u +Clog ucovu|Y (vlog u,v1/u)C

>
1/u

+Cucovu|Y (vu,vlog u)C
>
log u +Clog ucovu|Y (vlog u,vu)C

>
u (B.13)

where we use the bilinearity property of covariance function. Note that the constant

vector cθ can simply be ignored in the calculation of the observed information matrix

as it does not depend on u.

Using the mutual independence of the u’s, we get that

covu|Y (vu) =

varu|Y (u1) 0
. . .

0 varu|Y (un)

 .
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This mutual independence property also applies to those other covariance matrices

in equation (B.13). This simplification allows for a more efficient calculation of the

observed information matrix.

Thus applying the simplification of the covariance matrices to the missing information

matrix in (B.13) gives us

Imis(θ;yobs) = C1/ucovu|Y
(
v1/u

)
C>1/u + ...

=
n∑
i=1

varu|Y

(
1

ui

)
C1/u,iC

>
1/u,i + ...

where C1/u,i represents the ith column of C1/u. Using (1.12) for the left hand side and

the variance formula for the right hand side, then equating the terms gives us

Eu|Y
[
`′(θ;Y ,u)`′(θ;Y ,u)>

]
=

n∑
i=1

Eu|Y
[

1

u2
i

]
C1/u,iC

>
1/u,i + ... (B.14)

and

Eu|Y
[
`′(θ;Y ,u)

]
Eu|Y

[
`′(θ;Y ,u)

]>
=

n∑
i=1

Eu|Y
[

1

ui

]2

C1/u,iC
>
1/u,i + ... . (B.15)

This representation is relevant for the calculation of the second and third term of the

Fisher Information matrix later in Section B6.

B4 Conditional normal moment results

Suppose that y|u ∼ N (µ+uγ, uΣ) and ỹ = y−µ−uγ for some given mixing variable

u. Before the calculation of the first and second term of the Fisher information matrix,

we need to first find the expressions for the following conditional moments:

(i) Ey|u[y],

(ii) Ey|u
[
(y − µ)(y − µ)′

]
,

(iii) Ey|u
[
(y − µ)⊗ (y − µ)(y − µ)′

]
= Ey|u

[
vec
(
(y − µ)(y − µ)′

)
(y − µ)′

]
,

(iv) Ey|u
[
(y − µ)(y − µ)′ ⊗ (y − µ)(y − µ)′

]
= Ey|u

[
vec
(
(y − µ)(y − µ)′

)
vec
(
(y − µ)(y − µ)′

)′]
.
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Without loss of generality, suppose µ = 0 so that y|u ∼ N (uγ, uΣ) and ỹ = y − uγ,

and thus ỹ|u ∼ N (0, uΣ).

First moment: We immediately get that

Ey|u[y] = uγ .

Second moment: Using y = ỹ − uγ and expanding gives us

Ey|u[yy′] = Ey|u
[
(ỹ + uγ)(ỹ + uγ)′

]
= Ey|u[ỹỹ′]︸ ︷︷ ︸

=uΣ

+u2γγ ′ + uEy|u[ỹ]︸ ︷︷ ︸
=0

γ ′ + uγ Ey|u[ỹ′]︸ ︷︷ ︸
=0′

= uΣ + u2γγ ′.

Third moment:

Ey|u
[
y ⊗ yy′

]
= Ey|u

[(
ỹ + uγ

)
⊗ (ỹ + uγ)(ỹ + uγ)′

]
.

Since the odd moments are zero by Isserlis’ theorem (B1.5) we can disregard them in

our calculation. Expanding gives us

= Ey|u
[
uγ ⊗ ỹỹ′ + u ỹ ⊗ γỹ′︸ ︷︷ ︸

ỹỹ′⊗γ

+uỹ ⊗ ỹγ ′ + u3γ ⊗ γγ ′
]
.

Evaluating the expectations gives us

= u2
(
γ ⊗Σ + Σ⊗ γ + vec(Σ)γ ′

)
+ u3γ ⊗ γγ ′.
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Forth moment:

Ey|u[yy′ ⊗ yy′]

= Ey|u
[
(ỹ + uγ)(ỹ + uγ)′ ⊗ (ỹ + uγ)(ỹ + uγ)′

]
= Ey|u

[
ỹỹ′ ⊗ ỹỹ′ + u4γγ ′ ⊗ γγ ′ + u2 ỹγ ′ ⊗ ỹγ ′︸ ︷︷ ︸

(ỹ⊗ỹ)(γ′⊗γ′)

+u2 γỹ′ ⊗ γỹ′︸ ︷︷ ︸
(γ⊗γ)(ỹ⊗ỹ)′

+ uỹỹ′ ⊗ γγ ′ + u2 γγ ′ ⊗ ỹỹ′︸ ︷︷ ︸
K(d,d)(ỹỹ′)⊗ (γγ′)K(d,d)

+ u2 ỹγ ′ ⊗ γỹ′︸ ︷︷ ︸
ỹỹ′ ⊗ (γγ′)K(d,d)

+ u2 γỹ′ ⊗ ỹγ ′︸ ︷︷ ︸
K(d,d)(ỹỹ′)⊗ γγ′

]
where we used the property (A⊗B) = K(rowA,rowB)(B⊗A)K(colB,colA). Equating the

expectations gives us

= u2K(d,d)(Σ⊗Σ) + u2vec(Σ)vec(Σ)′ + u2(Σ⊗Σ) + u4γγ ′ ⊗ γγ ′

+ u3vec(Σ)(γ ′ ⊗ γ ′) + u3(γ ⊗ γ)vec(Σ)′

+ u3Σ⊗ γγ ′ + u3K(d,d)(Σ⊗ γγ ′)K(d,d)

+ u3Σ⊗ γγ ′K(d,d) + u3K(d,d)Σ⊗ γγ ′

= u2
(
Id +K(d,d)

)
(Σ⊗Σ) + u2

[
vecΣ + uvec(γγ ′)

][
vecΣ + uvec(γγ ′)

]′
+ u3

(
Id +K(d,d)

)
(Σ⊗ γγ ′)

(
Id +K(d,d)

)
.

B5 Multidimensional integration

Theorem B5.1. Suppose h is a continuous function, y is a vector in Rd and r > 0,

then ∫
‖y‖=r

h(a′y, ‖y‖2) dS =
2rd−1π(d−1)/2

Γ
(
d−1

2

) ∫ π

0

h
(
‖a‖r cosφ, r2

)
sind−2 φ dφ (B.16)

where dS represents the spherical differential, and a is a constant vector in Rd.

Proof. See Blumenson [9]. �

This theorem transform the spherical integral on Rd to a one-dimensional integral which

is much more feasible to compute. For our case, applying the transformation z =

A−1(y −µ) where Σ = AA′ to the density function of VG distribution in (1.36) gives
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the following representation

fZ(z) = g(‖z‖) exp(γ ′zz)

where

g(‖z‖) =
2νν

(2π)
d
2 Γ(ν)

Kν− d
2

(√
(2ν + γ ′Σ−1γ)‖z‖2

)
(√
‖z‖2/(2ν + γ ′Σ−1γ)

) d
2
−ν

, (B.17)

‖z‖2 = (y − µ)Σ−1(y − µ), and γz = A−1γ. We apply Theorem B5.1 to calculate mo-

ments of fV G(y) which is used later to evaluate the third term of the Fisher information

matrix.

B5.1 Higher order spherical moments

One problem is that calculating higher order moments of the VG distribution such as

Ey[y] =

∫
Rd
yfV G(y) dy = |Σ|−1/2

∫ ∞
0

g(r)

∫
‖z‖=r

z exp(γ ′zz) dS dr

does not allow the inner integrand to have the representation as in Theorem B5.1. To

get around this problem, we introduce the spherical MGF defined by

Mr(s) :=

∫
‖z‖=r

exp(s′z) dS

such that the first order derivative gives us

M (1)
r (s) :=

∂

∂s
Mr(s) =

∫
‖z‖=r

z exp(s′z) dS.

Note that Mr(s) is well-defined since the integral is absolutely convergent for any r > 0.

Similarly, we can represent higher order spherical moments using higher order deriva-

tives of the spherical MGF.

M (2)
r (s) :=

∂2

∂s∂s′
Mr(s) =

∫
‖z‖=r

zz′ exp(s′z) dS ,

M (3)
r (s) :=

∂3

∂s∂s∂s′
Mr(s) =

∫
‖z‖=r

z ⊗ zz′ exp(s′z) dS ,

M (4)
r (s) :=

∂4

∂s∂s′∂s∂s′
Mr(s) =

∫
‖z‖=r

zz′ ⊗ zz′ exp(s′z) dS .
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The following theorem uses matrix derivative results in Appendix A to derive these

spherical moments.

Theorem B5.2.

Mr(s) = (2πr)
d
2‖s‖1− d

2 I d
2
−1(r‖s‖),

M (1)
r (s) = (2πr)

d
2 r‖s‖−

d
2 I d

2
(r‖s‖)s,

M (2)
r (s) = (2πr)

d
2 r‖s‖−

d
2
−1
[
I d

2
(r‖s‖) ‖s‖Id + I d

2
+1(r‖s‖) rss′

]
,

M (3)
r (s) = (2πr)

d
2 r2‖s‖−

d
2
−3
[
I d

2
(r‖s‖)C31 + I d

2
+1(r‖s‖)C32

]
,

M (4)
r (s) = (2πr)

d
2 r2‖s‖−

d
2
−5
[
I d

2
(r‖s‖)C41 + I d

2
+1(r‖s‖)C42

]
,

where Iλ(·) is a modified Bessel function of the first kind,

C31 = r‖s‖A3,

C32 = ‖s‖2A1 − (d+ 2)A3,

C41 = r‖s‖
(
‖s‖2(A2 +B2)− (d+ 4)A4

)
,

C42 =
(
(d+ 4)(d+ 2) + r2‖s‖2

)
A4 − (d+ 2)‖s‖2(A2 +B2) + ‖s‖4A0,

and

A4 = ss′ ⊗ ss′,

A3 = s⊗ ss′,

A2 = Id ⊗ ss′ + s⊗ Id ⊗ s′ + (s⊗ s)vec(Id)
′,

B2 = ss′ ⊗ Id + s′ ⊗ Id ⊗ s+ vec(Id)(s
′ ⊗ s′),

A1 = vec(Id)s
′ + Id ⊗ s+ s⊗ Id,

A0 = Id ⊗ Id +K(d,d) + vec(Id)vec(Id)
′.

Proof. Using the formula in Theorem B5.1 with h(s′z, ‖z‖2) = exp(s′z), and the

integral formula in Gradshteyn and Ryzhik [41, 3.915.4], this gives us∫
‖z‖=r

exp(s′z) dS

=
2rd−1π(d−1)/2

Γ
(
d−1

2

) ∫ π

0

exp(‖s‖r cosφ) sind−2 φ dφ

= (2πr)
d
2‖s‖1− d

2 I d
2
−1(r‖s‖).
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Let f(s) = ‖s‖1− d
2 I d

2
−1(r‖s‖), then it is sufficient to consider derivatives of f(s). For

the first order derivative, applying the chain rule gives us

∂f

∂s
=
∂‖s‖
∂s

df

d‖s‖

=
s

‖s‖
× r‖s‖1− d

2 I d
2
−1(r‖s‖)

= r‖s‖−
d
2 I d

2
(r‖s‖) s

where equations (A.39) and

d

dz
z−αIλ(βz) = z−α−1(βzIλ+1(βz) + (α + λ)Iλ(βz))

= βz−λIλ+1(βz) if α = λ

for α, λ, β ∈ R are used for the second equality.

Note that for the second order derivative, we have that ∂2f
∂s∂s′

= ∂2f
∂s′∂s

. Applying the

product rule from Corollary A4.4

∂2f

∂s′∂s
=

∂

∂s′

[
r‖s‖−

d
2 I d

2
(r‖s‖) s

]
= r

[
∂

∂s′

(
‖s‖−

d
2 I d

2
(r‖s‖)

)
⊗ s+ ‖s‖−

d
2 I d

2
(r‖s‖) ∂s

∂s′

]
.

For the derivative in the first term,

∂

∂s′
‖s‖−

d
2 I d

2
(r‖s‖) =

∂‖s‖
∂s′

d‖s‖− d2 I d
2
(r‖s‖)

d‖s‖

=
s′

‖s‖
× r‖s‖−

d
2 I d

2
+1(r‖s‖)

and the derivative in the second term ∂s
∂s′

= Id. Applying these results back into the

second order derivative and factoring out ‖s‖− d2−1 gives us the result

∂2f

∂s′∂s
= r‖s‖−

d
2
−1
[
‖s‖I d

2
(r‖s‖) Id + rI d

2
+1(r‖s‖) ss′

]
.

For the third order derivative, using the Kronecker product rule in Theorem A4.3 gives

us

∂3f

∂s∂s∂s′
= r

∂

∂s

[
‖s‖−

d
2 I d

2
(r‖s‖)Id

]
+ r2 ∂

∂s

[
‖s‖−

d
2
−1I d

2
+1(r‖s‖)ss′

]
. (B.18)
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For the derivative of the first term

∂

∂s

[
‖s‖−

d
2 I d

2
(r‖s‖)Id

]
=

∂‖s‖
∂s

d‖s‖− d2 I d
2
(r‖s‖)

d‖s‖

⊗ Id
=

s

‖s‖
× r‖s‖−

d
2 I d

2
+1(r‖s‖)⊗ Id

= r‖s‖−
d
2
−1I d

2
+1(r‖s‖) s⊗ Id.

For the derivative of the second term,

∂

∂s

[
‖s‖−

d
2
−1I d

2
+1(r‖s‖)ss′

]
=
∂‖s‖
∂s

d‖s‖− d2−1I d
2

+1(r‖s‖)
d‖s‖

⊗ ss′ + ‖s‖−
d
2
−1I d

2
+1(r‖s‖)∂ss

′

∂s

=
s

‖s‖
× ‖s‖−

d
2
−2
(
r‖s‖I d

2
(r‖s‖)− (d+ 2)I d

2
+1(r‖s‖)

)
⊗ ss′

+ ‖s‖−
d
2
−1I d

2
+1(r‖s‖)(vec(Id)s

′ + Id ⊗ s)

where we use (A.31). Combining these terms together in (B.18) gives us

∂3f

∂s∂s∂s′
= r2‖s‖

d
2
−3
[
I d

2
(r‖s‖)C31 + I d

2
+1(r‖s‖)C32

]
where

C31 = r‖s‖A3,

C32 = ‖s‖2A1 − (d+ 2)A3

and

A3 = s⊗ ss′,

A1 = vec(Id)s
′ + Id ⊗ s+ s⊗ Id .

Note that for the forth order derivative, we have that ∂4f
∂s∂s′∂s∂s′

= ∂4f
∂s′∂s∂s∂s′

. Applying

the product rule from Corollary A4.4 gives us

∂4f

∂s′∂s∂s∂s′
= r3 ∂

∂s′

[
‖s‖−

d
2
−2I d

2
(r‖s‖)A3

]
+ r2 ∂

∂s′

[
‖s‖−

d
2
−1I d

2
+1(r‖s‖)A1

]
− (d+ 2)r2 ∂

∂s′

[
‖s‖−

d
2
−3I d

2
+1(r‖s‖)A3

]
. (B.19)
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For the derivative of the first term,

∂

∂s′

[
‖s‖−

d
2
−2I d

2
(r‖s‖)A3

]
=
∂‖s‖
∂s′

d‖s‖− d2−2I d
2
(r‖s‖)

d‖s‖
⊗A3 + ‖s‖−

d
2
−2I d

2
(r‖s‖)∂A3

∂s′

= ‖s‖−
d
2
−4
(
r‖s‖I d

2
+1(r‖s‖)− 2I d

2
(r‖s‖)

)
A4 + ‖s‖−

d
2
−2I d

2
(r‖s‖)A2

= ‖s‖−
d
2
−4
[
I d

2
(r‖s‖)

(
‖s‖2A2 − 2A4

)
+ I d

2
+1(r‖s‖) r‖s‖A4

]
where we let

A2 =
∂A3

∂s′
= Id ⊗ ss′ + s⊗ Id ⊗ s′ + (s⊗ s)vec(Id)

′

A4 = ss′ ⊗ ss′

from equation (A.32). For the derivative of the second term,

∂

∂s′

[
‖s‖−

d
2
−1I d

2
+1(r‖s‖)A1

]
=
∂‖s‖
∂s′

d‖s‖− d2−1I d
2

+1(r‖s‖)
d‖s‖

⊗A1 + ‖s‖−
d
2
−1I d

2
+1(r‖s‖)∂A1

∂s′

= ‖s‖−
d
2
−3
(
r‖s‖I d

2
(r‖s‖)− (d+ 2)I d

2
+1(r‖s‖)

)
B2 + ‖s‖−

d
2
−1I d

2
+1(r‖s‖)A0

= ‖s‖−
d
2
−3
[
I d

2
(r‖s‖) r‖s‖B2 + I d

2
+1(r‖s‖)

(
‖s‖2A0 − (d+ 2)B2

)]
where

A0 =
∂A1

∂s′
= Id ⊗ Id +K(d,d) + vec(Id)vec(Id)

′,

B2 = s′ ⊗A1 = ss′ ⊗ Id + s′ ⊗ Id ⊗ s+ vec(Id)(s
′ ⊗ s′).

For the derivative of the final term,

∂

∂s′

[
‖s‖−

d
2
−3I d

2
+1(r‖s‖)A3

]
=
∂‖s‖
∂s′

d‖s‖− d2 I d
2

+1(r‖s‖)
d‖s‖

+ ‖s‖−
d
2
−3I d

2
+1(r‖s‖)∂A3

∂s′

= ‖s‖−
d
2
−5
(
r‖s‖I d

2
(r‖s‖)− (d+ 4)I d

2
+1(r‖s‖)

)
A4 + ‖s‖−

d
2
−3I d

2
+1(r‖s‖)A2

= ‖s‖−
d
2
−5
[
I d

2
(r‖s‖) r‖s‖A4 + I d

2
+1(r‖s‖)

(
‖s‖2A2 − (d+ 4)A4

)]
.
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Combining these terms together in (B.19) gives us

∂4f

∂s′∂s∂s∂s′
= r2‖s‖−

d
2
−5
(
I d

2
(r‖s‖)C41 + I d

2
+1(r‖s‖)C42

)
where

C41 = r‖s‖
(
‖s‖2(A2 +B2)− (d+ 4)A4

)
,

C42 =
(
(d+ 4)(d+ 2) + r2‖s‖2

)
A4 − (d+ 2)‖s‖2(A2 +B2) + ‖s‖4A0.

�

B6 Fisher information matrix

Let yi ∼ Nd(µ + uiγ, uiΣ) where yi’s are independent, ui ∼ G(ν, ν) where ui’s are

independent and identically distributed, and `c(θ) = `(θ;Y ,u) be the complete data

likelihood where Y =
(
y1 · · · yn

)′
and u = (u1, ... , un). Under certain regularity

conditions, the Fisher information matrix is the expected value of the observed infor-

mation matrix with respect to the data matrix Y . That is

I(θ) = EY
[
Iobs(θ;Y )

]
(B.20)

where the observed information matrix from (2.20) is given by

Iobs(θ;Y ) = −Eu|Y [`′′c(θ)]− Eu|Y
[
`′c(θ)`′c(θ)>

]
− Eu|Y [`′c(θ)]Eu|Y [`′c(θ)]

>
(B.21)

where we let `c(θ) = `com(θ;Y ,u). So under certain regularity conditions (the same

ones as in Louis’ formula), the Fisher information matrix can be calculated by taking

expectation of the observed information matrix.

For the one-dimensional case, the Fisher information matrix can be calculated by nu-

merical integration directly. However, in the multidimensional case, this direct ap-

proach is infeasible as it requires multidimensional integration which is computationally

demanding. To simplify the multidimensional integration, we use the matrix represen-

tations in Section B2 to calculate the expectation of the three terms in (B.21). The

expectation of the first and second term can be evaluated using Lemma B1.1 and the

conditional normal moment results in Section B4. The expectation of the third term

can be simplified using d-dimensional spherical coordinates to integrate over a sphere

of radius r, then numerically integrating the radius over R+.
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The following sections provide the derivation to evaluate the expectation of the three

terms in (B.21) with respect to Y .

B6.1 First term of Fisher information matrix

Applying Lemma B1.1 to the first term of the Fisher information matrix in (B.20) gives

us

EY Eu|Y [`′′c (θ)] = EuEY |u[`′′c (θ)]. (B.22)

From the NMVM representation of the VG distribution in (1.37), we have that yi|ui ∼
N (µ+ uiγ, uiΣ) and ui ∼ G(ν, ν). Using the general and log-moment formulas from

(1.26) to (1.28), we have that

Eu[um] =
Γ(ν +m)

νm Γ(ν)
for ν +m > 0,

Eu[um log u] =
Γ(ν +m)

νmΓ(ν)

(
ψ(ν +m)− log ν

)
for ν +m > 0,

Eu
[
(log u)2

]
=
(
ψ(ν)− log ν

)2
+ ψ′(ν).

where u ∼ G(ν, ν).

B6.1.1 Diagonal entries

(µ,µ) entry:

EuEY |u
[

∂2`c
∂µ∂µ>

]
= −Σ−1

n∑
i=1

Eu
[

1

ui

]
= −nΣ−1Eu

[
1

u

]
.

(γ,γ) entry:

EuEY |u
[

∂2`c
∂γ∂γ>

]
= −Σ−1

n∑
i=1

Eu[ui] = −nΣ−1Eu[u].

(ν,ν) entry:

EuEY |u
[
∂2`c
∂ν2

]
=
n

ν
− nψ′(ν).
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(vechΣ,vechΣ) entry:

EuEY |u
[

∂2`c
∂vechΣ∂vechΣ>

]
= D>d EuEY |u

[
∂2`c

∂vecΣu∂vecΣ>u

]
Dd

where

EuEY |u
[

∂2`c
∂vecΣu∂vecΣ>u

]
= EuEY |u

[
n

2

(
Σ−1 ⊗Σ−1

)
− 1

2

(
Σ−1 ⊗Σ−1Sỹỹ/uΣ

−1
)
− 1

2

(
Σ−1Sỹỹ/uΣ

−1 ⊗Σ−1
)]

=
n

2

(
Σ−1 ⊗Σ−1

)
− 1

2

(
Σ−1 ⊗Σ−1EuEY |u

[
Sỹỹ/u

]
Σ−1

)
− 1

2

(
Σ−1EuEY |u

[
Sỹỹ/u

]
Σ−1 ⊗Σ−1

)

and

EuEY |u
[
Sỹỹ/u

]
= Eu

 n∑
i=1

1

ui
EY |u

[
(yi − µ− uiγ)(yi − µ− uiγ)>

]
︸ ︷︷ ︸

uiΣ


= nΣ .

This leads to EuEY |u
[

∂2`c
∂vecΣu∂vecΣ>u

]
= −n

2
(Σ−1 ⊗Σ−1) thus giving us the result

EuEY |u
[

∂2`c
∂vechΣ∂vechΣ>

]
= −n

2
D>d
(
Σ−1 ⊗Σ−1

)
Dd.

B6.1.2 Off-diagonal entries

(µ,γ) entry:

EuEY |u
[

∂2`c
∂µ∂γ>

]
= −nΣ−1.

(vechΣ,µ) entry:

EuEY |u
[

∂2`c
∂vechΣ∂µ>

]
= D>d EuEY |u

[
∂2`c

∂vecΣu∂µ>

]
Dd
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where

EuEY |u
[

∂2`c
∂vecΣu∂µ>

]
= −Eu

Σ−1

n∑
i=1

1

ui
EY |u(yi − µ− uiγ)︸ ︷︷ ︸

=0

⊗Σ−1


= 0.

Thus we have that

EuEY |u
[

∂2`c
∂vechΣ∂µ>

]
= 0.

(vechΣ,γ) entry:

EuEY |u
[

∂2`c
∂vechΣ∂γ>

]
= D>d EuEY |u

[
∂2`c

∂vecΣu∂µ>

]
Dd

where

EuEY |u
[

∂2`c
∂vecΣu∂µ>

]
= −Eu

Σ−1

n∑
i=1

EY |u(yi − µ− uiγ)︸ ︷︷ ︸
=0

⊗Σ−1


= 0.

Thus we have that

EuEY |u
[

∂2`c
∂vechΣ∂γ>

]
= 0.

Note that the cross derivatives involving ν are all zero.

B6.1.3 Final result

Combining these derivatives together gives us the expectation of the first term of the

observed information matrix in (B.21).

−EY Eu|Y (`′′c ) =


nΣ−1Eu

(
1
u

)
nΣ−1 0 0

nΣ−1 nΣ−1Eu(u) 0 0

0 0 n
2
D>d (Σ−1 ⊗Σ−1)Dd 0

0 0 0 nψ′(ν)− n
ν

.
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B6.2 Second term of Fisher information matrix

Applying Lemma B1.1 to the expectation of the simplified representation of the second

term (B.14), this gives us the second term of the Fisher information matrix as

EY Eu|Y
[
`′c(θ)`′c(θ)>

]
=

n∑
i=1

EY
[
Eu|Y

[
1

u2
i

]
C1/u,iC

>
1/u,i

]
+ ...

=
n∑
i=1

Eu
[

1

u2
i

EY |u
[
C1/u,iC

>
1/u,i

]]
= nEu

[
1

u2
Ey|u

[
c1/uc

>
1/u

]]
+ ... (B.23)

where we let y ∼ VGd(µ,Σ,γ, ν), u ∼ G(ν, ν) and c1/u represent the column of C1/u

without the index i. We use this representation to simplify the calculation of the second

term of the Fisher information matrix. Recall that the additive constants with respect

to u can simply be ignored in the following calculation. That is,

∂`c
∂θ

= Cθ
1/uv1/u +Cθ

uvu +Cθ
log uvlog u . (B.24)

(µ,µ) entry:

EuEY |u
(
∂`c
∂µ

∂`c
∂µ>

)
= nΣ−1Eu

[
1

u2
Ey|u[(y − µ)(y − µ)′]

]
Σ−1

Using the second order moment result in Section B4

= nΣ−1Eu
[

1

u2

(
uΣ + u2γγ ′

)]
Σ−1 (B.25)

= nEu
[

1

u
Σ−1 + Σ−1γγ ′Σ−1

]
. (B.26)

(γ,γ) entry:

EuEY |u
(
∂`c
∂γ

∂`c
∂γ ′

)
= nEu

[
u2Σ−1γγ ′Σ−1

]
.
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(vechΣ,vechΣ) entry:

EuEY |u
(

∂`c
∂vechΣ

∂`c
∂vechΣ>

)
= D>d EuEY |u

[
∂`c

∂vecΣu

∂`c
∂vecΣ>u

]
Dd.

Focusing on EuEY |u
[

∂`c
∂vecΣu

∂`c
∂vecΣ>u

]
, and using the matrix representation in (B.24),

EuEY |u
[

∂`c
∂vecΣu

∂`c
∂vecΣ>u

]
= nEu

[
Ey|u

[
1

u2
c1/uc

>
1/u

]
︸ ︷︷ ︸

(i)

+Ey|u
[
u2cuc

>
u

]︸ ︷︷ ︸
(ii)

+Ey|u
[
c1/uc

>
u

]︸ ︷︷ ︸
(iii)

+Ey|u
[
cuc

>
1/u

]]

where

(i)
1

4u2
Ey|u

[
vec
(
Σ−1(y − µ)(y − µ)′Σ−1

)
vec
(
Σ−1(y − µ)(y − µ)′Σ−1

)′]
=

1

4u2

(
Σ−1 ⊗Σ−1

)
Ey|u

[
vec
(
(y − µ)(y − µ)′

)
vec
(
(y − µ)(y − µ)′

)′](
Σ−1 ⊗Σ−1

)
=

1

4u2

(
Σ−1 ⊗Σ−1

)[(
Id +K(d,d)

)
(Σ⊗Σ) + [vecΣ + u vec(γγ ′)][vecΣ + u vec(γγ ′)]

′

+ u
(
Id +K(d,d)

)
(Σ⊗ γγ ′)

(
Id +K(d,d)

)](
Σ−1 ⊗Σ−1

)
using the forth order moment result in Section (B4) for the last equality,

(ii)
u2

4
Ey|u

[
vec
(
Σ−1γγ ′Σ−1

)
vec
(
Σ−1γγ ′Σ−1

)′]
=
u2

4

(
Σ−1 ⊗Σ−1

)
vec(γγ ′)vec(γγ ′)

′(
Σ−1 ⊗Σ−1

)
,

(iii)
1

4
Ey|u

[
vec
(
Σ−1(y − µ)(y − µ)′Σ−1

)
vec
(
Σ−1γγ ′Σ−1

)′]
=

1

4

(
Σ−1 ⊗Σ−1

)
Ey|u

[
vec
(
(y − µ)(y − µ)′

)]
vec(γγ ′)

′(
Σ−1 ⊗Σ−1

)
=

1

4

(
Σ−1 ⊗Σ−1

)[
u vecΣ + u2vec(γγ ′)

]
vec(γγ ′)

′(
Σ−1 ⊗Σ−1

)
.
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Combining it together gives us

EuEY |u
[

∂`c
∂vecΣu

∂`c
∂vecΣ>u

]
=
n

4

(
Σ−1 ⊗Σ−1

)
Eu
[(
Id +K(d,d)

)
(Σ⊗Σ) + [vecΣ + 2u vec(γγ ′)][vecΣ + 2u vec(γγ ′)]

′

+ u
(
Id +K(d,d)

)
(Σ⊗ γγ ′)

(
Id +K(d,d)

)](
Σ−1 ⊗Σ−1

)
.

(ν,ν) entry:

EuEY |u
(
∂`c
∂ν

∂`c
∂ν

)
= nEu

[
u2 + (log u)2 − 2u log u

]
.

(µ,γ) entry:

EuEY |u
(
∂`c
∂µ

∂`c
∂γ ′

)
= nΣ−1Eu

[
EY |u[(y − µ)γ ′]

]
Σ−1

= nΣ−1Eu
[
uγγ ′

]
Σ−1

= nΣ−1γγ ′Σ−1Eu[u].

(vechΣ,µ) entry:

EuEY |u
(

∂`c
∂vechΣ

∂`c
∂µ>

)
= D>d EuEY |u

[
∂`c

∂vecΣu

∂`c
∂µ>

]
.

Focusing on EuEY |u
[

∂`c
∂vecΣu

∂`c
∂µ>

]
gives us

EuEy|u
[

∂`c
∂vecΣu

∂`c
∂µ>

]
= nEu

[
Ey|u

[
1

u2
cvecΣ

1/u c
µ
1/u

]
+ Ey|u

[
cvecΣ
u cµ1/u

]]
where
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Ey|u
[

1

u2
cvecΣ

1/u c
µ
1/u

]
=

1

2
Ey|u

[
1

u2
vec
(
Σ−1(y − µ)(y − µ)′Σ−1

)
(y − µ)′Σ−1

]
=

1

2u2

(
Σ−1 ⊗Σ−1

)
Ey|u

[
vec
(
(y − µ)(y − µ)′

)
(y − µ)′

]
Σ−1

=
1

2u2

(
Σ−1 ⊗Σ−1

)[
u2γ ⊗Σ + u2Σ⊗ γ + u2vec(Σ)γ ′ + u3γ ⊗ γγ ′

]
Σ−1

=
1

2

(
Σ−1 ⊗Σ−1

)[
γ ⊗Σ + Σ⊗ γ + vec(Σ)γ ′ + uγ ⊗ γγ ′

]
Σ−1,

and

Ey|u
[
cvecΣ
u cµ1/u

]
=

1

2
Ey|u

[
vec
(
Σ−1γγ ′Σ−1

)
(y − µ)′Σ−1

]
=

1

2

(
Σ−1 ⊗Σ−1

)
vec(γγ ′)Ey|u[(y − µ)′]Σ−1

=
1

2

(
Σ−1 ⊗Σ−1

)
vec(γγ ′)uγ ′Σ−1

=
u

2

(
Σ−1 ⊗Σ−1

)
(γ ⊗ γγ ′)Σ−1.

Combining the terms gives us

EuEY |u
[

∂`c
∂vecΣu

∂`c
∂µ>

]
=
n

2

(
Σ−1 ⊗Σ−1

)(
γ ⊗Σ + Σ⊗ γ + vec(Σ)γ ′ + 2Eu[u]γ ⊗ γγ ′

)
Σ−1.

(vechΣ,γ) entry:

EuEY |u
(

∂`c
∂vechΣ

∂`c
∂γ ′

)
= D>d EuEY |u

[
∂`c

∂vecΣu

∂`c
∂γ ′

]
.

Focusing on EuEY |u
[

∂`c
∂vecΣu

∂`c
∂γ′

]
gives us
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EuEY |u
[

∂`c
∂vecΣu

∂`c
∂γ ′

]
= nEu

[
Ey|u

[
1

u2
cvecΣ

1/u c
γ
u

]
+ Ey|u

[
cvecΣ
u cγu

]]
where

Ey|u
[
cvecΣ

1/u c
γ
1/u

]
=

1

2
Ey|u

[
vec
(
Σ−1(y − µ)(y − µ)′Σ−1

)
γ ′Σ−1

]
=

1

2

(
Σ−1 ⊗Σ−1

)
Ey|u

[
vec
(
(y − µ)(y − µ)′

)]
γ ′Σ−1

=
1

2

(
Σ−1 ⊗Σ−1

)[
u vecΣ + u2vec(γγ ′)

]
γ ′Σ−1

and

Ey|u
[
u2cvecΣ

u cγ1/u

]
=
u2

2
Ey|u

[
vec
(
Σ−1γγ ′Σ−1

)
γ ′Σ−1

]
=
u2

2

(
Σ−1 ⊗Σ−1

)
vec(γγ ′)γ ′Σ−1.

Combining the terms gives us

EuEY |u
[

∂`c
∂vecΣu

∂`c
∂µ>

]
=
n

2

(
Σ−1 ⊗Σ−1

)
Eu
[
u vecΣ + 2u2vec(γγ ′)

]
γ ′Σ−1.

(µ, ν) entry:

EuEY |u
[
∂`c
∂µ

∂`c
∂ν

]
= nEu

[
Ey|u

[
cµ1/uc

ν
u

]
+

1

u
log uEy|u

[
cµ1/uc

ν
log u

]]
= nEu

[
Ey|u

[
−Σ−1(y − µ)

]
+

1

u
log uEy|u

[
Σ−1(y − µ)

]]
= nEu

[
−Σ−1 Ey|u

[
(y − µ)

]︸ ︷︷ ︸
uγ

+
1

u
log uΣ−1 Ey|u

[
(y − µ)

]︸ ︷︷ ︸
uγ

]
= nΣ−1γ Eu[log u− u].
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(γ, ν) entry:

EuEY |u
[
∂`c
∂γ

∂`c
∂ν

]
= nEu

[
u2 Ey|u[cγucνu] + u log uEy|u[cγucνlog u]

]
= nEu

[
u2 Ey|u[−Σ−1γ] + u log uEy|u[Σ−1γ]

]
= nΣ−1γ Eu

[
u(log u− u)

]
.

(vechΣ, ν) entry:

EuEY |u
(

∂`c
∂vechΣ

∂`c
∂ν

)
= D>d EuEY |u

[
∂`c

∂vecΣu

∂`c
∂ν

]
.

Focusing at EuEY |u
[

∂`c
∂vecΣu

∂`c
∂ν

]
gives us

EuEY |u
[

∂`c
∂vecΣu

∂`c
∂ν

]
= nEu

[
1

u2
Ey|u

[
cvecΣ

1/u c
ν
u

]
+

1

u
log uEy|u

[
cvecΣ

1/u c
ν
log u

]
+ u2Ey|u

[
cvecΣ
u cνu

]
+ u log uEy|u

[
cvecΣ
u cνlog u

]]
= nEu

[
1

u2
Ey|u

[
−1

2

(
Σ−1 ⊗Σ−1

)
vec
(
(y − µ)(y − µ)′

)]
+

1

u
log uEy|u

[
1

2

(
Σ−1 ⊗Σ−1

)
vec
(
(y − µ)(y − µ)′

)]
+ u2Ey|u

[
−1

2

(
Σ−1 ⊗Σ−1

)
vec(γγ ′)

]
+ u log uEy|u

[
1

2

(
Σ−1 ⊗Σ−1

)
vec(γγ ′)

]]
=
n

2

(
Σ−1 ⊗Σ−1

)
Eu
[
− 1

u2
Ey|u

[
vec
(
(y − µ)(y − µ)′

)]︸ ︷︷ ︸
vec(uΣ+u2γγ′)

+
1

u
log uEy|u

[
vec
(
(y − µ)(y − µ)′

)]︸ ︷︷ ︸
vec(uΣ+u2γγ′)

− u2vec(γγ ′) + u log u vec(γγ ′)

]
=
n

2

(
Σ−1 ⊗Σ−1

)
Eu
[
− u vec(Σ + 2uγγ ′) + log u vec(Σ + 2uγγ)

]
=
n

2

(
Σ−1 ⊗Σ−1

)
Eu
[
(log u− u)vec(Σ + 2uγγ)

]
.
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B6.3 Third term of Fisher information matrix

Let zi = A−1(yi − µ) where Σ = AA>, Z =
(
z1 · · · zn

)>
and z = A−1(y − µ)

where y has the same distribution as yi. The first order derivatives of the complete

data log-likelihood in terms of zi’s while ignoring additive constants with respect to u

can be written as

∂`c
∂µ

= Σ−1

n∑
i=1

1

ui
(yi − µ) = A−>

n∑
i=1

1

ui
zi,

∂`c
∂γ

= Σ−1

n∑
i=1

uiγ = A−>
n∑
i=1

uiγz,

∂`c
∂ν

=
n∑
i=1

log ui −
n∑
i=1

ui

and

∂`c
∂vecΣu

=
1

2
vec

(
Σ−1

[
n∑
i=1

1

ui
(yi − µ)(yi − µ)′ +

n∑
i=1

uiγγ
′

]
Σ−1

)

=
1

2
vec

(
A−>

[
n∑
i=1

1

ui
ziz

′
i +

n∑
i=1

uiγzγ
′
z

]
A−1

)

=
1

2

(
A−> ⊗A−>

)( n∑
i=1

1

ui
zi ⊗ zi +

n∑
i=1

uiγz ⊗ γz

)
,

where it is sufficient to obtain derivatives with respect to vecΣu since the formulas to

obtain derivatives with respect to vechΣ are given in Section A7.1 and A7.2.

(µ,µ) entry:

Eu|Y
(
∂`c
∂µ

)
Eu|Y

(
∂`c
∂µ>

)
= A−>

[
n∑
i=1

Eu|Z
[

1
ui

]2

ziz
>
i

]
A−1.
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Taking expectation with respect to Y ,

EY
[
Eu|Y

(
∂`c
∂µ

)
Eu|Y

(
∂`c
∂µ>

)]
= nA−>

[∫
Rd

Eu|z
[

1
u

]2
zz>fZ(z) dz

]
A−1

= nA−>
[ ∫ ∞

0

Eu|r
[

1
u

]2
g(r)

∫
‖z‖=r

zz> exp(γzz) dS︸ ︷︷ ︸
M

(2)
r (γz)

dr

]
A−1.

where M (k)
r (s) for k = 0, ... , 4 are defined in Section B5.1.

(γ,γ) entry:

Eu|Y
(
∂`c
∂γ

)
Eu|Y

(
∂`c
∂γ>

)
= nEu|z[u]2A−>γzγ

>
z A

−1.

Taking expectation with respect to Y

EY
[
Eu|Y

(
∂`c
∂γ

)
Eu|Y

(
∂`c
∂γ>

)]
= n

[ ∫ ∞
0

Eu|r[u]2g(r)M (0)
r (γz) dr

]
A−>γzγ

>
z A

−1.

(vechΣ,vechΣ) entry:

Eu|Y
(

∂`c
∂vecΣu

)
Eu|Y

(
∂`c

∂vecΣ′u

)
=

1

4

(
A−> ⊗A−>

)( n∑
i=1

Eu|Z
[

1
ui

]
zi ⊗ zi +

n∑
i=1

Eu|Z [ui]γz ⊗ γz

)
(

n∑
i=1

Eu|Z
[

1
ui

]
zi ⊗ zi +

n∑
i=1

Eu|Z [ui]γz ⊗ γz

)>(
A−1 ⊗A−1

)
.
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Taking expectation with respect to Y ,

EY
[
Eu|Y

(
∂`c

∂vecΣu

)
Eu|Y

(
∂`c

∂vecΣ>u

)]
=
n

4

(
A−> ⊗A−>

)
Ez
[
Eu|z

[
1
u

]2
zz′ ⊗ zz′ + Eu|z[u]2γzγ

′
z ⊗ γzγ ′z

+ Eu|z
[

1
u

]
Eu|z[u]

{
(z ⊗ z)(γ ′z ⊗ γ ′z) + (γz ⊗ γz)(z′ ⊗ z′)

}](
A−1 ⊗A−1

)
=
n

4

(
A−> ⊗A−>

) ∫ ∞
0

g(r)
[
Eu|r

[
1
u

]2
M (4)

r (γz) + Eu|r[u]2M (0)
r (γz)γzγ

′
z ⊗ γzγ ′z

+ Eu|r
[

1
u

]
Eu|r[u]

{
vec
(
M (2)

r (γz)
)
(γ ′z ⊗ γ ′z) + (γz ⊗ γz)vec

(
M (2)

r (γz)
)′}]

dr
(
A−1 ⊗A−1

)
.

(ν, ν) entry:

Eu|Y
(
∂`c
∂ν

)2

=
n∑
i=1

Eu|Z [log ui]
2 +

n∑
i=1

Eu|Z [ui]
2 − 2

n∑
i=1

Eu|Z [log ui]Eu|Z [ui].

Taking expectation with respect to Y ,

EY

[
Eu|Y

(
∂`c
∂ν

)2
]

= n

∫ ∞
0

g(r)
(
Eu|r[log u]− Eu|r[u]

)2
M (0)

r (γz)dr.

(µ,γ) entry:

Eu|Y
(
∂`c
∂µ

)
Eu|Y

(
∂`c
∂γ>

)
= −A−>

[
n∑
i=1

Eu|Z
[

1
ui

]
Eu|Z [ui]zi

]
γ>z A

−1.

Taking expectation with respect to Y ,

EY
[
Eu|Y

(
∂`c
∂µ

)
Eu|Y

(
∂`c
∂γ>

)]
= −nA−>

[ ∫ ∞
0

Eu|r
[

1
u

]
Eu|r[u]g(r)M (1)

r (γz) dr

]
γ>z A

−1.
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(vechΣ,µ) entry:

Eu|Y
(

∂`c
∂vecΣu

)
Eu|Y

(
∂`c
∂µ>

)

=
1

2

(
A−> ⊗A−>

)( n∑
i=1

Eu|Z
[

1
ui

]
zi ⊗ zi +

n∑
i=1

Eu|Z [ui]γz ⊗ γz

)(
n∑
i=1

Eu|Z
[

1
ui

]
zi

)>
A−1.

Taking expectation with respect to Y ,

EY
[
Eu|Y

(
∂`c

∂vecΣu

)
Eu|Y

(
∂`c
∂µ>

)]
=
n

2

(
A−> ⊗A−>

)
Ez
[
Eu|z

[
1
u

]2
z ⊗ zz′ + Eu|z

[
1
u

]
Eu|z[u](γz ⊗ γz)z′

]
A−1

=
n

2

(
A−> ⊗A−>

) ∫ ∞
0

g(r)
[
Eu|r

[
1
u

]2
M (3)

r (γz) + Eu|r
[

1
u

]
Eu|r[u](γz ⊗ γz)M (1)

r (γz)
>
]
drA−1.

(µ, ν) entry:

Eu|Y
(
∂`c
∂µ

)
Eu|Y

(
∂`c
∂ν

)
= A−>

n∑
i=1

Eu|Z
[

1
ui

](
Eu|Z [log ui]− Eu|Z [ui]

)
zi .

Taking expectation with respect to Y ,

EY
[
Eu|Y

(
∂`c
∂µ

)
Eu|Y

(
∂`c
∂ν

)]
= nA−>

∫ ∞
0

Eu|z
[

1
u

](
Eu|z[log u]− Eu|z[u]

)
g(r)M (1)

r (γz) dr .

(vechΣ,γ) entry:

Eu|Y
(

∂`c
∂vecΣu

)
Eu|Y

(
∂`c
∂γ>

)
= −1

2

(
A−> ⊗A−>

)( n∑
i=1

Eu|Z
[

1
ui

]
zi ⊗ zi +

n∑
i=1

Eu|Z [ui]γz ⊗ γz

)(
n∑
i=1

Eu|Z [ui]

)
γ ′zA

−1.
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Taking expectation with respect to Y ,

EY
[
Eu|Y

(
∂`c

∂vecΣu

)
Eu|Y

(
∂`c
∂γ>

)]
= −n

2

(
A−> ⊗A−>

)
Ez
[
Eu|z

[
1
u

]
Eu|z[u]z ⊗ z + Eu|z[u]2γz ⊗ γz

]
γ ′zA

−1

= −n
2

(
A−> ⊗A−>

) ∫ ∞
0

g(r)
[
Eu|r

[
1
u

]
Eu|r[u]vecM (2)

r (γz) + Eu|r[u]2M (0)
r (γz)γz ⊗ γz

]
dr γ ′zA

−1.

(vechΣ, ν) entry:

Eu|Y
(

∂`c
∂vecΣu

)
Eu|Y

(
∂`c
∂ν

)

=
1

2

(
A−> ⊗A−>

)
vec

(
n∑
i=1

Eu|Z
[

1
ui

]
ziz
′
i +

n∑
i=1

Eu|Z [ui]γzγ
′
z

)(
n∑
i=1

Eu|Z [log ui]−
n∑
i=1

Eu|Z [ui]

)>
.

Taking expectation with respect to Y ,

EY
[
Eu|Y

(
∂`c

∂vecΣu

)
Eu|Y

(
∂`c
∂ν

)]
=
n

2

(
A−> ⊗A−>

)
Ez
[
Eu|z

[
1
u

](
Eu|z[log u]− Eu|z[u]

)
(z ⊗ z)

+ Eu|z[u]
(
Eu|z[log u]− Eu|z[u]

)
γz ⊗ γz

]
=
n

2

(
A−> ⊗A−>

) ∫ ∞
0

g(r)
[
Eu|r

[
1
u

](
Eu|Z [log u]− Eu|Z [u]

)
vecM (2)

r (γz)

+ Eu|r[u]
(
Eu|Z [log u]− Eu|Z [u]

)
M (0)

r (γz)γz ⊗ γz
]
dr .

(γ, ν) entry:

Eu|Y
(
∂`c
∂γ

)
Eu|Y

(
∂`c
∂ν

)
= −A−>

n∑
i=1

Eu|Z [ui]
(
Eu|Z [log ui]− Eu|Z [ui]

)
γz .

Taking expectation with respect to Y ,

EY
[
Eu|Y

(
∂`c
∂γ

)
Eu|Y

(
∂`c
∂ν

)]
= −nA−>

∫ ∞
0

Eu|z[u]
(
Eu|z[log u]− Eu|z[u]

)
g(r)M (0)

r (γz) dr γz .



CHAPTER C

Other Related Functions and Distributions

C1 Modified Bessel function of the second kind

The modified Bessel function of the second kind appears in the density function (1.36)

and E-step of VG distribution in Section 2.1.1. Some useful asymptotic properties are

presented to improve numeric stability when applying EM algorithms. See Abramowitz

and Stegun [1] for more information.

The modified Bessel function of the second kind has the following integral representa-

tions:

Kλ(z) =
1

2

∫ ∞
0

wλ−1 exp

(
−z

2

(
1

w
+ w

))
dw,

Kλ(z) =

∫ ∞
0

exp(−z cosh t) cosh(λt)dt

for z > 0. The following integral formula is useful to obtain the density of the GH

distribution, ∫ ∞
0

wλ−1 exp

(
−1

2

(χ
w

+ ψw
))

dw = 2

(
χ

ψ

)λ
2

Kλ

(√
χψ
)

where λ, χ, and ψ satisfy the parameter conditions for the GIG distribution in (1.20).

Some symmetry properties includes

K−λ(z) = Kλ(z),

K
(1,0)
−λ (z) = −K(1,0)

λ (z)

206
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where K
(1,0)
λ (ω) = ∂

∂α
Kα(ω)

∣∣
α=λ

.

Some asymptotic properties when λ > 0 is fixed and z → 0 includes

K0(z) ∼ −
(
log
(
z
2

)
+ Υ

)
∼ − log(z),

Kλ(z) ∼ 1

2

(
Γ(λ)

(z
2

)−λ
+ Γ(−λ)

(z
2

)λ)
for non-integer λ

∼ 2λ−1Γ(λ)z−λ,

K
(1,0)
λ (z) ∼ 2λ−1Γ(λ)z−λ

(
ψ(λ)− log( z

2
)
)
,

K
(2,0)
λ (z) ∼ 2λ−1Γ(λ)z−λ

[
ψ′(λ) +

(
ψ(λ)− log

(
z
2

))2
]

where Υ represents a Euler-Mascheroni constant, and ψ(x) = ∂
∂x

log Γ(x) represents a

digamma function.

Some asymptotic properties when z > 0 is fixed and λ→ 0 includes

Kλ(z) ∼
∫ ∞

0

exp(−z cosh(t)) dt,

K
(1,0)
λ (z) ∼ λ

∫ ∞
0

t2 exp(−z cosh(t)) dt,

K
(2,0)
λ ∼

∫ ∞
0

t2 exp(−z cosh(t)) dt.

The asymptotic property when z →∞ is given by

Kλ(z) ∼
√

π

2z
e−z.

Note that K 1
2
(z) =

√
π

2z
e−z.
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C2 Student’s t distribution

Setting ψ = 0, λ = −υ/2, and χ = υ from the GH distribution in (1.20) gives us the

multivariate skewed Student’s t distribution with density function

fY (y) =
υ
υ
2 (γ ′Σ−1γ)

υ+d
2

(2π)
d
2 |Σ| 12 Γ

(
υ
2

)
2
υ
2
−1
×
Kυ+d

2

(√
(υ + z2)γΣ−1γ

)
e(y−µ)′Σ−1γ(√

(υ + z2)γΣ−1γ
)υ+d

2

where z2 represents the Mahalanobis distance in (1.35), and for the symmetric case as

γ → 0

fY (y) =
υ
υ
2 Γ
(
υ+d

2

)
π
d
2 |Σ| 12 Γ

(
υ
2

)
(υ + z2)

υ+d
2

.

It is interesting to note that this parametrisation corresponds to the case where the

mixing variable follows IG(α = υ
2
, β = υ

2
) which has expected value of υ

υ−2
when υ > 2,

but the expected value does not exist when υ ≤ 2. Additionally, from the variance of the

mixture representation in (1.32), the variance of the symmetric Student’s t distribution

does not exist when υ ≤ 2, while for the skewed case the variance does not exist when

υ ≤ 4 since it involves the variance of the mixing distribution.

Alternatively, choosing the mixing variable to instead follow IG(α = υ
2
, β = υ

2
− 1)

for υ > 2 and gives the the expected value of 1. This is equivalent to setting ψ = 0,

λ = −υ/2, and χ = υ − 2 from the GH distribution

fY (y) =
(υ − 2)

υ
2 (γ ′Σ−1γ)

υ+d
2

(2π)
d
2 |Σ| 12 Γ

(
υ
2

)
2
υ
2
−1
×
Kυ+d

2

(√
(υ − 2 + z2)γΣ−1γ

)
e(y−µ)′Σ−1γ(√

(υ − 2 + z2)γΣ−1γ
)υ+d

2

(C.1)

and for the symmetric case

fY (y) =
(υ − 2)

υ
2 Γ
(
υ+d

2

)
π
d
2 |Σ| 12 Γ

(
υ
2

)
(υ − 2 + z2)

υ+d
2

.

The Student’s t random variable using this parametrisation is denoted by Y ∼ td(µ,Σ,γ, υ)

and is used for the implementation of the VARMA-t model in Section 5.6.
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C3 Generalised Gumbel distribution

The pdf of a generalised Gumbel (GG) distribution is given by

fGG(x) =
mm

σΓ(m)
exp

(
m
x− µ
σ
−m exp

(
x− µ
σ

))
, x ∈ R (C.2)

where µ ∈ R is the location parameter, σ > 0 is the scale parameter, and m > 0 is the

shape parameter. Note that we consider the reflected version of the GG distribution

given in [2].

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

de
ns

ity

Figure C.1. Density plot of the GG distribution with m = 10 (solid black),
m = 1 (dashed dark grey), m = 0.5 (dotted grey), and m = 0.3 (dot-dashed
light grey) such that the location and scale is standardised using the mean and
variance formula in equation (C.4).

We can easily generate GG random variables based on gamma random variables using

the following theorem.

Theorem C3.1. If X ∼ G(m,m), then Y = logX−µ
σ

follows GG distribution with

density function in equation (C.2).

Proof. The idea of the proof is similar to the proof in Adeyemi [2]. �
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Using this transformation, we can compute the CDF as

FGG(x) = Fgamma(exp(µ+ σx);m,m), x ∈ R (C.3)

and quantile function

QGG(p) = µ+ σ logQgamma(p;m,m), p ∈ [0, 1]

where Fgamma(x; a, b) and Qgamma(p; a, b) are CDF and quantile function of G(a, b). In

other words, we just need to calculate the CDF and quantiles of the gamma distribution.

The mean and variance of a GG random variable X is given by

E(X) = µ+ σ(ψ(m)− logm) and Var(X) = σ2ψ′(m). (C.4)

C4 Double generalised gamma distribution

After fitting log |µ̂n| using a GG distribution, we can deduce the distribution of µ̂n

follows a double generalised gamma [62] using the following theorem.

Theorem C4.1. Suppose that X follows a symmetric distribution such that log |X|
follows GG distribution with pdf in equation (C.2), then X follows a double generalised

gamma distribution with pdf

γβα

2Γ(α)
|x|γα−1 exp(−β|x|α), x ∈ R (C.5)

where α > 0, β > 0, and γ > 0.

Proof. Suppose that Y = log |X| follows a GG distribution, then Y has pdf

fY (y) ∝ exp
(my
σ
−m exp

(
−µ
σ

)
exp
(y
σ

))
where it is sufficient to consider the functional form. Now applying the transformation

of the random variable Y = logW where W = |X|, we get the pdf for W ,

fW (w) ∝ exp

(
m

σ
logw −m exp

(
−µ
σ

)
exp

(
logw

σ

))
1

w

∝ wm/σ−1 exp
(
−m exp

(
−µ
σ

)
w1/σ

)
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which has the functional form of the generalised gamma distribution. Reverse the

transformation of W = |X| by reflecting the pdf at 0 gives us the result. �

By setting α = 2, β = 1/2, and γ = 1/2 in equation (C.5) gives the standard normal

density as a special case.

As the simulation results show that the GG distribution fits log |µ̂n| reasonably well,

we can model µ̂n using a double generalised gamma distribution. Suppose that Σ̂ is the

scale parameter estimate of VG distribution with diagonals Σ̂ii for i = 1, ... , d. Then

the SE of µ̂ can be approximated using the formula

SE(µ̂i) ≈

√
Σ̂iiβ−2/γΓ(α + 2/γ)

Γ(α)

where α = mGG, β = mGG exp(−µGG/σGG), γ = 1/σGG, and (µGG, σGG,mGG) are

estimates of GG distribution extrapolated from Figure 3.7. Since the SE is sensitive to

outliers, the MAD can instead be used as a robust measure of spread for µ̂,

MAD(µ̂i) ≈ Qgengamma(0.5) =

√
Σ̂iiQgamma(0.5;mGG,mGG exp(−µGG/σGG))σGG (C.6)

for i = 1, ... , d where Qgengamma(·) represents the quantile function for the generalised

gamma distribution where the pdf has functional form in (C.5) with support on x > 0.
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